GNU Linux-libre 4.19.304-gnu1
[releases.git] / fs / ext4 / inode.c
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  *  linux/fs/ext4/inode.c
4  *
5  * Copyright (C) 1992, 1993, 1994, 1995
6  * Remy Card (card@masi.ibp.fr)
7  * Laboratoire MASI - Institut Blaise Pascal
8  * Universite Pierre et Marie Curie (Paris VI)
9  *
10  *  from
11  *
12  *  linux/fs/minix/inode.c
13  *
14  *  Copyright (C) 1991, 1992  Linus Torvalds
15  *
16  *  64-bit file support on 64-bit platforms by Jakub Jelinek
17  *      (jj@sunsite.ms.mff.cuni.cz)
18  *
19  *  Assorted race fixes, rewrite of ext4_get_block() by Al Viro, 2000
20  */
21
22 #include <linux/fs.h>
23 #include <linux/time.h>
24 #include <linux/highuid.h>
25 #include <linux/pagemap.h>
26 #include <linux/dax.h>
27 #include <linux/quotaops.h>
28 #include <linux/string.h>
29 #include <linux/buffer_head.h>
30 #include <linux/writeback.h>
31 #include <linux/pagevec.h>
32 #include <linux/mpage.h>
33 #include <linux/namei.h>
34 #include <linux/uio.h>
35 #include <linux/bio.h>
36 #include <linux/workqueue.h>
37 #include <linux/kernel.h>
38 #include <linux/printk.h>
39 #include <linux/slab.h>
40 #include <linux/bitops.h>
41 #include <linux/iomap.h>
42 #include <linux/iversion.h>
43
44 #include "ext4_jbd2.h"
45 #include "xattr.h"
46 #include "acl.h"
47 #include "truncate.h"
48
49 #include <trace/events/ext4.h>
50
51 #define MPAGE_DA_EXTENT_TAIL 0x01
52
53 static __u32 ext4_inode_csum(struct inode *inode, struct ext4_inode *raw,
54                               struct ext4_inode_info *ei)
55 {
56         struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
57         __u32 csum;
58         __u16 dummy_csum = 0;
59         int offset = offsetof(struct ext4_inode, i_checksum_lo);
60         unsigned int csum_size = sizeof(dummy_csum);
61
62         csum = ext4_chksum(sbi, ei->i_csum_seed, (__u8 *)raw, offset);
63         csum = ext4_chksum(sbi, csum, (__u8 *)&dummy_csum, csum_size);
64         offset += csum_size;
65         csum = ext4_chksum(sbi, csum, (__u8 *)raw + offset,
66                            EXT4_GOOD_OLD_INODE_SIZE - offset);
67
68         if (EXT4_INODE_SIZE(inode->i_sb) > EXT4_GOOD_OLD_INODE_SIZE) {
69                 offset = offsetof(struct ext4_inode, i_checksum_hi);
70                 csum = ext4_chksum(sbi, csum, (__u8 *)raw +
71                                    EXT4_GOOD_OLD_INODE_SIZE,
72                                    offset - EXT4_GOOD_OLD_INODE_SIZE);
73                 if (EXT4_FITS_IN_INODE(raw, ei, i_checksum_hi)) {
74                         csum = ext4_chksum(sbi, csum, (__u8 *)&dummy_csum,
75                                            csum_size);
76                         offset += csum_size;
77                 }
78                 csum = ext4_chksum(sbi, csum, (__u8 *)raw + offset,
79                                    EXT4_INODE_SIZE(inode->i_sb) - offset);
80         }
81
82         return csum;
83 }
84
85 static int ext4_inode_csum_verify(struct inode *inode, struct ext4_inode *raw,
86                                   struct ext4_inode_info *ei)
87 {
88         __u32 provided, calculated;
89
90         if (EXT4_SB(inode->i_sb)->s_es->s_creator_os !=
91             cpu_to_le32(EXT4_OS_LINUX) ||
92             !ext4_has_metadata_csum(inode->i_sb))
93                 return 1;
94
95         provided = le16_to_cpu(raw->i_checksum_lo);
96         calculated = ext4_inode_csum(inode, raw, ei);
97         if (EXT4_INODE_SIZE(inode->i_sb) > EXT4_GOOD_OLD_INODE_SIZE &&
98             EXT4_FITS_IN_INODE(raw, ei, i_checksum_hi))
99                 provided |= ((__u32)le16_to_cpu(raw->i_checksum_hi)) << 16;
100         else
101                 calculated &= 0xFFFF;
102
103         return provided == calculated;
104 }
105
106 static void ext4_inode_csum_set(struct inode *inode, struct ext4_inode *raw,
107                                 struct ext4_inode_info *ei)
108 {
109         __u32 csum;
110
111         if (EXT4_SB(inode->i_sb)->s_es->s_creator_os !=
112             cpu_to_le32(EXT4_OS_LINUX) ||
113             !ext4_has_metadata_csum(inode->i_sb))
114                 return;
115
116         csum = ext4_inode_csum(inode, raw, ei);
117         raw->i_checksum_lo = cpu_to_le16(csum & 0xFFFF);
118         if (EXT4_INODE_SIZE(inode->i_sb) > EXT4_GOOD_OLD_INODE_SIZE &&
119             EXT4_FITS_IN_INODE(raw, ei, i_checksum_hi))
120                 raw->i_checksum_hi = cpu_to_le16(csum >> 16);
121 }
122
123 static inline int ext4_begin_ordered_truncate(struct inode *inode,
124                                               loff_t new_size)
125 {
126         trace_ext4_begin_ordered_truncate(inode, new_size);
127         /*
128          * If jinode is zero, then we never opened the file for
129          * writing, so there's no need to call
130          * jbd2_journal_begin_ordered_truncate() since there's no
131          * outstanding writes we need to flush.
132          */
133         if (!EXT4_I(inode)->jinode)
134                 return 0;
135         return jbd2_journal_begin_ordered_truncate(EXT4_JOURNAL(inode),
136                                                    EXT4_I(inode)->jinode,
137                                                    new_size);
138 }
139
140 static void ext4_invalidatepage(struct page *page, unsigned int offset,
141                                 unsigned int length);
142 static int __ext4_journalled_writepage(struct page *page, unsigned int len);
143 static int ext4_bh_delay_or_unwritten(handle_t *handle, struct buffer_head *bh);
144 static int ext4_meta_trans_blocks(struct inode *inode, int lblocks,
145                                   int pextents);
146
147 /*
148  * Test whether an inode is a fast symlink.
149  * A fast symlink has its symlink data stored in ext4_inode_info->i_data.
150  */
151 int ext4_inode_is_fast_symlink(struct inode *inode)
152 {
153         if (!(EXT4_I(inode)->i_flags & EXT4_EA_INODE_FL)) {
154                 int ea_blocks = EXT4_I(inode)->i_file_acl ?
155                                 EXT4_CLUSTER_SIZE(inode->i_sb) >> 9 : 0;
156
157                 if (ext4_has_inline_data(inode))
158                         return 0;
159
160                 return (S_ISLNK(inode->i_mode) && inode->i_blocks - ea_blocks == 0);
161         }
162         return S_ISLNK(inode->i_mode) && inode->i_size &&
163                (inode->i_size < EXT4_N_BLOCKS * 4);
164 }
165
166 /*
167  * Restart the transaction associated with *handle.  This does a commit,
168  * so before we call here everything must be consistently dirtied against
169  * this transaction.
170  */
171 int ext4_truncate_restart_trans(handle_t *handle, struct inode *inode,
172                                  int nblocks)
173 {
174         int ret;
175
176         /*
177          * Drop i_data_sem to avoid deadlock with ext4_map_blocks.  At this
178          * moment, get_block can be called only for blocks inside i_size since
179          * page cache has been already dropped and writes are blocked by
180          * i_mutex. So we can safely drop the i_data_sem here.
181          */
182         BUG_ON(EXT4_JOURNAL(inode) == NULL);
183         jbd_debug(2, "restarting handle %p\n", handle);
184         up_write(&EXT4_I(inode)->i_data_sem);
185         ret = ext4_journal_restart(handle, nblocks);
186         down_write(&EXT4_I(inode)->i_data_sem);
187         ext4_discard_preallocations(inode);
188
189         return ret;
190 }
191
192 /*
193  * Called at the last iput() if i_nlink is zero.
194  */
195 void ext4_evict_inode(struct inode *inode)
196 {
197         handle_t *handle;
198         int err;
199         /*
200          * Credits for final inode cleanup and freeing:
201          * sb + inode (ext4_orphan_del()), block bitmap, group descriptor
202          * (xattr block freeing), bitmap, group descriptor (inode freeing)
203          */
204         int extra_credits = 6;
205         struct ext4_xattr_inode_array *ea_inode_array = NULL;
206         bool freeze_protected = false;
207
208         trace_ext4_evict_inode(inode);
209
210         if (EXT4_I(inode)->i_flags & EXT4_EA_INODE_FL)
211                 ext4_evict_ea_inode(inode);
212         if (inode->i_nlink) {
213                 /*
214                  * When journalling data dirty buffers are tracked only in the
215                  * journal. So although mm thinks everything is clean and
216                  * ready for reaping the inode might still have some pages to
217                  * write in the running transaction or waiting to be
218                  * checkpointed. Thus calling jbd2_journal_invalidatepage()
219                  * (via truncate_inode_pages()) to discard these buffers can
220                  * cause data loss. Also even if we did not discard these
221                  * buffers, we would have no way to find them after the inode
222                  * is reaped and thus user could see stale data if he tries to
223                  * read them before the transaction is checkpointed. So be
224                  * careful and force everything to disk here... We use
225                  * ei->i_datasync_tid to store the newest transaction
226                  * containing inode's data.
227                  *
228                  * Note that directories do not have this problem because they
229                  * don't use page cache.
230                  */
231                 if (inode->i_ino != EXT4_JOURNAL_INO &&
232                     ext4_should_journal_data(inode) &&
233                     (S_ISLNK(inode->i_mode) || S_ISREG(inode->i_mode)) &&
234                     inode->i_data.nrpages) {
235                         journal_t *journal = EXT4_SB(inode->i_sb)->s_journal;
236                         tid_t commit_tid = EXT4_I(inode)->i_datasync_tid;
237
238                         jbd2_complete_transaction(journal, commit_tid);
239                         filemap_write_and_wait(&inode->i_data);
240                 }
241                 truncate_inode_pages_final(&inode->i_data);
242
243                 goto no_delete;
244         }
245
246         if (is_bad_inode(inode))
247                 goto no_delete;
248         dquot_initialize(inode);
249
250         if (ext4_should_order_data(inode))
251                 ext4_begin_ordered_truncate(inode, 0);
252         truncate_inode_pages_final(&inode->i_data);
253
254         /*
255          * Protect us against freezing - iput() caller didn't have to have any
256          * protection against it. When we are in a running transaction though,
257          * we are already protected against freezing and we cannot grab further
258          * protection due to lock ordering constraints.
259          */
260         if (!ext4_journal_current_handle()) {
261                 sb_start_intwrite(inode->i_sb);
262                 freeze_protected = true;
263         }
264
265         if (!IS_NOQUOTA(inode))
266                 extra_credits += EXT4_MAXQUOTAS_DEL_BLOCKS(inode->i_sb);
267
268         /*
269          * Block bitmap, group descriptor, and inode are accounted in both
270          * ext4_blocks_for_truncate() and extra_credits. So subtract 3.
271          */
272         handle = ext4_journal_start(inode, EXT4_HT_TRUNCATE,
273                          ext4_blocks_for_truncate(inode) + extra_credits - 3);
274         if (IS_ERR(handle)) {
275                 ext4_std_error(inode->i_sb, PTR_ERR(handle));
276                 /*
277                  * If we're going to skip the normal cleanup, we still need to
278                  * make sure that the in-core orphan linked list is properly
279                  * cleaned up.
280                  */
281                 ext4_orphan_del(NULL, inode);
282                 if (freeze_protected)
283                         sb_end_intwrite(inode->i_sb);
284                 goto no_delete;
285         }
286
287         if (IS_SYNC(inode))
288                 ext4_handle_sync(handle);
289
290         /*
291          * Set inode->i_size to 0 before calling ext4_truncate(). We need
292          * special handling of symlinks here because i_size is used to
293          * determine whether ext4_inode_info->i_data contains symlink data or
294          * block mappings. Setting i_size to 0 will remove its fast symlink
295          * status. Erase i_data so that it becomes a valid empty block map.
296          */
297         if (ext4_inode_is_fast_symlink(inode))
298                 memset(EXT4_I(inode)->i_data, 0, sizeof(EXT4_I(inode)->i_data));
299         inode->i_size = 0;
300         err = ext4_mark_inode_dirty(handle, inode);
301         if (err) {
302                 ext4_warning(inode->i_sb,
303                              "couldn't mark inode dirty (err %d)", err);
304                 goto stop_handle;
305         }
306         if (inode->i_blocks) {
307                 err = ext4_truncate(inode);
308                 if (err) {
309                         ext4_error(inode->i_sb,
310                                    "couldn't truncate inode %lu (err %d)",
311                                    inode->i_ino, err);
312                         goto stop_handle;
313                 }
314         }
315
316         /* Remove xattr references. */
317         err = ext4_xattr_delete_inode(handle, inode, &ea_inode_array,
318                                       extra_credits);
319         if (err) {
320                 ext4_warning(inode->i_sb, "xattr delete (err %d)", err);
321 stop_handle:
322                 ext4_journal_stop(handle);
323                 ext4_orphan_del(NULL, inode);
324                 if (freeze_protected)
325                         sb_end_intwrite(inode->i_sb);
326                 ext4_xattr_inode_array_free(ea_inode_array);
327                 goto no_delete;
328         }
329
330         /*
331          * Kill off the orphan record which ext4_truncate created.
332          * AKPM: I think this can be inside the above `if'.
333          * Note that ext4_orphan_del() has to be able to cope with the
334          * deletion of a non-existent orphan - this is because we don't
335          * know if ext4_truncate() actually created an orphan record.
336          * (Well, we could do this if we need to, but heck - it works)
337          */
338         ext4_orphan_del(handle, inode);
339         EXT4_I(inode)->i_dtime  = (__u32)ktime_get_real_seconds();
340
341         /*
342          * One subtle ordering requirement: if anything has gone wrong
343          * (transaction abort, IO errors, whatever), then we can still
344          * do these next steps (the fs will already have been marked as
345          * having errors), but we can't free the inode if the mark_dirty
346          * fails.
347          */
348         if (ext4_mark_inode_dirty(handle, inode))
349                 /* If that failed, just do the required in-core inode clear. */
350                 ext4_clear_inode(inode);
351         else
352                 ext4_free_inode(handle, inode);
353         ext4_journal_stop(handle);
354         if (freeze_protected)
355                 sb_end_intwrite(inode->i_sb);
356         ext4_xattr_inode_array_free(ea_inode_array);
357         return;
358 no_delete:
359         ext4_clear_inode(inode);        /* We must guarantee clearing of inode... */
360 }
361
362 #ifdef CONFIG_QUOTA
363 qsize_t *ext4_get_reserved_space(struct inode *inode)
364 {
365         return &EXT4_I(inode)->i_reserved_quota;
366 }
367 #endif
368
369 /*
370  * Called with i_data_sem down, which is important since we can call
371  * ext4_discard_preallocations() from here.
372  */
373 void ext4_da_update_reserve_space(struct inode *inode,
374                                         int used, int quota_claim)
375 {
376         struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
377         struct ext4_inode_info *ei = EXT4_I(inode);
378
379         spin_lock(&ei->i_block_reservation_lock);
380         trace_ext4_da_update_reserve_space(inode, used, quota_claim);
381         if (unlikely(used > ei->i_reserved_data_blocks)) {
382                 ext4_warning(inode->i_sb, "%s: ino %lu, used %d "
383                          "with only %d reserved data blocks",
384                          __func__, inode->i_ino, used,
385                          ei->i_reserved_data_blocks);
386                 WARN_ON(1);
387                 used = ei->i_reserved_data_blocks;
388         }
389
390         /* Update per-inode reservations */
391         ei->i_reserved_data_blocks -= used;
392         percpu_counter_sub(&sbi->s_dirtyclusters_counter, used);
393
394         spin_unlock(&EXT4_I(inode)->i_block_reservation_lock);
395
396         /* Update quota subsystem for data blocks */
397         if (quota_claim)
398                 dquot_claim_block(inode, EXT4_C2B(sbi, used));
399         else {
400                 /*
401                  * We did fallocate with an offset that is already delayed
402                  * allocated. So on delayed allocated writeback we should
403                  * not re-claim the quota for fallocated blocks.
404                  */
405                 dquot_release_reservation_block(inode, EXT4_C2B(sbi, used));
406         }
407
408         /*
409          * If we have done all the pending block allocations and if
410          * there aren't any writers on the inode, we can discard the
411          * inode's preallocations.
412          */
413         if ((ei->i_reserved_data_blocks == 0) &&
414             (atomic_read(&inode->i_writecount) == 0))
415                 ext4_discard_preallocations(inode);
416 }
417
418 static int __check_block_validity(struct inode *inode, const char *func,
419                                 unsigned int line,
420                                 struct ext4_map_blocks *map)
421 {
422         if (ext4_has_feature_journal(inode->i_sb) &&
423             (inode->i_ino ==
424              le32_to_cpu(EXT4_SB(inode->i_sb)->s_es->s_journal_inum)))
425                 return 0;
426         if (!ext4_inode_block_valid(inode, map->m_pblk, map->m_len)) {
427                 ext4_error_inode(inode, func, line, map->m_pblk,
428                                  "lblock %lu mapped to illegal pblock %llu "
429                                  "(length %d)", (unsigned long) map->m_lblk,
430                                  map->m_pblk, map->m_len);
431                 return -EFSCORRUPTED;
432         }
433         return 0;
434 }
435
436 int ext4_issue_zeroout(struct inode *inode, ext4_lblk_t lblk, ext4_fsblk_t pblk,
437                        ext4_lblk_t len)
438 {
439         int ret;
440
441         if (ext4_encrypted_inode(inode))
442                 return fscrypt_zeroout_range(inode, lblk, pblk, len);
443
444         ret = sb_issue_zeroout(inode->i_sb, pblk, len, GFP_NOFS);
445         if (ret > 0)
446                 ret = 0;
447
448         return ret;
449 }
450
451 #define check_block_validity(inode, map)        \
452         __check_block_validity((inode), __func__, __LINE__, (map))
453
454 #ifdef ES_AGGRESSIVE_TEST
455 static void ext4_map_blocks_es_recheck(handle_t *handle,
456                                        struct inode *inode,
457                                        struct ext4_map_blocks *es_map,
458                                        struct ext4_map_blocks *map,
459                                        int flags)
460 {
461         int retval;
462
463         map->m_flags = 0;
464         /*
465          * There is a race window that the result is not the same.
466          * e.g. xfstests #223 when dioread_nolock enables.  The reason
467          * is that we lookup a block mapping in extent status tree with
468          * out taking i_data_sem.  So at the time the unwritten extent
469          * could be converted.
470          */
471         down_read(&EXT4_I(inode)->i_data_sem);
472         if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS)) {
473                 retval = ext4_ext_map_blocks(handle, inode, map, flags &
474                                              EXT4_GET_BLOCKS_KEEP_SIZE);
475         } else {
476                 retval = ext4_ind_map_blocks(handle, inode, map, flags &
477                                              EXT4_GET_BLOCKS_KEEP_SIZE);
478         }
479         up_read((&EXT4_I(inode)->i_data_sem));
480
481         /*
482          * We don't check m_len because extent will be collpased in status
483          * tree.  So the m_len might not equal.
484          */
485         if (es_map->m_lblk != map->m_lblk ||
486             es_map->m_flags != map->m_flags ||
487             es_map->m_pblk != map->m_pblk) {
488                 printk("ES cache assertion failed for inode: %lu "
489                        "es_cached ex [%d/%d/%llu/%x] != "
490                        "found ex [%d/%d/%llu/%x] retval %d flags %x\n",
491                        inode->i_ino, es_map->m_lblk, es_map->m_len,
492                        es_map->m_pblk, es_map->m_flags, map->m_lblk,
493                        map->m_len, map->m_pblk, map->m_flags,
494                        retval, flags);
495         }
496 }
497 #endif /* ES_AGGRESSIVE_TEST */
498
499 /*
500  * The ext4_map_blocks() function tries to look up the requested blocks,
501  * and returns if the blocks are already mapped.
502  *
503  * Otherwise it takes the write lock of the i_data_sem and allocate blocks
504  * and store the allocated blocks in the result buffer head and mark it
505  * mapped.
506  *
507  * If file type is extents based, it will call ext4_ext_map_blocks(),
508  * Otherwise, call with ext4_ind_map_blocks() to handle indirect mapping
509  * based files
510  *
511  * On success, it returns the number of blocks being mapped or allocated.  if
512  * create==0 and the blocks are pre-allocated and unwritten, the resulting @map
513  * is marked as unwritten. If the create == 1, it will mark @map as mapped.
514  *
515  * It returns 0 if plain look up failed (blocks have not been allocated), in
516  * that case, @map is returned as unmapped but we still do fill map->m_len to
517  * indicate the length of a hole starting at map->m_lblk.
518  *
519  * It returns the error in case of allocation failure.
520  */
521 int ext4_map_blocks(handle_t *handle, struct inode *inode,
522                     struct ext4_map_blocks *map, int flags)
523 {
524         struct extent_status es;
525         int retval;
526         int ret = 0;
527 #ifdef ES_AGGRESSIVE_TEST
528         struct ext4_map_blocks orig_map;
529
530         memcpy(&orig_map, map, sizeof(*map));
531 #endif
532
533         map->m_flags = 0;
534         ext_debug("ext4_map_blocks(): inode %lu, flag %d, max_blocks %u,"
535                   "logical block %lu\n", inode->i_ino, flags, map->m_len,
536                   (unsigned long) map->m_lblk);
537
538         /*
539          * ext4_map_blocks returns an int, and m_len is an unsigned int
540          */
541         if (unlikely(map->m_len > INT_MAX))
542                 map->m_len = INT_MAX;
543
544         /* We can handle the block number less than EXT_MAX_BLOCKS */
545         if (unlikely(map->m_lblk >= EXT_MAX_BLOCKS))
546                 return -EFSCORRUPTED;
547
548         /* Lookup extent status tree firstly */
549         if (ext4_es_lookup_extent(inode, map->m_lblk, &es)) {
550                 if (ext4_es_is_written(&es) || ext4_es_is_unwritten(&es)) {
551                         map->m_pblk = ext4_es_pblock(&es) +
552                                         map->m_lblk - es.es_lblk;
553                         map->m_flags |= ext4_es_is_written(&es) ?
554                                         EXT4_MAP_MAPPED : EXT4_MAP_UNWRITTEN;
555                         retval = es.es_len - (map->m_lblk - es.es_lblk);
556                         if (retval > map->m_len)
557                                 retval = map->m_len;
558                         map->m_len = retval;
559                 } else if (ext4_es_is_delayed(&es) || ext4_es_is_hole(&es)) {
560                         map->m_pblk = 0;
561                         retval = es.es_len - (map->m_lblk - es.es_lblk);
562                         if (retval > map->m_len)
563                                 retval = map->m_len;
564                         map->m_len = retval;
565                         retval = 0;
566                 } else {
567                         BUG_ON(1);
568                 }
569 #ifdef ES_AGGRESSIVE_TEST
570                 ext4_map_blocks_es_recheck(handle, inode, map,
571                                            &orig_map, flags);
572 #endif
573                 goto found;
574         }
575
576         /*
577          * Try to see if we can get the block without requesting a new
578          * file system block.
579          */
580         down_read(&EXT4_I(inode)->i_data_sem);
581         if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS)) {
582                 retval = ext4_ext_map_blocks(handle, inode, map, flags &
583                                              EXT4_GET_BLOCKS_KEEP_SIZE);
584         } else {
585                 retval = ext4_ind_map_blocks(handle, inode, map, flags &
586                                              EXT4_GET_BLOCKS_KEEP_SIZE);
587         }
588         if (retval > 0) {
589                 unsigned int status;
590
591                 if (unlikely(retval != map->m_len)) {
592                         ext4_warning(inode->i_sb,
593                                      "ES len assertion failed for inode "
594                                      "%lu: retval %d != map->m_len %d",
595                                      inode->i_ino, retval, map->m_len);
596                         WARN_ON(1);
597                 }
598
599                 status = map->m_flags & EXT4_MAP_UNWRITTEN ?
600                                 EXTENT_STATUS_UNWRITTEN : EXTENT_STATUS_WRITTEN;
601                 if (!(flags & EXT4_GET_BLOCKS_DELALLOC_RESERVE) &&
602                     !(status & EXTENT_STATUS_WRITTEN) &&
603                     ext4_find_delalloc_range(inode, map->m_lblk,
604                                              map->m_lblk + map->m_len - 1))
605                         status |= EXTENT_STATUS_DELAYED;
606                 ret = ext4_es_insert_extent(inode, map->m_lblk,
607                                             map->m_len, map->m_pblk, status);
608                 if (ret < 0)
609                         retval = ret;
610         }
611         up_read((&EXT4_I(inode)->i_data_sem));
612
613 found:
614         if (retval > 0 && map->m_flags & EXT4_MAP_MAPPED) {
615                 ret = check_block_validity(inode, map);
616                 if (ret != 0)
617                         return ret;
618         }
619
620         /* If it is only a block(s) look up */
621         if ((flags & EXT4_GET_BLOCKS_CREATE) == 0)
622                 return retval;
623
624         /*
625          * Returns if the blocks have already allocated
626          *
627          * Note that if blocks have been preallocated
628          * ext4_ext_get_block() returns the create = 0
629          * with buffer head unmapped.
630          */
631         if (retval > 0 && map->m_flags & EXT4_MAP_MAPPED)
632                 /*
633                  * If we need to convert extent to unwritten
634                  * we continue and do the actual work in
635                  * ext4_ext_map_blocks()
636                  */
637                 if (!(flags & EXT4_GET_BLOCKS_CONVERT_UNWRITTEN))
638                         return retval;
639
640         /*
641          * Here we clear m_flags because after allocating an new extent,
642          * it will be set again.
643          */
644         map->m_flags &= ~EXT4_MAP_FLAGS;
645
646         /*
647          * New blocks allocate and/or writing to unwritten extent
648          * will possibly result in updating i_data, so we take
649          * the write lock of i_data_sem, and call get_block()
650          * with create == 1 flag.
651          */
652         down_write(&EXT4_I(inode)->i_data_sem);
653
654         /*
655          * We need to check for EXT4 here because migrate
656          * could have changed the inode type in between
657          */
658         if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS)) {
659                 retval = ext4_ext_map_blocks(handle, inode, map, flags);
660         } else {
661                 retval = ext4_ind_map_blocks(handle, inode, map, flags);
662
663                 if (retval > 0 && map->m_flags & EXT4_MAP_NEW) {
664                         /*
665                          * We allocated new blocks which will result in
666                          * i_data's format changing.  Force the migrate
667                          * to fail by clearing migrate flags
668                          */
669                         ext4_clear_inode_state(inode, EXT4_STATE_EXT_MIGRATE);
670                 }
671         }
672
673         if (retval > 0) {
674                 unsigned int status;
675
676                 if (unlikely(retval != map->m_len)) {
677                         ext4_warning(inode->i_sb,
678                                      "ES len assertion failed for inode "
679                                      "%lu: retval %d != map->m_len %d",
680                                      inode->i_ino, retval, map->m_len);
681                         WARN_ON(1);
682                 }
683
684                 /*
685                  * We have to zeroout blocks before inserting them into extent
686                  * status tree. Otherwise someone could look them up there and
687                  * use them before they are really zeroed. We also have to
688                  * unmap metadata before zeroing as otherwise writeback can
689                  * overwrite zeros with stale data from block device.
690                  */
691                 if (flags & EXT4_GET_BLOCKS_ZERO &&
692                     map->m_flags & EXT4_MAP_MAPPED &&
693                     map->m_flags & EXT4_MAP_NEW) {
694                         clean_bdev_aliases(inode->i_sb->s_bdev, map->m_pblk,
695                                            map->m_len);
696                         ret = ext4_issue_zeroout(inode, map->m_lblk,
697                                                  map->m_pblk, map->m_len);
698                         if (ret) {
699                                 retval = ret;
700                                 goto out_sem;
701                         }
702                 }
703
704                 /*
705                  * If the extent has been zeroed out, we don't need to update
706                  * extent status tree.
707                  */
708                 if ((flags & EXT4_GET_BLOCKS_PRE_IO) &&
709                     ext4_es_lookup_extent(inode, map->m_lblk, &es)) {
710                         if (ext4_es_is_written(&es))
711                                 goto out_sem;
712                 }
713                 status = map->m_flags & EXT4_MAP_UNWRITTEN ?
714                                 EXTENT_STATUS_UNWRITTEN : EXTENT_STATUS_WRITTEN;
715                 if (!(flags & EXT4_GET_BLOCKS_DELALLOC_RESERVE) &&
716                     !(status & EXTENT_STATUS_WRITTEN) &&
717                     ext4_find_delalloc_range(inode, map->m_lblk,
718                                              map->m_lblk + map->m_len - 1))
719                         status |= EXTENT_STATUS_DELAYED;
720                 ret = ext4_es_insert_extent(inode, map->m_lblk, map->m_len,
721                                             map->m_pblk, status);
722                 if (ret < 0) {
723                         retval = ret;
724                         goto out_sem;
725                 }
726         }
727
728 out_sem:
729         up_write((&EXT4_I(inode)->i_data_sem));
730         if (retval > 0 && map->m_flags & EXT4_MAP_MAPPED) {
731                 ret = check_block_validity(inode, map);
732                 if (ret != 0)
733                         return ret;
734
735                 /*
736                  * Inodes with freshly allocated blocks where contents will be
737                  * visible after transaction commit must be on transaction's
738                  * ordered data list.
739                  */
740                 if (map->m_flags & EXT4_MAP_NEW &&
741                     !(map->m_flags & EXT4_MAP_UNWRITTEN) &&
742                     !(flags & EXT4_GET_BLOCKS_ZERO) &&
743                     !ext4_is_quota_file(inode) &&
744                     ext4_should_order_data(inode)) {
745                         loff_t start_byte =
746                                 (loff_t)map->m_lblk << inode->i_blkbits;
747                         loff_t length = (loff_t)map->m_len << inode->i_blkbits;
748
749                         if (flags & EXT4_GET_BLOCKS_IO_SUBMIT)
750                                 ret = ext4_jbd2_inode_add_wait(handle, inode,
751                                                 start_byte, length);
752                         else
753                                 ret = ext4_jbd2_inode_add_write(handle, inode,
754                                                 start_byte, length);
755                         if (ret)
756                                 return ret;
757                 }
758         }
759         return retval;
760 }
761
762 /*
763  * Update EXT4_MAP_FLAGS in bh->b_state. For buffer heads attached to pages
764  * we have to be careful as someone else may be manipulating b_state as well.
765  */
766 static void ext4_update_bh_state(struct buffer_head *bh, unsigned long flags)
767 {
768         unsigned long old_state;
769         unsigned long new_state;
770
771         flags &= EXT4_MAP_FLAGS;
772
773         /* Dummy buffer_head? Set non-atomically. */
774         if (!bh->b_page) {
775                 bh->b_state = (bh->b_state & ~EXT4_MAP_FLAGS) | flags;
776                 return;
777         }
778         /*
779          * Someone else may be modifying b_state. Be careful! This is ugly but
780          * once we get rid of using bh as a container for mapping information
781          * to pass to / from get_block functions, this can go away.
782          */
783         do {
784                 old_state = READ_ONCE(bh->b_state);
785                 new_state = (old_state & ~EXT4_MAP_FLAGS) | flags;
786         } while (unlikely(
787                  cmpxchg(&bh->b_state, old_state, new_state) != old_state));
788 }
789
790 static int _ext4_get_block(struct inode *inode, sector_t iblock,
791                            struct buffer_head *bh, int flags)
792 {
793         struct ext4_map_blocks map;
794         int ret = 0;
795
796         if (ext4_has_inline_data(inode))
797                 return -ERANGE;
798
799         map.m_lblk = iblock;
800         map.m_len = bh->b_size >> inode->i_blkbits;
801
802         ret = ext4_map_blocks(ext4_journal_current_handle(), inode, &map,
803                               flags);
804         if (ret > 0) {
805                 map_bh(bh, inode->i_sb, map.m_pblk);
806                 ext4_update_bh_state(bh, map.m_flags);
807                 bh->b_size = inode->i_sb->s_blocksize * map.m_len;
808                 ret = 0;
809         } else if (ret == 0) {
810                 /* hole case, need to fill in bh->b_size */
811                 bh->b_size = inode->i_sb->s_blocksize * map.m_len;
812         }
813         return ret;
814 }
815
816 int ext4_get_block(struct inode *inode, sector_t iblock,
817                    struct buffer_head *bh, int create)
818 {
819         return _ext4_get_block(inode, iblock, bh,
820                                create ? EXT4_GET_BLOCKS_CREATE : 0);
821 }
822
823 /*
824  * Get block function used when preparing for buffered write if we require
825  * creating an unwritten extent if blocks haven't been allocated.  The extent
826  * will be converted to written after the IO is complete.
827  */
828 int ext4_get_block_unwritten(struct inode *inode, sector_t iblock,
829                              struct buffer_head *bh_result, int create)
830 {
831         ext4_debug("ext4_get_block_unwritten: inode %lu, create flag %d\n",
832                    inode->i_ino, create);
833         return _ext4_get_block(inode, iblock, bh_result,
834                                EXT4_GET_BLOCKS_IO_CREATE_EXT);
835 }
836
837 /* Maximum number of blocks we map for direct IO at once. */
838 #define DIO_MAX_BLOCKS 4096
839
840 /*
841  * Get blocks function for the cases that need to start a transaction -
842  * generally difference cases of direct IO and DAX IO. It also handles retries
843  * in case of ENOSPC.
844  */
845 static int ext4_get_block_trans(struct inode *inode, sector_t iblock,
846                                 struct buffer_head *bh_result, int flags)
847 {
848         int dio_credits;
849         handle_t *handle;
850         int retries = 0;
851         int ret;
852
853         /* Trim mapping request to maximum we can map at once for DIO */
854         if (bh_result->b_size >> inode->i_blkbits > DIO_MAX_BLOCKS)
855                 bh_result->b_size = DIO_MAX_BLOCKS << inode->i_blkbits;
856         dio_credits = ext4_chunk_trans_blocks(inode,
857                                       bh_result->b_size >> inode->i_blkbits);
858 retry:
859         handle = ext4_journal_start(inode, EXT4_HT_MAP_BLOCKS, dio_credits);
860         if (IS_ERR(handle))
861                 return PTR_ERR(handle);
862
863         ret = _ext4_get_block(inode, iblock, bh_result, flags);
864         ext4_journal_stop(handle);
865
866         if (ret == -ENOSPC && ext4_should_retry_alloc(inode->i_sb, &retries))
867                 goto retry;
868         return ret;
869 }
870
871 /* Get block function for DIO reads and writes to inodes without extents */
872 int ext4_dio_get_block(struct inode *inode, sector_t iblock,
873                        struct buffer_head *bh, int create)
874 {
875         /* We don't expect handle for direct IO */
876         WARN_ON_ONCE(ext4_journal_current_handle());
877
878         if (!create)
879                 return _ext4_get_block(inode, iblock, bh, 0);
880         return ext4_get_block_trans(inode, iblock, bh, EXT4_GET_BLOCKS_CREATE);
881 }
882
883 /*
884  * Get block function for AIO DIO writes when we create unwritten extent if
885  * blocks are not allocated yet. The extent will be converted to written
886  * after IO is complete.
887  */
888 static int ext4_dio_get_block_unwritten_async(struct inode *inode,
889                 sector_t iblock, struct buffer_head *bh_result, int create)
890 {
891         int ret;
892
893         /* We don't expect handle for direct IO */
894         WARN_ON_ONCE(ext4_journal_current_handle());
895
896         ret = ext4_get_block_trans(inode, iblock, bh_result,
897                                    EXT4_GET_BLOCKS_IO_CREATE_EXT);
898
899         /*
900          * When doing DIO using unwritten extents, we need io_end to convert
901          * unwritten extents to written on IO completion. We allocate io_end
902          * once we spot unwritten extent and store it in b_private. Generic
903          * DIO code keeps b_private set and furthermore passes the value to
904          * our completion callback in 'private' argument.
905          */
906         if (!ret && buffer_unwritten(bh_result)) {
907                 if (!bh_result->b_private) {
908                         ext4_io_end_t *io_end;
909
910                         io_end = ext4_init_io_end(inode, GFP_KERNEL);
911                         if (!io_end)
912                                 return -ENOMEM;
913                         bh_result->b_private = io_end;
914                         ext4_set_io_unwritten_flag(inode, io_end);
915                 }
916                 set_buffer_defer_completion(bh_result);
917         }
918
919         return ret;
920 }
921
922 /*
923  * Get block function for non-AIO DIO writes when we create unwritten extent if
924  * blocks are not allocated yet. The extent will be converted to written
925  * after IO is complete by ext4_direct_IO_write().
926  */
927 static int ext4_dio_get_block_unwritten_sync(struct inode *inode,
928                 sector_t iblock, struct buffer_head *bh_result, int create)
929 {
930         int ret;
931
932         /* We don't expect handle for direct IO */
933         WARN_ON_ONCE(ext4_journal_current_handle());
934
935         ret = ext4_get_block_trans(inode, iblock, bh_result,
936                                    EXT4_GET_BLOCKS_IO_CREATE_EXT);
937
938         /*
939          * Mark inode as having pending DIO writes to unwritten extents.
940          * ext4_direct_IO_write() checks this flag and converts extents to
941          * written.
942          */
943         if (!ret && buffer_unwritten(bh_result))
944                 ext4_set_inode_state(inode, EXT4_STATE_DIO_UNWRITTEN);
945
946         return ret;
947 }
948
949 static int ext4_dio_get_block_overwrite(struct inode *inode, sector_t iblock,
950                    struct buffer_head *bh_result, int create)
951 {
952         int ret;
953
954         ext4_debug("ext4_dio_get_block_overwrite: inode %lu, create flag %d\n",
955                    inode->i_ino, create);
956         /* We don't expect handle for direct IO */
957         WARN_ON_ONCE(ext4_journal_current_handle());
958
959         ret = _ext4_get_block(inode, iblock, bh_result, 0);
960         /*
961          * Blocks should have been preallocated! ext4_file_write_iter() checks
962          * that.
963          */
964         WARN_ON_ONCE(!buffer_mapped(bh_result) || buffer_unwritten(bh_result));
965
966         return ret;
967 }
968
969
970 /*
971  * `handle' can be NULL if create is zero
972  */
973 struct buffer_head *ext4_getblk(handle_t *handle, struct inode *inode,
974                                 ext4_lblk_t block, int map_flags)
975 {
976         struct ext4_map_blocks map;
977         struct buffer_head *bh;
978         int create = map_flags & EXT4_GET_BLOCKS_CREATE;
979         int err;
980
981         J_ASSERT(handle != NULL || create == 0);
982
983         map.m_lblk = block;
984         map.m_len = 1;
985         err = ext4_map_blocks(handle, inode, &map, map_flags);
986
987         if (err == 0)
988                 return create ? ERR_PTR(-ENOSPC) : NULL;
989         if (err < 0)
990                 return ERR_PTR(err);
991
992         bh = sb_getblk(inode->i_sb, map.m_pblk);
993         if (unlikely(!bh))
994                 return ERR_PTR(-ENOMEM);
995         if (map.m_flags & EXT4_MAP_NEW) {
996                 J_ASSERT(create != 0);
997                 J_ASSERT(handle != NULL);
998
999                 /*
1000                  * Now that we do not always journal data, we should
1001                  * keep in mind whether this should always journal the
1002                  * new buffer as metadata.  For now, regular file
1003                  * writes use ext4_get_block instead, so it's not a
1004                  * problem.
1005                  */
1006                 lock_buffer(bh);
1007                 BUFFER_TRACE(bh, "call get_create_access");
1008                 err = ext4_journal_get_create_access(handle, bh);
1009                 if (unlikely(err)) {
1010                         unlock_buffer(bh);
1011                         goto errout;
1012                 }
1013                 if (!buffer_uptodate(bh)) {
1014                         memset(bh->b_data, 0, inode->i_sb->s_blocksize);
1015                         set_buffer_uptodate(bh);
1016                 }
1017                 unlock_buffer(bh);
1018                 BUFFER_TRACE(bh, "call ext4_handle_dirty_metadata");
1019                 err = ext4_handle_dirty_metadata(handle, inode, bh);
1020                 if (unlikely(err))
1021                         goto errout;
1022         } else
1023                 BUFFER_TRACE(bh, "not a new buffer");
1024         return bh;
1025 errout:
1026         brelse(bh);
1027         return ERR_PTR(err);
1028 }
1029
1030 struct buffer_head *ext4_bread(handle_t *handle, struct inode *inode,
1031                                ext4_lblk_t block, int map_flags)
1032 {
1033         struct buffer_head *bh;
1034
1035         bh = ext4_getblk(handle, inode, block, map_flags);
1036         if (IS_ERR(bh))
1037                 return bh;
1038         if (!bh || buffer_uptodate(bh))
1039                 return bh;
1040         ll_rw_block(REQ_OP_READ, REQ_META | REQ_PRIO, 1, &bh);
1041         wait_on_buffer(bh);
1042         if (buffer_uptodate(bh))
1043                 return bh;
1044         put_bh(bh);
1045         return ERR_PTR(-EIO);
1046 }
1047
1048 /* Read a contiguous batch of blocks. */
1049 int ext4_bread_batch(struct inode *inode, ext4_lblk_t block, int bh_count,
1050                      bool wait, struct buffer_head **bhs)
1051 {
1052         int i, err;
1053
1054         for (i = 0; i < bh_count; i++) {
1055                 bhs[i] = ext4_getblk(NULL, inode, block + i, 0 /* map_flags */);
1056                 if (IS_ERR(bhs[i])) {
1057                         err = PTR_ERR(bhs[i]);
1058                         bh_count = i;
1059                         goto out_brelse;
1060                 }
1061         }
1062
1063         for (i = 0; i < bh_count; i++)
1064                 /* Note that NULL bhs[i] is valid because of holes. */
1065                 if (bhs[i] && !buffer_uptodate(bhs[i]))
1066                         ll_rw_block(REQ_OP_READ, REQ_META | REQ_PRIO, 1,
1067                                     &bhs[i]);
1068
1069         if (!wait)
1070                 return 0;
1071
1072         for (i = 0; i < bh_count; i++)
1073                 if (bhs[i])
1074                         wait_on_buffer(bhs[i]);
1075
1076         for (i = 0; i < bh_count; i++) {
1077                 if (bhs[i] && !buffer_uptodate(bhs[i])) {
1078                         err = -EIO;
1079                         goto out_brelse;
1080                 }
1081         }
1082         return 0;
1083
1084 out_brelse:
1085         for (i = 0; i < bh_count; i++) {
1086                 brelse(bhs[i]);
1087                 bhs[i] = NULL;
1088         }
1089         return err;
1090 }
1091
1092 int ext4_walk_page_buffers(handle_t *handle,
1093                            struct buffer_head *head,
1094                            unsigned from,
1095                            unsigned to,
1096                            int *partial,
1097                            int (*fn)(handle_t *handle,
1098                                      struct buffer_head *bh))
1099 {
1100         struct buffer_head *bh;
1101         unsigned block_start, block_end;
1102         unsigned blocksize = head->b_size;
1103         int err, ret = 0;
1104         struct buffer_head *next;
1105
1106         for (bh = head, block_start = 0;
1107              ret == 0 && (bh != head || !block_start);
1108              block_start = block_end, bh = next) {
1109                 next = bh->b_this_page;
1110                 block_end = block_start + blocksize;
1111                 if (block_end <= from || block_start >= to) {
1112                         if (partial && !buffer_uptodate(bh))
1113                                 *partial = 1;
1114                         continue;
1115                 }
1116                 err = (*fn)(handle, bh);
1117                 if (!ret)
1118                         ret = err;
1119         }
1120         return ret;
1121 }
1122
1123 /*
1124  * To preserve ordering, it is essential that the hole instantiation and
1125  * the data write be encapsulated in a single transaction.  We cannot
1126  * close off a transaction and start a new one between the ext4_get_block()
1127  * and the commit_write().  So doing the jbd2_journal_start at the start of
1128  * prepare_write() is the right place.
1129  *
1130  * Also, this function can nest inside ext4_writepage().  In that case, we
1131  * *know* that ext4_writepage() has generated enough buffer credits to do the
1132  * whole page.  So we won't block on the journal in that case, which is good,
1133  * because the caller may be PF_MEMALLOC.
1134  *
1135  * By accident, ext4 can be reentered when a transaction is open via
1136  * quota file writes.  If we were to commit the transaction while thus
1137  * reentered, there can be a deadlock - we would be holding a quota
1138  * lock, and the commit would never complete if another thread had a
1139  * transaction open and was blocking on the quota lock - a ranking
1140  * violation.
1141  *
1142  * So what we do is to rely on the fact that jbd2_journal_stop/journal_start
1143  * will _not_ run commit under these circumstances because handle->h_ref
1144  * is elevated.  We'll still have enough credits for the tiny quotafile
1145  * write.
1146  */
1147 int do_journal_get_write_access(handle_t *handle,
1148                                 struct buffer_head *bh)
1149 {
1150         int dirty = buffer_dirty(bh);
1151         int ret;
1152
1153         if (!buffer_mapped(bh) || buffer_freed(bh))
1154                 return 0;
1155         /*
1156          * __block_write_begin() could have dirtied some buffers. Clean
1157          * the dirty bit as jbd2_journal_get_write_access() could complain
1158          * otherwise about fs integrity issues. Setting of the dirty bit
1159          * by __block_write_begin() isn't a real problem here as we clear
1160          * the bit before releasing a page lock and thus writeback cannot
1161          * ever write the buffer.
1162          */
1163         if (dirty)
1164                 clear_buffer_dirty(bh);
1165         BUFFER_TRACE(bh, "get write access");
1166         ret = ext4_journal_get_write_access(handle, bh);
1167         if (!ret && dirty)
1168                 ret = ext4_handle_dirty_metadata(handle, NULL, bh);
1169         return ret;
1170 }
1171
1172 #ifdef CONFIG_EXT4_FS_ENCRYPTION
1173 static int ext4_block_write_begin(struct page *page, loff_t pos, unsigned len,
1174                                   get_block_t *get_block)
1175 {
1176         unsigned from = pos & (PAGE_SIZE - 1);
1177         unsigned to = from + len;
1178         struct inode *inode = page->mapping->host;
1179         unsigned block_start, block_end;
1180         sector_t block;
1181         int err = 0;
1182         unsigned blocksize = inode->i_sb->s_blocksize;
1183         unsigned bbits;
1184         struct buffer_head *bh, *head, *wait[2], **wait_bh = wait;
1185         bool decrypt = false;
1186
1187         BUG_ON(!PageLocked(page));
1188         BUG_ON(from > PAGE_SIZE);
1189         BUG_ON(to > PAGE_SIZE);
1190         BUG_ON(from > to);
1191
1192         if (!page_has_buffers(page))
1193                 create_empty_buffers(page, blocksize, 0);
1194         head = page_buffers(page);
1195         bbits = ilog2(blocksize);
1196         block = (sector_t)page->index << (PAGE_SHIFT - bbits);
1197
1198         for (bh = head, block_start = 0; bh != head || !block_start;
1199             block++, block_start = block_end, bh = bh->b_this_page) {
1200                 block_end = block_start + blocksize;
1201                 if (block_end <= from || block_start >= to) {
1202                         if (PageUptodate(page)) {
1203                                 if (!buffer_uptodate(bh))
1204                                         set_buffer_uptodate(bh);
1205                         }
1206                         continue;
1207                 }
1208                 if (buffer_new(bh))
1209                         clear_buffer_new(bh);
1210                 if (!buffer_mapped(bh)) {
1211                         WARN_ON(bh->b_size != blocksize);
1212                         err = get_block(inode, block, bh, 1);
1213                         if (err)
1214                                 break;
1215                         if (buffer_new(bh)) {
1216                                 clean_bdev_bh_alias(bh);
1217                                 if (PageUptodate(page)) {
1218                                         clear_buffer_new(bh);
1219                                         set_buffer_uptodate(bh);
1220                                         mark_buffer_dirty(bh);
1221                                         continue;
1222                                 }
1223                                 if (block_end > to || block_start < from)
1224                                         zero_user_segments(page, to, block_end,
1225                                                            block_start, from);
1226                                 continue;
1227                         }
1228                 }
1229                 if (PageUptodate(page)) {
1230                         if (!buffer_uptodate(bh))
1231                                 set_buffer_uptodate(bh);
1232                         continue;
1233                 }
1234                 if (!buffer_uptodate(bh) && !buffer_delay(bh) &&
1235                     !buffer_unwritten(bh) &&
1236                     (block_start < from || block_end > to)) {
1237                         ll_rw_block(REQ_OP_READ, 0, 1, &bh);
1238                         *wait_bh++ = bh;
1239                         decrypt = ext4_encrypted_inode(inode) &&
1240                                 S_ISREG(inode->i_mode);
1241                 }
1242         }
1243         /*
1244          * If we issued read requests, let them complete.
1245          */
1246         while (wait_bh > wait) {
1247                 wait_on_buffer(*--wait_bh);
1248                 if (!buffer_uptodate(*wait_bh))
1249                         err = -EIO;
1250         }
1251         if (unlikely(err))
1252                 page_zero_new_buffers(page, from, to);
1253         else if (decrypt)
1254                 err = fscrypt_decrypt_page(page->mapping->host, page,
1255                                 PAGE_SIZE, 0, page->index);
1256         return err;
1257 }
1258 #endif
1259
1260 static int ext4_write_begin(struct file *file, struct address_space *mapping,
1261                             loff_t pos, unsigned len, unsigned flags,
1262                             struct page **pagep, void **fsdata)
1263 {
1264         struct inode *inode = mapping->host;
1265         int ret, needed_blocks;
1266         handle_t *handle;
1267         int retries = 0;
1268         struct page *page;
1269         pgoff_t index;
1270         unsigned from, to;
1271
1272         if (unlikely(ext4_forced_shutdown(EXT4_SB(inode->i_sb))))
1273                 return -EIO;
1274
1275         trace_ext4_write_begin(inode, pos, len, flags);
1276         /*
1277          * Reserve one block more for addition to orphan list in case
1278          * we allocate blocks but write fails for some reason
1279          */
1280         needed_blocks = ext4_writepage_trans_blocks(inode) + 1;
1281         index = pos >> PAGE_SHIFT;
1282         from = pos & (PAGE_SIZE - 1);
1283         to = from + len;
1284
1285         if (ext4_test_inode_state(inode, EXT4_STATE_MAY_INLINE_DATA)) {
1286                 ret = ext4_try_to_write_inline_data(mapping, inode, pos, len,
1287                                                     flags, pagep);
1288                 if (ret < 0)
1289                         return ret;
1290                 if (ret == 1)
1291                         return 0;
1292         }
1293
1294         /*
1295          * grab_cache_page_write_begin() can take a long time if the
1296          * system is thrashing due to memory pressure, or if the page
1297          * is being written back.  So grab it first before we start
1298          * the transaction handle.  This also allows us to allocate
1299          * the page (if needed) without using GFP_NOFS.
1300          */
1301 retry_grab:
1302         page = grab_cache_page_write_begin(mapping, index, flags);
1303         if (!page)
1304                 return -ENOMEM;
1305         /*
1306          * The same as page allocation, we prealloc buffer heads before
1307          * starting the handle.
1308          */
1309         if (!page_has_buffers(page))
1310                 create_empty_buffers(page, inode->i_sb->s_blocksize, 0);
1311
1312         unlock_page(page);
1313
1314 retry_journal:
1315         handle = ext4_journal_start(inode, EXT4_HT_WRITE_PAGE, needed_blocks);
1316         if (IS_ERR(handle)) {
1317                 put_page(page);
1318                 return PTR_ERR(handle);
1319         }
1320
1321         lock_page(page);
1322         if (page->mapping != mapping) {
1323                 /* The page got truncated from under us */
1324                 unlock_page(page);
1325                 put_page(page);
1326                 ext4_journal_stop(handle);
1327                 goto retry_grab;
1328         }
1329         /* In case writeback began while the page was unlocked */
1330         wait_for_stable_page(page);
1331
1332 #ifdef CONFIG_EXT4_FS_ENCRYPTION
1333         if (ext4_should_dioread_nolock(inode))
1334                 ret = ext4_block_write_begin(page, pos, len,
1335                                              ext4_get_block_unwritten);
1336         else
1337                 ret = ext4_block_write_begin(page, pos, len,
1338                                              ext4_get_block);
1339 #else
1340         if (ext4_should_dioread_nolock(inode))
1341                 ret = __block_write_begin(page, pos, len,
1342                                           ext4_get_block_unwritten);
1343         else
1344                 ret = __block_write_begin(page, pos, len, ext4_get_block);
1345 #endif
1346         if (!ret && ext4_should_journal_data(inode)) {
1347                 ret = ext4_walk_page_buffers(handle, page_buffers(page),
1348                                              from, to, NULL,
1349                                              do_journal_get_write_access);
1350         }
1351
1352         if (ret) {
1353                 unlock_page(page);
1354                 /*
1355                  * __block_write_begin may have instantiated a few blocks
1356                  * outside i_size.  Trim these off again. Don't need
1357                  * i_size_read because we hold i_mutex.
1358                  *
1359                  * Add inode to orphan list in case we crash before
1360                  * truncate finishes
1361                  */
1362                 if (pos + len > inode->i_size && ext4_can_truncate(inode))
1363                         ext4_orphan_add(handle, inode);
1364
1365                 ext4_journal_stop(handle);
1366                 if (pos + len > inode->i_size) {
1367                         ext4_truncate_failed_write(inode);
1368                         /*
1369                          * If truncate failed early the inode might
1370                          * still be on the orphan list; we need to
1371                          * make sure the inode is removed from the
1372                          * orphan list in that case.
1373                          */
1374                         if (inode->i_nlink)
1375                                 ext4_orphan_del(NULL, inode);
1376                 }
1377
1378                 if (ret == -ENOSPC &&
1379                     ext4_should_retry_alloc(inode->i_sb, &retries))
1380                         goto retry_journal;
1381                 put_page(page);
1382                 return ret;
1383         }
1384         *pagep = page;
1385         return ret;
1386 }
1387
1388 /* For write_end() in data=journal mode */
1389 static int write_end_fn(handle_t *handle, struct buffer_head *bh)
1390 {
1391         int ret;
1392         if (!buffer_mapped(bh) || buffer_freed(bh))
1393                 return 0;
1394         set_buffer_uptodate(bh);
1395         ret = ext4_handle_dirty_metadata(handle, NULL, bh);
1396         clear_buffer_meta(bh);
1397         clear_buffer_prio(bh);
1398         return ret;
1399 }
1400
1401 /*
1402  * We need to pick up the new inode size which generic_commit_write gave us
1403  * `file' can be NULL - eg, when called from page_symlink().
1404  *
1405  * ext4 never places buffers on inode->i_mapping->private_list.  metadata
1406  * buffers are managed internally.
1407  */
1408 static int ext4_write_end(struct file *file,
1409                           struct address_space *mapping,
1410                           loff_t pos, unsigned len, unsigned copied,
1411                           struct page *page, void *fsdata)
1412 {
1413         handle_t *handle = ext4_journal_current_handle();
1414         struct inode *inode = mapping->host;
1415         loff_t old_size = inode->i_size;
1416         int ret = 0, ret2;
1417         int i_size_changed = 0;
1418         int inline_data = ext4_has_inline_data(inode);
1419
1420         trace_ext4_write_end(inode, pos, len, copied);
1421         if (inline_data &&
1422             ext4_test_inode_state(inode, EXT4_STATE_MAY_INLINE_DATA)) {
1423                 ret = ext4_write_inline_data_end(inode, pos, len,
1424                                                  copied, page);
1425                 if (ret < 0) {
1426                         unlock_page(page);
1427                         put_page(page);
1428                         goto errout;
1429                 }
1430                 copied = ret;
1431         } else
1432                 copied = block_write_end(file, mapping, pos,
1433                                          len, copied, page, fsdata);
1434         /*
1435          * it's important to update i_size while still holding page lock:
1436          * page writeout could otherwise come in and zero beyond i_size.
1437          */
1438         i_size_changed = ext4_update_inode_size(inode, pos + copied);
1439         unlock_page(page);
1440         put_page(page);
1441
1442         if (old_size < pos)
1443                 pagecache_isize_extended(inode, old_size, pos);
1444         /*
1445          * Don't mark the inode dirty under page lock. First, it unnecessarily
1446          * makes the holding time of page lock longer. Second, it forces lock
1447          * ordering of page lock and transaction start for journaling
1448          * filesystems.
1449          */
1450         if (i_size_changed || inline_data)
1451                 ext4_mark_inode_dirty(handle, inode);
1452
1453         if (pos + len > inode->i_size && ext4_can_truncate(inode))
1454                 /* if we have allocated more blocks and copied
1455                  * less. We will have blocks allocated outside
1456                  * inode->i_size. So truncate them
1457                  */
1458                 ext4_orphan_add(handle, inode);
1459 errout:
1460         ret2 = ext4_journal_stop(handle);
1461         if (!ret)
1462                 ret = ret2;
1463
1464         if (pos + len > inode->i_size) {
1465                 ext4_truncate_failed_write(inode);
1466                 /*
1467                  * If truncate failed early the inode might still be
1468                  * on the orphan list; we need to make sure the inode
1469                  * is removed from the orphan list in that case.
1470                  */
1471                 if (inode->i_nlink)
1472                         ext4_orphan_del(NULL, inode);
1473         }
1474
1475         return ret ? ret : copied;
1476 }
1477
1478 /*
1479  * This is a private version of page_zero_new_buffers() which doesn't
1480  * set the buffer to be dirty, since in data=journalled mode we need
1481  * to call ext4_handle_dirty_metadata() instead.
1482  */
1483 static void ext4_journalled_zero_new_buffers(handle_t *handle,
1484                                             struct page *page,
1485                                             unsigned from, unsigned to)
1486 {
1487         unsigned int block_start = 0, block_end;
1488         struct buffer_head *head, *bh;
1489
1490         bh = head = page_buffers(page);
1491         do {
1492                 block_end = block_start + bh->b_size;
1493                 if (buffer_new(bh)) {
1494                         if (block_end > from && block_start < to) {
1495                                 if (!PageUptodate(page)) {
1496                                         unsigned start, size;
1497
1498                                         start = max(from, block_start);
1499                                         size = min(to, block_end) - start;
1500
1501                                         zero_user(page, start, size);
1502                                         write_end_fn(handle, bh);
1503                                 }
1504                                 clear_buffer_new(bh);
1505                         }
1506                 }
1507                 block_start = block_end;
1508                 bh = bh->b_this_page;
1509         } while (bh != head);
1510 }
1511
1512 static int ext4_journalled_write_end(struct file *file,
1513                                      struct address_space *mapping,
1514                                      loff_t pos, unsigned len, unsigned copied,
1515                                      struct page *page, void *fsdata)
1516 {
1517         handle_t *handle = ext4_journal_current_handle();
1518         struct inode *inode = mapping->host;
1519         loff_t old_size = inode->i_size;
1520         int ret = 0, ret2;
1521         int partial = 0;
1522         unsigned from, to;
1523         int size_changed = 0;
1524         int inline_data = ext4_has_inline_data(inode);
1525
1526         trace_ext4_journalled_write_end(inode, pos, len, copied);
1527         from = pos & (PAGE_SIZE - 1);
1528         to = from + len;
1529
1530         BUG_ON(!ext4_handle_valid(handle));
1531
1532         if (inline_data) {
1533                 ret = ext4_write_inline_data_end(inode, pos, len,
1534                                                  copied, page);
1535                 if (ret < 0) {
1536                         unlock_page(page);
1537                         put_page(page);
1538                         goto errout;
1539                 }
1540                 copied = ret;
1541         } else if (unlikely(copied < len) && !PageUptodate(page)) {
1542                 copied = 0;
1543                 ext4_journalled_zero_new_buffers(handle, page, from, to);
1544         } else {
1545                 if (unlikely(copied < len))
1546                         ext4_journalled_zero_new_buffers(handle, page,
1547                                                          from + copied, to);
1548                 ret = ext4_walk_page_buffers(handle, page_buffers(page), from,
1549                                              from + copied, &partial,
1550                                              write_end_fn);
1551                 if (!partial)
1552                         SetPageUptodate(page);
1553         }
1554         size_changed = ext4_update_inode_size(inode, pos + copied);
1555         ext4_set_inode_state(inode, EXT4_STATE_JDATA);
1556         EXT4_I(inode)->i_datasync_tid = handle->h_transaction->t_tid;
1557         unlock_page(page);
1558         put_page(page);
1559
1560         if (old_size < pos)
1561                 pagecache_isize_extended(inode, old_size, pos);
1562
1563         if (size_changed || inline_data) {
1564                 ret2 = ext4_mark_inode_dirty(handle, inode);
1565                 if (!ret)
1566                         ret = ret2;
1567         }
1568
1569         if (pos + len > inode->i_size && ext4_can_truncate(inode))
1570                 /* if we have allocated more blocks and copied
1571                  * less. We will have blocks allocated outside
1572                  * inode->i_size. So truncate them
1573                  */
1574                 ext4_orphan_add(handle, inode);
1575
1576 errout:
1577         ret2 = ext4_journal_stop(handle);
1578         if (!ret)
1579                 ret = ret2;
1580         if (pos + len > inode->i_size) {
1581                 ext4_truncate_failed_write(inode);
1582                 /*
1583                  * If truncate failed early the inode might still be
1584                  * on the orphan list; we need to make sure the inode
1585                  * is removed from the orphan list in that case.
1586                  */
1587                 if (inode->i_nlink)
1588                         ext4_orphan_del(NULL, inode);
1589         }
1590
1591         return ret ? ret : copied;
1592 }
1593
1594 /*
1595  * Reserve space for a single cluster
1596  */
1597 static int ext4_da_reserve_space(struct inode *inode)
1598 {
1599         struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
1600         struct ext4_inode_info *ei = EXT4_I(inode);
1601         int ret;
1602
1603         /*
1604          * We will charge metadata quota at writeout time; this saves
1605          * us from metadata over-estimation, though we may go over by
1606          * a small amount in the end.  Here we just reserve for data.
1607          */
1608         ret = dquot_reserve_block(inode, EXT4_C2B(sbi, 1));
1609         if (ret)
1610                 return ret;
1611
1612         spin_lock(&ei->i_block_reservation_lock);
1613         if (ext4_claim_free_clusters(sbi, 1, 0)) {
1614                 spin_unlock(&ei->i_block_reservation_lock);
1615                 dquot_release_reservation_block(inode, EXT4_C2B(sbi, 1));
1616                 return -ENOSPC;
1617         }
1618         ei->i_reserved_data_blocks++;
1619         trace_ext4_da_reserve_space(inode);
1620         spin_unlock(&ei->i_block_reservation_lock);
1621
1622         return 0;       /* success */
1623 }
1624
1625 static void ext4_da_release_space(struct inode *inode, int to_free)
1626 {
1627         struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
1628         struct ext4_inode_info *ei = EXT4_I(inode);
1629
1630         if (!to_free)
1631                 return;         /* Nothing to release, exit */
1632
1633         spin_lock(&EXT4_I(inode)->i_block_reservation_lock);
1634
1635         trace_ext4_da_release_space(inode, to_free);
1636         if (unlikely(to_free > ei->i_reserved_data_blocks)) {
1637                 /*
1638                  * if there aren't enough reserved blocks, then the
1639                  * counter is messed up somewhere.  Since this
1640                  * function is called from invalidate page, it's
1641                  * harmless to return without any action.
1642                  */
1643                 ext4_warning(inode->i_sb, "ext4_da_release_space: "
1644                          "ino %lu, to_free %d with only %d reserved "
1645                          "data blocks", inode->i_ino, to_free,
1646                          ei->i_reserved_data_blocks);
1647                 WARN_ON(1);
1648                 to_free = ei->i_reserved_data_blocks;
1649         }
1650         ei->i_reserved_data_blocks -= to_free;
1651
1652         /* update fs dirty data blocks counter */
1653         percpu_counter_sub(&sbi->s_dirtyclusters_counter, to_free);
1654
1655         spin_unlock(&EXT4_I(inode)->i_block_reservation_lock);
1656
1657         dquot_release_reservation_block(inode, EXT4_C2B(sbi, to_free));
1658 }
1659
1660 static void ext4_da_page_release_reservation(struct page *page,
1661                                              unsigned int offset,
1662                                              unsigned int length)
1663 {
1664         int to_release = 0, contiguous_blks = 0;
1665         struct buffer_head *head, *bh;
1666         unsigned int curr_off = 0;
1667         struct inode *inode = page->mapping->host;
1668         struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
1669         unsigned int stop = offset + length;
1670         int num_clusters;
1671         ext4_fsblk_t lblk;
1672
1673         BUG_ON(stop > PAGE_SIZE || stop < length);
1674
1675         head = page_buffers(page);
1676         bh = head;
1677         do {
1678                 unsigned int next_off = curr_off + bh->b_size;
1679
1680                 if (next_off > stop)
1681                         break;
1682
1683                 if ((offset <= curr_off) && (buffer_delay(bh))) {
1684                         to_release++;
1685                         contiguous_blks++;
1686                         clear_buffer_delay(bh);
1687                 } else if (contiguous_blks) {
1688                         lblk = page->index <<
1689                                (PAGE_SHIFT - inode->i_blkbits);
1690                         lblk += (curr_off >> inode->i_blkbits) -
1691                                 contiguous_blks;
1692                         ext4_es_remove_extent(inode, lblk, contiguous_blks);
1693                         contiguous_blks = 0;
1694                 }
1695                 curr_off = next_off;
1696         } while ((bh = bh->b_this_page) != head);
1697
1698         if (contiguous_blks) {
1699                 lblk = page->index << (PAGE_SHIFT - inode->i_blkbits);
1700                 lblk += (curr_off >> inode->i_blkbits) - contiguous_blks;
1701                 ext4_es_remove_extent(inode, lblk, contiguous_blks);
1702         }
1703
1704         /* If we have released all the blocks belonging to a cluster, then we
1705          * need to release the reserved space for that cluster. */
1706         num_clusters = EXT4_NUM_B2C(sbi, to_release);
1707         while (num_clusters > 0) {
1708                 lblk = (page->index << (PAGE_SHIFT - inode->i_blkbits)) +
1709                         ((num_clusters - 1) << sbi->s_cluster_bits);
1710                 if (sbi->s_cluster_ratio == 1 ||
1711                     !ext4_find_delalloc_cluster(inode, lblk))
1712                         ext4_da_release_space(inode, 1);
1713
1714                 num_clusters--;
1715         }
1716 }
1717
1718 /*
1719  * Delayed allocation stuff
1720  */
1721
1722 struct mpage_da_data {
1723         struct inode *inode;
1724         struct writeback_control *wbc;
1725
1726         pgoff_t first_page;     /* The first page to write */
1727         pgoff_t next_page;      /* Current page to examine */
1728         pgoff_t last_page;      /* Last page to examine */
1729         /*
1730          * Extent to map - this can be after first_page because that can be
1731          * fully mapped. We somewhat abuse m_flags to store whether the extent
1732          * is delalloc or unwritten.
1733          */
1734         struct ext4_map_blocks map;
1735         struct ext4_io_submit io_submit;        /* IO submission data */
1736         unsigned int do_map:1;
1737 };
1738
1739 static void mpage_release_unused_pages(struct mpage_da_data *mpd,
1740                                        bool invalidate)
1741 {
1742         int nr_pages, i;
1743         pgoff_t index, end;
1744         struct pagevec pvec;
1745         struct inode *inode = mpd->inode;
1746         struct address_space *mapping = inode->i_mapping;
1747
1748         /* This is necessary when next_page == 0. */
1749         if (mpd->first_page >= mpd->next_page)
1750                 return;
1751
1752         index = mpd->first_page;
1753         end   = mpd->next_page - 1;
1754         if (invalidate) {
1755                 ext4_lblk_t start, last;
1756                 start = index << (PAGE_SHIFT - inode->i_blkbits);
1757                 last = end << (PAGE_SHIFT - inode->i_blkbits);
1758
1759                 /*
1760                  * avoid racing with extent status tree scans made by
1761                  * ext4_insert_delayed_block()
1762                  */
1763                 down_write(&EXT4_I(inode)->i_data_sem);
1764                 ext4_es_remove_extent(inode, start, last - start + 1);
1765                 up_write(&EXT4_I(inode)->i_data_sem);
1766         }
1767
1768         pagevec_init(&pvec);
1769         while (index <= end) {
1770                 nr_pages = pagevec_lookup_range(&pvec, mapping, &index, end);
1771                 if (nr_pages == 0)
1772                         break;
1773                 for (i = 0; i < nr_pages; i++) {
1774                         struct page *page = pvec.pages[i];
1775
1776                         BUG_ON(!PageLocked(page));
1777                         BUG_ON(PageWriteback(page));
1778                         if (invalidate) {
1779                                 if (page_mapped(page))
1780                                         clear_page_dirty_for_io(page);
1781                                 block_invalidatepage(page, 0, PAGE_SIZE);
1782                                 ClearPageUptodate(page);
1783                         }
1784                         unlock_page(page);
1785                 }
1786                 pagevec_release(&pvec);
1787         }
1788 }
1789
1790 static void ext4_print_free_blocks(struct inode *inode)
1791 {
1792         struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
1793         struct super_block *sb = inode->i_sb;
1794         struct ext4_inode_info *ei = EXT4_I(inode);
1795
1796         ext4_msg(sb, KERN_CRIT, "Total free blocks count %lld",
1797                EXT4_C2B(EXT4_SB(inode->i_sb),
1798                         ext4_count_free_clusters(sb)));
1799         ext4_msg(sb, KERN_CRIT, "Free/Dirty block details");
1800         ext4_msg(sb, KERN_CRIT, "free_blocks=%lld",
1801                (long long) EXT4_C2B(EXT4_SB(sb),
1802                 percpu_counter_sum(&sbi->s_freeclusters_counter)));
1803         ext4_msg(sb, KERN_CRIT, "dirty_blocks=%lld",
1804                (long long) EXT4_C2B(EXT4_SB(sb),
1805                 percpu_counter_sum(&sbi->s_dirtyclusters_counter)));
1806         ext4_msg(sb, KERN_CRIT, "Block reservation details");
1807         ext4_msg(sb, KERN_CRIT, "i_reserved_data_blocks=%u",
1808                  ei->i_reserved_data_blocks);
1809         return;
1810 }
1811
1812 static int ext4_bh_delay_or_unwritten(handle_t *handle, struct buffer_head *bh)
1813 {
1814         return (buffer_delay(bh) || buffer_unwritten(bh)) && buffer_dirty(bh);
1815 }
1816
1817 /*
1818  * This function is grabs code from the very beginning of
1819  * ext4_map_blocks, but assumes that the caller is from delayed write
1820  * time. This function looks up the requested blocks and sets the
1821  * buffer delay bit under the protection of i_data_sem.
1822  */
1823 static int ext4_da_map_blocks(struct inode *inode, sector_t iblock,
1824                               struct ext4_map_blocks *map,
1825                               struct buffer_head *bh)
1826 {
1827         struct extent_status es;
1828         int retval;
1829         sector_t invalid_block = ~((sector_t) 0xffff);
1830 #ifdef ES_AGGRESSIVE_TEST
1831         struct ext4_map_blocks orig_map;
1832
1833         memcpy(&orig_map, map, sizeof(*map));
1834 #endif
1835
1836         if (invalid_block < ext4_blocks_count(EXT4_SB(inode->i_sb)->s_es))
1837                 invalid_block = ~0;
1838
1839         map->m_flags = 0;
1840         ext_debug("ext4_da_map_blocks(): inode %lu, max_blocks %u,"
1841                   "logical block %lu\n", inode->i_ino, map->m_len,
1842                   (unsigned long) map->m_lblk);
1843
1844         /* Lookup extent status tree firstly */
1845         if (ext4_es_lookup_extent(inode, iblock, &es)) {
1846                 if (ext4_es_is_hole(&es)) {
1847                         retval = 0;
1848                         down_read(&EXT4_I(inode)->i_data_sem);
1849                         goto add_delayed;
1850                 }
1851
1852                 /*
1853                  * Delayed extent could be allocated by fallocate.
1854                  * So we need to check it.
1855                  */
1856                 if (ext4_es_is_delayed(&es) && !ext4_es_is_unwritten(&es)) {
1857                         map_bh(bh, inode->i_sb, invalid_block);
1858                         set_buffer_new(bh);
1859                         set_buffer_delay(bh);
1860                         return 0;
1861                 }
1862
1863                 map->m_pblk = ext4_es_pblock(&es) + iblock - es.es_lblk;
1864                 retval = es.es_len - (iblock - es.es_lblk);
1865                 if (retval > map->m_len)
1866                         retval = map->m_len;
1867                 map->m_len = retval;
1868                 if (ext4_es_is_written(&es))
1869                         map->m_flags |= EXT4_MAP_MAPPED;
1870                 else if (ext4_es_is_unwritten(&es))
1871                         map->m_flags |= EXT4_MAP_UNWRITTEN;
1872                 else
1873                         BUG_ON(1);
1874
1875 #ifdef ES_AGGRESSIVE_TEST
1876                 ext4_map_blocks_es_recheck(NULL, inode, map, &orig_map, 0);
1877 #endif
1878                 return retval;
1879         }
1880
1881         /*
1882          * Try to see if we can get the block without requesting a new
1883          * file system block.
1884          */
1885         down_read(&EXT4_I(inode)->i_data_sem);
1886         if (ext4_has_inline_data(inode))
1887                 retval = 0;
1888         else if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS))
1889                 retval = ext4_ext_map_blocks(NULL, inode, map, 0);
1890         else
1891                 retval = ext4_ind_map_blocks(NULL, inode, map, 0);
1892
1893 add_delayed:
1894         if (retval == 0) {
1895                 int ret;
1896                 /*
1897                  * XXX: __block_prepare_write() unmaps passed block,
1898                  * is it OK?
1899                  */
1900                 /*
1901                  * If the block was allocated from previously allocated cluster,
1902                  * then we don't need to reserve it again. However we still need
1903                  * to reserve metadata for every block we're going to write.
1904                  */
1905                 if (EXT4_SB(inode->i_sb)->s_cluster_ratio == 1 ||
1906                     !ext4_find_delalloc_cluster(inode, map->m_lblk)) {
1907                         ret = ext4_da_reserve_space(inode);
1908                         if (ret) {
1909                                 /* not enough space to reserve */
1910                                 retval = ret;
1911                                 goto out_unlock;
1912                         }
1913                 }
1914
1915                 ret = ext4_es_insert_extent(inode, map->m_lblk, map->m_len,
1916                                             ~0, EXTENT_STATUS_DELAYED);
1917                 if (ret) {
1918                         retval = ret;
1919                         goto out_unlock;
1920                 }
1921
1922                 map_bh(bh, inode->i_sb, invalid_block);
1923                 set_buffer_new(bh);
1924                 set_buffer_delay(bh);
1925         } else if (retval > 0) {
1926                 int ret;
1927                 unsigned int status;
1928
1929                 if (unlikely(retval != map->m_len)) {
1930                         ext4_warning(inode->i_sb,
1931                                      "ES len assertion failed for inode "
1932                                      "%lu: retval %d != map->m_len %d",
1933                                      inode->i_ino, retval, map->m_len);
1934                         WARN_ON(1);
1935                 }
1936
1937                 status = map->m_flags & EXT4_MAP_UNWRITTEN ?
1938                                 EXTENT_STATUS_UNWRITTEN : EXTENT_STATUS_WRITTEN;
1939                 ret = ext4_es_insert_extent(inode, map->m_lblk, map->m_len,
1940                                             map->m_pblk, status);
1941                 if (ret != 0)
1942                         retval = ret;
1943         }
1944
1945 out_unlock:
1946         up_read((&EXT4_I(inode)->i_data_sem));
1947
1948         return retval;
1949 }
1950
1951 /*
1952  * This is a special get_block_t callback which is used by
1953  * ext4_da_write_begin().  It will either return mapped block or
1954  * reserve space for a single block.
1955  *
1956  * For delayed buffer_head we have BH_Mapped, BH_New, BH_Delay set.
1957  * We also have b_blocknr = -1 and b_bdev initialized properly
1958  *
1959  * For unwritten buffer_head we have BH_Mapped, BH_New, BH_Unwritten set.
1960  * We also have b_blocknr = physicalblock mapping unwritten extent and b_bdev
1961  * initialized properly.
1962  */
1963 int ext4_da_get_block_prep(struct inode *inode, sector_t iblock,
1964                            struct buffer_head *bh, int create)
1965 {
1966         struct ext4_map_blocks map;
1967         int ret = 0;
1968
1969         BUG_ON(create == 0);
1970         BUG_ON(bh->b_size != inode->i_sb->s_blocksize);
1971
1972         map.m_lblk = iblock;
1973         map.m_len = 1;
1974
1975         /*
1976          * first, we need to know whether the block is allocated already
1977          * preallocated blocks are unmapped but should treated
1978          * the same as allocated blocks.
1979          */
1980         ret = ext4_da_map_blocks(inode, iblock, &map, bh);
1981         if (ret <= 0)
1982                 return ret;
1983
1984         map_bh(bh, inode->i_sb, map.m_pblk);
1985         ext4_update_bh_state(bh, map.m_flags);
1986
1987         if (buffer_unwritten(bh)) {
1988                 /* A delayed write to unwritten bh should be marked
1989                  * new and mapped.  Mapped ensures that we don't do
1990                  * get_block multiple times when we write to the same
1991                  * offset and new ensures that we do proper zero out
1992                  * for partial write.
1993                  */
1994                 set_buffer_new(bh);
1995                 set_buffer_mapped(bh);
1996         }
1997         return 0;
1998 }
1999
2000 static int bget_one(handle_t *handle, struct buffer_head *bh)
2001 {
2002         get_bh(bh);
2003         return 0;
2004 }
2005
2006 static int bput_one(handle_t *handle, struct buffer_head *bh)
2007 {
2008         put_bh(bh);
2009         return 0;
2010 }
2011
2012 static int __ext4_journalled_writepage(struct page *page,
2013                                        unsigned int len)
2014 {
2015         struct address_space *mapping = page->mapping;
2016         struct inode *inode = mapping->host;
2017         struct buffer_head *page_bufs = NULL;
2018         handle_t *handle = NULL;
2019         int ret = 0, err = 0;
2020         int inline_data = ext4_has_inline_data(inode);
2021         struct buffer_head *inode_bh = NULL;
2022
2023         ClearPageChecked(page);
2024
2025         if (inline_data) {
2026                 BUG_ON(page->index != 0);
2027                 BUG_ON(len > ext4_get_max_inline_size(inode));
2028                 inode_bh = ext4_journalled_write_inline_data(inode, len, page);
2029                 if (inode_bh == NULL)
2030                         goto out;
2031         } else {
2032                 page_bufs = page_buffers(page);
2033                 if (!page_bufs) {
2034                         BUG();
2035                         goto out;
2036                 }
2037                 ext4_walk_page_buffers(handle, page_bufs, 0, len,
2038                                        NULL, bget_one);
2039         }
2040         /*
2041          * We need to release the page lock before we start the
2042          * journal, so grab a reference so the page won't disappear
2043          * out from under us.
2044          */
2045         get_page(page);
2046         unlock_page(page);
2047
2048         handle = ext4_journal_start(inode, EXT4_HT_WRITE_PAGE,
2049                                     ext4_writepage_trans_blocks(inode));
2050         if (IS_ERR(handle)) {
2051                 ret = PTR_ERR(handle);
2052                 put_page(page);
2053                 goto out_no_pagelock;
2054         }
2055         BUG_ON(!ext4_handle_valid(handle));
2056
2057         lock_page(page);
2058         put_page(page);
2059         if (page->mapping != mapping) {
2060                 /* The page got truncated from under us */
2061                 ext4_journal_stop(handle);
2062                 ret = 0;
2063                 goto out;
2064         }
2065
2066         if (inline_data) {
2067                 ret = ext4_mark_inode_dirty(handle, inode);
2068         } else {
2069                 ret = ext4_walk_page_buffers(handle, page_bufs, 0, len, NULL,
2070                                              do_journal_get_write_access);
2071
2072                 err = ext4_walk_page_buffers(handle, page_bufs, 0, len, NULL,
2073                                              write_end_fn);
2074         }
2075         if (ret == 0)
2076                 ret = err;
2077         EXT4_I(inode)->i_datasync_tid = handle->h_transaction->t_tid;
2078         err = ext4_journal_stop(handle);
2079         if (!ret)
2080                 ret = err;
2081
2082         ext4_set_inode_state(inode, EXT4_STATE_JDATA);
2083 out:
2084         unlock_page(page);
2085 out_no_pagelock:
2086         if (!inline_data && page_bufs)
2087                 ext4_walk_page_buffers(NULL, page_bufs, 0, len,
2088                                        NULL, bput_one);
2089         brelse(inode_bh);
2090         return ret;
2091 }
2092
2093 /*
2094  * Note that we don't need to start a transaction unless we're journaling data
2095  * because we should have holes filled from ext4_page_mkwrite(). We even don't
2096  * need to file the inode to the transaction's list in ordered mode because if
2097  * we are writing back data added by write(), the inode is already there and if
2098  * we are writing back data modified via mmap(), no one guarantees in which
2099  * transaction the data will hit the disk. In case we are journaling data, we
2100  * cannot start transaction directly because transaction start ranks above page
2101  * lock so we have to do some magic.
2102  *
2103  * This function can get called via...
2104  *   - ext4_writepages after taking page lock (have journal handle)
2105  *   - journal_submit_inode_data_buffers (no journal handle)
2106  *   - shrink_page_list via the kswapd/direct reclaim (no journal handle)
2107  *   - grab_page_cache when doing write_begin (have journal handle)
2108  *
2109  * We don't do any block allocation in this function. If we have page with
2110  * multiple blocks we need to write those buffer_heads that are mapped. This
2111  * is important for mmaped based write. So if we do with blocksize 1K
2112  * truncate(f, 1024);
2113  * a = mmap(f, 0, 4096);
2114  * a[0] = 'a';
2115  * truncate(f, 4096);
2116  * we have in the page first buffer_head mapped via page_mkwrite call back
2117  * but other buffer_heads would be unmapped but dirty (dirty done via the
2118  * do_wp_page). So writepage should write the first block. If we modify
2119  * the mmap area beyond 1024 we will again get a page_fault and the
2120  * page_mkwrite callback will do the block allocation and mark the
2121  * buffer_heads mapped.
2122  *
2123  * We redirty the page if we have any buffer_heads that is either delay or
2124  * unwritten in the page.
2125  *
2126  * We can get recursively called as show below.
2127  *
2128  *      ext4_writepage() -> kmalloc() -> __alloc_pages() -> page_launder() ->
2129  *              ext4_writepage()
2130  *
2131  * But since we don't do any block allocation we should not deadlock.
2132  * Page also have the dirty flag cleared so we don't get recurive page_lock.
2133  */
2134 static int ext4_writepage(struct page *page,
2135                           struct writeback_control *wbc)
2136 {
2137         int ret = 0;
2138         loff_t size;
2139         unsigned int len;
2140         struct buffer_head *page_bufs = NULL;
2141         struct inode *inode = page->mapping->host;
2142         struct ext4_io_submit io_submit;
2143         bool keep_towrite = false;
2144
2145         if (unlikely(ext4_forced_shutdown(EXT4_SB(inode->i_sb)))) {
2146                 inode->i_mapping->a_ops->invalidatepage(page, 0, PAGE_SIZE);
2147                 unlock_page(page);
2148                 return -EIO;
2149         }
2150
2151         trace_ext4_writepage(page);
2152         size = i_size_read(inode);
2153         if (page->index == size >> PAGE_SHIFT)
2154                 len = size & ~PAGE_MASK;
2155         else
2156                 len = PAGE_SIZE;
2157
2158         /* Should never happen but for bugs in other kernel subsystems */
2159         if (!page_has_buffers(page)) {
2160                 ext4_warning_inode(inode,
2161                    "page %lu does not have buffers attached", page->index);
2162                 ClearPageDirty(page);
2163                 unlock_page(page);
2164                 return 0;
2165         }
2166
2167         page_bufs = page_buffers(page);
2168         /*
2169          * We cannot do block allocation or other extent handling in this
2170          * function. If there are buffers needing that, we have to redirty
2171          * the page. But we may reach here when we do a journal commit via
2172          * journal_submit_inode_data_buffers() and in that case we must write
2173          * allocated buffers to achieve data=ordered mode guarantees.
2174          *
2175          * Also, if there is only one buffer per page (the fs block
2176          * size == the page size), if one buffer needs block
2177          * allocation or needs to modify the extent tree to clear the
2178          * unwritten flag, we know that the page can't be written at
2179          * all, so we might as well refuse the write immediately.
2180          * Unfortunately if the block size != page size, we can't as
2181          * easily detect this case using ext4_walk_page_buffers(), but
2182          * for the extremely common case, this is an optimization that
2183          * skips a useless round trip through ext4_bio_write_page().
2184          */
2185         if (ext4_walk_page_buffers(NULL, page_bufs, 0, len, NULL,
2186                                    ext4_bh_delay_or_unwritten)) {
2187                 redirty_page_for_writepage(wbc, page);
2188                 if ((current->flags & PF_MEMALLOC) ||
2189                     (inode->i_sb->s_blocksize == PAGE_SIZE)) {
2190                         /*
2191                          * For memory cleaning there's no point in writing only
2192                          * some buffers. So just bail out. Warn if we came here
2193                          * from direct reclaim.
2194                          */
2195                         WARN_ON_ONCE((current->flags & (PF_MEMALLOC|PF_KSWAPD))
2196                                                         == PF_MEMALLOC);
2197                         unlock_page(page);
2198                         return 0;
2199                 }
2200                 keep_towrite = true;
2201         }
2202
2203         if (PageChecked(page) && ext4_should_journal_data(inode))
2204                 /*
2205                  * It's mmapped pagecache.  Add buffers and journal it.  There
2206                  * doesn't seem much point in redirtying the page here.
2207                  */
2208                 return __ext4_journalled_writepage(page, len);
2209
2210         ext4_io_submit_init(&io_submit, wbc);
2211         io_submit.io_end = ext4_init_io_end(inode, GFP_NOFS);
2212         if (!io_submit.io_end) {
2213                 redirty_page_for_writepage(wbc, page);
2214                 unlock_page(page);
2215                 return -ENOMEM;
2216         }
2217         ret = ext4_bio_write_page(&io_submit, page, len, wbc, keep_towrite);
2218         ext4_io_submit(&io_submit);
2219         /* Drop io_end reference we got from init */
2220         ext4_put_io_end_defer(io_submit.io_end);
2221         return ret;
2222 }
2223
2224 static int mpage_submit_page(struct mpage_da_data *mpd, struct page *page)
2225 {
2226         int len;
2227         loff_t size;
2228         int err;
2229
2230         BUG_ON(page->index != mpd->first_page);
2231         clear_page_dirty_for_io(page);
2232         /*
2233          * We have to be very careful here!  Nothing protects writeback path
2234          * against i_size changes and the page can be writeably mapped into
2235          * page tables. So an application can be growing i_size and writing
2236          * data through mmap while writeback runs. clear_page_dirty_for_io()
2237          * write-protects our page in page tables and the page cannot get
2238          * written to again until we release page lock. So only after
2239          * clear_page_dirty_for_io() we are safe to sample i_size for
2240          * ext4_bio_write_page() to zero-out tail of the written page. We rely
2241          * on the barrier provided by TestClearPageDirty in
2242          * clear_page_dirty_for_io() to make sure i_size is really sampled only
2243          * after page tables are updated.
2244          */
2245         size = i_size_read(mpd->inode);
2246         if (page->index == size >> PAGE_SHIFT)
2247                 len = size & ~PAGE_MASK;
2248         else
2249                 len = PAGE_SIZE;
2250         err = ext4_bio_write_page(&mpd->io_submit, page, len, mpd->wbc, false);
2251         if (!err)
2252                 mpd->wbc->nr_to_write--;
2253         mpd->first_page++;
2254
2255         return err;
2256 }
2257
2258 #define BH_FLAGS ((1 << BH_Unwritten) | (1 << BH_Delay))
2259
2260 /*
2261  * mballoc gives us at most this number of blocks...
2262  * XXX: That seems to be only a limitation of ext4_mb_normalize_request().
2263  * The rest of mballoc seems to handle chunks up to full group size.
2264  */
2265 #define MAX_WRITEPAGES_EXTENT_LEN 2048
2266
2267 /*
2268  * mpage_add_bh_to_extent - try to add bh to extent of blocks to map
2269  *
2270  * @mpd - extent of blocks
2271  * @lblk - logical number of the block in the file
2272  * @bh - buffer head we want to add to the extent
2273  *
2274  * The function is used to collect contig. blocks in the same state. If the
2275  * buffer doesn't require mapping for writeback and we haven't started the
2276  * extent of buffers to map yet, the function returns 'true' immediately - the
2277  * caller can write the buffer right away. Otherwise the function returns true
2278  * if the block has been added to the extent, false if the block couldn't be
2279  * added.
2280  */
2281 static bool mpage_add_bh_to_extent(struct mpage_da_data *mpd, ext4_lblk_t lblk,
2282                                    struct buffer_head *bh)
2283 {
2284         struct ext4_map_blocks *map = &mpd->map;
2285
2286         /* Buffer that doesn't need mapping for writeback? */
2287         if (!buffer_dirty(bh) || !buffer_mapped(bh) ||
2288             (!buffer_delay(bh) && !buffer_unwritten(bh))) {
2289                 /* So far no extent to map => we write the buffer right away */
2290                 if (map->m_len == 0)
2291                         return true;
2292                 return false;
2293         }
2294
2295         /* First block in the extent? */
2296         if (map->m_len == 0) {
2297                 /* We cannot map unless handle is started... */
2298                 if (!mpd->do_map)
2299                         return false;
2300                 map->m_lblk = lblk;
2301                 map->m_len = 1;
2302                 map->m_flags = bh->b_state & BH_FLAGS;
2303                 return true;
2304         }
2305
2306         /* Don't go larger than mballoc is willing to allocate */
2307         if (map->m_len >= MAX_WRITEPAGES_EXTENT_LEN)
2308                 return false;
2309
2310         /* Can we merge the block to our big extent? */
2311         if (lblk == map->m_lblk + map->m_len &&
2312             (bh->b_state & BH_FLAGS) == map->m_flags) {
2313                 map->m_len++;
2314                 return true;
2315         }
2316         return false;
2317 }
2318
2319 /*
2320  * mpage_process_page_bufs - submit page buffers for IO or add them to extent
2321  *
2322  * @mpd - extent of blocks for mapping
2323  * @head - the first buffer in the page
2324  * @bh - buffer we should start processing from
2325  * @lblk - logical number of the block in the file corresponding to @bh
2326  *
2327  * Walk through page buffers from @bh upto @head (exclusive) and either submit
2328  * the page for IO if all buffers in this page were mapped and there's no
2329  * accumulated extent of buffers to map or add buffers in the page to the
2330  * extent of buffers to map. The function returns 1 if the caller can continue
2331  * by processing the next page, 0 if it should stop adding buffers to the
2332  * extent to map because we cannot extend it anymore. It can also return value
2333  * < 0 in case of error during IO submission.
2334  */
2335 static int mpage_process_page_bufs(struct mpage_da_data *mpd,
2336                                    struct buffer_head *head,
2337                                    struct buffer_head *bh,
2338                                    ext4_lblk_t lblk)
2339 {
2340         struct inode *inode = mpd->inode;
2341         int err;
2342         ext4_lblk_t blocks = (i_size_read(inode) + i_blocksize(inode) - 1)
2343                                                         >> inode->i_blkbits;
2344
2345         do {
2346                 BUG_ON(buffer_locked(bh));
2347
2348                 if (lblk >= blocks || !mpage_add_bh_to_extent(mpd, lblk, bh)) {
2349                         /* Found extent to map? */
2350                         if (mpd->map.m_len)
2351                                 return 0;
2352                         /* Buffer needs mapping and handle is not started? */
2353                         if (!mpd->do_map)
2354                                 return 0;
2355                         /* Everything mapped so far and we hit EOF */
2356                         break;
2357                 }
2358         } while (lblk++, (bh = bh->b_this_page) != head);
2359         /* So far everything mapped? Submit the page for IO. */
2360         if (mpd->map.m_len == 0) {
2361                 err = mpage_submit_page(mpd, head->b_page);
2362                 if (err < 0)
2363                         return err;
2364         }
2365         return lblk < blocks;
2366 }
2367
2368 /*
2369  * mpage_map_buffers - update buffers corresponding to changed extent and
2370  *                     submit fully mapped pages for IO
2371  *
2372  * @mpd - description of extent to map, on return next extent to map
2373  *
2374  * Scan buffers corresponding to changed extent (we expect corresponding pages
2375  * to be already locked) and update buffer state according to new extent state.
2376  * We map delalloc buffers to their physical location, clear unwritten bits,
2377  * and mark buffers as uninit when we perform writes to unwritten extents
2378  * and do extent conversion after IO is finished. If the last page is not fully
2379  * mapped, we update @map to the next extent in the last page that needs
2380  * mapping. Otherwise we submit the page for IO.
2381  */
2382 static int mpage_map_and_submit_buffers(struct mpage_da_data *mpd)
2383 {
2384         struct pagevec pvec;
2385         int nr_pages, i;
2386         struct inode *inode = mpd->inode;
2387         struct buffer_head *head, *bh;
2388         int bpp_bits = PAGE_SHIFT - inode->i_blkbits;
2389         pgoff_t start, end;
2390         ext4_lblk_t lblk;
2391         sector_t pblock;
2392         int err;
2393
2394         start = mpd->map.m_lblk >> bpp_bits;
2395         end = (mpd->map.m_lblk + mpd->map.m_len - 1) >> bpp_bits;
2396         lblk = start << bpp_bits;
2397         pblock = mpd->map.m_pblk;
2398
2399         pagevec_init(&pvec);
2400         while (start <= end) {
2401                 nr_pages = pagevec_lookup_range(&pvec, inode->i_mapping,
2402                                                 &start, end);
2403                 if (nr_pages == 0)
2404                         break;
2405                 for (i = 0; i < nr_pages; i++) {
2406                         struct page *page = pvec.pages[i];
2407
2408                         bh = head = page_buffers(page);
2409                         do {
2410                                 if (lblk < mpd->map.m_lblk)
2411                                         continue;
2412                                 if (lblk >= mpd->map.m_lblk + mpd->map.m_len) {
2413                                         /*
2414                                          * Buffer after end of mapped extent.
2415                                          * Find next buffer in the page to map.
2416                                          */
2417                                         mpd->map.m_len = 0;
2418                                         mpd->map.m_flags = 0;
2419                                         /*
2420                                          * FIXME: If dioread_nolock supports
2421                                          * blocksize < pagesize, we need to make
2422                                          * sure we add size mapped so far to
2423                                          * io_end->size as the following call
2424                                          * can submit the page for IO.
2425                                          */
2426                                         err = mpage_process_page_bufs(mpd, head,
2427                                                                       bh, lblk);
2428                                         pagevec_release(&pvec);
2429                                         if (err > 0)
2430                                                 err = 0;
2431                                         return err;
2432                                 }
2433                                 if (buffer_delay(bh)) {
2434                                         clear_buffer_delay(bh);
2435                                         bh->b_blocknr = pblock++;
2436                                 }
2437                                 clear_buffer_unwritten(bh);
2438                         } while (lblk++, (bh = bh->b_this_page) != head);
2439
2440                         /*
2441                          * FIXME: This is going to break if dioread_nolock
2442                          * supports blocksize < pagesize as we will try to
2443                          * convert potentially unmapped parts of inode.
2444                          */
2445                         mpd->io_submit.io_end->size += PAGE_SIZE;
2446                         /* Page fully mapped - let IO run! */
2447                         err = mpage_submit_page(mpd, page);
2448                         if (err < 0) {
2449                                 pagevec_release(&pvec);
2450                                 return err;
2451                         }
2452                 }
2453                 pagevec_release(&pvec);
2454         }
2455         /* Extent fully mapped and matches with page boundary. We are done. */
2456         mpd->map.m_len = 0;
2457         mpd->map.m_flags = 0;
2458         return 0;
2459 }
2460
2461 static int mpage_map_one_extent(handle_t *handle, struct mpage_da_data *mpd)
2462 {
2463         struct inode *inode = mpd->inode;
2464         struct ext4_map_blocks *map = &mpd->map;
2465         int get_blocks_flags;
2466         int err, dioread_nolock;
2467
2468         trace_ext4_da_write_pages_extent(inode, map);
2469         /*
2470          * Call ext4_map_blocks() to allocate any delayed allocation blocks, or
2471          * to convert an unwritten extent to be initialized (in the case
2472          * where we have written into one or more preallocated blocks).  It is
2473          * possible that we're going to need more metadata blocks than
2474          * previously reserved. However we must not fail because we're in
2475          * writeback and there is nothing we can do about it so it might result
2476          * in data loss.  So use reserved blocks to allocate metadata if
2477          * possible.
2478          *
2479          * We pass in the magic EXT4_GET_BLOCKS_DELALLOC_RESERVE if
2480          * the blocks in question are delalloc blocks.  This indicates
2481          * that the blocks and quotas has already been checked when
2482          * the data was copied into the page cache.
2483          */
2484         get_blocks_flags = EXT4_GET_BLOCKS_CREATE |
2485                            EXT4_GET_BLOCKS_METADATA_NOFAIL |
2486                            EXT4_GET_BLOCKS_IO_SUBMIT;
2487         dioread_nolock = ext4_should_dioread_nolock(inode);
2488         if (dioread_nolock)
2489                 get_blocks_flags |= EXT4_GET_BLOCKS_IO_CREATE_EXT;
2490         if (map->m_flags & (1 << BH_Delay))
2491                 get_blocks_flags |= EXT4_GET_BLOCKS_DELALLOC_RESERVE;
2492
2493         err = ext4_map_blocks(handle, inode, map, get_blocks_flags);
2494         if (err < 0)
2495                 return err;
2496         if (dioread_nolock && (map->m_flags & EXT4_MAP_UNWRITTEN)) {
2497                 if (!mpd->io_submit.io_end->handle &&
2498                     ext4_handle_valid(handle)) {
2499                         mpd->io_submit.io_end->handle = handle->h_rsv_handle;
2500                         handle->h_rsv_handle = NULL;
2501                 }
2502                 ext4_set_io_unwritten_flag(inode, mpd->io_submit.io_end);
2503         }
2504
2505         BUG_ON(map->m_len == 0);
2506         if (map->m_flags & EXT4_MAP_NEW) {
2507                 clean_bdev_aliases(inode->i_sb->s_bdev, map->m_pblk,
2508                                    map->m_len);
2509         }
2510         return 0;
2511 }
2512
2513 /*
2514  * mpage_map_and_submit_extent - map extent starting at mpd->lblk of length
2515  *                               mpd->len and submit pages underlying it for IO
2516  *
2517  * @handle - handle for journal operations
2518  * @mpd - extent to map
2519  * @give_up_on_write - we set this to true iff there is a fatal error and there
2520  *                     is no hope of writing the data. The caller should discard
2521  *                     dirty pages to avoid infinite loops.
2522  *
2523  * The function maps extent starting at mpd->lblk of length mpd->len. If it is
2524  * delayed, blocks are allocated, if it is unwritten, we may need to convert
2525  * them to initialized or split the described range from larger unwritten
2526  * extent. Note that we need not map all the described range since allocation
2527  * can return less blocks or the range is covered by more unwritten extents. We
2528  * cannot map more because we are limited by reserved transaction credits. On
2529  * the other hand we always make sure that the last touched page is fully
2530  * mapped so that it can be written out (and thus forward progress is
2531  * guaranteed). After mapping we submit all mapped pages for IO.
2532  */
2533 static int mpage_map_and_submit_extent(handle_t *handle,
2534                                        struct mpage_da_data *mpd,
2535                                        bool *give_up_on_write)
2536 {
2537         struct inode *inode = mpd->inode;
2538         struct ext4_map_blocks *map = &mpd->map;
2539         int err;
2540         loff_t disksize;
2541         int progress = 0;
2542
2543         mpd->io_submit.io_end->offset =
2544                                 ((loff_t)map->m_lblk) << inode->i_blkbits;
2545         do {
2546                 err = mpage_map_one_extent(handle, mpd);
2547                 if (err < 0) {
2548                         struct super_block *sb = inode->i_sb;
2549
2550                         if (ext4_forced_shutdown(EXT4_SB(sb)) ||
2551                             EXT4_SB(sb)->s_mount_flags & EXT4_MF_FS_ABORTED)
2552                                 goto invalidate_dirty_pages;
2553                         /*
2554                          * Let the uper layers retry transient errors.
2555                          * In the case of ENOSPC, if ext4_count_free_blocks()
2556                          * is non-zero, a commit should free up blocks.
2557                          */
2558                         if ((err == -ENOMEM) ||
2559                             (err == -ENOSPC && ext4_count_free_clusters(sb))) {
2560                                 if (progress)
2561                                         goto update_disksize;
2562                                 return err;
2563                         }
2564                         ext4_msg(sb, KERN_CRIT,
2565                                  "Delayed block allocation failed for "
2566                                  "inode %lu at logical offset %llu with"
2567                                  " max blocks %u with error %d",
2568                                  inode->i_ino,
2569                                  (unsigned long long)map->m_lblk,
2570                                  (unsigned)map->m_len, -err);
2571                         ext4_msg(sb, KERN_CRIT,
2572                                  "This should not happen!! Data will "
2573                                  "be lost\n");
2574                         if (err == -ENOSPC)
2575                                 ext4_print_free_blocks(inode);
2576                 invalidate_dirty_pages:
2577                         *give_up_on_write = true;
2578                         return err;
2579                 }
2580                 progress = 1;
2581                 /*
2582                  * Update buffer state, submit mapped pages, and get us new
2583                  * extent to map
2584                  */
2585                 err = mpage_map_and_submit_buffers(mpd);
2586                 if (err < 0)
2587                         goto update_disksize;
2588         } while (map->m_len);
2589
2590 update_disksize:
2591         /*
2592          * Update on-disk size after IO is submitted.  Races with
2593          * truncate are avoided by checking i_size under i_data_sem.
2594          */
2595         disksize = ((loff_t)mpd->first_page) << PAGE_SHIFT;
2596         if (disksize > READ_ONCE(EXT4_I(inode)->i_disksize)) {
2597                 int err2;
2598                 loff_t i_size;
2599
2600                 down_write(&EXT4_I(inode)->i_data_sem);
2601                 i_size = i_size_read(inode);
2602                 if (disksize > i_size)
2603                         disksize = i_size;
2604                 if (disksize > EXT4_I(inode)->i_disksize)
2605                         EXT4_I(inode)->i_disksize = disksize;
2606                 up_write(&EXT4_I(inode)->i_data_sem);
2607                 err2 = ext4_mark_inode_dirty(handle, inode);
2608                 if (err2)
2609                         ext4_error(inode->i_sb,
2610                                    "Failed to mark inode %lu dirty",
2611                                    inode->i_ino);
2612                 if (!err)
2613                         err = err2;
2614         }
2615         return err;
2616 }
2617
2618 /*
2619  * Calculate the total number of credits to reserve for one writepages
2620  * iteration. This is called from ext4_writepages(). We map an extent of
2621  * up to MAX_WRITEPAGES_EXTENT_LEN blocks and then we go on and finish mapping
2622  * the last partial page. So in total we can map MAX_WRITEPAGES_EXTENT_LEN +
2623  * bpp - 1 blocks in bpp different extents.
2624  */
2625 static int ext4_da_writepages_trans_blocks(struct inode *inode)
2626 {
2627         int bpp = ext4_journal_blocks_per_page(inode);
2628
2629         return ext4_meta_trans_blocks(inode,
2630                                 MAX_WRITEPAGES_EXTENT_LEN + bpp - 1, bpp);
2631 }
2632
2633 /*
2634  * mpage_prepare_extent_to_map - find & lock contiguous range of dirty pages
2635  *                               and underlying extent to map
2636  *
2637  * @mpd - where to look for pages
2638  *
2639  * Walk dirty pages in the mapping. If they are fully mapped, submit them for
2640  * IO immediately. When we find a page which isn't mapped we start accumulating
2641  * extent of buffers underlying these pages that needs mapping (formed by
2642  * either delayed or unwritten buffers). We also lock the pages containing
2643  * these buffers. The extent found is returned in @mpd structure (starting at
2644  * mpd->lblk with length mpd->len blocks).
2645  *
2646  * Note that this function can attach bios to one io_end structure which are
2647  * neither logically nor physically contiguous. Although it may seem as an
2648  * unnecessary complication, it is actually inevitable in blocksize < pagesize
2649  * case as we need to track IO to all buffers underlying a page in one io_end.
2650  */
2651 static int mpage_prepare_extent_to_map(struct mpage_da_data *mpd)
2652 {
2653         struct address_space *mapping = mpd->inode->i_mapping;
2654         struct pagevec pvec;
2655         unsigned int nr_pages;
2656         long left = mpd->wbc->nr_to_write;
2657         pgoff_t index = mpd->first_page;
2658         pgoff_t end = mpd->last_page;
2659         int tag;
2660         int i, err = 0;
2661         int blkbits = mpd->inode->i_blkbits;
2662         ext4_lblk_t lblk;
2663         struct buffer_head *head;
2664
2665         if (mpd->wbc->sync_mode == WB_SYNC_ALL || mpd->wbc->tagged_writepages)
2666                 tag = PAGECACHE_TAG_TOWRITE;
2667         else
2668                 tag = PAGECACHE_TAG_DIRTY;
2669
2670         pagevec_init(&pvec);
2671         mpd->map.m_len = 0;
2672         mpd->next_page = index;
2673         while (index <= end) {
2674                 nr_pages = pagevec_lookup_range_tag(&pvec, mapping, &index, end,
2675                                 tag);
2676                 if (nr_pages == 0)
2677                         goto out;
2678
2679                 for (i = 0; i < nr_pages; i++) {
2680                         struct page *page = pvec.pages[i];
2681
2682                         /*
2683                          * Accumulated enough dirty pages? This doesn't apply
2684                          * to WB_SYNC_ALL mode. For integrity sync we have to
2685                          * keep going because someone may be concurrently
2686                          * dirtying pages, and we might have synced a lot of
2687                          * newly appeared dirty pages, but have not synced all
2688                          * of the old dirty pages.
2689                          */
2690                         if (mpd->wbc->sync_mode == WB_SYNC_NONE && left <= 0)
2691                                 goto out;
2692
2693                         /* If we can't merge this page, we are done. */
2694                         if (mpd->map.m_len > 0 && mpd->next_page != page->index)
2695                                 goto out;
2696
2697                         lock_page(page);
2698                         /*
2699                          * If the page is no longer dirty, or its mapping no
2700                          * longer corresponds to inode we are writing (which
2701                          * means it has been truncated or invalidated), or the
2702                          * page is already under writeback and we are not doing
2703                          * a data integrity writeback, skip the page
2704                          */
2705                         if (!PageDirty(page) ||
2706                             (PageWriteback(page) &&
2707                              (mpd->wbc->sync_mode == WB_SYNC_NONE)) ||
2708                             unlikely(page->mapping != mapping)) {
2709                                 unlock_page(page);
2710                                 continue;
2711                         }
2712
2713                         wait_on_page_writeback(page);
2714                         BUG_ON(PageWriteback(page));
2715
2716                         /*
2717                          * Should never happen but for buggy code in
2718                          * other subsystems that call
2719                          * set_page_dirty() without properly warning
2720                          * the file system first.  See [1] for more
2721                          * information.
2722                          *
2723                          * [1] https://lore.kernel.org/linux-mm/20180103100430.GE4911@quack2.suse.cz
2724                          */
2725                         if (!page_has_buffers(page)) {
2726                                 ext4_warning_inode(mpd->inode, "page %lu does not have buffers attached", page->index);
2727                                 ClearPageDirty(page);
2728                                 unlock_page(page);
2729                                 continue;
2730                         }
2731
2732                         if (mpd->map.m_len == 0)
2733                                 mpd->first_page = page->index;
2734                         mpd->next_page = page->index + 1;
2735                         /* Add all dirty buffers to mpd */
2736                         lblk = ((ext4_lblk_t)page->index) <<
2737                                 (PAGE_SHIFT - blkbits);
2738                         head = page_buffers(page);
2739                         err = mpage_process_page_bufs(mpd, head, head, lblk);
2740                         if (err <= 0)
2741                                 goto out;
2742                         err = 0;
2743                         left--;
2744                 }
2745                 pagevec_release(&pvec);
2746                 cond_resched();
2747         }
2748         return 0;
2749 out:
2750         pagevec_release(&pvec);
2751         return err;
2752 }
2753
2754 static int ext4_writepages(struct address_space *mapping,
2755                            struct writeback_control *wbc)
2756 {
2757         pgoff_t writeback_index = 0;
2758         long nr_to_write = wbc->nr_to_write;
2759         int range_whole = 0;
2760         int cycled = 1;
2761         handle_t *handle = NULL;
2762         struct mpage_da_data mpd;
2763         struct inode *inode = mapping->host;
2764         int needed_blocks, rsv_blocks = 0, ret = 0;
2765         struct ext4_sb_info *sbi = EXT4_SB(mapping->host->i_sb);
2766         bool done;
2767         struct blk_plug plug;
2768         bool give_up_on_write = false;
2769
2770         if (unlikely(ext4_forced_shutdown(EXT4_SB(inode->i_sb))))
2771                 return -EIO;
2772
2773         percpu_down_read(&sbi->s_writepages_rwsem);
2774         trace_ext4_writepages(inode, wbc);
2775
2776         /*
2777          * No pages to write? This is mainly a kludge to avoid starting
2778          * a transaction for special inodes like journal inode on last iput()
2779          * because that could violate lock ordering on umount
2780          */
2781         if (!mapping->nrpages || !mapping_tagged(mapping, PAGECACHE_TAG_DIRTY))
2782                 goto out_writepages;
2783
2784         if (ext4_should_journal_data(inode)) {
2785                 ret = generic_writepages(mapping, wbc);
2786                 goto out_writepages;
2787         }
2788
2789         /*
2790          * If the filesystem has aborted, it is read-only, so return
2791          * right away instead of dumping stack traces later on that
2792          * will obscure the real source of the problem.  We test
2793          * EXT4_MF_FS_ABORTED instead of sb->s_flag's SB_RDONLY because
2794          * the latter could be true if the filesystem is mounted
2795          * read-only, and in that case, ext4_writepages should
2796          * *never* be called, so if that ever happens, we would want
2797          * the stack trace.
2798          */
2799         if (unlikely(ext4_forced_shutdown(EXT4_SB(mapping->host->i_sb)) ||
2800                      sbi->s_mount_flags & EXT4_MF_FS_ABORTED)) {
2801                 ret = -EROFS;
2802                 goto out_writepages;
2803         }
2804
2805         if (ext4_should_dioread_nolock(inode)) {
2806                 /*
2807                  * We may need to convert up to one extent per block in
2808                  * the page and we may dirty the inode.
2809                  */
2810                 rsv_blocks = 1 + ext4_chunk_trans_blocks(inode,
2811                                                 PAGE_SIZE >> inode->i_blkbits);
2812         }
2813
2814         /*
2815          * If we have inline data and arrive here, it means that
2816          * we will soon create the block for the 1st page, so
2817          * we'd better clear the inline data here.
2818          */
2819         if (ext4_has_inline_data(inode)) {
2820                 /* Just inode will be modified... */
2821                 handle = ext4_journal_start(inode, EXT4_HT_INODE, 1);
2822                 if (IS_ERR(handle)) {
2823                         ret = PTR_ERR(handle);
2824                         goto out_writepages;
2825                 }
2826                 BUG_ON(ext4_test_inode_state(inode,
2827                                 EXT4_STATE_MAY_INLINE_DATA));
2828                 ext4_destroy_inline_data(handle, inode);
2829                 ext4_journal_stop(handle);
2830         }
2831
2832         if (wbc->range_start == 0 && wbc->range_end == LLONG_MAX)
2833                 range_whole = 1;
2834
2835         if (wbc->range_cyclic) {
2836                 writeback_index = mapping->writeback_index;
2837                 if (writeback_index)
2838                         cycled = 0;
2839                 mpd.first_page = writeback_index;
2840                 mpd.last_page = -1;
2841         } else {
2842                 mpd.first_page = wbc->range_start >> PAGE_SHIFT;
2843                 mpd.last_page = wbc->range_end >> PAGE_SHIFT;
2844         }
2845
2846         mpd.inode = inode;
2847         mpd.wbc = wbc;
2848         ext4_io_submit_init(&mpd.io_submit, wbc);
2849 retry:
2850         if (wbc->sync_mode == WB_SYNC_ALL || wbc->tagged_writepages)
2851                 tag_pages_for_writeback(mapping, mpd.first_page, mpd.last_page);
2852         done = false;
2853         blk_start_plug(&plug);
2854
2855         /*
2856          * First writeback pages that don't need mapping - we can avoid
2857          * starting a transaction unnecessarily and also avoid being blocked
2858          * in the block layer on device congestion while having transaction
2859          * started.
2860          */
2861         mpd.do_map = 0;
2862         mpd.io_submit.io_end = ext4_init_io_end(inode, GFP_KERNEL);
2863         if (!mpd.io_submit.io_end) {
2864                 ret = -ENOMEM;
2865                 goto unplug;
2866         }
2867         ret = mpage_prepare_extent_to_map(&mpd);
2868         /* Submit prepared bio */
2869         ext4_io_submit(&mpd.io_submit);
2870         ext4_put_io_end_defer(mpd.io_submit.io_end);
2871         mpd.io_submit.io_end = NULL;
2872         /* Unlock pages we didn't use */
2873         mpage_release_unused_pages(&mpd, false);
2874         if (ret < 0)
2875                 goto unplug;
2876
2877         while (!done && mpd.first_page <= mpd.last_page) {
2878                 /* For each extent of pages we use new io_end */
2879                 mpd.io_submit.io_end = ext4_init_io_end(inode, GFP_KERNEL);
2880                 if (!mpd.io_submit.io_end) {
2881                         ret = -ENOMEM;
2882                         break;
2883                 }
2884
2885                 /*
2886                  * We have two constraints: We find one extent to map and we
2887                  * must always write out whole page (makes a difference when
2888                  * blocksize < pagesize) so that we don't block on IO when we
2889                  * try to write out the rest of the page. Journalled mode is
2890                  * not supported by delalloc.
2891                  */
2892                 BUG_ON(ext4_should_journal_data(inode));
2893                 needed_blocks = ext4_da_writepages_trans_blocks(inode);
2894
2895                 /* start a new transaction */
2896                 handle = ext4_journal_start_with_reserve(inode,
2897                                 EXT4_HT_WRITE_PAGE, needed_blocks, rsv_blocks);
2898                 if (IS_ERR(handle)) {
2899                         ret = PTR_ERR(handle);
2900                         ext4_msg(inode->i_sb, KERN_CRIT, "%s: jbd2_start: "
2901                                "%ld pages, ino %lu; err %d", __func__,
2902                                 wbc->nr_to_write, inode->i_ino, ret);
2903                         /* Release allocated io_end */
2904                         ext4_put_io_end(mpd.io_submit.io_end);
2905                         mpd.io_submit.io_end = NULL;
2906                         break;
2907                 }
2908                 mpd.do_map = 1;
2909
2910                 trace_ext4_da_write_pages(inode, mpd.first_page, mpd.wbc);
2911                 ret = mpage_prepare_extent_to_map(&mpd);
2912                 if (!ret) {
2913                         if (mpd.map.m_len)
2914                                 ret = mpage_map_and_submit_extent(handle, &mpd,
2915                                         &give_up_on_write);
2916                         else {
2917                                 /*
2918                                  * We scanned the whole range (or exhausted
2919                                  * nr_to_write), submitted what was mapped and
2920                                  * didn't find anything needing mapping. We are
2921                                  * done.
2922                                  */
2923                                 done = true;
2924                         }
2925                 }
2926                 /*
2927                  * Caution: If the handle is synchronous,
2928                  * ext4_journal_stop() can wait for transaction commit
2929                  * to finish which may depend on writeback of pages to
2930                  * complete or on page lock to be released.  In that
2931                  * case, we have to wait until after after we have
2932                  * submitted all the IO, released page locks we hold,
2933                  * and dropped io_end reference (for extent conversion
2934                  * to be able to complete) before stopping the handle.
2935                  */
2936                 if (!ext4_handle_valid(handle) || handle->h_sync == 0) {
2937                         ext4_journal_stop(handle);
2938                         handle = NULL;
2939                         mpd.do_map = 0;
2940                 }
2941                 /* Submit prepared bio */
2942                 ext4_io_submit(&mpd.io_submit);
2943                 /* Unlock pages we didn't use */
2944                 mpage_release_unused_pages(&mpd, give_up_on_write);
2945                 /*
2946                  * Drop our io_end reference we got from init. We have
2947                  * to be careful and use deferred io_end finishing if
2948                  * we are still holding the transaction as we can
2949                  * release the last reference to io_end which may end
2950                  * up doing unwritten extent conversion.
2951                  */
2952                 if (handle) {
2953                         ext4_put_io_end_defer(mpd.io_submit.io_end);
2954                         ext4_journal_stop(handle);
2955                 } else
2956                         ext4_put_io_end(mpd.io_submit.io_end);
2957                 mpd.io_submit.io_end = NULL;
2958
2959                 if (ret == -ENOSPC && sbi->s_journal) {
2960                         /*
2961                          * Commit the transaction which would
2962                          * free blocks released in the transaction
2963                          * and try again
2964                          */
2965                         jbd2_journal_force_commit_nested(sbi->s_journal);
2966                         ret = 0;
2967                         continue;
2968                 }
2969                 /* Fatal error - ENOMEM, EIO... */
2970                 if (ret)
2971                         break;
2972         }
2973 unplug:
2974         blk_finish_plug(&plug);
2975         if (!ret && !cycled && wbc->nr_to_write > 0) {
2976                 cycled = 1;
2977                 mpd.last_page = writeback_index - 1;
2978                 mpd.first_page = 0;
2979                 goto retry;
2980         }
2981
2982         /* Update index */
2983         if (wbc->range_cyclic || (range_whole && wbc->nr_to_write > 0))
2984                 /*
2985                  * Set the writeback_index so that range_cyclic
2986                  * mode will write it back later
2987                  */
2988                 mapping->writeback_index = mpd.first_page;
2989
2990 out_writepages:
2991         trace_ext4_writepages_result(inode, wbc, ret,
2992                                      nr_to_write - wbc->nr_to_write);
2993         percpu_up_read(&sbi->s_writepages_rwsem);
2994         return ret;
2995 }
2996
2997 static int ext4_dax_writepages(struct address_space *mapping,
2998                                struct writeback_control *wbc)
2999 {
3000         int ret;
3001         long nr_to_write = wbc->nr_to_write;
3002         struct inode *inode = mapping->host;
3003         struct ext4_sb_info *sbi = EXT4_SB(mapping->host->i_sb);
3004
3005         if (unlikely(ext4_forced_shutdown(EXT4_SB(inode->i_sb))))
3006                 return -EIO;
3007
3008         percpu_down_read(&sbi->s_writepages_rwsem);
3009         trace_ext4_writepages(inode, wbc);
3010
3011         ret = dax_writeback_mapping_range(mapping, inode->i_sb->s_bdev, wbc);
3012         trace_ext4_writepages_result(inode, wbc, ret,
3013                                      nr_to_write - wbc->nr_to_write);
3014         percpu_up_read(&sbi->s_writepages_rwsem);
3015         return ret;
3016 }
3017
3018 static int ext4_nonda_switch(struct super_block *sb)
3019 {
3020         s64 free_clusters, dirty_clusters;
3021         struct ext4_sb_info *sbi = EXT4_SB(sb);
3022
3023         /*
3024          * switch to non delalloc mode if we are running low
3025          * on free block. The free block accounting via percpu
3026          * counters can get slightly wrong with percpu_counter_batch getting
3027          * accumulated on each CPU without updating global counters
3028          * Delalloc need an accurate free block accounting. So switch
3029          * to non delalloc when we are near to error range.
3030          */
3031         free_clusters =
3032                 percpu_counter_read_positive(&sbi->s_freeclusters_counter);
3033         dirty_clusters =
3034                 percpu_counter_read_positive(&sbi->s_dirtyclusters_counter);
3035         /*
3036          * Start pushing delalloc when 1/2 of free blocks are dirty.
3037          */
3038         if (dirty_clusters && (free_clusters < 2 * dirty_clusters))
3039                 try_to_writeback_inodes_sb(sb, WB_REASON_FS_FREE_SPACE);
3040
3041         if (2 * free_clusters < 3 * dirty_clusters ||
3042             free_clusters < (dirty_clusters + EXT4_FREECLUSTERS_WATERMARK)) {
3043                 /*
3044                  * free block count is less than 150% of dirty blocks
3045                  * or free blocks is less than watermark
3046                  */
3047                 return 1;
3048         }
3049         return 0;
3050 }
3051
3052 /* We always reserve for an inode update; the superblock could be there too */
3053 static int ext4_da_write_credits(struct inode *inode, loff_t pos, unsigned len)
3054 {
3055         if (likely(ext4_has_feature_large_file(inode->i_sb)))
3056                 return 1;
3057
3058         if (pos + len <= 0x7fffffffULL)
3059                 return 1;
3060
3061         /* We might need to update the superblock to set LARGE_FILE */
3062         return 2;
3063 }
3064
3065 static int ext4_da_write_begin(struct file *file, struct address_space *mapping,
3066                                loff_t pos, unsigned len, unsigned flags,
3067                                struct page **pagep, void **fsdata)
3068 {
3069         int ret, retries = 0;
3070         struct page *page;
3071         pgoff_t index;
3072         struct inode *inode = mapping->host;
3073         handle_t *handle;
3074
3075         if (unlikely(ext4_forced_shutdown(EXT4_SB(inode->i_sb))))
3076                 return -EIO;
3077
3078         index = pos >> PAGE_SHIFT;
3079
3080         if (ext4_nonda_switch(inode->i_sb) ||
3081             S_ISLNK(inode->i_mode)) {
3082                 *fsdata = (void *)FALL_BACK_TO_NONDELALLOC;
3083                 return ext4_write_begin(file, mapping, pos,
3084                                         len, flags, pagep, fsdata);
3085         }
3086         *fsdata = (void *)0;
3087         trace_ext4_da_write_begin(inode, pos, len, flags);
3088
3089         if (ext4_test_inode_state(inode, EXT4_STATE_MAY_INLINE_DATA)) {
3090                 ret = ext4_da_write_inline_data_begin(mapping, inode,
3091                                                       pos, len, flags,
3092                                                       pagep, fsdata);
3093                 if (ret < 0)
3094                         return ret;
3095                 if (ret == 1)
3096                         return 0;
3097         }
3098
3099         /*
3100          * grab_cache_page_write_begin() can take a long time if the
3101          * system is thrashing due to memory pressure, or if the page
3102          * is being written back.  So grab it first before we start
3103          * the transaction handle.  This also allows us to allocate
3104          * the page (if needed) without using GFP_NOFS.
3105          */
3106 retry_grab:
3107         page = grab_cache_page_write_begin(mapping, index, flags);
3108         if (!page)
3109                 return -ENOMEM;
3110         unlock_page(page);
3111
3112         /*
3113          * With delayed allocation, we don't log the i_disksize update
3114          * if there is delayed block allocation. But we still need
3115          * to journalling the i_disksize update if writes to the end
3116          * of file which has an already mapped buffer.
3117          */
3118 retry_journal:
3119         handle = ext4_journal_start(inode, EXT4_HT_WRITE_PAGE,
3120                                 ext4_da_write_credits(inode, pos, len));
3121         if (IS_ERR(handle)) {
3122                 put_page(page);
3123                 return PTR_ERR(handle);
3124         }
3125
3126         lock_page(page);
3127         if (page->mapping != mapping) {
3128                 /* The page got truncated from under us */
3129                 unlock_page(page);
3130                 put_page(page);
3131                 ext4_journal_stop(handle);
3132                 goto retry_grab;
3133         }
3134         /* In case writeback began while the page was unlocked */
3135         wait_for_stable_page(page);
3136
3137 #ifdef CONFIG_EXT4_FS_ENCRYPTION
3138         ret = ext4_block_write_begin(page, pos, len,
3139                                      ext4_da_get_block_prep);
3140 #else
3141         ret = __block_write_begin(page, pos, len, ext4_da_get_block_prep);
3142 #endif
3143         if (ret < 0) {
3144                 unlock_page(page);
3145                 ext4_journal_stop(handle);
3146                 /*
3147                  * block_write_begin may have instantiated a few blocks
3148                  * outside i_size.  Trim these off again. Don't need
3149                  * i_size_read because we hold i_mutex.
3150                  */
3151                 if (pos + len > inode->i_size)
3152                         ext4_truncate_failed_write(inode);
3153
3154                 if (ret == -ENOSPC &&
3155                     ext4_should_retry_alloc(inode->i_sb, &retries))
3156                         goto retry_journal;
3157
3158                 put_page(page);
3159                 return ret;
3160         }
3161
3162         *pagep = page;
3163         return ret;
3164 }
3165
3166 /*
3167  * Check if we should update i_disksize
3168  * when write to the end of file but not require block allocation
3169  */
3170 static int ext4_da_should_update_i_disksize(struct page *page,
3171                                             unsigned long offset)
3172 {
3173         struct buffer_head *bh;
3174         struct inode *inode = page->mapping->host;
3175         unsigned int idx;
3176         int i;
3177
3178         bh = page_buffers(page);
3179         idx = offset >> inode->i_blkbits;
3180
3181         for (i = 0; i < idx; i++)
3182                 bh = bh->b_this_page;
3183
3184         if (!buffer_mapped(bh) || (buffer_delay(bh)) || buffer_unwritten(bh))
3185                 return 0;
3186         return 1;
3187 }
3188
3189 static int ext4_da_write_end(struct file *file,
3190                              struct address_space *mapping,
3191                              loff_t pos, unsigned len, unsigned copied,
3192                              struct page *page, void *fsdata)
3193 {
3194         struct inode *inode = mapping->host;
3195         int ret = 0, ret2;
3196         handle_t *handle = ext4_journal_current_handle();
3197         loff_t new_i_size;
3198         unsigned long start, end;
3199         int write_mode = (int)(unsigned long)fsdata;
3200
3201         if (write_mode == FALL_BACK_TO_NONDELALLOC)
3202                 return ext4_write_end(file, mapping, pos,
3203                                       len, copied, page, fsdata);
3204
3205         trace_ext4_da_write_end(inode, pos, len, copied);
3206         start = pos & (PAGE_SIZE - 1);
3207         end = start + copied - 1;
3208
3209         /*
3210          * generic_write_end() will run mark_inode_dirty() if i_size
3211          * changes.  So let's piggyback the i_disksize mark_inode_dirty
3212          * into that.
3213          */
3214         new_i_size = pos + copied;
3215         if (copied && new_i_size > EXT4_I(inode)->i_disksize) {
3216                 if (ext4_has_inline_data(inode) ||
3217                     ext4_da_should_update_i_disksize(page, end)) {
3218                         ext4_update_i_disksize(inode, new_i_size);
3219                         /* We need to mark inode dirty even if
3220                          * new_i_size is less that inode->i_size
3221                          * bu greater than i_disksize.(hint delalloc)
3222                          */
3223                         ext4_mark_inode_dirty(handle, inode);
3224                 }
3225         }
3226
3227         if (write_mode != CONVERT_INLINE_DATA &&
3228             ext4_test_inode_state(inode, EXT4_STATE_MAY_INLINE_DATA) &&
3229             ext4_has_inline_data(inode))
3230                 ret2 = ext4_da_write_inline_data_end(inode, pos, len, copied,
3231                                                      page);
3232         else
3233                 ret2 = generic_write_end(file, mapping, pos, len, copied,
3234                                                         page, fsdata);
3235
3236         copied = ret2;
3237         if (ret2 < 0)
3238                 ret = ret2;
3239         ret2 = ext4_journal_stop(handle);
3240         if (!ret)
3241                 ret = ret2;
3242
3243         return ret ? ret : copied;
3244 }
3245
3246 static void ext4_da_invalidatepage(struct page *page, unsigned int offset,
3247                                    unsigned int length)
3248 {
3249         /*
3250          * Drop reserved blocks
3251          */
3252         BUG_ON(!PageLocked(page));
3253         if (!page_has_buffers(page))
3254                 goto out;
3255
3256         ext4_da_page_release_reservation(page, offset, length);
3257
3258 out:
3259         ext4_invalidatepage(page, offset, length);
3260
3261         return;
3262 }
3263
3264 /*
3265  * Force all delayed allocation blocks to be allocated for a given inode.
3266  */
3267 int ext4_alloc_da_blocks(struct inode *inode)
3268 {
3269         trace_ext4_alloc_da_blocks(inode);
3270
3271         if (!EXT4_I(inode)->i_reserved_data_blocks)
3272                 return 0;
3273
3274         /*
3275          * We do something simple for now.  The filemap_flush() will
3276          * also start triggering a write of the data blocks, which is
3277          * not strictly speaking necessary (and for users of
3278          * laptop_mode, not even desirable).  However, to do otherwise
3279          * would require replicating code paths in:
3280          *
3281          * ext4_writepages() ->
3282          *    write_cache_pages() ---> (via passed in callback function)
3283          *        __mpage_da_writepage() -->
3284          *           mpage_add_bh_to_extent()
3285          *           mpage_da_map_blocks()
3286          *
3287          * The problem is that write_cache_pages(), located in
3288          * mm/page-writeback.c, marks pages clean in preparation for
3289          * doing I/O, which is not desirable if we're not planning on
3290          * doing I/O at all.
3291          *
3292          * We could call write_cache_pages(), and then redirty all of
3293          * the pages by calling redirty_page_for_writepage() but that
3294          * would be ugly in the extreme.  So instead we would need to
3295          * replicate parts of the code in the above functions,
3296          * simplifying them because we wouldn't actually intend to
3297          * write out the pages, but rather only collect contiguous
3298          * logical block extents, call the multi-block allocator, and
3299          * then update the buffer heads with the block allocations.
3300          *
3301          * For now, though, we'll cheat by calling filemap_flush(),
3302          * which will map the blocks, and start the I/O, but not
3303          * actually wait for the I/O to complete.
3304          */
3305         return filemap_flush(inode->i_mapping);
3306 }
3307
3308 /*
3309  * bmap() is special.  It gets used by applications such as lilo and by
3310  * the swapper to find the on-disk block of a specific piece of data.
3311  *
3312  * Naturally, this is dangerous if the block concerned is still in the
3313  * journal.  If somebody makes a swapfile on an ext4 data-journaling
3314  * filesystem and enables swap, then they may get a nasty shock when the
3315  * data getting swapped to that swapfile suddenly gets overwritten by
3316  * the original zero's written out previously to the journal and
3317  * awaiting writeback in the kernel's buffer cache.
3318  *
3319  * So, if we see any bmap calls here on a modified, data-journaled file,
3320  * take extra steps to flush any blocks which might be in the cache.
3321  */
3322 static sector_t ext4_bmap(struct address_space *mapping, sector_t block)
3323 {
3324         struct inode *inode = mapping->host;
3325         journal_t *journal;
3326         int err;
3327
3328         /*
3329          * We can get here for an inline file via the FIBMAP ioctl
3330          */
3331         if (ext4_has_inline_data(inode))
3332                 return 0;
3333
3334         if (mapping_tagged(mapping, PAGECACHE_TAG_DIRTY) &&
3335                         test_opt(inode->i_sb, DELALLOC)) {
3336                 /*
3337                  * With delalloc we want to sync the file
3338                  * so that we can make sure we allocate
3339                  * blocks for file
3340                  */
3341                 filemap_write_and_wait(mapping);
3342         }
3343
3344         if (EXT4_JOURNAL(inode) &&
3345             ext4_test_inode_state(inode, EXT4_STATE_JDATA)) {
3346                 /*
3347                  * This is a REALLY heavyweight approach, but the use of
3348                  * bmap on dirty files is expected to be extremely rare:
3349                  * only if we run lilo or swapon on a freshly made file
3350                  * do we expect this to happen.
3351                  *
3352                  * (bmap requires CAP_SYS_RAWIO so this does not
3353                  * represent an unprivileged user DOS attack --- we'd be
3354                  * in trouble if mortal users could trigger this path at
3355                  * will.)
3356                  *
3357                  * NB. EXT4_STATE_JDATA is not set on files other than
3358                  * regular files.  If somebody wants to bmap a directory
3359                  * or symlink and gets confused because the buffer
3360                  * hasn't yet been flushed to disk, they deserve
3361                  * everything they get.
3362                  */
3363
3364                 ext4_clear_inode_state(inode, EXT4_STATE_JDATA);
3365                 journal = EXT4_JOURNAL(inode);
3366                 jbd2_journal_lock_updates(journal);
3367                 err = jbd2_journal_flush(journal);
3368                 jbd2_journal_unlock_updates(journal);
3369
3370                 if (err)
3371                         return 0;
3372         }
3373
3374         return generic_block_bmap(mapping, block, ext4_get_block);
3375 }
3376
3377 static int ext4_readpage(struct file *file, struct page *page)
3378 {
3379         int ret = -EAGAIN;
3380         struct inode *inode = page->mapping->host;
3381
3382         trace_ext4_readpage(page);
3383
3384         if (ext4_has_inline_data(inode))
3385                 ret = ext4_readpage_inline(inode, page);
3386
3387         if (ret == -EAGAIN)
3388                 return ext4_mpage_readpages(page->mapping, NULL, page, 1,
3389                                                 false);
3390
3391         return ret;
3392 }
3393
3394 static int
3395 ext4_readpages(struct file *file, struct address_space *mapping,
3396                 struct list_head *pages, unsigned nr_pages)
3397 {
3398         struct inode *inode = mapping->host;
3399
3400         /* If the file has inline data, no need to do readpages. */
3401         if (ext4_has_inline_data(inode))
3402                 return 0;
3403
3404         return ext4_mpage_readpages(mapping, pages, NULL, nr_pages, true);
3405 }
3406
3407 static void ext4_invalidatepage(struct page *page, unsigned int offset,
3408                                 unsigned int length)
3409 {
3410         trace_ext4_invalidatepage(page, offset, length);
3411
3412         /* No journalling happens on data buffers when this function is used */
3413         WARN_ON(page_has_buffers(page) && buffer_jbd(page_buffers(page)));
3414
3415         block_invalidatepage(page, offset, length);
3416 }
3417
3418 static int __ext4_journalled_invalidatepage(struct page *page,
3419                                             unsigned int offset,
3420                                             unsigned int length)
3421 {
3422         journal_t *journal = EXT4_JOURNAL(page->mapping->host);
3423
3424         trace_ext4_journalled_invalidatepage(page, offset, length);
3425
3426         /*
3427          * If it's a full truncate we just forget about the pending dirtying
3428          */
3429         if (offset == 0 && length == PAGE_SIZE)
3430                 ClearPageChecked(page);
3431
3432         return jbd2_journal_invalidatepage(journal, page, offset, length);
3433 }
3434
3435 /* Wrapper for aops... */
3436 static void ext4_journalled_invalidatepage(struct page *page,
3437                                            unsigned int offset,
3438                                            unsigned int length)
3439 {
3440         WARN_ON(__ext4_journalled_invalidatepage(page, offset, length) < 0);
3441 }
3442
3443 static int ext4_releasepage(struct page *page, gfp_t wait)
3444 {
3445         journal_t *journal = EXT4_JOURNAL(page->mapping->host);
3446
3447         trace_ext4_releasepage(page);
3448
3449         /* Page has dirty journalled data -> cannot release */
3450         if (PageChecked(page))
3451                 return 0;
3452         if (journal)
3453                 return jbd2_journal_try_to_free_buffers(journal, page, wait);
3454         else
3455                 return try_to_free_buffers(page);
3456 }
3457
3458 static bool ext4_inode_datasync_dirty(struct inode *inode)
3459 {
3460         journal_t *journal = EXT4_SB(inode->i_sb)->s_journal;
3461
3462         if (journal)
3463                 return !jbd2_transaction_committed(journal,
3464                                         EXT4_I(inode)->i_datasync_tid);
3465         /* Any metadata buffers to write? */
3466         if (!list_empty(&inode->i_mapping->private_list))
3467                 return true;
3468         return inode->i_state & I_DIRTY_DATASYNC;
3469 }
3470
3471 static int ext4_iomap_begin(struct inode *inode, loff_t offset, loff_t length,
3472                             unsigned flags, struct iomap *iomap)
3473 {
3474         struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
3475         unsigned int blkbits = inode->i_blkbits;
3476         unsigned long first_block, last_block;
3477         struct ext4_map_blocks map;
3478         bool delalloc = false;
3479         int ret;
3480
3481         if ((offset >> blkbits) > EXT4_MAX_LOGICAL_BLOCK)
3482                 return -EINVAL;
3483         first_block = offset >> blkbits;
3484         last_block = min_t(loff_t, (offset + length - 1) >> blkbits,
3485                            EXT4_MAX_LOGICAL_BLOCK);
3486
3487         if (flags & IOMAP_REPORT) {
3488                 if (ext4_has_inline_data(inode)) {
3489                         ret = ext4_inline_data_iomap(inode, iomap);
3490                         if (ret != -EAGAIN) {
3491                                 if (ret == 0 && offset >= iomap->length)
3492                                         ret = -ENOENT;
3493                                 return ret;
3494                         }
3495                 }
3496         } else {
3497                 if (WARN_ON_ONCE(ext4_has_inline_data(inode)))
3498                         return -ERANGE;
3499         }
3500
3501         map.m_lblk = first_block;
3502         map.m_len = last_block - first_block + 1;
3503
3504         if (flags & IOMAP_REPORT) {
3505                 ret = ext4_map_blocks(NULL, inode, &map, 0);
3506                 if (ret < 0)
3507                         return ret;
3508
3509                 if (ret == 0) {
3510                         ext4_lblk_t end = map.m_lblk + map.m_len - 1;
3511                         struct extent_status es;
3512
3513                         ext4_es_find_delayed_extent_range(inode, map.m_lblk, end, &es);
3514
3515                         if (!es.es_len || es.es_lblk > end) {
3516                                 /* entire range is a hole */
3517                         } else if (es.es_lblk > map.m_lblk) {
3518                                 /* range starts with a hole */
3519                                 map.m_len = es.es_lblk - map.m_lblk;
3520                         } else {
3521                                 ext4_lblk_t offs = 0;
3522
3523                                 if (es.es_lblk < map.m_lblk)
3524                                         offs = map.m_lblk - es.es_lblk;
3525                                 map.m_lblk = es.es_lblk + offs;
3526                                 map.m_len = es.es_len - offs;
3527                                 delalloc = true;
3528                         }
3529                 }
3530         } else if (flags & IOMAP_WRITE) {
3531                 int dio_credits;
3532                 handle_t *handle;
3533                 int retries = 0;
3534
3535                 /* Trim mapping request to maximum we can map at once for DIO */
3536                 if (map.m_len > DIO_MAX_BLOCKS)
3537                         map.m_len = DIO_MAX_BLOCKS;
3538                 dio_credits = ext4_chunk_trans_blocks(inode, map.m_len);
3539 retry:
3540                 /*
3541                  * Either we allocate blocks and then we don't get unwritten
3542                  * extent so we have reserved enough credits, or the blocks
3543                  * are already allocated and unwritten and in that case
3544                  * extent conversion fits in the credits as well.
3545                  */
3546                 handle = ext4_journal_start(inode, EXT4_HT_MAP_BLOCKS,
3547                                             dio_credits);
3548                 if (IS_ERR(handle))
3549                         return PTR_ERR(handle);
3550
3551                 ret = ext4_map_blocks(handle, inode, &map,
3552                                       EXT4_GET_BLOCKS_CREATE_ZERO);
3553                 if (ret < 0) {
3554                         ext4_journal_stop(handle);
3555                         if (ret == -ENOSPC &&
3556                             ext4_should_retry_alloc(inode->i_sb, &retries))
3557                                 goto retry;
3558                         return ret;
3559                 }
3560
3561                 /*
3562                  * If we added blocks beyond i_size, we need to make sure they
3563                  * will get truncated if we crash before updating i_size in
3564                  * ext4_iomap_end(). For faults we don't need to do that (and
3565                  * even cannot because for orphan list operations inode_lock is
3566                  * required) - if we happen to instantiate block beyond i_size,
3567                  * it is because we race with truncate which has already added
3568                  * the inode to the orphan list.
3569                  */
3570                 if (!(flags & IOMAP_FAULT) && first_block + map.m_len >
3571                     (i_size_read(inode) + (1 << blkbits) - 1) >> blkbits) {
3572                         int err;
3573
3574                         err = ext4_orphan_add(handle, inode);
3575                         if (err < 0) {
3576                                 ext4_journal_stop(handle);
3577                                 return err;
3578                         }
3579                 }
3580                 ext4_journal_stop(handle);
3581         } else {
3582                 ret = ext4_map_blocks(NULL, inode, &map, 0);
3583                 if (ret < 0)
3584                         return ret;
3585         }
3586
3587         /*
3588          * Writes that span EOF might trigger an I/O size update on completion,
3589          * so consider them to be dirty for the purposes of O_DSYNC, even if
3590          * there is no other metadata changes being made or are pending here.
3591          */
3592         iomap->flags = 0;
3593         if (ext4_inode_datasync_dirty(inode) ||
3594             offset + length > i_size_read(inode))
3595                 iomap->flags |= IOMAP_F_DIRTY;
3596         iomap->bdev = inode->i_sb->s_bdev;
3597         iomap->dax_dev = sbi->s_daxdev;
3598         iomap->offset = (u64)first_block << blkbits;
3599         iomap->length = (u64)map.m_len << blkbits;
3600
3601         if (ret == 0) {
3602                 iomap->type = delalloc ? IOMAP_DELALLOC : IOMAP_HOLE;
3603                 iomap->addr = IOMAP_NULL_ADDR;
3604         } else {
3605                 if (map.m_flags & EXT4_MAP_MAPPED) {
3606                         iomap->type = IOMAP_MAPPED;
3607                 } else if (map.m_flags & EXT4_MAP_UNWRITTEN) {
3608                         iomap->type = IOMAP_UNWRITTEN;
3609                 } else {
3610                         WARN_ON_ONCE(1);
3611                         return -EIO;
3612                 }
3613                 iomap->addr = (u64)map.m_pblk << blkbits;
3614         }
3615
3616         if (map.m_flags & EXT4_MAP_NEW)
3617                 iomap->flags |= IOMAP_F_NEW;
3618
3619         return 0;
3620 }
3621
3622 static int ext4_iomap_end(struct inode *inode, loff_t offset, loff_t length,
3623                           ssize_t written, unsigned flags, struct iomap *iomap)
3624 {
3625         int ret = 0;
3626         handle_t *handle;
3627         int blkbits = inode->i_blkbits;
3628         bool truncate = false;
3629
3630         if (!(flags & IOMAP_WRITE) || (flags & IOMAP_FAULT))
3631                 return 0;
3632
3633         handle = ext4_journal_start(inode, EXT4_HT_INODE, 2);
3634         if (IS_ERR(handle)) {
3635                 ret = PTR_ERR(handle);
3636                 goto orphan_del;
3637         }
3638         if (ext4_update_inode_size(inode, offset + written))
3639                 ext4_mark_inode_dirty(handle, inode);
3640         /*
3641          * We may need to truncate allocated but not written blocks beyond EOF.
3642          */
3643         if (iomap->offset + iomap->length > 
3644             ALIGN(inode->i_size, 1 << blkbits)) {
3645                 ext4_lblk_t written_blk, end_blk;
3646
3647                 written_blk = (offset + written) >> blkbits;
3648                 end_blk = (offset + length) >> blkbits;
3649                 if (written_blk < end_blk && ext4_can_truncate(inode))
3650                         truncate = true;
3651         }
3652         /*
3653          * Remove inode from orphan list if we were extending a inode and
3654          * everything went fine.
3655          */
3656         if (!truncate && inode->i_nlink &&
3657             !list_empty(&EXT4_I(inode)->i_orphan))
3658                 ext4_orphan_del(handle, inode);
3659         ext4_journal_stop(handle);
3660         if (truncate) {
3661                 ext4_truncate_failed_write(inode);
3662 orphan_del:
3663                 /*
3664                  * If truncate failed early the inode might still be on the
3665                  * orphan list; we need to make sure the inode is removed from
3666                  * the orphan list in that case.
3667                  */
3668                 if (inode->i_nlink)
3669                         ext4_orphan_del(NULL, inode);
3670         }
3671         return ret;
3672 }
3673
3674 const struct iomap_ops ext4_iomap_ops = {
3675         .iomap_begin            = ext4_iomap_begin,
3676         .iomap_end              = ext4_iomap_end,
3677 };
3678
3679 static int ext4_end_io_dio(struct kiocb *iocb, loff_t offset,
3680                             ssize_t size, void *private)
3681 {
3682         ext4_io_end_t *io_end = private;
3683
3684         /* if not async direct IO just return */
3685         if (!io_end)
3686                 return 0;
3687
3688         ext_debug("ext4_end_io_dio(): io_end 0x%p "
3689                   "for inode %lu, iocb 0x%p, offset %llu, size %zd\n",
3690                   io_end, io_end->inode->i_ino, iocb, offset, size);
3691
3692         /*
3693          * Error during AIO DIO. We cannot convert unwritten extents as the
3694          * data was not written. Just clear the unwritten flag and drop io_end.
3695          */
3696         if (size <= 0) {
3697                 ext4_clear_io_unwritten_flag(io_end);
3698                 size = 0;
3699         }
3700         io_end->offset = offset;
3701         io_end->size = size;
3702         ext4_put_io_end(io_end);
3703
3704         return 0;
3705 }
3706
3707 /*
3708  * Handling of direct IO writes.
3709  *
3710  * For ext4 extent files, ext4 will do direct-io write even to holes,
3711  * preallocated extents, and those write extend the file, no need to
3712  * fall back to buffered IO.
3713  *
3714  * For holes, we fallocate those blocks, mark them as unwritten
3715  * If those blocks were preallocated, we mark sure they are split, but
3716  * still keep the range to write as unwritten.
3717  *
3718  * The unwritten extents will be converted to written when DIO is completed.
3719  * For async direct IO, since the IO may still pending when return, we
3720  * set up an end_io call back function, which will do the conversion
3721  * when async direct IO completed.
3722  *
3723  * If the O_DIRECT write will extend the file then add this inode to the
3724  * orphan list.  So recovery will truncate it back to the original size
3725  * if the machine crashes during the write.
3726  *
3727  */
3728 static ssize_t ext4_direct_IO_write(struct kiocb *iocb, struct iov_iter *iter)
3729 {
3730         struct file *file = iocb->ki_filp;
3731         struct inode *inode = file->f_mapping->host;
3732         struct ext4_inode_info *ei = EXT4_I(inode);
3733         ssize_t ret;
3734         loff_t offset = iocb->ki_pos;
3735         size_t count = iov_iter_count(iter);
3736         int overwrite = 0;
3737         get_block_t *get_block_func = NULL;
3738         int dio_flags = 0;
3739         loff_t final_size = offset + count;
3740         int orphan = 0;
3741         handle_t *handle;
3742
3743         if (final_size > inode->i_size || final_size > ei->i_disksize) {
3744                 /* Credits for sb + inode write */
3745                 handle = ext4_journal_start(inode, EXT4_HT_INODE, 2);
3746                 if (IS_ERR(handle)) {
3747                         ret = PTR_ERR(handle);
3748                         goto out;
3749                 }
3750                 ret = ext4_orphan_add(handle, inode);
3751                 if (ret) {
3752                         ext4_journal_stop(handle);
3753                         goto out;
3754                 }
3755                 orphan = 1;
3756                 ext4_update_i_disksize(inode, inode->i_size);
3757                 ext4_journal_stop(handle);
3758         }
3759
3760         BUG_ON(iocb->private == NULL);
3761
3762         /*
3763          * Make all waiters for direct IO properly wait also for extent
3764          * conversion. This also disallows race between truncate() and
3765          * overwrite DIO as i_dio_count needs to be incremented under i_mutex.
3766          */
3767         inode_dio_begin(inode);
3768
3769         /* If we do a overwrite dio, i_mutex locking can be released */
3770         overwrite = *((int *)iocb->private);
3771
3772         if (overwrite)
3773                 inode_unlock(inode);
3774
3775         /*
3776          * For extent mapped files we could direct write to holes and fallocate.
3777          *
3778          * Allocated blocks to fill the hole are marked as unwritten to prevent
3779          * parallel buffered read to expose the stale data before DIO complete
3780          * the data IO.
3781          *
3782          * As to previously fallocated extents, ext4 get_block will just simply
3783          * mark the buffer mapped but still keep the extents unwritten.
3784          *
3785          * For non AIO case, we will convert those unwritten extents to written
3786          * after return back from blockdev_direct_IO. That way we save us from
3787          * allocating io_end structure and also the overhead of offloading
3788          * the extent convertion to a workqueue.
3789          *
3790          * For async DIO, the conversion needs to be deferred when the
3791          * IO is completed. The ext4 end_io callback function will be
3792          * called to take care of the conversion work.  Here for async
3793          * case, we allocate an io_end structure to hook to the iocb.
3794          */
3795         iocb->private = NULL;
3796         if (overwrite)
3797                 get_block_func = ext4_dio_get_block_overwrite;
3798         else if (!ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS) ||
3799                    round_down(offset, i_blocksize(inode)) >= inode->i_size) {
3800                 get_block_func = ext4_dio_get_block;
3801                 dio_flags = DIO_LOCKING | DIO_SKIP_HOLES;
3802         } else if (is_sync_kiocb(iocb)) {
3803                 get_block_func = ext4_dio_get_block_unwritten_sync;
3804                 dio_flags = DIO_LOCKING;
3805         } else {
3806                 get_block_func = ext4_dio_get_block_unwritten_async;
3807                 dio_flags = DIO_LOCKING;
3808         }
3809         ret = __blockdev_direct_IO(iocb, inode, inode->i_sb->s_bdev, iter,
3810                                    get_block_func, ext4_end_io_dio, NULL,
3811                                    dio_flags);
3812
3813         if (ret > 0 && !overwrite && ext4_test_inode_state(inode,
3814                                                 EXT4_STATE_DIO_UNWRITTEN)) {
3815                 int err;
3816                 /*
3817                  * for non AIO case, since the IO is already
3818                  * completed, we could do the conversion right here
3819                  */
3820                 err = ext4_convert_unwritten_extents(NULL, inode,
3821                                                      offset, ret);
3822                 if (err < 0)
3823                         ret = err;
3824                 ext4_clear_inode_state(inode, EXT4_STATE_DIO_UNWRITTEN);
3825         }
3826
3827         inode_dio_end(inode);
3828         /* take i_mutex locking again if we do a ovewrite dio */
3829         if (overwrite)
3830                 inode_lock(inode);
3831
3832         if (ret < 0 && final_size > inode->i_size)
3833                 ext4_truncate_failed_write(inode);
3834
3835         /* Handle extending of i_size after direct IO write */
3836         if (orphan) {
3837                 int err;
3838
3839                 /* Credits for sb + inode write */
3840                 handle = ext4_journal_start(inode, EXT4_HT_INODE, 2);
3841                 if (IS_ERR(handle)) {
3842                         /*
3843                          * We wrote the data but cannot extend
3844                          * i_size. Bail out. In async io case, we do
3845                          * not return error here because we have
3846                          * already submmitted the corresponding
3847                          * bio. Returning error here makes the caller
3848                          * think that this IO is done and failed
3849                          * resulting in race with bio's completion
3850                          * handler.
3851                          */
3852                         if (!ret)
3853                                 ret = PTR_ERR(handle);
3854                         if (inode->i_nlink)
3855                                 ext4_orphan_del(NULL, inode);
3856
3857                         goto out;
3858                 }
3859                 if (inode->i_nlink)
3860                         ext4_orphan_del(handle, inode);
3861                 if (ret > 0) {
3862                         loff_t end = offset + ret;
3863                         if (end > inode->i_size || end > ei->i_disksize) {
3864                                 ext4_update_i_disksize(inode, end);
3865                                 if (end > inode->i_size)
3866                                         i_size_write(inode, end);
3867                                 /*
3868                                  * We're going to return a positive `ret'
3869                                  * here due to non-zero-length I/O, so there's
3870                                  * no way of reporting error returns from
3871                                  * ext4_mark_inode_dirty() to userspace.  So
3872                                  * ignore it.
3873                                  */
3874                                 ext4_mark_inode_dirty(handle, inode);
3875                         }
3876                 }
3877                 err = ext4_journal_stop(handle);
3878                 if (ret == 0)
3879                         ret = err;
3880         }
3881 out:
3882         return ret;
3883 }
3884
3885 static ssize_t ext4_direct_IO_read(struct kiocb *iocb, struct iov_iter *iter)
3886 {
3887         struct address_space *mapping = iocb->ki_filp->f_mapping;
3888         struct inode *inode = mapping->host;
3889         size_t count = iov_iter_count(iter);
3890         ssize_t ret;
3891         loff_t offset = iocb->ki_pos;
3892         loff_t size = i_size_read(inode);
3893
3894         if (offset >= size)
3895                 return 0;
3896
3897         /*
3898          * Shared inode_lock is enough for us - it protects against concurrent
3899          * writes & truncates and since we take care of writing back page cache,
3900          * we are protected against page writeback as well.
3901          */
3902         if (iocb->ki_flags & IOCB_NOWAIT) {
3903                 if (!inode_trylock_shared(inode))
3904                         return -EAGAIN;
3905         } else {
3906                 inode_lock_shared(inode);
3907         }
3908
3909         ret = filemap_write_and_wait_range(mapping, iocb->ki_pos,
3910                                            iocb->ki_pos + count - 1);
3911         if (ret)
3912                 goto out_unlock;
3913         ret = __blockdev_direct_IO(iocb, inode, inode->i_sb->s_bdev,
3914                                    iter, ext4_dio_get_block, NULL, NULL, 0);
3915 out_unlock:
3916         inode_unlock_shared(inode);
3917         return ret;
3918 }
3919
3920 static ssize_t ext4_direct_IO(struct kiocb *iocb, struct iov_iter *iter)
3921 {
3922         struct file *file = iocb->ki_filp;
3923         struct inode *inode = file->f_mapping->host;
3924         size_t count = iov_iter_count(iter);
3925         loff_t offset = iocb->ki_pos;
3926         ssize_t ret;
3927
3928 #ifdef CONFIG_EXT4_FS_ENCRYPTION
3929         if (ext4_encrypted_inode(inode) && S_ISREG(inode->i_mode))
3930                 return 0;
3931 #endif
3932
3933         /*
3934          * If we are doing data journalling we don't support O_DIRECT
3935          */
3936         if (ext4_should_journal_data(inode))
3937                 return 0;
3938
3939         /* Let buffer I/O handle the inline data case. */
3940         if (ext4_has_inline_data(inode))
3941                 return 0;
3942
3943         trace_ext4_direct_IO_enter(inode, offset, count, iov_iter_rw(iter));
3944         if (iov_iter_rw(iter) == READ)
3945                 ret = ext4_direct_IO_read(iocb, iter);
3946         else
3947                 ret = ext4_direct_IO_write(iocb, iter);
3948         trace_ext4_direct_IO_exit(inode, offset, count, iov_iter_rw(iter), ret);
3949         return ret;
3950 }
3951
3952 /*
3953  * Pages can be marked dirty completely asynchronously from ext4's journalling
3954  * activity.  By filemap_sync_pte(), try_to_unmap_one(), etc.  We cannot do
3955  * much here because ->set_page_dirty is called under VFS locks.  The page is
3956  * not necessarily locked.
3957  *
3958  * We cannot just dirty the page and leave attached buffers clean, because the
3959  * buffers' dirty state is "definitive".  We cannot just set the buffers dirty
3960  * or jbddirty because all the journalling code will explode.
3961  *
3962  * So what we do is to mark the page "pending dirty" and next time writepage
3963  * is called, propagate that into the buffers appropriately.
3964  */
3965 static int ext4_journalled_set_page_dirty(struct page *page)
3966 {
3967         SetPageChecked(page);
3968         return __set_page_dirty_nobuffers(page);
3969 }
3970
3971 static int ext4_set_page_dirty(struct page *page)
3972 {
3973         WARN_ON_ONCE(!PageLocked(page) && !PageDirty(page));
3974         WARN_ON_ONCE(!page_has_buffers(page));
3975         return __set_page_dirty_buffers(page);
3976 }
3977
3978 static const struct address_space_operations ext4_aops = {
3979         .readpage               = ext4_readpage,
3980         .readpages              = ext4_readpages,
3981         .writepage              = ext4_writepage,
3982         .writepages             = ext4_writepages,
3983         .write_begin            = ext4_write_begin,
3984         .write_end              = ext4_write_end,
3985         .set_page_dirty         = ext4_set_page_dirty,
3986         .bmap                   = ext4_bmap,
3987         .invalidatepage         = ext4_invalidatepage,
3988         .releasepage            = ext4_releasepage,
3989         .direct_IO              = ext4_direct_IO,
3990         .migratepage            = buffer_migrate_page,
3991         .is_partially_uptodate  = block_is_partially_uptodate,
3992         .error_remove_page      = generic_error_remove_page,
3993 };
3994
3995 static const struct address_space_operations ext4_journalled_aops = {
3996         .readpage               = ext4_readpage,
3997         .readpages              = ext4_readpages,
3998         .writepage              = ext4_writepage,
3999         .writepages             = ext4_writepages,
4000         .write_begin            = ext4_write_begin,
4001         .write_end              = ext4_journalled_write_end,
4002         .set_page_dirty         = ext4_journalled_set_page_dirty,
4003         .bmap                   = ext4_bmap,
4004         .invalidatepage         = ext4_journalled_invalidatepage,
4005         .releasepage            = ext4_releasepage,
4006         .direct_IO              = ext4_direct_IO,
4007         .is_partially_uptodate  = block_is_partially_uptodate,
4008         .error_remove_page      = generic_error_remove_page,
4009 };
4010
4011 static const struct address_space_operations ext4_da_aops = {
4012         .readpage               = ext4_readpage,
4013         .readpages              = ext4_readpages,
4014         .writepage              = ext4_writepage,
4015         .writepages             = ext4_writepages,
4016         .write_begin            = ext4_da_write_begin,
4017         .write_end              = ext4_da_write_end,
4018         .set_page_dirty         = ext4_set_page_dirty,
4019         .bmap                   = ext4_bmap,
4020         .invalidatepage         = ext4_da_invalidatepage,
4021         .releasepage            = ext4_releasepage,
4022         .direct_IO              = ext4_direct_IO,
4023         .migratepage            = buffer_migrate_page,
4024         .is_partially_uptodate  = block_is_partially_uptodate,
4025         .error_remove_page      = generic_error_remove_page,
4026 };
4027
4028 static const struct address_space_operations ext4_dax_aops = {
4029         .writepages             = ext4_dax_writepages,
4030         .direct_IO              = noop_direct_IO,
4031         .set_page_dirty         = noop_set_page_dirty,
4032         .bmap                   = ext4_bmap,
4033         .invalidatepage         = noop_invalidatepage,
4034 };
4035
4036 void ext4_set_aops(struct inode *inode)
4037 {
4038         switch (ext4_inode_journal_mode(inode)) {
4039         case EXT4_INODE_ORDERED_DATA_MODE:
4040         case EXT4_INODE_WRITEBACK_DATA_MODE:
4041                 break;
4042         case EXT4_INODE_JOURNAL_DATA_MODE:
4043                 inode->i_mapping->a_ops = &ext4_journalled_aops;
4044                 return;
4045         default:
4046                 BUG();
4047         }
4048         if (IS_DAX(inode))
4049                 inode->i_mapping->a_ops = &ext4_dax_aops;
4050         else if (test_opt(inode->i_sb, DELALLOC))
4051                 inode->i_mapping->a_ops = &ext4_da_aops;
4052         else
4053                 inode->i_mapping->a_ops = &ext4_aops;
4054 }
4055
4056 static int __ext4_block_zero_page_range(handle_t *handle,
4057                 struct address_space *mapping, loff_t from, loff_t length)
4058 {
4059         ext4_fsblk_t index = from >> PAGE_SHIFT;
4060         unsigned offset = from & (PAGE_SIZE-1);
4061         unsigned blocksize, pos;
4062         ext4_lblk_t iblock;
4063         struct inode *inode = mapping->host;
4064         struct buffer_head *bh;
4065         struct page *page;
4066         int err = 0;
4067
4068         page = find_or_create_page(mapping, from >> PAGE_SHIFT,
4069                                    mapping_gfp_constraint(mapping, ~__GFP_FS));
4070         if (!page)
4071                 return -ENOMEM;
4072
4073         blocksize = inode->i_sb->s_blocksize;
4074
4075         iblock = index << (PAGE_SHIFT - inode->i_sb->s_blocksize_bits);
4076
4077         if (!page_has_buffers(page))
4078                 create_empty_buffers(page, blocksize, 0);
4079
4080         /* Find the buffer that contains "offset" */
4081         bh = page_buffers(page);
4082         pos = blocksize;
4083         while (offset >= pos) {
4084                 bh = bh->b_this_page;
4085                 iblock++;
4086                 pos += blocksize;
4087         }
4088         if (buffer_freed(bh)) {
4089                 BUFFER_TRACE(bh, "freed: skip");
4090                 goto unlock;
4091         }
4092         if (!buffer_mapped(bh)) {
4093                 BUFFER_TRACE(bh, "unmapped");
4094                 ext4_get_block(inode, iblock, bh, 0);
4095                 /* unmapped? It's a hole - nothing to do */
4096                 if (!buffer_mapped(bh)) {
4097                         BUFFER_TRACE(bh, "still unmapped");
4098                         goto unlock;
4099                 }
4100         }
4101
4102         /* Ok, it's mapped. Make sure it's up-to-date */
4103         if (PageUptodate(page))
4104                 set_buffer_uptodate(bh);
4105
4106         if (!buffer_uptodate(bh)) {
4107                 err = -EIO;
4108                 ll_rw_block(REQ_OP_READ, 0, 1, &bh);
4109                 wait_on_buffer(bh);
4110                 /* Uhhuh. Read error. Complain and punt. */
4111                 if (!buffer_uptodate(bh))
4112                         goto unlock;
4113                 if (S_ISREG(inode->i_mode) &&
4114                     ext4_encrypted_inode(inode)) {
4115                         /* We expect the key to be set. */
4116                         BUG_ON(!fscrypt_has_encryption_key(inode));
4117                         BUG_ON(blocksize != PAGE_SIZE);
4118                         WARN_ON_ONCE(fscrypt_decrypt_page(page->mapping->host,
4119                                                 page, PAGE_SIZE, 0, page->index));
4120                 }
4121         }
4122         if (ext4_should_journal_data(inode)) {
4123                 BUFFER_TRACE(bh, "get write access");
4124                 err = ext4_journal_get_write_access(handle, bh);
4125                 if (err)
4126                         goto unlock;
4127         }
4128         zero_user(page, offset, length);
4129         BUFFER_TRACE(bh, "zeroed end of block");
4130
4131         if (ext4_should_journal_data(inode)) {
4132                 err = ext4_handle_dirty_metadata(handle, inode, bh);
4133         } else {
4134                 err = 0;
4135                 mark_buffer_dirty(bh);
4136                 if (ext4_should_order_data(inode))
4137                         err = ext4_jbd2_inode_add_write(handle, inode, from,
4138                                         length);
4139         }
4140
4141 unlock:
4142         unlock_page(page);
4143         put_page(page);
4144         return err;
4145 }
4146
4147 /*
4148  * ext4_block_zero_page_range() zeros out a mapping of length 'length'
4149  * starting from file offset 'from'.  The range to be zero'd must
4150  * be contained with in one block.  If the specified range exceeds
4151  * the end of the block it will be shortened to end of the block
4152  * that cooresponds to 'from'
4153  */
4154 static int ext4_block_zero_page_range(handle_t *handle,
4155                 struct address_space *mapping, loff_t from, loff_t length)
4156 {
4157         struct inode *inode = mapping->host;
4158         unsigned offset = from & (PAGE_SIZE-1);
4159         unsigned blocksize = inode->i_sb->s_blocksize;
4160         unsigned max = blocksize - (offset & (blocksize - 1));
4161
4162         /*
4163          * correct length if it does not fall between
4164          * 'from' and the end of the block
4165          */
4166         if (length > max || length < 0)
4167                 length = max;
4168
4169         if (IS_DAX(inode)) {
4170                 return iomap_zero_range(inode, from, length, NULL,
4171                                         &ext4_iomap_ops);
4172         }
4173         return __ext4_block_zero_page_range(handle, mapping, from, length);
4174 }
4175
4176 /*
4177  * ext4_block_truncate_page() zeroes out a mapping from file offset `from'
4178  * up to the end of the block which corresponds to `from'.
4179  * This required during truncate. We need to physically zero the tail end
4180  * of that block so it doesn't yield old data if the file is later grown.
4181  */
4182 static int ext4_block_truncate_page(handle_t *handle,
4183                 struct address_space *mapping, loff_t from)
4184 {
4185         unsigned offset = from & (PAGE_SIZE-1);
4186         unsigned length;
4187         unsigned blocksize;
4188         struct inode *inode = mapping->host;
4189
4190         /* If we are processing an encrypted inode during orphan list handling */
4191         if (ext4_encrypted_inode(inode) && !fscrypt_has_encryption_key(inode))
4192                 return 0;
4193
4194         blocksize = inode->i_sb->s_blocksize;
4195         length = blocksize - (offset & (blocksize - 1));
4196
4197         return ext4_block_zero_page_range(handle, mapping, from, length);
4198 }
4199
4200 int ext4_zero_partial_blocks(handle_t *handle, struct inode *inode,
4201                              loff_t lstart, loff_t length)
4202 {
4203         struct super_block *sb = inode->i_sb;
4204         struct address_space *mapping = inode->i_mapping;
4205         unsigned partial_start, partial_end;
4206         ext4_fsblk_t start, end;
4207         loff_t byte_end = (lstart + length - 1);
4208         int err = 0;
4209
4210         partial_start = lstart & (sb->s_blocksize - 1);
4211         partial_end = byte_end & (sb->s_blocksize - 1);
4212
4213         start = lstart >> sb->s_blocksize_bits;
4214         end = byte_end >> sb->s_blocksize_bits;
4215
4216         /* Handle partial zero within the single block */
4217         if (start == end &&
4218             (partial_start || (partial_end != sb->s_blocksize - 1))) {
4219                 err = ext4_block_zero_page_range(handle, mapping,
4220                                                  lstart, length);
4221                 return err;
4222         }
4223         /* Handle partial zero out on the start of the range */
4224         if (partial_start) {
4225                 err = ext4_block_zero_page_range(handle, mapping,
4226                                                  lstart, sb->s_blocksize);
4227                 if (err)
4228                         return err;
4229         }
4230         /* Handle partial zero out on the end of the range */
4231         if (partial_end != sb->s_blocksize - 1)
4232                 err = ext4_block_zero_page_range(handle, mapping,
4233                                                  byte_end - partial_end,
4234                                                  partial_end + 1);
4235         return err;
4236 }
4237
4238 int ext4_can_truncate(struct inode *inode)
4239 {
4240         if (S_ISREG(inode->i_mode))
4241                 return 1;
4242         if (S_ISDIR(inode->i_mode))
4243                 return 1;
4244         if (S_ISLNK(inode->i_mode))
4245                 return !ext4_inode_is_fast_symlink(inode);
4246         return 0;
4247 }
4248
4249 /*
4250  * We have to make sure i_disksize gets properly updated before we truncate
4251  * page cache due to hole punching or zero range. Otherwise i_disksize update
4252  * can get lost as it may have been postponed to submission of writeback but
4253  * that will never happen after we truncate page cache.
4254  */
4255 int ext4_update_disksize_before_punch(struct inode *inode, loff_t offset,
4256                                       loff_t len)
4257 {
4258         handle_t *handle;
4259         loff_t size = i_size_read(inode);
4260
4261         WARN_ON(!inode_is_locked(inode));
4262         if (offset > size || offset + len < size)
4263                 return 0;
4264
4265         if (EXT4_I(inode)->i_disksize >= size)
4266                 return 0;
4267
4268         handle = ext4_journal_start(inode, EXT4_HT_MISC, 1);
4269         if (IS_ERR(handle))
4270                 return PTR_ERR(handle);
4271         ext4_update_i_disksize(inode, size);
4272         ext4_mark_inode_dirty(handle, inode);
4273         ext4_journal_stop(handle);
4274
4275         return 0;
4276 }
4277
4278 static void ext4_wait_dax_page(struct ext4_inode_info *ei)
4279 {
4280         up_write(&ei->i_mmap_sem);
4281         schedule();
4282         down_write(&ei->i_mmap_sem);
4283 }
4284
4285 int ext4_break_layouts(struct inode *inode)
4286 {
4287         struct ext4_inode_info *ei = EXT4_I(inode);
4288         struct page *page;
4289         int error;
4290
4291         if (WARN_ON_ONCE(!rwsem_is_locked(&ei->i_mmap_sem)))
4292                 return -EINVAL;
4293
4294         do {
4295                 page = dax_layout_busy_page(inode->i_mapping);
4296                 if (!page)
4297                         return 0;
4298
4299                 error = ___wait_var_event(&page->_refcount,
4300                                 atomic_read(&page->_refcount) == 1,
4301                                 TASK_INTERRUPTIBLE, 0, 0,
4302                                 ext4_wait_dax_page(ei));
4303         } while (error == 0);
4304
4305         return error;
4306 }
4307
4308 /*
4309  * ext4_punch_hole: punches a hole in a file by releasing the blocks
4310  * associated with the given offset and length
4311  *
4312  * @inode:  File inode
4313  * @offset: The offset where the hole will begin
4314  * @len:    The length of the hole
4315  *
4316  * Returns: 0 on success or negative on failure
4317  */
4318
4319 int ext4_punch_hole(struct inode *inode, loff_t offset, loff_t length)
4320 {
4321         struct super_block *sb = inode->i_sb;
4322         ext4_lblk_t first_block, stop_block;
4323         struct address_space *mapping = inode->i_mapping;
4324         loff_t first_block_offset, last_block_offset, max_length;
4325         struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
4326         handle_t *handle;
4327         unsigned int credits;
4328         int ret = 0;
4329
4330         if (!S_ISREG(inode->i_mode))
4331                 return -EOPNOTSUPP;
4332
4333         trace_ext4_punch_hole(inode, offset, length, 0);
4334
4335         ext4_clear_inode_state(inode, EXT4_STATE_MAY_INLINE_DATA);
4336         if (ext4_has_inline_data(inode)) {
4337                 down_write(&EXT4_I(inode)->i_mmap_sem);
4338                 ret = ext4_convert_inline_data(inode);
4339                 up_write(&EXT4_I(inode)->i_mmap_sem);
4340                 if (ret)
4341                         return ret;
4342         }
4343
4344         /*
4345          * Write out all dirty pages to avoid race conditions
4346          * Then release them.
4347          */
4348         if (mapping_tagged(mapping, PAGECACHE_TAG_DIRTY)) {
4349                 ret = filemap_write_and_wait_range(mapping, offset,
4350                                                    offset + length - 1);
4351                 if (ret)
4352                         return ret;
4353         }
4354
4355         inode_lock(inode);
4356
4357         /* No need to punch hole beyond i_size */
4358         if (offset >= inode->i_size)
4359                 goto out_mutex;
4360
4361         /*
4362          * If the hole extends beyond i_size, set the hole
4363          * to end after the page that contains i_size
4364          */
4365         if (offset + length > inode->i_size) {
4366                 length = inode->i_size +
4367                    PAGE_SIZE - (inode->i_size & (PAGE_SIZE - 1)) -
4368                    offset;
4369         }
4370
4371         /*
4372          * For punch hole the length + offset needs to be within one block
4373          * before last range. Adjust the length if it goes beyond that limit.
4374          */
4375         max_length = sbi->s_bitmap_maxbytes - inode->i_sb->s_blocksize;
4376         if (offset + length > max_length)
4377                 length = max_length - offset;
4378
4379         if (offset & (sb->s_blocksize - 1) ||
4380             (offset + length) & (sb->s_blocksize - 1)) {
4381                 /*
4382                  * Attach jinode to inode for jbd2 if we do any zeroing of
4383                  * partial block
4384                  */
4385                 ret = ext4_inode_attach_jinode(inode);
4386                 if (ret < 0)
4387                         goto out_mutex;
4388
4389         }
4390
4391         /* Wait all existing dio workers, newcomers will block on i_mutex */
4392         inode_dio_wait(inode);
4393
4394         /*
4395          * Prevent page faults from reinstantiating pages we have released from
4396          * page cache.
4397          */
4398         down_write(&EXT4_I(inode)->i_mmap_sem);
4399
4400         ret = ext4_break_layouts(inode);
4401         if (ret)
4402                 goto out_dio;
4403
4404         first_block_offset = round_up(offset, sb->s_blocksize);
4405         last_block_offset = round_down((offset + length), sb->s_blocksize) - 1;
4406
4407         /* Now release the pages and zero block aligned part of pages*/
4408         if (last_block_offset > first_block_offset) {
4409                 ret = ext4_update_disksize_before_punch(inode, offset, length);
4410                 if (ret)
4411                         goto out_dio;
4412                 truncate_pagecache_range(inode, first_block_offset,
4413                                          last_block_offset);
4414         }
4415
4416         if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS))
4417                 credits = ext4_writepage_trans_blocks(inode);
4418         else
4419                 credits = ext4_blocks_for_truncate(inode);
4420         handle = ext4_journal_start(inode, EXT4_HT_TRUNCATE, credits);
4421         if (IS_ERR(handle)) {
4422                 ret = PTR_ERR(handle);
4423                 ext4_std_error(sb, ret);
4424                 goto out_dio;
4425         }
4426
4427         ret = ext4_zero_partial_blocks(handle, inode, offset,
4428                                        length);
4429         if (ret)
4430                 goto out_stop;
4431
4432         first_block = (offset + sb->s_blocksize - 1) >>
4433                 EXT4_BLOCK_SIZE_BITS(sb);
4434         stop_block = (offset + length) >> EXT4_BLOCK_SIZE_BITS(sb);
4435
4436         /* If there are blocks to remove, do it */
4437         if (stop_block > first_block) {
4438
4439                 down_write(&EXT4_I(inode)->i_data_sem);
4440                 ext4_discard_preallocations(inode);
4441
4442                 ret = ext4_es_remove_extent(inode, first_block,
4443                                             stop_block - first_block);
4444                 if (ret) {
4445                         up_write(&EXT4_I(inode)->i_data_sem);
4446                         goto out_stop;
4447                 }
4448
4449                 if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS))
4450                         ret = ext4_ext_remove_space(inode, first_block,
4451                                                     stop_block - 1);
4452                 else
4453                         ret = ext4_ind_remove_space(handle, inode, first_block,
4454                                                     stop_block);
4455
4456                 up_write(&EXT4_I(inode)->i_data_sem);
4457         }
4458         if (IS_SYNC(inode))
4459                 ext4_handle_sync(handle);
4460
4461         inode->i_mtime = inode->i_ctime = current_time(inode);
4462         ext4_mark_inode_dirty(handle, inode);
4463         if (ret >= 0)
4464                 ext4_update_inode_fsync_trans(handle, inode, 1);
4465 out_stop:
4466         ext4_journal_stop(handle);
4467 out_dio:
4468         up_write(&EXT4_I(inode)->i_mmap_sem);
4469 out_mutex:
4470         inode_unlock(inode);
4471         return ret;
4472 }
4473
4474 int ext4_inode_attach_jinode(struct inode *inode)
4475 {
4476         struct ext4_inode_info *ei = EXT4_I(inode);
4477         struct jbd2_inode *jinode;
4478
4479         if (ei->jinode || !EXT4_SB(inode->i_sb)->s_journal)
4480                 return 0;
4481
4482         jinode = jbd2_alloc_inode(GFP_KERNEL);
4483         spin_lock(&inode->i_lock);
4484         if (!ei->jinode) {
4485                 if (!jinode) {
4486                         spin_unlock(&inode->i_lock);
4487                         return -ENOMEM;
4488                 }
4489                 ei->jinode = jinode;
4490                 jbd2_journal_init_jbd_inode(ei->jinode, inode);
4491                 jinode = NULL;
4492         }
4493         spin_unlock(&inode->i_lock);
4494         if (unlikely(jinode != NULL))
4495                 jbd2_free_inode(jinode);
4496         return 0;
4497 }
4498
4499 /*
4500  * ext4_truncate()
4501  *
4502  * We block out ext4_get_block() block instantiations across the entire
4503  * transaction, and VFS/VM ensures that ext4_truncate() cannot run
4504  * simultaneously on behalf of the same inode.
4505  *
4506  * As we work through the truncate and commit bits of it to the journal there
4507  * is one core, guiding principle: the file's tree must always be consistent on
4508  * disk.  We must be able to restart the truncate after a crash.
4509  *
4510  * The file's tree may be transiently inconsistent in memory (although it
4511  * probably isn't), but whenever we close off and commit a journal transaction,
4512  * the contents of (the filesystem + the journal) must be consistent and
4513  * restartable.  It's pretty simple, really: bottom up, right to left (although
4514  * left-to-right works OK too).
4515  *
4516  * Note that at recovery time, journal replay occurs *before* the restart of
4517  * truncate against the orphan inode list.
4518  *
4519  * The committed inode has the new, desired i_size (which is the same as
4520  * i_disksize in this case).  After a crash, ext4_orphan_cleanup() will see
4521  * that this inode's truncate did not complete and it will again call
4522  * ext4_truncate() to have another go.  So there will be instantiated blocks
4523  * to the right of the truncation point in a crashed ext4 filesystem.  But
4524  * that's fine - as long as they are linked from the inode, the post-crash
4525  * ext4_truncate() run will find them and release them.
4526  */
4527 int ext4_truncate(struct inode *inode)
4528 {
4529         struct ext4_inode_info *ei = EXT4_I(inode);
4530         unsigned int credits;
4531         int err = 0;
4532         handle_t *handle;
4533         struct address_space *mapping = inode->i_mapping;
4534
4535         /*
4536          * There is a possibility that we're either freeing the inode
4537          * or it's a completely new inode. In those cases we might not
4538          * have i_mutex locked because it's not necessary.
4539          */
4540         if (!(inode->i_state & (I_NEW|I_FREEING)))
4541                 WARN_ON(!inode_is_locked(inode));
4542         trace_ext4_truncate_enter(inode);
4543
4544         if (!ext4_can_truncate(inode))
4545                 goto out_trace;
4546
4547         ext4_clear_inode_flag(inode, EXT4_INODE_EOFBLOCKS);
4548
4549         if (inode->i_size == 0 && !test_opt(inode->i_sb, NO_AUTO_DA_ALLOC))
4550                 ext4_set_inode_state(inode, EXT4_STATE_DA_ALLOC_CLOSE);
4551
4552         if (ext4_has_inline_data(inode)) {
4553                 int has_inline = 1;
4554
4555                 err = ext4_inline_data_truncate(inode, &has_inline);
4556                 if (err || has_inline)
4557                         goto out_trace;
4558         }
4559
4560         /* If we zero-out tail of the page, we have to create jinode for jbd2 */
4561         if (inode->i_size & (inode->i_sb->s_blocksize - 1)) {
4562                 err = ext4_inode_attach_jinode(inode);
4563                 if (err)
4564                         goto out_trace;
4565         }
4566
4567         if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS))
4568                 credits = ext4_writepage_trans_blocks(inode);
4569         else
4570                 credits = ext4_blocks_for_truncate(inode);
4571
4572         handle = ext4_journal_start(inode, EXT4_HT_TRUNCATE, credits);
4573         if (IS_ERR(handle)) {
4574                 err = PTR_ERR(handle);
4575                 goto out_trace;
4576         }
4577
4578         if (inode->i_size & (inode->i_sb->s_blocksize - 1))
4579                 ext4_block_truncate_page(handle, mapping, inode->i_size);
4580
4581         /*
4582          * We add the inode to the orphan list, so that if this
4583          * truncate spans multiple transactions, and we crash, we will
4584          * resume the truncate when the filesystem recovers.  It also
4585          * marks the inode dirty, to catch the new size.
4586          *
4587          * Implication: the file must always be in a sane, consistent
4588          * truncatable state while each transaction commits.
4589          */
4590         err = ext4_orphan_add(handle, inode);
4591         if (err)
4592                 goto out_stop;
4593
4594         down_write(&EXT4_I(inode)->i_data_sem);
4595
4596         ext4_discard_preallocations(inode);
4597
4598         if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS))
4599                 err = ext4_ext_truncate(handle, inode);
4600         else
4601                 ext4_ind_truncate(handle, inode);
4602
4603         up_write(&ei->i_data_sem);
4604         if (err)
4605                 goto out_stop;
4606
4607         if (IS_SYNC(inode))
4608                 ext4_handle_sync(handle);
4609
4610 out_stop:
4611         /*
4612          * If this was a simple ftruncate() and the file will remain alive,
4613          * then we need to clear up the orphan record which we created above.
4614          * However, if this was a real unlink then we were called by
4615          * ext4_evict_inode(), and we allow that function to clean up the
4616          * orphan info for us.
4617          */
4618         if (inode->i_nlink)
4619                 ext4_orphan_del(handle, inode);
4620
4621         inode->i_mtime = inode->i_ctime = current_time(inode);
4622         ext4_mark_inode_dirty(handle, inode);
4623         ext4_journal_stop(handle);
4624
4625 out_trace:
4626         trace_ext4_truncate_exit(inode);
4627         return err;
4628 }
4629
4630 /*
4631  * ext4_get_inode_loc returns with an extra refcount against the inode's
4632  * underlying buffer_head on success. If 'in_mem' is true, we have all
4633  * data in memory that is needed to recreate the on-disk version of this
4634  * inode.
4635  */
4636 static int __ext4_get_inode_loc(struct inode *inode,
4637                                 struct ext4_iloc *iloc, int in_mem)
4638 {
4639         struct ext4_group_desc  *gdp;
4640         struct buffer_head      *bh;
4641         struct super_block      *sb = inode->i_sb;
4642         ext4_fsblk_t            block;
4643         int                     inodes_per_block, inode_offset;
4644
4645         iloc->bh = NULL;
4646         if (inode->i_ino < EXT4_ROOT_INO ||
4647             inode->i_ino > le32_to_cpu(EXT4_SB(sb)->s_es->s_inodes_count))
4648                 return -EFSCORRUPTED;
4649
4650         iloc->block_group = (inode->i_ino - 1) / EXT4_INODES_PER_GROUP(sb);
4651         gdp = ext4_get_group_desc(sb, iloc->block_group, NULL);
4652         if (!gdp)
4653                 return -EIO;
4654
4655         /*
4656          * Figure out the offset within the block group inode table
4657          */
4658         inodes_per_block = EXT4_SB(sb)->s_inodes_per_block;
4659         inode_offset = ((inode->i_ino - 1) %
4660                         EXT4_INODES_PER_GROUP(sb));
4661         iloc->offset = (inode_offset % inodes_per_block) * EXT4_INODE_SIZE(sb);
4662
4663         block = ext4_inode_table(sb, gdp);
4664         if ((block <= le32_to_cpu(EXT4_SB(sb)->s_es->s_first_data_block)) ||
4665             (block >= ext4_blocks_count(EXT4_SB(sb)->s_es))) {
4666                 ext4_error(sb, "Invalid inode table block %llu in "
4667                            "block_group %u", block, iloc->block_group);
4668                 return -EFSCORRUPTED;
4669         }
4670         block += (inode_offset / inodes_per_block);
4671
4672         bh = sb_getblk(sb, block);
4673         if (unlikely(!bh))
4674                 return -ENOMEM;
4675         if (!buffer_uptodate(bh)) {
4676                 lock_buffer(bh);
4677
4678                 /*
4679                  * If the buffer has the write error flag, we have failed
4680                  * to write out another inode in the same block.  In this
4681                  * case, we don't have to read the block because we may
4682                  * read the old inode data successfully.
4683                  */
4684                 if (buffer_write_io_error(bh) && !buffer_uptodate(bh))
4685                         set_buffer_uptodate(bh);
4686
4687                 if (buffer_uptodate(bh)) {
4688                         /* someone brought it uptodate while we waited */
4689                         unlock_buffer(bh);
4690                         goto has_buffer;
4691                 }
4692
4693                 /*
4694                  * If we have all information of the inode in memory and this
4695                  * is the only valid inode in the block, we need not read the
4696                  * block.
4697                  */
4698                 if (in_mem) {
4699                         struct buffer_head *bitmap_bh;
4700                         int i, start;
4701
4702                         start = inode_offset & ~(inodes_per_block - 1);
4703
4704                         /* Is the inode bitmap in cache? */
4705                         bitmap_bh = sb_getblk(sb, ext4_inode_bitmap(sb, gdp));
4706                         if (unlikely(!bitmap_bh))
4707                                 goto make_io;
4708
4709                         /*
4710                          * If the inode bitmap isn't in cache then the
4711                          * optimisation may end up performing two reads instead
4712                          * of one, so skip it.
4713                          */
4714                         if (!buffer_uptodate(bitmap_bh)) {
4715                                 brelse(bitmap_bh);
4716                                 goto make_io;
4717                         }
4718                         for (i = start; i < start + inodes_per_block; i++) {
4719                                 if (i == inode_offset)
4720                                         continue;
4721                                 if (ext4_test_bit(i, bitmap_bh->b_data))
4722                                         break;
4723                         }
4724                         brelse(bitmap_bh);
4725                         if (i == start + inodes_per_block) {
4726                                 /* all other inodes are free, so skip I/O */
4727                                 memset(bh->b_data, 0, bh->b_size);
4728                                 set_buffer_uptodate(bh);
4729                                 unlock_buffer(bh);
4730                                 goto has_buffer;
4731                         }
4732                 }
4733
4734 make_io:
4735                 /*
4736                  * If we need to do any I/O, try to pre-readahead extra
4737                  * blocks from the inode table.
4738                  */
4739                 if (EXT4_SB(sb)->s_inode_readahead_blks) {
4740                         ext4_fsblk_t b, end, table;
4741                         unsigned num;
4742                         __u32 ra_blks = EXT4_SB(sb)->s_inode_readahead_blks;
4743
4744                         table = ext4_inode_table(sb, gdp);
4745                         /* s_inode_readahead_blks is always a power of 2 */
4746                         b = block & ~((ext4_fsblk_t) ra_blks - 1);
4747                         if (table > b)
4748                                 b = table;
4749                         end = b + ra_blks;
4750                         num = EXT4_INODES_PER_GROUP(sb);
4751                         if (ext4_has_group_desc_csum(sb))
4752                                 num -= ext4_itable_unused_count(sb, gdp);
4753                         table += num / inodes_per_block;
4754                         if (end > table)
4755                                 end = table;
4756                         while (b <= end)
4757                                 sb_breadahead_unmovable(sb, b++);
4758                 }
4759
4760                 /*
4761                  * There are other valid inodes in the buffer, this inode
4762                  * has in-inode xattrs, or we don't have this inode in memory.
4763                  * Read the block from disk.
4764                  */
4765                 trace_ext4_load_inode(inode);
4766                 get_bh(bh);
4767                 bh->b_end_io = end_buffer_read_sync;
4768                 submit_bh(REQ_OP_READ, REQ_META | REQ_PRIO, bh);
4769                 wait_on_buffer(bh);
4770                 if (!buffer_uptodate(bh)) {
4771                         EXT4_ERROR_INODE_BLOCK(inode, block,
4772                                                "unable to read itable block");
4773                         brelse(bh);
4774                         return -EIO;
4775                 }
4776         }
4777 has_buffer:
4778         iloc->bh = bh;
4779         return 0;
4780 }
4781
4782 int ext4_get_inode_loc(struct inode *inode, struct ext4_iloc *iloc)
4783 {
4784         /* We have all inode data except xattrs in memory here. */
4785         return __ext4_get_inode_loc(inode, iloc,
4786                 !ext4_test_inode_state(inode, EXT4_STATE_XATTR));
4787 }
4788
4789 static bool ext4_should_use_dax(struct inode *inode)
4790 {
4791         if (!test_opt(inode->i_sb, DAX))
4792                 return false;
4793         if (!S_ISREG(inode->i_mode))
4794                 return false;
4795         if (ext4_should_journal_data(inode))
4796                 return false;
4797         if (ext4_has_inline_data(inode))
4798                 return false;
4799         if (ext4_encrypted_inode(inode))
4800                 return false;
4801         return true;
4802 }
4803
4804 void ext4_set_inode_flags(struct inode *inode)
4805 {
4806         unsigned int flags = EXT4_I(inode)->i_flags;
4807         unsigned int new_fl = 0;
4808
4809         if (flags & EXT4_SYNC_FL)
4810                 new_fl |= S_SYNC;
4811         if (flags & EXT4_APPEND_FL)
4812                 new_fl |= S_APPEND;
4813         if (flags & EXT4_IMMUTABLE_FL)
4814                 new_fl |= S_IMMUTABLE;
4815         if (flags & EXT4_NOATIME_FL)
4816                 new_fl |= S_NOATIME;
4817         if (flags & EXT4_DIRSYNC_FL)
4818                 new_fl |= S_DIRSYNC;
4819         if (ext4_should_use_dax(inode))
4820                 new_fl |= S_DAX;
4821         if (flags & EXT4_ENCRYPT_FL)
4822                 new_fl |= S_ENCRYPTED;
4823         inode_set_flags(inode, new_fl,
4824                         S_SYNC|S_APPEND|S_IMMUTABLE|S_NOATIME|S_DIRSYNC|S_DAX|
4825                         S_ENCRYPTED);
4826 }
4827
4828 static blkcnt_t ext4_inode_blocks(struct ext4_inode *raw_inode,
4829                                   struct ext4_inode_info *ei)
4830 {
4831         blkcnt_t i_blocks ;
4832         struct inode *inode = &(ei->vfs_inode);
4833         struct super_block *sb = inode->i_sb;
4834
4835         if (ext4_has_feature_huge_file(sb)) {
4836                 /* we are using combined 48 bit field */
4837                 i_blocks = ((u64)le16_to_cpu(raw_inode->i_blocks_high)) << 32 |
4838                                         le32_to_cpu(raw_inode->i_blocks_lo);
4839                 if (ext4_test_inode_flag(inode, EXT4_INODE_HUGE_FILE)) {
4840                         /* i_blocks represent file system block size */
4841                         return i_blocks  << (inode->i_blkbits - 9);
4842                 } else {
4843                         return i_blocks;
4844                 }
4845         } else {
4846                 return le32_to_cpu(raw_inode->i_blocks_lo);
4847         }
4848 }
4849
4850 static inline int ext4_iget_extra_inode(struct inode *inode,
4851                                          struct ext4_inode *raw_inode,
4852                                          struct ext4_inode_info *ei)
4853 {
4854         __le32 *magic = (void *)raw_inode +
4855                         EXT4_GOOD_OLD_INODE_SIZE + ei->i_extra_isize;
4856
4857         if (EXT4_INODE_HAS_XATTR_SPACE(inode)  &&
4858             *magic == cpu_to_le32(EXT4_XATTR_MAGIC)) {
4859                 int err;
4860
4861                 ext4_set_inode_state(inode, EXT4_STATE_XATTR);
4862                 err = ext4_find_inline_data_nolock(inode);
4863                 if (!err && ext4_has_inline_data(inode))
4864                         ext4_set_inode_state(inode, EXT4_STATE_MAY_INLINE_DATA);
4865                 return err;
4866         } else
4867                 EXT4_I(inode)->i_inline_off = 0;
4868         return 0;
4869 }
4870
4871 int ext4_get_projid(struct inode *inode, kprojid_t *projid)
4872 {
4873         if (!ext4_has_feature_project(inode->i_sb))
4874                 return -EOPNOTSUPP;
4875         *projid = EXT4_I(inode)->i_projid;
4876         return 0;
4877 }
4878
4879 /*
4880  * ext4 has self-managed i_version for ea inodes, it stores the lower 32bit of
4881  * refcount in i_version, so use raw values if inode has EXT4_EA_INODE_FL flag
4882  * set.
4883  */
4884 static inline void ext4_inode_set_iversion_queried(struct inode *inode, u64 val)
4885 {
4886         if (unlikely(EXT4_I(inode)->i_flags & EXT4_EA_INODE_FL))
4887                 inode_set_iversion_raw(inode, val);
4888         else
4889                 inode_set_iversion_queried(inode, val);
4890 }
4891 static inline u64 ext4_inode_peek_iversion(const struct inode *inode)
4892 {
4893         if (unlikely(EXT4_I(inode)->i_flags & EXT4_EA_INODE_FL))
4894                 return inode_peek_iversion_raw(inode);
4895         else
4896                 return inode_peek_iversion(inode);
4897 }
4898
4899 struct inode *__ext4_iget(struct super_block *sb, unsigned long ino,
4900                           ext4_iget_flags flags, const char *function,
4901                           unsigned int line)
4902 {
4903         struct ext4_iloc iloc;
4904         struct ext4_inode *raw_inode;
4905         struct ext4_inode_info *ei;
4906         struct inode *inode;
4907         journal_t *journal = EXT4_SB(sb)->s_journal;
4908         long ret;
4909         loff_t size;
4910         int block;
4911         uid_t i_uid;
4912         gid_t i_gid;
4913         projid_t i_projid;
4914
4915         if ((!(flags & EXT4_IGET_SPECIAL) &&
4916              (ino < EXT4_FIRST_INO(sb) && ino != EXT4_ROOT_INO)) ||
4917             (ino < EXT4_ROOT_INO) ||
4918             (ino > le32_to_cpu(EXT4_SB(sb)->s_es->s_inodes_count))) {
4919                 if (flags & EXT4_IGET_HANDLE)
4920                         return ERR_PTR(-ESTALE);
4921                 __ext4_error(sb, function, line,
4922                              "inode #%lu: comm %s: iget: illegal inode #",
4923                              ino, current->comm);
4924                 return ERR_PTR(-EFSCORRUPTED);
4925         }
4926
4927         inode = iget_locked(sb, ino);
4928         if (!inode)
4929                 return ERR_PTR(-ENOMEM);
4930         if (!(inode->i_state & I_NEW))
4931                 return inode;
4932
4933         ei = EXT4_I(inode);
4934         iloc.bh = NULL;
4935
4936         ret = __ext4_get_inode_loc(inode, &iloc, 0);
4937         if (ret < 0)
4938                 goto bad_inode;
4939         raw_inode = ext4_raw_inode(&iloc);
4940
4941         if ((flags & EXT4_IGET_HANDLE) &&
4942             (raw_inode->i_links_count == 0) && (raw_inode->i_mode == 0)) {
4943                 ret = -ESTALE;
4944                 goto bad_inode;
4945         }
4946
4947         if (EXT4_INODE_SIZE(inode->i_sb) > EXT4_GOOD_OLD_INODE_SIZE) {
4948                 ei->i_extra_isize = le16_to_cpu(raw_inode->i_extra_isize);
4949                 if (EXT4_GOOD_OLD_INODE_SIZE + ei->i_extra_isize >
4950                         EXT4_INODE_SIZE(inode->i_sb) ||
4951                     (ei->i_extra_isize & 3)) {
4952                         ext4_error_inode(inode, function, line, 0,
4953                                          "iget: bad extra_isize %u "
4954                                          "(inode size %u)",
4955                                          ei->i_extra_isize,
4956                                          EXT4_INODE_SIZE(inode->i_sb));
4957                         ret = -EFSCORRUPTED;
4958                         goto bad_inode;
4959                 }
4960         } else
4961                 ei->i_extra_isize = 0;
4962
4963         /* Precompute checksum seed for inode metadata */
4964         if (ext4_has_metadata_csum(sb)) {
4965                 struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
4966                 __u32 csum;
4967                 __le32 inum = cpu_to_le32(inode->i_ino);
4968                 __le32 gen = raw_inode->i_generation;
4969                 csum = ext4_chksum(sbi, sbi->s_csum_seed, (__u8 *)&inum,
4970                                    sizeof(inum));
4971                 ei->i_csum_seed = ext4_chksum(sbi, csum, (__u8 *)&gen,
4972                                               sizeof(gen));
4973         }
4974
4975         if (!ext4_inode_csum_verify(inode, raw_inode, ei)) {
4976                 ext4_error_inode(inode, function, line, 0,
4977                                  "iget: checksum invalid");
4978                 ret = -EFSBADCRC;
4979                 goto bad_inode;
4980         }
4981
4982         inode->i_mode = le16_to_cpu(raw_inode->i_mode);
4983         i_uid = (uid_t)le16_to_cpu(raw_inode->i_uid_low);
4984         i_gid = (gid_t)le16_to_cpu(raw_inode->i_gid_low);
4985         if (ext4_has_feature_project(sb) &&
4986             EXT4_INODE_SIZE(sb) > EXT4_GOOD_OLD_INODE_SIZE &&
4987             EXT4_FITS_IN_INODE(raw_inode, ei, i_projid))
4988                 i_projid = (projid_t)le32_to_cpu(raw_inode->i_projid);
4989         else
4990                 i_projid = EXT4_DEF_PROJID;
4991
4992         if (!(test_opt(inode->i_sb, NO_UID32))) {
4993                 i_uid |= le16_to_cpu(raw_inode->i_uid_high) << 16;
4994                 i_gid |= le16_to_cpu(raw_inode->i_gid_high) << 16;
4995         }
4996         i_uid_write(inode, i_uid);
4997         i_gid_write(inode, i_gid);
4998         ei->i_projid = make_kprojid(&init_user_ns, i_projid);
4999         set_nlink(inode, le16_to_cpu(raw_inode->i_links_count));
5000
5001         ext4_clear_state_flags(ei);     /* Only relevant on 32-bit archs */
5002         ei->i_inline_off = 0;
5003         ei->i_dir_start_lookup = 0;
5004         ei->i_dtime = le32_to_cpu(raw_inode->i_dtime);
5005         /* We now have enough fields to check if the inode was active or not.
5006          * This is needed because nfsd might try to access dead inodes
5007          * the test is that same one that e2fsck uses
5008          * NeilBrown 1999oct15
5009          */
5010         if (inode->i_nlink == 0) {
5011                 if ((inode->i_mode == 0 || flags & EXT4_IGET_SPECIAL ||
5012                      !(EXT4_SB(inode->i_sb)->s_mount_state & EXT4_ORPHAN_FS)) &&
5013                     ino != EXT4_BOOT_LOADER_INO) {
5014                         /* this inode is deleted or unallocated */
5015                         if (flags & EXT4_IGET_SPECIAL) {
5016                                 ext4_error_inode(inode, function, line, 0,
5017                                                  "iget: special inode unallocated");
5018                                 ret = -EFSCORRUPTED;
5019                         } else
5020                                 ret = -ESTALE;
5021                         goto bad_inode;
5022                 }
5023                 /* The only unlinked inodes we let through here have
5024                  * valid i_mode and are being read by the orphan
5025                  * recovery code: that's fine, we're about to complete
5026                  * the process of deleting those.
5027                  * OR it is the EXT4_BOOT_LOADER_INO which is
5028                  * not initialized on a new filesystem. */
5029         }
5030         ei->i_flags = le32_to_cpu(raw_inode->i_flags);
5031         ext4_set_inode_flags(inode);
5032         inode->i_blocks = ext4_inode_blocks(raw_inode, ei);
5033         ei->i_file_acl = le32_to_cpu(raw_inode->i_file_acl_lo);
5034         if (ext4_has_feature_64bit(sb))
5035                 ei->i_file_acl |=
5036                         ((__u64)le16_to_cpu(raw_inode->i_file_acl_high)) << 32;
5037         inode->i_size = ext4_isize(sb, raw_inode);
5038         if ((size = i_size_read(inode)) < 0) {
5039                 ext4_error_inode(inode, function, line, 0,
5040                                  "iget: bad i_size value: %lld", size);
5041                 ret = -EFSCORRUPTED;
5042                 goto bad_inode;
5043         }
5044         /*
5045          * If dir_index is not enabled but there's dir with INDEX flag set,
5046          * we'd normally treat htree data as empty space. But with metadata
5047          * checksumming that corrupts checksums so forbid that.
5048          */
5049         if (!ext4_has_feature_dir_index(sb) && ext4_has_metadata_csum(sb) &&
5050             ext4_test_inode_flag(inode, EXT4_INODE_INDEX)) {
5051                 ext4_error_inode(inode, function, line, 0,
5052                          "iget: Dir with htree data on filesystem without dir_index feature.");
5053                 ret = -EFSCORRUPTED;
5054                 goto bad_inode;
5055         }
5056         ei->i_disksize = inode->i_size;
5057 #ifdef CONFIG_QUOTA
5058         ei->i_reserved_quota = 0;
5059 #endif
5060         inode->i_generation = le32_to_cpu(raw_inode->i_generation);
5061         ei->i_block_group = iloc.block_group;
5062         ei->i_last_alloc_group = ~0;
5063         /*
5064          * NOTE! The in-memory inode i_data array is in little-endian order
5065          * even on big-endian machines: we do NOT byteswap the block numbers!
5066          */
5067         for (block = 0; block < EXT4_N_BLOCKS; block++)
5068                 ei->i_data[block] = raw_inode->i_block[block];
5069         INIT_LIST_HEAD(&ei->i_orphan);
5070
5071         /*
5072          * Set transaction id's of transactions that have to be committed
5073          * to finish f[data]sync. We set them to currently running transaction
5074          * as we cannot be sure that the inode or some of its metadata isn't
5075          * part of the transaction - the inode could have been reclaimed and
5076          * now it is reread from disk.
5077          */
5078         if (journal) {
5079                 transaction_t *transaction;
5080                 tid_t tid;
5081
5082                 read_lock(&journal->j_state_lock);
5083                 if (journal->j_running_transaction)
5084                         transaction = journal->j_running_transaction;
5085                 else
5086                         transaction = journal->j_committing_transaction;
5087                 if (transaction)
5088                         tid = transaction->t_tid;
5089                 else
5090                         tid = journal->j_commit_sequence;
5091                 read_unlock(&journal->j_state_lock);
5092                 ei->i_sync_tid = tid;
5093                 ei->i_datasync_tid = tid;
5094         }
5095
5096         if (EXT4_INODE_SIZE(inode->i_sb) > EXT4_GOOD_OLD_INODE_SIZE) {
5097                 if (ei->i_extra_isize == 0) {
5098                         /* The extra space is currently unused. Use it. */
5099                         BUILD_BUG_ON(sizeof(struct ext4_inode) & 3);
5100                         ei->i_extra_isize = sizeof(struct ext4_inode) -
5101                                             EXT4_GOOD_OLD_INODE_SIZE;
5102                 } else {
5103                         ret = ext4_iget_extra_inode(inode, raw_inode, ei);
5104                         if (ret)
5105                                 goto bad_inode;
5106                 }
5107         }
5108
5109         EXT4_INODE_GET_XTIME(i_ctime, inode, raw_inode);
5110         EXT4_INODE_GET_XTIME(i_mtime, inode, raw_inode);
5111         EXT4_INODE_GET_XTIME(i_atime, inode, raw_inode);
5112         EXT4_EINODE_GET_XTIME(i_crtime, ei, raw_inode);
5113
5114         if (likely(!test_opt2(inode->i_sb, HURD_COMPAT))) {
5115                 u64 ivers = le32_to_cpu(raw_inode->i_disk_version);
5116
5117                 if (EXT4_INODE_SIZE(inode->i_sb) > EXT4_GOOD_OLD_INODE_SIZE) {
5118                         if (EXT4_FITS_IN_INODE(raw_inode, ei, i_version_hi))
5119                                 ivers |=
5120                     (__u64)(le32_to_cpu(raw_inode->i_version_hi)) << 32;
5121                 }
5122                 ext4_inode_set_iversion_queried(inode, ivers);
5123         }
5124
5125         ret = 0;
5126         if (ei->i_file_acl &&
5127             !ext4_inode_block_valid(inode, ei->i_file_acl, 1)) {
5128                 ext4_error_inode(inode, function, line, 0,
5129                                  "iget: bad extended attribute block %llu",
5130                                  ei->i_file_acl);
5131                 ret = -EFSCORRUPTED;
5132                 goto bad_inode;
5133         } else if (!ext4_has_inline_data(inode)) {
5134                 /* validate the block references in the inode */
5135                 if (S_ISREG(inode->i_mode) || S_ISDIR(inode->i_mode) ||
5136                    (S_ISLNK(inode->i_mode) &&
5137                     !ext4_inode_is_fast_symlink(inode))) {
5138                         if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS))
5139                                 ret = ext4_ext_check_inode(inode);
5140                         else
5141                                 ret = ext4_ind_check_inode(inode);
5142                 }
5143         }
5144         if (ret)
5145                 goto bad_inode;
5146
5147         if (S_ISREG(inode->i_mode)) {
5148                 inode->i_op = &ext4_file_inode_operations;
5149                 inode->i_fop = &ext4_file_operations;
5150                 ext4_set_aops(inode);
5151         } else if (S_ISDIR(inode->i_mode)) {
5152                 inode->i_op = &ext4_dir_inode_operations;
5153                 inode->i_fop = &ext4_dir_operations;
5154         } else if (S_ISLNK(inode->i_mode)) {
5155                 /* VFS does not allow setting these so must be corruption */
5156                 if (IS_APPEND(inode) || IS_IMMUTABLE(inode)) {
5157                         ext4_error_inode(inode, function, line, 0,
5158                                          "iget: immutable or append flags "
5159                                          "not allowed on symlinks");
5160                         ret = -EFSCORRUPTED;
5161                         goto bad_inode;
5162                 }
5163                 if (ext4_encrypted_inode(inode)) {
5164                         inode->i_op = &ext4_encrypted_symlink_inode_operations;
5165                         ext4_set_aops(inode);
5166                 } else if (ext4_inode_is_fast_symlink(inode)) {
5167                         inode->i_link = (char *)ei->i_data;
5168                         inode->i_op = &ext4_fast_symlink_inode_operations;
5169                         nd_terminate_link(ei->i_data, inode->i_size,
5170                                 sizeof(ei->i_data) - 1);
5171                 } else {
5172                         inode->i_op = &ext4_symlink_inode_operations;
5173                         ext4_set_aops(inode);
5174                 }
5175                 inode_nohighmem(inode);
5176         } else if (S_ISCHR(inode->i_mode) || S_ISBLK(inode->i_mode) ||
5177               S_ISFIFO(inode->i_mode) || S_ISSOCK(inode->i_mode)) {
5178                 inode->i_op = &ext4_special_inode_operations;
5179                 if (raw_inode->i_block[0])
5180                         init_special_inode(inode, inode->i_mode,
5181                            old_decode_dev(le32_to_cpu(raw_inode->i_block[0])));
5182                 else
5183                         init_special_inode(inode, inode->i_mode,
5184                            new_decode_dev(le32_to_cpu(raw_inode->i_block[1])));
5185         } else if (ino == EXT4_BOOT_LOADER_INO) {
5186                 make_bad_inode(inode);
5187         } else {
5188                 ret = -EFSCORRUPTED;
5189                 ext4_error_inode(inode, function, line, 0,
5190                                  "iget: bogus i_mode (%o)", inode->i_mode);
5191                 goto bad_inode;
5192         }
5193         brelse(iloc.bh);
5194
5195         unlock_new_inode(inode);
5196         return inode;
5197
5198 bad_inode:
5199         brelse(iloc.bh);
5200         iget_failed(inode);
5201         return ERR_PTR(ret);
5202 }
5203
5204 static int ext4_inode_blocks_set(handle_t *handle,
5205                                 struct ext4_inode *raw_inode,
5206                                 struct ext4_inode_info *ei)
5207 {
5208         struct inode *inode = &(ei->vfs_inode);
5209         u64 i_blocks = READ_ONCE(inode->i_blocks);
5210         struct super_block *sb = inode->i_sb;
5211
5212         if (i_blocks <= ~0U) {
5213                 /*
5214                  * i_blocks can be represented in a 32 bit variable
5215                  * as multiple of 512 bytes
5216                  */
5217                 raw_inode->i_blocks_lo   = cpu_to_le32(i_blocks);
5218                 raw_inode->i_blocks_high = 0;
5219                 ext4_clear_inode_flag(inode, EXT4_INODE_HUGE_FILE);
5220                 return 0;
5221         }
5222         if (!ext4_has_feature_huge_file(sb))
5223                 return -EFBIG;
5224
5225         if (i_blocks <= 0xffffffffffffULL) {
5226                 /*
5227                  * i_blocks can be represented in a 48 bit variable
5228                  * as multiple of 512 bytes
5229                  */
5230                 raw_inode->i_blocks_lo   = cpu_to_le32(i_blocks);
5231                 raw_inode->i_blocks_high = cpu_to_le16(i_blocks >> 32);
5232                 ext4_clear_inode_flag(inode, EXT4_INODE_HUGE_FILE);
5233         } else {
5234                 ext4_set_inode_flag(inode, EXT4_INODE_HUGE_FILE);
5235                 /* i_block is stored in file system block size */
5236                 i_blocks = i_blocks >> (inode->i_blkbits - 9);
5237                 raw_inode->i_blocks_lo   = cpu_to_le32(i_blocks);
5238                 raw_inode->i_blocks_high = cpu_to_le16(i_blocks >> 32);
5239         }
5240         return 0;
5241 }
5242
5243 struct other_inode {
5244         unsigned long           orig_ino;
5245         struct ext4_inode       *raw_inode;
5246 };
5247
5248 static int other_inode_match(struct inode * inode, unsigned long ino,
5249                              void *data)
5250 {
5251         struct other_inode *oi = (struct other_inode *) data;
5252
5253         if ((inode->i_ino != ino) ||
5254             (inode->i_state & (I_FREEING | I_WILL_FREE | I_NEW |
5255                                I_DIRTY_INODE)) ||
5256             ((inode->i_state & I_DIRTY_TIME) == 0))
5257                 return 0;
5258         spin_lock(&inode->i_lock);
5259         if (((inode->i_state & (I_FREEING | I_WILL_FREE | I_NEW |
5260                                 I_DIRTY_INODE)) == 0) &&
5261             (inode->i_state & I_DIRTY_TIME)) {
5262                 struct ext4_inode_info  *ei = EXT4_I(inode);
5263
5264                 inode->i_state &= ~I_DIRTY_TIME;
5265                 spin_unlock(&inode->i_lock);
5266
5267                 spin_lock(&ei->i_raw_lock);
5268                 EXT4_INODE_SET_XTIME(i_ctime, inode, oi->raw_inode);
5269                 EXT4_INODE_SET_XTIME(i_mtime, inode, oi->raw_inode);
5270                 EXT4_INODE_SET_XTIME(i_atime, inode, oi->raw_inode);
5271                 ext4_inode_csum_set(inode, oi->raw_inode, ei);
5272                 spin_unlock(&ei->i_raw_lock);
5273                 trace_ext4_other_inode_update_time(inode, oi->orig_ino);
5274                 return -1;
5275         }
5276         spin_unlock(&inode->i_lock);
5277         return -1;
5278 }
5279
5280 /*
5281  * Opportunistically update the other time fields for other inodes in
5282  * the same inode table block.
5283  */
5284 static void ext4_update_other_inodes_time(struct super_block *sb,
5285                                           unsigned long orig_ino, char *buf)
5286 {
5287         struct other_inode oi;
5288         unsigned long ino;
5289         int i, inodes_per_block = EXT4_SB(sb)->s_inodes_per_block;
5290         int inode_size = EXT4_INODE_SIZE(sb);
5291
5292         oi.orig_ino = orig_ino;
5293         /*
5294          * Calculate the first inode in the inode table block.  Inode
5295          * numbers are one-based.  That is, the first inode in a block
5296          * (assuming 4k blocks and 256 byte inodes) is (n*16 + 1).
5297          */
5298         ino = ((orig_ino - 1) & ~(inodes_per_block - 1)) + 1;
5299         for (i = 0; i < inodes_per_block; i++, ino++, buf += inode_size) {
5300                 if (ino == orig_ino)
5301                         continue;
5302                 oi.raw_inode = (struct ext4_inode *) buf;
5303                 (void) find_inode_nowait(sb, ino, other_inode_match, &oi);
5304         }
5305 }
5306
5307 /*
5308  * Post the struct inode info into an on-disk inode location in the
5309  * buffer-cache.  This gobbles the caller's reference to the
5310  * buffer_head in the inode location struct.
5311  *
5312  * The caller must have write access to iloc->bh.
5313  */
5314 static int ext4_do_update_inode(handle_t *handle,
5315                                 struct inode *inode,
5316                                 struct ext4_iloc *iloc)
5317 {
5318         struct ext4_inode *raw_inode = ext4_raw_inode(iloc);
5319         struct ext4_inode_info *ei = EXT4_I(inode);
5320         struct buffer_head *bh = iloc->bh;
5321         struct super_block *sb = inode->i_sb;
5322         int err = 0, block;
5323         int need_datasync = 0, set_large_file = 0;
5324         uid_t i_uid;
5325         gid_t i_gid;
5326         projid_t i_projid;
5327
5328         spin_lock(&ei->i_raw_lock);
5329
5330         /* For fields not tracked in the in-memory inode,
5331          * initialise them to zero for new inodes. */
5332         if (ext4_test_inode_state(inode, EXT4_STATE_NEW))
5333                 memset(raw_inode, 0, EXT4_SB(inode->i_sb)->s_inode_size);
5334
5335         err = ext4_inode_blocks_set(handle, raw_inode, ei);
5336         if (err) {
5337                 spin_unlock(&ei->i_raw_lock);
5338                 goto out_brelse;
5339         }
5340
5341         raw_inode->i_mode = cpu_to_le16(inode->i_mode);
5342         i_uid = i_uid_read(inode);
5343         i_gid = i_gid_read(inode);
5344         i_projid = from_kprojid(&init_user_ns, ei->i_projid);
5345         if (!(test_opt(inode->i_sb, NO_UID32))) {
5346                 raw_inode->i_uid_low = cpu_to_le16(low_16_bits(i_uid));
5347                 raw_inode->i_gid_low = cpu_to_le16(low_16_bits(i_gid));
5348 /*
5349  * Fix up interoperability with old kernels. Otherwise, old inodes get
5350  * re-used with the upper 16 bits of the uid/gid intact
5351  */
5352                 if (ei->i_dtime && list_empty(&ei->i_orphan)) {
5353                         raw_inode->i_uid_high = 0;
5354                         raw_inode->i_gid_high = 0;
5355                 } else {
5356                         raw_inode->i_uid_high =
5357                                 cpu_to_le16(high_16_bits(i_uid));
5358                         raw_inode->i_gid_high =
5359                                 cpu_to_le16(high_16_bits(i_gid));
5360                 }
5361         } else {
5362                 raw_inode->i_uid_low = cpu_to_le16(fs_high2lowuid(i_uid));
5363                 raw_inode->i_gid_low = cpu_to_le16(fs_high2lowgid(i_gid));
5364                 raw_inode->i_uid_high = 0;
5365                 raw_inode->i_gid_high = 0;
5366         }
5367         raw_inode->i_links_count = cpu_to_le16(inode->i_nlink);
5368
5369         EXT4_INODE_SET_XTIME(i_ctime, inode, raw_inode);
5370         EXT4_INODE_SET_XTIME(i_mtime, inode, raw_inode);
5371         EXT4_INODE_SET_XTIME(i_atime, inode, raw_inode);
5372         EXT4_EINODE_SET_XTIME(i_crtime, ei, raw_inode);
5373
5374         raw_inode->i_dtime = cpu_to_le32(ei->i_dtime);
5375         raw_inode->i_flags = cpu_to_le32(ei->i_flags & 0xFFFFFFFF);
5376         if (likely(!test_opt2(inode->i_sb, HURD_COMPAT)))
5377                 raw_inode->i_file_acl_high =
5378                         cpu_to_le16(ei->i_file_acl >> 32);
5379         raw_inode->i_file_acl_lo = cpu_to_le32(ei->i_file_acl);
5380         if (READ_ONCE(ei->i_disksize) != ext4_isize(inode->i_sb, raw_inode)) {
5381                 ext4_isize_set(raw_inode, ei->i_disksize);
5382                 need_datasync = 1;
5383         }
5384         if (ei->i_disksize > 0x7fffffffULL) {
5385                 if (!ext4_has_feature_large_file(sb) ||
5386                                 EXT4_SB(sb)->s_es->s_rev_level ==
5387                     cpu_to_le32(EXT4_GOOD_OLD_REV))
5388                         set_large_file = 1;
5389         }
5390         raw_inode->i_generation = cpu_to_le32(inode->i_generation);
5391         if (S_ISCHR(inode->i_mode) || S_ISBLK(inode->i_mode)) {
5392                 if (old_valid_dev(inode->i_rdev)) {
5393                         raw_inode->i_block[0] =
5394                                 cpu_to_le32(old_encode_dev(inode->i_rdev));
5395                         raw_inode->i_block[1] = 0;
5396                 } else {
5397                         raw_inode->i_block[0] = 0;
5398                         raw_inode->i_block[1] =
5399                                 cpu_to_le32(new_encode_dev(inode->i_rdev));
5400                         raw_inode->i_block[2] = 0;
5401                 }
5402         } else if (!ext4_has_inline_data(inode)) {
5403                 for (block = 0; block < EXT4_N_BLOCKS; block++)
5404                         raw_inode->i_block[block] = ei->i_data[block];
5405         }
5406
5407         if (likely(!test_opt2(inode->i_sb, HURD_COMPAT))) {
5408                 u64 ivers = ext4_inode_peek_iversion(inode);
5409
5410                 raw_inode->i_disk_version = cpu_to_le32(ivers);
5411                 if (ei->i_extra_isize) {
5412                         if (EXT4_FITS_IN_INODE(raw_inode, ei, i_version_hi))
5413                                 raw_inode->i_version_hi =
5414                                         cpu_to_le32(ivers >> 32);
5415                         raw_inode->i_extra_isize =
5416                                 cpu_to_le16(ei->i_extra_isize);
5417                 }
5418         }
5419
5420         BUG_ON(!ext4_has_feature_project(inode->i_sb) &&
5421                i_projid != EXT4_DEF_PROJID);
5422
5423         if (EXT4_INODE_SIZE(inode->i_sb) > EXT4_GOOD_OLD_INODE_SIZE &&
5424             EXT4_FITS_IN_INODE(raw_inode, ei, i_projid))
5425                 raw_inode->i_projid = cpu_to_le32(i_projid);
5426
5427         ext4_inode_csum_set(inode, raw_inode, ei);
5428         spin_unlock(&ei->i_raw_lock);
5429         if (inode->i_sb->s_flags & SB_LAZYTIME)
5430                 ext4_update_other_inodes_time(inode->i_sb, inode->i_ino,
5431                                               bh->b_data);
5432
5433         BUFFER_TRACE(bh, "call ext4_handle_dirty_metadata");
5434         err = ext4_handle_dirty_metadata(handle, NULL, bh);
5435         if (err)
5436                 goto out_brelse;
5437         ext4_clear_inode_state(inode, EXT4_STATE_NEW);
5438         if (set_large_file) {
5439                 BUFFER_TRACE(EXT4_SB(sb)->s_sbh, "get write access");
5440                 err = ext4_journal_get_write_access(handle, EXT4_SB(sb)->s_sbh);
5441                 if (err)
5442                         goto out_brelse;
5443                 ext4_set_feature_large_file(sb);
5444                 ext4_handle_sync(handle);
5445                 err = ext4_handle_dirty_super(handle, sb);
5446         }
5447         ext4_update_inode_fsync_trans(handle, inode, need_datasync);
5448 out_brelse:
5449         brelse(bh);
5450         ext4_std_error(inode->i_sb, err);
5451         return err;
5452 }
5453
5454 /*
5455  * ext4_write_inode()
5456  *
5457  * We are called from a few places:
5458  *
5459  * - Within generic_file_aio_write() -> generic_write_sync() for O_SYNC files.
5460  *   Here, there will be no transaction running. We wait for any running
5461  *   transaction to commit.
5462  *
5463  * - Within flush work (sys_sync(), kupdate and such).
5464  *   We wait on commit, if told to.
5465  *
5466  * - Within iput_final() -> write_inode_now()
5467  *   We wait on commit, if told to.
5468  *
5469  * In all cases it is actually safe for us to return without doing anything,
5470  * because the inode has been copied into a raw inode buffer in
5471  * ext4_mark_inode_dirty().  This is a correctness thing for WB_SYNC_ALL
5472  * writeback.
5473  *
5474  * Note that we are absolutely dependent upon all inode dirtiers doing the
5475  * right thing: they *must* call mark_inode_dirty() after dirtying info in
5476  * which we are interested.
5477  *
5478  * It would be a bug for them to not do this.  The code:
5479  *
5480  *      mark_inode_dirty(inode)
5481  *      stuff();
5482  *      inode->i_size = expr;
5483  *
5484  * is in error because write_inode() could occur while `stuff()' is running,
5485  * and the new i_size will be lost.  Plus the inode will no longer be on the
5486  * superblock's dirty inode list.
5487  */
5488 int ext4_write_inode(struct inode *inode, struct writeback_control *wbc)
5489 {
5490         int err;
5491
5492         if (WARN_ON_ONCE(current->flags & PF_MEMALLOC) ||
5493             sb_rdonly(inode->i_sb))
5494                 return 0;
5495
5496         if (unlikely(ext4_forced_shutdown(EXT4_SB(inode->i_sb))))
5497                 return -EIO;
5498
5499         if (EXT4_SB(inode->i_sb)->s_journal) {
5500                 if (ext4_journal_current_handle()) {
5501                         jbd_debug(1, "called recursively, non-PF_MEMALLOC!\n");
5502                         dump_stack();
5503                         return -EIO;
5504                 }
5505
5506                 /*
5507                  * No need to force transaction in WB_SYNC_NONE mode. Also
5508                  * ext4_sync_fs() will force the commit after everything is
5509                  * written.
5510                  */
5511                 if (wbc->sync_mode != WB_SYNC_ALL || wbc->for_sync)
5512                         return 0;
5513
5514                 err = jbd2_complete_transaction(EXT4_SB(inode->i_sb)->s_journal,
5515                                                 EXT4_I(inode)->i_sync_tid);
5516         } else {
5517                 struct ext4_iloc iloc;
5518
5519                 err = __ext4_get_inode_loc(inode, &iloc, 0);
5520                 if (err)
5521                         return err;
5522                 /*
5523                  * sync(2) will flush the whole buffer cache. No need to do
5524                  * it here separately for each inode.
5525                  */
5526                 if (wbc->sync_mode == WB_SYNC_ALL && !wbc->for_sync)
5527                         sync_dirty_buffer(iloc.bh);
5528                 if (buffer_req(iloc.bh) && !buffer_uptodate(iloc.bh)) {
5529                         EXT4_ERROR_INODE_BLOCK(inode, iloc.bh->b_blocknr,
5530                                          "IO error syncing inode");
5531                         err = -EIO;
5532                 }
5533                 brelse(iloc.bh);
5534         }
5535         return err;
5536 }
5537
5538 /*
5539  * In data=journal mode ext4_journalled_invalidatepage() may fail to invalidate
5540  * buffers that are attached to a page stradding i_size and are undergoing
5541  * commit. In that case we have to wait for commit to finish and try again.
5542  */
5543 static void ext4_wait_for_tail_page_commit(struct inode *inode)
5544 {
5545         struct page *page;
5546         unsigned offset;
5547         journal_t *journal = EXT4_SB(inode->i_sb)->s_journal;
5548         tid_t commit_tid = 0;
5549         int ret;
5550
5551         offset = inode->i_size & (PAGE_SIZE - 1);
5552         /*
5553          * If the page is fully truncated, we don't need to wait for any commit
5554          * (and we even should not as __ext4_journalled_invalidatepage() may
5555          * strip all buffers from the page but keep the page dirty which can then
5556          * confuse e.g. concurrent ext4_writepage() seeing dirty page without
5557          * buffers). Also we don't need to wait for any commit if all buffers in
5558          * the page remain valid. This is most beneficial for the common case of
5559          * blocksize == PAGESIZE.
5560          */
5561         if (!offset || offset > (PAGE_SIZE - i_blocksize(inode)))
5562                 return;
5563         while (1) {
5564                 page = find_lock_page(inode->i_mapping,
5565                                       inode->i_size >> PAGE_SHIFT);
5566                 if (!page)
5567                         return;
5568                 ret = __ext4_journalled_invalidatepage(page, offset,
5569                                                 PAGE_SIZE - offset);
5570                 unlock_page(page);
5571                 put_page(page);
5572                 if (ret != -EBUSY)
5573                         return;
5574                 commit_tid = 0;
5575                 read_lock(&journal->j_state_lock);
5576                 if (journal->j_committing_transaction)
5577                         commit_tid = journal->j_committing_transaction->t_tid;
5578                 read_unlock(&journal->j_state_lock);
5579                 if (commit_tid)
5580                         jbd2_log_wait_commit(journal, commit_tid);
5581         }
5582 }
5583
5584 /*
5585  * ext4_setattr()
5586  *
5587  * Called from notify_change.
5588  *
5589  * We want to trap VFS attempts to truncate the file as soon as
5590  * possible.  In particular, we want to make sure that when the VFS
5591  * shrinks i_size, we put the inode on the orphan list and modify
5592  * i_disksize immediately, so that during the subsequent flushing of
5593  * dirty pages and freeing of disk blocks, we can guarantee that any
5594  * commit will leave the blocks being flushed in an unused state on
5595  * disk.  (On recovery, the inode will get truncated and the blocks will
5596  * be freed, so we have a strong guarantee that no future commit will
5597  * leave these blocks visible to the user.)
5598  *
5599  * Another thing we have to assure is that if we are in ordered mode
5600  * and inode is still attached to the committing transaction, we must
5601  * we start writeout of all the dirty pages which are being truncated.
5602  * This way we are sure that all the data written in the previous
5603  * transaction are already on disk (truncate waits for pages under
5604  * writeback).
5605  *
5606  * Called with inode->i_mutex down.
5607  */
5608 int ext4_setattr(struct dentry *dentry, struct iattr *attr)
5609 {
5610         struct inode *inode = d_inode(dentry);
5611         int error, rc = 0;
5612         int orphan = 0;
5613         const unsigned int ia_valid = attr->ia_valid;
5614
5615         if (unlikely(ext4_forced_shutdown(EXT4_SB(inode->i_sb))))
5616                 return -EIO;
5617
5618         if (unlikely(IS_IMMUTABLE(inode)))
5619                 return -EPERM;
5620
5621         if (unlikely(IS_APPEND(inode) &&
5622                      (ia_valid & (ATTR_MODE | ATTR_UID |
5623                                   ATTR_GID | ATTR_TIMES_SET))))
5624                 return -EPERM;
5625
5626         error = setattr_prepare(dentry, attr);
5627         if (error)
5628                 return error;
5629
5630         error = fscrypt_prepare_setattr(dentry, attr);
5631         if (error)
5632                 return error;
5633
5634         if (is_quota_modification(inode, attr)) {
5635                 error = dquot_initialize(inode);
5636                 if (error)
5637                         return error;
5638         }
5639         if ((ia_valid & ATTR_UID && !uid_eq(attr->ia_uid, inode->i_uid)) ||
5640             (ia_valid & ATTR_GID && !gid_eq(attr->ia_gid, inode->i_gid))) {
5641                 handle_t *handle;
5642
5643                 /* (user+group)*(old+new) structure, inode write (sb,
5644                  * inode block, ? - but truncate inode update has it) */
5645                 handle = ext4_journal_start(inode, EXT4_HT_QUOTA,
5646                         (EXT4_MAXQUOTAS_INIT_BLOCKS(inode->i_sb) +
5647                          EXT4_MAXQUOTAS_DEL_BLOCKS(inode->i_sb)) + 3);
5648                 if (IS_ERR(handle)) {
5649                         error = PTR_ERR(handle);
5650                         goto err_out;
5651                 }
5652
5653                 /* dquot_transfer() calls back ext4_get_inode_usage() which
5654                  * counts xattr inode references.
5655                  */
5656                 down_read(&EXT4_I(inode)->xattr_sem);
5657                 error = dquot_transfer(inode, attr);
5658                 up_read(&EXT4_I(inode)->xattr_sem);
5659
5660                 if (error) {
5661                         ext4_journal_stop(handle);
5662                         return error;
5663                 }
5664                 /* Update corresponding info in inode so that everything is in
5665                  * one transaction */
5666                 if (attr->ia_valid & ATTR_UID)
5667                         inode->i_uid = attr->ia_uid;
5668                 if (attr->ia_valid & ATTR_GID)
5669                         inode->i_gid = attr->ia_gid;
5670                 error = ext4_mark_inode_dirty(handle, inode);
5671                 ext4_journal_stop(handle);
5672         }
5673
5674         if (attr->ia_valid & ATTR_SIZE) {
5675                 handle_t *handle;
5676                 loff_t oldsize = inode->i_size;
5677                 int shrink = (attr->ia_size <= inode->i_size);
5678
5679                 if (!(ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS))) {
5680                         struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
5681
5682                         if (attr->ia_size > sbi->s_bitmap_maxbytes)
5683                                 return -EFBIG;
5684                 }
5685                 if (!S_ISREG(inode->i_mode))
5686                         return -EINVAL;
5687
5688                 if (IS_I_VERSION(inode) && attr->ia_size != inode->i_size)
5689                         inode_inc_iversion(inode);
5690
5691                 if (ext4_should_order_data(inode) &&
5692                     (attr->ia_size < inode->i_size)) {
5693                         error = ext4_begin_ordered_truncate(inode,
5694                                                             attr->ia_size);
5695                         if (error)
5696                                 goto err_out;
5697                 }
5698                 if (attr->ia_size != inode->i_size) {
5699                         handle = ext4_journal_start(inode, EXT4_HT_INODE, 3);
5700                         if (IS_ERR(handle)) {
5701                                 error = PTR_ERR(handle);
5702                                 goto err_out;
5703                         }
5704                         if (ext4_handle_valid(handle) && shrink) {
5705                                 error = ext4_orphan_add(handle, inode);
5706                                 orphan = 1;
5707                         }
5708                         /*
5709                          * Update c/mtime on truncate up, ext4_truncate() will
5710                          * update c/mtime in shrink case below
5711                          */
5712                         if (!shrink) {
5713                                 inode->i_mtime = current_time(inode);
5714                                 inode->i_ctime = inode->i_mtime;
5715                         }
5716                         down_write(&EXT4_I(inode)->i_data_sem);
5717                         EXT4_I(inode)->i_disksize = attr->ia_size;
5718                         rc = ext4_mark_inode_dirty(handle, inode);
5719                         if (!error)
5720                                 error = rc;
5721                         /*
5722                          * We have to update i_size under i_data_sem together
5723                          * with i_disksize to avoid races with writeback code
5724                          * running ext4_wb_update_i_disksize().
5725                          */
5726                         if (!error)
5727                                 i_size_write(inode, attr->ia_size);
5728                         up_write(&EXT4_I(inode)->i_data_sem);
5729                         ext4_journal_stop(handle);
5730                         if (error) {
5731                                 if (orphan && inode->i_nlink)
5732                                         ext4_orphan_del(NULL, inode);
5733                                 goto err_out;
5734                         }
5735                 }
5736                 if (!shrink) {
5737                         pagecache_isize_extended(inode, oldsize, inode->i_size);
5738                 } else {
5739                         /*
5740                          * Blocks are going to be removed from the inode. Wait
5741                          * for dio in flight.
5742                          */
5743                         inode_dio_wait(inode);
5744                 }
5745                 if (orphan && ext4_should_journal_data(inode))
5746                         ext4_wait_for_tail_page_commit(inode);
5747                 down_write(&EXT4_I(inode)->i_mmap_sem);
5748
5749                 rc = ext4_break_layouts(inode);
5750                 if (rc) {
5751                         up_write(&EXT4_I(inode)->i_mmap_sem);
5752                         error = rc;
5753                         goto err_out;
5754                 }
5755
5756                 /*
5757                  * Truncate pagecache after we've waited for commit
5758                  * in data=journal mode to make pages freeable.
5759                  */
5760                 truncate_pagecache(inode, inode->i_size);
5761                 if (shrink) {
5762                         rc = ext4_truncate(inode);
5763                         if (rc)
5764                                 error = rc;
5765                 }
5766                 up_write(&EXT4_I(inode)->i_mmap_sem);
5767         }
5768
5769         if (!error) {
5770                 setattr_copy(inode, attr);
5771                 mark_inode_dirty(inode);
5772         }
5773
5774         /*
5775          * If the call to ext4_truncate failed to get a transaction handle at
5776          * all, we need to clean up the in-core orphan list manually.
5777          */
5778         if (orphan && inode->i_nlink)
5779                 ext4_orphan_del(NULL, inode);
5780
5781         if (!error && (ia_valid & ATTR_MODE))
5782                 rc = posix_acl_chmod(inode, inode->i_mode);
5783
5784 err_out:
5785         ext4_std_error(inode->i_sb, error);
5786         if (!error)
5787                 error = rc;
5788         return error;
5789 }
5790
5791 int ext4_getattr(const struct path *path, struct kstat *stat,
5792                  u32 request_mask, unsigned int query_flags)
5793 {
5794         struct inode *inode = d_inode(path->dentry);
5795         struct ext4_inode *raw_inode;
5796         struct ext4_inode_info *ei = EXT4_I(inode);
5797         unsigned int flags;
5798
5799         if (EXT4_FITS_IN_INODE(raw_inode, ei, i_crtime)) {
5800                 stat->result_mask |= STATX_BTIME;
5801                 stat->btime.tv_sec = ei->i_crtime.tv_sec;
5802                 stat->btime.tv_nsec = ei->i_crtime.tv_nsec;
5803         }
5804
5805         flags = ei->i_flags & EXT4_FL_USER_VISIBLE;
5806         if (flags & EXT4_APPEND_FL)
5807                 stat->attributes |= STATX_ATTR_APPEND;
5808         if (flags & EXT4_COMPR_FL)
5809                 stat->attributes |= STATX_ATTR_COMPRESSED;
5810         if (flags & EXT4_ENCRYPT_FL)
5811                 stat->attributes |= STATX_ATTR_ENCRYPTED;
5812         if (flags & EXT4_IMMUTABLE_FL)
5813                 stat->attributes |= STATX_ATTR_IMMUTABLE;
5814         if (flags & EXT4_NODUMP_FL)
5815                 stat->attributes |= STATX_ATTR_NODUMP;
5816
5817         stat->attributes_mask |= (STATX_ATTR_APPEND |
5818                                   STATX_ATTR_COMPRESSED |
5819                                   STATX_ATTR_ENCRYPTED |
5820                                   STATX_ATTR_IMMUTABLE |
5821                                   STATX_ATTR_NODUMP);
5822
5823         generic_fillattr(inode, stat);
5824         return 0;
5825 }
5826
5827 int ext4_file_getattr(const struct path *path, struct kstat *stat,
5828                       u32 request_mask, unsigned int query_flags)
5829 {
5830         struct inode *inode = d_inode(path->dentry);
5831         u64 delalloc_blocks;
5832
5833         ext4_getattr(path, stat, request_mask, query_flags);
5834
5835         /*
5836          * If there is inline data in the inode, the inode will normally not
5837          * have data blocks allocated (it may have an external xattr block).
5838          * Report at least one sector for such files, so tools like tar, rsync,
5839          * others don't incorrectly think the file is completely sparse.
5840          */
5841         if (unlikely(ext4_has_inline_data(inode)))
5842                 stat->blocks += (stat->size + 511) >> 9;
5843
5844         /*
5845          * We can't update i_blocks if the block allocation is delayed
5846          * otherwise in the case of system crash before the real block
5847          * allocation is done, we will have i_blocks inconsistent with
5848          * on-disk file blocks.
5849          * We always keep i_blocks updated together with real
5850          * allocation. But to not confuse with user, stat
5851          * will return the blocks that include the delayed allocation
5852          * blocks for this file.
5853          */
5854         delalloc_blocks = EXT4_C2B(EXT4_SB(inode->i_sb),
5855                                    EXT4_I(inode)->i_reserved_data_blocks);
5856         stat->blocks += delalloc_blocks << (inode->i_sb->s_blocksize_bits - 9);
5857         return 0;
5858 }
5859
5860 static int ext4_index_trans_blocks(struct inode *inode, int lblocks,
5861                                    int pextents)
5862 {
5863         if (!(ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS)))
5864                 return ext4_ind_trans_blocks(inode, lblocks);
5865         return ext4_ext_index_trans_blocks(inode, pextents);
5866 }
5867
5868 /*
5869  * Account for index blocks, block groups bitmaps and block group
5870  * descriptor blocks if modify datablocks and index blocks
5871  * worse case, the indexs blocks spread over different block groups
5872  *
5873  * If datablocks are discontiguous, they are possible to spread over
5874  * different block groups too. If they are contiguous, with flexbg,
5875  * they could still across block group boundary.
5876  *
5877  * Also account for superblock, inode, quota and xattr blocks
5878  */
5879 static int ext4_meta_trans_blocks(struct inode *inode, int lblocks,
5880                                   int pextents)
5881 {
5882         ext4_group_t groups, ngroups = ext4_get_groups_count(inode->i_sb);
5883         int gdpblocks;
5884         int idxblocks;
5885         int ret = 0;
5886
5887         /*
5888          * How many index blocks need to touch to map @lblocks logical blocks
5889          * to @pextents physical extents?
5890          */
5891         idxblocks = ext4_index_trans_blocks(inode, lblocks, pextents);
5892
5893         ret = idxblocks;
5894
5895         /*
5896          * Now let's see how many group bitmaps and group descriptors need
5897          * to account
5898          */
5899         groups = idxblocks + pextents;
5900         gdpblocks = groups;
5901         if (groups > ngroups)
5902                 groups = ngroups;
5903         if (groups > EXT4_SB(inode->i_sb)->s_gdb_count)
5904                 gdpblocks = EXT4_SB(inode->i_sb)->s_gdb_count;
5905
5906         /* bitmaps and block group descriptor blocks */
5907         ret += groups + gdpblocks;
5908
5909         /* Blocks for super block, inode, quota and xattr blocks */
5910         ret += EXT4_META_TRANS_BLOCKS(inode->i_sb);
5911
5912         return ret;
5913 }
5914
5915 /*
5916  * Calculate the total number of credits to reserve to fit
5917  * the modification of a single pages into a single transaction,
5918  * which may include multiple chunks of block allocations.
5919  *
5920  * This could be called via ext4_write_begin()
5921  *
5922  * We need to consider the worse case, when
5923  * one new block per extent.
5924  */
5925 int ext4_writepage_trans_blocks(struct inode *inode)
5926 {
5927         int bpp = ext4_journal_blocks_per_page(inode);
5928         int ret;
5929
5930         ret = ext4_meta_trans_blocks(inode, bpp, bpp);
5931
5932         /* Account for data blocks for journalled mode */
5933         if (ext4_should_journal_data(inode))
5934                 ret += bpp;
5935         return ret;
5936 }
5937
5938 /*
5939  * Calculate the journal credits for a chunk of data modification.
5940  *
5941  * This is called from DIO, fallocate or whoever calling
5942  * ext4_map_blocks() to map/allocate a chunk of contiguous disk blocks.
5943  *
5944  * journal buffers for data blocks are not included here, as DIO
5945  * and fallocate do no need to journal data buffers.
5946  */
5947 int ext4_chunk_trans_blocks(struct inode *inode, int nrblocks)
5948 {
5949         return ext4_meta_trans_blocks(inode, nrblocks, 1);
5950 }
5951
5952 /*
5953  * The caller must have previously called ext4_reserve_inode_write().
5954  * Give this, we know that the caller already has write access to iloc->bh.
5955  */
5956 int ext4_mark_iloc_dirty(handle_t *handle,
5957                          struct inode *inode, struct ext4_iloc *iloc)
5958 {
5959         int err = 0;
5960
5961         if (unlikely(ext4_forced_shutdown(EXT4_SB(inode->i_sb)))) {
5962                 put_bh(iloc->bh);
5963                 return -EIO;
5964         }
5965         if (IS_I_VERSION(inode))
5966                 inode_inc_iversion(inode);
5967
5968         /* the do_update_inode consumes one bh->b_count */
5969         get_bh(iloc->bh);
5970
5971         /* ext4_do_update_inode() does jbd2_journal_dirty_metadata */
5972         err = ext4_do_update_inode(handle, inode, iloc);
5973         put_bh(iloc->bh);
5974         return err;
5975 }
5976
5977 /*
5978  * On success, We end up with an outstanding reference count against
5979  * iloc->bh.  This _must_ be cleaned up later.
5980  */
5981
5982 int
5983 ext4_reserve_inode_write(handle_t *handle, struct inode *inode,
5984                          struct ext4_iloc *iloc)
5985 {
5986         int err;
5987
5988         if (unlikely(ext4_forced_shutdown(EXT4_SB(inode->i_sb))))
5989                 return -EIO;
5990
5991         err = ext4_get_inode_loc(inode, iloc);
5992         if (!err) {
5993                 BUFFER_TRACE(iloc->bh, "get_write_access");
5994                 err = ext4_journal_get_write_access(handle, iloc->bh);
5995                 if (err) {
5996                         brelse(iloc->bh);
5997                         iloc->bh = NULL;
5998                 }
5999         }
6000         ext4_std_error(inode->i_sb, err);
6001         return err;
6002 }
6003
6004 static int __ext4_expand_extra_isize(struct inode *inode,
6005                                      unsigned int new_extra_isize,
6006                                      struct ext4_iloc *iloc,
6007                                      handle_t *handle, int *no_expand)
6008 {
6009         struct ext4_inode *raw_inode;
6010         struct ext4_xattr_ibody_header *header;
6011         unsigned int inode_size = EXT4_INODE_SIZE(inode->i_sb);
6012         struct ext4_inode_info *ei = EXT4_I(inode);
6013         int error;
6014
6015         /* this was checked at iget time, but double check for good measure */
6016         if ((EXT4_GOOD_OLD_INODE_SIZE + ei->i_extra_isize > inode_size) ||
6017             (ei->i_extra_isize & 3)) {
6018                 EXT4_ERROR_INODE(inode, "bad extra_isize %u (inode size %u)",
6019                                  ei->i_extra_isize,
6020                                  EXT4_INODE_SIZE(inode->i_sb));
6021                 return -EFSCORRUPTED;
6022         }
6023         if ((new_extra_isize < ei->i_extra_isize) ||
6024             (new_extra_isize < 4) ||
6025             (new_extra_isize > inode_size - EXT4_GOOD_OLD_INODE_SIZE))
6026                 return -EINVAL; /* Should never happen */
6027
6028         raw_inode = ext4_raw_inode(iloc);
6029
6030         header = IHDR(inode, raw_inode);
6031
6032         /* No extended attributes present */
6033         if (!ext4_test_inode_state(inode, EXT4_STATE_XATTR) ||
6034             header->h_magic != cpu_to_le32(EXT4_XATTR_MAGIC)) {
6035                 memset((void *)raw_inode + EXT4_GOOD_OLD_INODE_SIZE +
6036                        EXT4_I(inode)->i_extra_isize, 0,
6037                        new_extra_isize - EXT4_I(inode)->i_extra_isize);
6038                 EXT4_I(inode)->i_extra_isize = new_extra_isize;
6039                 return 0;
6040         }
6041
6042         /*
6043          * We may need to allocate external xattr block so we need quotas
6044          * initialized. Here we can be called with various locks held so we
6045          * cannot affort to initialize quotas ourselves. So just bail.
6046          */
6047         if (dquot_initialize_needed(inode))
6048                 return -EAGAIN;
6049
6050         /* try to expand with EAs present */
6051         error = ext4_expand_extra_isize_ea(inode, new_extra_isize,
6052                                            raw_inode, handle);
6053         if (error) {
6054                 /*
6055                  * Inode size expansion failed; don't try again
6056                  */
6057                 *no_expand = 1;
6058         }
6059
6060         return error;
6061 }
6062
6063 /*
6064  * Expand an inode by new_extra_isize bytes.
6065  * Returns 0 on success or negative error number on failure.
6066  */
6067 static int ext4_try_to_expand_extra_isize(struct inode *inode,
6068                                           unsigned int new_extra_isize,
6069                                           struct ext4_iloc iloc,
6070                                           handle_t *handle)
6071 {
6072         int no_expand;
6073         int error;
6074
6075         if (ext4_test_inode_state(inode, EXT4_STATE_NO_EXPAND))
6076                 return -EOVERFLOW;
6077
6078         /*
6079          * In nojournal mode, we can immediately attempt to expand
6080          * the inode.  When journaled, we first need to obtain extra
6081          * buffer credits since we may write into the EA block
6082          * with this same handle. If journal_extend fails, then it will
6083          * only result in a minor loss of functionality for that inode.
6084          * If this is felt to be critical, then e2fsck should be run to
6085          * force a large enough s_min_extra_isize.
6086          */
6087         if (ext4_handle_valid(handle) &&
6088             jbd2_journal_extend(handle,
6089                                 EXT4_DATA_TRANS_BLOCKS(inode->i_sb)) != 0)
6090                 return -ENOSPC;
6091
6092         if (ext4_write_trylock_xattr(inode, &no_expand) == 0)
6093                 return -EBUSY;
6094
6095         error = __ext4_expand_extra_isize(inode, new_extra_isize, &iloc,
6096                                           handle, &no_expand);
6097         ext4_write_unlock_xattr(inode, &no_expand);
6098
6099         return error;
6100 }
6101
6102 int ext4_expand_extra_isize(struct inode *inode,
6103                             unsigned int new_extra_isize,
6104                             struct ext4_iloc *iloc)
6105 {
6106         handle_t *handle;
6107         int no_expand;
6108         int error, rc;
6109
6110         if (ext4_test_inode_state(inode, EXT4_STATE_NO_EXPAND)) {
6111                 brelse(iloc->bh);
6112                 return -EOVERFLOW;
6113         }
6114
6115         handle = ext4_journal_start(inode, EXT4_HT_INODE,
6116                                     EXT4_DATA_TRANS_BLOCKS(inode->i_sb));
6117         if (IS_ERR(handle)) {
6118                 error = PTR_ERR(handle);
6119                 brelse(iloc->bh);
6120                 return error;
6121         }
6122
6123         ext4_write_lock_xattr(inode, &no_expand);
6124
6125         BUFFER_TRACE(iloc->bh, "get_write_access");
6126         error = ext4_journal_get_write_access(handle, iloc->bh);
6127         if (error) {
6128                 brelse(iloc->bh);
6129                 goto out_unlock;
6130         }
6131
6132         error = __ext4_expand_extra_isize(inode, new_extra_isize, iloc,
6133                                           handle, &no_expand);
6134
6135         rc = ext4_mark_iloc_dirty(handle, inode, iloc);
6136         if (!error)
6137                 error = rc;
6138
6139 out_unlock:
6140         ext4_write_unlock_xattr(inode, &no_expand);
6141         ext4_journal_stop(handle);
6142         return error;
6143 }
6144
6145 /*
6146  * What we do here is to mark the in-core inode as clean with respect to inode
6147  * dirtiness (it may still be data-dirty).
6148  * This means that the in-core inode may be reaped by prune_icache
6149  * without having to perform any I/O.  This is a very good thing,
6150  * because *any* task may call prune_icache - even ones which
6151  * have a transaction open against a different journal.
6152  *
6153  * Is this cheating?  Not really.  Sure, we haven't written the
6154  * inode out, but prune_icache isn't a user-visible syncing function.
6155  * Whenever the user wants stuff synced (sys_sync, sys_msync, sys_fsync)
6156  * we start and wait on commits.
6157  */
6158 int ext4_mark_inode_dirty(handle_t *handle, struct inode *inode)
6159 {
6160         struct ext4_iloc iloc;
6161         struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
6162         int err;
6163
6164         might_sleep();
6165         trace_ext4_mark_inode_dirty(inode, _RET_IP_);
6166         err = ext4_reserve_inode_write(handle, inode, &iloc);
6167         if (err)
6168                 return err;
6169
6170         if (EXT4_I(inode)->i_extra_isize < sbi->s_want_extra_isize)
6171                 ext4_try_to_expand_extra_isize(inode, sbi->s_want_extra_isize,
6172                                                iloc, handle);
6173
6174         return ext4_mark_iloc_dirty(handle, inode, &iloc);
6175 }
6176
6177 /*
6178  * ext4_dirty_inode() is called from __mark_inode_dirty()
6179  *
6180  * We're really interested in the case where a file is being extended.
6181  * i_size has been changed by generic_commit_write() and we thus need
6182  * to include the updated inode in the current transaction.
6183  *
6184  * Also, dquot_alloc_block() will always dirty the inode when blocks
6185  * are allocated to the file.
6186  *
6187  * If the inode is marked synchronous, we don't honour that here - doing
6188  * so would cause a commit on atime updates, which we don't bother doing.
6189  * We handle synchronous inodes at the highest possible level.
6190  *
6191  * If only the I_DIRTY_TIME flag is set, we can skip everything.  If
6192  * I_DIRTY_TIME and I_DIRTY_SYNC is set, the only inode fields we need
6193  * to copy into the on-disk inode structure are the timestamp files.
6194  */
6195 void ext4_dirty_inode(struct inode *inode, int flags)
6196 {
6197         handle_t *handle;
6198
6199         if (flags == I_DIRTY_TIME)
6200                 return;
6201         handle = ext4_journal_start(inode, EXT4_HT_INODE, 2);
6202         if (IS_ERR(handle))
6203                 goto out;
6204
6205         ext4_mark_inode_dirty(handle, inode);
6206
6207         ext4_journal_stop(handle);
6208 out:
6209         return;
6210 }
6211
6212 #if 0
6213 /*
6214  * Bind an inode's backing buffer_head into this transaction, to prevent
6215  * it from being flushed to disk early.  Unlike
6216  * ext4_reserve_inode_write, this leaves behind no bh reference and
6217  * returns no iloc structure, so the caller needs to repeat the iloc
6218  * lookup to mark the inode dirty later.
6219  */
6220 static int ext4_pin_inode(handle_t *handle, struct inode *inode)
6221 {
6222         struct ext4_iloc iloc;
6223
6224         int err = 0;
6225         if (handle) {
6226                 err = ext4_get_inode_loc(inode, &iloc);
6227                 if (!err) {
6228                         BUFFER_TRACE(iloc.bh, "get_write_access");
6229                         err = jbd2_journal_get_write_access(handle, iloc.bh);
6230                         if (!err)
6231                                 err = ext4_handle_dirty_metadata(handle,
6232                                                                  NULL,
6233                                                                  iloc.bh);
6234                         brelse(iloc.bh);
6235                 }
6236         }
6237         ext4_std_error(inode->i_sb, err);
6238         return err;
6239 }
6240 #endif
6241
6242 int ext4_change_inode_journal_flag(struct inode *inode, int val)
6243 {
6244         journal_t *journal;
6245         handle_t *handle;
6246         int err;
6247         struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
6248
6249         /*
6250          * We have to be very careful here: changing a data block's
6251          * journaling status dynamically is dangerous.  If we write a
6252          * data block to the journal, change the status and then delete
6253          * that block, we risk forgetting to revoke the old log record
6254          * from the journal and so a subsequent replay can corrupt data.
6255          * So, first we make sure that the journal is empty and that
6256          * nobody is changing anything.
6257          */
6258
6259         journal = EXT4_JOURNAL(inode);
6260         if (!journal)
6261                 return 0;
6262         if (is_journal_aborted(journal))
6263                 return -EROFS;
6264
6265         /* Wait for all existing dio workers */
6266         inode_dio_wait(inode);
6267
6268         /*
6269          * Before flushing the journal and switching inode's aops, we have
6270          * to flush all dirty data the inode has. There can be outstanding
6271          * delayed allocations, there can be unwritten extents created by
6272          * fallocate or buffered writes in dioread_nolock mode covered by
6273          * dirty data which can be converted only after flushing the dirty
6274          * data (and journalled aops don't know how to handle these cases).
6275          */
6276         if (val) {
6277                 down_write(&EXT4_I(inode)->i_mmap_sem);
6278                 err = filemap_write_and_wait(inode->i_mapping);
6279                 if (err < 0) {
6280                         up_write(&EXT4_I(inode)->i_mmap_sem);
6281                         return err;
6282                 }
6283         }
6284
6285         percpu_down_write(&sbi->s_writepages_rwsem);
6286         jbd2_journal_lock_updates(journal);
6287
6288         /*
6289          * OK, there are no updates running now, and all cached data is
6290          * synced to disk.  We are now in a completely consistent state
6291          * which doesn't have anything in the journal, and we know that
6292          * no filesystem updates are running, so it is safe to modify
6293          * the inode's in-core data-journaling state flag now.
6294          */
6295
6296         if (val)
6297                 ext4_set_inode_flag(inode, EXT4_INODE_JOURNAL_DATA);
6298         else {
6299                 err = jbd2_journal_flush(journal);
6300                 if (err < 0) {
6301                         jbd2_journal_unlock_updates(journal);
6302                         percpu_up_write(&sbi->s_writepages_rwsem);
6303                         return err;
6304                 }
6305                 ext4_clear_inode_flag(inode, EXT4_INODE_JOURNAL_DATA);
6306         }
6307         ext4_set_aops(inode);
6308
6309         jbd2_journal_unlock_updates(journal);
6310         percpu_up_write(&sbi->s_writepages_rwsem);
6311
6312         if (val)
6313                 up_write(&EXT4_I(inode)->i_mmap_sem);
6314
6315         /* Finally we can mark the inode as dirty. */
6316
6317         handle = ext4_journal_start(inode, EXT4_HT_INODE, 1);
6318         if (IS_ERR(handle))
6319                 return PTR_ERR(handle);
6320
6321         err = ext4_mark_inode_dirty(handle, inode);
6322         ext4_handle_sync(handle);
6323         ext4_journal_stop(handle);
6324         ext4_std_error(inode->i_sb, err);
6325
6326         return err;
6327 }
6328
6329 static int ext4_bh_unmapped(handle_t *handle, struct buffer_head *bh)
6330 {
6331         return !buffer_mapped(bh);
6332 }
6333
6334 int ext4_page_mkwrite(struct vm_fault *vmf)
6335 {
6336         struct vm_area_struct *vma = vmf->vma;
6337         struct page *page = vmf->page;
6338         loff_t size;
6339         unsigned long len;
6340         int ret;
6341         struct file *file = vma->vm_file;
6342         struct inode *inode = file_inode(file);
6343         struct address_space *mapping = inode->i_mapping;
6344         handle_t *handle;
6345         get_block_t *get_block;
6346         int retries = 0;
6347
6348         if (unlikely(IS_IMMUTABLE(inode)))
6349                 return VM_FAULT_SIGBUS;
6350
6351         sb_start_pagefault(inode->i_sb);
6352         file_update_time(vma->vm_file);
6353
6354         down_read(&EXT4_I(inode)->i_mmap_sem);
6355
6356         ret = ext4_convert_inline_data(inode);
6357         if (ret)
6358                 goto out_ret;
6359
6360         /* Delalloc case is easy... */
6361         if (test_opt(inode->i_sb, DELALLOC) &&
6362             !ext4_should_journal_data(inode) &&
6363             !ext4_nonda_switch(inode->i_sb)) {
6364                 do {
6365                         ret = block_page_mkwrite(vma, vmf,
6366                                                    ext4_da_get_block_prep);
6367                 } while (ret == -ENOSPC &&
6368                        ext4_should_retry_alloc(inode->i_sb, &retries));
6369                 goto out_ret;
6370         }
6371
6372         lock_page(page);
6373         size = i_size_read(inode);
6374         /* Page got truncated from under us? */
6375         if (page->mapping != mapping || page_offset(page) > size) {
6376                 unlock_page(page);
6377                 ret = VM_FAULT_NOPAGE;
6378                 goto out;
6379         }
6380
6381         if (page->index == size >> PAGE_SHIFT)
6382                 len = size & ~PAGE_MASK;
6383         else
6384                 len = PAGE_SIZE;
6385         /*
6386          * Return if we have all the buffers mapped. This avoids the need to do
6387          * journal_start/journal_stop which can block and take a long time
6388          */
6389         if (page_has_buffers(page)) {
6390                 if (!ext4_walk_page_buffers(NULL, page_buffers(page),
6391                                             0, len, NULL,
6392                                             ext4_bh_unmapped)) {
6393                         /* Wait so that we don't change page under IO */
6394                         wait_for_stable_page(page);
6395                         ret = VM_FAULT_LOCKED;
6396                         goto out;
6397                 }
6398         }
6399         unlock_page(page);
6400         /* OK, we need to fill the hole... */
6401         if (ext4_should_dioread_nolock(inode))
6402                 get_block = ext4_get_block_unwritten;
6403         else
6404                 get_block = ext4_get_block;
6405 retry_alloc:
6406         handle = ext4_journal_start(inode, EXT4_HT_WRITE_PAGE,
6407                                     ext4_writepage_trans_blocks(inode));
6408         if (IS_ERR(handle)) {
6409                 ret = VM_FAULT_SIGBUS;
6410                 goto out;
6411         }
6412         ret = block_page_mkwrite(vma, vmf, get_block);
6413         if (!ret && ext4_should_journal_data(inode)) {
6414                 if (ext4_walk_page_buffers(handle, page_buffers(page), 0,
6415                           PAGE_SIZE, NULL, do_journal_get_write_access)) {
6416                         unlock_page(page);
6417                         ret = VM_FAULT_SIGBUS;
6418                         ext4_journal_stop(handle);
6419                         goto out;
6420                 }
6421                 ext4_set_inode_state(inode, EXT4_STATE_JDATA);
6422         }
6423         ext4_journal_stop(handle);
6424         if (ret == -ENOSPC && ext4_should_retry_alloc(inode->i_sb, &retries))
6425                 goto retry_alloc;
6426 out_ret:
6427         ret = block_page_mkwrite_return(ret);
6428 out:
6429         up_read(&EXT4_I(inode)->i_mmap_sem);
6430         sb_end_pagefault(inode->i_sb);
6431         return ret;
6432 }
6433
6434 int ext4_filemap_fault(struct vm_fault *vmf)
6435 {
6436         struct inode *inode = file_inode(vmf->vma->vm_file);
6437         int err;
6438
6439         down_read(&EXT4_I(inode)->i_mmap_sem);
6440         err = filemap_fault(vmf);
6441         up_read(&EXT4_I(inode)->i_mmap_sem);
6442
6443         return err;
6444 }