GNU Linux-libre 4.9.318-gnu1
[releases.git] / fs / ext4 / inode.c
1 /*
2  *  linux/fs/ext4/inode.c
3  *
4  * Copyright (C) 1992, 1993, 1994, 1995
5  * Remy Card (card@masi.ibp.fr)
6  * Laboratoire MASI - Institut Blaise Pascal
7  * Universite Pierre et Marie Curie (Paris VI)
8  *
9  *  from
10  *
11  *  linux/fs/minix/inode.c
12  *
13  *  Copyright (C) 1991, 1992  Linus Torvalds
14  *
15  *  64-bit file support on 64-bit platforms by Jakub Jelinek
16  *      (jj@sunsite.ms.mff.cuni.cz)
17  *
18  *  Assorted race fixes, rewrite of ext4_get_block() by Al Viro, 2000
19  */
20
21 #include <linux/fs.h>
22 #include <linux/time.h>
23 #include <linux/highuid.h>
24 #include <linux/pagemap.h>
25 #include <linux/dax.h>
26 #include <linux/quotaops.h>
27 #include <linux/string.h>
28 #include <linux/buffer_head.h>
29 #include <linux/writeback.h>
30 #include <linux/pagevec.h>
31 #include <linux/mpage.h>
32 #include <linux/namei.h>
33 #include <linux/uio.h>
34 #include <linux/bio.h>
35 #include <linux/workqueue.h>
36 #include <linux/kernel.h>
37 #include <linux/printk.h>
38 #include <linux/slab.h>
39 #include <linux/bitops.h>
40
41 #include "ext4_jbd2.h"
42 #include "xattr.h"
43 #include "acl.h"
44 #include "truncate.h"
45
46 #include <trace/events/ext4.h>
47
48 #define MPAGE_DA_EXTENT_TAIL 0x01
49
50 static __u32 ext4_inode_csum(struct inode *inode, struct ext4_inode *raw,
51                               struct ext4_inode_info *ei)
52 {
53         struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
54         __u32 csum;
55         __u16 dummy_csum = 0;
56         int offset = offsetof(struct ext4_inode, i_checksum_lo);
57         unsigned int csum_size = sizeof(dummy_csum);
58
59         csum = ext4_chksum(sbi, ei->i_csum_seed, (__u8 *)raw, offset);
60         csum = ext4_chksum(sbi, csum, (__u8 *)&dummy_csum, csum_size);
61         offset += csum_size;
62         csum = ext4_chksum(sbi, csum, (__u8 *)raw + offset,
63                            EXT4_GOOD_OLD_INODE_SIZE - offset);
64
65         if (EXT4_INODE_SIZE(inode->i_sb) > EXT4_GOOD_OLD_INODE_SIZE) {
66                 offset = offsetof(struct ext4_inode, i_checksum_hi);
67                 csum = ext4_chksum(sbi, csum, (__u8 *)raw +
68                                    EXT4_GOOD_OLD_INODE_SIZE,
69                                    offset - EXT4_GOOD_OLD_INODE_SIZE);
70                 if (EXT4_FITS_IN_INODE(raw, ei, i_checksum_hi)) {
71                         csum = ext4_chksum(sbi, csum, (__u8 *)&dummy_csum,
72                                            csum_size);
73                         offset += csum_size;
74                 }
75                 csum = ext4_chksum(sbi, csum, (__u8 *)raw + offset,
76                                    EXT4_INODE_SIZE(inode->i_sb) - offset);
77         }
78
79         return csum;
80 }
81
82 static int ext4_inode_csum_verify(struct inode *inode, struct ext4_inode *raw,
83                                   struct ext4_inode_info *ei)
84 {
85         __u32 provided, calculated;
86
87         if (EXT4_SB(inode->i_sb)->s_es->s_creator_os !=
88             cpu_to_le32(EXT4_OS_LINUX) ||
89             !ext4_has_metadata_csum(inode->i_sb))
90                 return 1;
91
92         provided = le16_to_cpu(raw->i_checksum_lo);
93         calculated = ext4_inode_csum(inode, raw, ei);
94         if (EXT4_INODE_SIZE(inode->i_sb) > EXT4_GOOD_OLD_INODE_SIZE &&
95             EXT4_FITS_IN_INODE(raw, ei, i_checksum_hi))
96                 provided |= ((__u32)le16_to_cpu(raw->i_checksum_hi)) << 16;
97         else
98                 calculated &= 0xFFFF;
99
100         return provided == calculated;
101 }
102
103 static void ext4_inode_csum_set(struct inode *inode, struct ext4_inode *raw,
104                                 struct ext4_inode_info *ei)
105 {
106         __u32 csum;
107
108         if (EXT4_SB(inode->i_sb)->s_es->s_creator_os !=
109             cpu_to_le32(EXT4_OS_LINUX) ||
110             !ext4_has_metadata_csum(inode->i_sb))
111                 return;
112
113         csum = ext4_inode_csum(inode, raw, ei);
114         raw->i_checksum_lo = cpu_to_le16(csum & 0xFFFF);
115         if (EXT4_INODE_SIZE(inode->i_sb) > EXT4_GOOD_OLD_INODE_SIZE &&
116             EXT4_FITS_IN_INODE(raw, ei, i_checksum_hi))
117                 raw->i_checksum_hi = cpu_to_le16(csum >> 16);
118 }
119
120 static inline int ext4_begin_ordered_truncate(struct inode *inode,
121                                               loff_t new_size)
122 {
123         trace_ext4_begin_ordered_truncate(inode, new_size);
124         /*
125          * If jinode is zero, then we never opened the file for
126          * writing, so there's no need to call
127          * jbd2_journal_begin_ordered_truncate() since there's no
128          * outstanding writes we need to flush.
129          */
130         if (!EXT4_I(inode)->jinode)
131                 return 0;
132         return jbd2_journal_begin_ordered_truncate(EXT4_JOURNAL(inode),
133                                                    EXT4_I(inode)->jinode,
134                                                    new_size);
135 }
136
137 static void ext4_invalidatepage(struct page *page, unsigned int offset,
138                                 unsigned int length);
139 static int __ext4_journalled_writepage(struct page *page, unsigned int len);
140 static int ext4_bh_delay_or_unwritten(handle_t *handle, struct buffer_head *bh);
141 static int ext4_meta_trans_blocks(struct inode *inode, int lblocks,
142                                   int pextents);
143
144 /*
145  * Test whether an inode is a fast symlink.
146  */
147 int ext4_inode_is_fast_symlink(struct inode *inode)
148 {
149         int ea_blocks = EXT4_I(inode)->i_file_acl ?
150                 EXT4_CLUSTER_SIZE(inode->i_sb) >> 9 : 0;
151
152         if (ext4_has_inline_data(inode))
153                 return 0;
154
155         return (S_ISLNK(inode->i_mode) && inode->i_blocks - ea_blocks == 0);
156 }
157
158 /*
159  * Restart the transaction associated with *handle.  This does a commit,
160  * so before we call here everything must be consistently dirtied against
161  * this transaction.
162  */
163 int ext4_truncate_restart_trans(handle_t *handle, struct inode *inode,
164                                  int nblocks)
165 {
166         int ret;
167
168         /*
169          * Drop i_data_sem to avoid deadlock with ext4_map_blocks.  At this
170          * moment, get_block can be called only for blocks inside i_size since
171          * page cache has been already dropped and writes are blocked by
172          * i_mutex. So we can safely drop the i_data_sem here.
173          */
174         BUG_ON(EXT4_JOURNAL(inode) == NULL);
175         jbd_debug(2, "restarting handle %p\n", handle);
176         up_write(&EXT4_I(inode)->i_data_sem);
177         ret = ext4_journal_restart(handle, nblocks);
178         down_write(&EXT4_I(inode)->i_data_sem);
179         ext4_discard_preallocations(inode);
180
181         return ret;
182 }
183
184 /*
185  * Called at the last iput() if i_nlink is zero.
186  */
187 void ext4_evict_inode(struct inode *inode)
188 {
189         handle_t *handle;
190         int err;
191
192         trace_ext4_evict_inode(inode);
193
194         if (inode->i_nlink) {
195                 /*
196                  * When journalling data dirty buffers are tracked only in the
197                  * journal. So although mm thinks everything is clean and
198                  * ready for reaping the inode might still have some pages to
199                  * write in the running transaction or waiting to be
200                  * checkpointed. Thus calling jbd2_journal_invalidatepage()
201                  * (via truncate_inode_pages()) to discard these buffers can
202                  * cause data loss. Also even if we did not discard these
203                  * buffers, we would have no way to find them after the inode
204                  * is reaped and thus user could see stale data if he tries to
205                  * read them before the transaction is checkpointed. So be
206                  * careful and force everything to disk here... We use
207                  * ei->i_datasync_tid to store the newest transaction
208                  * containing inode's data.
209                  *
210                  * Note that directories do not have this problem because they
211                  * don't use page cache.
212                  */
213                 if (inode->i_ino != EXT4_JOURNAL_INO &&
214                     ext4_should_journal_data(inode) &&
215                     (S_ISLNK(inode->i_mode) || S_ISREG(inode->i_mode))) {
216                         journal_t *journal = EXT4_SB(inode->i_sb)->s_journal;
217                         tid_t commit_tid = EXT4_I(inode)->i_datasync_tid;
218
219                         jbd2_complete_transaction(journal, commit_tid);
220                         filemap_write_and_wait(&inode->i_data);
221                 }
222                 truncate_inode_pages_final(&inode->i_data);
223
224                 goto no_delete;
225         }
226
227         if (is_bad_inode(inode))
228                 goto no_delete;
229         dquot_initialize(inode);
230
231         if (ext4_should_order_data(inode))
232                 ext4_begin_ordered_truncate(inode, 0);
233         truncate_inode_pages_final(&inode->i_data);
234
235         /*
236          * Protect us against freezing - iput() caller didn't have to have any
237          * protection against it
238          */
239         sb_start_intwrite(inode->i_sb);
240         handle = ext4_journal_start(inode, EXT4_HT_TRUNCATE,
241                                     ext4_blocks_for_truncate(inode)+3);
242         if (IS_ERR(handle)) {
243                 ext4_std_error(inode->i_sb, PTR_ERR(handle));
244                 /*
245                  * If we're going to skip the normal cleanup, we still need to
246                  * make sure that the in-core orphan linked list is properly
247                  * cleaned up.
248                  */
249                 ext4_orphan_del(NULL, inode);
250                 sb_end_intwrite(inode->i_sb);
251                 goto no_delete;
252         }
253
254         if (IS_SYNC(inode))
255                 ext4_handle_sync(handle);
256         inode->i_size = 0;
257         err = ext4_mark_inode_dirty(handle, inode);
258         if (err) {
259                 ext4_warning(inode->i_sb,
260                              "couldn't mark inode dirty (err %d)", err);
261                 goto stop_handle;
262         }
263         if (inode->i_blocks)
264                 ext4_truncate(inode);
265
266         /*
267          * ext4_ext_truncate() doesn't reserve any slop when it
268          * restarts journal transactions; therefore there may not be
269          * enough credits left in the handle to remove the inode from
270          * the orphan list and set the dtime field.
271          */
272         if (!ext4_handle_has_enough_credits(handle, 3)) {
273                 err = ext4_journal_extend(handle, 3);
274                 if (err > 0)
275                         err = ext4_journal_restart(handle, 3);
276                 if (err != 0) {
277                         ext4_warning(inode->i_sb,
278                                      "couldn't extend journal (err %d)", err);
279                 stop_handle:
280                         ext4_journal_stop(handle);
281                         ext4_orphan_del(NULL, inode);
282                         sb_end_intwrite(inode->i_sb);
283                         goto no_delete;
284                 }
285         }
286
287         /*
288          * Kill off the orphan record which ext4_truncate created.
289          * AKPM: I think this can be inside the above `if'.
290          * Note that ext4_orphan_del() has to be able to cope with the
291          * deletion of a non-existent orphan - this is because we don't
292          * know if ext4_truncate() actually created an orphan record.
293          * (Well, we could do this if we need to, but heck - it works)
294          */
295         ext4_orphan_del(handle, inode);
296         EXT4_I(inode)->i_dtime  = get_seconds();
297
298         /*
299          * One subtle ordering requirement: if anything has gone wrong
300          * (transaction abort, IO errors, whatever), then we can still
301          * do these next steps (the fs will already have been marked as
302          * having errors), but we can't free the inode if the mark_dirty
303          * fails.
304          */
305         if (ext4_mark_inode_dirty(handle, inode))
306                 /* If that failed, just do the required in-core inode clear. */
307                 ext4_clear_inode(inode);
308         else
309                 ext4_free_inode(handle, inode);
310         ext4_journal_stop(handle);
311         sb_end_intwrite(inode->i_sb);
312         return;
313 no_delete:
314         ext4_clear_inode(inode);        /* We must guarantee clearing of inode... */
315 }
316
317 #ifdef CONFIG_QUOTA
318 qsize_t *ext4_get_reserved_space(struct inode *inode)
319 {
320         return &EXT4_I(inode)->i_reserved_quota;
321 }
322 #endif
323
324 /*
325  * Called with i_data_sem down, which is important since we can call
326  * ext4_discard_preallocations() from here.
327  */
328 void ext4_da_update_reserve_space(struct inode *inode,
329                                         int used, int quota_claim)
330 {
331         struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
332         struct ext4_inode_info *ei = EXT4_I(inode);
333
334         spin_lock(&ei->i_block_reservation_lock);
335         trace_ext4_da_update_reserve_space(inode, used, quota_claim);
336         if (unlikely(used > ei->i_reserved_data_blocks)) {
337                 ext4_warning(inode->i_sb, "%s: ino %lu, used %d "
338                          "with only %d reserved data blocks",
339                          __func__, inode->i_ino, used,
340                          ei->i_reserved_data_blocks);
341                 WARN_ON(1);
342                 used = ei->i_reserved_data_blocks;
343         }
344
345         /* Update per-inode reservations */
346         ei->i_reserved_data_blocks -= used;
347         percpu_counter_sub(&sbi->s_dirtyclusters_counter, used);
348
349         spin_unlock(&EXT4_I(inode)->i_block_reservation_lock);
350
351         /* Update quota subsystem for data blocks */
352         if (quota_claim)
353                 dquot_claim_block(inode, EXT4_C2B(sbi, used));
354         else {
355                 /*
356                  * We did fallocate with an offset that is already delayed
357                  * allocated. So on delayed allocated writeback we should
358                  * not re-claim the quota for fallocated blocks.
359                  */
360                 dquot_release_reservation_block(inode, EXT4_C2B(sbi, used));
361         }
362
363         /*
364          * If we have done all the pending block allocations and if
365          * there aren't any writers on the inode, we can discard the
366          * inode's preallocations.
367          */
368         if ((ei->i_reserved_data_blocks == 0) &&
369             (atomic_read(&inode->i_writecount) == 0))
370                 ext4_discard_preallocations(inode);
371 }
372
373 static int __check_block_validity(struct inode *inode, const char *func,
374                                 unsigned int line,
375                                 struct ext4_map_blocks *map)
376 {
377         if (ext4_has_feature_journal(inode->i_sb) &&
378             (inode->i_ino ==
379              le32_to_cpu(EXT4_SB(inode->i_sb)->s_es->s_journal_inum)))
380                 return 0;
381         if (!ext4_inode_block_valid(inode, map->m_pblk, map->m_len)) {
382                 ext4_error_inode(inode, func, line, map->m_pblk,
383                                  "lblock %lu mapped to illegal pblock %llu "
384                                  "(length %d)", (unsigned long) map->m_lblk,
385                                  map->m_pblk, map->m_len);
386                 return -EFSCORRUPTED;
387         }
388         return 0;
389 }
390
391 int ext4_issue_zeroout(struct inode *inode, ext4_lblk_t lblk, ext4_fsblk_t pblk,
392                        ext4_lblk_t len)
393 {
394         int ret;
395
396         if (ext4_encrypted_inode(inode))
397                 return fscrypt_zeroout_range(inode, lblk, pblk, len);
398
399         ret = sb_issue_zeroout(inode->i_sb, pblk, len, GFP_NOFS);
400         if (ret > 0)
401                 ret = 0;
402
403         return ret;
404 }
405
406 #define check_block_validity(inode, map)        \
407         __check_block_validity((inode), __func__, __LINE__, (map))
408
409 #ifdef ES_AGGRESSIVE_TEST
410 static void ext4_map_blocks_es_recheck(handle_t *handle,
411                                        struct inode *inode,
412                                        struct ext4_map_blocks *es_map,
413                                        struct ext4_map_blocks *map,
414                                        int flags)
415 {
416         int retval;
417
418         map->m_flags = 0;
419         /*
420          * There is a race window that the result is not the same.
421          * e.g. xfstests #223 when dioread_nolock enables.  The reason
422          * is that we lookup a block mapping in extent status tree with
423          * out taking i_data_sem.  So at the time the unwritten extent
424          * could be converted.
425          */
426         down_read(&EXT4_I(inode)->i_data_sem);
427         if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS)) {
428                 retval = ext4_ext_map_blocks(handle, inode, map, flags &
429                                              EXT4_GET_BLOCKS_KEEP_SIZE);
430         } else {
431                 retval = ext4_ind_map_blocks(handle, inode, map, flags &
432                                              EXT4_GET_BLOCKS_KEEP_SIZE);
433         }
434         up_read((&EXT4_I(inode)->i_data_sem));
435
436         /*
437          * We don't check m_len because extent will be collpased in status
438          * tree.  So the m_len might not equal.
439          */
440         if (es_map->m_lblk != map->m_lblk ||
441             es_map->m_flags != map->m_flags ||
442             es_map->m_pblk != map->m_pblk) {
443                 printk("ES cache assertion failed for inode: %lu "
444                        "es_cached ex [%d/%d/%llu/%x] != "
445                        "found ex [%d/%d/%llu/%x] retval %d flags %x\n",
446                        inode->i_ino, es_map->m_lblk, es_map->m_len,
447                        es_map->m_pblk, es_map->m_flags, map->m_lblk,
448                        map->m_len, map->m_pblk, map->m_flags,
449                        retval, flags);
450         }
451 }
452 #endif /* ES_AGGRESSIVE_TEST */
453
454 /*
455  * The ext4_map_blocks() function tries to look up the requested blocks,
456  * and returns if the blocks are already mapped.
457  *
458  * Otherwise it takes the write lock of the i_data_sem and allocate blocks
459  * and store the allocated blocks in the result buffer head and mark it
460  * mapped.
461  *
462  * If file type is extents based, it will call ext4_ext_map_blocks(),
463  * Otherwise, call with ext4_ind_map_blocks() to handle indirect mapping
464  * based files
465  *
466  * On success, it returns the number of blocks being mapped or allocated.  if
467  * create==0 and the blocks are pre-allocated and unwritten, the resulting @map
468  * is marked as unwritten. If the create == 1, it will mark @map as mapped.
469  *
470  * It returns 0 if plain look up failed (blocks have not been allocated), in
471  * that case, @map is returned as unmapped but we still do fill map->m_len to
472  * indicate the length of a hole starting at map->m_lblk.
473  *
474  * It returns the error in case of allocation failure.
475  */
476 int ext4_map_blocks(handle_t *handle, struct inode *inode,
477                     struct ext4_map_blocks *map, int flags)
478 {
479         struct extent_status es;
480         int retval;
481         int ret = 0;
482 #ifdef ES_AGGRESSIVE_TEST
483         struct ext4_map_blocks orig_map;
484
485         memcpy(&orig_map, map, sizeof(*map));
486 #endif
487
488         map->m_flags = 0;
489         ext_debug("ext4_map_blocks(): inode %lu, flag %d, max_blocks %u,"
490                   "logical block %lu\n", inode->i_ino, flags, map->m_len,
491                   (unsigned long) map->m_lblk);
492
493         /*
494          * ext4_map_blocks returns an int, and m_len is an unsigned int
495          */
496         if (unlikely(map->m_len > INT_MAX))
497                 map->m_len = INT_MAX;
498
499         /* We can handle the block number less than EXT_MAX_BLOCKS */
500         if (unlikely(map->m_lblk >= EXT_MAX_BLOCKS))
501                 return -EFSCORRUPTED;
502
503         /* Lookup extent status tree firstly */
504         if (ext4_es_lookup_extent(inode, map->m_lblk, &es)) {
505                 if (ext4_es_is_written(&es) || ext4_es_is_unwritten(&es)) {
506                         map->m_pblk = ext4_es_pblock(&es) +
507                                         map->m_lblk - es.es_lblk;
508                         map->m_flags |= ext4_es_is_written(&es) ?
509                                         EXT4_MAP_MAPPED : EXT4_MAP_UNWRITTEN;
510                         retval = es.es_len - (map->m_lblk - es.es_lblk);
511                         if (retval > map->m_len)
512                                 retval = map->m_len;
513                         map->m_len = retval;
514                 } else if (ext4_es_is_delayed(&es) || ext4_es_is_hole(&es)) {
515                         map->m_pblk = 0;
516                         retval = es.es_len - (map->m_lblk - es.es_lblk);
517                         if (retval > map->m_len)
518                                 retval = map->m_len;
519                         map->m_len = retval;
520                         retval = 0;
521                 } else {
522                         BUG_ON(1);
523                 }
524 #ifdef ES_AGGRESSIVE_TEST
525                 ext4_map_blocks_es_recheck(handle, inode, map,
526                                            &orig_map, flags);
527 #endif
528                 goto found;
529         }
530
531         /*
532          * Try to see if we can get the block without requesting a new
533          * file system block.
534          */
535         down_read(&EXT4_I(inode)->i_data_sem);
536         if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS)) {
537                 retval = ext4_ext_map_blocks(handle, inode, map, flags &
538                                              EXT4_GET_BLOCKS_KEEP_SIZE);
539         } else {
540                 retval = ext4_ind_map_blocks(handle, inode, map, flags &
541                                              EXT4_GET_BLOCKS_KEEP_SIZE);
542         }
543         if (retval > 0) {
544                 unsigned int status;
545
546                 if (unlikely(retval != map->m_len)) {
547                         ext4_warning(inode->i_sb,
548                                      "ES len assertion failed for inode "
549                                      "%lu: retval %d != map->m_len %d",
550                                      inode->i_ino, retval, map->m_len);
551                         WARN_ON(1);
552                 }
553
554                 status = map->m_flags & EXT4_MAP_UNWRITTEN ?
555                                 EXTENT_STATUS_UNWRITTEN : EXTENT_STATUS_WRITTEN;
556                 if (!(flags & EXT4_GET_BLOCKS_DELALLOC_RESERVE) &&
557                     !(status & EXTENT_STATUS_WRITTEN) &&
558                     ext4_find_delalloc_range(inode, map->m_lblk,
559                                              map->m_lblk + map->m_len - 1))
560                         status |= EXTENT_STATUS_DELAYED;
561                 ret = ext4_es_insert_extent(inode, map->m_lblk,
562                                             map->m_len, map->m_pblk, status);
563                 if (ret < 0)
564                         retval = ret;
565         }
566         up_read((&EXT4_I(inode)->i_data_sem));
567
568 found:
569         if (retval > 0 && map->m_flags & EXT4_MAP_MAPPED) {
570                 ret = check_block_validity(inode, map);
571                 if (ret != 0)
572                         return ret;
573         }
574
575         /* If it is only a block(s) look up */
576         if ((flags & EXT4_GET_BLOCKS_CREATE) == 0)
577                 return retval;
578
579         /*
580          * Returns if the blocks have already allocated
581          *
582          * Note that if blocks have been preallocated
583          * ext4_ext_get_block() returns the create = 0
584          * with buffer head unmapped.
585          */
586         if (retval > 0 && map->m_flags & EXT4_MAP_MAPPED)
587                 /*
588                  * If we need to convert extent to unwritten
589                  * we continue and do the actual work in
590                  * ext4_ext_map_blocks()
591                  */
592                 if (!(flags & EXT4_GET_BLOCKS_CONVERT_UNWRITTEN))
593                         return retval;
594
595         /*
596          * Here we clear m_flags because after allocating an new extent,
597          * it will be set again.
598          */
599         map->m_flags &= ~EXT4_MAP_FLAGS;
600
601         /*
602          * New blocks allocate and/or writing to unwritten extent
603          * will possibly result in updating i_data, so we take
604          * the write lock of i_data_sem, and call get_block()
605          * with create == 1 flag.
606          */
607         down_write(&EXT4_I(inode)->i_data_sem);
608
609         /*
610          * We need to check for EXT4 here because migrate
611          * could have changed the inode type in between
612          */
613         if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS)) {
614                 retval = ext4_ext_map_blocks(handle, inode, map, flags);
615         } else {
616                 retval = ext4_ind_map_blocks(handle, inode, map, flags);
617
618                 if (retval > 0 && map->m_flags & EXT4_MAP_NEW) {
619                         /*
620                          * We allocated new blocks which will result in
621                          * i_data's format changing.  Force the migrate
622                          * to fail by clearing migrate flags
623                          */
624                         ext4_clear_inode_state(inode, EXT4_STATE_EXT_MIGRATE);
625                 }
626
627                 /*
628                  * Update reserved blocks/metadata blocks after successful
629                  * block allocation which had been deferred till now. We don't
630                  * support fallocate for non extent files. So we can update
631                  * reserve space here.
632                  */
633                 if ((retval > 0) &&
634                         (flags & EXT4_GET_BLOCKS_DELALLOC_RESERVE))
635                         ext4_da_update_reserve_space(inode, retval, 1);
636         }
637
638         if (retval > 0) {
639                 unsigned int status;
640
641                 if (unlikely(retval != map->m_len)) {
642                         ext4_warning(inode->i_sb,
643                                      "ES len assertion failed for inode "
644                                      "%lu: retval %d != map->m_len %d",
645                                      inode->i_ino, retval, map->m_len);
646                         WARN_ON(1);
647                 }
648
649                 /*
650                  * We have to zeroout blocks before inserting them into extent
651                  * status tree. Otherwise someone could look them up there and
652                  * use them before they are really zeroed. We also have to
653                  * unmap metadata before zeroing as otherwise writeback can
654                  * overwrite zeros with stale data from block device.
655                  */
656                 if (flags & EXT4_GET_BLOCKS_ZERO &&
657                     map->m_flags & EXT4_MAP_MAPPED &&
658                     map->m_flags & EXT4_MAP_NEW) {
659                         ext4_lblk_t i;
660
661                         for (i = 0; i < map->m_len; i++) {
662                                 unmap_underlying_metadata(inode->i_sb->s_bdev,
663                                                           map->m_pblk + i);
664                         }
665                         ret = ext4_issue_zeroout(inode, map->m_lblk,
666                                                  map->m_pblk, map->m_len);
667                         if (ret) {
668                                 retval = ret;
669                                 goto out_sem;
670                         }
671                 }
672
673                 /*
674                  * If the extent has been zeroed out, we don't need to update
675                  * extent status tree.
676                  */
677                 if ((flags & EXT4_GET_BLOCKS_PRE_IO) &&
678                     ext4_es_lookup_extent(inode, map->m_lblk, &es)) {
679                         if (ext4_es_is_written(&es))
680                                 goto out_sem;
681                 }
682                 status = map->m_flags & EXT4_MAP_UNWRITTEN ?
683                                 EXTENT_STATUS_UNWRITTEN : EXTENT_STATUS_WRITTEN;
684                 if (!(flags & EXT4_GET_BLOCKS_DELALLOC_RESERVE) &&
685                     !(status & EXTENT_STATUS_WRITTEN) &&
686                     ext4_find_delalloc_range(inode, map->m_lblk,
687                                              map->m_lblk + map->m_len - 1))
688                         status |= EXTENT_STATUS_DELAYED;
689                 ret = ext4_es_insert_extent(inode, map->m_lblk, map->m_len,
690                                             map->m_pblk, status);
691                 if (ret < 0) {
692                         retval = ret;
693                         goto out_sem;
694                 }
695         }
696
697 out_sem:
698         up_write((&EXT4_I(inode)->i_data_sem));
699         if (retval > 0 && map->m_flags & EXT4_MAP_MAPPED) {
700                 ret = check_block_validity(inode, map);
701                 if (ret != 0)
702                         return ret;
703
704                 /*
705                  * Inodes with freshly allocated blocks where contents will be
706                  * visible after transaction commit must be on transaction's
707                  * ordered data list.
708                  */
709                 if (map->m_flags & EXT4_MAP_NEW &&
710                     !(map->m_flags & EXT4_MAP_UNWRITTEN) &&
711                     !(flags & EXT4_GET_BLOCKS_ZERO) &&
712                     !IS_NOQUOTA(inode) &&
713                     ext4_should_order_data(inode)) {
714                         if (flags & EXT4_GET_BLOCKS_IO_SUBMIT)
715                                 ret = ext4_jbd2_inode_add_wait(handle, inode);
716                         else
717                                 ret = ext4_jbd2_inode_add_write(handle, inode);
718                         if (ret)
719                                 return ret;
720                 }
721         }
722         return retval;
723 }
724
725 /*
726  * Update EXT4_MAP_FLAGS in bh->b_state. For buffer heads attached to pages
727  * we have to be careful as someone else may be manipulating b_state as well.
728  */
729 static void ext4_update_bh_state(struct buffer_head *bh, unsigned long flags)
730 {
731         unsigned long old_state;
732         unsigned long new_state;
733
734         flags &= EXT4_MAP_FLAGS;
735
736         /* Dummy buffer_head? Set non-atomically. */
737         if (!bh->b_page) {
738                 bh->b_state = (bh->b_state & ~EXT4_MAP_FLAGS) | flags;
739                 return;
740         }
741         /*
742          * Someone else may be modifying b_state. Be careful! This is ugly but
743          * once we get rid of using bh as a container for mapping information
744          * to pass to / from get_block functions, this can go away.
745          */
746         do {
747                 old_state = READ_ONCE(bh->b_state);
748                 new_state = (old_state & ~EXT4_MAP_FLAGS) | flags;
749         } while (unlikely(
750                  cmpxchg(&bh->b_state, old_state, new_state) != old_state));
751 }
752
753 static int _ext4_get_block(struct inode *inode, sector_t iblock,
754                            struct buffer_head *bh, int flags)
755 {
756         struct ext4_map_blocks map;
757         int ret = 0;
758
759         if (ext4_has_inline_data(inode))
760                 return -ERANGE;
761
762         map.m_lblk = iblock;
763         map.m_len = bh->b_size >> inode->i_blkbits;
764
765         ret = ext4_map_blocks(ext4_journal_current_handle(), inode, &map,
766                               flags);
767         if (ret > 0) {
768                 map_bh(bh, inode->i_sb, map.m_pblk);
769                 ext4_update_bh_state(bh, map.m_flags);
770                 bh->b_size = inode->i_sb->s_blocksize * map.m_len;
771                 ret = 0;
772         }
773         return ret;
774 }
775
776 int ext4_get_block(struct inode *inode, sector_t iblock,
777                    struct buffer_head *bh, int create)
778 {
779         return _ext4_get_block(inode, iblock, bh,
780                                create ? EXT4_GET_BLOCKS_CREATE : 0);
781 }
782
783 /*
784  * Get block function used when preparing for buffered write if we require
785  * creating an unwritten extent if blocks haven't been allocated.  The extent
786  * will be converted to written after the IO is complete.
787  */
788 int ext4_get_block_unwritten(struct inode *inode, sector_t iblock,
789                              struct buffer_head *bh_result, int create)
790 {
791         ext4_debug("ext4_get_block_unwritten: inode %lu, create flag %d\n",
792                    inode->i_ino, create);
793         return _ext4_get_block(inode, iblock, bh_result,
794                                EXT4_GET_BLOCKS_IO_CREATE_EXT);
795 }
796
797 /* Maximum number of blocks we map for direct IO at once. */
798 #define DIO_MAX_BLOCKS 4096
799
800 /*
801  * Get blocks function for the cases that need to start a transaction -
802  * generally difference cases of direct IO and DAX IO. It also handles retries
803  * in case of ENOSPC.
804  */
805 static int ext4_get_block_trans(struct inode *inode, sector_t iblock,
806                                 struct buffer_head *bh_result, int flags)
807 {
808         int dio_credits;
809         handle_t *handle;
810         int retries = 0;
811         int ret;
812
813         /* Trim mapping request to maximum we can map at once for DIO */
814         if (bh_result->b_size >> inode->i_blkbits > DIO_MAX_BLOCKS)
815                 bh_result->b_size = DIO_MAX_BLOCKS << inode->i_blkbits;
816         dio_credits = ext4_chunk_trans_blocks(inode,
817                                       bh_result->b_size >> inode->i_blkbits);
818 retry:
819         handle = ext4_journal_start(inode, EXT4_HT_MAP_BLOCKS, dio_credits);
820         if (IS_ERR(handle))
821                 return PTR_ERR(handle);
822
823         ret = _ext4_get_block(inode, iblock, bh_result, flags);
824         ext4_journal_stop(handle);
825
826         if (ret == -ENOSPC && ext4_should_retry_alloc(inode->i_sb, &retries))
827                 goto retry;
828         return ret;
829 }
830
831 /* Get block function for DIO reads and writes to inodes without extents */
832 int ext4_dio_get_block(struct inode *inode, sector_t iblock,
833                        struct buffer_head *bh, int create)
834 {
835         /* We don't expect handle for direct IO */
836         WARN_ON_ONCE(ext4_journal_current_handle());
837
838         if (!create)
839                 return _ext4_get_block(inode, iblock, bh, 0);
840         return ext4_get_block_trans(inode, iblock, bh, EXT4_GET_BLOCKS_CREATE);
841 }
842
843 /*
844  * Get block function for AIO DIO writes when we create unwritten extent if
845  * blocks are not allocated yet. The extent will be converted to written
846  * after IO is complete.
847  */
848 static int ext4_dio_get_block_unwritten_async(struct inode *inode,
849                 sector_t iblock, struct buffer_head *bh_result, int create)
850 {
851         int ret;
852
853         /* We don't expect handle for direct IO */
854         WARN_ON_ONCE(ext4_journal_current_handle());
855
856         ret = ext4_get_block_trans(inode, iblock, bh_result,
857                                    EXT4_GET_BLOCKS_IO_CREATE_EXT);
858
859         /*
860          * When doing DIO using unwritten extents, we need io_end to convert
861          * unwritten extents to written on IO completion. We allocate io_end
862          * once we spot unwritten extent and store it in b_private. Generic
863          * DIO code keeps b_private set and furthermore passes the value to
864          * our completion callback in 'private' argument.
865          */
866         if (!ret && buffer_unwritten(bh_result)) {
867                 if (!bh_result->b_private) {
868                         ext4_io_end_t *io_end;
869
870                         io_end = ext4_init_io_end(inode, GFP_KERNEL);
871                         if (!io_end)
872                                 return -ENOMEM;
873                         bh_result->b_private = io_end;
874                         ext4_set_io_unwritten_flag(inode, io_end);
875                 }
876                 set_buffer_defer_completion(bh_result);
877         }
878
879         return ret;
880 }
881
882 /*
883  * Get block function for non-AIO DIO writes when we create unwritten extent if
884  * blocks are not allocated yet. The extent will be converted to written
885  * after IO is complete from ext4_ext_direct_IO() function.
886  */
887 static int ext4_dio_get_block_unwritten_sync(struct inode *inode,
888                 sector_t iblock, struct buffer_head *bh_result, int create)
889 {
890         int ret;
891
892         /* We don't expect handle for direct IO */
893         WARN_ON_ONCE(ext4_journal_current_handle());
894
895         ret = ext4_get_block_trans(inode, iblock, bh_result,
896                                    EXT4_GET_BLOCKS_IO_CREATE_EXT);
897
898         /*
899          * Mark inode as having pending DIO writes to unwritten extents.
900          * ext4_ext_direct_IO() checks this flag and converts extents to
901          * written.
902          */
903         if (!ret && buffer_unwritten(bh_result))
904                 ext4_set_inode_state(inode, EXT4_STATE_DIO_UNWRITTEN);
905
906         return ret;
907 }
908
909 static int ext4_dio_get_block_overwrite(struct inode *inode, sector_t iblock,
910                    struct buffer_head *bh_result, int create)
911 {
912         int ret;
913
914         ext4_debug("ext4_dio_get_block_overwrite: inode %lu, create flag %d\n",
915                    inode->i_ino, create);
916         /* We don't expect handle for direct IO */
917         WARN_ON_ONCE(ext4_journal_current_handle());
918
919         ret = _ext4_get_block(inode, iblock, bh_result, 0);
920         /*
921          * Blocks should have been preallocated! ext4_file_write_iter() checks
922          * that.
923          */
924         WARN_ON_ONCE(!buffer_mapped(bh_result) || buffer_unwritten(bh_result));
925
926         return ret;
927 }
928
929
930 /*
931  * `handle' can be NULL if create is zero
932  */
933 struct buffer_head *ext4_getblk(handle_t *handle, struct inode *inode,
934                                 ext4_lblk_t block, int map_flags)
935 {
936         struct ext4_map_blocks map;
937         struct buffer_head *bh;
938         int create = map_flags & EXT4_GET_BLOCKS_CREATE;
939         int err;
940
941         J_ASSERT(handle != NULL || create == 0);
942
943         map.m_lblk = block;
944         map.m_len = 1;
945         err = ext4_map_blocks(handle, inode, &map, map_flags);
946
947         if (err == 0)
948                 return create ? ERR_PTR(-ENOSPC) : NULL;
949         if (err < 0)
950                 return ERR_PTR(err);
951
952         bh = sb_getblk(inode->i_sb, map.m_pblk);
953         if (unlikely(!bh))
954                 return ERR_PTR(-ENOMEM);
955         if (map.m_flags & EXT4_MAP_NEW) {
956                 J_ASSERT(create != 0);
957                 J_ASSERT(handle != NULL);
958
959                 /*
960                  * Now that we do not always journal data, we should
961                  * keep in mind whether this should always journal the
962                  * new buffer as metadata.  For now, regular file
963                  * writes use ext4_get_block instead, so it's not a
964                  * problem.
965                  */
966                 lock_buffer(bh);
967                 BUFFER_TRACE(bh, "call get_create_access");
968                 err = ext4_journal_get_create_access(handle, bh);
969                 if (unlikely(err)) {
970                         unlock_buffer(bh);
971                         goto errout;
972                 }
973                 if (!buffer_uptodate(bh)) {
974                         memset(bh->b_data, 0, inode->i_sb->s_blocksize);
975                         set_buffer_uptodate(bh);
976                 }
977                 unlock_buffer(bh);
978                 BUFFER_TRACE(bh, "call ext4_handle_dirty_metadata");
979                 err = ext4_handle_dirty_metadata(handle, inode, bh);
980                 if (unlikely(err))
981                         goto errout;
982         } else
983                 BUFFER_TRACE(bh, "not a new buffer");
984         return bh;
985 errout:
986         brelse(bh);
987         return ERR_PTR(err);
988 }
989
990 struct buffer_head *ext4_bread(handle_t *handle, struct inode *inode,
991                                ext4_lblk_t block, int map_flags)
992 {
993         struct buffer_head *bh;
994
995         bh = ext4_getblk(handle, inode, block, map_flags);
996         if (IS_ERR(bh))
997                 return bh;
998         if (!bh || buffer_uptodate(bh))
999                 return bh;
1000         ll_rw_block(REQ_OP_READ, REQ_META | REQ_PRIO, 1, &bh);
1001         wait_on_buffer(bh);
1002         if (buffer_uptodate(bh))
1003                 return bh;
1004         put_bh(bh);
1005         return ERR_PTR(-EIO);
1006 }
1007
1008 int ext4_walk_page_buffers(handle_t *handle,
1009                            struct buffer_head *head,
1010                            unsigned from,
1011                            unsigned to,
1012                            int *partial,
1013                            int (*fn)(handle_t *handle,
1014                                      struct buffer_head *bh))
1015 {
1016         struct buffer_head *bh;
1017         unsigned block_start, block_end;
1018         unsigned blocksize = head->b_size;
1019         int err, ret = 0;
1020         struct buffer_head *next;
1021
1022         for (bh = head, block_start = 0;
1023              ret == 0 && (bh != head || !block_start);
1024              block_start = block_end, bh = next) {
1025                 next = bh->b_this_page;
1026                 block_end = block_start + blocksize;
1027                 if (block_end <= from || block_start >= to) {
1028                         if (partial && !buffer_uptodate(bh))
1029                                 *partial = 1;
1030                         continue;
1031                 }
1032                 err = (*fn)(handle, bh);
1033                 if (!ret)
1034                         ret = err;
1035         }
1036         return ret;
1037 }
1038
1039 /*
1040  * To preserve ordering, it is essential that the hole instantiation and
1041  * the data write be encapsulated in a single transaction.  We cannot
1042  * close off a transaction and start a new one between the ext4_get_block()
1043  * and the commit_write().  So doing the jbd2_journal_start at the start of
1044  * prepare_write() is the right place.
1045  *
1046  * Also, this function can nest inside ext4_writepage().  In that case, we
1047  * *know* that ext4_writepage() has generated enough buffer credits to do the
1048  * whole page.  So we won't block on the journal in that case, which is good,
1049  * because the caller may be PF_MEMALLOC.
1050  *
1051  * By accident, ext4 can be reentered when a transaction is open via
1052  * quota file writes.  If we were to commit the transaction while thus
1053  * reentered, there can be a deadlock - we would be holding a quota
1054  * lock, and the commit would never complete if another thread had a
1055  * transaction open and was blocking on the quota lock - a ranking
1056  * violation.
1057  *
1058  * So what we do is to rely on the fact that jbd2_journal_stop/journal_start
1059  * will _not_ run commit under these circumstances because handle->h_ref
1060  * is elevated.  We'll still have enough credits for the tiny quotafile
1061  * write.
1062  */
1063 int do_journal_get_write_access(handle_t *handle,
1064                                 struct buffer_head *bh)
1065 {
1066         int dirty = buffer_dirty(bh);
1067         int ret;
1068
1069         if (!buffer_mapped(bh) || buffer_freed(bh))
1070                 return 0;
1071         /*
1072          * __block_write_begin() could have dirtied some buffers. Clean
1073          * the dirty bit as jbd2_journal_get_write_access() could complain
1074          * otherwise about fs integrity issues. Setting of the dirty bit
1075          * by __block_write_begin() isn't a real problem here as we clear
1076          * the bit before releasing a page lock and thus writeback cannot
1077          * ever write the buffer.
1078          */
1079         if (dirty)
1080                 clear_buffer_dirty(bh);
1081         BUFFER_TRACE(bh, "get write access");
1082         ret = ext4_journal_get_write_access(handle, bh);
1083         if (!ret && dirty)
1084                 ret = ext4_handle_dirty_metadata(handle, NULL, bh);
1085         return ret;
1086 }
1087
1088 #ifdef CONFIG_EXT4_FS_ENCRYPTION
1089 static int ext4_block_write_begin(struct page *page, loff_t pos, unsigned len,
1090                                   get_block_t *get_block)
1091 {
1092         unsigned from = pos & (PAGE_SIZE - 1);
1093         unsigned to = from + len;
1094         struct inode *inode = page->mapping->host;
1095         unsigned block_start, block_end;
1096         sector_t block;
1097         int err = 0;
1098         unsigned blocksize = inode->i_sb->s_blocksize;
1099         unsigned bbits;
1100         struct buffer_head *bh, *head, *wait[2], **wait_bh = wait;
1101         bool decrypt = false;
1102
1103         BUG_ON(!PageLocked(page));
1104         BUG_ON(from > PAGE_SIZE);
1105         BUG_ON(to > PAGE_SIZE);
1106         BUG_ON(from > to);
1107
1108         if (!page_has_buffers(page))
1109                 create_empty_buffers(page, blocksize, 0);
1110         head = page_buffers(page);
1111         bbits = ilog2(blocksize);
1112         block = (sector_t)page->index << (PAGE_SHIFT - bbits);
1113
1114         for (bh = head, block_start = 0; bh != head || !block_start;
1115             block++, block_start = block_end, bh = bh->b_this_page) {
1116                 block_end = block_start + blocksize;
1117                 if (block_end <= from || block_start >= to) {
1118                         if (PageUptodate(page)) {
1119                                 if (!buffer_uptodate(bh))
1120                                         set_buffer_uptodate(bh);
1121                         }
1122                         continue;
1123                 }
1124                 if (buffer_new(bh))
1125                         clear_buffer_new(bh);
1126                 if (!buffer_mapped(bh)) {
1127                         WARN_ON(bh->b_size != blocksize);
1128                         err = get_block(inode, block, bh, 1);
1129                         if (err)
1130                                 break;
1131                         if (buffer_new(bh)) {
1132                                 unmap_underlying_metadata(bh->b_bdev,
1133                                                           bh->b_blocknr);
1134                                 if (PageUptodate(page)) {
1135                                         clear_buffer_new(bh);
1136                                         set_buffer_uptodate(bh);
1137                                         mark_buffer_dirty(bh);
1138                                         continue;
1139                                 }
1140                                 if (block_end > to || block_start < from)
1141                                         zero_user_segments(page, to, block_end,
1142                                                            block_start, from);
1143                                 continue;
1144                         }
1145                 }
1146                 if (PageUptodate(page)) {
1147                         if (!buffer_uptodate(bh))
1148                                 set_buffer_uptodate(bh);
1149                         continue;
1150                 }
1151                 if (!buffer_uptodate(bh) && !buffer_delay(bh) &&
1152                     !buffer_unwritten(bh) &&
1153                     (block_start < from || block_end > to)) {
1154                         ll_rw_block(REQ_OP_READ, 0, 1, &bh);
1155                         *wait_bh++ = bh;
1156                         decrypt = ext4_encrypted_inode(inode) &&
1157                                 S_ISREG(inode->i_mode);
1158                 }
1159         }
1160         /*
1161          * If we issued read requests, let them complete.
1162          */
1163         while (wait_bh > wait) {
1164                 wait_on_buffer(*--wait_bh);
1165                 if (!buffer_uptodate(*wait_bh))
1166                         err = -EIO;
1167         }
1168         if (unlikely(err))
1169                 page_zero_new_buffers(page, from, to);
1170         else if (decrypt)
1171                 err = fscrypt_decrypt_page(page);
1172         return err;
1173 }
1174 #endif
1175
1176 static int ext4_write_begin(struct file *file, struct address_space *mapping,
1177                             loff_t pos, unsigned len, unsigned flags,
1178                             struct page **pagep, void **fsdata)
1179 {
1180         struct inode *inode = mapping->host;
1181         int ret, needed_blocks;
1182         handle_t *handle;
1183         int retries = 0;
1184         struct page *page;
1185         pgoff_t index;
1186         unsigned from, to;
1187
1188         trace_ext4_write_begin(inode, pos, len, flags);
1189         /*
1190          * Reserve one block more for addition to orphan list in case
1191          * we allocate blocks but write fails for some reason
1192          */
1193         needed_blocks = ext4_writepage_trans_blocks(inode) + 1;
1194         index = pos >> PAGE_SHIFT;
1195         from = pos & (PAGE_SIZE - 1);
1196         to = from + len;
1197
1198         if (ext4_test_inode_state(inode, EXT4_STATE_MAY_INLINE_DATA)) {
1199                 ret = ext4_try_to_write_inline_data(mapping, inode, pos, len,
1200                                                     flags, pagep);
1201                 if (ret < 0)
1202                         return ret;
1203                 if (ret == 1)
1204                         return 0;
1205         }
1206
1207         /*
1208          * grab_cache_page_write_begin() can take a long time if the
1209          * system is thrashing due to memory pressure, or if the page
1210          * is being written back.  So grab it first before we start
1211          * the transaction handle.  This also allows us to allocate
1212          * the page (if needed) without using GFP_NOFS.
1213          */
1214 retry_grab:
1215         page = grab_cache_page_write_begin(mapping, index, flags);
1216         if (!page)
1217                 return -ENOMEM;
1218         unlock_page(page);
1219
1220 retry_journal:
1221         handle = ext4_journal_start(inode, EXT4_HT_WRITE_PAGE, needed_blocks);
1222         if (IS_ERR(handle)) {
1223                 put_page(page);
1224                 return PTR_ERR(handle);
1225         }
1226
1227         lock_page(page);
1228         if (page->mapping != mapping) {
1229                 /* The page got truncated from under us */
1230                 unlock_page(page);
1231                 put_page(page);
1232                 ext4_journal_stop(handle);
1233                 goto retry_grab;
1234         }
1235         /* In case writeback began while the page was unlocked */
1236         wait_for_stable_page(page);
1237
1238 #ifdef CONFIG_EXT4_FS_ENCRYPTION
1239         if (ext4_should_dioread_nolock(inode))
1240                 ret = ext4_block_write_begin(page, pos, len,
1241                                              ext4_get_block_unwritten);
1242         else
1243                 ret = ext4_block_write_begin(page, pos, len,
1244                                              ext4_get_block);
1245 #else
1246         if (ext4_should_dioread_nolock(inode))
1247                 ret = __block_write_begin(page, pos, len,
1248                                           ext4_get_block_unwritten);
1249         else
1250                 ret = __block_write_begin(page, pos, len, ext4_get_block);
1251 #endif
1252         if (!ret && ext4_should_journal_data(inode)) {
1253                 ret = ext4_walk_page_buffers(handle, page_buffers(page),
1254                                              from, to, NULL,
1255                                              do_journal_get_write_access);
1256         }
1257
1258         if (ret) {
1259                 unlock_page(page);
1260                 /*
1261                  * __block_write_begin may have instantiated a few blocks
1262                  * outside i_size.  Trim these off again. Don't need
1263                  * i_size_read because we hold i_mutex.
1264                  *
1265                  * Add inode to orphan list in case we crash before
1266                  * truncate finishes
1267                  */
1268                 if (pos + len > inode->i_size && ext4_can_truncate(inode))
1269                         ext4_orphan_add(handle, inode);
1270
1271                 ext4_journal_stop(handle);
1272                 if (pos + len > inode->i_size) {
1273                         ext4_truncate_failed_write(inode);
1274                         /*
1275                          * If truncate failed early the inode might
1276                          * still be on the orphan list; we need to
1277                          * make sure the inode is removed from the
1278                          * orphan list in that case.
1279                          */
1280                         if (inode->i_nlink)
1281                                 ext4_orphan_del(NULL, inode);
1282                 }
1283
1284                 if (ret == -ENOSPC &&
1285                     ext4_should_retry_alloc(inode->i_sb, &retries))
1286                         goto retry_journal;
1287                 put_page(page);
1288                 return ret;
1289         }
1290         *pagep = page;
1291         return ret;
1292 }
1293
1294 /* For write_end() in data=journal mode */
1295 static int write_end_fn(handle_t *handle, struct buffer_head *bh)
1296 {
1297         int ret;
1298         if (!buffer_mapped(bh) || buffer_freed(bh))
1299                 return 0;
1300         set_buffer_uptodate(bh);
1301         ret = ext4_handle_dirty_metadata(handle, NULL, bh);
1302         clear_buffer_meta(bh);
1303         clear_buffer_prio(bh);
1304         return ret;
1305 }
1306
1307 /*
1308  * We need to pick up the new inode size which generic_commit_write gave us
1309  * `file' can be NULL - eg, when called from page_symlink().
1310  *
1311  * ext4 never places buffers on inode->i_mapping->private_list.  metadata
1312  * buffers are managed internally.
1313  */
1314 static int ext4_write_end(struct file *file,
1315                           struct address_space *mapping,
1316                           loff_t pos, unsigned len, unsigned copied,
1317                           struct page *page, void *fsdata)
1318 {
1319         handle_t *handle = ext4_journal_current_handle();
1320         struct inode *inode = mapping->host;
1321         loff_t old_size = inode->i_size;
1322         int ret = 0, ret2;
1323         int i_size_changed = 0;
1324         int inline_data = ext4_has_inline_data(inode);
1325
1326         trace_ext4_write_end(inode, pos, len, copied);
1327         if (inline_data) {
1328                 ret = ext4_write_inline_data_end(inode, pos, len,
1329                                                  copied, page);
1330                 if (ret < 0) {
1331                         unlock_page(page);
1332                         put_page(page);
1333                         goto errout;
1334                 }
1335                 copied = ret;
1336         } else
1337                 copied = block_write_end(file, mapping, pos,
1338                                          len, copied, page, fsdata);
1339         /*
1340          * it's important to update i_size while still holding page lock:
1341          * page writeout could otherwise come in and zero beyond i_size.
1342          */
1343         i_size_changed = ext4_update_inode_size(inode, pos + copied);
1344         unlock_page(page);
1345         put_page(page);
1346
1347         if (old_size < pos)
1348                 pagecache_isize_extended(inode, old_size, pos);
1349         /*
1350          * Don't mark the inode dirty under page lock. First, it unnecessarily
1351          * makes the holding time of page lock longer. Second, it forces lock
1352          * ordering of page lock and transaction start for journaling
1353          * filesystems.
1354          */
1355         if (i_size_changed || inline_data)
1356                 ext4_mark_inode_dirty(handle, inode);
1357
1358         if (pos + len > inode->i_size && ext4_can_truncate(inode))
1359                 /* if we have allocated more blocks and copied
1360                  * less. We will have blocks allocated outside
1361                  * inode->i_size. So truncate them
1362                  */
1363                 ext4_orphan_add(handle, inode);
1364 errout:
1365         ret2 = ext4_journal_stop(handle);
1366         if (!ret)
1367                 ret = ret2;
1368
1369         if (pos + len > inode->i_size) {
1370                 ext4_truncate_failed_write(inode);
1371                 /*
1372                  * If truncate failed early the inode might still be
1373                  * on the orphan list; we need to make sure the inode
1374                  * is removed from the orphan list in that case.
1375                  */
1376                 if (inode->i_nlink)
1377                         ext4_orphan_del(NULL, inode);
1378         }
1379
1380         return ret ? ret : copied;
1381 }
1382
1383 /*
1384  * This is a private version of page_zero_new_buffers() which doesn't
1385  * set the buffer to be dirty, since in data=journalled mode we need
1386  * to call ext4_handle_dirty_metadata() instead.
1387  */
1388 static void ext4_journalled_zero_new_buffers(handle_t *handle,
1389                                             struct page *page,
1390                                             unsigned from, unsigned to)
1391 {
1392         unsigned int block_start = 0, block_end;
1393         struct buffer_head *head, *bh;
1394
1395         bh = head = page_buffers(page);
1396         do {
1397                 block_end = block_start + bh->b_size;
1398                 if (buffer_new(bh)) {
1399                         if (block_end > from && block_start < to) {
1400                                 if (!PageUptodate(page)) {
1401                                         unsigned start, size;
1402
1403                                         start = max(from, block_start);
1404                                         size = min(to, block_end) - start;
1405
1406                                         zero_user(page, start, size);
1407                                         write_end_fn(handle, bh);
1408                                 }
1409                                 clear_buffer_new(bh);
1410                         }
1411                 }
1412                 block_start = block_end;
1413                 bh = bh->b_this_page;
1414         } while (bh != head);
1415 }
1416
1417 static int ext4_journalled_write_end(struct file *file,
1418                                      struct address_space *mapping,
1419                                      loff_t pos, unsigned len, unsigned copied,
1420                                      struct page *page, void *fsdata)
1421 {
1422         handle_t *handle = ext4_journal_current_handle();
1423         struct inode *inode = mapping->host;
1424         loff_t old_size = inode->i_size;
1425         int ret = 0, ret2;
1426         int partial = 0;
1427         unsigned from, to;
1428         int size_changed = 0;
1429         int inline_data = ext4_has_inline_data(inode);
1430
1431         trace_ext4_journalled_write_end(inode, pos, len, copied);
1432         from = pos & (PAGE_SIZE - 1);
1433         to = from + len;
1434
1435         BUG_ON(!ext4_handle_valid(handle));
1436
1437         if (inline_data) {
1438                 ret = ext4_write_inline_data_end(inode, pos, len,
1439                                                  copied, page);
1440                 if (ret < 0) {
1441                         unlock_page(page);
1442                         put_page(page);
1443                         goto errout;
1444                 }
1445                 copied = ret;
1446         } else if (unlikely(copied < len) && !PageUptodate(page)) {
1447                 copied = 0;
1448                 ext4_journalled_zero_new_buffers(handle, page, from, to);
1449         } else {
1450                 if (unlikely(copied < len))
1451                         ext4_journalled_zero_new_buffers(handle, page,
1452                                                          from + copied, to);
1453                 ret = ext4_walk_page_buffers(handle, page_buffers(page), from,
1454                                              from + copied, &partial,
1455                                              write_end_fn);
1456                 if (!partial)
1457                         SetPageUptodate(page);
1458         }
1459         size_changed = ext4_update_inode_size(inode, pos + copied);
1460         ext4_set_inode_state(inode, EXT4_STATE_JDATA);
1461         EXT4_I(inode)->i_datasync_tid = handle->h_transaction->t_tid;
1462         unlock_page(page);
1463         put_page(page);
1464
1465         if (old_size < pos)
1466                 pagecache_isize_extended(inode, old_size, pos);
1467
1468         if (size_changed || inline_data) {
1469                 ret2 = ext4_mark_inode_dirty(handle, inode);
1470                 if (!ret)
1471                         ret = ret2;
1472         }
1473
1474         if (pos + len > inode->i_size && ext4_can_truncate(inode))
1475                 /* if we have allocated more blocks and copied
1476                  * less. We will have blocks allocated outside
1477                  * inode->i_size. So truncate them
1478                  */
1479                 ext4_orphan_add(handle, inode);
1480
1481 errout:
1482         ret2 = ext4_journal_stop(handle);
1483         if (!ret)
1484                 ret = ret2;
1485         if (pos + len > inode->i_size) {
1486                 ext4_truncate_failed_write(inode);
1487                 /*
1488                  * If truncate failed early the inode might still be
1489                  * on the orphan list; we need to make sure the inode
1490                  * is removed from the orphan list in that case.
1491                  */
1492                 if (inode->i_nlink)
1493                         ext4_orphan_del(NULL, inode);
1494         }
1495
1496         return ret ? ret : copied;
1497 }
1498
1499 /*
1500  * Reserve space for a single cluster
1501  */
1502 static int ext4_da_reserve_space(struct inode *inode)
1503 {
1504         struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
1505         struct ext4_inode_info *ei = EXT4_I(inode);
1506         int ret;
1507
1508         /*
1509          * We will charge metadata quota at writeout time; this saves
1510          * us from metadata over-estimation, though we may go over by
1511          * a small amount in the end.  Here we just reserve for data.
1512          */
1513         ret = dquot_reserve_block(inode, EXT4_C2B(sbi, 1));
1514         if (ret)
1515                 return ret;
1516
1517         spin_lock(&ei->i_block_reservation_lock);
1518         if (ext4_claim_free_clusters(sbi, 1, 0)) {
1519                 spin_unlock(&ei->i_block_reservation_lock);
1520                 dquot_release_reservation_block(inode, EXT4_C2B(sbi, 1));
1521                 return -ENOSPC;
1522         }
1523         ei->i_reserved_data_blocks++;
1524         trace_ext4_da_reserve_space(inode);
1525         spin_unlock(&ei->i_block_reservation_lock);
1526
1527         return 0;       /* success */
1528 }
1529
1530 static void ext4_da_release_space(struct inode *inode, int to_free)
1531 {
1532         struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
1533         struct ext4_inode_info *ei = EXT4_I(inode);
1534
1535         if (!to_free)
1536                 return;         /* Nothing to release, exit */
1537
1538         spin_lock(&EXT4_I(inode)->i_block_reservation_lock);
1539
1540         trace_ext4_da_release_space(inode, to_free);
1541         if (unlikely(to_free > ei->i_reserved_data_blocks)) {
1542                 /*
1543                  * if there aren't enough reserved blocks, then the
1544                  * counter is messed up somewhere.  Since this
1545                  * function is called from invalidate page, it's
1546                  * harmless to return without any action.
1547                  */
1548                 ext4_warning(inode->i_sb, "ext4_da_release_space: "
1549                          "ino %lu, to_free %d with only %d reserved "
1550                          "data blocks", inode->i_ino, to_free,
1551                          ei->i_reserved_data_blocks);
1552                 WARN_ON(1);
1553                 to_free = ei->i_reserved_data_blocks;
1554         }
1555         ei->i_reserved_data_blocks -= to_free;
1556
1557         /* update fs dirty data blocks counter */
1558         percpu_counter_sub(&sbi->s_dirtyclusters_counter, to_free);
1559
1560         spin_unlock(&EXT4_I(inode)->i_block_reservation_lock);
1561
1562         dquot_release_reservation_block(inode, EXT4_C2B(sbi, to_free));
1563 }
1564
1565 static void ext4_da_page_release_reservation(struct page *page,
1566                                              unsigned int offset,
1567                                              unsigned int length)
1568 {
1569         int to_release = 0, contiguous_blks = 0;
1570         struct buffer_head *head, *bh;
1571         unsigned int curr_off = 0;
1572         struct inode *inode = page->mapping->host;
1573         struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
1574         unsigned int stop = offset + length;
1575         int num_clusters;
1576         ext4_fsblk_t lblk;
1577
1578         BUG_ON(stop > PAGE_SIZE || stop < length);
1579
1580         head = page_buffers(page);
1581         bh = head;
1582         do {
1583                 unsigned int next_off = curr_off + bh->b_size;
1584
1585                 if (next_off > stop)
1586                         break;
1587
1588                 if ((offset <= curr_off) && (buffer_delay(bh))) {
1589                         to_release++;
1590                         contiguous_blks++;
1591                         clear_buffer_delay(bh);
1592                 } else if (contiguous_blks) {
1593                         lblk = page->index <<
1594                                (PAGE_SHIFT - inode->i_blkbits);
1595                         lblk += (curr_off >> inode->i_blkbits) -
1596                                 contiguous_blks;
1597                         ext4_es_remove_extent(inode, lblk, contiguous_blks);
1598                         contiguous_blks = 0;
1599                 }
1600                 curr_off = next_off;
1601         } while ((bh = bh->b_this_page) != head);
1602
1603         if (contiguous_blks) {
1604                 lblk = page->index << (PAGE_SHIFT - inode->i_blkbits);
1605                 lblk += (curr_off >> inode->i_blkbits) - contiguous_blks;
1606                 ext4_es_remove_extent(inode, lblk, contiguous_blks);
1607         }
1608
1609         /* If we have released all the blocks belonging to a cluster, then we
1610          * need to release the reserved space for that cluster. */
1611         num_clusters = EXT4_NUM_B2C(sbi, to_release);
1612         while (num_clusters > 0) {
1613                 lblk = (page->index << (PAGE_SHIFT - inode->i_blkbits)) +
1614                         ((num_clusters - 1) << sbi->s_cluster_bits);
1615                 if (sbi->s_cluster_ratio == 1 ||
1616                     !ext4_find_delalloc_cluster(inode, lblk))
1617                         ext4_da_release_space(inode, 1);
1618
1619                 num_clusters--;
1620         }
1621 }
1622
1623 /*
1624  * Delayed allocation stuff
1625  */
1626
1627 struct mpage_da_data {
1628         struct inode *inode;
1629         struct writeback_control *wbc;
1630
1631         pgoff_t first_page;     /* The first page to write */
1632         pgoff_t next_page;      /* Current page to examine */
1633         pgoff_t last_page;      /* Last page to examine */
1634         /*
1635          * Extent to map - this can be after first_page because that can be
1636          * fully mapped. We somewhat abuse m_flags to store whether the extent
1637          * is delalloc or unwritten.
1638          */
1639         struct ext4_map_blocks map;
1640         struct ext4_io_submit io_submit;        /* IO submission data */
1641 };
1642
1643 static void mpage_release_unused_pages(struct mpage_da_data *mpd,
1644                                        bool invalidate)
1645 {
1646         int nr_pages, i;
1647         pgoff_t index, end;
1648         struct pagevec pvec;
1649         struct inode *inode = mpd->inode;
1650         struct address_space *mapping = inode->i_mapping;
1651
1652         /* This is necessary when next_page == 0. */
1653         if (mpd->first_page >= mpd->next_page)
1654                 return;
1655
1656         index = mpd->first_page;
1657         end   = mpd->next_page - 1;
1658         if (invalidate) {
1659                 ext4_lblk_t start, last;
1660                 start = index << (PAGE_SHIFT - inode->i_blkbits);
1661                 last = end << (PAGE_SHIFT - inode->i_blkbits);
1662                 ext4_es_remove_extent(inode, start, last - start + 1);
1663         }
1664
1665         pagevec_init(&pvec, 0);
1666         while (index <= end) {
1667                 nr_pages = pagevec_lookup(&pvec, mapping, index, PAGEVEC_SIZE);
1668                 if (nr_pages == 0)
1669                         break;
1670                 for (i = 0; i < nr_pages; i++) {
1671                         struct page *page = pvec.pages[i];
1672                         if (page->index > end)
1673                                 break;
1674                         BUG_ON(!PageLocked(page));
1675                         BUG_ON(PageWriteback(page));
1676                         if (invalidate) {
1677                                 if (page_mapped(page))
1678                                         clear_page_dirty_for_io(page);
1679                                 block_invalidatepage(page, 0, PAGE_SIZE);
1680                                 ClearPageUptodate(page);
1681                         }
1682                         unlock_page(page);
1683                 }
1684                 index = pvec.pages[nr_pages - 1]->index + 1;
1685                 pagevec_release(&pvec);
1686         }
1687 }
1688
1689 static void ext4_print_free_blocks(struct inode *inode)
1690 {
1691         struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
1692         struct super_block *sb = inode->i_sb;
1693         struct ext4_inode_info *ei = EXT4_I(inode);
1694
1695         ext4_msg(sb, KERN_CRIT, "Total free blocks count %lld",
1696                EXT4_C2B(EXT4_SB(inode->i_sb),
1697                         ext4_count_free_clusters(sb)));
1698         ext4_msg(sb, KERN_CRIT, "Free/Dirty block details");
1699         ext4_msg(sb, KERN_CRIT, "free_blocks=%lld",
1700                (long long) EXT4_C2B(EXT4_SB(sb),
1701                 percpu_counter_sum(&sbi->s_freeclusters_counter)));
1702         ext4_msg(sb, KERN_CRIT, "dirty_blocks=%lld",
1703                (long long) EXT4_C2B(EXT4_SB(sb),
1704                 percpu_counter_sum(&sbi->s_dirtyclusters_counter)));
1705         ext4_msg(sb, KERN_CRIT, "Block reservation details");
1706         ext4_msg(sb, KERN_CRIT, "i_reserved_data_blocks=%u",
1707                  ei->i_reserved_data_blocks);
1708         return;
1709 }
1710
1711 static int ext4_bh_delay_or_unwritten(handle_t *handle, struct buffer_head *bh)
1712 {
1713         return (buffer_delay(bh) || buffer_unwritten(bh)) && buffer_dirty(bh);
1714 }
1715
1716 /*
1717  * This function is grabs code from the very beginning of
1718  * ext4_map_blocks, but assumes that the caller is from delayed write
1719  * time. This function looks up the requested blocks and sets the
1720  * buffer delay bit under the protection of i_data_sem.
1721  */
1722 static int ext4_da_map_blocks(struct inode *inode, sector_t iblock,
1723                               struct ext4_map_blocks *map,
1724                               struct buffer_head *bh)
1725 {
1726         struct extent_status es;
1727         int retval;
1728         sector_t invalid_block = ~((sector_t) 0xffff);
1729 #ifdef ES_AGGRESSIVE_TEST
1730         struct ext4_map_blocks orig_map;
1731
1732         memcpy(&orig_map, map, sizeof(*map));
1733 #endif
1734
1735         if (invalid_block < ext4_blocks_count(EXT4_SB(inode->i_sb)->s_es))
1736                 invalid_block = ~0;
1737
1738         map->m_flags = 0;
1739         ext_debug("ext4_da_map_blocks(): inode %lu, max_blocks %u,"
1740                   "logical block %lu\n", inode->i_ino, map->m_len,
1741                   (unsigned long) map->m_lblk);
1742
1743         /* Lookup extent status tree firstly */
1744         if (ext4_es_lookup_extent(inode, iblock, &es)) {
1745                 if (ext4_es_is_hole(&es)) {
1746                         retval = 0;
1747                         down_read(&EXT4_I(inode)->i_data_sem);
1748                         goto add_delayed;
1749                 }
1750
1751                 /*
1752                  * Delayed extent could be allocated by fallocate.
1753                  * So we need to check it.
1754                  */
1755                 if (ext4_es_is_delayed(&es) && !ext4_es_is_unwritten(&es)) {
1756                         map_bh(bh, inode->i_sb, invalid_block);
1757                         set_buffer_new(bh);
1758                         set_buffer_delay(bh);
1759                         return 0;
1760                 }
1761
1762                 map->m_pblk = ext4_es_pblock(&es) + iblock - es.es_lblk;
1763                 retval = es.es_len - (iblock - es.es_lblk);
1764                 if (retval > map->m_len)
1765                         retval = map->m_len;
1766                 map->m_len = retval;
1767                 if (ext4_es_is_written(&es))
1768                         map->m_flags |= EXT4_MAP_MAPPED;
1769                 else if (ext4_es_is_unwritten(&es))
1770                         map->m_flags |= EXT4_MAP_UNWRITTEN;
1771                 else
1772                         BUG_ON(1);
1773
1774 #ifdef ES_AGGRESSIVE_TEST
1775                 ext4_map_blocks_es_recheck(NULL, inode, map, &orig_map, 0);
1776 #endif
1777                 return retval;
1778         }
1779
1780         /*
1781          * Try to see if we can get the block without requesting a new
1782          * file system block.
1783          */
1784         down_read(&EXT4_I(inode)->i_data_sem);
1785         if (ext4_has_inline_data(inode))
1786                 retval = 0;
1787         else if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS))
1788                 retval = ext4_ext_map_blocks(NULL, inode, map, 0);
1789         else
1790                 retval = ext4_ind_map_blocks(NULL, inode, map, 0);
1791
1792 add_delayed:
1793         if (retval == 0) {
1794                 int ret;
1795                 /*
1796                  * XXX: __block_prepare_write() unmaps passed block,
1797                  * is it OK?
1798                  */
1799                 /*
1800                  * If the block was allocated from previously allocated cluster,
1801                  * then we don't need to reserve it again. However we still need
1802                  * to reserve metadata for every block we're going to write.
1803                  */
1804                 if (EXT4_SB(inode->i_sb)->s_cluster_ratio == 1 ||
1805                     !ext4_find_delalloc_cluster(inode, map->m_lblk)) {
1806                         ret = ext4_da_reserve_space(inode);
1807                         if (ret) {
1808                                 /* not enough space to reserve */
1809                                 retval = ret;
1810                                 goto out_unlock;
1811                         }
1812                 }
1813
1814                 ret = ext4_es_insert_extent(inode, map->m_lblk, map->m_len,
1815                                             ~0, EXTENT_STATUS_DELAYED);
1816                 if (ret) {
1817                         retval = ret;
1818                         goto out_unlock;
1819                 }
1820
1821                 map_bh(bh, inode->i_sb, invalid_block);
1822                 set_buffer_new(bh);
1823                 set_buffer_delay(bh);
1824         } else if (retval > 0) {
1825                 int ret;
1826                 unsigned int status;
1827
1828                 if (unlikely(retval != map->m_len)) {
1829                         ext4_warning(inode->i_sb,
1830                                      "ES len assertion failed for inode "
1831                                      "%lu: retval %d != map->m_len %d",
1832                                      inode->i_ino, retval, map->m_len);
1833                         WARN_ON(1);
1834                 }
1835
1836                 status = map->m_flags & EXT4_MAP_UNWRITTEN ?
1837                                 EXTENT_STATUS_UNWRITTEN : EXTENT_STATUS_WRITTEN;
1838                 ret = ext4_es_insert_extent(inode, map->m_lblk, map->m_len,
1839                                             map->m_pblk, status);
1840                 if (ret != 0)
1841                         retval = ret;
1842         }
1843
1844 out_unlock:
1845         up_read((&EXT4_I(inode)->i_data_sem));
1846
1847         return retval;
1848 }
1849
1850 /*
1851  * This is a special get_block_t callback which is used by
1852  * ext4_da_write_begin().  It will either return mapped block or
1853  * reserve space for a single block.
1854  *
1855  * For delayed buffer_head we have BH_Mapped, BH_New, BH_Delay set.
1856  * We also have b_blocknr = -1 and b_bdev initialized properly
1857  *
1858  * For unwritten buffer_head we have BH_Mapped, BH_New, BH_Unwritten set.
1859  * We also have b_blocknr = physicalblock mapping unwritten extent and b_bdev
1860  * initialized properly.
1861  */
1862 int ext4_da_get_block_prep(struct inode *inode, sector_t iblock,
1863                            struct buffer_head *bh, int create)
1864 {
1865         struct ext4_map_blocks map;
1866         int ret = 0;
1867
1868         BUG_ON(create == 0);
1869         BUG_ON(bh->b_size != inode->i_sb->s_blocksize);
1870
1871         map.m_lblk = iblock;
1872         map.m_len = 1;
1873
1874         /*
1875          * first, we need to know whether the block is allocated already
1876          * preallocated blocks are unmapped but should treated
1877          * the same as allocated blocks.
1878          */
1879         ret = ext4_da_map_blocks(inode, iblock, &map, bh);
1880         if (ret <= 0)
1881                 return ret;
1882
1883         map_bh(bh, inode->i_sb, map.m_pblk);
1884         ext4_update_bh_state(bh, map.m_flags);
1885
1886         if (buffer_unwritten(bh)) {
1887                 /* A delayed write to unwritten bh should be marked
1888                  * new and mapped.  Mapped ensures that we don't do
1889                  * get_block multiple times when we write to the same
1890                  * offset and new ensures that we do proper zero out
1891                  * for partial write.
1892                  */
1893                 set_buffer_new(bh);
1894                 set_buffer_mapped(bh);
1895         }
1896         return 0;
1897 }
1898
1899 static int bget_one(handle_t *handle, struct buffer_head *bh)
1900 {
1901         get_bh(bh);
1902         return 0;
1903 }
1904
1905 static int bput_one(handle_t *handle, struct buffer_head *bh)
1906 {
1907         put_bh(bh);
1908         return 0;
1909 }
1910
1911 static int __ext4_journalled_writepage(struct page *page,
1912                                        unsigned int len)
1913 {
1914         struct address_space *mapping = page->mapping;
1915         struct inode *inode = mapping->host;
1916         struct buffer_head *page_bufs = NULL;
1917         handle_t *handle = NULL;
1918         int ret = 0, err = 0;
1919         int inline_data = ext4_has_inline_data(inode);
1920         struct buffer_head *inode_bh = NULL;
1921
1922         ClearPageChecked(page);
1923
1924         if (inline_data) {
1925                 BUG_ON(page->index != 0);
1926                 BUG_ON(len > ext4_get_max_inline_size(inode));
1927                 inode_bh = ext4_journalled_write_inline_data(inode, len, page);
1928                 if (inode_bh == NULL)
1929                         goto out;
1930         } else {
1931                 page_bufs = page_buffers(page);
1932                 if (!page_bufs) {
1933                         BUG();
1934                         goto out;
1935                 }
1936                 ext4_walk_page_buffers(handle, page_bufs, 0, len,
1937                                        NULL, bget_one);
1938         }
1939         /*
1940          * We need to release the page lock before we start the
1941          * journal, so grab a reference so the page won't disappear
1942          * out from under us.
1943          */
1944         get_page(page);
1945         unlock_page(page);
1946
1947         handle = ext4_journal_start(inode, EXT4_HT_WRITE_PAGE,
1948                                     ext4_writepage_trans_blocks(inode));
1949         if (IS_ERR(handle)) {
1950                 ret = PTR_ERR(handle);
1951                 put_page(page);
1952                 goto out_no_pagelock;
1953         }
1954         BUG_ON(!ext4_handle_valid(handle));
1955
1956         lock_page(page);
1957         put_page(page);
1958         if (page->mapping != mapping) {
1959                 /* The page got truncated from under us */
1960                 ext4_journal_stop(handle);
1961                 ret = 0;
1962                 goto out;
1963         }
1964
1965         if (inline_data) {
1966                 ret = ext4_mark_inode_dirty(handle, inode);
1967         } else {
1968                 ret = ext4_walk_page_buffers(handle, page_bufs, 0, len, NULL,
1969                                              do_journal_get_write_access);
1970
1971                 err = ext4_walk_page_buffers(handle, page_bufs, 0, len, NULL,
1972                                              write_end_fn);
1973         }
1974         if (ret == 0)
1975                 ret = err;
1976         EXT4_I(inode)->i_datasync_tid = handle->h_transaction->t_tid;
1977         err = ext4_journal_stop(handle);
1978         if (!ret)
1979                 ret = err;
1980
1981         ext4_set_inode_state(inode, EXT4_STATE_JDATA);
1982 out:
1983         unlock_page(page);
1984 out_no_pagelock:
1985         if (!inline_data && page_bufs)
1986                 ext4_walk_page_buffers(NULL, page_bufs, 0, len,
1987                                        NULL, bput_one);
1988         brelse(inode_bh);
1989         return ret;
1990 }
1991
1992 /*
1993  * Note that we don't need to start a transaction unless we're journaling data
1994  * because we should have holes filled from ext4_page_mkwrite(). We even don't
1995  * need to file the inode to the transaction's list in ordered mode because if
1996  * we are writing back data added by write(), the inode is already there and if
1997  * we are writing back data modified via mmap(), no one guarantees in which
1998  * transaction the data will hit the disk. In case we are journaling data, we
1999  * cannot start transaction directly because transaction start ranks above page
2000  * lock so we have to do some magic.
2001  *
2002  * This function can get called via...
2003  *   - ext4_writepages after taking page lock (have journal handle)
2004  *   - journal_submit_inode_data_buffers (no journal handle)
2005  *   - shrink_page_list via the kswapd/direct reclaim (no journal handle)
2006  *   - grab_page_cache when doing write_begin (have journal handle)
2007  *
2008  * We don't do any block allocation in this function. If we have page with
2009  * multiple blocks we need to write those buffer_heads that are mapped. This
2010  * is important for mmaped based write. So if we do with blocksize 1K
2011  * truncate(f, 1024);
2012  * a = mmap(f, 0, 4096);
2013  * a[0] = 'a';
2014  * truncate(f, 4096);
2015  * we have in the page first buffer_head mapped via page_mkwrite call back
2016  * but other buffer_heads would be unmapped but dirty (dirty done via the
2017  * do_wp_page). So writepage should write the first block. If we modify
2018  * the mmap area beyond 1024 we will again get a page_fault and the
2019  * page_mkwrite callback will do the block allocation and mark the
2020  * buffer_heads mapped.
2021  *
2022  * We redirty the page if we have any buffer_heads that is either delay or
2023  * unwritten in the page.
2024  *
2025  * We can get recursively called as show below.
2026  *
2027  *      ext4_writepage() -> kmalloc() -> __alloc_pages() -> page_launder() ->
2028  *              ext4_writepage()
2029  *
2030  * But since we don't do any block allocation we should not deadlock.
2031  * Page also have the dirty flag cleared so we don't get recurive page_lock.
2032  */
2033 static int ext4_writepage(struct page *page,
2034                           struct writeback_control *wbc)
2035 {
2036         int ret = 0;
2037         loff_t size;
2038         unsigned int len;
2039         struct buffer_head *page_bufs = NULL;
2040         struct inode *inode = page->mapping->host;
2041         struct ext4_io_submit io_submit;
2042         bool keep_towrite = false;
2043
2044         trace_ext4_writepage(page);
2045         size = i_size_read(inode);
2046         if (page->index == size >> PAGE_SHIFT)
2047                 len = size & ~PAGE_MASK;
2048         else
2049                 len = PAGE_SIZE;
2050
2051         /* Should never happen but for bugs in other kernel subsystems */
2052         if (!page_has_buffers(page)) {
2053                 ext4_warning_inode(inode,
2054                    "page %lu does not have buffers attached", page->index);
2055                 ClearPageDirty(page);
2056                 unlock_page(page);
2057                 return 0;
2058         }
2059
2060         page_bufs = page_buffers(page);
2061         /*
2062          * We cannot do block allocation or other extent handling in this
2063          * function. If there are buffers needing that, we have to redirty
2064          * the page. But we may reach here when we do a journal commit via
2065          * journal_submit_inode_data_buffers() and in that case we must write
2066          * allocated buffers to achieve data=ordered mode guarantees.
2067          *
2068          * Also, if there is only one buffer per page (the fs block
2069          * size == the page size), if one buffer needs block
2070          * allocation or needs to modify the extent tree to clear the
2071          * unwritten flag, we know that the page can't be written at
2072          * all, so we might as well refuse the write immediately.
2073          * Unfortunately if the block size != page size, we can't as
2074          * easily detect this case using ext4_walk_page_buffers(), but
2075          * for the extremely common case, this is an optimization that
2076          * skips a useless round trip through ext4_bio_write_page().
2077          */
2078         if (ext4_walk_page_buffers(NULL, page_bufs, 0, len, NULL,
2079                                    ext4_bh_delay_or_unwritten)) {
2080                 redirty_page_for_writepage(wbc, page);
2081                 if ((current->flags & PF_MEMALLOC) ||
2082                     (inode->i_sb->s_blocksize == PAGE_SIZE)) {
2083                         /*
2084                          * For memory cleaning there's no point in writing only
2085                          * some buffers. So just bail out. Warn if we came here
2086                          * from direct reclaim.
2087                          */
2088                         WARN_ON_ONCE((current->flags & (PF_MEMALLOC|PF_KSWAPD))
2089                                                         == PF_MEMALLOC);
2090                         unlock_page(page);
2091                         return 0;
2092                 }
2093                 keep_towrite = true;
2094         }
2095
2096         if (PageChecked(page) && ext4_should_journal_data(inode))
2097                 /*
2098                  * It's mmapped pagecache.  Add buffers and journal it.  There
2099                  * doesn't seem much point in redirtying the page here.
2100                  */
2101                 return __ext4_journalled_writepage(page, len);
2102
2103         ext4_io_submit_init(&io_submit, wbc);
2104         io_submit.io_end = ext4_init_io_end(inode, GFP_NOFS);
2105         if (!io_submit.io_end) {
2106                 redirty_page_for_writepage(wbc, page);
2107                 unlock_page(page);
2108                 return -ENOMEM;
2109         }
2110         ret = ext4_bio_write_page(&io_submit, page, len, wbc, keep_towrite);
2111         ext4_io_submit(&io_submit);
2112         /* Drop io_end reference we got from init */
2113         ext4_put_io_end_defer(io_submit.io_end);
2114         return ret;
2115 }
2116
2117 static int mpage_submit_page(struct mpage_da_data *mpd, struct page *page)
2118 {
2119         int len;
2120         loff_t size;
2121         int err;
2122
2123         BUG_ON(page->index != mpd->first_page);
2124         clear_page_dirty_for_io(page);
2125         /*
2126          * We have to be very careful here!  Nothing protects writeback path
2127          * against i_size changes and the page can be writeably mapped into
2128          * page tables. So an application can be growing i_size and writing
2129          * data through mmap while writeback runs. clear_page_dirty_for_io()
2130          * write-protects our page in page tables and the page cannot get
2131          * written to again until we release page lock. So only after
2132          * clear_page_dirty_for_io() we are safe to sample i_size for
2133          * ext4_bio_write_page() to zero-out tail of the written page. We rely
2134          * on the barrier provided by TestClearPageDirty in
2135          * clear_page_dirty_for_io() to make sure i_size is really sampled only
2136          * after page tables are updated.
2137          */
2138         size = i_size_read(mpd->inode);
2139         if (page->index == size >> PAGE_SHIFT)
2140                 len = size & ~PAGE_MASK;
2141         else
2142                 len = PAGE_SIZE;
2143         err = ext4_bio_write_page(&mpd->io_submit, page, len, mpd->wbc, false);
2144         if (!err)
2145                 mpd->wbc->nr_to_write--;
2146         mpd->first_page++;
2147
2148         return err;
2149 }
2150
2151 #define BH_FLAGS ((1 << BH_Unwritten) | (1 << BH_Delay))
2152
2153 /*
2154  * mballoc gives us at most this number of blocks...
2155  * XXX: That seems to be only a limitation of ext4_mb_normalize_request().
2156  * The rest of mballoc seems to handle chunks up to full group size.
2157  */
2158 #define MAX_WRITEPAGES_EXTENT_LEN 2048
2159
2160 /*
2161  * mpage_add_bh_to_extent - try to add bh to extent of blocks to map
2162  *
2163  * @mpd - extent of blocks
2164  * @lblk - logical number of the block in the file
2165  * @bh - buffer head we want to add to the extent
2166  *
2167  * The function is used to collect contig. blocks in the same state. If the
2168  * buffer doesn't require mapping for writeback and we haven't started the
2169  * extent of buffers to map yet, the function returns 'true' immediately - the
2170  * caller can write the buffer right away. Otherwise the function returns true
2171  * if the block has been added to the extent, false if the block couldn't be
2172  * added.
2173  */
2174 static bool mpage_add_bh_to_extent(struct mpage_da_data *mpd, ext4_lblk_t lblk,
2175                                    struct buffer_head *bh)
2176 {
2177         struct ext4_map_blocks *map = &mpd->map;
2178
2179         /* Buffer that doesn't need mapping for writeback? */
2180         if (!buffer_dirty(bh) || !buffer_mapped(bh) ||
2181             (!buffer_delay(bh) && !buffer_unwritten(bh))) {
2182                 /* So far no extent to map => we write the buffer right away */
2183                 if (map->m_len == 0)
2184                         return true;
2185                 return false;
2186         }
2187
2188         /* First block in the extent? */
2189         if (map->m_len == 0) {
2190                 map->m_lblk = lblk;
2191                 map->m_len = 1;
2192                 map->m_flags = bh->b_state & BH_FLAGS;
2193                 return true;
2194         }
2195
2196         /* Don't go larger than mballoc is willing to allocate */
2197         if (map->m_len >= MAX_WRITEPAGES_EXTENT_LEN)
2198                 return false;
2199
2200         /* Can we merge the block to our big extent? */
2201         if (lblk == map->m_lblk + map->m_len &&
2202             (bh->b_state & BH_FLAGS) == map->m_flags) {
2203                 map->m_len++;
2204                 return true;
2205         }
2206         return false;
2207 }
2208
2209 /*
2210  * mpage_process_page_bufs - submit page buffers for IO or add them to extent
2211  *
2212  * @mpd - extent of blocks for mapping
2213  * @head - the first buffer in the page
2214  * @bh - buffer we should start processing from
2215  * @lblk - logical number of the block in the file corresponding to @bh
2216  *
2217  * Walk through page buffers from @bh upto @head (exclusive) and either submit
2218  * the page for IO if all buffers in this page were mapped and there's no
2219  * accumulated extent of buffers to map or add buffers in the page to the
2220  * extent of buffers to map. The function returns 1 if the caller can continue
2221  * by processing the next page, 0 if it should stop adding buffers to the
2222  * extent to map because we cannot extend it anymore. It can also return value
2223  * < 0 in case of error during IO submission.
2224  */
2225 static int mpage_process_page_bufs(struct mpage_da_data *mpd,
2226                                    struct buffer_head *head,
2227                                    struct buffer_head *bh,
2228                                    ext4_lblk_t lblk)
2229 {
2230         struct inode *inode = mpd->inode;
2231         int err;
2232         ext4_lblk_t blocks = (i_size_read(inode) + i_blocksize(inode) - 1)
2233                                                         >> inode->i_blkbits;
2234
2235         do {
2236                 BUG_ON(buffer_locked(bh));
2237
2238                 if (lblk >= blocks || !mpage_add_bh_to_extent(mpd, lblk, bh)) {
2239                         /* Found extent to map? */
2240                         if (mpd->map.m_len)
2241                                 return 0;
2242                         /* Everything mapped so far and we hit EOF */
2243                         break;
2244                 }
2245         } while (lblk++, (bh = bh->b_this_page) != head);
2246         /* So far everything mapped? Submit the page for IO. */
2247         if (mpd->map.m_len == 0) {
2248                 err = mpage_submit_page(mpd, head->b_page);
2249                 if (err < 0)
2250                         return err;
2251         }
2252         return lblk < blocks;
2253 }
2254
2255 /*
2256  * mpage_map_buffers - update buffers corresponding to changed extent and
2257  *                     submit fully mapped pages for IO
2258  *
2259  * @mpd - description of extent to map, on return next extent to map
2260  *
2261  * Scan buffers corresponding to changed extent (we expect corresponding pages
2262  * to be already locked) and update buffer state according to new extent state.
2263  * We map delalloc buffers to their physical location, clear unwritten bits,
2264  * and mark buffers as uninit when we perform writes to unwritten extents
2265  * and do extent conversion after IO is finished. If the last page is not fully
2266  * mapped, we update @map to the next extent in the last page that needs
2267  * mapping. Otherwise we submit the page for IO.
2268  */
2269 static int mpage_map_and_submit_buffers(struct mpage_da_data *mpd)
2270 {
2271         struct pagevec pvec;
2272         int nr_pages, i;
2273         struct inode *inode = mpd->inode;
2274         struct buffer_head *head, *bh;
2275         int bpp_bits = PAGE_SHIFT - inode->i_blkbits;
2276         pgoff_t start, end;
2277         ext4_lblk_t lblk;
2278         sector_t pblock;
2279         int err;
2280
2281         start = mpd->map.m_lblk >> bpp_bits;
2282         end = (mpd->map.m_lblk + mpd->map.m_len - 1) >> bpp_bits;
2283         lblk = start << bpp_bits;
2284         pblock = mpd->map.m_pblk;
2285
2286         pagevec_init(&pvec, 0);
2287         while (start <= end) {
2288                 nr_pages = pagevec_lookup(&pvec, inode->i_mapping, start,
2289                                           PAGEVEC_SIZE);
2290                 if (nr_pages == 0)
2291                         break;
2292                 for (i = 0; i < nr_pages; i++) {
2293                         struct page *page = pvec.pages[i];
2294
2295                         if (page->index > end)
2296                                 break;
2297                         /* Up to 'end' pages must be contiguous */
2298                         BUG_ON(page->index != start);
2299                         bh = head = page_buffers(page);
2300                         do {
2301                                 if (lblk < mpd->map.m_lblk)
2302                                         continue;
2303                                 if (lblk >= mpd->map.m_lblk + mpd->map.m_len) {
2304                                         /*
2305                                          * Buffer after end of mapped extent.
2306                                          * Find next buffer in the page to map.
2307                                          */
2308                                         mpd->map.m_len = 0;
2309                                         mpd->map.m_flags = 0;
2310                                         /*
2311                                          * FIXME: If dioread_nolock supports
2312                                          * blocksize < pagesize, we need to make
2313                                          * sure we add size mapped so far to
2314                                          * io_end->size as the following call
2315                                          * can submit the page for IO.
2316                                          */
2317                                         err = mpage_process_page_bufs(mpd, head,
2318                                                                       bh, lblk);
2319                                         pagevec_release(&pvec);
2320                                         if (err > 0)
2321                                                 err = 0;
2322                                         return err;
2323                                 }
2324                                 if (buffer_delay(bh)) {
2325                                         clear_buffer_delay(bh);
2326                                         bh->b_blocknr = pblock++;
2327                                 }
2328                                 clear_buffer_unwritten(bh);
2329                         } while (lblk++, (bh = bh->b_this_page) != head);
2330
2331                         /*
2332                          * FIXME: This is going to break if dioread_nolock
2333                          * supports blocksize < pagesize as we will try to
2334                          * convert potentially unmapped parts of inode.
2335                          */
2336                         mpd->io_submit.io_end->size += PAGE_SIZE;
2337                         /* Page fully mapped - let IO run! */
2338                         err = mpage_submit_page(mpd, page);
2339                         if (err < 0) {
2340                                 pagevec_release(&pvec);
2341                                 return err;
2342                         }
2343                         start++;
2344                 }
2345                 pagevec_release(&pvec);
2346         }
2347         /* Extent fully mapped and matches with page boundary. We are done. */
2348         mpd->map.m_len = 0;
2349         mpd->map.m_flags = 0;
2350         return 0;
2351 }
2352
2353 static int mpage_map_one_extent(handle_t *handle, struct mpage_da_data *mpd)
2354 {
2355         struct inode *inode = mpd->inode;
2356         struct ext4_map_blocks *map = &mpd->map;
2357         int get_blocks_flags;
2358         int err, dioread_nolock;
2359
2360         trace_ext4_da_write_pages_extent(inode, map);
2361         /*
2362          * Call ext4_map_blocks() to allocate any delayed allocation blocks, or
2363          * to convert an unwritten extent to be initialized (in the case
2364          * where we have written into one or more preallocated blocks).  It is
2365          * possible that we're going to need more metadata blocks than
2366          * previously reserved. However we must not fail because we're in
2367          * writeback and there is nothing we can do about it so it might result
2368          * in data loss.  So use reserved blocks to allocate metadata if
2369          * possible.
2370          *
2371          * We pass in the magic EXT4_GET_BLOCKS_DELALLOC_RESERVE if
2372          * the blocks in question are delalloc blocks.  This indicates
2373          * that the blocks and quotas has already been checked when
2374          * the data was copied into the page cache.
2375          */
2376         get_blocks_flags = EXT4_GET_BLOCKS_CREATE |
2377                            EXT4_GET_BLOCKS_METADATA_NOFAIL |
2378                            EXT4_GET_BLOCKS_IO_SUBMIT;
2379         dioread_nolock = ext4_should_dioread_nolock(inode);
2380         if (dioread_nolock)
2381                 get_blocks_flags |= EXT4_GET_BLOCKS_IO_CREATE_EXT;
2382         if (map->m_flags & (1 << BH_Delay))
2383                 get_blocks_flags |= EXT4_GET_BLOCKS_DELALLOC_RESERVE;
2384
2385         err = ext4_map_blocks(handle, inode, map, get_blocks_flags);
2386         if (err < 0)
2387                 return err;
2388         if (dioread_nolock && (map->m_flags & EXT4_MAP_UNWRITTEN)) {
2389                 if (!mpd->io_submit.io_end->handle &&
2390                     ext4_handle_valid(handle)) {
2391                         mpd->io_submit.io_end->handle = handle->h_rsv_handle;
2392                         handle->h_rsv_handle = NULL;
2393                 }
2394                 ext4_set_io_unwritten_flag(inode, mpd->io_submit.io_end);
2395         }
2396
2397         BUG_ON(map->m_len == 0);
2398         if (map->m_flags & EXT4_MAP_NEW) {
2399                 struct block_device *bdev = inode->i_sb->s_bdev;
2400                 int i;
2401
2402                 for (i = 0; i < map->m_len; i++)
2403                         unmap_underlying_metadata(bdev, map->m_pblk + i);
2404         }
2405         return 0;
2406 }
2407
2408 /*
2409  * mpage_map_and_submit_extent - map extent starting at mpd->lblk of length
2410  *                               mpd->len and submit pages underlying it for IO
2411  *
2412  * @handle - handle for journal operations
2413  * @mpd - extent to map
2414  * @give_up_on_write - we set this to true iff there is a fatal error and there
2415  *                     is no hope of writing the data. The caller should discard
2416  *                     dirty pages to avoid infinite loops.
2417  *
2418  * The function maps extent starting at mpd->lblk of length mpd->len. If it is
2419  * delayed, blocks are allocated, if it is unwritten, we may need to convert
2420  * them to initialized or split the described range from larger unwritten
2421  * extent. Note that we need not map all the described range since allocation
2422  * can return less blocks or the range is covered by more unwritten extents. We
2423  * cannot map more because we are limited by reserved transaction credits. On
2424  * the other hand we always make sure that the last touched page is fully
2425  * mapped so that it can be written out (and thus forward progress is
2426  * guaranteed). After mapping we submit all mapped pages for IO.
2427  */
2428 static int mpage_map_and_submit_extent(handle_t *handle,
2429                                        struct mpage_da_data *mpd,
2430                                        bool *give_up_on_write)
2431 {
2432         struct inode *inode = mpd->inode;
2433         struct ext4_map_blocks *map = &mpd->map;
2434         int err;
2435         loff_t disksize;
2436         int progress = 0;
2437
2438         mpd->io_submit.io_end->offset =
2439                                 ((loff_t)map->m_lblk) << inode->i_blkbits;
2440         do {
2441                 err = mpage_map_one_extent(handle, mpd);
2442                 if (err < 0) {
2443                         struct super_block *sb = inode->i_sb;
2444
2445                         if (EXT4_SB(sb)->s_mount_flags & EXT4_MF_FS_ABORTED)
2446                                 goto invalidate_dirty_pages;
2447                         /*
2448                          * Let the uper layers retry transient errors.
2449                          * In the case of ENOSPC, if ext4_count_free_blocks()
2450                          * is non-zero, a commit should free up blocks.
2451                          */
2452                         if ((err == -ENOMEM) ||
2453                             (err == -ENOSPC && ext4_count_free_clusters(sb))) {
2454                                 if (progress)
2455                                         goto update_disksize;
2456                                 return err;
2457                         }
2458                         ext4_msg(sb, KERN_CRIT,
2459                                  "Delayed block allocation failed for "
2460                                  "inode %lu at logical offset %llu with"
2461                                  " max blocks %u with error %d",
2462                                  inode->i_ino,
2463                                  (unsigned long long)map->m_lblk,
2464                                  (unsigned)map->m_len, -err);
2465                         ext4_msg(sb, KERN_CRIT,
2466                                  "This should not happen!! Data will "
2467                                  "be lost\n");
2468                         if (err == -ENOSPC)
2469                                 ext4_print_free_blocks(inode);
2470                 invalidate_dirty_pages:
2471                         *give_up_on_write = true;
2472                         return err;
2473                 }
2474                 progress = 1;
2475                 /*
2476                  * Update buffer state, submit mapped pages, and get us new
2477                  * extent to map
2478                  */
2479                 err = mpage_map_and_submit_buffers(mpd);
2480                 if (err < 0)
2481                         goto update_disksize;
2482         } while (map->m_len);
2483
2484 update_disksize:
2485         /*
2486          * Update on-disk size after IO is submitted.  Races with
2487          * truncate are avoided by checking i_size under i_data_sem.
2488          */
2489         disksize = ((loff_t)mpd->first_page) << PAGE_SHIFT;
2490         if (disksize > READ_ONCE(EXT4_I(inode)->i_disksize)) {
2491                 int err2;
2492                 loff_t i_size;
2493
2494                 down_write(&EXT4_I(inode)->i_data_sem);
2495                 i_size = i_size_read(inode);
2496                 if (disksize > i_size)
2497                         disksize = i_size;
2498                 if (disksize > EXT4_I(inode)->i_disksize)
2499                         EXT4_I(inode)->i_disksize = disksize;
2500                 err2 = ext4_mark_inode_dirty(handle, inode);
2501                 up_write(&EXT4_I(inode)->i_data_sem);
2502                 if (err2)
2503                         ext4_error(inode->i_sb,
2504                                    "Failed to mark inode %lu dirty",
2505                                    inode->i_ino);
2506                 if (!err)
2507                         err = err2;
2508         }
2509         return err;
2510 }
2511
2512 /*
2513  * Calculate the total number of credits to reserve for one writepages
2514  * iteration. This is called from ext4_writepages(). We map an extent of
2515  * up to MAX_WRITEPAGES_EXTENT_LEN blocks and then we go on and finish mapping
2516  * the last partial page. So in total we can map MAX_WRITEPAGES_EXTENT_LEN +
2517  * bpp - 1 blocks in bpp different extents.
2518  */
2519 static int ext4_da_writepages_trans_blocks(struct inode *inode)
2520 {
2521         int bpp = ext4_journal_blocks_per_page(inode);
2522
2523         return ext4_meta_trans_blocks(inode,
2524                                 MAX_WRITEPAGES_EXTENT_LEN + bpp - 1, bpp);
2525 }
2526
2527 /*
2528  * mpage_prepare_extent_to_map - find & lock contiguous range of dirty pages
2529  *                               and underlying extent to map
2530  *
2531  * @mpd - where to look for pages
2532  *
2533  * Walk dirty pages in the mapping. If they are fully mapped, submit them for
2534  * IO immediately. When we find a page which isn't mapped we start accumulating
2535  * extent of buffers underlying these pages that needs mapping (formed by
2536  * either delayed or unwritten buffers). We also lock the pages containing
2537  * these buffers. The extent found is returned in @mpd structure (starting at
2538  * mpd->lblk with length mpd->len blocks).
2539  *
2540  * Note that this function can attach bios to one io_end structure which are
2541  * neither logically nor physically contiguous. Although it may seem as an
2542  * unnecessary complication, it is actually inevitable in blocksize < pagesize
2543  * case as we need to track IO to all buffers underlying a page in one io_end.
2544  */
2545 static int mpage_prepare_extent_to_map(struct mpage_da_data *mpd)
2546 {
2547         struct address_space *mapping = mpd->inode->i_mapping;
2548         struct pagevec pvec;
2549         unsigned int nr_pages;
2550         long left = mpd->wbc->nr_to_write;
2551         pgoff_t index = mpd->first_page;
2552         pgoff_t end = mpd->last_page;
2553         int tag;
2554         int i, err = 0;
2555         int blkbits = mpd->inode->i_blkbits;
2556         ext4_lblk_t lblk;
2557         struct buffer_head *head;
2558
2559         if (mpd->wbc->sync_mode == WB_SYNC_ALL || mpd->wbc->tagged_writepages)
2560                 tag = PAGECACHE_TAG_TOWRITE;
2561         else
2562                 tag = PAGECACHE_TAG_DIRTY;
2563
2564         pagevec_init(&pvec, 0);
2565         mpd->map.m_len = 0;
2566         mpd->next_page = index;
2567         while (index <= end) {
2568                 nr_pages = pagevec_lookup_tag(&pvec, mapping, &index, tag,
2569                               min(end - index, (pgoff_t)PAGEVEC_SIZE-1) + 1);
2570                 if (nr_pages == 0)
2571                         goto out;
2572
2573                 for (i = 0; i < nr_pages; i++) {
2574                         struct page *page = pvec.pages[i];
2575
2576                         /*
2577                          * At this point, the page may be truncated or
2578                          * invalidated (changing page->mapping to NULL), or
2579                          * even swizzled back from swapper_space to tmpfs file
2580                          * mapping. However, page->index will not change
2581                          * because we have a reference on the page.
2582                          */
2583                         if (page->index > end)
2584                                 goto out;
2585
2586                         /*
2587                          * Accumulated enough dirty pages? This doesn't apply
2588                          * to WB_SYNC_ALL mode. For integrity sync we have to
2589                          * keep going because someone may be concurrently
2590                          * dirtying pages, and we might have synced a lot of
2591                          * newly appeared dirty pages, but have not synced all
2592                          * of the old dirty pages.
2593                          */
2594                         if (mpd->wbc->sync_mode == WB_SYNC_NONE && left <= 0)
2595                                 goto out;
2596
2597                         /* If we can't merge this page, we are done. */
2598                         if (mpd->map.m_len > 0 && mpd->next_page != page->index)
2599                                 goto out;
2600
2601                         lock_page(page);
2602                         /*
2603                          * If the page is no longer dirty, or its mapping no
2604                          * longer corresponds to inode we are writing (which
2605                          * means it has been truncated or invalidated), or the
2606                          * page is already under writeback and we are not doing
2607                          * a data integrity writeback, skip the page
2608                          */
2609                         if (!PageDirty(page) ||
2610                             (PageWriteback(page) &&
2611                              (mpd->wbc->sync_mode == WB_SYNC_NONE)) ||
2612                             unlikely(page->mapping != mapping)) {
2613                                 unlock_page(page);
2614                                 continue;
2615                         }
2616
2617                         wait_on_page_writeback(page);
2618                         BUG_ON(PageWriteback(page));
2619
2620                         /*
2621                          * Should never happen but for buggy code in
2622                          * other subsystems that call
2623                          * set_page_dirty() without properly warning
2624                          * the file system first.  See [1] for more
2625                          * information.
2626                          *
2627                          * [1] https://lore.kernel.org/linux-mm/20180103100430.GE4911@quack2.suse.cz
2628                          */
2629                         if (!page_has_buffers(page)) {
2630                                 ext4_warning_inode(mpd->inode, "page %lu does not have buffers attached", page->index);
2631                                 ClearPageDirty(page);
2632                                 unlock_page(page);
2633                                 continue;
2634                         }
2635
2636                         if (mpd->map.m_len == 0)
2637                                 mpd->first_page = page->index;
2638                         mpd->next_page = page->index + 1;
2639                         /* Add all dirty buffers to mpd */
2640                         lblk = ((ext4_lblk_t)page->index) <<
2641                                 (PAGE_SHIFT - blkbits);
2642                         head = page_buffers(page);
2643                         err = mpage_process_page_bufs(mpd, head, head, lblk);
2644                         if (err <= 0)
2645                                 goto out;
2646                         err = 0;
2647                         left--;
2648                 }
2649                 pagevec_release(&pvec);
2650                 cond_resched();
2651         }
2652         return 0;
2653 out:
2654         pagevec_release(&pvec);
2655         return err;
2656 }
2657
2658 static int __writepage(struct page *page, struct writeback_control *wbc,
2659                        void *data)
2660 {
2661         struct address_space *mapping = data;
2662         int ret = ext4_writepage(page, wbc);
2663         mapping_set_error(mapping, ret);
2664         return ret;
2665 }
2666
2667 static int ext4_writepages(struct address_space *mapping,
2668                            struct writeback_control *wbc)
2669 {
2670         pgoff_t writeback_index = 0;
2671         long nr_to_write = wbc->nr_to_write;
2672         int range_whole = 0;
2673         int cycled = 1;
2674         handle_t *handle = NULL;
2675         struct mpage_da_data mpd;
2676         struct inode *inode = mapping->host;
2677         int needed_blocks, rsv_blocks = 0, ret = 0;
2678         struct ext4_sb_info *sbi = EXT4_SB(mapping->host->i_sb);
2679         bool done;
2680         struct blk_plug plug;
2681         bool give_up_on_write = false;
2682
2683         percpu_down_read(&sbi->s_writepages_rwsem);
2684         trace_ext4_writepages(inode, wbc);
2685
2686         if (dax_mapping(mapping)) {
2687                 ret = dax_writeback_mapping_range(mapping, inode->i_sb->s_bdev,
2688                                                   wbc);
2689                 goto out_writepages;
2690         }
2691
2692         /*
2693          * No pages to write? This is mainly a kludge to avoid starting
2694          * a transaction for special inodes like journal inode on last iput()
2695          * because that could violate lock ordering on umount
2696          */
2697         if (!mapping->nrpages || !mapping_tagged(mapping, PAGECACHE_TAG_DIRTY))
2698                 goto out_writepages;
2699
2700         if (ext4_should_journal_data(inode)) {
2701                 struct blk_plug plug;
2702
2703                 blk_start_plug(&plug);
2704                 ret = write_cache_pages(mapping, wbc, __writepage, mapping);
2705                 blk_finish_plug(&plug);
2706                 goto out_writepages;
2707         }
2708
2709         /*
2710          * If the filesystem has aborted, it is read-only, so return
2711          * right away instead of dumping stack traces later on that
2712          * will obscure the real source of the problem.  We test
2713          * EXT4_MF_FS_ABORTED instead of sb->s_flag's MS_RDONLY because
2714          * the latter could be true if the filesystem is mounted
2715          * read-only, and in that case, ext4_writepages should
2716          * *never* be called, so if that ever happens, we would want
2717          * the stack trace.
2718          */
2719         if (unlikely(sbi->s_mount_flags & EXT4_MF_FS_ABORTED)) {
2720                 ret = -EROFS;
2721                 goto out_writepages;
2722         }
2723
2724         if (ext4_should_dioread_nolock(inode)) {
2725                 /*
2726                  * We may need to convert up to one extent per block in
2727                  * the page and we may dirty the inode.
2728                  */
2729                 rsv_blocks = 1 + ext4_chunk_trans_blocks(inode,
2730                                                 PAGE_SIZE >> inode->i_blkbits);
2731         }
2732
2733         /*
2734          * If we have inline data and arrive here, it means that
2735          * we will soon create the block for the 1st page, so
2736          * we'd better clear the inline data here.
2737          */
2738         if (ext4_has_inline_data(inode)) {
2739                 /* Just inode will be modified... */
2740                 handle = ext4_journal_start(inode, EXT4_HT_INODE, 1);
2741                 if (IS_ERR(handle)) {
2742                         ret = PTR_ERR(handle);
2743                         goto out_writepages;
2744                 }
2745                 BUG_ON(ext4_test_inode_state(inode,
2746                                 EXT4_STATE_MAY_INLINE_DATA));
2747                 ext4_destroy_inline_data(handle, inode);
2748                 ext4_journal_stop(handle);
2749         }
2750
2751         if (wbc->range_start == 0 && wbc->range_end == LLONG_MAX)
2752                 range_whole = 1;
2753
2754         if (wbc->range_cyclic) {
2755                 writeback_index = mapping->writeback_index;
2756                 if (writeback_index)
2757                         cycled = 0;
2758                 mpd.first_page = writeback_index;
2759                 mpd.last_page = -1;
2760         } else {
2761                 mpd.first_page = wbc->range_start >> PAGE_SHIFT;
2762                 mpd.last_page = wbc->range_end >> PAGE_SHIFT;
2763         }
2764
2765         mpd.inode = inode;
2766         mpd.wbc = wbc;
2767         ext4_io_submit_init(&mpd.io_submit, wbc);
2768 retry:
2769         if (wbc->sync_mode == WB_SYNC_ALL || wbc->tagged_writepages)
2770                 tag_pages_for_writeback(mapping, mpd.first_page, mpd.last_page);
2771         done = false;
2772         blk_start_plug(&plug);
2773         while (!done && mpd.first_page <= mpd.last_page) {
2774                 /* For each extent of pages we use new io_end */
2775                 mpd.io_submit.io_end = ext4_init_io_end(inode, GFP_KERNEL);
2776                 if (!mpd.io_submit.io_end) {
2777                         ret = -ENOMEM;
2778                         break;
2779                 }
2780
2781                 /*
2782                  * We have two constraints: We find one extent to map and we
2783                  * must always write out whole page (makes a difference when
2784                  * blocksize < pagesize) so that we don't block on IO when we
2785                  * try to write out the rest of the page. Journalled mode is
2786                  * not supported by delalloc.
2787                  */
2788                 BUG_ON(ext4_should_journal_data(inode));
2789                 needed_blocks = ext4_da_writepages_trans_blocks(inode);
2790
2791                 /* start a new transaction */
2792                 handle = ext4_journal_start_with_reserve(inode,
2793                                 EXT4_HT_WRITE_PAGE, needed_blocks, rsv_blocks);
2794                 if (IS_ERR(handle)) {
2795                         ret = PTR_ERR(handle);
2796                         ext4_msg(inode->i_sb, KERN_CRIT, "%s: jbd2_start: "
2797                                "%ld pages, ino %lu; err %d", __func__,
2798                                 wbc->nr_to_write, inode->i_ino, ret);
2799                         /* Release allocated io_end */
2800                         ext4_put_io_end(mpd.io_submit.io_end);
2801                         break;
2802                 }
2803
2804                 trace_ext4_da_write_pages(inode, mpd.first_page, mpd.wbc);
2805                 ret = mpage_prepare_extent_to_map(&mpd);
2806                 if (!ret) {
2807                         if (mpd.map.m_len)
2808                                 ret = mpage_map_and_submit_extent(handle, &mpd,
2809                                         &give_up_on_write);
2810                         else {
2811                                 /*
2812                                  * We scanned the whole range (or exhausted
2813                                  * nr_to_write), submitted what was mapped and
2814                                  * didn't find anything needing mapping. We are
2815                                  * done.
2816                                  */
2817                                 done = true;
2818                         }
2819                 }
2820                 /*
2821                  * Caution: If the handle is synchronous,
2822                  * ext4_journal_stop() can wait for transaction commit
2823                  * to finish which may depend on writeback of pages to
2824                  * complete or on page lock to be released.  In that
2825                  * case, we have to wait until after after we have
2826                  * submitted all the IO, released page locks we hold,
2827                  * and dropped io_end reference (for extent conversion
2828                  * to be able to complete) before stopping the handle.
2829                  */
2830                 if (!ext4_handle_valid(handle) || handle->h_sync == 0) {
2831                         ext4_journal_stop(handle);
2832                         handle = NULL;
2833                 }
2834                 /* Submit prepared bio */
2835                 ext4_io_submit(&mpd.io_submit);
2836                 /* Unlock pages we didn't use */
2837                 mpage_release_unused_pages(&mpd, give_up_on_write);
2838                 /*
2839                  * Drop our io_end reference we got from init. We have
2840                  * to be careful and use deferred io_end finishing if
2841                  * we are still holding the transaction as we can
2842                  * release the last reference to io_end which may end
2843                  * up doing unwritten extent conversion.
2844                  */
2845                 if (handle) {
2846                         ext4_put_io_end_defer(mpd.io_submit.io_end);
2847                         ext4_journal_stop(handle);
2848                 } else
2849                         ext4_put_io_end(mpd.io_submit.io_end);
2850
2851                 if (ret == -ENOSPC && sbi->s_journal) {
2852                         /*
2853                          * Commit the transaction which would
2854                          * free blocks released in the transaction
2855                          * and try again
2856                          */
2857                         jbd2_journal_force_commit_nested(sbi->s_journal);
2858                         ret = 0;
2859                         continue;
2860                 }
2861                 /* Fatal error - ENOMEM, EIO... */
2862                 if (ret)
2863                         break;
2864         }
2865         blk_finish_plug(&plug);
2866         if (!ret && !cycled && wbc->nr_to_write > 0) {
2867                 cycled = 1;
2868                 mpd.last_page = writeback_index - 1;
2869                 mpd.first_page = 0;
2870                 goto retry;
2871         }
2872
2873         /* Update index */
2874         if (wbc->range_cyclic || (range_whole && wbc->nr_to_write > 0))
2875                 /*
2876                  * Set the writeback_index so that range_cyclic
2877                  * mode will write it back later
2878                  */
2879                 mapping->writeback_index = mpd.first_page;
2880
2881 out_writepages:
2882         trace_ext4_writepages_result(inode, wbc, ret,
2883                                      nr_to_write - wbc->nr_to_write);
2884         percpu_up_read(&sbi->s_writepages_rwsem);
2885         return ret;
2886 }
2887
2888 static int ext4_nonda_switch(struct super_block *sb)
2889 {
2890         s64 free_clusters, dirty_clusters;
2891         struct ext4_sb_info *sbi = EXT4_SB(sb);
2892
2893         /*
2894          * switch to non delalloc mode if we are running low
2895          * on free block. The free block accounting via percpu
2896          * counters can get slightly wrong with percpu_counter_batch getting
2897          * accumulated on each CPU without updating global counters
2898          * Delalloc need an accurate free block accounting. So switch
2899          * to non delalloc when we are near to error range.
2900          */
2901         free_clusters =
2902                 percpu_counter_read_positive(&sbi->s_freeclusters_counter);
2903         dirty_clusters =
2904                 percpu_counter_read_positive(&sbi->s_dirtyclusters_counter);
2905         /*
2906          * Start pushing delalloc when 1/2 of free blocks are dirty.
2907          */
2908         if (dirty_clusters && (free_clusters < 2 * dirty_clusters))
2909                 try_to_writeback_inodes_sb(sb, WB_REASON_FS_FREE_SPACE);
2910
2911         if (2 * free_clusters < 3 * dirty_clusters ||
2912             free_clusters < (dirty_clusters + EXT4_FREECLUSTERS_WATERMARK)) {
2913                 /*
2914                  * free block count is less than 150% of dirty blocks
2915                  * or free blocks is less than watermark
2916                  */
2917                 return 1;
2918         }
2919         return 0;
2920 }
2921
2922 /* We always reserve for an inode update; the superblock could be there too */
2923 static int ext4_da_write_credits(struct inode *inode, loff_t pos, unsigned len)
2924 {
2925         if (likely(ext4_has_feature_large_file(inode->i_sb)))
2926                 return 1;
2927
2928         if (pos + len <= 0x7fffffffULL)
2929                 return 1;
2930
2931         /* We might need to update the superblock to set LARGE_FILE */
2932         return 2;
2933 }
2934
2935 static int ext4_da_write_begin(struct file *file, struct address_space *mapping,
2936                                loff_t pos, unsigned len, unsigned flags,
2937                                struct page **pagep, void **fsdata)
2938 {
2939         int ret, retries = 0;
2940         struct page *page;
2941         pgoff_t index;
2942         struct inode *inode = mapping->host;
2943         handle_t *handle;
2944
2945         index = pos >> PAGE_SHIFT;
2946
2947         if (ext4_nonda_switch(inode->i_sb)) {
2948                 *fsdata = (void *)FALL_BACK_TO_NONDELALLOC;
2949                 return ext4_write_begin(file, mapping, pos,
2950                                         len, flags, pagep, fsdata);
2951         }
2952         *fsdata = (void *)0;
2953         trace_ext4_da_write_begin(inode, pos, len, flags);
2954
2955         if (ext4_test_inode_state(inode, EXT4_STATE_MAY_INLINE_DATA)) {
2956                 ret = ext4_da_write_inline_data_begin(mapping, inode,
2957                                                       pos, len, flags,
2958                                                       pagep, fsdata);
2959                 if (ret < 0)
2960                         return ret;
2961                 if (ret == 1)
2962                         return 0;
2963         }
2964
2965         /*
2966          * grab_cache_page_write_begin() can take a long time if the
2967          * system is thrashing due to memory pressure, or if the page
2968          * is being written back.  So grab it first before we start
2969          * the transaction handle.  This also allows us to allocate
2970          * the page (if needed) without using GFP_NOFS.
2971          */
2972 retry_grab:
2973         page = grab_cache_page_write_begin(mapping, index, flags);
2974         if (!page)
2975                 return -ENOMEM;
2976         unlock_page(page);
2977
2978         /*
2979          * With delayed allocation, we don't log the i_disksize update
2980          * if there is delayed block allocation. But we still need
2981          * to journalling the i_disksize update if writes to the end
2982          * of file which has an already mapped buffer.
2983          */
2984 retry_journal:
2985         handle = ext4_journal_start(inode, EXT4_HT_WRITE_PAGE,
2986                                 ext4_da_write_credits(inode, pos, len));
2987         if (IS_ERR(handle)) {
2988                 put_page(page);
2989                 return PTR_ERR(handle);
2990         }
2991
2992         lock_page(page);
2993         if (page->mapping != mapping) {
2994                 /* The page got truncated from under us */
2995                 unlock_page(page);
2996                 put_page(page);
2997                 ext4_journal_stop(handle);
2998                 goto retry_grab;
2999         }
3000         /* In case writeback began while the page was unlocked */
3001         wait_for_stable_page(page);
3002
3003 #ifdef CONFIG_EXT4_FS_ENCRYPTION
3004         ret = ext4_block_write_begin(page, pos, len,
3005                                      ext4_da_get_block_prep);
3006 #else
3007         ret = __block_write_begin(page, pos, len, ext4_da_get_block_prep);
3008 #endif
3009         if (ret < 0) {
3010                 unlock_page(page);
3011                 ext4_journal_stop(handle);
3012                 /*
3013                  * block_write_begin may have instantiated a few blocks
3014                  * outside i_size.  Trim these off again. Don't need
3015                  * i_size_read because we hold i_mutex.
3016                  */
3017                 if (pos + len > inode->i_size)
3018                         ext4_truncate_failed_write(inode);
3019
3020                 if (ret == -ENOSPC &&
3021                     ext4_should_retry_alloc(inode->i_sb, &retries))
3022                         goto retry_journal;
3023
3024                 put_page(page);
3025                 return ret;
3026         }
3027
3028         *pagep = page;
3029         return ret;
3030 }
3031
3032 /*
3033  * Check if we should update i_disksize
3034  * when write to the end of file but not require block allocation
3035  */
3036 static int ext4_da_should_update_i_disksize(struct page *page,
3037                                             unsigned long offset)
3038 {
3039         struct buffer_head *bh;
3040         struct inode *inode = page->mapping->host;
3041         unsigned int idx;
3042         int i;
3043
3044         bh = page_buffers(page);
3045         idx = offset >> inode->i_blkbits;
3046
3047         for (i = 0; i < idx; i++)
3048                 bh = bh->b_this_page;
3049
3050         if (!buffer_mapped(bh) || (buffer_delay(bh)) || buffer_unwritten(bh))
3051                 return 0;
3052         return 1;
3053 }
3054
3055 static int ext4_da_write_end(struct file *file,
3056                              struct address_space *mapping,
3057                              loff_t pos, unsigned len, unsigned copied,
3058                              struct page *page, void *fsdata)
3059 {
3060         struct inode *inode = mapping->host;
3061         int ret = 0, ret2;
3062         handle_t *handle = ext4_journal_current_handle();
3063         loff_t new_i_size;
3064         unsigned long start, end;
3065         int write_mode = (int)(unsigned long)fsdata;
3066
3067         if (write_mode == FALL_BACK_TO_NONDELALLOC)
3068                 return ext4_write_end(file, mapping, pos,
3069                                       len, copied, page, fsdata);
3070
3071         trace_ext4_da_write_end(inode, pos, len, copied);
3072         start = pos & (PAGE_SIZE - 1);
3073         end = start + copied - 1;
3074
3075         /*
3076          * generic_write_end() will run mark_inode_dirty() if i_size
3077          * changes.  So let's piggyback the i_disksize mark_inode_dirty
3078          * into that.
3079          */
3080         new_i_size = pos + copied;
3081         if (copied && new_i_size > EXT4_I(inode)->i_disksize) {
3082                 if (ext4_has_inline_data(inode) ||
3083                     ext4_da_should_update_i_disksize(page, end)) {
3084                         ext4_update_i_disksize(inode, new_i_size);
3085                         /* We need to mark inode dirty even if
3086                          * new_i_size is less that inode->i_size
3087                          * bu greater than i_disksize.(hint delalloc)
3088                          */
3089                         ext4_mark_inode_dirty(handle, inode);
3090                 }
3091         }
3092
3093         if (write_mode != CONVERT_INLINE_DATA &&
3094             ext4_test_inode_state(inode, EXT4_STATE_MAY_INLINE_DATA) &&
3095             ext4_has_inline_data(inode))
3096                 ret2 = ext4_da_write_inline_data_end(inode, pos, len, copied,
3097                                                      page);
3098         else
3099                 ret2 = generic_write_end(file, mapping, pos, len, copied,
3100                                                         page, fsdata);
3101
3102         copied = ret2;
3103         if (ret2 < 0)
3104                 ret = ret2;
3105         ret2 = ext4_journal_stop(handle);
3106         if (!ret)
3107                 ret = ret2;
3108
3109         return ret ? ret : copied;
3110 }
3111
3112 static void ext4_da_invalidatepage(struct page *page, unsigned int offset,
3113                                    unsigned int length)
3114 {
3115         /*
3116          * Drop reserved blocks
3117          */
3118         BUG_ON(!PageLocked(page));
3119         if (!page_has_buffers(page))
3120                 goto out;
3121
3122         ext4_da_page_release_reservation(page, offset, length);
3123
3124 out:
3125         ext4_invalidatepage(page, offset, length);
3126
3127         return;
3128 }
3129
3130 /*
3131  * Force all delayed allocation blocks to be allocated for a given inode.
3132  */
3133 int ext4_alloc_da_blocks(struct inode *inode)
3134 {
3135         trace_ext4_alloc_da_blocks(inode);
3136
3137         if (!EXT4_I(inode)->i_reserved_data_blocks)
3138                 return 0;
3139
3140         /*
3141          * We do something simple for now.  The filemap_flush() will
3142          * also start triggering a write of the data blocks, which is
3143          * not strictly speaking necessary (and for users of
3144          * laptop_mode, not even desirable).  However, to do otherwise
3145          * would require replicating code paths in:
3146          *
3147          * ext4_writepages() ->
3148          *    write_cache_pages() ---> (via passed in callback function)
3149          *        __mpage_da_writepage() -->
3150          *           mpage_add_bh_to_extent()
3151          *           mpage_da_map_blocks()
3152          *
3153          * The problem is that write_cache_pages(), located in
3154          * mm/page-writeback.c, marks pages clean in preparation for
3155          * doing I/O, which is not desirable if we're not planning on
3156          * doing I/O at all.
3157          *
3158          * We could call write_cache_pages(), and then redirty all of
3159          * the pages by calling redirty_page_for_writepage() but that
3160          * would be ugly in the extreme.  So instead we would need to
3161          * replicate parts of the code in the above functions,
3162          * simplifying them because we wouldn't actually intend to
3163          * write out the pages, but rather only collect contiguous
3164          * logical block extents, call the multi-block allocator, and
3165          * then update the buffer heads with the block allocations.
3166          *
3167          * For now, though, we'll cheat by calling filemap_flush(),
3168          * which will map the blocks, and start the I/O, but not
3169          * actually wait for the I/O to complete.
3170          */
3171         return filemap_flush(inode->i_mapping);
3172 }
3173
3174 /*
3175  * bmap() is special.  It gets used by applications such as lilo and by
3176  * the swapper to find the on-disk block of a specific piece of data.
3177  *
3178  * Naturally, this is dangerous if the block concerned is still in the
3179  * journal.  If somebody makes a swapfile on an ext4 data-journaling
3180  * filesystem and enables swap, then they may get a nasty shock when the
3181  * data getting swapped to that swapfile suddenly gets overwritten by
3182  * the original zero's written out previously to the journal and
3183  * awaiting writeback in the kernel's buffer cache.
3184  *
3185  * So, if we see any bmap calls here on a modified, data-journaled file,
3186  * take extra steps to flush any blocks which might be in the cache.
3187  */
3188 static sector_t ext4_bmap(struct address_space *mapping, sector_t block)
3189 {
3190         struct inode *inode = mapping->host;
3191         journal_t *journal;
3192         int err;
3193
3194         /*
3195          * We can get here for an inline file via the FIBMAP ioctl
3196          */
3197         if (ext4_has_inline_data(inode))
3198                 return 0;
3199
3200         if (mapping_tagged(mapping, PAGECACHE_TAG_DIRTY) &&
3201                         test_opt(inode->i_sb, DELALLOC)) {
3202                 /*
3203                  * With delalloc we want to sync the file
3204                  * so that we can make sure we allocate
3205                  * blocks for file
3206                  */
3207                 filemap_write_and_wait(mapping);
3208         }
3209
3210         if (EXT4_JOURNAL(inode) &&
3211             ext4_test_inode_state(inode, EXT4_STATE_JDATA)) {
3212                 /*
3213                  * This is a REALLY heavyweight approach, but the use of
3214                  * bmap on dirty files is expected to be extremely rare:
3215                  * only if we run lilo or swapon on a freshly made file
3216                  * do we expect this to happen.
3217                  *
3218                  * (bmap requires CAP_SYS_RAWIO so this does not
3219                  * represent an unprivileged user DOS attack --- we'd be
3220                  * in trouble if mortal users could trigger this path at
3221                  * will.)
3222                  *
3223                  * NB. EXT4_STATE_JDATA is not set on files other than
3224                  * regular files.  If somebody wants to bmap a directory
3225                  * or symlink and gets confused because the buffer
3226                  * hasn't yet been flushed to disk, they deserve
3227                  * everything they get.
3228                  */
3229
3230                 ext4_clear_inode_state(inode, EXT4_STATE_JDATA);
3231                 journal = EXT4_JOURNAL(inode);
3232                 jbd2_journal_lock_updates(journal);
3233                 err = jbd2_journal_flush(journal);
3234                 jbd2_journal_unlock_updates(journal);
3235
3236                 if (err)
3237                         return 0;
3238         }
3239
3240         return generic_block_bmap(mapping, block, ext4_get_block);
3241 }
3242
3243 static int ext4_readpage(struct file *file, struct page *page)
3244 {
3245         int ret = -EAGAIN;
3246         struct inode *inode = page->mapping->host;
3247
3248         trace_ext4_readpage(page);
3249
3250         if (ext4_has_inline_data(inode))
3251                 ret = ext4_readpage_inline(inode, page);
3252
3253         if (ret == -EAGAIN)
3254                 return ext4_mpage_readpages(page->mapping, NULL, page, 1);
3255
3256         return ret;
3257 }
3258
3259 static int
3260 ext4_readpages(struct file *file, struct address_space *mapping,
3261                 struct list_head *pages, unsigned nr_pages)
3262 {
3263         struct inode *inode = mapping->host;
3264
3265         /* If the file has inline data, no need to do readpages. */
3266         if (ext4_has_inline_data(inode))
3267                 return 0;
3268
3269         return ext4_mpage_readpages(mapping, pages, NULL, nr_pages);
3270 }
3271
3272 static void ext4_invalidatepage(struct page *page, unsigned int offset,
3273                                 unsigned int length)
3274 {
3275         trace_ext4_invalidatepage(page, offset, length);
3276
3277         /* No journalling happens on data buffers when this function is used */
3278         WARN_ON(page_has_buffers(page) && buffer_jbd(page_buffers(page)));
3279
3280         block_invalidatepage(page, offset, length);
3281 }
3282
3283 static int __ext4_journalled_invalidatepage(struct page *page,
3284                                             unsigned int offset,
3285                                             unsigned int length)
3286 {
3287         journal_t *journal = EXT4_JOURNAL(page->mapping->host);
3288
3289         trace_ext4_journalled_invalidatepage(page, offset, length);
3290
3291         /*
3292          * If it's a full truncate we just forget about the pending dirtying
3293          */
3294         if (offset == 0 && length == PAGE_SIZE)
3295                 ClearPageChecked(page);
3296
3297         return jbd2_journal_invalidatepage(journal, page, offset, length);
3298 }
3299
3300 /* Wrapper for aops... */
3301 static void ext4_journalled_invalidatepage(struct page *page,
3302                                            unsigned int offset,
3303                                            unsigned int length)
3304 {
3305         WARN_ON(__ext4_journalled_invalidatepage(page, offset, length) < 0);
3306 }
3307
3308 static int ext4_releasepage(struct page *page, gfp_t wait)
3309 {
3310         journal_t *journal = EXT4_JOURNAL(page->mapping->host);
3311
3312         trace_ext4_releasepage(page);
3313
3314         /* Page has dirty journalled data -> cannot release */
3315         if (PageChecked(page))
3316                 return 0;
3317         if (journal)
3318                 return jbd2_journal_try_to_free_buffers(journal, page, wait);
3319         else
3320                 return try_to_free_buffers(page);
3321 }
3322
3323 #ifdef CONFIG_FS_DAX
3324 /*
3325  * Get block function for DAX IO and mmap faults. It takes care of converting
3326  * unwritten extents to written ones and initializes new / converted blocks
3327  * to zeros.
3328  */
3329 int ext4_dax_get_block(struct inode *inode, sector_t iblock,
3330                        struct buffer_head *bh_result, int create)
3331 {
3332         int ret;
3333
3334         ext4_debug("inode %lu, create flag %d\n", inode->i_ino, create);
3335         if (!create)
3336                 return _ext4_get_block(inode, iblock, bh_result, 0);
3337
3338         ret = ext4_get_block_trans(inode, iblock, bh_result,
3339                                    EXT4_GET_BLOCKS_PRE_IO |
3340                                    EXT4_GET_BLOCKS_CREATE_ZERO);
3341         if (ret < 0)
3342                 return ret;
3343
3344         if (buffer_unwritten(bh_result)) {
3345                 /*
3346                  * We are protected by i_mmap_sem or i_mutex so we know block
3347                  * cannot go away from under us even though we dropped
3348                  * i_data_sem. Convert extent to written and write zeros there.
3349                  */
3350                 ret = ext4_get_block_trans(inode, iblock, bh_result,
3351                                            EXT4_GET_BLOCKS_CONVERT |
3352                                            EXT4_GET_BLOCKS_CREATE_ZERO);
3353                 if (ret < 0)
3354                         return ret;
3355         }
3356         /*
3357          * At least for now we have to clear BH_New so that DAX code
3358          * doesn't attempt to zero blocks again in a racy way.
3359          */
3360         clear_buffer_new(bh_result);
3361         return 0;
3362 }
3363 #else
3364 /* Just define empty function, it will never get called. */
3365 int ext4_dax_get_block(struct inode *inode, sector_t iblock,
3366                        struct buffer_head *bh_result, int create)
3367 {
3368         BUG();
3369         return 0;
3370 }
3371 #endif
3372
3373 static int ext4_end_io_dio(struct kiocb *iocb, loff_t offset,
3374                             ssize_t size, void *private)
3375 {
3376         ext4_io_end_t *io_end = private;
3377
3378         /* if not async direct IO just return */
3379         if (!io_end)
3380                 return 0;
3381
3382         ext_debug("ext4_end_io_dio(): io_end 0x%p "
3383                   "for inode %lu, iocb 0x%p, offset %llu, size %zd\n",
3384                   io_end, io_end->inode->i_ino, iocb, offset, size);
3385
3386         /*
3387          * Error during AIO DIO. We cannot convert unwritten extents as the
3388          * data was not written. Just clear the unwritten flag and drop io_end.
3389          */
3390         if (size <= 0) {
3391                 ext4_clear_io_unwritten_flag(io_end);
3392                 size = 0;
3393         }
3394         io_end->offset = offset;
3395         io_end->size = size;
3396         ext4_put_io_end(io_end);
3397
3398         return 0;
3399 }
3400
3401 /*
3402  * Handling of direct IO writes.
3403  *
3404  * For ext4 extent files, ext4 will do direct-io write even to holes,
3405  * preallocated extents, and those write extend the file, no need to
3406  * fall back to buffered IO.
3407  *
3408  * For holes, we fallocate those blocks, mark them as unwritten
3409  * If those blocks were preallocated, we mark sure they are split, but
3410  * still keep the range to write as unwritten.
3411  *
3412  * The unwritten extents will be converted to written when DIO is completed.
3413  * For async direct IO, since the IO may still pending when return, we
3414  * set up an end_io call back function, which will do the conversion
3415  * when async direct IO completed.
3416  *
3417  * If the O_DIRECT write will extend the file then add this inode to the
3418  * orphan list.  So recovery will truncate it back to the original size
3419  * if the machine crashes during the write.
3420  *
3421  */
3422 static ssize_t ext4_direct_IO_write(struct kiocb *iocb, struct iov_iter *iter)
3423 {
3424         struct file *file = iocb->ki_filp;
3425         struct inode *inode = file->f_mapping->host;
3426         ssize_t ret;
3427         loff_t offset = iocb->ki_pos;
3428         size_t count = iov_iter_count(iter);
3429         int overwrite = 0;
3430         get_block_t *get_block_func = NULL;
3431         int dio_flags = 0;
3432         loff_t final_size = offset + count;
3433         int orphan = 0;
3434         handle_t *handle;
3435
3436         if (final_size > inode->i_size) {
3437                 /* Credits for sb + inode write */
3438                 handle = ext4_journal_start(inode, EXT4_HT_INODE, 2);
3439                 if (IS_ERR(handle)) {
3440                         ret = PTR_ERR(handle);
3441                         goto out;
3442                 }
3443                 ret = ext4_orphan_add(handle, inode);
3444                 if (ret) {
3445                         ext4_journal_stop(handle);
3446                         goto out;
3447                 }
3448                 orphan = 1;
3449                 ext4_update_i_disksize(inode, inode->i_size);
3450                 ext4_journal_stop(handle);
3451         }
3452
3453         BUG_ON(iocb->private == NULL);
3454
3455         /*
3456          * Make all waiters for direct IO properly wait also for extent
3457          * conversion. This also disallows race between truncate() and
3458          * overwrite DIO as i_dio_count needs to be incremented under i_mutex.
3459          */
3460         inode_dio_begin(inode);
3461
3462         /* If we do a overwrite dio, i_mutex locking can be released */
3463         overwrite = *((int *)iocb->private);
3464
3465         if (overwrite)
3466                 inode_unlock(inode);
3467
3468         /*
3469          * For extent mapped files we could direct write to holes and fallocate.
3470          *
3471          * Allocated blocks to fill the hole are marked as unwritten to prevent
3472          * parallel buffered read to expose the stale data before DIO complete
3473          * the data IO.
3474          *
3475          * As to previously fallocated extents, ext4 get_block will just simply
3476          * mark the buffer mapped but still keep the extents unwritten.
3477          *
3478          * For non AIO case, we will convert those unwritten extents to written
3479          * after return back from blockdev_direct_IO. That way we save us from
3480          * allocating io_end structure and also the overhead of offloading
3481          * the extent convertion to a workqueue.
3482          *
3483          * For async DIO, the conversion needs to be deferred when the
3484          * IO is completed. The ext4 end_io callback function will be
3485          * called to take care of the conversion work.  Here for async
3486          * case, we allocate an io_end structure to hook to the iocb.
3487          */
3488         iocb->private = NULL;
3489         if (overwrite)
3490                 get_block_func = ext4_dio_get_block_overwrite;
3491         else if (IS_DAX(inode)) {
3492                 /*
3493                  * We can avoid zeroing for aligned DAX writes beyond EOF. Other
3494                  * writes need zeroing either because they can race with page
3495                  * faults or because they use partial blocks.
3496                  */
3497                 if (round_down(offset, i_blocksize(inode)) >= inode->i_size &&
3498                     ext4_aligned_io(inode, offset, count))
3499                         get_block_func = ext4_dio_get_block;
3500                 else
3501                         get_block_func = ext4_dax_get_block;
3502                 dio_flags = DIO_LOCKING;
3503         } else if (!ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS) ||
3504                    round_down(offset, i_blocksize(inode)) >= inode->i_size) {
3505                 get_block_func = ext4_dio_get_block;
3506                 dio_flags = DIO_LOCKING | DIO_SKIP_HOLES;
3507         } else if (is_sync_kiocb(iocb)) {
3508                 get_block_func = ext4_dio_get_block_unwritten_sync;
3509                 dio_flags = DIO_LOCKING;
3510         } else {
3511                 get_block_func = ext4_dio_get_block_unwritten_async;
3512                 dio_flags = DIO_LOCKING;
3513         }
3514 #ifdef CONFIG_EXT4_FS_ENCRYPTION
3515         BUG_ON(ext4_encrypted_inode(inode) && S_ISREG(inode->i_mode));
3516 #endif
3517         if (IS_DAX(inode)) {
3518                 ret = dax_do_io(iocb, inode, iter, get_block_func,
3519                                 ext4_end_io_dio, dio_flags);
3520         } else
3521                 ret = __blockdev_direct_IO(iocb, inode,
3522                                            inode->i_sb->s_bdev, iter,
3523                                            get_block_func,
3524                                            ext4_end_io_dio, NULL, dio_flags);
3525
3526         if (ret > 0 && !overwrite && ext4_test_inode_state(inode,
3527                                                 EXT4_STATE_DIO_UNWRITTEN)) {
3528                 int err;
3529                 /*
3530                  * for non AIO case, since the IO is already
3531                  * completed, we could do the conversion right here
3532                  */
3533                 err = ext4_convert_unwritten_extents(NULL, inode,
3534                                                      offset, ret);
3535                 if (err < 0)
3536                         ret = err;
3537                 ext4_clear_inode_state(inode, EXT4_STATE_DIO_UNWRITTEN);
3538         }
3539
3540         inode_dio_end(inode);
3541         /* take i_mutex locking again if we do a ovewrite dio */
3542         if (overwrite)
3543                 inode_lock(inode);
3544
3545         if (ret < 0 && final_size > inode->i_size)
3546                 ext4_truncate_failed_write(inode);
3547
3548         /* Handle extending of i_size after direct IO write */
3549         if (orphan) {
3550                 int err;
3551
3552                 /* Credits for sb + inode write */
3553                 handle = ext4_journal_start(inode, EXT4_HT_INODE, 2);
3554                 if (IS_ERR(handle)) {
3555                         /*
3556                          * We wrote the data but cannot extend
3557                          * i_size. Bail out. In async io case, we do
3558                          * not return error here because we have
3559                          * already submmitted the corresponding
3560                          * bio. Returning error here makes the caller
3561                          * think that this IO is done and failed
3562                          * resulting in race with bio's completion
3563                          * handler.
3564                          */
3565                         if (!ret)
3566                                 ret = PTR_ERR(handle);
3567                         if (inode->i_nlink)
3568                                 ext4_orphan_del(NULL, inode);
3569
3570                         goto out;
3571                 }
3572                 if (inode->i_nlink)
3573                         ext4_orphan_del(handle, inode);
3574                 if (ret > 0) {
3575                         loff_t end = offset + ret;
3576                         if (end > inode->i_size) {
3577                                 ext4_update_i_disksize(inode, end);
3578                                 i_size_write(inode, end);
3579                                 /*
3580                                  * We're going to return a positive `ret'
3581                                  * here due to non-zero-length I/O, so there's
3582                                  * no way of reporting error returns from
3583                                  * ext4_mark_inode_dirty() to userspace.  So
3584                                  * ignore it.
3585                                  */
3586                                 ext4_mark_inode_dirty(handle, inode);
3587                         }
3588                 }
3589                 err = ext4_journal_stop(handle);
3590                 if (ret == 0)
3591                         ret = err;
3592         }
3593 out:
3594         return ret;
3595 }
3596
3597 static ssize_t ext4_direct_IO_read(struct kiocb *iocb, struct iov_iter *iter)
3598 {
3599         struct address_space *mapping = iocb->ki_filp->f_mapping;
3600         struct inode *inode = mapping->host;
3601         ssize_t ret;
3602         loff_t offset = iocb->ki_pos;
3603         loff_t size = i_size_read(inode);
3604
3605         if (offset >= size)
3606                 return 0;
3607
3608         /*
3609          * Shared inode_lock is enough for us - it protects against concurrent
3610          * writes & truncates and since we take care of writing back page cache,
3611          * we are protected against page writeback as well.
3612          */
3613         inode_lock_shared(inode);
3614         if (IS_DAX(inode)) {
3615                 ret = dax_do_io(iocb, inode, iter, ext4_dio_get_block, NULL, 0);
3616         } else {
3617                 size_t count = iov_iter_count(iter);
3618
3619                 ret = filemap_write_and_wait_range(mapping, iocb->ki_pos,
3620                                                    iocb->ki_pos + count);
3621                 if (ret)
3622                         goto out_unlock;
3623                 ret = __blockdev_direct_IO(iocb, inode, inode->i_sb->s_bdev,
3624                                            iter, ext4_dio_get_block,
3625                                            NULL, NULL, 0);
3626         }
3627 out_unlock:
3628         inode_unlock_shared(inode);
3629         return ret;
3630 }
3631
3632 static ssize_t ext4_direct_IO(struct kiocb *iocb, struct iov_iter *iter)
3633 {
3634         struct file *file = iocb->ki_filp;
3635         struct inode *inode = file->f_mapping->host;
3636         size_t count = iov_iter_count(iter);
3637         loff_t offset = iocb->ki_pos;
3638         ssize_t ret;
3639
3640 #ifdef CONFIG_EXT4_FS_ENCRYPTION
3641         if (ext4_encrypted_inode(inode) && S_ISREG(inode->i_mode))
3642                 return 0;
3643 #endif
3644
3645         /*
3646          * If we are doing data journalling we don't support O_DIRECT
3647          */
3648         if (ext4_should_journal_data(inode))
3649                 return 0;
3650
3651         /* Let buffer I/O handle the inline data case. */
3652         if (ext4_has_inline_data(inode))
3653                 return 0;
3654
3655         trace_ext4_direct_IO_enter(inode, offset, count, iov_iter_rw(iter));
3656         if (iov_iter_rw(iter) == READ)
3657                 ret = ext4_direct_IO_read(iocb, iter);
3658         else
3659                 ret = ext4_direct_IO_write(iocb, iter);
3660         trace_ext4_direct_IO_exit(inode, offset, count, iov_iter_rw(iter), ret);
3661         return ret;
3662 }
3663
3664 /*
3665  * Pages can be marked dirty completely asynchronously from ext4's journalling
3666  * activity.  By filemap_sync_pte(), try_to_unmap_one(), etc.  We cannot do
3667  * much here because ->set_page_dirty is called under VFS locks.  The page is
3668  * not necessarily locked.
3669  *
3670  * We cannot just dirty the page and leave attached buffers clean, because the
3671  * buffers' dirty state is "definitive".  We cannot just set the buffers dirty
3672  * or jbddirty because all the journalling code will explode.
3673  *
3674  * So what we do is to mark the page "pending dirty" and next time writepage
3675  * is called, propagate that into the buffers appropriately.
3676  */
3677 static int ext4_journalled_set_page_dirty(struct page *page)
3678 {
3679         SetPageChecked(page);
3680         return __set_page_dirty_nobuffers(page);
3681 }
3682
3683 static const struct address_space_operations ext4_aops = {
3684         .readpage               = ext4_readpage,
3685         .readpages              = ext4_readpages,
3686         .writepage              = ext4_writepage,
3687         .writepages             = ext4_writepages,
3688         .write_begin            = ext4_write_begin,
3689         .write_end              = ext4_write_end,
3690         .bmap                   = ext4_bmap,
3691         .invalidatepage         = ext4_invalidatepage,
3692         .releasepage            = ext4_releasepage,
3693         .direct_IO              = ext4_direct_IO,
3694         .migratepage            = buffer_migrate_page,
3695         .is_partially_uptodate  = block_is_partially_uptodate,
3696         .error_remove_page      = generic_error_remove_page,
3697 };
3698
3699 static const struct address_space_operations ext4_journalled_aops = {
3700         .readpage               = ext4_readpage,
3701         .readpages              = ext4_readpages,
3702         .writepage              = ext4_writepage,
3703         .writepages             = ext4_writepages,
3704         .write_begin            = ext4_write_begin,
3705         .write_end              = ext4_journalled_write_end,
3706         .set_page_dirty         = ext4_journalled_set_page_dirty,
3707         .bmap                   = ext4_bmap,
3708         .invalidatepage         = ext4_journalled_invalidatepage,
3709         .releasepage            = ext4_releasepage,
3710         .direct_IO              = ext4_direct_IO,
3711         .is_partially_uptodate  = block_is_partially_uptodate,
3712         .error_remove_page      = generic_error_remove_page,
3713 };
3714
3715 static const struct address_space_operations ext4_da_aops = {
3716         .readpage               = ext4_readpage,
3717         .readpages              = ext4_readpages,
3718         .writepage              = ext4_writepage,
3719         .writepages             = ext4_writepages,
3720         .write_begin            = ext4_da_write_begin,
3721         .write_end              = ext4_da_write_end,
3722         .bmap                   = ext4_bmap,
3723         .invalidatepage         = ext4_da_invalidatepage,
3724         .releasepage            = ext4_releasepage,
3725         .direct_IO              = ext4_direct_IO,
3726         .migratepage            = buffer_migrate_page,
3727         .is_partially_uptodate  = block_is_partially_uptodate,
3728         .error_remove_page      = generic_error_remove_page,
3729 };
3730
3731 void ext4_set_aops(struct inode *inode)
3732 {
3733         switch (ext4_inode_journal_mode(inode)) {
3734         case EXT4_INODE_ORDERED_DATA_MODE:
3735         case EXT4_INODE_WRITEBACK_DATA_MODE:
3736                 break;
3737         case EXT4_INODE_JOURNAL_DATA_MODE:
3738                 inode->i_mapping->a_ops = &ext4_journalled_aops;
3739                 return;
3740         default:
3741                 BUG();
3742         }
3743         if (test_opt(inode->i_sb, DELALLOC))
3744                 inode->i_mapping->a_ops = &ext4_da_aops;
3745         else
3746                 inode->i_mapping->a_ops = &ext4_aops;
3747 }
3748
3749 static int __ext4_block_zero_page_range(handle_t *handle,
3750                 struct address_space *mapping, loff_t from, loff_t length)
3751 {
3752         ext4_fsblk_t index = from >> PAGE_SHIFT;
3753         unsigned offset = from & (PAGE_SIZE-1);
3754         unsigned blocksize, pos;
3755         ext4_lblk_t iblock;
3756         struct inode *inode = mapping->host;
3757         struct buffer_head *bh;
3758         struct page *page;
3759         int err = 0;
3760
3761         page = find_or_create_page(mapping, from >> PAGE_SHIFT,
3762                                    mapping_gfp_constraint(mapping, ~__GFP_FS));
3763         if (!page)
3764                 return -ENOMEM;
3765
3766         blocksize = inode->i_sb->s_blocksize;
3767
3768         iblock = index << (PAGE_SHIFT - inode->i_sb->s_blocksize_bits);
3769
3770         if (!page_has_buffers(page))
3771                 create_empty_buffers(page, blocksize, 0);
3772
3773         /* Find the buffer that contains "offset" */
3774         bh = page_buffers(page);
3775         pos = blocksize;
3776         while (offset >= pos) {
3777                 bh = bh->b_this_page;
3778                 iblock++;
3779                 pos += blocksize;
3780         }
3781         if (buffer_freed(bh)) {
3782                 BUFFER_TRACE(bh, "freed: skip");
3783                 goto unlock;
3784         }
3785         if (!buffer_mapped(bh)) {
3786                 BUFFER_TRACE(bh, "unmapped");
3787                 ext4_get_block(inode, iblock, bh, 0);
3788                 /* unmapped? It's a hole - nothing to do */
3789                 if (!buffer_mapped(bh)) {
3790                         BUFFER_TRACE(bh, "still unmapped");
3791                         goto unlock;
3792                 }
3793         }
3794
3795         /* Ok, it's mapped. Make sure it's up-to-date */
3796         if (PageUptodate(page))
3797                 set_buffer_uptodate(bh);
3798
3799         if (!buffer_uptodate(bh)) {
3800                 err = -EIO;
3801                 ll_rw_block(REQ_OP_READ, 0, 1, &bh);
3802                 wait_on_buffer(bh);
3803                 /* Uhhuh. Read error. Complain and punt. */
3804                 if (!buffer_uptodate(bh))
3805                         goto unlock;
3806                 if (S_ISREG(inode->i_mode) &&
3807                     ext4_encrypted_inode(inode)) {
3808                         /* We expect the key to be set. */
3809                         BUG_ON(!fscrypt_has_encryption_key(inode));
3810                         BUG_ON(blocksize != PAGE_SIZE);
3811                         WARN_ON_ONCE(fscrypt_decrypt_page(page));
3812                 }
3813         }
3814         if (ext4_should_journal_data(inode)) {
3815                 BUFFER_TRACE(bh, "get write access");
3816                 err = ext4_journal_get_write_access(handle, bh);
3817                 if (err)
3818                         goto unlock;
3819         }
3820         zero_user(page, offset, length);
3821         BUFFER_TRACE(bh, "zeroed end of block");
3822
3823         if (ext4_should_journal_data(inode)) {
3824                 err = ext4_handle_dirty_metadata(handle, inode, bh);
3825         } else {
3826                 err = 0;
3827                 mark_buffer_dirty(bh);
3828                 if (ext4_should_order_data(inode))
3829                         err = ext4_jbd2_inode_add_write(handle, inode);
3830         }
3831
3832 unlock:
3833         unlock_page(page);
3834         put_page(page);
3835         return err;
3836 }
3837
3838 /*
3839  * ext4_block_zero_page_range() zeros out a mapping of length 'length'
3840  * starting from file offset 'from'.  The range to be zero'd must
3841  * be contained with in one block.  If the specified range exceeds
3842  * the end of the block it will be shortened to end of the block
3843  * that cooresponds to 'from'
3844  */
3845 static int ext4_block_zero_page_range(handle_t *handle,
3846                 struct address_space *mapping, loff_t from, loff_t length)
3847 {
3848         struct inode *inode = mapping->host;
3849         unsigned offset = from & (PAGE_SIZE-1);
3850         unsigned blocksize = inode->i_sb->s_blocksize;
3851         unsigned max = blocksize - (offset & (blocksize - 1));
3852
3853         /*
3854          * correct length if it does not fall between
3855          * 'from' and the end of the block
3856          */
3857         if (length > max || length < 0)
3858                 length = max;
3859
3860         if (IS_DAX(inode))
3861                 return dax_zero_page_range(inode, from, length, ext4_get_block);
3862         return __ext4_block_zero_page_range(handle, mapping, from, length);
3863 }
3864
3865 /*
3866  * ext4_block_truncate_page() zeroes out a mapping from file offset `from'
3867  * up to the end of the block which corresponds to `from'.
3868  * This required during truncate. We need to physically zero the tail end
3869  * of that block so it doesn't yield old data if the file is later grown.
3870  */
3871 static int ext4_block_truncate_page(handle_t *handle,
3872                 struct address_space *mapping, loff_t from)
3873 {
3874         unsigned offset = from & (PAGE_SIZE-1);
3875         unsigned length;
3876         unsigned blocksize;
3877         struct inode *inode = mapping->host;
3878
3879         /* If we are processing an encrypted inode during orphan list handling */
3880         if (ext4_encrypted_inode(inode) && !fscrypt_has_encryption_key(inode))
3881                 return 0;
3882
3883         blocksize = inode->i_sb->s_blocksize;
3884         length = blocksize - (offset & (blocksize - 1));
3885
3886         return ext4_block_zero_page_range(handle, mapping, from, length);
3887 }
3888
3889 int ext4_zero_partial_blocks(handle_t *handle, struct inode *inode,
3890                              loff_t lstart, loff_t length)
3891 {
3892         struct super_block *sb = inode->i_sb;
3893         struct address_space *mapping = inode->i_mapping;
3894         unsigned partial_start, partial_end;
3895         ext4_fsblk_t start, end;
3896         loff_t byte_end = (lstart + length - 1);
3897         int err = 0;
3898
3899         partial_start = lstart & (sb->s_blocksize - 1);
3900         partial_end = byte_end & (sb->s_blocksize - 1);
3901
3902         start = lstart >> sb->s_blocksize_bits;
3903         end = byte_end >> sb->s_blocksize_bits;
3904
3905         /* Handle partial zero within the single block */
3906         if (start == end &&
3907             (partial_start || (partial_end != sb->s_blocksize - 1))) {
3908                 err = ext4_block_zero_page_range(handle, mapping,
3909                                                  lstart, length);
3910                 return err;
3911         }
3912         /* Handle partial zero out on the start of the range */
3913         if (partial_start) {
3914                 err = ext4_block_zero_page_range(handle, mapping,
3915                                                  lstart, sb->s_blocksize);
3916                 if (err)
3917                         return err;
3918         }
3919         /* Handle partial zero out on the end of the range */
3920         if (partial_end != sb->s_blocksize - 1)
3921                 err = ext4_block_zero_page_range(handle, mapping,
3922                                                  byte_end - partial_end,
3923                                                  partial_end + 1);
3924         return err;
3925 }
3926
3927 int ext4_can_truncate(struct inode *inode)
3928 {
3929         if (S_ISREG(inode->i_mode))
3930                 return 1;
3931         if (S_ISDIR(inode->i_mode))
3932                 return 1;
3933         if (S_ISLNK(inode->i_mode))
3934                 return !ext4_inode_is_fast_symlink(inode);
3935         return 0;
3936 }
3937
3938 /*
3939  * We have to make sure i_disksize gets properly updated before we truncate
3940  * page cache due to hole punching or zero range. Otherwise i_disksize update
3941  * can get lost as it may have been postponed to submission of writeback but
3942  * that will never happen after we truncate page cache.
3943  */
3944 int ext4_update_disksize_before_punch(struct inode *inode, loff_t offset,
3945                                       loff_t len)
3946 {
3947         handle_t *handle;
3948         loff_t size = i_size_read(inode);
3949
3950         WARN_ON(!inode_is_locked(inode));
3951         if (offset > size || offset + len < size)
3952                 return 0;
3953
3954         if (EXT4_I(inode)->i_disksize >= size)
3955                 return 0;
3956
3957         handle = ext4_journal_start(inode, EXT4_HT_MISC, 1);
3958         if (IS_ERR(handle))
3959                 return PTR_ERR(handle);
3960         ext4_update_i_disksize(inode, size);
3961         ext4_mark_inode_dirty(handle, inode);
3962         ext4_journal_stop(handle);
3963
3964         return 0;
3965 }
3966
3967 /*
3968  * ext4_punch_hole: punches a hole in a file by releasing the blocks
3969  * associated with the given offset and length
3970  *
3971  * @inode:  File inode
3972  * @offset: The offset where the hole will begin
3973  * @len:    The length of the hole
3974  *
3975  * Returns: 0 on success or negative on failure
3976  */
3977
3978 int ext4_punch_hole(struct inode *inode, loff_t offset, loff_t length)
3979 {
3980         struct super_block *sb = inode->i_sb;
3981         ext4_lblk_t first_block, stop_block;
3982         struct address_space *mapping = inode->i_mapping;
3983         loff_t first_block_offset, last_block_offset, max_length;
3984         struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
3985         handle_t *handle;
3986         unsigned int credits;
3987         int ret = 0;
3988
3989         if (!S_ISREG(inode->i_mode))
3990                 return -EOPNOTSUPP;
3991
3992         trace_ext4_punch_hole(inode, offset, length, 0);
3993
3994         ext4_clear_inode_state(inode, EXT4_STATE_MAY_INLINE_DATA);
3995         if (ext4_has_inline_data(inode)) {
3996                 down_write(&EXT4_I(inode)->i_mmap_sem);
3997                 ret = ext4_convert_inline_data(inode);
3998                 up_write(&EXT4_I(inode)->i_mmap_sem);
3999                 if (ret)
4000                         return ret;
4001         }
4002
4003         /*
4004          * Write out all dirty pages to avoid race conditions
4005          * Then release them.
4006          */
4007         if (mapping_tagged(mapping, PAGECACHE_TAG_DIRTY)) {
4008                 ret = filemap_write_and_wait_range(mapping, offset,
4009                                                    offset + length - 1);
4010                 if (ret)
4011                         return ret;
4012         }
4013
4014         inode_lock(inode);
4015
4016         /* No need to punch hole beyond i_size */
4017         if (offset >= inode->i_size)
4018                 goto out_mutex;
4019
4020         /*
4021          * If the hole extends beyond i_size, set the hole
4022          * to end after the page that contains i_size
4023          */
4024         if (offset + length > inode->i_size) {
4025                 length = inode->i_size +
4026                    PAGE_SIZE - (inode->i_size & (PAGE_SIZE - 1)) -
4027                    offset;
4028         }
4029
4030         /*
4031          * For punch hole the length + offset needs to be within one block
4032          * before last range. Adjust the length if it goes beyond that limit.
4033          */
4034         max_length = sbi->s_bitmap_maxbytes - inode->i_sb->s_blocksize;
4035         if (offset + length > max_length)
4036                 length = max_length - offset;
4037
4038         if (offset & (sb->s_blocksize - 1) ||
4039             (offset + length) & (sb->s_blocksize - 1)) {
4040                 /*
4041                  * Attach jinode to inode for jbd2 if we do any zeroing of
4042                  * partial block
4043                  */
4044                 ret = ext4_inode_attach_jinode(inode);
4045                 if (ret < 0)
4046                         goto out_mutex;
4047
4048         }
4049
4050         /* Wait all existing dio workers, newcomers will block on i_mutex */
4051         ext4_inode_block_unlocked_dio(inode);
4052         inode_dio_wait(inode);
4053
4054         /*
4055          * Prevent page faults from reinstantiating pages we have released from
4056          * page cache.
4057          */
4058         down_write(&EXT4_I(inode)->i_mmap_sem);
4059         first_block_offset = round_up(offset, sb->s_blocksize);
4060         last_block_offset = round_down((offset + length), sb->s_blocksize) - 1;
4061
4062         /* Now release the pages and zero block aligned part of pages*/
4063         if (last_block_offset > first_block_offset) {
4064                 ret = ext4_update_disksize_before_punch(inode, offset, length);
4065                 if (ret)
4066                         goto out_dio;
4067                 truncate_pagecache_range(inode, first_block_offset,
4068                                          last_block_offset);
4069         }
4070
4071         if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS))
4072                 credits = ext4_writepage_trans_blocks(inode);
4073         else
4074                 credits = ext4_blocks_for_truncate(inode);
4075         handle = ext4_journal_start(inode, EXT4_HT_TRUNCATE, credits);
4076         if (IS_ERR(handle)) {
4077                 ret = PTR_ERR(handle);
4078                 ext4_std_error(sb, ret);
4079                 goto out_dio;
4080         }
4081
4082         ret = ext4_zero_partial_blocks(handle, inode, offset,
4083                                        length);
4084         if (ret)
4085                 goto out_stop;
4086
4087         first_block = (offset + sb->s_blocksize - 1) >>
4088                 EXT4_BLOCK_SIZE_BITS(sb);
4089         stop_block = (offset + length) >> EXT4_BLOCK_SIZE_BITS(sb);
4090
4091         /* If there are blocks to remove, do it */
4092         if (stop_block > first_block) {
4093
4094                 down_write(&EXT4_I(inode)->i_data_sem);
4095                 ext4_discard_preallocations(inode);
4096
4097                 ret = ext4_es_remove_extent(inode, first_block,
4098                                             stop_block - first_block);
4099                 if (ret) {
4100                         up_write(&EXT4_I(inode)->i_data_sem);
4101                         goto out_stop;
4102                 }
4103
4104                 if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS))
4105                         ret = ext4_ext_remove_space(inode, first_block,
4106                                                     stop_block - 1);
4107                 else
4108                         ret = ext4_ind_remove_space(handle, inode, first_block,
4109                                                     stop_block);
4110
4111                 up_write(&EXT4_I(inode)->i_data_sem);
4112         }
4113         if (IS_SYNC(inode))
4114                 ext4_handle_sync(handle);
4115
4116         inode->i_mtime = inode->i_ctime = ext4_current_time(inode);
4117         ext4_mark_inode_dirty(handle, inode);
4118         if (ret >= 0)
4119                 ext4_update_inode_fsync_trans(handle, inode, 1);
4120 out_stop:
4121         ext4_journal_stop(handle);
4122 out_dio:
4123         up_write(&EXT4_I(inode)->i_mmap_sem);
4124         ext4_inode_resume_unlocked_dio(inode);
4125 out_mutex:
4126         inode_unlock(inode);
4127         return ret;
4128 }
4129
4130 int ext4_inode_attach_jinode(struct inode *inode)
4131 {
4132         struct ext4_inode_info *ei = EXT4_I(inode);
4133         struct jbd2_inode *jinode;
4134
4135         if (ei->jinode || !EXT4_SB(inode->i_sb)->s_journal)
4136                 return 0;
4137
4138         jinode = jbd2_alloc_inode(GFP_KERNEL);
4139         spin_lock(&inode->i_lock);
4140         if (!ei->jinode) {
4141                 if (!jinode) {
4142                         spin_unlock(&inode->i_lock);
4143                         return -ENOMEM;
4144                 }
4145                 ei->jinode = jinode;
4146                 jbd2_journal_init_jbd_inode(ei->jinode, inode);
4147                 jinode = NULL;
4148         }
4149         spin_unlock(&inode->i_lock);
4150         if (unlikely(jinode != NULL))
4151                 jbd2_free_inode(jinode);
4152         return 0;
4153 }
4154
4155 /*
4156  * ext4_truncate()
4157  *
4158  * We block out ext4_get_block() block instantiations across the entire
4159  * transaction, and VFS/VM ensures that ext4_truncate() cannot run
4160  * simultaneously on behalf of the same inode.
4161  *
4162  * As we work through the truncate and commit bits of it to the journal there
4163  * is one core, guiding principle: the file's tree must always be consistent on
4164  * disk.  We must be able to restart the truncate after a crash.
4165  *
4166  * The file's tree may be transiently inconsistent in memory (although it
4167  * probably isn't), but whenever we close off and commit a journal transaction,
4168  * the contents of (the filesystem + the journal) must be consistent and
4169  * restartable.  It's pretty simple, really: bottom up, right to left (although
4170  * left-to-right works OK too).
4171  *
4172  * Note that at recovery time, journal replay occurs *before* the restart of
4173  * truncate against the orphan inode list.
4174  *
4175  * The committed inode has the new, desired i_size (which is the same as
4176  * i_disksize in this case).  After a crash, ext4_orphan_cleanup() will see
4177  * that this inode's truncate did not complete and it will again call
4178  * ext4_truncate() to have another go.  So there will be instantiated blocks
4179  * to the right of the truncation point in a crashed ext4 filesystem.  But
4180  * that's fine - as long as they are linked from the inode, the post-crash
4181  * ext4_truncate() run will find them and release them.
4182  */
4183 void ext4_truncate(struct inode *inode)
4184 {
4185         struct ext4_inode_info *ei = EXT4_I(inode);
4186         unsigned int credits;
4187         handle_t *handle;
4188         struct address_space *mapping = inode->i_mapping;
4189
4190         /*
4191          * There is a possibility that we're either freeing the inode
4192          * or it's a completely new inode. In those cases we might not
4193          * have i_mutex locked because it's not necessary.
4194          */
4195         if (!(inode->i_state & (I_NEW|I_FREEING)))
4196                 WARN_ON(!inode_is_locked(inode));
4197         trace_ext4_truncate_enter(inode);
4198
4199         if (!ext4_can_truncate(inode))
4200                 return;
4201
4202         ext4_clear_inode_flag(inode, EXT4_INODE_EOFBLOCKS);
4203
4204         if (inode->i_size == 0 && !test_opt(inode->i_sb, NO_AUTO_DA_ALLOC))
4205                 ext4_set_inode_state(inode, EXT4_STATE_DA_ALLOC_CLOSE);
4206
4207         if (ext4_has_inline_data(inode)) {
4208                 int has_inline = 1;
4209
4210                 ext4_inline_data_truncate(inode, &has_inline);
4211                 if (has_inline)
4212                         return;
4213         }
4214
4215         /* If we zero-out tail of the page, we have to create jinode for jbd2 */
4216         if (inode->i_size & (inode->i_sb->s_blocksize - 1)) {
4217                 if (ext4_inode_attach_jinode(inode) < 0)
4218                         return;
4219         }
4220
4221         if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS))
4222                 credits = ext4_writepage_trans_blocks(inode);
4223         else
4224                 credits = ext4_blocks_for_truncate(inode);
4225
4226         handle = ext4_journal_start(inode, EXT4_HT_TRUNCATE, credits);
4227         if (IS_ERR(handle)) {
4228                 ext4_std_error(inode->i_sb, PTR_ERR(handle));
4229                 return;
4230         }
4231
4232         if (inode->i_size & (inode->i_sb->s_blocksize - 1))
4233                 ext4_block_truncate_page(handle, mapping, inode->i_size);
4234
4235         /*
4236          * We add the inode to the orphan list, so that if this
4237          * truncate spans multiple transactions, and we crash, we will
4238          * resume the truncate when the filesystem recovers.  It also
4239          * marks the inode dirty, to catch the new size.
4240          *
4241          * Implication: the file must always be in a sane, consistent
4242          * truncatable state while each transaction commits.
4243          */
4244         if (ext4_orphan_add(handle, inode))
4245                 goto out_stop;
4246
4247         down_write(&EXT4_I(inode)->i_data_sem);
4248
4249         ext4_discard_preallocations(inode);
4250
4251         if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS))
4252                 ext4_ext_truncate(handle, inode);
4253         else
4254                 ext4_ind_truncate(handle, inode);
4255
4256         up_write(&ei->i_data_sem);
4257
4258         if (IS_SYNC(inode))
4259                 ext4_handle_sync(handle);
4260
4261 out_stop:
4262         /*
4263          * If this was a simple ftruncate() and the file will remain alive,
4264          * then we need to clear up the orphan record which we created above.
4265          * However, if this was a real unlink then we were called by
4266          * ext4_evict_inode(), and we allow that function to clean up the
4267          * orphan info for us.
4268          */
4269         if (inode->i_nlink)
4270                 ext4_orphan_del(handle, inode);
4271
4272         inode->i_mtime = inode->i_ctime = ext4_current_time(inode);
4273         ext4_mark_inode_dirty(handle, inode);
4274         ext4_journal_stop(handle);
4275
4276         trace_ext4_truncate_exit(inode);
4277 }
4278
4279 /*
4280  * ext4_get_inode_loc returns with an extra refcount against the inode's
4281  * underlying buffer_head on success. If 'in_mem' is true, we have all
4282  * data in memory that is needed to recreate the on-disk version of this
4283  * inode.
4284  */
4285 static int __ext4_get_inode_loc(struct inode *inode,
4286                                 struct ext4_iloc *iloc, int in_mem)
4287 {
4288         struct ext4_group_desc  *gdp;
4289         struct buffer_head      *bh;
4290         struct super_block      *sb = inode->i_sb;
4291         ext4_fsblk_t            block;
4292         int                     inodes_per_block, inode_offset;
4293
4294         iloc->bh = NULL;
4295         if (inode->i_ino < EXT4_ROOT_INO ||
4296             inode->i_ino > le32_to_cpu(EXT4_SB(sb)->s_es->s_inodes_count))
4297                 return -EFSCORRUPTED;
4298
4299         iloc->block_group = (inode->i_ino - 1) / EXT4_INODES_PER_GROUP(sb);
4300         gdp = ext4_get_group_desc(sb, iloc->block_group, NULL);
4301         if (!gdp)
4302                 return -EIO;
4303
4304         /*
4305          * Figure out the offset within the block group inode table
4306          */
4307         inodes_per_block = EXT4_SB(sb)->s_inodes_per_block;
4308         inode_offset = ((inode->i_ino - 1) %
4309                         EXT4_INODES_PER_GROUP(sb));
4310         block = ext4_inode_table(sb, gdp) + (inode_offset / inodes_per_block);
4311         iloc->offset = (inode_offset % inodes_per_block) * EXT4_INODE_SIZE(sb);
4312
4313         bh = sb_getblk(sb, block);
4314         if (unlikely(!bh))
4315                 return -ENOMEM;
4316         if (!buffer_uptodate(bh)) {
4317                 lock_buffer(bh);
4318
4319                 /*
4320                  * If the buffer has the write error flag, we have failed
4321                  * to write out another inode in the same block.  In this
4322                  * case, we don't have to read the block because we may
4323                  * read the old inode data successfully.
4324                  */
4325                 if (buffer_write_io_error(bh) && !buffer_uptodate(bh))
4326                         set_buffer_uptodate(bh);
4327
4328                 if (buffer_uptodate(bh)) {
4329                         /* someone brought it uptodate while we waited */
4330                         unlock_buffer(bh);
4331                         goto has_buffer;
4332                 }
4333
4334                 /*
4335                  * If we have all information of the inode in memory and this
4336                  * is the only valid inode in the block, we need not read the
4337                  * block.
4338                  */
4339                 if (in_mem) {
4340                         struct buffer_head *bitmap_bh;
4341                         int i, start;
4342
4343                         start = inode_offset & ~(inodes_per_block - 1);
4344
4345                         /* Is the inode bitmap in cache? */
4346                         bitmap_bh = sb_getblk(sb, ext4_inode_bitmap(sb, gdp));
4347                         if (unlikely(!bitmap_bh))
4348                                 goto make_io;
4349
4350                         /*
4351                          * If the inode bitmap isn't in cache then the
4352                          * optimisation may end up performing two reads instead
4353                          * of one, so skip it.
4354                          */
4355                         if (!buffer_uptodate(bitmap_bh)) {
4356                                 brelse(bitmap_bh);
4357                                 goto make_io;
4358                         }
4359                         for (i = start; i < start + inodes_per_block; i++) {
4360                                 if (i == inode_offset)
4361                                         continue;
4362                                 if (ext4_test_bit(i, bitmap_bh->b_data))
4363                                         break;
4364                         }
4365                         brelse(bitmap_bh);
4366                         if (i == start + inodes_per_block) {
4367                                 /* all other inodes are free, so skip I/O */
4368                                 memset(bh->b_data, 0, bh->b_size);
4369                                 set_buffer_uptodate(bh);
4370                                 unlock_buffer(bh);
4371                                 goto has_buffer;
4372                         }
4373                 }
4374
4375 make_io:
4376                 /*
4377                  * If we need to do any I/O, try to pre-readahead extra
4378                  * blocks from the inode table.
4379                  */
4380                 if (EXT4_SB(sb)->s_inode_readahead_blks) {
4381                         ext4_fsblk_t b, end, table;
4382                         unsigned num;
4383                         __u32 ra_blks = EXT4_SB(sb)->s_inode_readahead_blks;
4384
4385                         table = ext4_inode_table(sb, gdp);
4386                         /* s_inode_readahead_blks is always a power of 2 */
4387                         b = block & ~((ext4_fsblk_t) ra_blks - 1);
4388                         if (table > b)
4389                                 b = table;
4390                         end = b + ra_blks;
4391                         num = EXT4_INODES_PER_GROUP(sb);
4392                         if (ext4_has_group_desc_csum(sb))
4393                                 num -= ext4_itable_unused_count(sb, gdp);
4394                         table += num / inodes_per_block;
4395                         if (end > table)
4396                                 end = table;
4397                         while (b <= end)
4398                                 sb_breadahead(sb, b++);
4399                 }
4400
4401                 /*
4402                  * There are other valid inodes in the buffer, this inode
4403                  * has in-inode xattrs, or we don't have this inode in memory.
4404                  * Read the block from disk.
4405                  */
4406                 trace_ext4_load_inode(inode);
4407                 get_bh(bh);
4408                 bh->b_end_io = end_buffer_read_sync;
4409                 submit_bh(REQ_OP_READ, REQ_META | REQ_PRIO, bh);
4410                 wait_on_buffer(bh);
4411                 if (!buffer_uptodate(bh)) {
4412                         EXT4_ERROR_INODE_BLOCK(inode, block,
4413                                                "unable to read itable block");
4414                         brelse(bh);
4415                         return -EIO;
4416                 }
4417         }
4418 has_buffer:
4419         iloc->bh = bh;
4420         return 0;
4421 }
4422
4423 int ext4_get_inode_loc(struct inode *inode, struct ext4_iloc *iloc)
4424 {
4425         /* We have all inode data except xattrs in memory here. */
4426         return __ext4_get_inode_loc(inode, iloc,
4427                 !ext4_test_inode_state(inode, EXT4_STATE_XATTR));
4428 }
4429
4430 void ext4_set_inode_flags(struct inode *inode)
4431 {
4432         unsigned int flags = EXT4_I(inode)->i_flags;
4433         unsigned int new_fl = 0;
4434
4435         if (flags & EXT4_SYNC_FL)
4436                 new_fl |= S_SYNC;
4437         if (flags & EXT4_APPEND_FL)
4438                 new_fl |= S_APPEND;
4439         if (flags & EXT4_IMMUTABLE_FL)
4440                 new_fl |= S_IMMUTABLE;
4441         if (flags & EXT4_NOATIME_FL)
4442                 new_fl |= S_NOATIME;
4443         if (flags & EXT4_DIRSYNC_FL)
4444                 new_fl |= S_DIRSYNC;
4445         if (test_opt(inode->i_sb, DAX) && S_ISREG(inode->i_mode))
4446                 new_fl |= S_DAX;
4447         inode_set_flags(inode, new_fl,
4448                         S_SYNC|S_APPEND|S_IMMUTABLE|S_NOATIME|S_DIRSYNC|S_DAX);
4449 }
4450
4451 /* Propagate flags from i_flags to EXT4_I(inode)->i_flags */
4452 void ext4_get_inode_flags(struct ext4_inode_info *ei)
4453 {
4454         unsigned int vfs_fl;
4455         unsigned long old_fl, new_fl;
4456
4457         do {
4458                 vfs_fl = ei->vfs_inode.i_flags;
4459                 old_fl = ei->i_flags;
4460                 new_fl = old_fl & ~(EXT4_SYNC_FL|EXT4_APPEND_FL|
4461                                 EXT4_IMMUTABLE_FL|EXT4_NOATIME_FL|
4462                                 EXT4_DIRSYNC_FL);
4463                 if (vfs_fl & S_SYNC)
4464                         new_fl |= EXT4_SYNC_FL;
4465                 if (vfs_fl & S_APPEND)
4466                         new_fl |= EXT4_APPEND_FL;
4467                 if (vfs_fl & S_IMMUTABLE)
4468                         new_fl |= EXT4_IMMUTABLE_FL;
4469                 if (vfs_fl & S_NOATIME)
4470                         new_fl |= EXT4_NOATIME_FL;
4471                 if (vfs_fl & S_DIRSYNC)
4472                         new_fl |= EXT4_DIRSYNC_FL;
4473         } while (cmpxchg(&ei->i_flags, old_fl, new_fl) != old_fl);
4474 }
4475
4476 static blkcnt_t ext4_inode_blocks(struct ext4_inode *raw_inode,
4477                                   struct ext4_inode_info *ei)
4478 {
4479         blkcnt_t i_blocks ;
4480         struct inode *inode = &(ei->vfs_inode);
4481         struct super_block *sb = inode->i_sb;
4482
4483         if (ext4_has_feature_huge_file(sb)) {
4484                 /* we are using combined 48 bit field */
4485                 i_blocks = ((u64)le16_to_cpu(raw_inode->i_blocks_high)) << 32 |
4486                                         le32_to_cpu(raw_inode->i_blocks_lo);
4487                 if (ext4_test_inode_flag(inode, EXT4_INODE_HUGE_FILE)) {
4488                         /* i_blocks represent file system block size */
4489                         return i_blocks  << (inode->i_blkbits - 9);
4490                 } else {
4491                         return i_blocks;
4492                 }
4493         } else {
4494                 return le32_to_cpu(raw_inode->i_blocks_lo);
4495         }
4496 }
4497
4498 static inline void ext4_iget_extra_inode(struct inode *inode,
4499                                          struct ext4_inode *raw_inode,
4500                                          struct ext4_inode_info *ei)
4501 {
4502         __le32 *magic = (void *)raw_inode +
4503                         EXT4_GOOD_OLD_INODE_SIZE + ei->i_extra_isize;
4504         if (*magic == cpu_to_le32(EXT4_XATTR_MAGIC)) {
4505                 ext4_set_inode_state(inode, EXT4_STATE_XATTR);
4506                 ext4_find_inline_data_nolock(inode);
4507         } else
4508                 EXT4_I(inode)->i_inline_off = 0;
4509 }
4510
4511 int ext4_get_projid(struct inode *inode, kprojid_t *projid)
4512 {
4513         if (!ext4_has_feature_project(inode->i_sb))
4514                 return -EOPNOTSUPP;
4515         *projid = EXT4_I(inode)->i_projid;
4516         return 0;
4517 }
4518
4519 struct inode *__ext4_iget(struct super_block *sb, unsigned long ino,
4520                           ext4_iget_flags flags, const char *function,
4521                           unsigned int line)
4522 {
4523         struct ext4_iloc iloc;
4524         struct ext4_inode *raw_inode;
4525         struct ext4_inode_info *ei;
4526         struct inode *inode;
4527         journal_t *journal = EXT4_SB(sb)->s_journal;
4528         long ret;
4529         loff_t size;
4530         int block;
4531         uid_t i_uid;
4532         gid_t i_gid;
4533         projid_t i_projid;
4534
4535         if ((!(flags & EXT4_IGET_SPECIAL) &&
4536              (ino < EXT4_FIRST_INO(sb) && ino != EXT4_ROOT_INO)) ||
4537             (ino < EXT4_ROOT_INO) ||
4538             (ino > le32_to_cpu(EXT4_SB(sb)->s_es->s_inodes_count))) {
4539                 if (flags & EXT4_IGET_HANDLE)
4540                         return ERR_PTR(-ESTALE);
4541                 __ext4_error(sb, function, line,
4542                              "inode #%lu: comm %s: iget: illegal inode #",
4543                              ino, current->comm);
4544                 return ERR_PTR(-EFSCORRUPTED);
4545         }
4546
4547         inode = iget_locked(sb, ino);
4548         if (!inode)
4549                 return ERR_PTR(-ENOMEM);
4550         if (!(inode->i_state & I_NEW))
4551                 return inode;
4552
4553         ei = EXT4_I(inode);
4554         iloc.bh = NULL;
4555
4556         ret = __ext4_get_inode_loc(inode, &iloc, 0);
4557         if (ret < 0)
4558                 goto bad_inode;
4559         raw_inode = ext4_raw_inode(&iloc);
4560
4561         if ((ino == EXT4_ROOT_INO) && (raw_inode->i_links_count == 0)) {
4562                 ext4_error_inode(inode, function, line, 0,
4563                                  "iget: root inode unallocated");
4564                 ret = -EFSCORRUPTED;
4565                 goto bad_inode;
4566         }
4567
4568         if ((flags & EXT4_IGET_HANDLE) &&
4569             (raw_inode->i_links_count == 0) && (raw_inode->i_mode == 0)) {
4570                 ret = -ESTALE;
4571                 goto bad_inode;
4572         }
4573
4574         if (EXT4_INODE_SIZE(inode->i_sb) > EXT4_GOOD_OLD_INODE_SIZE) {
4575                 ei->i_extra_isize = le16_to_cpu(raw_inode->i_extra_isize);
4576                 if (EXT4_GOOD_OLD_INODE_SIZE + ei->i_extra_isize >
4577                     EXT4_INODE_SIZE(inode->i_sb)) {
4578                         EXT4_ERROR_INODE(inode, "bad extra_isize (%u != %u)",
4579                                 EXT4_GOOD_OLD_INODE_SIZE + ei->i_extra_isize,
4580                                 EXT4_INODE_SIZE(inode->i_sb));
4581                         ret = -EFSCORRUPTED;
4582                         goto bad_inode;
4583                 }
4584         } else
4585                 ei->i_extra_isize = 0;
4586
4587         /* Precompute checksum seed for inode metadata */
4588         if (ext4_has_metadata_csum(sb)) {
4589                 struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
4590                 __u32 csum;
4591                 __le32 inum = cpu_to_le32(inode->i_ino);
4592                 __le32 gen = raw_inode->i_generation;
4593                 csum = ext4_chksum(sbi, sbi->s_csum_seed, (__u8 *)&inum,
4594                                    sizeof(inum));
4595                 ei->i_csum_seed = ext4_chksum(sbi, csum, (__u8 *)&gen,
4596                                               sizeof(gen));
4597         }
4598
4599         if (!ext4_inode_csum_verify(inode, raw_inode, ei)) {
4600                 ext4_error_inode(inode, function, line, 0,
4601                                  "iget: checksum invalid");
4602                 ret = -EFSBADCRC;
4603                 goto bad_inode;
4604         }
4605
4606         inode->i_mode = le16_to_cpu(raw_inode->i_mode);
4607         i_uid = (uid_t)le16_to_cpu(raw_inode->i_uid_low);
4608         i_gid = (gid_t)le16_to_cpu(raw_inode->i_gid_low);
4609         if (ext4_has_feature_project(sb) &&
4610             EXT4_INODE_SIZE(sb) > EXT4_GOOD_OLD_INODE_SIZE &&
4611             EXT4_FITS_IN_INODE(raw_inode, ei, i_projid))
4612                 i_projid = (projid_t)le32_to_cpu(raw_inode->i_projid);
4613         else
4614                 i_projid = EXT4_DEF_PROJID;
4615
4616         if (!(test_opt(inode->i_sb, NO_UID32))) {
4617                 i_uid |= le16_to_cpu(raw_inode->i_uid_high) << 16;
4618                 i_gid |= le16_to_cpu(raw_inode->i_gid_high) << 16;
4619         }
4620         i_uid_write(inode, i_uid);
4621         i_gid_write(inode, i_gid);
4622         ei->i_projid = make_kprojid(&init_user_ns, i_projid);
4623         set_nlink(inode, le16_to_cpu(raw_inode->i_links_count));
4624
4625         ext4_clear_state_flags(ei);     /* Only relevant on 32-bit archs */
4626         ei->i_inline_off = 0;
4627         ei->i_dir_start_lookup = 0;
4628         ei->i_dtime = le32_to_cpu(raw_inode->i_dtime);
4629         /* We now have enough fields to check if the inode was active or not.
4630          * This is needed because nfsd might try to access dead inodes
4631          * the test is that same one that e2fsck uses
4632          * NeilBrown 1999oct15
4633          */
4634         if (inode->i_nlink == 0) {
4635                 if ((inode->i_mode == 0 ||
4636                      !(EXT4_SB(inode->i_sb)->s_mount_state & EXT4_ORPHAN_FS)) &&
4637                     ino != EXT4_BOOT_LOADER_INO) {
4638                         /* this inode is deleted */
4639                         ret = -ESTALE;
4640                         goto bad_inode;
4641                 }
4642                 /* The only unlinked inodes we let through here have
4643                  * valid i_mode and are being read by the orphan
4644                  * recovery code: that's fine, we're about to complete
4645                  * the process of deleting those.
4646                  * OR it is the EXT4_BOOT_LOADER_INO which is
4647                  * not initialized on a new filesystem. */
4648         }
4649         ei->i_flags = le32_to_cpu(raw_inode->i_flags);
4650         inode->i_blocks = ext4_inode_blocks(raw_inode, ei);
4651         ei->i_file_acl = le32_to_cpu(raw_inode->i_file_acl_lo);
4652         if (ext4_has_feature_64bit(sb))
4653                 ei->i_file_acl |=
4654                         ((__u64)le16_to_cpu(raw_inode->i_file_acl_high)) << 32;
4655         inode->i_size = ext4_isize(raw_inode);
4656         if ((size = i_size_read(inode)) < 0) {
4657                 ext4_error_inode(inode, function, line, 0,
4658                                  "iget: bad i_size value: %lld", size);
4659                 ret = -EFSCORRUPTED;
4660                 goto bad_inode;
4661         }
4662         /*
4663          * If dir_index is not enabled but there's dir with INDEX flag set,
4664          * we'd normally treat htree data as empty space. But with metadata
4665          * checksumming that corrupts checksums so forbid that.
4666          */
4667         if (!ext4_has_feature_dir_index(sb) && ext4_has_metadata_csum(sb) &&
4668             ext4_test_inode_flag(inode, EXT4_INODE_INDEX)) {
4669                 EXT4_ERROR_INODE(inode,
4670                                  "iget: Dir with htree data on filesystem without dir_index feature.");
4671                 ret = -EFSCORRUPTED;
4672                 goto bad_inode;
4673         }
4674         ei->i_disksize = inode->i_size;
4675 #ifdef CONFIG_QUOTA
4676         ei->i_reserved_quota = 0;
4677 #endif
4678         inode->i_generation = le32_to_cpu(raw_inode->i_generation);
4679         ei->i_block_group = iloc.block_group;
4680         ei->i_last_alloc_group = ~0;
4681         /*
4682          * NOTE! The in-memory inode i_data array is in little-endian order
4683          * even on big-endian machines: we do NOT byteswap the block numbers!
4684          */
4685         for (block = 0; block < EXT4_N_BLOCKS; block++)
4686                 ei->i_data[block] = raw_inode->i_block[block];
4687         INIT_LIST_HEAD(&ei->i_orphan);
4688
4689         /*
4690          * Set transaction id's of transactions that have to be committed
4691          * to finish f[data]sync. We set them to currently running transaction
4692          * as we cannot be sure that the inode or some of its metadata isn't
4693          * part of the transaction - the inode could have been reclaimed and
4694          * now it is reread from disk.
4695          */
4696         if (journal) {
4697                 transaction_t *transaction;
4698                 tid_t tid;
4699
4700                 read_lock(&journal->j_state_lock);
4701                 if (journal->j_running_transaction)
4702                         transaction = journal->j_running_transaction;
4703                 else
4704                         transaction = journal->j_committing_transaction;
4705                 if (transaction)
4706                         tid = transaction->t_tid;
4707                 else
4708                         tid = journal->j_commit_sequence;
4709                 read_unlock(&journal->j_state_lock);
4710                 ei->i_sync_tid = tid;
4711                 ei->i_datasync_tid = tid;
4712         }
4713
4714         if (EXT4_INODE_SIZE(inode->i_sb) > EXT4_GOOD_OLD_INODE_SIZE) {
4715                 if (ei->i_extra_isize == 0) {
4716                         /* The extra space is currently unused. Use it. */
4717                         ei->i_extra_isize = sizeof(struct ext4_inode) -
4718                                             EXT4_GOOD_OLD_INODE_SIZE;
4719                 } else {
4720                         ext4_iget_extra_inode(inode, raw_inode, ei);
4721                 }
4722         }
4723
4724         EXT4_INODE_GET_XTIME(i_ctime, inode, raw_inode);
4725         EXT4_INODE_GET_XTIME(i_mtime, inode, raw_inode);
4726         EXT4_INODE_GET_XTIME(i_atime, inode, raw_inode);
4727         EXT4_EINODE_GET_XTIME(i_crtime, ei, raw_inode);
4728
4729         if (likely(!test_opt2(inode->i_sb, HURD_COMPAT))) {
4730                 inode->i_version = le32_to_cpu(raw_inode->i_disk_version);
4731                 if (EXT4_INODE_SIZE(inode->i_sb) > EXT4_GOOD_OLD_INODE_SIZE) {
4732                         if (EXT4_FITS_IN_INODE(raw_inode, ei, i_version_hi))
4733                                 inode->i_version |=
4734                     (__u64)(le32_to_cpu(raw_inode->i_version_hi)) << 32;
4735                 }
4736         }
4737
4738         ret = 0;
4739         if (ei->i_file_acl &&
4740             !ext4_inode_block_valid(inode, ei->i_file_acl, 1)) {
4741                 ext4_error_inode(inode, function, line, 0,
4742                                  "iget: bad extended attribute block %llu",
4743                                  ei->i_file_acl);
4744                 ret = -EFSCORRUPTED;
4745                 goto bad_inode;
4746         } else if (!ext4_has_inline_data(inode)) {
4747                 if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS)) {
4748                         if ((S_ISREG(inode->i_mode) || S_ISDIR(inode->i_mode) ||
4749                             (S_ISLNK(inode->i_mode) &&
4750                              !ext4_inode_is_fast_symlink(inode))))
4751                                 /* Validate extent which is part of inode */
4752                                 ret = ext4_ext_check_inode(inode);
4753                 } else if (S_ISREG(inode->i_mode) || S_ISDIR(inode->i_mode) ||
4754                            (S_ISLNK(inode->i_mode) &&
4755                             !ext4_inode_is_fast_symlink(inode))) {
4756                         /* Validate block references which are part of inode */
4757                         ret = ext4_ind_check_inode(inode);
4758                 }
4759         }
4760         if (ret)
4761                 goto bad_inode;
4762
4763         if (S_ISREG(inode->i_mode)) {
4764                 inode->i_op = &ext4_file_inode_operations;
4765                 inode->i_fop = &ext4_file_operations;
4766                 ext4_set_aops(inode);
4767         } else if (S_ISDIR(inode->i_mode)) {
4768                 inode->i_op = &ext4_dir_inode_operations;
4769                 inode->i_fop = &ext4_dir_operations;
4770         } else if (S_ISLNK(inode->i_mode)) {
4771                 if (ext4_encrypted_inode(inode)) {
4772                         inode->i_op = &ext4_encrypted_symlink_inode_operations;
4773                         ext4_set_aops(inode);
4774                 } else if (ext4_inode_is_fast_symlink(inode)) {
4775                         inode->i_link = (char *)ei->i_data;
4776                         inode->i_op = &ext4_fast_symlink_inode_operations;
4777                         nd_terminate_link(ei->i_data, inode->i_size,
4778                                 sizeof(ei->i_data) - 1);
4779                 } else {
4780                         inode->i_op = &ext4_symlink_inode_operations;
4781                         ext4_set_aops(inode);
4782                 }
4783                 inode_nohighmem(inode);
4784         } else if (S_ISCHR(inode->i_mode) || S_ISBLK(inode->i_mode) ||
4785               S_ISFIFO(inode->i_mode) || S_ISSOCK(inode->i_mode)) {
4786                 inode->i_op = &ext4_special_inode_operations;
4787                 if (raw_inode->i_block[0])
4788                         init_special_inode(inode, inode->i_mode,
4789                            old_decode_dev(le32_to_cpu(raw_inode->i_block[0])));
4790                 else
4791                         init_special_inode(inode, inode->i_mode,
4792                            new_decode_dev(le32_to_cpu(raw_inode->i_block[1])));
4793         } else if (ino == EXT4_BOOT_LOADER_INO) {
4794                 make_bad_inode(inode);
4795         } else {
4796                 ret = -EFSCORRUPTED;
4797                 ext4_error_inode(inode, function, line, 0,
4798                                  "iget: bogus i_mode (%o)", inode->i_mode);
4799                 goto bad_inode;
4800         }
4801         brelse(iloc.bh);
4802         ext4_set_inode_flags(inode);
4803         unlock_new_inode(inode);
4804         return inode;
4805
4806 bad_inode:
4807         brelse(iloc.bh);
4808         iget_failed(inode);
4809         return ERR_PTR(ret);
4810 }
4811
4812 static int ext4_inode_blocks_set(handle_t *handle,
4813                                 struct ext4_inode *raw_inode,
4814                                 struct ext4_inode_info *ei)
4815 {
4816         struct inode *inode = &(ei->vfs_inode);
4817         u64 i_blocks = READ_ONCE(inode->i_blocks);
4818         struct super_block *sb = inode->i_sb;
4819
4820         if (i_blocks <= ~0U) {
4821                 /*
4822                  * i_blocks can be represented in a 32 bit variable
4823                  * as multiple of 512 bytes
4824                  */
4825                 raw_inode->i_blocks_lo   = cpu_to_le32(i_blocks);
4826                 raw_inode->i_blocks_high = 0;
4827                 ext4_clear_inode_flag(inode, EXT4_INODE_HUGE_FILE);
4828                 return 0;
4829         }
4830         if (!ext4_has_feature_huge_file(sb))
4831                 return -EFBIG;
4832
4833         if (i_blocks <= 0xffffffffffffULL) {
4834                 /*
4835                  * i_blocks can be represented in a 48 bit variable
4836                  * as multiple of 512 bytes
4837                  */
4838                 raw_inode->i_blocks_lo   = cpu_to_le32(i_blocks);
4839                 raw_inode->i_blocks_high = cpu_to_le16(i_blocks >> 32);
4840                 ext4_clear_inode_flag(inode, EXT4_INODE_HUGE_FILE);
4841         } else {
4842                 ext4_set_inode_flag(inode, EXT4_INODE_HUGE_FILE);
4843                 /* i_block is stored in file system block size */
4844                 i_blocks = i_blocks >> (inode->i_blkbits - 9);
4845                 raw_inode->i_blocks_lo   = cpu_to_le32(i_blocks);
4846                 raw_inode->i_blocks_high = cpu_to_le16(i_blocks >> 32);
4847         }
4848         return 0;
4849 }
4850
4851 struct other_inode {
4852         unsigned long           orig_ino;
4853         struct ext4_inode       *raw_inode;
4854 };
4855
4856 static int other_inode_match(struct inode * inode, unsigned long ino,
4857                              void *data)
4858 {
4859         struct other_inode *oi = (struct other_inode *) data;
4860
4861         if ((inode->i_ino != ino) ||
4862             (inode->i_state & (I_FREEING | I_WILL_FREE | I_NEW |
4863                                I_DIRTY_SYNC | I_DIRTY_DATASYNC)) ||
4864             ((inode->i_state & I_DIRTY_TIME) == 0))
4865                 return 0;
4866         spin_lock(&inode->i_lock);
4867         if (((inode->i_state & (I_FREEING | I_WILL_FREE | I_NEW |
4868                                 I_DIRTY_SYNC | I_DIRTY_DATASYNC)) == 0) &&
4869             (inode->i_state & I_DIRTY_TIME)) {
4870                 struct ext4_inode_info  *ei = EXT4_I(inode);
4871
4872                 inode->i_state &= ~(I_DIRTY_TIME | I_DIRTY_TIME_EXPIRED);
4873                 spin_unlock(&inode->i_lock);
4874
4875                 spin_lock(&ei->i_raw_lock);
4876                 EXT4_INODE_SET_XTIME(i_ctime, inode, oi->raw_inode);
4877                 EXT4_INODE_SET_XTIME(i_mtime, inode, oi->raw_inode);
4878                 EXT4_INODE_SET_XTIME(i_atime, inode, oi->raw_inode);
4879                 ext4_inode_csum_set(inode, oi->raw_inode, ei);
4880                 spin_unlock(&ei->i_raw_lock);
4881                 trace_ext4_other_inode_update_time(inode, oi->orig_ino);
4882                 return -1;
4883         }
4884         spin_unlock(&inode->i_lock);
4885         return -1;
4886 }
4887
4888 /*
4889  * Opportunistically update the other time fields for other inodes in
4890  * the same inode table block.
4891  */
4892 static void ext4_update_other_inodes_time(struct super_block *sb,
4893                                           unsigned long orig_ino, char *buf)
4894 {
4895         struct other_inode oi;
4896         unsigned long ino;
4897         int i, inodes_per_block = EXT4_SB(sb)->s_inodes_per_block;
4898         int inode_size = EXT4_INODE_SIZE(sb);
4899
4900         oi.orig_ino = orig_ino;
4901         /*
4902          * Calculate the first inode in the inode table block.  Inode
4903          * numbers are one-based.  That is, the first inode in a block
4904          * (assuming 4k blocks and 256 byte inodes) is (n*16 + 1).
4905          */
4906         ino = ((orig_ino - 1) & ~(inodes_per_block - 1)) + 1;
4907         for (i = 0; i < inodes_per_block; i++, ino++, buf += inode_size) {
4908                 if (ino == orig_ino)
4909                         continue;
4910                 oi.raw_inode = (struct ext4_inode *) buf;
4911                 (void) find_inode_nowait(sb, ino, other_inode_match, &oi);
4912         }
4913 }
4914
4915 /*
4916  * Post the struct inode info into an on-disk inode location in the
4917  * buffer-cache.  This gobbles the caller's reference to the
4918  * buffer_head in the inode location struct.
4919  *
4920  * The caller must have write access to iloc->bh.
4921  */
4922 static int ext4_do_update_inode(handle_t *handle,
4923                                 struct inode *inode,
4924                                 struct ext4_iloc *iloc)
4925 {
4926         struct ext4_inode *raw_inode = ext4_raw_inode(iloc);
4927         struct ext4_inode_info *ei = EXT4_I(inode);
4928         struct buffer_head *bh = iloc->bh;
4929         struct super_block *sb = inode->i_sb;
4930         int err = 0, block;
4931         int need_datasync = 0, set_large_file = 0;
4932         uid_t i_uid;
4933         gid_t i_gid;
4934         projid_t i_projid;
4935
4936         spin_lock(&ei->i_raw_lock);
4937
4938         /* For fields not tracked in the in-memory inode,
4939          * initialise them to zero for new inodes. */
4940         if (ext4_test_inode_state(inode, EXT4_STATE_NEW))
4941                 memset(raw_inode, 0, EXT4_SB(inode->i_sb)->s_inode_size);
4942
4943         ext4_get_inode_flags(ei);
4944         raw_inode->i_mode = cpu_to_le16(inode->i_mode);
4945         i_uid = i_uid_read(inode);
4946         i_gid = i_gid_read(inode);
4947         i_projid = from_kprojid(&init_user_ns, ei->i_projid);
4948         if (!(test_opt(inode->i_sb, NO_UID32))) {
4949                 raw_inode->i_uid_low = cpu_to_le16(low_16_bits(i_uid));
4950                 raw_inode->i_gid_low = cpu_to_le16(low_16_bits(i_gid));
4951 /*
4952  * Fix up interoperability with old kernels. Otherwise, old inodes get
4953  * re-used with the upper 16 bits of the uid/gid intact
4954  */
4955                 if (ei->i_dtime && list_empty(&ei->i_orphan)) {
4956                         raw_inode->i_uid_high = 0;
4957                         raw_inode->i_gid_high = 0;
4958                 } else {
4959                         raw_inode->i_uid_high =
4960                                 cpu_to_le16(high_16_bits(i_uid));
4961                         raw_inode->i_gid_high =
4962                                 cpu_to_le16(high_16_bits(i_gid));
4963                 }
4964         } else {
4965                 raw_inode->i_uid_low = cpu_to_le16(fs_high2lowuid(i_uid));
4966                 raw_inode->i_gid_low = cpu_to_le16(fs_high2lowgid(i_gid));
4967                 raw_inode->i_uid_high = 0;
4968                 raw_inode->i_gid_high = 0;
4969         }
4970         raw_inode->i_links_count = cpu_to_le16(inode->i_nlink);
4971
4972         EXT4_INODE_SET_XTIME(i_ctime, inode, raw_inode);
4973         EXT4_INODE_SET_XTIME(i_mtime, inode, raw_inode);
4974         EXT4_INODE_SET_XTIME(i_atime, inode, raw_inode);
4975         EXT4_EINODE_SET_XTIME(i_crtime, ei, raw_inode);
4976
4977         err = ext4_inode_blocks_set(handle, raw_inode, ei);
4978         if (err) {
4979                 spin_unlock(&ei->i_raw_lock);
4980                 goto out_brelse;
4981         }
4982         raw_inode->i_dtime = cpu_to_le32(ei->i_dtime);
4983         raw_inode->i_flags = cpu_to_le32(ei->i_flags & 0xFFFFFFFF);
4984         if (likely(!test_opt2(inode->i_sb, HURD_COMPAT)))
4985                 raw_inode->i_file_acl_high =
4986                         cpu_to_le16(ei->i_file_acl >> 32);
4987         raw_inode->i_file_acl_lo = cpu_to_le32(ei->i_file_acl);
4988         if (ei->i_disksize != ext4_isize(raw_inode)) {
4989                 ext4_isize_set(raw_inode, ei->i_disksize);
4990                 need_datasync = 1;
4991         }
4992         if (ei->i_disksize > 0x7fffffffULL) {
4993                 if (!ext4_has_feature_large_file(sb) ||
4994                                 EXT4_SB(sb)->s_es->s_rev_level ==
4995                     cpu_to_le32(EXT4_GOOD_OLD_REV))
4996                         set_large_file = 1;
4997         }
4998         raw_inode->i_generation = cpu_to_le32(inode->i_generation);
4999         if (S_ISCHR(inode->i_mode) || S_ISBLK(inode->i_mode)) {
5000                 if (old_valid_dev(inode->i_rdev)) {
5001                         raw_inode->i_block[0] =
5002                                 cpu_to_le32(old_encode_dev(inode->i_rdev));
5003                         raw_inode->i_block[1] = 0;
5004                 } else {
5005                         raw_inode->i_block[0] = 0;
5006                         raw_inode->i_block[1] =
5007                                 cpu_to_le32(new_encode_dev(inode->i_rdev));
5008                         raw_inode->i_block[2] = 0;
5009                 }
5010         } else if (!ext4_has_inline_data(inode)) {
5011                 for (block = 0; block < EXT4_N_BLOCKS; block++)
5012                         raw_inode->i_block[block] = ei->i_data[block];
5013         }
5014
5015         if (likely(!test_opt2(inode->i_sb, HURD_COMPAT))) {
5016                 raw_inode->i_disk_version = cpu_to_le32(inode->i_version);
5017                 if (ei->i_extra_isize) {
5018                         if (EXT4_FITS_IN_INODE(raw_inode, ei, i_version_hi))
5019                                 raw_inode->i_version_hi =
5020                                         cpu_to_le32(inode->i_version >> 32);
5021                         raw_inode->i_extra_isize =
5022                                 cpu_to_le16(ei->i_extra_isize);
5023                 }
5024         }
5025
5026         BUG_ON(!ext4_has_feature_project(inode->i_sb) &&
5027                i_projid != EXT4_DEF_PROJID);
5028
5029         if (EXT4_INODE_SIZE(inode->i_sb) > EXT4_GOOD_OLD_INODE_SIZE &&
5030             EXT4_FITS_IN_INODE(raw_inode, ei, i_projid))
5031                 raw_inode->i_projid = cpu_to_le32(i_projid);
5032
5033         ext4_inode_csum_set(inode, raw_inode, ei);
5034         spin_unlock(&ei->i_raw_lock);
5035         if (inode->i_sb->s_flags & MS_LAZYTIME)
5036                 ext4_update_other_inodes_time(inode->i_sb, inode->i_ino,
5037                                               bh->b_data);
5038
5039         BUFFER_TRACE(bh, "call ext4_handle_dirty_metadata");
5040         err = ext4_handle_dirty_metadata(handle, NULL, bh);
5041         if (err)
5042                 goto out_brelse;
5043         ext4_clear_inode_state(inode, EXT4_STATE_NEW);
5044         if (set_large_file) {
5045                 BUFFER_TRACE(EXT4_SB(sb)->s_sbh, "get write access");
5046                 err = ext4_journal_get_write_access(handle, EXT4_SB(sb)->s_sbh);
5047                 if (err)
5048                         goto out_brelse;
5049                 ext4_update_dynamic_rev(sb);
5050                 ext4_set_feature_large_file(sb);
5051                 ext4_handle_sync(handle);
5052                 err = ext4_handle_dirty_super(handle, sb);
5053         }
5054         ext4_update_inode_fsync_trans(handle, inode, need_datasync);
5055 out_brelse:
5056         brelse(bh);
5057         ext4_std_error(inode->i_sb, err);
5058         return err;
5059 }
5060
5061 /*
5062  * ext4_write_inode()
5063  *
5064  * We are called from a few places:
5065  *
5066  * - Within generic_file_aio_write() -> generic_write_sync() for O_SYNC files.
5067  *   Here, there will be no transaction running. We wait for any running
5068  *   transaction to commit.
5069  *
5070  * - Within flush work (sys_sync(), kupdate and such).
5071  *   We wait on commit, if told to.
5072  *
5073  * - Within iput_final() -> write_inode_now()
5074  *   We wait on commit, if told to.
5075  *
5076  * In all cases it is actually safe for us to return without doing anything,
5077  * because the inode has been copied into a raw inode buffer in
5078  * ext4_mark_inode_dirty().  This is a correctness thing for WB_SYNC_ALL
5079  * writeback.
5080  *
5081  * Note that we are absolutely dependent upon all inode dirtiers doing the
5082  * right thing: they *must* call mark_inode_dirty() after dirtying info in
5083  * which we are interested.
5084  *
5085  * It would be a bug for them to not do this.  The code:
5086  *
5087  *      mark_inode_dirty(inode)
5088  *      stuff();
5089  *      inode->i_size = expr;
5090  *
5091  * is in error because write_inode() could occur while `stuff()' is running,
5092  * and the new i_size will be lost.  Plus the inode will no longer be on the
5093  * superblock's dirty inode list.
5094  */
5095 int ext4_write_inode(struct inode *inode, struct writeback_control *wbc)
5096 {
5097         int err;
5098
5099         if (WARN_ON_ONCE(current->flags & PF_MEMALLOC))
5100                 return 0;
5101
5102         if (EXT4_SB(inode->i_sb)->s_journal) {
5103                 if (ext4_journal_current_handle()) {
5104                         jbd_debug(1, "called recursively, non-PF_MEMALLOC!\n");
5105                         dump_stack();
5106                         return -EIO;
5107                 }
5108
5109                 /*
5110                  * No need to force transaction in WB_SYNC_NONE mode. Also
5111                  * ext4_sync_fs() will force the commit after everything is
5112                  * written.
5113                  */
5114                 if (wbc->sync_mode != WB_SYNC_ALL || wbc->for_sync)
5115                         return 0;
5116
5117                 err = ext4_force_commit(inode->i_sb);
5118         } else {
5119                 struct ext4_iloc iloc;
5120
5121                 err = __ext4_get_inode_loc(inode, &iloc, 0);
5122                 if (err)
5123                         return err;
5124                 /*
5125                  * sync(2) will flush the whole buffer cache. No need to do
5126                  * it here separately for each inode.
5127                  */
5128                 if (wbc->sync_mode == WB_SYNC_ALL && !wbc->for_sync)
5129                         sync_dirty_buffer(iloc.bh);
5130                 if (buffer_req(iloc.bh) && !buffer_uptodate(iloc.bh)) {
5131                         EXT4_ERROR_INODE_BLOCK(inode, iloc.bh->b_blocknr,
5132                                          "IO error syncing inode");
5133                         err = -EIO;
5134                 }
5135                 brelse(iloc.bh);
5136         }
5137         return err;
5138 }
5139
5140 /*
5141  * In data=journal mode ext4_journalled_invalidatepage() may fail to invalidate
5142  * buffers that are attached to a page stradding i_size and are undergoing
5143  * commit. In that case we have to wait for commit to finish and try again.
5144  */
5145 static void ext4_wait_for_tail_page_commit(struct inode *inode)
5146 {
5147         struct page *page;
5148         unsigned offset;
5149         journal_t *journal = EXT4_SB(inode->i_sb)->s_journal;
5150         tid_t commit_tid = 0;
5151         int ret;
5152
5153         offset = inode->i_size & (PAGE_SIZE - 1);
5154         /*
5155          * If the page is fully truncated, we don't need to wait for any commit
5156          * (and we even should not as __ext4_journalled_invalidatepage() may
5157          * strip all buffers from the page but keep the page dirty which can then
5158          * confuse e.g. concurrent ext4_writepage() seeing dirty page without
5159          * buffers). Also we don't need to wait for any commit if all buffers in
5160          * the page remain valid. This is most beneficial for the common case of
5161          * blocksize == PAGESIZE.
5162          */
5163         if (!offset || offset > (PAGE_SIZE - i_blocksize(inode)))
5164                 return;
5165         while (1) {
5166                 page = find_lock_page(inode->i_mapping,
5167                                       inode->i_size >> PAGE_SHIFT);
5168                 if (!page)
5169                         return;
5170                 ret = __ext4_journalled_invalidatepage(page, offset,
5171                                                 PAGE_SIZE - offset);
5172                 unlock_page(page);
5173                 put_page(page);
5174                 if (ret != -EBUSY)
5175                         return;
5176                 commit_tid = 0;
5177                 read_lock(&journal->j_state_lock);
5178                 if (journal->j_committing_transaction)
5179                         commit_tid = journal->j_committing_transaction->t_tid;
5180                 read_unlock(&journal->j_state_lock);
5181                 if (commit_tid)
5182                         jbd2_log_wait_commit(journal, commit_tid);
5183         }
5184 }
5185
5186 /*
5187  * ext4_setattr()
5188  *
5189  * Called from notify_change.
5190  *
5191  * We want to trap VFS attempts to truncate the file as soon as
5192  * possible.  In particular, we want to make sure that when the VFS
5193  * shrinks i_size, we put the inode on the orphan list and modify
5194  * i_disksize immediately, so that during the subsequent flushing of
5195  * dirty pages and freeing of disk blocks, we can guarantee that any
5196  * commit will leave the blocks being flushed in an unused state on
5197  * disk.  (On recovery, the inode will get truncated and the blocks will
5198  * be freed, so we have a strong guarantee that no future commit will
5199  * leave these blocks visible to the user.)
5200  *
5201  * Another thing we have to assure is that if we are in ordered mode
5202  * and inode is still attached to the committing transaction, we must
5203  * we start writeout of all the dirty pages which are being truncated.
5204  * This way we are sure that all the data written in the previous
5205  * transaction are already on disk (truncate waits for pages under
5206  * writeback).
5207  *
5208  * Called with inode->i_mutex down.
5209  */
5210 int ext4_setattr(struct dentry *dentry, struct iattr *attr)
5211 {
5212         struct inode *inode = d_inode(dentry);
5213         int error, rc = 0;
5214         int orphan = 0;
5215         const unsigned int ia_valid = attr->ia_valid;
5216
5217         error = setattr_prepare(dentry, attr);
5218         if (error)
5219                 return error;
5220
5221         if (is_quota_modification(inode, attr)) {
5222                 error = dquot_initialize(inode);
5223                 if (error)
5224                         return error;
5225         }
5226         if ((ia_valid & ATTR_UID && !uid_eq(attr->ia_uid, inode->i_uid)) ||
5227             (ia_valid & ATTR_GID && !gid_eq(attr->ia_gid, inode->i_gid))) {
5228                 handle_t *handle;
5229
5230                 /* (user+group)*(old+new) structure, inode write (sb,
5231                  * inode block, ? - but truncate inode update has it) */
5232                 handle = ext4_journal_start(inode, EXT4_HT_QUOTA,
5233                         (EXT4_MAXQUOTAS_INIT_BLOCKS(inode->i_sb) +
5234                          EXT4_MAXQUOTAS_DEL_BLOCKS(inode->i_sb)) + 3);
5235                 if (IS_ERR(handle)) {
5236                         error = PTR_ERR(handle);
5237                         goto err_out;
5238                 }
5239                 error = dquot_transfer(inode, attr);
5240                 if (error) {
5241                         ext4_journal_stop(handle);
5242                         return error;
5243                 }
5244                 /* Update corresponding info in inode so that everything is in
5245                  * one transaction */
5246                 if (attr->ia_valid & ATTR_UID)
5247                         inode->i_uid = attr->ia_uid;
5248                 if (attr->ia_valid & ATTR_GID)
5249                         inode->i_gid = attr->ia_gid;
5250                 error = ext4_mark_inode_dirty(handle, inode);
5251                 ext4_journal_stop(handle);
5252         }
5253
5254         if (attr->ia_valid & ATTR_SIZE) {
5255                 handle_t *handle;
5256                 loff_t oldsize = inode->i_size;
5257                 int shrink = (attr->ia_size <= inode->i_size);
5258
5259                 if (!(ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS))) {
5260                         struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
5261
5262                         if (attr->ia_size > sbi->s_bitmap_maxbytes)
5263                                 return -EFBIG;
5264                 }
5265                 if (!S_ISREG(inode->i_mode))
5266                         return -EINVAL;
5267
5268                 if (IS_I_VERSION(inode) && attr->ia_size != inode->i_size)
5269                         inode_inc_iversion(inode);
5270
5271                 if (ext4_should_order_data(inode) &&
5272                     (attr->ia_size < inode->i_size)) {
5273                         error = ext4_begin_ordered_truncate(inode,
5274                                                             attr->ia_size);
5275                         if (error)
5276                                 goto err_out;
5277                 }
5278                 if (attr->ia_size != inode->i_size) {
5279                         handle = ext4_journal_start(inode, EXT4_HT_INODE, 3);
5280                         if (IS_ERR(handle)) {
5281                                 error = PTR_ERR(handle);
5282                                 goto err_out;
5283                         }
5284                         if (ext4_handle_valid(handle) && shrink) {
5285                                 error = ext4_orphan_add(handle, inode);
5286                                 orphan = 1;
5287                         }
5288                         /*
5289                          * Update c/mtime on truncate up, ext4_truncate() will
5290                          * update c/mtime in shrink case below
5291                          */
5292                         if (!shrink) {
5293                                 inode->i_mtime = ext4_current_time(inode);
5294                                 inode->i_ctime = inode->i_mtime;
5295                         }
5296                         down_write(&EXT4_I(inode)->i_data_sem);
5297                         EXT4_I(inode)->i_disksize = attr->ia_size;
5298                         rc = ext4_mark_inode_dirty(handle, inode);
5299                         if (!error)
5300                                 error = rc;
5301                         /*
5302                          * We have to update i_size under i_data_sem together
5303                          * with i_disksize to avoid races with writeback code
5304                          * running ext4_wb_update_i_disksize().
5305                          */
5306                         if (!error)
5307                                 i_size_write(inode, attr->ia_size);
5308                         up_write(&EXT4_I(inode)->i_data_sem);
5309                         ext4_journal_stop(handle);
5310                         if (error) {
5311                                 if (orphan && inode->i_nlink)
5312                                         ext4_orphan_del(NULL, inode);
5313                                 goto err_out;
5314                         }
5315                 }
5316                 if (!shrink)
5317                         pagecache_isize_extended(inode, oldsize, inode->i_size);
5318
5319                 /*
5320                  * Blocks are going to be removed from the inode. Wait
5321                  * for dio in flight.  Temporarily disable
5322                  * dioread_nolock to prevent livelock.
5323                  */
5324                 if (orphan) {
5325                         if (!ext4_should_journal_data(inode)) {
5326                                 ext4_inode_block_unlocked_dio(inode);
5327                                 inode_dio_wait(inode);
5328                                 ext4_inode_resume_unlocked_dio(inode);
5329                         } else
5330                                 ext4_wait_for_tail_page_commit(inode);
5331                 }
5332                 down_write(&EXT4_I(inode)->i_mmap_sem);
5333                 /*
5334                  * Truncate pagecache after we've waited for commit
5335                  * in data=journal mode to make pages freeable.
5336                  */
5337                 truncate_pagecache(inode, inode->i_size);
5338                 if (shrink)
5339                         ext4_truncate(inode);
5340                 up_write(&EXT4_I(inode)->i_mmap_sem);
5341         }
5342
5343         if (!rc) {
5344                 setattr_copy(inode, attr);
5345                 mark_inode_dirty(inode);
5346         }
5347
5348         /*
5349          * If the call to ext4_truncate failed to get a transaction handle at
5350          * all, we need to clean up the in-core orphan list manually.
5351          */
5352         if (orphan && inode->i_nlink)
5353                 ext4_orphan_del(NULL, inode);
5354
5355         if (!rc && (ia_valid & ATTR_MODE))
5356                 rc = posix_acl_chmod(inode, inode->i_mode);
5357
5358 err_out:
5359         ext4_std_error(inode->i_sb, error);
5360         if (!error)
5361                 error = rc;
5362         return error;
5363 }
5364
5365 int ext4_getattr(struct vfsmount *mnt, struct dentry *dentry,
5366                  struct kstat *stat)
5367 {
5368         struct inode *inode;
5369         unsigned long long delalloc_blocks;
5370
5371         inode = d_inode(dentry);
5372         generic_fillattr(inode, stat);
5373
5374         /*
5375          * If there is inline data in the inode, the inode will normally not
5376          * have data blocks allocated (it may have an external xattr block).
5377          * Report at least one sector for such files, so tools like tar, rsync,
5378          * others doen't incorrectly think the file is completely sparse.
5379          */
5380         if (unlikely(ext4_has_inline_data(inode)))
5381                 stat->blocks += (stat->size + 511) >> 9;
5382
5383         /*
5384          * We can't update i_blocks if the block allocation is delayed
5385          * otherwise in the case of system crash before the real block
5386          * allocation is done, we will have i_blocks inconsistent with
5387          * on-disk file blocks.
5388          * We always keep i_blocks updated together with real
5389          * allocation. But to not confuse with user, stat
5390          * will return the blocks that include the delayed allocation
5391          * blocks for this file.
5392          */
5393         delalloc_blocks = EXT4_C2B(EXT4_SB(inode->i_sb),
5394                                    EXT4_I(inode)->i_reserved_data_blocks);
5395         stat->blocks += delalloc_blocks << (inode->i_sb->s_blocksize_bits - 9);
5396         return 0;
5397 }
5398
5399 static int ext4_index_trans_blocks(struct inode *inode, int lblocks,
5400                                    int pextents)
5401 {
5402         if (!(ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS)))
5403                 return ext4_ind_trans_blocks(inode, lblocks);
5404         return ext4_ext_index_trans_blocks(inode, pextents);
5405 }
5406
5407 /*
5408  * Account for index blocks, block groups bitmaps and block group
5409  * descriptor blocks if modify datablocks and index blocks
5410  * worse case, the indexs blocks spread over different block groups
5411  *
5412  * If datablocks are discontiguous, they are possible to spread over
5413  * different block groups too. If they are contiguous, with flexbg,
5414  * they could still across block group boundary.
5415  *
5416  * Also account for superblock, inode, quota and xattr blocks
5417  */
5418 static int ext4_meta_trans_blocks(struct inode *inode, int lblocks,
5419                                   int pextents)
5420 {
5421         ext4_group_t groups, ngroups = ext4_get_groups_count(inode->i_sb);
5422         int gdpblocks;
5423         int idxblocks;
5424         int ret = 0;
5425
5426         /*
5427          * How many index blocks need to touch to map @lblocks logical blocks
5428          * to @pextents physical extents?
5429          */
5430         idxblocks = ext4_index_trans_blocks(inode, lblocks, pextents);
5431
5432         ret = idxblocks;
5433
5434         /*
5435          * Now let's see how many group bitmaps and group descriptors need
5436          * to account
5437          */
5438         groups = idxblocks + pextents;
5439         gdpblocks = groups;
5440         if (groups > ngroups)
5441                 groups = ngroups;
5442         if (groups > EXT4_SB(inode->i_sb)->s_gdb_count)
5443                 gdpblocks = EXT4_SB(inode->i_sb)->s_gdb_count;
5444
5445         /* bitmaps and block group descriptor blocks */
5446         ret += groups + gdpblocks;
5447
5448         /* Blocks for super block, inode, quota and xattr blocks */
5449         ret += EXT4_META_TRANS_BLOCKS(inode->i_sb);
5450
5451         return ret;
5452 }
5453
5454 /*
5455  * Calculate the total number of credits to reserve to fit
5456  * the modification of a single pages into a single transaction,
5457  * which may include multiple chunks of block allocations.
5458  *
5459  * This could be called via ext4_write_begin()
5460  *
5461  * We need to consider the worse case, when
5462  * one new block per extent.
5463  */
5464 int ext4_writepage_trans_blocks(struct inode *inode)
5465 {
5466         int bpp = ext4_journal_blocks_per_page(inode);
5467         int ret;
5468
5469         ret = ext4_meta_trans_blocks(inode, bpp, bpp);
5470
5471         /* Account for data blocks for journalled mode */
5472         if (ext4_should_journal_data(inode))
5473                 ret += bpp;
5474         return ret;
5475 }
5476
5477 /*
5478  * Calculate the journal credits for a chunk of data modification.
5479  *
5480  * This is called from DIO, fallocate or whoever calling
5481  * ext4_map_blocks() to map/allocate a chunk of contiguous disk blocks.
5482  *
5483  * journal buffers for data blocks are not included here, as DIO
5484  * and fallocate do no need to journal data buffers.
5485  */
5486 int ext4_chunk_trans_blocks(struct inode *inode, int nrblocks)
5487 {
5488         return ext4_meta_trans_blocks(inode, nrblocks, 1);
5489 }
5490
5491 /*
5492  * The caller must have previously called ext4_reserve_inode_write().
5493  * Give this, we know that the caller already has write access to iloc->bh.
5494  */
5495 int ext4_mark_iloc_dirty(handle_t *handle,
5496                          struct inode *inode, struct ext4_iloc *iloc)
5497 {
5498         int err = 0;
5499
5500         if (IS_I_VERSION(inode))
5501                 inode_inc_iversion(inode);
5502
5503         /* the do_update_inode consumes one bh->b_count */
5504         get_bh(iloc->bh);
5505
5506         /* ext4_do_update_inode() does jbd2_journal_dirty_metadata */
5507         err = ext4_do_update_inode(handle, inode, iloc);
5508         put_bh(iloc->bh);
5509         return err;
5510 }
5511
5512 /*
5513  * On success, We end up with an outstanding reference count against
5514  * iloc->bh.  This _must_ be cleaned up later.
5515  */
5516
5517 int
5518 ext4_reserve_inode_write(handle_t *handle, struct inode *inode,
5519                          struct ext4_iloc *iloc)
5520 {
5521         int err;
5522
5523         err = ext4_get_inode_loc(inode, iloc);
5524         if (!err) {
5525                 BUFFER_TRACE(iloc->bh, "get_write_access");
5526                 err = ext4_journal_get_write_access(handle, iloc->bh);
5527                 if (err) {
5528                         brelse(iloc->bh);
5529                         iloc->bh = NULL;
5530                 }
5531         }
5532         ext4_std_error(inode->i_sb, err);
5533         return err;
5534 }
5535
5536 /*
5537  * Expand an inode by new_extra_isize bytes.
5538  * Returns 0 on success or negative error number on failure.
5539  */
5540 static int ext4_expand_extra_isize(struct inode *inode,
5541                                    unsigned int new_extra_isize,
5542                                    struct ext4_iloc iloc,
5543                                    handle_t *handle)
5544 {
5545         struct ext4_inode *raw_inode;
5546         struct ext4_xattr_ibody_header *header;
5547         unsigned int inode_size = EXT4_INODE_SIZE(inode->i_sb);
5548         struct ext4_inode_info *ei = EXT4_I(inode);
5549
5550         if (EXT4_I(inode)->i_extra_isize >= new_extra_isize)
5551                 return 0;
5552
5553         /* this was checked at iget time, but double check for good measure */
5554         if ((EXT4_GOOD_OLD_INODE_SIZE + ei->i_extra_isize > inode_size) ||
5555             (ei->i_extra_isize & 3)) {
5556                 EXT4_ERROR_INODE(inode, "bad extra_isize %u (inode size %u)",
5557                                  ei->i_extra_isize,
5558                                  EXT4_INODE_SIZE(inode->i_sb));
5559                 return -EFSCORRUPTED;
5560         }
5561         if ((new_extra_isize < ei->i_extra_isize) ||
5562             (new_extra_isize < 4) ||
5563             (new_extra_isize > inode_size - EXT4_GOOD_OLD_INODE_SIZE))
5564                 return -EINVAL; /* Should never happen */
5565
5566         raw_inode = ext4_raw_inode(&iloc);
5567
5568         header = IHDR(inode, raw_inode);
5569
5570         /* No extended attributes present */
5571         if (!ext4_test_inode_state(inode, EXT4_STATE_XATTR) ||
5572             header->h_magic != cpu_to_le32(EXT4_XATTR_MAGIC)) {
5573                 memset((void *)raw_inode + EXT4_GOOD_OLD_INODE_SIZE +
5574                        EXT4_I(inode)->i_extra_isize, 0,
5575                        new_extra_isize - EXT4_I(inode)->i_extra_isize);
5576                 EXT4_I(inode)->i_extra_isize = new_extra_isize;
5577                 return 0;
5578         }
5579
5580         /* try to expand with EAs present */
5581         return ext4_expand_extra_isize_ea(inode, new_extra_isize,
5582                                           raw_inode, handle);
5583 }
5584
5585 /*
5586  * What we do here is to mark the in-core inode as clean with respect to inode
5587  * dirtiness (it may still be data-dirty).
5588  * This means that the in-core inode may be reaped by prune_icache
5589  * without having to perform any I/O.  This is a very good thing,
5590  * because *any* task may call prune_icache - even ones which
5591  * have a transaction open against a different journal.
5592  *
5593  * Is this cheating?  Not really.  Sure, we haven't written the
5594  * inode out, but prune_icache isn't a user-visible syncing function.
5595  * Whenever the user wants stuff synced (sys_sync, sys_msync, sys_fsync)
5596  * we start and wait on commits.
5597  */
5598 int ext4_mark_inode_dirty(handle_t *handle, struct inode *inode)
5599 {
5600         struct ext4_iloc iloc;
5601         struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
5602         static unsigned int mnt_count;
5603         int err, ret;
5604
5605         might_sleep();
5606         trace_ext4_mark_inode_dirty(inode, _RET_IP_);
5607         err = ext4_reserve_inode_write(handle, inode, &iloc);
5608         if (err)
5609                 return err;
5610         if (ext4_handle_valid(handle) &&
5611             EXT4_I(inode)->i_extra_isize < sbi->s_want_extra_isize &&
5612             !ext4_test_inode_state(inode, EXT4_STATE_NO_EXPAND)) {
5613                 /*
5614                  * We need extra buffer credits since we may write into EA block
5615                  * with this same handle. If journal_extend fails, then it will
5616                  * only result in a minor loss of functionality for that inode.
5617                  * If this is felt to be critical, then e2fsck should be run to
5618                  * force a large enough s_min_extra_isize.
5619                  */
5620                 if ((jbd2_journal_extend(handle,
5621                              EXT4_DATA_TRANS_BLOCKS(inode->i_sb))) == 0) {
5622                         ret = ext4_expand_extra_isize(inode,
5623                                                       sbi->s_want_extra_isize,
5624                                                       iloc, handle);
5625                         if (ret) {
5626                                 if (mnt_count !=
5627                                         le16_to_cpu(sbi->s_es->s_mnt_count)) {
5628                                         ext4_warning(inode->i_sb,
5629                                         "Unable to expand inode %lu. Delete"
5630                                         " some EAs or run e2fsck.",
5631                                         inode->i_ino);
5632                                         mnt_count =
5633                                           le16_to_cpu(sbi->s_es->s_mnt_count);
5634                                 }
5635                         }
5636                 }
5637         }
5638         return ext4_mark_iloc_dirty(handle, inode, &iloc);
5639 }
5640
5641 /*
5642  * ext4_dirty_inode() is called from __mark_inode_dirty()
5643  *
5644  * We're really interested in the case where a file is being extended.
5645  * i_size has been changed by generic_commit_write() and we thus need
5646  * to include the updated inode in the current transaction.
5647  *
5648  * Also, dquot_alloc_block() will always dirty the inode when blocks
5649  * are allocated to the file.
5650  *
5651  * If the inode is marked synchronous, we don't honour that here - doing
5652  * so would cause a commit on atime updates, which we don't bother doing.
5653  * We handle synchronous inodes at the highest possible level.
5654  *
5655  * If only the I_DIRTY_TIME flag is set, we can skip everything.  If
5656  * I_DIRTY_TIME and I_DIRTY_SYNC is set, the only inode fields we need
5657  * to copy into the on-disk inode structure are the timestamp files.
5658  */
5659 void ext4_dirty_inode(struct inode *inode, int flags)
5660 {
5661         handle_t *handle;
5662
5663         if (flags == I_DIRTY_TIME)
5664                 return;
5665         handle = ext4_journal_start(inode, EXT4_HT_INODE, 2);
5666         if (IS_ERR(handle))
5667                 goto out;
5668
5669         ext4_mark_inode_dirty(handle, inode);
5670
5671         ext4_journal_stop(handle);
5672 out:
5673         return;
5674 }
5675
5676 #if 0
5677 /*
5678  * Bind an inode's backing buffer_head into this transaction, to prevent
5679  * it from being flushed to disk early.  Unlike
5680  * ext4_reserve_inode_write, this leaves behind no bh reference and
5681  * returns no iloc structure, so the caller needs to repeat the iloc
5682  * lookup to mark the inode dirty later.
5683  */
5684 static int ext4_pin_inode(handle_t *handle, struct inode *inode)
5685 {
5686         struct ext4_iloc iloc;
5687
5688         int err = 0;
5689         if (handle) {
5690                 err = ext4_get_inode_loc(inode, &iloc);
5691                 if (!err) {
5692                         BUFFER_TRACE(iloc.bh, "get_write_access");
5693                         err = jbd2_journal_get_write_access(handle, iloc.bh);
5694                         if (!err)
5695                                 err = ext4_handle_dirty_metadata(handle,
5696                                                                  NULL,
5697                                                                  iloc.bh);
5698                         brelse(iloc.bh);
5699                 }
5700         }
5701         ext4_std_error(inode->i_sb, err);
5702         return err;
5703 }
5704 #endif
5705
5706 int ext4_change_inode_journal_flag(struct inode *inode, int val)
5707 {
5708         journal_t *journal;
5709         handle_t *handle;
5710         int err;
5711         struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
5712
5713         /*
5714          * We have to be very careful here: changing a data block's
5715          * journaling status dynamically is dangerous.  If we write a
5716          * data block to the journal, change the status and then delete
5717          * that block, we risk forgetting to revoke the old log record
5718          * from the journal and so a subsequent replay can corrupt data.
5719          * So, first we make sure that the journal is empty and that
5720          * nobody is changing anything.
5721          */
5722
5723         journal = EXT4_JOURNAL(inode);
5724         if (!journal)
5725                 return 0;
5726         if (is_journal_aborted(journal))
5727                 return -EROFS;
5728
5729         /* Wait for all existing dio workers */
5730         ext4_inode_block_unlocked_dio(inode);
5731         inode_dio_wait(inode);
5732
5733         /*
5734          * Before flushing the journal and switching inode's aops, we have
5735          * to flush all dirty data the inode has. There can be outstanding
5736          * delayed allocations, there can be unwritten extents created by
5737          * fallocate or buffered writes in dioread_nolock mode covered by
5738          * dirty data which can be converted only after flushing the dirty
5739          * data (and journalled aops don't know how to handle these cases).
5740          */
5741         if (val) {
5742                 down_write(&EXT4_I(inode)->i_mmap_sem);
5743                 err = filemap_write_and_wait(inode->i_mapping);
5744                 if (err < 0) {
5745                         up_write(&EXT4_I(inode)->i_mmap_sem);
5746                         ext4_inode_resume_unlocked_dio(inode);
5747                         return err;
5748                 }
5749         }
5750
5751         percpu_down_write(&sbi->s_writepages_rwsem);
5752         jbd2_journal_lock_updates(journal);
5753
5754         /*
5755          * OK, there are no updates running now, and all cached data is
5756          * synced to disk.  We are now in a completely consistent state
5757          * which doesn't have anything in the journal, and we know that
5758          * no filesystem updates are running, so it is safe to modify
5759          * the inode's in-core data-journaling state flag now.
5760          */
5761
5762         if (val)
5763                 ext4_set_inode_flag(inode, EXT4_INODE_JOURNAL_DATA);
5764         else {
5765                 err = jbd2_journal_flush(journal);
5766                 if (err < 0) {
5767                         jbd2_journal_unlock_updates(journal);
5768                         percpu_up_write(&sbi->s_writepages_rwsem);
5769                         ext4_inode_resume_unlocked_dio(inode);
5770                         return err;
5771                 }
5772                 ext4_clear_inode_flag(inode, EXT4_INODE_JOURNAL_DATA);
5773         }
5774         ext4_set_aops(inode);
5775
5776         jbd2_journal_unlock_updates(journal);
5777         percpu_up_write(&sbi->s_writepages_rwsem);
5778
5779         if (val)
5780                 up_write(&EXT4_I(inode)->i_mmap_sem);
5781         ext4_inode_resume_unlocked_dio(inode);
5782
5783         /* Finally we can mark the inode as dirty. */
5784
5785         handle = ext4_journal_start(inode, EXT4_HT_INODE, 1);
5786         if (IS_ERR(handle))
5787                 return PTR_ERR(handle);
5788
5789         err = ext4_mark_inode_dirty(handle, inode);
5790         ext4_handle_sync(handle);
5791         ext4_journal_stop(handle);
5792         ext4_std_error(inode->i_sb, err);
5793
5794         return err;
5795 }
5796
5797 static int ext4_bh_unmapped(handle_t *handle, struct buffer_head *bh)
5798 {
5799         return !buffer_mapped(bh);
5800 }
5801
5802 int ext4_page_mkwrite(struct vm_area_struct *vma, struct vm_fault *vmf)
5803 {
5804         struct page *page = vmf->page;
5805         loff_t size;
5806         unsigned long len;
5807         int ret;
5808         struct file *file = vma->vm_file;
5809         struct inode *inode = file_inode(file);
5810         struct address_space *mapping = inode->i_mapping;
5811         handle_t *handle;
5812         get_block_t *get_block;
5813         int retries = 0;
5814
5815         sb_start_pagefault(inode->i_sb);
5816         file_update_time(vma->vm_file);
5817
5818         down_read(&EXT4_I(inode)->i_mmap_sem);
5819
5820         ret = ext4_convert_inline_data(inode);
5821         if (ret)
5822                 goto out_ret;
5823
5824         /* Delalloc case is easy... */
5825         if (test_opt(inode->i_sb, DELALLOC) &&
5826             !ext4_should_journal_data(inode) &&
5827             !ext4_nonda_switch(inode->i_sb)) {
5828                 do {
5829                         ret = block_page_mkwrite(vma, vmf,
5830                                                    ext4_da_get_block_prep);
5831                 } while (ret == -ENOSPC &&
5832                        ext4_should_retry_alloc(inode->i_sb, &retries));
5833                 goto out_ret;
5834         }
5835
5836         lock_page(page);
5837         size = i_size_read(inode);
5838         /* Page got truncated from under us? */
5839         if (page->mapping != mapping || page_offset(page) > size) {
5840                 unlock_page(page);
5841                 ret = VM_FAULT_NOPAGE;
5842                 goto out;
5843         }
5844
5845         if (page->index == size >> PAGE_SHIFT)
5846                 len = size & ~PAGE_MASK;
5847         else
5848                 len = PAGE_SIZE;
5849         /*
5850          * Return if we have all the buffers mapped. This avoids the need to do
5851          * journal_start/journal_stop which can block and take a long time
5852          */
5853         if (page_has_buffers(page)) {
5854                 if (!ext4_walk_page_buffers(NULL, page_buffers(page),
5855                                             0, len, NULL,
5856                                             ext4_bh_unmapped)) {
5857                         /* Wait so that we don't change page under IO */
5858                         wait_for_stable_page(page);
5859                         ret = VM_FAULT_LOCKED;
5860                         goto out;
5861                 }
5862         }
5863         unlock_page(page);
5864         /* OK, we need to fill the hole... */
5865         if (ext4_should_dioread_nolock(inode))
5866                 get_block = ext4_get_block_unwritten;
5867         else
5868                 get_block = ext4_get_block;
5869 retry_alloc:
5870         handle = ext4_journal_start(inode, EXT4_HT_WRITE_PAGE,
5871                                     ext4_writepage_trans_blocks(inode));
5872         if (IS_ERR(handle)) {
5873                 ret = VM_FAULT_SIGBUS;
5874                 goto out;
5875         }
5876         ret = block_page_mkwrite(vma, vmf, get_block);
5877         if (!ret && ext4_should_journal_data(inode)) {
5878                 if (ext4_walk_page_buffers(handle, page_buffers(page), 0,
5879                           PAGE_SIZE, NULL, do_journal_get_write_access)) {
5880                         unlock_page(page);
5881                         ret = VM_FAULT_SIGBUS;
5882                         ext4_journal_stop(handle);
5883                         goto out;
5884                 }
5885                 ext4_set_inode_state(inode, EXT4_STATE_JDATA);
5886         }
5887         ext4_journal_stop(handle);
5888         if (ret == -ENOSPC && ext4_should_retry_alloc(inode->i_sb, &retries))
5889                 goto retry_alloc;
5890 out_ret:
5891         ret = block_page_mkwrite_return(ret);
5892 out:
5893         up_read(&EXT4_I(inode)->i_mmap_sem);
5894         sb_end_pagefault(inode->i_sb);
5895         return ret;
5896 }
5897
5898 int ext4_filemap_fault(struct vm_area_struct *vma, struct vm_fault *vmf)
5899 {
5900         struct inode *inode = file_inode(vma->vm_file);
5901         int err;
5902
5903         down_read(&EXT4_I(inode)->i_mmap_sem);
5904         err = filemap_fault(vma, vmf);
5905         up_read(&EXT4_I(inode)->i_mmap_sem);
5906
5907         return err;
5908 }
5909
5910 /*
5911  * Find the first extent at or after @lblk in an inode that is not a hole.
5912  * Search for @map_len blocks at most. The extent is returned in @result.
5913  *
5914  * The function returns 1 if we found an extent. The function returns 0 in
5915  * case there is no extent at or after @lblk and in that case also sets
5916  * @result->es_len to 0. In case of error, the error code is returned.
5917  */
5918 int ext4_get_next_extent(struct inode *inode, ext4_lblk_t lblk,
5919                          unsigned int map_len, struct extent_status *result)
5920 {
5921         struct ext4_map_blocks map;
5922         struct extent_status es = {};
5923         int ret;
5924
5925         map.m_lblk = lblk;
5926         map.m_len = map_len;
5927
5928         /*
5929          * For non-extent based files this loop may iterate several times since
5930          * we do not determine full hole size.
5931          */
5932         while (map.m_len > 0) {
5933                 ret = ext4_map_blocks(NULL, inode, &map, 0);
5934                 if (ret < 0)
5935                         return ret;
5936                 /* There's extent covering m_lblk? Just return it. */
5937                 if (ret > 0) {
5938                         int status;
5939
5940                         ext4_es_store_pblock(result, map.m_pblk);
5941                         result->es_lblk = map.m_lblk;
5942                         result->es_len = map.m_len;
5943                         if (map.m_flags & EXT4_MAP_UNWRITTEN)
5944                                 status = EXTENT_STATUS_UNWRITTEN;
5945                         else
5946                                 status = EXTENT_STATUS_WRITTEN;
5947                         ext4_es_store_status(result, status);
5948                         return 1;
5949                 }
5950                 ext4_es_find_delayed_extent_range(inode, map.m_lblk,
5951                                                   map.m_lblk + map.m_len - 1,
5952                                                   &es);
5953                 /* Is delalloc data before next block in extent tree? */
5954                 if (es.es_len && es.es_lblk < map.m_lblk + map.m_len) {
5955                         ext4_lblk_t offset = 0;
5956
5957                         if (es.es_lblk < lblk)
5958                                 offset = lblk - es.es_lblk;
5959                         result->es_lblk = es.es_lblk + offset;
5960                         ext4_es_store_pblock(result,
5961                                              ext4_es_pblock(&es) + offset);
5962                         result->es_len = es.es_len - offset;
5963                         ext4_es_store_status(result, ext4_es_status(&es));
5964
5965                         return 1;
5966                 }
5967                 /* There's a hole at m_lblk, advance us after it */
5968                 map.m_lblk += map.m_len;
5969                 map_len -= map.m_len;
5970                 map.m_len = map_len;
5971                 cond_resched();
5972         }
5973         result->es_len = 0;
5974         return 0;
5975 }