GNU Linux-libre 6.0.2-gnu
[releases.git] / fs / ext4 / inode.c
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  *  linux/fs/ext4/inode.c
4  *
5  * Copyright (C) 1992, 1993, 1994, 1995
6  * Remy Card (card@masi.ibp.fr)
7  * Laboratoire MASI - Institut Blaise Pascal
8  * Universite Pierre et Marie Curie (Paris VI)
9  *
10  *  from
11  *
12  *  linux/fs/minix/inode.c
13  *
14  *  Copyright (C) 1991, 1992  Linus Torvalds
15  *
16  *  64-bit file support on 64-bit platforms by Jakub Jelinek
17  *      (jj@sunsite.ms.mff.cuni.cz)
18  *
19  *  Assorted race fixes, rewrite of ext4_get_block() by Al Viro, 2000
20  */
21
22 #include <linux/fs.h>
23 #include <linux/mount.h>
24 #include <linux/time.h>
25 #include <linux/highuid.h>
26 #include <linux/pagemap.h>
27 #include <linux/dax.h>
28 #include <linux/quotaops.h>
29 #include <linux/string.h>
30 #include <linux/buffer_head.h>
31 #include <linux/writeback.h>
32 #include <linux/pagevec.h>
33 #include <linux/mpage.h>
34 #include <linux/namei.h>
35 #include <linux/uio.h>
36 #include <linux/bio.h>
37 #include <linux/workqueue.h>
38 #include <linux/kernel.h>
39 #include <linux/printk.h>
40 #include <linux/slab.h>
41 #include <linux/bitops.h>
42 #include <linux/iomap.h>
43 #include <linux/iversion.h>
44
45 #include "ext4_jbd2.h"
46 #include "xattr.h"
47 #include "acl.h"
48 #include "truncate.h"
49
50 #include <trace/events/ext4.h>
51
52 static __u32 ext4_inode_csum(struct inode *inode, struct ext4_inode *raw,
53                               struct ext4_inode_info *ei)
54 {
55         struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
56         __u32 csum;
57         __u16 dummy_csum = 0;
58         int offset = offsetof(struct ext4_inode, i_checksum_lo);
59         unsigned int csum_size = sizeof(dummy_csum);
60
61         csum = ext4_chksum(sbi, ei->i_csum_seed, (__u8 *)raw, offset);
62         csum = ext4_chksum(sbi, csum, (__u8 *)&dummy_csum, csum_size);
63         offset += csum_size;
64         csum = ext4_chksum(sbi, csum, (__u8 *)raw + offset,
65                            EXT4_GOOD_OLD_INODE_SIZE - offset);
66
67         if (EXT4_INODE_SIZE(inode->i_sb) > EXT4_GOOD_OLD_INODE_SIZE) {
68                 offset = offsetof(struct ext4_inode, i_checksum_hi);
69                 csum = ext4_chksum(sbi, csum, (__u8 *)raw +
70                                    EXT4_GOOD_OLD_INODE_SIZE,
71                                    offset - EXT4_GOOD_OLD_INODE_SIZE);
72                 if (EXT4_FITS_IN_INODE(raw, ei, i_checksum_hi)) {
73                         csum = ext4_chksum(sbi, csum, (__u8 *)&dummy_csum,
74                                            csum_size);
75                         offset += csum_size;
76                 }
77                 csum = ext4_chksum(sbi, csum, (__u8 *)raw + offset,
78                                    EXT4_INODE_SIZE(inode->i_sb) - offset);
79         }
80
81         return csum;
82 }
83
84 static int ext4_inode_csum_verify(struct inode *inode, struct ext4_inode *raw,
85                                   struct ext4_inode_info *ei)
86 {
87         __u32 provided, calculated;
88
89         if (EXT4_SB(inode->i_sb)->s_es->s_creator_os !=
90             cpu_to_le32(EXT4_OS_LINUX) ||
91             !ext4_has_metadata_csum(inode->i_sb))
92                 return 1;
93
94         provided = le16_to_cpu(raw->i_checksum_lo);
95         calculated = ext4_inode_csum(inode, raw, ei);
96         if (EXT4_INODE_SIZE(inode->i_sb) > EXT4_GOOD_OLD_INODE_SIZE &&
97             EXT4_FITS_IN_INODE(raw, ei, i_checksum_hi))
98                 provided |= ((__u32)le16_to_cpu(raw->i_checksum_hi)) << 16;
99         else
100                 calculated &= 0xFFFF;
101
102         return provided == calculated;
103 }
104
105 void ext4_inode_csum_set(struct inode *inode, struct ext4_inode *raw,
106                          struct ext4_inode_info *ei)
107 {
108         __u32 csum;
109
110         if (EXT4_SB(inode->i_sb)->s_es->s_creator_os !=
111             cpu_to_le32(EXT4_OS_LINUX) ||
112             !ext4_has_metadata_csum(inode->i_sb))
113                 return;
114
115         csum = ext4_inode_csum(inode, raw, ei);
116         raw->i_checksum_lo = cpu_to_le16(csum & 0xFFFF);
117         if (EXT4_INODE_SIZE(inode->i_sb) > EXT4_GOOD_OLD_INODE_SIZE &&
118             EXT4_FITS_IN_INODE(raw, ei, i_checksum_hi))
119                 raw->i_checksum_hi = cpu_to_le16(csum >> 16);
120 }
121
122 static inline int ext4_begin_ordered_truncate(struct inode *inode,
123                                               loff_t new_size)
124 {
125         trace_ext4_begin_ordered_truncate(inode, new_size);
126         /*
127          * If jinode is zero, then we never opened the file for
128          * writing, so there's no need to call
129          * jbd2_journal_begin_ordered_truncate() since there's no
130          * outstanding writes we need to flush.
131          */
132         if (!EXT4_I(inode)->jinode)
133                 return 0;
134         return jbd2_journal_begin_ordered_truncate(EXT4_JOURNAL(inode),
135                                                    EXT4_I(inode)->jinode,
136                                                    new_size);
137 }
138
139 static int __ext4_journalled_writepage(struct page *page, unsigned int len);
140 static int ext4_meta_trans_blocks(struct inode *inode, int lblocks,
141                                   int pextents);
142
143 /*
144  * Test whether an inode is a fast symlink.
145  * A fast symlink has its symlink data stored in ext4_inode_info->i_data.
146  */
147 int ext4_inode_is_fast_symlink(struct inode *inode)
148 {
149         if (!(EXT4_I(inode)->i_flags & EXT4_EA_INODE_FL)) {
150                 int ea_blocks = EXT4_I(inode)->i_file_acl ?
151                                 EXT4_CLUSTER_SIZE(inode->i_sb) >> 9 : 0;
152
153                 if (ext4_has_inline_data(inode))
154                         return 0;
155
156                 return (S_ISLNK(inode->i_mode) && inode->i_blocks - ea_blocks == 0);
157         }
158         return S_ISLNK(inode->i_mode) && inode->i_size &&
159                (inode->i_size < EXT4_N_BLOCKS * 4);
160 }
161
162 /*
163  * Called at the last iput() if i_nlink is zero.
164  */
165 void ext4_evict_inode(struct inode *inode)
166 {
167         handle_t *handle;
168         int err;
169         /*
170          * Credits for final inode cleanup and freeing:
171          * sb + inode (ext4_orphan_del()), block bitmap, group descriptor
172          * (xattr block freeing), bitmap, group descriptor (inode freeing)
173          */
174         int extra_credits = 6;
175         struct ext4_xattr_inode_array *ea_inode_array = NULL;
176         bool freeze_protected = false;
177
178         trace_ext4_evict_inode(inode);
179
180         if (EXT4_I(inode)->i_flags & EXT4_EA_INODE_FL)
181                 ext4_evict_ea_inode(inode);
182         if (inode->i_nlink) {
183                 /*
184                  * When journalling data dirty buffers are tracked only in the
185                  * journal. So although mm thinks everything is clean and
186                  * ready for reaping the inode might still have some pages to
187                  * write in the running transaction or waiting to be
188                  * checkpointed. Thus calling jbd2_journal_invalidate_folio()
189                  * (via truncate_inode_pages()) to discard these buffers can
190                  * cause data loss. Also even if we did not discard these
191                  * buffers, we would have no way to find them after the inode
192                  * is reaped and thus user could see stale data if he tries to
193                  * read them before the transaction is checkpointed. So be
194                  * careful and force everything to disk here... We use
195                  * ei->i_datasync_tid to store the newest transaction
196                  * containing inode's data.
197                  *
198                  * Note that directories do not have this problem because they
199                  * don't use page cache.
200                  */
201                 if (inode->i_ino != EXT4_JOURNAL_INO &&
202                     ext4_should_journal_data(inode) &&
203                     S_ISREG(inode->i_mode) && inode->i_data.nrpages) {
204                         journal_t *journal = EXT4_SB(inode->i_sb)->s_journal;
205                         tid_t commit_tid = EXT4_I(inode)->i_datasync_tid;
206
207                         jbd2_complete_transaction(journal, commit_tid);
208                         filemap_write_and_wait(&inode->i_data);
209                 }
210                 truncate_inode_pages_final(&inode->i_data);
211
212                 goto no_delete;
213         }
214
215         if (is_bad_inode(inode))
216                 goto no_delete;
217         dquot_initialize(inode);
218
219         if (ext4_should_order_data(inode))
220                 ext4_begin_ordered_truncate(inode, 0);
221         truncate_inode_pages_final(&inode->i_data);
222
223         /*
224          * For inodes with journalled data, transaction commit could have
225          * dirtied the inode. Flush worker is ignoring it because of I_FREEING
226          * flag but we still need to remove the inode from the writeback lists.
227          */
228         if (!list_empty_careful(&inode->i_io_list)) {
229                 WARN_ON_ONCE(!ext4_should_journal_data(inode));
230                 inode_io_list_del(inode);
231         }
232
233         /*
234          * Protect us against freezing - iput() caller didn't have to have any
235          * protection against it. When we are in a running transaction though,
236          * we are already protected against freezing and we cannot grab further
237          * protection due to lock ordering constraints.
238          */
239         if (!ext4_journal_current_handle()) {
240                 sb_start_intwrite(inode->i_sb);
241                 freeze_protected = true;
242         }
243
244         if (!IS_NOQUOTA(inode))
245                 extra_credits += EXT4_MAXQUOTAS_DEL_BLOCKS(inode->i_sb);
246
247         /*
248          * Block bitmap, group descriptor, and inode are accounted in both
249          * ext4_blocks_for_truncate() and extra_credits. So subtract 3.
250          */
251         handle = ext4_journal_start(inode, EXT4_HT_TRUNCATE,
252                          ext4_blocks_for_truncate(inode) + extra_credits - 3);
253         if (IS_ERR(handle)) {
254                 ext4_std_error(inode->i_sb, PTR_ERR(handle));
255                 /*
256                  * If we're going to skip the normal cleanup, we still need to
257                  * make sure that the in-core orphan linked list is properly
258                  * cleaned up.
259                  */
260                 ext4_orphan_del(NULL, inode);
261                 if (freeze_protected)
262                         sb_end_intwrite(inode->i_sb);
263                 goto no_delete;
264         }
265
266         if (IS_SYNC(inode))
267                 ext4_handle_sync(handle);
268
269         /*
270          * Set inode->i_size to 0 before calling ext4_truncate(). We need
271          * special handling of symlinks here because i_size is used to
272          * determine whether ext4_inode_info->i_data contains symlink data or
273          * block mappings. Setting i_size to 0 will remove its fast symlink
274          * status. Erase i_data so that it becomes a valid empty block map.
275          */
276         if (ext4_inode_is_fast_symlink(inode))
277                 memset(EXT4_I(inode)->i_data, 0, sizeof(EXT4_I(inode)->i_data));
278         inode->i_size = 0;
279         err = ext4_mark_inode_dirty(handle, inode);
280         if (err) {
281                 ext4_warning(inode->i_sb,
282                              "couldn't mark inode dirty (err %d)", err);
283                 goto stop_handle;
284         }
285         if (inode->i_blocks) {
286                 err = ext4_truncate(inode);
287                 if (err) {
288                         ext4_error_err(inode->i_sb, -err,
289                                        "couldn't truncate inode %lu (err %d)",
290                                        inode->i_ino, err);
291                         goto stop_handle;
292                 }
293         }
294
295         /* Remove xattr references. */
296         err = ext4_xattr_delete_inode(handle, inode, &ea_inode_array,
297                                       extra_credits);
298         if (err) {
299                 ext4_warning(inode->i_sb, "xattr delete (err %d)", err);
300 stop_handle:
301                 ext4_journal_stop(handle);
302                 ext4_orphan_del(NULL, inode);
303                 if (freeze_protected)
304                         sb_end_intwrite(inode->i_sb);
305                 ext4_xattr_inode_array_free(ea_inode_array);
306                 goto no_delete;
307         }
308
309         /*
310          * Kill off the orphan record which ext4_truncate created.
311          * AKPM: I think this can be inside the above `if'.
312          * Note that ext4_orphan_del() has to be able to cope with the
313          * deletion of a non-existent orphan - this is because we don't
314          * know if ext4_truncate() actually created an orphan record.
315          * (Well, we could do this if we need to, but heck - it works)
316          */
317         ext4_orphan_del(handle, inode);
318         EXT4_I(inode)->i_dtime  = (__u32)ktime_get_real_seconds();
319
320         /*
321          * One subtle ordering requirement: if anything has gone wrong
322          * (transaction abort, IO errors, whatever), then we can still
323          * do these next steps (the fs will already have been marked as
324          * having errors), but we can't free the inode if the mark_dirty
325          * fails.
326          */
327         if (ext4_mark_inode_dirty(handle, inode))
328                 /* If that failed, just do the required in-core inode clear. */
329                 ext4_clear_inode(inode);
330         else
331                 ext4_free_inode(handle, inode);
332         ext4_journal_stop(handle);
333         if (freeze_protected)
334                 sb_end_intwrite(inode->i_sb);
335         ext4_xattr_inode_array_free(ea_inode_array);
336         return;
337 no_delete:
338         if (!list_empty(&EXT4_I(inode)->i_fc_list))
339                 ext4_fc_mark_ineligible(inode->i_sb, EXT4_FC_REASON_NOMEM, NULL);
340         ext4_clear_inode(inode);        /* We must guarantee clearing of inode... */
341 }
342
343 #ifdef CONFIG_QUOTA
344 qsize_t *ext4_get_reserved_space(struct inode *inode)
345 {
346         return &EXT4_I(inode)->i_reserved_quota;
347 }
348 #endif
349
350 /*
351  * Called with i_data_sem down, which is important since we can call
352  * ext4_discard_preallocations() from here.
353  */
354 void ext4_da_update_reserve_space(struct inode *inode,
355                                         int used, int quota_claim)
356 {
357         struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
358         struct ext4_inode_info *ei = EXT4_I(inode);
359
360         spin_lock(&ei->i_block_reservation_lock);
361         trace_ext4_da_update_reserve_space(inode, used, quota_claim);
362         if (unlikely(used > ei->i_reserved_data_blocks)) {
363                 ext4_warning(inode->i_sb, "%s: ino %lu, used %d "
364                          "with only %d reserved data blocks",
365                          __func__, inode->i_ino, used,
366                          ei->i_reserved_data_blocks);
367                 WARN_ON(1);
368                 used = ei->i_reserved_data_blocks;
369         }
370
371         /* Update per-inode reservations */
372         ei->i_reserved_data_blocks -= used;
373         percpu_counter_sub(&sbi->s_dirtyclusters_counter, used);
374
375         spin_unlock(&ei->i_block_reservation_lock);
376
377         /* Update quota subsystem for data blocks */
378         if (quota_claim)
379                 dquot_claim_block(inode, EXT4_C2B(sbi, used));
380         else {
381                 /*
382                  * We did fallocate with an offset that is already delayed
383                  * allocated. So on delayed allocated writeback we should
384                  * not re-claim the quota for fallocated blocks.
385                  */
386                 dquot_release_reservation_block(inode, EXT4_C2B(sbi, used));
387         }
388
389         /*
390          * If we have done all the pending block allocations and if
391          * there aren't any writers on the inode, we can discard the
392          * inode's preallocations.
393          */
394         if ((ei->i_reserved_data_blocks == 0) &&
395             !inode_is_open_for_write(inode))
396                 ext4_discard_preallocations(inode, 0);
397 }
398
399 static int __check_block_validity(struct inode *inode, const char *func,
400                                 unsigned int line,
401                                 struct ext4_map_blocks *map)
402 {
403         if (ext4_has_feature_journal(inode->i_sb) &&
404             (inode->i_ino ==
405              le32_to_cpu(EXT4_SB(inode->i_sb)->s_es->s_journal_inum)))
406                 return 0;
407         if (!ext4_inode_block_valid(inode, map->m_pblk, map->m_len)) {
408                 ext4_error_inode(inode, func, line, map->m_pblk,
409                                  "lblock %lu mapped to illegal pblock %llu "
410                                  "(length %d)", (unsigned long) map->m_lblk,
411                                  map->m_pblk, map->m_len);
412                 return -EFSCORRUPTED;
413         }
414         return 0;
415 }
416
417 int ext4_issue_zeroout(struct inode *inode, ext4_lblk_t lblk, ext4_fsblk_t pblk,
418                        ext4_lblk_t len)
419 {
420         int ret;
421
422         if (IS_ENCRYPTED(inode) && S_ISREG(inode->i_mode))
423                 return fscrypt_zeroout_range(inode, lblk, pblk, len);
424
425         ret = sb_issue_zeroout(inode->i_sb, pblk, len, GFP_NOFS);
426         if (ret > 0)
427                 ret = 0;
428
429         return ret;
430 }
431
432 #define check_block_validity(inode, map)        \
433         __check_block_validity((inode), __func__, __LINE__, (map))
434
435 #ifdef ES_AGGRESSIVE_TEST
436 static void ext4_map_blocks_es_recheck(handle_t *handle,
437                                        struct inode *inode,
438                                        struct ext4_map_blocks *es_map,
439                                        struct ext4_map_blocks *map,
440                                        int flags)
441 {
442         int retval;
443
444         map->m_flags = 0;
445         /*
446          * There is a race window that the result is not the same.
447          * e.g. xfstests #223 when dioread_nolock enables.  The reason
448          * is that we lookup a block mapping in extent status tree with
449          * out taking i_data_sem.  So at the time the unwritten extent
450          * could be converted.
451          */
452         down_read(&EXT4_I(inode)->i_data_sem);
453         if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS)) {
454                 retval = ext4_ext_map_blocks(handle, inode, map, 0);
455         } else {
456                 retval = ext4_ind_map_blocks(handle, inode, map, 0);
457         }
458         up_read((&EXT4_I(inode)->i_data_sem));
459
460         /*
461          * We don't check m_len because extent will be collpased in status
462          * tree.  So the m_len might not equal.
463          */
464         if (es_map->m_lblk != map->m_lblk ||
465             es_map->m_flags != map->m_flags ||
466             es_map->m_pblk != map->m_pblk) {
467                 printk("ES cache assertion failed for inode: %lu "
468                        "es_cached ex [%d/%d/%llu/%x] != "
469                        "found ex [%d/%d/%llu/%x] retval %d flags %x\n",
470                        inode->i_ino, es_map->m_lblk, es_map->m_len,
471                        es_map->m_pblk, es_map->m_flags, map->m_lblk,
472                        map->m_len, map->m_pblk, map->m_flags,
473                        retval, flags);
474         }
475 }
476 #endif /* ES_AGGRESSIVE_TEST */
477
478 /*
479  * The ext4_map_blocks() function tries to look up the requested blocks,
480  * and returns if the blocks are already mapped.
481  *
482  * Otherwise it takes the write lock of the i_data_sem and allocate blocks
483  * and store the allocated blocks in the result buffer head and mark it
484  * mapped.
485  *
486  * If file type is extents based, it will call ext4_ext_map_blocks(),
487  * Otherwise, call with ext4_ind_map_blocks() to handle indirect mapping
488  * based files
489  *
490  * On success, it returns the number of blocks being mapped or allocated.  if
491  * create==0 and the blocks are pre-allocated and unwritten, the resulting @map
492  * is marked as unwritten. If the create == 1, it will mark @map as mapped.
493  *
494  * It returns 0 if plain look up failed (blocks have not been allocated), in
495  * that case, @map is returned as unmapped but we still do fill map->m_len to
496  * indicate the length of a hole starting at map->m_lblk.
497  *
498  * It returns the error in case of allocation failure.
499  */
500 int ext4_map_blocks(handle_t *handle, struct inode *inode,
501                     struct ext4_map_blocks *map, int flags)
502 {
503         struct extent_status es;
504         int retval;
505         int ret = 0;
506 #ifdef ES_AGGRESSIVE_TEST
507         struct ext4_map_blocks orig_map;
508
509         memcpy(&orig_map, map, sizeof(*map));
510 #endif
511
512         map->m_flags = 0;
513         ext_debug(inode, "flag 0x%x, max_blocks %u, logical block %lu\n",
514                   flags, map->m_len, (unsigned long) map->m_lblk);
515
516         /*
517          * ext4_map_blocks returns an int, and m_len is an unsigned int
518          */
519         if (unlikely(map->m_len > INT_MAX))
520                 map->m_len = INT_MAX;
521
522         /* We can handle the block number less than EXT_MAX_BLOCKS */
523         if (unlikely(map->m_lblk >= EXT_MAX_BLOCKS))
524                 return -EFSCORRUPTED;
525
526         /* Lookup extent status tree firstly */
527         if (!(EXT4_SB(inode->i_sb)->s_mount_state & EXT4_FC_REPLAY) &&
528             ext4_es_lookup_extent(inode, map->m_lblk, NULL, &es)) {
529                 if (ext4_es_is_written(&es) || ext4_es_is_unwritten(&es)) {
530                         map->m_pblk = ext4_es_pblock(&es) +
531                                         map->m_lblk - es.es_lblk;
532                         map->m_flags |= ext4_es_is_written(&es) ?
533                                         EXT4_MAP_MAPPED : EXT4_MAP_UNWRITTEN;
534                         retval = es.es_len - (map->m_lblk - es.es_lblk);
535                         if (retval > map->m_len)
536                                 retval = map->m_len;
537                         map->m_len = retval;
538                 } else if (ext4_es_is_delayed(&es) || ext4_es_is_hole(&es)) {
539                         map->m_pblk = 0;
540                         retval = es.es_len - (map->m_lblk - es.es_lblk);
541                         if (retval > map->m_len)
542                                 retval = map->m_len;
543                         map->m_len = retval;
544                         retval = 0;
545                 } else {
546                         BUG();
547                 }
548
549                 if (flags & EXT4_GET_BLOCKS_CACHED_NOWAIT)
550                         return retval;
551 #ifdef ES_AGGRESSIVE_TEST
552                 ext4_map_blocks_es_recheck(handle, inode, map,
553                                            &orig_map, flags);
554 #endif
555                 goto found;
556         }
557         /*
558          * In the query cache no-wait mode, nothing we can do more if we
559          * cannot find extent in the cache.
560          */
561         if (flags & EXT4_GET_BLOCKS_CACHED_NOWAIT)
562                 return 0;
563
564         /*
565          * Try to see if we can get the block without requesting a new
566          * file system block.
567          */
568         down_read(&EXT4_I(inode)->i_data_sem);
569         if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS)) {
570                 retval = ext4_ext_map_blocks(handle, inode, map, 0);
571         } else {
572                 retval = ext4_ind_map_blocks(handle, inode, map, 0);
573         }
574         if (retval > 0) {
575                 unsigned int status;
576
577                 if (unlikely(retval != map->m_len)) {
578                         ext4_warning(inode->i_sb,
579                                      "ES len assertion failed for inode "
580                                      "%lu: retval %d != map->m_len %d",
581                                      inode->i_ino, retval, map->m_len);
582                         WARN_ON(1);
583                 }
584
585                 status = map->m_flags & EXT4_MAP_UNWRITTEN ?
586                                 EXTENT_STATUS_UNWRITTEN : EXTENT_STATUS_WRITTEN;
587                 if (!(flags & EXT4_GET_BLOCKS_DELALLOC_RESERVE) &&
588                     !(status & EXTENT_STATUS_WRITTEN) &&
589                     ext4_es_scan_range(inode, &ext4_es_is_delayed, map->m_lblk,
590                                        map->m_lblk + map->m_len - 1))
591                         status |= EXTENT_STATUS_DELAYED;
592                 ret = ext4_es_insert_extent(inode, map->m_lblk,
593                                             map->m_len, map->m_pblk, status);
594                 if (ret < 0)
595                         retval = ret;
596         }
597         up_read((&EXT4_I(inode)->i_data_sem));
598
599 found:
600         if (retval > 0 && map->m_flags & EXT4_MAP_MAPPED) {
601                 ret = check_block_validity(inode, map);
602                 if (ret != 0)
603                         return ret;
604         }
605
606         /* If it is only a block(s) look up */
607         if ((flags & EXT4_GET_BLOCKS_CREATE) == 0)
608                 return retval;
609
610         /*
611          * Returns if the blocks have already allocated
612          *
613          * Note that if blocks have been preallocated
614          * ext4_ext_get_block() returns the create = 0
615          * with buffer head unmapped.
616          */
617         if (retval > 0 && map->m_flags & EXT4_MAP_MAPPED)
618                 /*
619                  * If we need to convert extent to unwritten
620                  * we continue and do the actual work in
621                  * ext4_ext_map_blocks()
622                  */
623                 if (!(flags & EXT4_GET_BLOCKS_CONVERT_UNWRITTEN))
624                         return retval;
625
626         /*
627          * Here we clear m_flags because after allocating an new extent,
628          * it will be set again.
629          */
630         map->m_flags &= ~EXT4_MAP_FLAGS;
631
632         /*
633          * New blocks allocate and/or writing to unwritten extent
634          * will possibly result in updating i_data, so we take
635          * the write lock of i_data_sem, and call get_block()
636          * with create == 1 flag.
637          */
638         down_write(&EXT4_I(inode)->i_data_sem);
639
640         /*
641          * We need to check for EXT4 here because migrate
642          * could have changed the inode type in between
643          */
644         if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS)) {
645                 retval = ext4_ext_map_blocks(handle, inode, map, flags);
646         } else {
647                 retval = ext4_ind_map_blocks(handle, inode, map, flags);
648
649                 if (retval > 0 && map->m_flags & EXT4_MAP_NEW) {
650                         /*
651                          * We allocated new blocks which will result in
652                          * i_data's format changing.  Force the migrate
653                          * to fail by clearing migrate flags
654                          */
655                         ext4_clear_inode_state(inode, EXT4_STATE_EXT_MIGRATE);
656                 }
657
658                 /*
659                  * Update reserved blocks/metadata blocks after successful
660                  * block allocation which had been deferred till now. We don't
661                  * support fallocate for non extent files. So we can update
662                  * reserve space here.
663                  */
664                 if ((retval > 0) &&
665                         (flags & EXT4_GET_BLOCKS_DELALLOC_RESERVE))
666                         ext4_da_update_reserve_space(inode, retval, 1);
667         }
668
669         if (retval > 0) {
670                 unsigned int status;
671
672                 if (unlikely(retval != map->m_len)) {
673                         ext4_warning(inode->i_sb,
674                                      "ES len assertion failed for inode "
675                                      "%lu: retval %d != map->m_len %d",
676                                      inode->i_ino, retval, map->m_len);
677                         WARN_ON(1);
678                 }
679
680                 /*
681                  * We have to zeroout blocks before inserting them into extent
682                  * status tree. Otherwise someone could look them up there and
683                  * use them before they are really zeroed. We also have to
684                  * unmap metadata before zeroing as otherwise writeback can
685                  * overwrite zeros with stale data from block device.
686                  */
687                 if (flags & EXT4_GET_BLOCKS_ZERO &&
688                     map->m_flags & EXT4_MAP_MAPPED &&
689                     map->m_flags & EXT4_MAP_NEW) {
690                         ret = ext4_issue_zeroout(inode, map->m_lblk,
691                                                  map->m_pblk, map->m_len);
692                         if (ret) {
693                                 retval = ret;
694                                 goto out_sem;
695                         }
696                 }
697
698                 /*
699                  * If the extent has been zeroed out, we don't need to update
700                  * extent status tree.
701                  */
702                 if ((flags & EXT4_GET_BLOCKS_PRE_IO) &&
703                     ext4_es_lookup_extent(inode, map->m_lblk, NULL, &es)) {
704                         if (ext4_es_is_written(&es))
705                                 goto out_sem;
706                 }
707                 status = map->m_flags & EXT4_MAP_UNWRITTEN ?
708                                 EXTENT_STATUS_UNWRITTEN : EXTENT_STATUS_WRITTEN;
709                 if (!(flags & EXT4_GET_BLOCKS_DELALLOC_RESERVE) &&
710                     !(status & EXTENT_STATUS_WRITTEN) &&
711                     ext4_es_scan_range(inode, &ext4_es_is_delayed, map->m_lblk,
712                                        map->m_lblk + map->m_len - 1))
713                         status |= EXTENT_STATUS_DELAYED;
714                 ret = ext4_es_insert_extent(inode, map->m_lblk, map->m_len,
715                                             map->m_pblk, status);
716                 if (ret < 0) {
717                         retval = ret;
718                         goto out_sem;
719                 }
720         }
721
722 out_sem:
723         up_write((&EXT4_I(inode)->i_data_sem));
724         if (retval > 0 && map->m_flags & EXT4_MAP_MAPPED) {
725                 ret = check_block_validity(inode, map);
726                 if (ret != 0)
727                         return ret;
728
729                 /*
730                  * Inodes with freshly allocated blocks where contents will be
731                  * visible after transaction commit must be on transaction's
732                  * ordered data list.
733                  */
734                 if (map->m_flags & EXT4_MAP_NEW &&
735                     !(map->m_flags & EXT4_MAP_UNWRITTEN) &&
736                     !(flags & EXT4_GET_BLOCKS_ZERO) &&
737                     !ext4_is_quota_file(inode) &&
738                     ext4_should_order_data(inode)) {
739                         loff_t start_byte =
740                                 (loff_t)map->m_lblk << inode->i_blkbits;
741                         loff_t length = (loff_t)map->m_len << inode->i_blkbits;
742
743                         if (flags & EXT4_GET_BLOCKS_IO_SUBMIT)
744                                 ret = ext4_jbd2_inode_add_wait(handle, inode,
745                                                 start_byte, length);
746                         else
747                                 ret = ext4_jbd2_inode_add_write(handle, inode,
748                                                 start_byte, length);
749                         if (ret)
750                                 return ret;
751                 }
752         }
753         if (retval > 0 && (map->m_flags & EXT4_MAP_UNWRITTEN ||
754                                 map->m_flags & EXT4_MAP_MAPPED))
755                 ext4_fc_track_range(handle, inode, map->m_lblk,
756                                         map->m_lblk + map->m_len - 1);
757         if (retval < 0)
758                 ext_debug(inode, "failed with err %d\n", retval);
759         return retval;
760 }
761
762 /*
763  * Update EXT4_MAP_FLAGS in bh->b_state. For buffer heads attached to pages
764  * we have to be careful as someone else may be manipulating b_state as well.
765  */
766 static void ext4_update_bh_state(struct buffer_head *bh, unsigned long flags)
767 {
768         unsigned long old_state;
769         unsigned long new_state;
770
771         flags &= EXT4_MAP_FLAGS;
772
773         /* Dummy buffer_head? Set non-atomically. */
774         if (!bh->b_page) {
775                 bh->b_state = (bh->b_state & ~EXT4_MAP_FLAGS) | flags;
776                 return;
777         }
778         /*
779          * Someone else may be modifying b_state. Be careful! This is ugly but
780          * once we get rid of using bh as a container for mapping information
781          * to pass to / from get_block functions, this can go away.
782          */
783         do {
784                 old_state = READ_ONCE(bh->b_state);
785                 new_state = (old_state & ~EXT4_MAP_FLAGS) | flags;
786         } while (unlikely(
787                  cmpxchg(&bh->b_state, old_state, new_state) != old_state));
788 }
789
790 static int _ext4_get_block(struct inode *inode, sector_t iblock,
791                            struct buffer_head *bh, int flags)
792 {
793         struct ext4_map_blocks map;
794         int ret = 0;
795
796         if (ext4_has_inline_data(inode))
797                 return -ERANGE;
798
799         map.m_lblk = iblock;
800         map.m_len = bh->b_size >> inode->i_blkbits;
801
802         ret = ext4_map_blocks(ext4_journal_current_handle(), inode, &map,
803                               flags);
804         if (ret > 0) {
805                 map_bh(bh, inode->i_sb, map.m_pblk);
806                 ext4_update_bh_state(bh, map.m_flags);
807                 bh->b_size = inode->i_sb->s_blocksize * map.m_len;
808                 ret = 0;
809         } else if (ret == 0) {
810                 /* hole case, need to fill in bh->b_size */
811                 bh->b_size = inode->i_sb->s_blocksize * map.m_len;
812         }
813         return ret;
814 }
815
816 int ext4_get_block(struct inode *inode, sector_t iblock,
817                    struct buffer_head *bh, int create)
818 {
819         return _ext4_get_block(inode, iblock, bh,
820                                create ? EXT4_GET_BLOCKS_CREATE : 0);
821 }
822
823 /*
824  * Get block function used when preparing for buffered write if we require
825  * creating an unwritten extent if blocks haven't been allocated.  The extent
826  * will be converted to written after the IO is complete.
827  */
828 int ext4_get_block_unwritten(struct inode *inode, sector_t iblock,
829                              struct buffer_head *bh_result, int create)
830 {
831         ext4_debug("ext4_get_block_unwritten: inode %lu, create flag %d\n",
832                    inode->i_ino, create);
833         return _ext4_get_block(inode, iblock, bh_result,
834                                EXT4_GET_BLOCKS_CREATE_UNWRIT_EXT);
835 }
836
837 /* Maximum number of blocks we map for direct IO at once. */
838 #define DIO_MAX_BLOCKS 4096
839
840 /*
841  * `handle' can be NULL if create is zero
842  */
843 struct buffer_head *ext4_getblk(handle_t *handle, struct inode *inode,
844                                 ext4_lblk_t block, int map_flags)
845 {
846         struct ext4_map_blocks map;
847         struct buffer_head *bh;
848         int create = map_flags & EXT4_GET_BLOCKS_CREATE;
849         bool nowait = map_flags & EXT4_GET_BLOCKS_CACHED_NOWAIT;
850         int err;
851
852         ASSERT((EXT4_SB(inode->i_sb)->s_mount_state & EXT4_FC_REPLAY)
853                     || handle != NULL || create == 0);
854         ASSERT(create == 0 || !nowait);
855
856         map.m_lblk = block;
857         map.m_len = 1;
858         err = ext4_map_blocks(handle, inode, &map, map_flags);
859
860         if (err == 0)
861                 return create ? ERR_PTR(-ENOSPC) : NULL;
862         if (err < 0)
863                 return ERR_PTR(err);
864
865         if (nowait)
866                 return sb_find_get_block(inode->i_sb, map.m_pblk);
867
868         bh = sb_getblk(inode->i_sb, map.m_pblk);
869         if (unlikely(!bh))
870                 return ERR_PTR(-ENOMEM);
871         if (map.m_flags & EXT4_MAP_NEW) {
872                 ASSERT(create != 0);
873                 ASSERT((EXT4_SB(inode->i_sb)->s_mount_state & EXT4_FC_REPLAY)
874                             || (handle != NULL));
875
876                 /*
877                  * Now that we do not always journal data, we should
878                  * keep in mind whether this should always journal the
879                  * new buffer as metadata.  For now, regular file
880                  * writes use ext4_get_block instead, so it's not a
881                  * problem.
882                  */
883                 lock_buffer(bh);
884                 BUFFER_TRACE(bh, "call get_create_access");
885                 err = ext4_journal_get_create_access(handle, inode->i_sb, bh,
886                                                      EXT4_JTR_NONE);
887                 if (unlikely(err)) {
888                         unlock_buffer(bh);
889                         goto errout;
890                 }
891                 if (!buffer_uptodate(bh)) {
892                         memset(bh->b_data, 0, inode->i_sb->s_blocksize);
893                         set_buffer_uptodate(bh);
894                 }
895                 unlock_buffer(bh);
896                 BUFFER_TRACE(bh, "call ext4_handle_dirty_metadata");
897                 err = ext4_handle_dirty_metadata(handle, inode, bh);
898                 if (unlikely(err))
899                         goto errout;
900         } else
901                 BUFFER_TRACE(bh, "not a new buffer");
902         return bh;
903 errout:
904         brelse(bh);
905         return ERR_PTR(err);
906 }
907
908 struct buffer_head *ext4_bread(handle_t *handle, struct inode *inode,
909                                ext4_lblk_t block, int map_flags)
910 {
911         struct buffer_head *bh;
912         int ret;
913
914         bh = ext4_getblk(handle, inode, block, map_flags);
915         if (IS_ERR(bh))
916                 return bh;
917         if (!bh || ext4_buffer_uptodate(bh))
918                 return bh;
919
920         ret = ext4_read_bh_lock(bh, REQ_META | REQ_PRIO, true);
921         if (ret) {
922                 put_bh(bh);
923                 return ERR_PTR(ret);
924         }
925         return bh;
926 }
927
928 /* Read a contiguous batch of blocks. */
929 int ext4_bread_batch(struct inode *inode, ext4_lblk_t block, int bh_count,
930                      bool wait, struct buffer_head **bhs)
931 {
932         int i, err;
933
934         for (i = 0; i < bh_count; i++) {
935                 bhs[i] = ext4_getblk(NULL, inode, block + i, 0 /* map_flags */);
936                 if (IS_ERR(bhs[i])) {
937                         err = PTR_ERR(bhs[i]);
938                         bh_count = i;
939                         goto out_brelse;
940                 }
941         }
942
943         for (i = 0; i < bh_count; i++)
944                 /* Note that NULL bhs[i] is valid because of holes. */
945                 if (bhs[i] && !ext4_buffer_uptodate(bhs[i]))
946                         ext4_read_bh_lock(bhs[i], REQ_META | REQ_PRIO, false);
947
948         if (!wait)
949                 return 0;
950
951         for (i = 0; i < bh_count; i++)
952                 if (bhs[i])
953                         wait_on_buffer(bhs[i]);
954
955         for (i = 0; i < bh_count; i++) {
956                 if (bhs[i] && !buffer_uptodate(bhs[i])) {
957                         err = -EIO;
958                         goto out_brelse;
959                 }
960         }
961         return 0;
962
963 out_brelse:
964         for (i = 0; i < bh_count; i++) {
965                 brelse(bhs[i]);
966                 bhs[i] = NULL;
967         }
968         return err;
969 }
970
971 int ext4_walk_page_buffers(handle_t *handle, struct inode *inode,
972                            struct buffer_head *head,
973                            unsigned from,
974                            unsigned to,
975                            int *partial,
976                            int (*fn)(handle_t *handle, struct inode *inode,
977                                      struct buffer_head *bh))
978 {
979         struct buffer_head *bh;
980         unsigned block_start, block_end;
981         unsigned blocksize = head->b_size;
982         int err, ret = 0;
983         struct buffer_head *next;
984
985         for (bh = head, block_start = 0;
986              ret == 0 && (bh != head || !block_start);
987              block_start = block_end, bh = next) {
988                 next = bh->b_this_page;
989                 block_end = block_start + blocksize;
990                 if (block_end <= from || block_start >= to) {
991                         if (partial && !buffer_uptodate(bh))
992                                 *partial = 1;
993                         continue;
994                 }
995                 err = (*fn)(handle, inode, bh);
996                 if (!ret)
997                         ret = err;
998         }
999         return ret;
1000 }
1001
1002 /*
1003  * To preserve ordering, it is essential that the hole instantiation and
1004  * the data write be encapsulated in a single transaction.  We cannot
1005  * close off a transaction and start a new one between the ext4_get_block()
1006  * and the commit_write().  So doing the jbd2_journal_start at the start of
1007  * prepare_write() is the right place.
1008  *
1009  * Also, this function can nest inside ext4_writepage().  In that case, we
1010  * *know* that ext4_writepage() has generated enough buffer credits to do the
1011  * whole page.  So we won't block on the journal in that case, which is good,
1012  * because the caller may be PF_MEMALLOC.
1013  *
1014  * By accident, ext4 can be reentered when a transaction is open via
1015  * quota file writes.  If we were to commit the transaction while thus
1016  * reentered, there can be a deadlock - we would be holding a quota
1017  * lock, and the commit would never complete if another thread had a
1018  * transaction open and was blocking on the quota lock - a ranking
1019  * violation.
1020  *
1021  * So what we do is to rely on the fact that jbd2_journal_stop/journal_start
1022  * will _not_ run commit under these circumstances because handle->h_ref
1023  * is elevated.  We'll still have enough credits for the tiny quotafile
1024  * write.
1025  */
1026 int do_journal_get_write_access(handle_t *handle, struct inode *inode,
1027                                 struct buffer_head *bh)
1028 {
1029         int dirty = buffer_dirty(bh);
1030         int ret;
1031
1032         if (!buffer_mapped(bh) || buffer_freed(bh))
1033                 return 0;
1034         /*
1035          * __block_write_begin() could have dirtied some buffers. Clean
1036          * the dirty bit as jbd2_journal_get_write_access() could complain
1037          * otherwise about fs integrity issues. Setting of the dirty bit
1038          * by __block_write_begin() isn't a real problem here as we clear
1039          * the bit before releasing a page lock and thus writeback cannot
1040          * ever write the buffer.
1041          */
1042         if (dirty)
1043                 clear_buffer_dirty(bh);
1044         BUFFER_TRACE(bh, "get write access");
1045         ret = ext4_journal_get_write_access(handle, inode->i_sb, bh,
1046                                             EXT4_JTR_NONE);
1047         if (!ret && dirty)
1048                 ret = ext4_handle_dirty_metadata(handle, NULL, bh);
1049         return ret;
1050 }
1051
1052 #ifdef CONFIG_FS_ENCRYPTION
1053 static int ext4_block_write_begin(struct page *page, loff_t pos, unsigned len,
1054                                   get_block_t *get_block)
1055 {
1056         unsigned from = pos & (PAGE_SIZE - 1);
1057         unsigned to = from + len;
1058         struct inode *inode = page->mapping->host;
1059         unsigned block_start, block_end;
1060         sector_t block;
1061         int err = 0;
1062         unsigned blocksize = inode->i_sb->s_blocksize;
1063         unsigned bbits;
1064         struct buffer_head *bh, *head, *wait[2];
1065         int nr_wait = 0;
1066         int i;
1067
1068         BUG_ON(!PageLocked(page));
1069         BUG_ON(from > PAGE_SIZE);
1070         BUG_ON(to > PAGE_SIZE);
1071         BUG_ON(from > to);
1072
1073         if (!page_has_buffers(page))
1074                 create_empty_buffers(page, blocksize, 0);
1075         head = page_buffers(page);
1076         bbits = ilog2(blocksize);
1077         block = (sector_t)page->index << (PAGE_SHIFT - bbits);
1078
1079         for (bh = head, block_start = 0; bh != head || !block_start;
1080             block++, block_start = block_end, bh = bh->b_this_page) {
1081                 block_end = block_start + blocksize;
1082                 if (block_end <= from || block_start >= to) {
1083                         if (PageUptodate(page)) {
1084                                 set_buffer_uptodate(bh);
1085                         }
1086                         continue;
1087                 }
1088                 if (buffer_new(bh))
1089                         clear_buffer_new(bh);
1090                 if (!buffer_mapped(bh)) {
1091                         WARN_ON(bh->b_size != blocksize);
1092                         err = get_block(inode, block, bh, 1);
1093                         if (err)
1094                                 break;
1095                         if (buffer_new(bh)) {
1096                                 if (PageUptodate(page)) {
1097                                         clear_buffer_new(bh);
1098                                         set_buffer_uptodate(bh);
1099                                         mark_buffer_dirty(bh);
1100                                         continue;
1101                                 }
1102                                 if (block_end > to || block_start < from)
1103                                         zero_user_segments(page, to, block_end,
1104                                                            block_start, from);
1105                                 continue;
1106                         }
1107                 }
1108                 if (PageUptodate(page)) {
1109                         set_buffer_uptodate(bh);
1110                         continue;
1111                 }
1112                 if (!buffer_uptodate(bh) && !buffer_delay(bh) &&
1113                     !buffer_unwritten(bh) &&
1114                     (block_start < from || block_end > to)) {
1115                         ext4_read_bh_lock(bh, 0, false);
1116                         wait[nr_wait++] = bh;
1117                 }
1118         }
1119         /*
1120          * If we issued read requests, let them complete.
1121          */
1122         for (i = 0; i < nr_wait; i++) {
1123                 wait_on_buffer(wait[i]);
1124                 if (!buffer_uptodate(wait[i]))
1125                         err = -EIO;
1126         }
1127         if (unlikely(err)) {
1128                 page_zero_new_buffers(page, from, to);
1129         } else if (fscrypt_inode_uses_fs_layer_crypto(inode)) {
1130                 for (i = 0; i < nr_wait; i++) {
1131                         int err2;
1132
1133                         err2 = fscrypt_decrypt_pagecache_blocks(page, blocksize,
1134                                                                 bh_offset(wait[i]));
1135                         if (err2) {
1136                                 clear_buffer_uptodate(wait[i]);
1137                                 err = err2;
1138                         }
1139                 }
1140         }
1141
1142         return err;
1143 }
1144 #endif
1145
1146 static int ext4_write_begin(struct file *file, struct address_space *mapping,
1147                             loff_t pos, unsigned len,
1148                             struct page **pagep, void **fsdata)
1149 {
1150         struct inode *inode = mapping->host;
1151         int ret, needed_blocks;
1152         handle_t *handle;
1153         int retries = 0;
1154         struct page *page;
1155         pgoff_t index;
1156         unsigned from, to;
1157
1158         if (unlikely(ext4_forced_shutdown(EXT4_SB(inode->i_sb))))
1159                 return -EIO;
1160
1161         trace_ext4_write_begin(inode, pos, len);
1162         /*
1163          * Reserve one block more for addition to orphan list in case
1164          * we allocate blocks but write fails for some reason
1165          */
1166         needed_blocks = ext4_writepage_trans_blocks(inode) + 1;
1167         index = pos >> PAGE_SHIFT;
1168         from = pos & (PAGE_SIZE - 1);
1169         to = from + len;
1170
1171         if (ext4_test_inode_state(inode, EXT4_STATE_MAY_INLINE_DATA)) {
1172                 ret = ext4_try_to_write_inline_data(mapping, inode, pos, len,
1173                                                     pagep);
1174                 if (ret < 0)
1175                         return ret;
1176                 if (ret == 1)
1177                         return 0;
1178         }
1179
1180         /*
1181          * grab_cache_page_write_begin() can take a long time if the
1182          * system is thrashing due to memory pressure, or if the page
1183          * is being written back.  So grab it first before we start
1184          * the transaction handle.  This also allows us to allocate
1185          * the page (if needed) without using GFP_NOFS.
1186          */
1187 retry_grab:
1188         page = grab_cache_page_write_begin(mapping, index);
1189         if (!page)
1190                 return -ENOMEM;
1191         unlock_page(page);
1192
1193 retry_journal:
1194         handle = ext4_journal_start(inode, EXT4_HT_WRITE_PAGE, needed_blocks);
1195         if (IS_ERR(handle)) {
1196                 put_page(page);
1197                 return PTR_ERR(handle);
1198         }
1199
1200         lock_page(page);
1201         if (page->mapping != mapping) {
1202                 /* The page got truncated from under us */
1203                 unlock_page(page);
1204                 put_page(page);
1205                 ext4_journal_stop(handle);
1206                 goto retry_grab;
1207         }
1208         /* In case writeback began while the page was unlocked */
1209         wait_for_stable_page(page);
1210
1211 #ifdef CONFIG_FS_ENCRYPTION
1212         if (ext4_should_dioread_nolock(inode))
1213                 ret = ext4_block_write_begin(page, pos, len,
1214                                              ext4_get_block_unwritten);
1215         else
1216                 ret = ext4_block_write_begin(page, pos, len,
1217                                              ext4_get_block);
1218 #else
1219         if (ext4_should_dioread_nolock(inode))
1220                 ret = __block_write_begin(page, pos, len,
1221                                           ext4_get_block_unwritten);
1222         else
1223                 ret = __block_write_begin(page, pos, len, ext4_get_block);
1224 #endif
1225         if (!ret && ext4_should_journal_data(inode)) {
1226                 ret = ext4_walk_page_buffers(handle, inode,
1227                                              page_buffers(page), from, to, NULL,
1228                                              do_journal_get_write_access);
1229         }
1230
1231         if (ret) {
1232                 bool extended = (pos + len > inode->i_size) &&
1233                                 !ext4_verity_in_progress(inode);
1234
1235                 unlock_page(page);
1236                 /*
1237                  * __block_write_begin may have instantiated a few blocks
1238                  * outside i_size.  Trim these off again. Don't need
1239                  * i_size_read because we hold i_rwsem.
1240                  *
1241                  * Add inode to orphan list in case we crash before
1242                  * truncate finishes
1243                  */
1244                 if (extended && ext4_can_truncate(inode))
1245                         ext4_orphan_add(handle, inode);
1246
1247                 ext4_journal_stop(handle);
1248                 if (extended) {
1249                         ext4_truncate_failed_write(inode);
1250                         /*
1251                          * If truncate failed early the inode might
1252                          * still be on the orphan list; we need to
1253                          * make sure the inode is removed from the
1254                          * orphan list in that case.
1255                          */
1256                         if (inode->i_nlink)
1257                                 ext4_orphan_del(NULL, inode);
1258                 }
1259
1260                 if (ret == -ENOSPC &&
1261                     ext4_should_retry_alloc(inode->i_sb, &retries))
1262                         goto retry_journal;
1263                 put_page(page);
1264                 return ret;
1265         }
1266         *pagep = page;
1267         return ret;
1268 }
1269
1270 /* For write_end() in data=journal mode */
1271 static int write_end_fn(handle_t *handle, struct inode *inode,
1272                         struct buffer_head *bh)
1273 {
1274         int ret;
1275         if (!buffer_mapped(bh) || buffer_freed(bh))
1276                 return 0;
1277         set_buffer_uptodate(bh);
1278         ret = ext4_handle_dirty_metadata(handle, NULL, bh);
1279         clear_buffer_meta(bh);
1280         clear_buffer_prio(bh);
1281         return ret;
1282 }
1283
1284 /*
1285  * We need to pick up the new inode size which generic_commit_write gave us
1286  * `file' can be NULL - eg, when called from page_symlink().
1287  *
1288  * ext4 never places buffers on inode->i_mapping->private_list.  metadata
1289  * buffers are managed internally.
1290  */
1291 static int ext4_write_end(struct file *file,
1292                           struct address_space *mapping,
1293                           loff_t pos, unsigned len, unsigned copied,
1294                           struct page *page, void *fsdata)
1295 {
1296         handle_t *handle = ext4_journal_current_handle();
1297         struct inode *inode = mapping->host;
1298         loff_t old_size = inode->i_size;
1299         int ret = 0, ret2;
1300         int i_size_changed = 0;
1301         bool verity = ext4_verity_in_progress(inode);
1302
1303         trace_ext4_write_end(inode, pos, len, copied);
1304
1305         if (ext4_has_inline_data(inode))
1306                 return ext4_write_inline_data_end(inode, pos, len, copied, page);
1307
1308         copied = block_write_end(file, mapping, pos, len, copied, page, fsdata);
1309         /*
1310          * it's important to update i_size while still holding page lock:
1311          * page writeout could otherwise come in and zero beyond i_size.
1312          *
1313          * If FS_IOC_ENABLE_VERITY is running on this inode, then Merkle tree
1314          * blocks are being written past EOF, so skip the i_size update.
1315          */
1316         if (!verity)
1317                 i_size_changed = ext4_update_inode_size(inode, pos + copied);
1318         unlock_page(page);
1319         put_page(page);
1320
1321         if (old_size < pos && !verity)
1322                 pagecache_isize_extended(inode, old_size, pos);
1323         /*
1324          * Don't mark the inode dirty under page lock. First, it unnecessarily
1325          * makes the holding time of page lock longer. Second, it forces lock
1326          * ordering of page lock and transaction start for journaling
1327          * filesystems.
1328          */
1329         if (i_size_changed)
1330                 ret = ext4_mark_inode_dirty(handle, inode);
1331
1332         if (pos + len > inode->i_size && !verity && ext4_can_truncate(inode))
1333                 /* if we have allocated more blocks and copied
1334                  * less. We will have blocks allocated outside
1335                  * inode->i_size. So truncate them
1336                  */
1337                 ext4_orphan_add(handle, inode);
1338
1339         ret2 = ext4_journal_stop(handle);
1340         if (!ret)
1341                 ret = ret2;
1342
1343         if (pos + len > inode->i_size && !verity) {
1344                 ext4_truncate_failed_write(inode);
1345                 /*
1346                  * If truncate failed early the inode might still be
1347                  * on the orphan list; we need to make sure the inode
1348                  * is removed from the orphan list in that case.
1349                  */
1350                 if (inode->i_nlink)
1351                         ext4_orphan_del(NULL, inode);
1352         }
1353
1354         return ret ? ret : copied;
1355 }
1356
1357 /*
1358  * This is a private version of page_zero_new_buffers() which doesn't
1359  * set the buffer to be dirty, since in data=journalled mode we need
1360  * to call ext4_handle_dirty_metadata() instead.
1361  */
1362 static void ext4_journalled_zero_new_buffers(handle_t *handle,
1363                                             struct inode *inode,
1364                                             struct page *page,
1365                                             unsigned from, unsigned to)
1366 {
1367         unsigned int block_start = 0, block_end;
1368         struct buffer_head *head, *bh;
1369
1370         bh = head = page_buffers(page);
1371         do {
1372                 block_end = block_start + bh->b_size;
1373                 if (buffer_new(bh)) {
1374                         if (block_end > from && block_start < to) {
1375                                 if (!PageUptodate(page)) {
1376                                         unsigned start, size;
1377
1378                                         start = max(from, block_start);
1379                                         size = min(to, block_end) - start;
1380
1381                                         zero_user(page, start, size);
1382                                         write_end_fn(handle, inode, bh);
1383                                 }
1384                                 clear_buffer_new(bh);
1385                         }
1386                 }
1387                 block_start = block_end;
1388                 bh = bh->b_this_page;
1389         } while (bh != head);
1390 }
1391
1392 static int ext4_journalled_write_end(struct file *file,
1393                                      struct address_space *mapping,
1394                                      loff_t pos, unsigned len, unsigned copied,
1395                                      struct page *page, void *fsdata)
1396 {
1397         handle_t *handle = ext4_journal_current_handle();
1398         struct inode *inode = mapping->host;
1399         loff_t old_size = inode->i_size;
1400         int ret = 0, ret2;
1401         int partial = 0;
1402         unsigned from, to;
1403         int size_changed = 0;
1404         bool verity = ext4_verity_in_progress(inode);
1405
1406         trace_ext4_journalled_write_end(inode, pos, len, copied);
1407         from = pos & (PAGE_SIZE - 1);
1408         to = from + len;
1409
1410         BUG_ON(!ext4_handle_valid(handle));
1411
1412         if (ext4_has_inline_data(inode))
1413                 return ext4_write_inline_data_end(inode, pos, len, copied, page);
1414
1415         if (unlikely(copied < len) && !PageUptodate(page)) {
1416                 copied = 0;
1417                 ext4_journalled_zero_new_buffers(handle, inode, page, from, to);
1418         } else {
1419                 if (unlikely(copied < len))
1420                         ext4_journalled_zero_new_buffers(handle, inode, page,
1421                                                          from + copied, to);
1422                 ret = ext4_walk_page_buffers(handle, inode, page_buffers(page),
1423                                              from, from + copied, &partial,
1424                                              write_end_fn);
1425                 if (!partial)
1426                         SetPageUptodate(page);
1427         }
1428         if (!verity)
1429                 size_changed = ext4_update_inode_size(inode, pos + copied);
1430         ext4_set_inode_state(inode, EXT4_STATE_JDATA);
1431         EXT4_I(inode)->i_datasync_tid = handle->h_transaction->t_tid;
1432         unlock_page(page);
1433         put_page(page);
1434
1435         if (old_size < pos && !verity)
1436                 pagecache_isize_extended(inode, old_size, pos);
1437
1438         if (size_changed) {
1439                 ret2 = ext4_mark_inode_dirty(handle, inode);
1440                 if (!ret)
1441                         ret = ret2;
1442         }
1443
1444         if (pos + len > inode->i_size && !verity && ext4_can_truncate(inode))
1445                 /* if we have allocated more blocks and copied
1446                  * less. We will have blocks allocated outside
1447                  * inode->i_size. So truncate them
1448                  */
1449                 ext4_orphan_add(handle, inode);
1450
1451         ret2 = ext4_journal_stop(handle);
1452         if (!ret)
1453                 ret = ret2;
1454         if (pos + len > inode->i_size && !verity) {
1455                 ext4_truncate_failed_write(inode);
1456                 /*
1457                  * If truncate failed early the inode might still be
1458                  * on the orphan list; we need to make sure the inode
1459                  * is removed from the orphan list in that case.
1460                  */
1461                 if (inode->i_nlink)
1462                         ext4_orphan_del(NULL, inode);
1463         }
1464
1465         return ret ? ret : copied;
1466 }
1467
1468 /*
1469  * Reserve space for a single cluster
1470  */
1471 static int ext4_da_reserve_space(struct inode *inode)
1472 {
1473         struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
1474         struct ext4_inode_info *ei = EXT4_I(inode);
1475         int ret;
1476
1477         /*
1478          * We will charge metadata quota at writeout time; this saves
1479          * us from metadata over-estimation, though we may go over by
1480          * a small amount in the end.  Here we just reserve for data.
1481          */
1482         ret = dquot_reserve_block(inode, EXT4_C2B(sbi, 1));
1483         if (ret)
1484                 return ret;
1485
1486         spin_lock(&ei->i_block_reservation_lock);
1487         if (ext4_claim_free_clusters(sbi, 1, 0)) {
1488                 spin_unlock(&ei->i_block_reservation_lock);
1489                 dquot_release_reservation_block(inode, EXT4_C2B(sbi, 1));
1490                 return -ENOSPC;
1491         }
1492         ei->i_reserved_data_blocks++;
1493         trace_ext4_da_reserve_space(inode);
1494         spin_unlock(&ei->i_block_reservation_lock);
1495
1496         return 0;       /* success */
1497 }
1498
1499 void ext4_da_release_space(struct inode *inode, int to_free)
1500 {
1501         struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
1502         struct ext4_inode_info *ei = EXT4_I(inode);
1503
1504         if (!to_free)
1505                 return;         /* Nothing to release, exit */
1506
1507         spin_lock(&EXT4_I(inode)->i_block_reservation_lock);
1508
1509         trace_ext4_da_release_space(inode, to_free);
1510         if (unlikely(to_free > ei->i_reserved_data_blocks)) {
1511                 /*
1512                  * if there aren't enough reserved blocks, then the
1513                  * counter is messed up somewhere.  Since this
1514                  * function is called from invalidate page, it's
1515                  * harmless to return without any action.
1516                  */
1517                 ext4_warning(inode->i_sb, "ext4_da_release_space: "
1518                          "ino %lu, to_free %d with only %d reserved "
1519                          "data blocks", inode->i_ino, to_free,
1520                          ei->i_reserved_data_blocks);
1521                 WARN_ON(1);
1522                 to_free = ei->i_reserved_data_blocks;
1523         }
1524         ei->i_reserved_data_blocks -= to_free;
1525
1526         /* update fs dirty data blocks counter */
1527         percpu_counter_sub(&sbi->s_dirtyclusters_counter, to_free);
1528
1529         spin_unlock(&EXT4_I(inode)->i_block_reservation_lock);
1530
1531         dquot_release_reservation_block(inode, EXT4_C2B(sbi, to_free));
1532 }
1533
1534 /*
1535  * Delayed allocation stuff
1536  */
1537
1538 struct mpage_da_data {
1539         struct inode *inode;
1540         struct writeback_control *wbc;
1541
1542         pgoff_t first_page;     /* The first page to write */
1543         pgoff_t next_page;      /* Current page to examine */
1544         pgoff_t last_page;      /* Last page to examine */
1545         /*
1546          * Extent to map - this can be after first_page because that can be
1547          * fully mapped. We somewhat abuse m_flags to store whether the extent
1548          * is delalloc or unwritten.
1549          */
1550         struct ext4_map_blocks map;
1551         struct ext4_io_submit io_submit;        /* IO submission data */
1552         unsigned int do_map:1;
1553         unsigned int scanned_until_end:1;
1554 };
1555
1556 static void mpage_release_unused_pages(struct mpage_da_data *mpd,
1557                                        bool invalidate)
1558 {
1559         unsigned nr, i;
1560         pgoff_t index, end;
1561         struct folio_batch fbatch;
1562         struct inode *inode = mpd->inode;
1563         struct address_space *mapping = inode->i_mapping;
1564
1565         /* This is necessary when next_page == 0. */
1566         if (mpd->first_page >= mpd->next_page)
1567                 return;
1568
1569         mpd->scanned_until_end = 0;
1570         index = mpd->first_page;
1571         end   = mpd->next_page - 1;
1572         if (invalidate) {
1573                 ext4_lblk_t start, last;
1574                 start = index << (PAGE_SHIFT - inode->i_blkbits);
1575                 last = end << (PAGE_SHIFT - inode->i_blkbits);
1576
1577                 /*
1578                  * avoid racing with extent status tree scans made by
1579                  * ext4_insert_delayed_block()
1580                  */
1581                 down_write(&EXT4_I(inode)->i_data_sem);
1582                 ext4_es_remove_extent(inode, start, last - start + 1);
1583                 up_write(&EXT4_I(inode)->i_data_sem);
1584         }
1585
1586         folio_batch_init(&fbatch);
1587         while (index <= end) {
1588                 nr = filemap_get_folios(mapping, &index, end, &fbatch);
1589                 if (nr == 0)
1590                         break;
1591                 for (i = 0; i < nr; i++) {
1592                         struct folio *folio = fbatch.folios[i];
1593
1594                         if (folio->index < mpd->first_page)
1595                                 continue;
1596                         if (folio->index + folio_nr_pages(folio) - 1 > end)
1597                                 continue;
1598                         BUG_ON(!folio_test_locked(folio));
1599                         BUG_ON(folio_test_writeback(folio));
1600                         if (invalidate) {
1601                                 if (folio_mapped(folio))
1602                                         folio_clear_dirty_for_io(folio);
1603                                 block_invalidate_folio(folio, 0,
1604                                                 folio_size(folio));
1605                                 folio_clear_uptodate(folio);
1606                         }
1607                         folio_unlock(folio);
1608                 }
1609                 folio_batch_release(&fbatch);
1610         }
1611 }
1612
1613 static void ext4_print_free_blocks(struct inode *inode)
1614 {
1615         struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
1616         struct super_block *sb = inode->i_sb;
1617         struct ext4_inode_info *ei = EXT4_I(inode);
1618
1619         ext4_msg(sb, KERN_CRIT, "Total free blocks count %lld",
1620                EXT4_C2B(EXT4_SB(inode->i_sb),
1621                         ext4_count_free_clusters(sb)));
1622         ext4_msg(sb, KERN_CRIT, "Free/Dirty block details");
1623         ext4_msg(sb, KERN_CRIT, "free_blocks=%lld",
1624                (long long) EXT4_C2B(EXT4_SB(sb),
1625                 percpu_counter_sum(&sbi->s_freeclusters_counter)));
1626         ext4_msg(sb, KERN_CRIT, "dirty_blocks=%lld",
1627                (long long) EXT4_C2B(EXT4_SB(sb),
1628                 percpu_counter_sum(&sbi->s_dirtyclusters_counter)));
1629         ext4_msg(sb, KERN_CRIT, "Block reservation details");
1630         ext4_msg(sb, KERN_CRIT, "i_reserved_data_blocks=%u",
1631                  ei->i_reserved_data_blocks);
1632         return;
1633 }
1634
1635 static int ext4_bh_delay_or_unwritten(handle_t *handle, struct inode *inode,
1636                                       struct buffer_head *bh)
1637 {
1638         return (buffer_delay(bh) || buffer_unwritten(bh)) && buffer_dirty(bh);
1639 }
1640
1641 /*
1642  * ext4_insert_delayed_block - adds a delayed block to the extents status
1643  *                             tree, incrementing the reserved cluster/block
1644  *                             count or making a pending reservation
1645  *                             where needed
1646  *
1647  * @inode - file containing the newly added block
1648  * @lblk - logical block to be added
1649  *
1650  * Returns 0 on success, negative error code on failure.
1651  */
1652 static int ext4_insert_delayed_block(struct inode *inode, ext4_lblk_t lblk)
1653 {
1654         struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
1655         int ret;
1656         bool allocated = false;
1657         bool reserved = false;
1658
1659         /*
1660          * If the cluster containing lblk is shared with a delayed,
1661          * written, or unwritten extent in a bigalloc file system, it's
1662          * already been accounted for and does not need to be reserved.
1663          * A pending reservation must be made for the cluster if it's
1664          * shared with a written or unwritten extent and doesn't already
1665          * have one.  Written and unwritten extents can be purged from the
1666          * extents status tree if the system is under memory pressure, so
1667          * it's necessary to examine the extent tree if a search of the
1668          * extents status tree doesn't get a match.
1669          */
1670         if (sbi->s_cluster_ratio == 1) {
1671                 ret = ext4_da_reserve_space(inode);
1672                 if (ret != 0)   /* ENOSPC */
1673                         goto errout;
1674                 reserved = true;
1675         } else {   /* bigalloc */
1676                 if (!ext4_es_scan_clu(inode, &ext4_es_is_delonly, lblk)) {
1677                         if (!ext4_es_scan_clu(inode,
1678                                               &ext4_es_is_mapped, lblk)) {
1679                                 ret = ext4_clu_mapped(inode,
1680                                                       EXT4_B2C(sbi, lblk));
1681                                 if (ret < 0)
1682                                         goto errout;
1683                                 if (ret == 0) {
1684                                         ret = ext4_da_reserve_space(inode);
1685                                         if (ret != 0)   /* ENOSPC */
1686                                                 goto errout;
1687                                         reserved = true;
1688                                 } else {
1689                                         allocated = true;
1690                                 }
1691                         } else {
1692                                 allocated = true;
1693                         }
1694                 }
1695         }
1696
1697         ret = ext4_es_insert_delayed_block(inode, lblk, allocated);
1698         if (ret && reserved)
1699                 ext4_da_release_space(inode, 1);
1700
1701 errout:
1702         return ret;
1703 }
1704
1705 /*
1706  * This function is grabs code from the very beginning of
1707  * ext4_map_blocks, but assumes that the caller is from delayed write
1708  * time. This function looks up the requested blocks and sets the
1709  * buffer delay bit under the protection of i_data_sem.
1710  */
1711 static int ext4_da_map_blocks(struct inode *inode, sector_t iblock,
1712                               struct ext4_map_blocks *map,
1713                               struct buffer_head *bh)
1714 {
1715         struct extent_status es;
1716         int retval;
1717         sector_t invalid_block = ~((sector_t) 0xffff);
1718 #ifdef ES_AGGRESSIVE_TEST
1719         struct ext4_map_blocks orig_map;
1720
1721         memcpy(&orig_map, map, sizeof(*map));
1722 #endif
1723
1724         if (invalid_block < ext4_blocks_count(EXT4_SB(inode->i_sb)->s_es))
1725                 invalid_block = ~0;
1726
1727         map->m_flags = 0;
1728         ext_debug(inode, "max_blocks %u, logical block %lu\n", map->m_len,
1729                   (unsigned long) map->m_lblk);
1730
1731         /* Lookup extent status tree firstly */
1732         if (ext4_es_lookup_extent(inode, iblock, NULL, &es)) {
1733                 if (ext4_es_is_hole(&es)) {
1734                         retval = 0;
1735                         down_read(&EXT4_I(inode)->i_data_sem);
1736                         goto add_delayed;
1737                 }
1738
1739                 /*
1740                  * Delayed extent could be allocated by fallocate.
1741                  * So we need to check it.
1742                  */
1743                 if (ext4_es_is_delayed(&es) && !ext4_es_is_unwritten(&es)) {
1744                         map_bh(bh, inode->i_sb, invalid_block);
1745                         set_buffer_new(bh);
1746                         set_buffer_delay(bh);
1747                         return 0;
1748                 }
1749
1750                 map->m_pblk = ext4_es_pblock(&es) + iblock - es.es_lblk;
1751                 retval = es.es_len - (iblock - es.es_lblk);
1752                 if (retval > map->m_len)
1753                         retval = map->m_len;
1754                 map->m_len = retval;
1755                 if (ext4_es_is_written(&es))
1756                         map->m_flags |= EXT4_MAP_MAPPED;
1757                 else if (ext4_es_is_unwritten(&es))
1758                         map->m_flags |= EXT4_MAP_UNWRITTEN;
1759                 else
1760                         BUG();
1761
1762 #ifdef ES_AGGRESSIVE_TEST
1763                 ext4_map_blocks_es_recheck(NULL, inode, map, &orig_map, 0);
1764 #endif
1765                 return retval;
1766         }
1767
1768         /*
1769          * Try to see if we can get the block without requesting a new
1770          * file system block.
1771          */
1772         down_read(&EXT4_I(inode)->i_data_sem);
1773         if (ext4_has_inline_data(inode))
1774                 retval = 0;
1775         else if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS))
1776                 retval = ext4_ext_map_blocks(NULL, inode, map, 0);
1777         else
1778                 retval = ext4_ind_map_blocks(NULL, inode, map, 0);
1779
1780 add_delayed:
1781         if (retval == 0) {
1782                 int ret;
1783
1784                 /*
1785                  * XXX: __block_prepare_write() unmaps passed block,
1786                  * is it OK?
1787                  */
1788
1789                 ret = ext4_insert_delayed_block(inode, map->m_lblk);
1790                 if (ret != 0) {
1791                         retval = ret;
1792                         goto out_unlock;
1793                 }
1794
1795                 map_bh(bh, inode->i_sb, invalid_block);
1796                 set_buffer_new(bh);
1797                 set_buffer_delay(bh);
1798         } else if (retval > 0) {
1799                 int ret;
1800                 unsigned int status;
1801
1802                 if (unlikely(retval != map->m_len)) {
1803                         ext4_warning(inode->i_sb,
1804                                      "ES len assertion failed for inode "
1805                                      "%lu: retval %d != map->m_len %d",
1806                                      inode->i_ino, retval, map->m_len);
1807                         WARN_ON(1);
1808                 }
1809
1810                 status = map->m_flags & EXT4_MAP_UNWRITTEN ?
1811                                 EXTENT_STATUS_UNWRITTEN : EXTENT_STATUS_WRITTEN;
1812                 ret = ext4_es_insert_extent(inode, map->m_lblk, map->m_len,
1813                                             map->m_pblk, status);
1814                 if (ret != 0)
1815                         retval = ret;
1816         }
1817
1818 out_unlock:
1819         up_read((&EXT4_I(inode)->i_data_sem));
1820
1821         return retval;
1822 }
1823
1824 /*
1825  * This is a special get_block_t callback which is used by
1826  * ext4_da_write_begin().  It will either return mapped block or
1827  * reserve space for a single block.
1828  *
1829  * For delayed buffer_head we have BH_Mapped, BH_New, BH_Delay set.
1830  * We also have b_blocknr = -1 and b_bdev initialized properly
1831  *
1832  * For unwritten buffer_head we have BH_Mapped, BH_New, BH_Unwritten set.
1833  * We also have b_blocknr = physicalblock mapping unwritten extent and b_bdev
1834  * initialized properly.
1835  */
1836 int ext4_da_get_block_prep(struct inode *inode, sector_t iblock,
1837                            struct buffer_head *bh, int create)
1838 {
1839         struct ext4_map_blocks map;
1840         int ret = 0;
1841
1842         BUG_ON(create == 0);
1843         BUG_ON(bh->b_size != inode->i_sb->s_blocksize);
1844
1845         map.m_lblk = iblock;
1846         map.m_len = 1;
1847
1848         /*
1849          * first, we need to know whether the block is allocated already
1850          * preallocated blocks are unmapped but should treated
1851          * the same as allocated blocks.
1852          */
1853         ret = ext4_da_map_blocks(inode, iblock, &map, bh);
1854         if (ret <= 0)
1855                 return ret;
1856
1857         map_bh(bh, inode->i_sb, map.m_pblk);
1858         ext4_update_bh_state(bh, map.m_flags);
1859
1860         if (buffer_unwritten(bh)) {
1861                 /* A delayed write to unwritten bh should be marked
1862                  * new and mapped.  Mapped ensures that we don't do
1863                  * get_block multiple times when we write to the same
1864                  * offset and new ensures that we do proper zero out
1865                  * for partial write.
1866                  */
1867                 set_buffer_new(bh);
1868                 set_buffer_mapped(bh);
1869         }
1870         return 0;
1871 }
1872
1873 static int __ext4_journalled_writepage(struct page *page,
1874                                        unsigned int len)
1875 {
1876         struct address_space *mapping = page->mapping;
1877         struct inode *inode = mapping->host;
1878         handle_t *handle = NULL;
1879         int ret = 0, err = 0;
1880         int inline_data = ext4_has_inline_data(inode);
1881         struct buffer_head *inode_bh = NULL;
1882         loff_t size;
1883
1884         ClearPageChecked(page);
1885
1886         if (inline_data) {
1887                 BUG_ON(page->index != 0);
1888                 BUG_ON(len > ext4_get_max_inline_size(inode));
1889                 inode_bh = ext4_journalled_write_inline_data(inode, len, page);
1890                 if (inode_bh == NULL)
1891                         goto out;
1892         }
1893         /*
1894          * We need to release the page lock before we start the
1895          * journal, so grab a reference so the page won't disappear
1896          * out from under us.
1897          */
1898         get_page(page);
1899         unlock_page(page);
1900
1901         handle = ext4_journal_start(inode, EXT4_HT_WRITE_PAGE,
1902                                     ext4_writepage_trans_blocks(inode));
1903         if (IS_ERR(handle)) {
1904                 ret = PTR_ERR(handle);
1905                 put_page(page);
1906                 goto out_no_pagelock;
1907         }
1908         BUG_ON(!ext4_handle_valid(handle));
1909
1910         lock_page(page);
1911         put_page(page);
1912         size = i_size_read(inode);
1913         if (page->mapping != mapping || page_offset(page) > size) {
1914                 /* The page got truncated from under us */
1915                 ext4_journal_stop(handle);
1916                 ret = 0;
1917                 goto out;
1918         }
1919
1920         if (inline_data) {
1921                 ret = ext4_mark_inode_dirty(handle, inode);
1922         } else {
1923                 struct buffer_head *page_bufs = page_buffers(page);
1924
1925                 if (page->index == size >> PAGE_SHIFT)
1926                         len = size & ~PAGE_MASK;
1927                 else
1928                         len = PAGE_SIZE;
1929
1930                 ret = ext4_walk_page_buffers(handle, inode, page_bufs, 0, len,
1931                                              NULL, do_journal_get_write_access);
1932
1933                 err = ext4_walk_page_buffers(handle, inode, page_bufs, 0, len,
1934                                              NULL, write_end_fn);
1935         }
1936         if (ret == 0)
1937                 ret = err;
1938         err = ext4_jbd2_inode_add_write(handle, inode, page_offset(page), len);
1939         if (ret == 0)
1940                 ret = err;
1941         EXT4_I(inode)->i_datasync_tid = handle->h_transaction->t_tid;
1942         err = ext4_journal_stop(handle);
1943         if (!ret)
1944                 ret = err;
1945
1946         ext4_set_inode_state(inode, EXT4_STATE_JDATA);
1947 out:
1948         unlock_page(page);
1949 out_no_pagelock:
1950         brelse(inode_bh);
1951         return ret;
1952 }
1953
1954 /*
1955  * Note that we don't need to start a transaction unless we're journaling data
1956  * because we should have holes filled from ext4_page_mkwrite(). We even don't
1957  * need to file the inode to the transaction's list in ordered mode because if
1958  * we are writing back data added by write(), the inode is already there and if
1959  * we are writing back data modified via mmap(), no one guarantees in which
1960  * transaction the data will hit the disk. In case we are journaling data, we
1961  * cannot start transaction directly because transaction start ranks above page
1962  * lock so we have to do some magic.
1963  *
1964  * This function can get called via...
1965  *   - ext4_writepages after taking page lock (have journal handle)
1966  *   - journal_submit_inode_data_buffers (no journal handle)
1967  *   - shrink_page_list via the kswapd/direct reclaim (no journal handle)
1968  *   - grab_page_cache when doing write_begin (have journal handle)
1969  *
1970  * We don't do any block allocation in this function. If we have page with
1971  * multiple blocks we need to write those buffer_heads that are mapped. This
1972  * is important for mmaped based write. So if we do with blocksize 1K
1973  * truncate(f, 1024);
1974  * a = mmap(f, 0, 4096);
1975  * a[0] = 'a';
1976  * truncate(f, 4096);
1977  * we have in the page first buffer_head mapped via page_mkwrite call back
1978  * but other buffer_heads would be unmapped but dirty (dirty done via the
1979  * do_wp_page). So writepage should write the first block. If we modify
1980  * the mmap area beyond 1024 we will again get a page_fault and the
1981  * page_mkwrite callback will do the block allocation and mark the
1982  * buffer_heads mapped.
1983  *
1984  * We redirty the page if we have any buffer_heads that is either delay or
1985  * unwritten in the page.
1986  *
1987  * We can get recursively called as show below.
1988  *
1989  *      ext4_writepage() -> kmalloc() -> __alloc_pages() -> page_launder() ->
1990  *              ext4_writepage()
1991  *
1992  * But since we don't do any block allocation we should not deadlock.
1993  * Page also have the dirty flag cleared so we don't get recurive page_lock.
1994  */
1995 static int ext4_writepage(struct page *page,
1996                           struct writeback_control *wbc)
1997 {
1998         struct folio *folio = page_folio(page);
1999         int ret = 0;
2000         loff_t size;
2001         unsigned int len;
2002         struct buffer_head *page_bufs = NULL;
2003         struct inode *inode = page->mapping->host;
2004         struct ext4_io_submit io_submit;
2005         bool keep_towrite = false;
2006
2007         if (unlikely(ext4_forced_shutdown(EXT4_SB(inode->i_sb)))) {
2008                 folio_invalidate(folio, 0, folio_size(folio));
2009                 folio_unlock(folio);
2010                 return -EIO;
2011         }
2012
2013         trace_ext4_writepage(page);
2014         size = i_size_read(inode);
2015         if (page->index == size >> PAGE_SHIFT &&
2016             !ext4_verity_in_progress(inode))
2017                 len = size & ~PAGE_MASK;
2018         else
2019                 len = PAGE_SIZE;
2020
2021         /* Should never happen but for bugs in other kernel subsystems */
2022         if (!page_has_buffers(page)) {
2023                 ext4_warning_inode(inode,
2024                    "page %lu does not have buffers attached", page->index);
2025                 ClearPageDirty(page);
2026                 unlock_page(page);
2027                 return 0;
2028         }
2029
2030         page_bufs = page_buffers(page);
2031         /*
2032          * We cannot do block allocation or other extent handling in this
2033          * function. If there are buffers needing that, we have to redirty
2034          * the page. But we may reach here when we do a journal commit via
2035          * journal_submit_inode_data_buffers() and in that case we must write
2036          * allocated buffers to achieve data=ordered mode guarantees.
2037          *
2038          * Also, if there is only one buffer per page (the fs block
2039          * size == the page size), if one buffer needs block
2040          * allocation or needs to modify the extent tree to clear the
2041          * unwritten flag, we know that the page can't be written at
2042          * all, so we might as well refuse the write immediately.
2043          * Unfortunately if the block size != page size, we can't as
2044          * easily detect this case using ext4_walk_page_buffers(), but
2045          * for the extremely common case, this is an optimization that
2046          * skips a useless round trip through ext4_bio_write_page().
2047          */
2048         if (ext4_walk_page_buffers(NULL, inode, page_bufs, 0, len, NULL,
2049                                    ext4_bh_delay_or_unwritten)) {
2050                 redirty_page_for_writepage(wbc, page);
2051                 if ((current->flags & PF_MEMALLOC) ||
2052                     (inode->i_sb->s_blocksize == PAGE_SIZE)) {
2053                         /*
2054                          * For memory cleaning there's no point in writing only
2055                          * some buffers. So just bail out. Warn if we came here
2056                          * from direct reclaim.
2057                          */
2058                         WARN_ON_ONCE((current->flags & (PF_MEMALLOC|PF_KSWAPD))
2059                                                         == PF_MEMALLOC);
2060                         unlock_page(page);
2061                         return 0;
2062                 }
2063                 keep_towrite = true;
2064         }
2065
2066         if (PageChecked(page) && ext4_should_journal_data(inode))
2067                 /*
2068                  * It's mmapped pagecache.  Add buffers and journal it.  There
2069                  * doesn't seem much point in redirtying the page here.
2070                  */
2071                 return __ext4_journalled_writepage(page, len);
2072
2073         ext4_io_submit_init(&io_submit, wbc);
2074         io_submit.io_end = ext4_init_io_end(inode, GFP_NOFS);
2075         if (!io_submit.io_end) {
2076                 redirty_page_for_writepage(wbc, page);
2077                 unlock_page(page);
2078                 return -ENOMEM;
2079         }
2080         ret = ext4_bio_write_page(&io_submit, page, len, keep_towrite);
2081         ext4_io_submit(&io_submit);
2082         /* Drop io_end reference we got from init */
2083         ext4_put_io_end_defer(io_submit.io_end);
2084         return ret;
2085 }
2086
2087 static int mpage_submit_page(struct mpage_da_data *mpd, struct page *page)
2088 {
2089         int len;
2090         loff_t size;
2091         int err;
2092
2093         BUG_ON(page->index != mpd->first_page);
2094         clear_page_dirty_for_io(page);
2095         /*
2096          * We have to be very careful here!  Nothing protects writeback path
2097          * against i_size changes and the page can be writeably mapped into
2098          * page tables. So an application can be growing i_size and writing
2099          * data through mmap while writeback runs. clear_page_dirty_for_io()
2100          * write-protects our page in page tables and the page cannot get
2101          * written to again until we release page lock. So only after
2102          * clear_page_dirty_for_io() we are safe to sample i_size for
2103          * ext4_bio_write_page() to zero-out tail of the written page. We rely
2104          * on the barrier provided by TestClearPageDirty in
2105          * clear_page_dirty_for_io() to make sure i_size is really sampled only
2106          * after page tables are updated.
2107          */
2108         size = i_size_read(mpd->inode);
2109         if (page->index == size >> PAGE_SHIFT &&
2110             !ext4_verity_in_progress(mpd->inode))
2111                 len = size & ~PAGE_MASK;
2112         else
2113                 len = PAGE_SIZE;
2114         err = ext4_bio_write_page(&mpd->io_submit, page, len, false);
2115         if (!err)
2116                 mpd->wbc->nr_to_write--;
2117         mpd->first_page++;
2118
2119         return err;
2120 }
2121
2122 #define BH_FLAGS (BIT(BH_Unwritten) | BIT(BH_Delay))
2123
2124 /*
2125  * mballoc gives us at most this number of blocks...
2126  * XXX: That seems to be only a limitation of ext4_mb_normalize_request().
2127  * The rest of mballoc seems to handle chunks up to full group size.
2128  */
2129 #define MAX_WRITEPAGES_EXTENT_LEN 2048
2130
2131 /*
2132  * mpage_add_bh_to_extent - try to add bh to extent of blocks to map
2133  *
2134  * @mpd - extent of blocks
2135  * @lblk - logical number of the block in the file
2136  * @bh - buffer head we want to add to the extent
2137  *
2138  * The function is used to collect contig. blocks in the same state. If the
2139  * buffer doesn't require mapping for writeback and we haven't started the
2140  * extent of buffers to map yet, the function returns 'true' immediately - the
2141  * caller can write the buffer right away. Otherwise the function returns true
2142  * if the block has been added to the extent, false if the block couldn't be
2143  * added.
2144  */
2145 static bool mpage_add_bh_to_extent(struct mpage_da_data *mpd, ext4_lblk_t lblk,
2146                                    struct buffer_head *bh)
2147 {
2148         struct ext4_map_blocks *map = &mpd->map;
2149
2150         /* Buffer that doesn't need mapping for writeback? */
2151         if (!buffer_dirty(bh) || !buffer_mapped(bh) ||
2152             (!buffer_delay(bh) && !buffer_unwritten(bh))) {
2153                 /* So far no extent to map => we write the buffer right away */
2154                 if (map->m_len == 0)
2155                         return true;
2156                 return false;
2157         }
2158
2159         /* First block in the extent? */
2160         if (map->m_len == 0) {
2161                 /* We cannot map unless handle is started... */
2162                 if (!mpd->do_map)
2163                         return false;
2164                 map->m_lblk = lblk;
2165                 map->m_len = 1;
2166                 map->m_flags = bh->b_state & BH_FLAGS;
2167                 return true;
2168         }
2169
2170         /* Don't go larger than mballoc is willing to allocate */
2171         if (map->m_len >= MAX_WRITEPAGES_EXTENT_LEN)
2172                 return false;
2173
2174         /* Can we merge the block to our big extent? */
2175         if (lblk == map->m_lblk + map->m_len &&
2176             (bh->b_state & BH_FLAGS) == map->m_flags) {
2177                 map->m_len++;
2178                 return true;
2179         }
2180         return false;
2181 }
2182
2183 /*
2184  * mpage_process_page_bufs - submit page buffers for IO or add them to extent
2185  *
2186  * @mpd - extent of blocks for mapping
2187  * @head - the first buffer in the page
2188  * @bh - buffer we should start processing from
2189  * @lblk - logical number of the block in the file corresponding to @bh
2190  *
2191  * Walk through page buffers from @bh upto @head (exclusive) and either submit
2192  * the page for IO if all buffers in this page were mapped and there's no
2193  * accumulated extent of buffers to map or add buffers in the page to the
2194  * extent of buffers to map. The function returns 1 if the caller can continue
2195  * by processing the next page, 0 if it should stop adding buffers to the
2196  * extent to map because we cannot extend it anymore. It can also return value
2197  * < 0 in case of error during IO submission.
2198  */
2199 static int mpage_process_page_bufs(struct mpage_da_data *mpd,
2200                                    struct buffer_head *head,
2201                                    struct buffer_head *bh,
2202                                    ext4_lblk_t lblk)
2203 {
2204         struct inode *inode = mpd->inode;
2205         int err;
2206         ext4_lblk_t blocks = (i_size_read(inode) + i_blocksize(inode) - 1)
2207                                                         >> inode->i_blkbits;
2208
2209         if (ext4_verity_in_progress(inode))
2210                 blocks = EXT_MAX_BLOCKS;
2211
2212         do {
2213                 BUG_ON(buffer_locked(bh));
2214
2215                 if (lblk >= blocks || !mpage_add_bh_to_extent(mpd, lblk, bh)) {
2216                         /* Found extent to map? */
2217                         if (mpd->map.m_len)
2218                                 return 0;
2219                         /* Buffer needs mapping and handle is not started? */
2220                         if (!mpd->do_map)
2221                                 return 0;
2222                         /* Everything mapped so far and we hit EOF */
2223                         break;
2224                 }
2225         } while (lblk++, (bh = bh->b_this_page) != head);
2226         /* So far everything mapped? Submit the page for IO. */
2227         if (mpd->map.m_len == 0) {
2228                 err = mpage_submit_page(mpd, head->b_page);
2229                 if (err < 0)
2230                         return err;
2231         }
2232         if (lblk >= blocks) {
2233                 mpd->scanned_until_end = 1;
2234                 return 0;
2235         }
2236         return 1;
2237 }
2238
2239 /*
2240  * mpage_process_page - update page buffers corresponding to changed extent and
2241  *                     may submit fully mapped page for IO
2242  *
2243  * @mpd         - description of extent to map, on return next extent to map
2244  * @m_lblk      - logical block mapping.
2245  * @m_pblk      - corresponding physical mapping.
2246  * @map_bh      - determines on return whether this page requires any further
2247  *                mapping or not.
2248  * Scan given page buffers corresponding to changed extent and update buffer
2249  * state according to new extent state.
2250  * We map delalloc buffers to their physical location, clear unwritten bits.
2251  * If the given page is not fully mapped, we update @map to the next extent in
2252  * the given page that needs mapping & return @map_bh as true.
2253  */
2254 static int mpage_process_page(struct mpage_da_data *mpd, struct page *page,
2255                               ext4_lblk_t *m_lblk, ext4_fsblk_t *m_pblk,
2256                               bool *map_bh)
2257 {
2258         struct buffer_head *head, *bh;
2259         ext4_io_end_t *io_end = mpd->io_submit.io_end;
2260         ext4_lblk_t lblk = *m_lblk;
2261         ext4_fsblk_t pblock = *m_pblk;
2262         int err = 0;
2263         int blkbits = mpd->inode->i_blkbits;
2264         ssize_t io_end_size = 0;
2265         struct ext4_io_end_vec *io_end_vec = ext4_last_io_end_vec(io_end);
2266
2267         bh = head = page_buffers(page);
2268         do {
2269                 if (lblk < mpd->map.m_lblk)
2270                         continue;
2271                 if (lblk >= mpd->map.m_lblk + mpd->map.m_len) {
2272                         /*
2273                          * Buffer after end of mapped extent.
2274                          * Find next buffer in the page to map.
2275                          */
2276                         mpd->map.m_len = 0;
2277                         mpd->map.m_flags = 0;
2278                         io_end_vec->size += io_end_size;
2279
2280                         err = mpage_process_page_bufs(mpd, head, bh, lblk);
2281                         if (err > 0)
2282                                 err = 0;
2283                         if (!err && mpd->map.m_len && mpd->map.m_lblk > lblk) {
2284                                 io_end_vec = ext4_alloc_io_end_vec(io_end);
2285                                 if (IS_ERR(io_end_vec)) {
2286                                         err = PTR_ERR(io_end_vec);
2287                                         goto out;
2288                                 }
2289                                 io_end_vec->offset = (loff_t)mpd->map.m_lblk << blkbits;
2290                         }
2291                         *map_bh = true;
2292                         goto out;
2293                 }
2294                 if (buffer_delay(bh)) {
2295                         clear_buffer_delay(bh);
2296                         bh->b_blocknr = pblock++;
2297                 }
2298                 clear_buffer_unwritten(bh);
2299                 io_end_size += (1 << blkbits);
2300         } while (lblk++, (bh = bh->b_this_page) != head);
2301
2302         io_end_vec->size += io_end_size;
2303         *map_bh = false;
2304 out:
2305         *m_lblk = lblk;
2306         *m_pblk = pblock;
2307         return err;
2308 }
2309
2310 /*
2311  * mpage_map_buffers - update buffers corresponding to changed extent and
2312  *                     submit fully mapped pages for IO
2313  *
2314  * @mpd - description of extent to map, on return next extent to map
2315  *
2316  * Scan buffers corresponding to changed extent (we expect corresponding pages
2317  * to be already locked) and update buffer state according to new extent state.
2318  * We map delalloc buffers to their physical location, clear unwritten bits,
2319  * and mark buffers as uninit when we perform writes to unwritten extents
2320  * and do extent conversion after IO is finished. If the last page is not fully
2321  * mapped, we update @map to the next extent in the last page that needs
2322  * mapping. Otherwise we submit the page for IO.
2323  */
2324 static int mpage_map_and_submit_buffers(struct mpage_da_data *mpd)
2325 {
2326         struct folio_batch fbatch;
2327         unsigned nr, i;
2328         struct inode *inode = mpd->inode;
2329         int bpp_bits = PAGE_SHIFT - inode->i_blkbits;
2330         pgoff_t start, end;
2331         ext4_lblk_t lblk;
2332         ext4_fsblk_t pblock;
2333         int err;
2334         bool map_bh = false;
2335
2336         start = mpd->map.m_lblk >> bpp_bits;
2337         end = (mpd->map.m_lblk + mpd->map.m_len - 1) >> bpp_bits;
2338         lblk = start << bpp_bits;
2339         pblock = mpd->map.m_pblk;
2340
2341         folio_batch_init(&fbatch);
2342         while (start <= end) {
2343                 nr = filemap_get_folios(inode->i_mapping, &start, end, &fbatch);
2344                 if (nr == 0)
2345                         break;
2346                 for (i = 0; i < nr; i++) {
2347                         struct page *page = &fbatch.folios[i]->page;
2348
2349                         err = mpage_process_page(mpd, page, &lblk, &pblock,
2350                                                  &map_bh);
2351                         /*
2352                          * If map_bh is true, means page may require further bh
2353                          * mapping, or maybe the page was submitted for IO.
2354                          * So we return to call further extent mapping.
2355                          */
2356                         if (err < 0 || map_bh)
2357                                 goto out;
2358                         /* Page fully mapped - let IO run! */
2359                         err = mpage_submit_page(mpd, page);
2360                         if (err < 0)
2361                                 goto out;
2362                 }
2363                 folio_batch_release(&fbatch);
2364         }
2365         /* Extent fully mapped and matches with page boundary. We are done. */
2366         mpd->map.m_len = 0;
2367         mpd->map.m_flags = 0;
2368         return 0;
2369 out:
2370         folio_batch_release(&fbatch);
2371         return err;
2372 }
2373
2374 static int mpage_map_one_extent(handle_t *handle, struct mpage_da_data *mpd)
2375 {
2376         struct inode *inode = mpd->inode;
2377         struct ext4_map_blocks *map = &mpd->map;
2378         int get_blocks_flags;
2379         int err, dioread_nolock;
2380
2381         trace_ext4_da_write_pages_extent(inode, map);
2382         /*
2383          * Call ext4_map_blocks() to allocate any delayed allocation blocks, or
2384          * to convert an unwritten extent to be initialized (in the case
2385          * where we have written into one or more preallocated blocks).  It is
2386          * possible that we're going to need more metadata blocks than
2387          * previously reserved. However we must not fail because we're in
2388          * writeback and there is nothing we can do about it so it might result
2389          * in data loss.  So use reserved blocks to allocate metadata if
2390          * possible.
2391          *
2392          * We pass in the magic EXT4_GET_BLOCKS_DELALLOC_RESERVE if
2393          * the blocks in question are delalloc blocks.  This indicates
2394          * that the blocks and quotas has already been checked when
2395          * the data was copied into the page cache.
2396          */
2397         get_blocks_flags = EXT4_GET_BLOCKS_CREATE |
2398                            EXT4_GET_BLOCKS_METADATA_NOFAIL |
2399                            EXT4_GET_BLOCKS_IO_SUBMIT;
2400         dioread_nolock = ext4_should_dioread_nolock(inode);
2401         if (dioread_nolock)
2402                 get_blocks_flags |= EXT4_GET_BLOCKS_IO_CREATE_EXT;
2403         if (map->m_flags & BIT(BH_Delay))
2404                 get_blocks_flags |= EXT4_GET_BLOCKS_DELALLOC_RESERVE;
2405
2406         err = ext4_map_blocks(handle, inode, map, get_blocks_flags);
2407         if (err < 0)
2408                 return err;
2409         if (dioread_nolock && (map->m_flags & EXT4_MAP_UNWRITTEN)) {
2410                 if (!mpd->io_submit.io_end->handle &&
2411                     ext4_handle_valid(handle)) {
2412                         mpd->io_submit.io_end->handle = handle->h_rsv_handle;
2413                         handle->h_rsv_handle = NULL;
2414                 }
2415                 ext4_set_io_unwritten_flag(inode, mpd->io_submit.io_end);
2416         }
2417
2418         BUG_ON(map->m_len == 0);
2419         return 0;
2420 }
2421
2422 /*
2423  * mpage_map_and_submit_extent - map extent starting at mpd->lblk of length
2424  *                               mpd->len and submit pages underlying it for IO
2425  *
2426  * @handle - handle for journal operations
2427  * @mpd - extent to map
2428  * @give_up_on_write - we set this to true iff there is a fatal error and there
2429  *                     is no hope of writing the data. The caller should discard
2430  *                     dirty pages to avoid infinite loops.
2431  *
2432  * The function maps extent starting at mpd->lblk of length mpd->len. If it is
2433  * delayed, blocks are allocated, if it is unwritten, we may need to convert
2434  * them to initialized or split the described range from larger unwritten
2435  * extent. Note that we need not map all the described range since allocation
2436  * can return less blocks or the range is covered by more unwritten extents. We
2437  * cannot map more because we are limited by reserved transaction credits. On
2438  * the other hand we always make sure that the last touched page is fully
2439  * mapped so that it can be written out (and thus forward progress is
2440  * guaranteed). After mapping we submit all mapped pages for IO.
2441  */
2442 static int mpage_map_and_submit_extent(handle_t *handle,
2443                                        struct mpage_da_data *mpd,
2444                                        bool *give_up_on_write)
2445 {
2446         struct inode *inode = mpd->inode;
2447         struct ext4_map_blocks *map = &mpd->map;
2448         int err;
2449         loff_t disksize;
2450         int progress = 0;
2451         ext4_io_end_t *io_end = mpd->io_submit.io_end;
2452         struct ext4_io_end_vec *io_end_vec;
2453
2454         io_end_vec = ext4_alloc_io_end_vec(io_end);
2455         if (IS_ERR(io_end_vec))
2456                 return PTR_ERR(io_end_vec);
2457         io_end_vec->offset = ((loff_t)map->m_lblk) << inode->i_blkbits;
2458         do {
2459                 err = mpage_map_one_extent(handle, mpd);
2460                 if (err < 0) {
2461                         struct super_block *sb = inode->i_sb;
2462
2463                         if (ext4_forced_shutdown(EXT4_SB(sb)) ||
2464                             ext4_test_mount_flag(sb, EXT4_MF_FS_ABORTED))
2465                                 goto invalidate_dirty_pages;
2466                         /*
2467                          * Let the uper layers retry transient errors.
2468                          * In the case of ENOSPC, if ext4_count_free_blocks()
2469                          * is non-zero, a commit should free up blocks.
2470                          */
2471                         if ((err == -ENOMEM) ||
2472                             (err == -ENOSPC && ext4_count_free_clusters(sb))) {
2473                                 if (progress)
2474                                         goto update_disksize;
2475                                 return err;
2476                         }
2477                         ext4_msg(sb, KERN_CRIT,
2478                                  "Delayed block allocation failed for "
2479                                  "inode %lu at logical offset %llu with"
2480                                  " max blocks %u with error %d",
2481                                  inode->i_ino,
2482                                  (unsigned long long)map->m_lblk,
2483                                  (unsigned)map->m_len, -err);
2484                         ext4_msg(sb, KERN_CRIT,
2485                                  "This should not happen!! Data will "
2486                                  "be lost\n");
2487                         if (err == -ENOSPC)
2488                                 ext4_print_free_blocks(inode);
2489                 invalidate_dirty_pages:
2490                         *give_up_on_write = true;
2491                         return err;
2492                 }
2493                 progress = 1;
2494                 /*
2495                  * Update buffer state, submit mapped pages, and get us new
2496                  * extent to map
2497                  */
2498                 err = mpage_map_and_submit_buffers(mpd);
2499                 if (err < 0)
2500                         goto update_disksize;
2501         } while (map->m_len);
2502
2503 update_disksize:
2504         /*
2505          * Update on-disk size after IO is submitted.  Races with
2506          * truncate are avoided by checking i_size under i_data_sem.
2507          */
2508         disksize = ((loff_t)mpd->first_page) << PAGE_SHIFT;
2509         if (disksize > READ_ONCE(EXT4_I(inode)->i_disksize)) {
2510                 int err2;
2511                 loff_t i_size;
2512
2513                 down_write(&EXT4_I(inode)->i_data_sem);
2514                 i_size = i_size_read(inode);
2515                 if (disksize > i_size)
2516                         disksize = i_size;
2517                 if (disksize > EXT4_I(inode)->i_disksize)
2518                         EXT4_I(inode)->i_disksize = disksize;
2519                 up_write(&EXT4_I(inode)->i_data_sem);
2520                 err2 = ext4_mark_inode_dirty(handle, inode);
2521                 if (err2) {
2522                         ext4_error_err(inode->i_sb, -err2,
2523                                        "Failed to mark inode %lu dirty",
2524                                        inode->i_ino);
2525                 }
2526                 if (!err)
2527                         err = err2;
2528         }
2529         return err;
2530 }
2531
2532 /*
2533  * Calculate the total number of credits to reserve for one writepages
2534  * iteration. This is called from ext4_writepages(). We map an extent of
2535  * up to MAX_WRITEPAGES_EXTENT_LEN blocks and then we go on and finish mapping
2536  * the last partial page. So in total we can map MAX_WRITEPAGES_EXTENT_LEN +
2537  * bpp - 1 blocks in bpp different extents.
2538  */
2539 static int ext4_da_writepages_trans_blocks(struct inode *inode)
2540 {
2541         int bpp = ext4_journal_blocks_per_page(inode);
2542
2543         return ext4_meta_trans_blocks(inode,
2544                                 MAX_WRITEPAGES_EXTENT_LEN + bpp - 1, bpp);
2545 }
2546
2547 /*
2548  * mpage_prepare_extent_to_map - find & lock contiguous range of dirty pages
2549  *                               and underlying extent to map
2550  *
2551  * @mpd - where to look for pages
2552  *
2553  * Walk dirty pages in the mapping. If they are fully mapped, submit them for
2554  * IO immediately. When we find a page which isn't mapped we start accumulating
2555  * extent of buffers underlying these pages that needs mapping (formed by
2556  * either delayed or unwritten buffers). We also lock the pages containing
2557  * these buffers. The extent found is returned in @mpd structure (starting at
2558  * mpd->lblk with length mpd->len blocks).
2559  *
2560  * Note that this function can attach bios to one io_end structure which are
2561  * neither logically nor physically contiguous. Although it may seem as an
2562  * unnecessary complication, it is actually inevitable in blocksize < pagesize
2563  * case as we need to track IO to all buffers underlying a page in one io_end.
2564  */
2565 static int mpage_prepare_extent_to_map(struct mpage_da_data *mpd)
2566 {
2567         struct address_space *mapping = mpd->inode->i_mapping;
2568         struct pagevec pvec;
2569         unsigned int nr_pages;
2570         long left = mpd->wbc->nr_to_write;
2571         pgoff_t index = mpd->first_page;
2572         pgoff_t end = mpd->last_page;
2573         xa_mark_t tag;
2574         int i, err = 0;
2575         int blkbits = mpd->inode->i_blkbits;
2576         ext4_lblk_t lblk;
2577         struct buffer_head *head;
2578
2579         if (mpd->wbc->sync_mode == WB_SYNC_ALL || mpd->wbc->tagged_writepages)
2580                 tag = PAGECACHE_TAG_TOWRITE;
2581         else
2582                 tag = PAGECACHE_TAG_DIRTY;
2583
2584         pagevec_init(&pvec);
2585         mpd->map.m_len = 0;
2586         mpd->next_page = index;
2587         while (index <= end) {
2588                 nr_pages = pagevec_lookup_range_tag(&pvec, mapping, &index, end,
2589                                 tag);
2590                 if (nr_pages == 0)
2591                         break;
2592
2593                 for (i = 0; i < nr_pages; i++) {
2594                         struct page *page = pvec.pages[i];
2595
2596                         /*
2597                          * Accumulated enough dirty pages? This doesn't apply
2598                          * to WB_SYNC_ALL mode. For integrity sync we have to
2599                          * keep going because someone may be concurrently
2600                          * dirtying pages, and we might have synced a lot of
2601                          * newly appeared dirty pages, but have not synced all
2602                          * of the old dirty pages.
2603                          */
2604                         if (mpd->wbc->sync_mode == WB_SYNC_NONE && left <= 0)
2605                                 goto out;
2606
2607                         /* If we can't merge this page, we are done. */
2608                         if (mpd->map.m_len > 0 && mpd->next_page != page->index)
2609                                 goto out;
2610
2611                         lock_page(page);
2612                         /*
2613                          * If the page is no longer dirty, or its mapping no
2614                          * longer corresponds to inode we are writing (which
2615                          * means it has been truncated or invalidated), or the
2616                          * page is already under writeback and we are not doing
2617                          * a data integrity writeback, skip the page
2618                          */
2619                         if (!PageDirty(page) ||
2620                             (PageWriteback(page) &&
2621                              (mpd->wbc->sync_mode == WB_SYNC_NONE)) ||
2622                             unlikely(page->mapping != mapping)) {
2623                                 unlock_page(page);
2624                                 continue;
2625                         }
2626
2627                         wait_on_page_writeback(page);
2628                         BUG_ON(PageWriteback(page));
2629
2630                         /*
2631                          * Should never happen but for buggy code in
2632                          * other subsystems that call
2633                          * set_page_dirty() without properly warning
2634                          * the file system first.  See [1] for more
2635                          * information.
2636                          *
2637                          * [1] https://lore.kernel.org/linux-mm/20180103100430.GE4911@quack2.suse.cz
2638                          */
2639                         if (!page_has_buffers(page)) {
2640                                 ext4_warning_inode(mpd->inode, "page %lu does not have buffers attached", page->index);
2641                                 ClearPageDirty(page);
2642                                 unlock_page(page);
2643                                 continue;
2644                         }
2645
2646                         if (mpd->map.m_len == 0)
2647                                 mpd->first_page = page->index;
2648                         mpd->next_page = page->index + 1;
2649                         /* Add all dirty buffers to mpd */
2650                         lblk = ((ext4_lblk_t)page->index) <<
2651                                 (PAGE_SHIFT - blkbits);
2652                         head = page_buffers(page);
2653                         err = mpage_process_page_bufs(mpd, head, head, lblk);
2654                         if (err <= 0)
2655                                 goto out;
2656                         err = 0;
2657                         left--;
2658                 }
2659                 pagevec_release(&pvec);
2660                 cond_resched();
2661         }
2662         mpd->scanned_until_end = 1;
2663         return 0;
2664 out:
2665         pagevec_release(&pvec);
2666         return err;
2667 }
2668
2669 static int ext4_writepages(struct address_space *mapping,
2670                            struct writeback_control *wbc)
2671 {
2672         pgoff_t writeback_index = 0;
2673         long nr_to_write = wbc->nr_to_write;
2674         int range_whole = 0;
2675         int cycled = 1;
2676         handle_t *handle = NULL;
2677         struct mpage_da_data mpd;
2678         struct inode *inode = mapping->host;
2679         int needed_blocks, rsv_blocks = 0, ret = 0;
2680         struct ext4_sb_info *sbi = EXT4_SB(mapping->host->i_sb);
2681         struct blk_plug plug;
2682         bool give_up_on_write = false;
2683
2684         if (unlikely(ext4_forced_shutdown(EXT4_SB(inode->i_sb))))
2685                 return -EIO;
2686
2687         percpu_down_read(&sbi->s_writepages_rwsem);
2688         trace_ext4_writepages(inode, wbc);
2689
2690         /*
2691          * No pages to write? This is mainly a kludge to avoid starting
2692          * a transaction for special inodes like journal inode on last iput()
2693          * because that could violate lock ordering on umount
2694          */
2695         if (!mapping->nrpages || !mapping_tagged(mapping, PAGECACHE_TAG_DIRTY))
2696                 goto out_writepages;
2697
2698         if (ext4_should_journal_data(inode)) {
2699                 ret = generic_writepages(mapping, wbc);
2700                 goto out_writepages;
2701         }
2702
2703         /*
2704          * If the filesystem has aborted, it is read-only, so return
2705          * right away instead of dumping stack traces later on that
2706          * will obscure the real source of the problem.  We test
2707          * EXT4_MF_FS_ABORTED instead of sb->s_flag's SB_RDONLY because
2708          * the latter could be true if the filesystem is mounted
2709          * read-only, and in that case, ext4_writepages should
2710          * *never* be called, so if that ever happens, we would want
2711          * the stack trace.
2712          */
2713         if (unlikely(ext4_forced_shutdown(EXT4_SB(mapping->host->i_sb)) ||
2714                      ext4_test_mount_flag(inode->i_sb, EXT4_MF_FS_ABORTED))) {
2715                 ret = -EROFS;
2716                 goto out_writepages;
2717         }
2718
2719         /*
2720          * If we have inline data and arrive here, it means that
2721          * we will soon create the block for the 1st page, so
2722          * we'd better clear the inline data here.
2723          */
2724         if (ext4_has_inline_data(inode)) {
2725                 /* Just inode will be modified... */
2726                 handle = ext4_journal_start(inode, EXT4_HT_INODE, 1);
2727                 if (IS_ERR(handle)) {
2728                         ret = PTR_ERR(handle);
2729                         goto out_writepages;
2730                 }
2731                 BUG_ON(ext4_test_inode_state(inode,
2732                                 EXT4_STATE_MAY_INLINE_DATA));
2733                 ext4_destroy_inline_data(handle, inode);
2734                 ext4_journal_stop(handle);
2735         }
2736
2737         if (ext4_should_dioread_nolock(inode)) {
2738                 /*
2739                  * We may need to convert up to one extent per block in
2740                  * the page and we may dirty the inode.
2741                  */
2742                 rsv_blocks = 1 + ext4_chunk_trans_blocks(inode,
2743                                                 PAGE_SIZE >> inode->i_blkbits);
2744         }
2745
2746         if (wbc->range_start == 0 && wbc->range_end == LLONG_MAX)
2747                 range_whole = 1;
2748
2749         if (wbc->range_cyclic) {
2750                 writeback_index = mapping->writeback_index;
2751                 if (writeback_index)
2752                         cycled = 0;
2753                 mpd.first_page = writeback_index;
2754                 mpd.last_page = -1;
2755         } else {
2756                 mpd.first_page = wbc->range_start >> PAGE_SHIFT;
2757                 mpd.last_page = wbc->range_end >> PAGE_SHIFT;
2758         }
2759
2760         mpd.inode = inode;
2761         mpd.wbc = wbc;
2762         ext4_io_submit_init(&mpd.io_submit, wbc);
2763 retry:
2764         if (wbc->sync_mode == WB_SYNC_ALL || wbc->tagged_writepages)
2765                 tag_pages_for_writeback(mapping, mpd.first_page, mpd.last_page);
2766         blk_start_plug(&plug);
2767
2768         /*
2769          * First writeback pages that don't need mapping - we can avoid
2770          * starting a transaction unnecessarily and also avoid being blocked
2771          * in the block layer on device congestion while having transaction
2772          * started.
2773          */
2774         mpd.do_map = 0;
2775         mpd.scanned_until_end = 0;
2776         mpd.io_submit.io_end = ext4_init_io_end(inode, GFP_KERNEL);
2777         if (!mpd.io_submit.io_end) {
2778                 ret = -ENOMEM;
2779                 goto unplug;
2780         }
2781         ret = mpage_prepare_extent_to_map(&mpd);
2782         /* Unlock pages we didn't use */
2783         mpage_release_unused_pages(&mpd, false);
2784         /* Submit prepared bio */
2785         ext4_io_submit(&mpd.io_submit);
2786         ext4_put_io_end_defer(mpd.io_submit.io_end);
2787         mpd.io_submit.io_end = NULL;
2788         if (ret < 0)
2789                 goto unplug;
2790
2791         while (!mpd.scanned_until_end && wbc->nr_to_write > 0) {
2792                 /* For each extent of pages we use new io_end */
2793                 mpd.io_submit.io_end = ext4_init_io_end(inode, GFP_KERNEL);
2794                 if (!mpd.io_submit.io_end) {
2795                         ret = -ENOMEM;
2796                         break;
2797                 }
2798
2799                 /*
2800                  * We have two constraints: We find one extent to map and we
2801                  * must always write out whole page (makes a difference when
2802                  * blocksize < pagesize) so that we don't block on IO when we
2803                  * try to write out the rest of the page. Journalled mode is
2804                  * not supported by delalloc.
2805                  */
2806                 BUG_ON(ext4_should_journal_data(inode));
2807                 needed_blocks = ext4_da_writepages_trans_blocks(inode);
2808
2809                 /* start a new transaction */
2810                 handle = ext4_journal_start_with_reserve(inode,
2811                                 EXT4_HT_WRITE_PAGE, needed_blocks, rsv_blocks);
2812                 if (IS_ERR(handle)) {
2813                         ret = PTR_ERR(handle);
2814                         ext4_msg(inode->i_sb, KERN_CRIT, "%s: jbd2_start: "
2815                                "%ld pages, ino %lu; err %d", __func__,
2816                                 wbc->nr_to_write, inode->i_ino, ret);
2817                         /* Release allocated io_end */
2818                         ext4_put_io_end(mpd.io_submit.io_end);
2819                         mpd.io_submit.io_end = NULL;
2820                         break;
2821                 }
2822                 mpd.do_map = 1;
2823
2824                 trace_ext4_da_write_pages(inode, mpd.first_page, mpd.wbc);
2825                 ret = mpage_prepare_extent_to_map(&mpd);
2826                 if (!ret && mpd.map.m_len)
2827                         ret = mpage_map_and_submit_extent(handle, &mpd,
2828                                         &give_up_on_write);
2829                 /*
2830                  * Caution: If the handle is synchronous,
2831                  * ext4_journal_stop() can wait for transaction commit
2832                  * to finish which may depend on writeback of pages to
2833                  * complete or on page lock to be released.  In that
2834                  * case, we have to wait until after we have
2835                  * submitted all the IO, released page locks we hold,
2836                  * and dropped io_end reference (for extent conversion
2837                  * to be able to complete) before stopping the handle.
2838                  */
2839                 if (!ext4_handle_valid(handle) || handle->h_sync == 0) {
2840                         ext4_journal_stop(handle);
2841                         handle = NULL;
2842                         mpd.do_map = 0;
2843                 }
2844                 /* Unlock pages we didn't use */
2845                 mpage_release_unused_pages(&mpd, give_up_on_write);
2846                 /* Submit prepared bio */
2847                 ext4_io_submit(&mpd.io_submit);
2848
2849                 /*
2850                  * Drop our io_end reference we got from init. We have
2851                  * to be careful and use deferred io_end finishing if
2852                  * we are still holding the transaction as we can
2853                  * release the last reference to io_end which may end
2854                  * up doing unwritten extent conversion.
2855                  */
2856                 if (handle) {
2857                         ext4_put_io_end_defer(mpd.io_submit.io_end);
2858                         ext4_journal_stop(handle);
2859                 } else
2860                         ext4_put_io_end(mpd.io_submit.io_end);
2861                 mpd.io_submit.io_end = NULL;
2862
2863                 if (ret == -ENOSPC && sbi->s_journal) {
2864                         /*
2865                          * Commit the transaction which would
2866                          * free blocks released in the transaction
2867                          * and try again
2868                          */
2869                         jbd2_journal_force_commit_nested(sbi->s_journal);
2870                         ret = 0;
2871                         continue;
2872                 }
2873                 /* Fatal error - ENOMEM, EIO... */
2874                 if (ret)
2875                         break;
2876         }
2877 unplug:
2878         blk_finish_plug(&plug);
2879         if (!ret && !cycled && wbc->nr_to_write > 0) {
2880                 cycled = 1;
2881                 mpd.last_page = writeback_index - 1;
2882                 mpd.first_page = 0;
2883                 goto retry;
2884         }
2885
2886         /* Update index */
2887         if (wbc->range_cyclic || (range_whole && wbc->nr_to_write > 0))
2888                 /*
2889                  * Set the writeback_index so that range_cyclic
2890                  * mode will write it back later
2891                  */
2892                 mapping->writeback_index = mpd.first_page;
2893
2894 out_writepages:
2895         trace_ext4_writepages_result(inode, wbc, ret,
2896                                      nr_to_write - wbc->nr_to_write);
2897         percpu_up_read(&sbi->s_writepages_rwsem);
2898         return ret;
2899 }
2900
2901 static int ext4_dax_writepages(struct address_space *mapping,
2902                                struct writeback_control *wbc)
2903 {
2904         int ret;
2905         long nr_to_write = wbc->nr_to_write;
2906         struct inode *inode = mapping->host;
2907         struct ext4_sb_info *sbi = EXT4_SB(mapping->host->i_sb);
2908
2909         if (unlikely(ext4_forced_shutdown(EXT4_SB(inode->i_sb))))
2910                 return -EIO;
2911
2912         percpu_down_read(&sbi->s_writepages_rwsem);
2913         trace_ext4_writepages(inode, wbc);
2914
2915         ret = dax_writeback_mapping_range(mapping, sbi->s_daxdev, wbc);
2916         trace_ext4_writepages_result(inode, wbc, ret,
2917                                      nr_to_write - wbc->nr_to_write);
2918         percpu_up_read(&sbi->s_writepages_rwsem);
2919         return ret;
2920 }
2921
2922 static int ext4_nonda_switch(struct super_block *sb)
2923 {
2924         s64 free_clusters, dirty_clusters;
2925         struct ext4_sb_info *sbi = EXT4_SB(sb);
2926
2927         /*
2928          * switch to non delalloc mode if we are running low
2929          * on free block. The free block accounting via percpu
2930          * counters can get slightly wrong with percpu_counter_batch getting
2931          * accumulated on each CPU without updating global counters
2932          * Delalloc need an accurate free block accounting. So switch
2933          * to non delalloc when we are near to error range.
2934          */
2935         free_clusters =
2936                 percpu_counter_read_positive(&sbi->s_freeclusters_counter);
2937         dirty_clusters =
2938                 percpu_counter_read_positive(&sbi->s_dirtyclusters_counter);
2939         /*
2940          * Start pushing delalloc when 1/2 of free blocks are dirty.
2941          */
2942         if (dirty_clusters && (free_clusters < 2 * dirty_clusters))
2943                 try_to_writeback_inodes_sb(sb, WB_REASON_FS_FREE_SPACE);
2944
2945         if (2 * free_clusters < 3 * dirty_clusters ||
2946             free_clusters < (dirty_clusters + EXT4_FREECLUSTERS_WATERMARK)) {
2947                 /*
2948                  * free block count is less than 150% of dirty blocks
2949                  * or free blocks is less than watermark
2950                  */
2951                 return 1;
2952         }
2953         return 0;
2954 }
2955
2956 static int ext4_da_write_begin(struct file *file, struct address_space *mapping,
2957                                loff_t pos, unsigned len,
2958                                struct page **pagep, void **fsdata)
2959 {
2960         int ret, retries = 0;
2961         struct page *page;
2962         pgoff_t index;
2963         struct inode *inode = mapping->host;
2964
2965         if (unlikely(ext4_forced_shutdown(EXT4_SB(inode->i_sb))))
2966                 return -EIO;
2967
2968         index = pos >> PAGE_SHIFT;
2969
2970         if (ext4_nonda_switch(inode->i_sb) || ext4_verity_in_progress(inode)) {
2971                 *fsdata = (void *)FALL_BACK_TO_NONDELALLOC;
2972                 return ext4_write_begin(file, mapping, pos,
2973                                         len, pagep, fsdata);
2974         }
2975         *fsdata = (void *)0;
2976         trace_ext4_da_write_begin(inode, pos, len);
2977
2978         if (ext4_test_inode_state(inode, EXT4_STATE_MAY_INLINE_DATA)) {
2979                 ret = ext4_da_write_inline_data_begin(mapping, inode, pos, len,
2980                                                       pagep, fsdata);
2981                 if (ret < 0)
2982                         return ret;
2983                 if (ret == 1)
2984                         return 0;
2985         }
2986
2987 retry:
2988         page = grab_cache_page_write_begin(mapping, index);
2989         if (!page)
2990                 return -ENOMEM;
2991
2992         /* In case writeback began while the page was unlocked */
2993         wait_for_stable_page(page);
2994
2995 #ifdef CONFIG_FS_ENCRYPTION
2996         ret = ext4_block_write_begin(page, pos, len,
2997                                      ext4_da_get_block_prep);
2998 #else
2999         ret = __block_write_begin(page, pos, len, ext4_da_get_block_prep);
3000 #endif
3001         if (ret < 0) {
3002                 unlock_page(page);
3003                 put_page(page);
3004                 /*
3005                  * block_write_begin may have instantiated a few blocks
3006                  * outside i_size.  Trim these off again. Don't need
3007                  * i_size_read because we hold inode lock.
3008                  */
3009                 if (pos + len > inode->i_size)
3010                         ext4_truncate_failed_write(inode);
3011
3012                 if (ret == -ENOSPC &&
3013                     ext4_should_retry_alloc(inode->i_sb, &retries))
3014                         goto retry;
3015                 return ret;
3016         }
3017
3018         *pagep = page;
3019         return ret;
3020 }
3021
3022 /*
3023  * Check if we should update i_disksize
3024  * when write to the end of file but not require block allocation
3025  */
3026 static int ext4_da_should_update_i_disksize(struct page *page,
3027                                             unsigned long offset)
3028 {
3029         struct buffer_head *bh;
3030         struct inode *inode = page->mapping->host;
3031         unsigned int idx;
3032         int i;
3033
3034         bh = page_buffers(page);
3035         idx = offset >> inode->i_blkbits;
3036
3037         for (i = 0; i < idx; i++)
3038                 bh = bh->b_this_page;
3039
3040         if (!buffer_mapped(bh) || (buffer_delay(bh)) || buffer_unwritten(bh))
3041                 return 0;
3042         return 1;
3043 }
3044
3045 static int ext4_da_write_end(struct file *file,
3046                              struct address_space *mapping,
3047                              loff_t pos, unsigned len, unsigned copied,
3048                              struct page *page, void *fsdata)
3049 {
3050         struct inode *inode = mapping->host;
3051         loff_t new_i_size;
3052         unsigned long start, end;
3053         int write_mode = (int)(unsigned long)fsdata;
3054
3055         if (write_mode == FALL_BACK_TO_NONDELALLOC)
3056                 return ext4_write_end(file, mapping, pos,
3057                                       len, copied, page, fsdata);
3058
3059         trace_ext4_da_write_end(inode, pos, len, copied);
3060
3061         if (write_mode != CONVERT_INLINE_DATA &&
3062             ext4_test_inode_state(inode, EXT4_STATE_MAY_INLINE_DATA) &&
3063             ext4_has_inline_data(inode))
3064                 return ext4_write_inline_data_end(inode, pos, len, copied, page);
3065
3066         start = pos & (PAGE_SIZE - 1);
3067         end = start + copied - 1;
3068
3069         /*
3070          * Since we are holding inode lock, we are sure i_disksize <=
3071          * i_size. We also know that if i_disksize < i_size, there are
3072          * delalloc writes pending in the range upto i_size. If the end of
3073          * the current write is <= i_size, there's no need to touch
3074          * i_disksize since writeback will push i_disksize upto i_size
3075          * eventually. If the end of the current write is > i_size and
3076          * inside an allocated block (ext4_da_should_update_i_disksize()
3077          * check), we need to update i_disksize here as neither
3078          * ext4_writepage() nor certain ext4_writepages() paths not
3079          * allocating blocks update i_disksize.
3080          *
3081          * Note that we defer inode dirtying to generic_write_end() /
3082          * ext4_da_write_inline_data_end().
3083          */
3084         new_i_size = pos + copied;
3085         if (copied && new_i_size > inode->i_size &&
3086             ext4_da_should_update_i_disksize(page, end))
3087                 ext4_update_i_disksize(inode, new_i_size);
3088
3089         return generic_write_end(file, mapping, pos, len, copied, page, fsdata);
3090 }
3091
3092 /*
3093  * Force all delayed allocation blocks to be allocated for a given inode.
3094  */
3095 int ext4_alloc_da_blocks(struct inode *inode)
3096 {
3097         trace_ext4_alloc_da_blocks(inode);
3098
3099         if (!EXT4_I(inode)->i_reserved_data_blocks)
3100                 return 0;
3101
3102         /*
3103          * We do something simple for now.  The filemap_flush() will
3104          * also start triggering a write of the data blocks, which is
3105          * not strictly speaking necessary (and for users of
3106          * laptop_mode, not even desirable).  However, to do otherwise
3107          * would require replicating code paths in:
3108          *
3109          * ext4_writepages() ->
3110          *    write_cache_pages() ---> (via passed in callback function)
3111          *        __mpage_da_writepage() -->
3112          *           mpage_add_bh_to_extent()
3113          *           mpage_da_map_blocks()
3114          *
3115          * The problem is that write_cache_pages(), located in
3116          * mm/page-writeback.c, marks pages clean in preparation for
3117          * doing I/O, which is not desirable if we're not planning on
3118          * doing I/O at all.
3119          *
3120          * We could call write_cache_pages(), and then redirty all of
3121          * the pages by calling redirty_page_for_writepage() but that
3122          * would be ugly in the extreme.  So instead we would need to
3123          * replicate parts of the code in the above functions,
3124          * simplifying them because we wouldn't actually intend to
3125          * write out the pages, but rather only collect contiguous
3126          * logical block extents, call the multi-block allocator, and
3127          * then update the buffer heads with the block allocations.
3128          *
3129          * For now, though, we'll cheat by calling filemap_flush(),
3130          * which will map the blocks, and start the I/O, but not
3131          * actually wait for the I/O to complete.
3132          */
3133         return filemap_flush(inode->i_mapping);
3134 }
3135
3136 /*
3137  * bmap() is special.  It gets used by applications such as lilo and by
3138  * the swapper to find the on-disk block of a specific piece of data.
3139  *
3140  * Naturally, this is dangerous if the block concerned is still in the
3141  * journal.  If somebody makes a swapfile on an ext4 data-journaling
3142  * filesystem and enables swap, then they may get a nasty shock when the
3143  * data getting swapped to that swapfile suddenly gets overwritten by
3144  * the original zero's written out previously to the journal and
3145  * awaiting writeback in the kernel's buffer cache.
3146  *
3147  * So, if we see any bmap calls here on a modified, data-journaled file,
3148  * take extra steps to flush any blocks which might be in the cache.
3149  */
3150 static sector_t ext4_bmap(struct address_space *mapping, sector_t block)
3151 {
3152         struct inode *inode = mapping->host;
3153         journal_t *journal;
3154         sector_t ret = 0;
3155         int err;
3156
3157         inode_lock_shared(inode);
3158         /*
3159          * We can get here for an inline file via the FIBMAP ioctl
3160          */
3161         if (ext4_has_inline_data(inode))
3162                 goto out;
3163
3164         if (mapping_tagged(mapping, PAGECACHE_TAG_DIRTY) &&
3165                         test_opt(inode->i_sb, DELALLOC)) {
3166                 /*
3167                  * With delalloc we want to sync the file
3168                  * so that we can make sure we allocate
3169                  * blocks for file
3170                  */
3171                 filemap_write_and_wait(mapping);
3172         }
3173
3174         if (EXT4_JOURNAL(inode) &&
3175             ext4_test_inode_state(inode, EXT4_STATE_JDATA)) {
3176                 /*
3177                  * This is a REALLY heavyweight approach, but the use of
3178                  * bmap on dirty files is expected to be extremely rare:
3179                  * only if we run lilo or swapon on a freshly made file
3180                  * do we expect this to happen.
3181                  *
3182                  * (bmap requires CAP_SYS_RAWIO so this does not
3183                  * represent an unprivileged user DOS attack --- we'd be
3184                  * in trouble if mortal users could trigger this path at
3185                  * will.)
3186                  *
3187                  * NB. EXT4_STATE_JDATA is not set on files other than
3188                  * regular files.  If somebody wants to bmap a directory
3189                  * or symlink and gets confused because the buffer
3190                  * hasn't yet been flushed to disk, they deserve
3191                  * everything they get.
3192                  */
3193
3194                 ext4_clear_inode_state(inode, EXT4_STATE_JDATA);
3195                 journal = EXT4_JOURNAL(inode);
3196                 jbd2_journal_lock_updates(journal);
3197                 err = jbd2_journal_flush(journal, 0);
3198                 jbd2_journal_unlock_updates(journal);
3199
3200                 if (err)
3201                         goto out;
3202         }
3203
3204         ret = iomap_bmap(mapping, block, &ext4_iomap_ops);
3205
3206 out:
3207         inode_unlock_shared(inode);
3208         return ret;
3209 }
3210
3211 static int ext4_read_folio(struct file *file, struct folio *folio)
3212 {
3213         struct page *page = &folio->page;
3214         int ret = -EAGAIN;
3215         struct inode *inode = page->mapping->host;
3216
3217         trace_ext4_readpage(page);
3218
3219         if (ext4_has_inline_data(inode))
3220                 ret = ext4_readpage_inline(inode, page);
3221
3222         if (ret == -EAGAIN)
3223                 return ext4_mpage_readpages(inode, NULL, page);
3224
3225         return ret;
3226 }
3227
3228 static void ext4_readahead(struct readahead_control *rac)
3229 {
3230         struct inode *inode = rac->mapping->host;
3231
3232         /* If the file has inline data, no need to do readahead. */
3233         if (ext4_has_inline_data(inode))
3234                 return;
3235
3236         ext4_mpage_readpages(inode, rac, NULL);
3237 }
3238
3239 static void ext4_invalidate_folio(struct folio *folio, size_t offset,
3240                                 size_t length)
3241 {
3242         trace_ext4_invalidate_folio(folio, offset, length);
3243
3244         /* No journalling happens on data buffers when this function is used */
3245         WARN_ON(folio_buffers(folio) && buffer_jbd(folio_buffers(folio)));
3246
3247         block_invalidate_folio(folio, offset, length);
3248 }
3249
3250 static int __ext4_journalled_invalidate_folio(struct folio *folio,
3251                                             size_t offset, size_t length)
3252 {
3253         journal_t *journal = EXT4_JOURNAL(folio->mapping->host);
3254
3255         trace_ext4_journalled_invalidate_folio(folio, offset, length);
3256
3257         /*
3258          * If it's a full truncate we just forget about the pending dirtying
3259          */
3260         if (offset == 0 && length == folio_size(folio))
3261                 folio_clear_checked(folio);
3262
3263         return jbd2_journal_invalidate_folio(journal, folio, offset, length);
3264 }
3265
3266 /* Wrapper for aops... */
3267 static void ext4_journalled_invalidate_folio(struct folio *folio,
3268                                            size_t offset,
3269                                            size_t length)
3270 {
3271         WARN_ON(__ext4_journalled_invalidate_folio(folio, offset, length) < 0);
3272 }
3273
3274 static bool ext4_release_folio(struct folio *folio, gfp_t wait)
3275 {
3276         journal_t *journal = EXT4_JOURNAL(folio->mapping->host);
3277
3278         trace_ext4_releasepage(&folio->page);
3279
3280         /* Page has dirty journalled data -> cannot release */
3281         if (folio_test_checked(folio))
3282                 return false;
3283         if (journal)
3284                 return jbd2_journal_try_to_free_buffers(journal, folio);
3285         else
3286                 return try_to_free_buffers(folio);
3287 }
3288
3289 static bool ext4_inode_datasync_dirty(struct inode *inode)
3290 {
3291         journal_t *journal = EXT4_SB(inode->i_sb)->s_journal;
3292
3293         if (journal) {
3294                 if (jbd2_transaction_committed(journal,
3295                         EXT4_I(inode)->i_datasync_tid))
3296                         return false;
3297                 if (test_opt2(inode->i_sb, JOURNAL_FAST_COMMIT))
3298                         return !list_empty(&EXT4_I(inode)->i_fc_list);
3299                 return true;
3300         }
3301
3302         /* Any metadata buffers to write? */
3303         if (!list_empty(&inode->i_mapping->private_list))
3304                 return true;
3305         return inode->i_state & I_DIRTY_DATASYNC;
3306 }
3307
3308 static void ext4_set_iomap(struct inode *inode, struct iomap *iomap,
3309                            struct ext4_map_blocks *map, loff_t offset,
3310                            loff_t length, unsigned int flags)
3311 {
3312         u8 blkbits = inode->i_blkbits;
3313
3314         /*
3315          * Writes that span EOF might trigger an I/O size update on completion,
3316          * so consider them to be dirty for the purpose of O_DSYNC, even if
3317          * there is no other metadata changes being made or are pending.
3318          */
3319         iomap->flags = 0;
3320         if (ext4_inode_datasync_dirty(inode) ||
3321             offset + length > i_size_read(inode))
3322                 iomap->flags |= IOMAP_F_DIRTY;
3323
3324         if (map->m_flags & EXT4_MAP_NEW)
3325                 iomap->flags |= IOMAP_F_NEW;
3326
3327         if (flags & IOMAP_DAX)
3328                 iomap->dax_dev = EXT4_SB(inode->i_sb)->s_daxdev;
3329         else
3330                 iomap->bdev = inode->i_sb->s_bdev;
3331         iomap->offset = (u64) map->m_lblk << blkbits;
3332         iomap->length = (u64) map->m_len << blkbits;
3333
3334         if ((map->m_flags & EXT4_MAP_MAPPED) &&
3335             !ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS))
3336                 iomap->flags |= IOMAP_F_MERGED;
3337
3338         /*
3339          * Flags passed to ext4_map_blocks() for direct I/O writes can result
3340          * in m_flags having both EXT4_MAP_MAPPED and EXT4_MAP_UNWRITTEN bits
3341          * set. In order for any allocated unwritten extents to be converted
3342          * into written extents correctly within the ->end_io() handler, we
3343          * need to ensure that the iomap->type is set appropriately. Hence, the
3344          * reason why we need to check whether the EXT4_MAP_UNWRITTEN bit has
3345          * been set first.
3346          */
3347         if (map->m_flags & EXT4_MAP_UNWRITTEN) {
3348                 iomap->type = IOMAP_UNWRITTEN;
3349                 iomap->addr = (u64) map->m_pblk << blkbits;
3350                 if (flags & IOMAP_DAX)
3351                         iomap->addr += EXT4_SB(inode->i_sb)->s_dax_part_off;
3352         } else if (map->m_flags & EXT4_MAP_MAPPED) {
3353                 iomap->type = IOMAP_MAPPED;
3354                 iomap->addr = (u64) map->m_pblk << blkbits;
3355                 if (flags & IOMAP_DAX)
3356                         iomap->addr += EXT4_SB(inode->i_sb)->s_dax_part_off;
3357         } else {
3358                 iomap->type = IOMAP_HOLE;
3359                 iomap->addr = IOMAP_NULL_ADDR;
3360         }
3361 }
3362
3363 static int ext4_iomap_alloc(struct inode *inode, struct ext4_map_blocks *map,
3364                             unsigned int flags)
3365 {
3366         handle_t *handle;
3367         u8 blkbits = inode->i_blkbits;
3368         int ret, dio_credits, m_flags = 0, retries = 0;
3369
3370         /*
3371          * Trim the mapping request to the maximum value that we can map at
3372          * once for direct I/O.
3373          */
3374         if (map->m_len > DIO_MAX_BLOCKS)
3375                 map->m_len = DIO_MAX_BLOCKS;
3376         dio_credits = ext4_chunk_trans_blocks(inode, map->m_len);
3377
3378 retry:
3379         /*
3380          * Either we allocate blocks and then don't get an unwritten extent, so
3381          * in that case we have reserved enough credits. Or, the blocks are
3382          * already allocated and unwritten. In that case, the extent conversion
3383          * fits into the credits as well.
3384          */
3385         handle = ext4_journal_start(inode, EXT4_HT_MAP_BLOCKS, dio_credits);
3386         if (IS_ERR(handle))
3387                 return PTR_ERR(handle);
3388
3389         /*
3390          * DAX and direct I/O are the only two operations that are currently
3391          * supported with IOMAP_WRITE.
3392          */
3393         WARN_ON(!(flags & (IOMAP_DAX | IOMAP_DIRECT)));
3394         if (flags & IOMAP_DAX)
3395                 m_flags = EXT4_GET_BLOCKS_CREATE_ZERO;
3396         /*
3397          * We use i_size instead of i_disksize here because delalloc writeback
3398          * can complete at any point during the I/O and subsequently push the
3399          * i_disksize out to i_size. This could be beyond where direct I/O is
3400          * happening and thus expose allocated blocks to direct I/O reads.
3401          */
3402         else if (((loff_t)map->m_lblk << blkbits) >= i_size_read(inode))
3403                 m_flags = EXT4_GET_BLOCKS_CREATE;
3404         else if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS))
3405                 m_flags = EXT4_GET_BLOCKS_IO_CREATE_EXT;
3406
3407         ret = ext4_map_blocks(handle, inode, map, m_flags);
3408
3409         /*
3410          * We cannot fill holes in indirect tree based inodes as that could
3411          * expose stale data in the case of a crash. Use the magic error code
3412          * to fallback to buffered I/O.
3413          */
3414         if (!m_flags && !ret)
3415                 ret = -ENOTBLK;
3416
3417         ext4_journal_stop(handle);
3418         if (ret == -ENOSPC && ext4_should_retry_alloc(inode->i_sb, &retries))
3419                 goto retry;
3420
3421         return ret;
3422 }
3423
3424
3425 static int ext4_iomap_begin(struct inode *inode, loff_t offset, loff_t length,
3426                 unsigned flags, struct iomap *iomap, struct iomap *srcmap)
3427 {
3428         int ret;
3429         struct ext4_map_blocks map;
3430         u8 blkbits = inode->i_blkbits;
3431
3432         if ((offset >> blkbits) > EXT4_MAX_LOGICAL_BLOCK)
3433                 return -EINVAL;
3434
3435         if (WARN_ON_ONCE(ext4_has_inline_data(inode)))
3436                 return -ERANGE;
3437
3438         /*
3439          * Calculate the first and last logical blocks respectively.
3440          */
3441         map.m_lblk = offset >> blkbits;
3442         map.m_len = min_t(loff_t, (offset + length - 1) >> blkbits,
3443                           EXT4_MAX_LOGICAL_BLOCK) - map.m_lblk + 1;
3444
3445         if (flags & IOMAP_WRITE) {
3446                 /*
3447                  * We check here if the blocks are already allocated, then we
3448                  * don't need to start a journal txn and we can directly return
3449                  * the mapping information. This could boost performance
3450                  * especially in multi-threaded overwrite requests.
3451                  */
3452                 if (offset + length <= i_size_read(inode)) {
3453                         ret = ext4_map_blocks(NULL, inode, &map, 0);
3454                         if (ret > 0 && (map.m_flags & EXT4_MAP_MAPPED))
3455                                 goto out;
3456                 }
3457                 ret = ext4_iomap_alloc(inode, &map, flags);
3458         } else {
3459                 ret = ext4_map_blocks(NULL, inode, &map, 0);
3460         }
3461
3462         if (ret < 0)
3463                 return ret;
3464 out:
3465         /*
3466          * When inline encryption is enabled, sometimes I/O to an encrypted file
3467          * has to be broken up to guarantee DUN contiguity.  Handle this by
3468          * limiting the length of the mapping returned.
3469          */
3470         map.m_len = fscrypt_limit_io_blocks(inode, map.m_lblk, map.m_len);
3471
3472         ext4_set_iomap(inode, iomap, &map, offset, length, flags);
3473
3474         return 0;
3475 }
3476
3477 static int ext4_iomap_overwrite_begin(struct inode *inode, loff_t offset,
3478                 loff_t length, unsigned flags, struct iomap *iomap,
3479                 struct iomap *srcmap)
3480 {
3481         int ret;
3482
3483         /*
3484          * Even for writes we don't need to allocate blocks, so just pretend
3485          * we are reading to save overhead of starting a transaction.
3486          */
3487         flags &= ~IOMAP_WRITE;
3488         ret = ext4_iomap_begin(inode, offset, length, flags, iomap, srcmap);
3489         WARN_ON_ONCE(iomap->type != IOMAP_MAPPED);
3490         return ret;
3491 }
3492
3493 static int ext4_iomap_end(struct inode *inode, loff_t offset, loff_t length,
3494                           ssize_t written, unsigned flags, struct iomap *iomap)
3495 {
3496         /*
3497          * Check to see whether an error occurred while writing out the data to
3498          * the allocated blocks. If so, return the magic error code so that we
3499          * fallback to buffered I/O and attempt to complete the remainder of
3500          * the I/O. Any blocks that may have been allocated in preparation for
3501          * the direct I/O will be reused during buffered I/O.
3502          */
3503         if (flags & (IOMAP_WRITE | IOMAP_DIRECT) && written == 0)
3504                 return -ENOTBLK;
3505
3506         return 0;
3507 }
3508
3509 const struct iomap_ops ext4_iomap_ops = {
3510         .iomap_begin            = ext4_iomap_begin,
3511         .iomap_end              = ext4_iomap_end,
3512 };
3513
3514 const struct iomap_ops ext4_iomap_overwrite_ops = {
3515         .iomap_begin            = ext4_iomap_overwrite_begin,
3516         .iomap_end              = ext4_iomap_end,
3517 };
3518
3519 static bool ext4_iomap_is_delalloc(struct inode *inode,
3520                                    struct ext4_map_blocks *map)
3521 {
3522         struct extent_status es;
3523         ext4_lblk_t offset = 0, end = map->m_lblk + map->m_len - 1;
3524
3525         ext4_es_find_extent_range(inode, &ext4_es_is_delayed,
3526                                   map->m_lblk, end, &es);
3527
3528         if (!es.es_len || es.es_lblk > end)
3529                 return false;
3530
3531         if (es.es_lblk > map->m_lblk) {
3532                 map->m_len = es.es_lblk - map->m_lblk;
3533                 return false;
3534         }
3535
3536         offset = map->m_lblk - es.es_lblk;
3537         map->m_len = es.es_len - offset;
3538
3539         return true;
3540 }
3541
3542 static int ext4_iomap_begin_report(struct inode *inode, loff_t offset,
3543                                    loff_t length, unsigned int flags,
3544                                    struct iomap *iomap, struct iomap *srcmap)
3545 {
3546         int ret;
3547         bool delalloc = false;
3548         struct ext4_map_blocks map;
3549         u8 blkbits = inode->i_blkbits;
3550
3551         if ((offset >> blkbits) > EXT4_MAX_LOGICAL_BLOCK)
3552                 return -EINVAL;
3553
3554         if (ext4_has_inline_data(inode)) {
3555                 ret = ext4_inline_data_iomap(inode, iomap);
3556                 if (ret != -EAGAIN) {
3557                         if (ret == 0 && offset >= iomap->length)
3558                                 ret = -ENOENT;
3559                         return ret;
3560                 }
3561         }
3562
3563         /*
3564          * Calculate the first and last logical block respectively.
3565          */
3566         map.m_lblk = offset >> blkbits;
3567         map.m_len = min_t(loff_t, (offset + length - 1) >> blkbits,
3568                           EXT4_MAX_LOGICAL_BLOCK) - map.m_lblk + 1;
3569
3570         /*
3571          * Fiemap callers may call for offset beyond s_bitmap_maxbytes.
3572          * So handle it here itself instead of querying ext4_map_blocks().
3573          * Since ext4_map_blocks() will warn about it and will return
3574          * -EIO error.
3575          */
3576         if (!(ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS))) {
3577                 struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
3578
3579                 if (offset >= sbi->s_bitmap_maxbytes) {
3580                         map.m_flags = 0;
3581                         goto set_iomap;
3582                 }
3583         }
3584
3585         ret = ext4_map_blocks(NULL, inode, &map, 0);
3586         if (ret < 0)
3587                 return ret;
3588         if (ret == 0)
3589                 delalloc = ext4_iomap_is_delalloc(inode, &map);
3590
3591 set_iomap:
3592         ext4_set_iomap(inode, iomap, &map, offset, length, flags);
3593         if (delalloc && iomap->type == IOMAP_HOLE)
3594                 iomap->type = IOMAP_DELALLOC;
3595
3596         return 0;
3597 }
3598
3599 const struct iomap_ops ext4_iomap_report_ops = {
3600         .iomap_begin = ext4_iomap_begin_report,
3601 };
3602
3603 /*
3604  * Whenever the folio is being dirtied, corresponding buffers should already
3605  * be attached to the transaction (we take care of this in ext4_page_mkwrite()
3606  * and ext4_write_begin()). However we cannot move buffers to dirty transaction
3607  * lists here because ->dirty_folio is called under VFS locks and the folio
3608  * is not necessarily locked.
3609  *
3610  * We cannot just dirty the folio and leave attached buffers clean, because the
3611  * buffers' dirty state is "definitive".  We cannot just set the buffers dirty
3612  * or jbddirty because all the journalling code will explode.
3613  *
3614  * So what we do is to mark the folio "pending dirty" and next time writepage
3615  * is called, propagate that into the buffers appropriately.
3616  */
3617 static bool ext4_journalled_dirty_folio(struct address_space *mapping,
3618                 struct folio *folio)
3619 {
3620         WARN_ON_ONCE(!folio_buffers(folio));
3621         folio_set_checked(folio);
3622         return filemap_dirty_folio(mapping, folio);
3623 }
3624
3625 static bool ext4_dirty_folio(struct address_space *mapping, struct folio *folio)
3626 {
3627         WARN_ON_ONCE(!folio_test_locked(folio) && !folio_test_dirty(folio));
3628         WARN_ON_ONCE(!folio_buffers(folio));
3629         return block_dirty_folio(mapping, folio);
3630 }
3631
3632 static int ext4_iomap_swap_activate(struct swap_info_struct *sis,
3633                                     struct file *file, sector_t *span)
3634 {
3635         return iomap_swapfile_activate(sis, file, span,
3636                                        &ext4_iomap_report_ops);
3637 }
3638
3639 static const struct address_space_operations ext4_aops = {
3640         .read_folio             = ext4_read_folio,
3641         .readahead              = ext4_readahead,
3642         .writepage              = ext4_writepage,
3643         .writepages             = ext4_writepages,
3644         .write_begin            = ext4_write_begin,
3645         .write_end              = ext4_write_end,
3646         .dirty_folio            = ext4_dirty_folio,
3647         .bmap                   = ext4_bmap,
3648         .invalidate_folio       = ext4_invalidate_folio,
3649         .release_folio          = ext4_release_folio,
3650         .direct_IO              = noop_direct_IO,
3651         .migrate_folio          = buffer_migrate_folio,
3652         .is_partially_uptodate  = block_is_partially_uptodate,
3653         .error_remove_page      = generic_error_remove_page,
3654         .swap_activate          = ext4_iomap_swap_activate,
3655 };
3656
3657 static const struct address_space_operations ext4_journalled_aops = {
3658         .read_folio             = ext4_read_folio,
3659         .readahead              = ext4_readahead,
3660         .writepage              = ext4_writepage,
3661         .writepages             = ext4_writepages,
3662         .write_begin            = ext4_write_begin,
3663         .write_end              = ext4_journalled_write_end,
3664         .dirty_folio            = ext4_journalled_dirty_folio,
3665         .bmap                   = ext4_bmap,
3666         .invalidate_folio       = ext4_journalled_invalidate_folio,
3667         .release_folio          = ext4_release_folio,
3668         .direct_IO              = noop_direct_IO,
3669         .is_partially_uptodate  = block_is_partially_uptodate,
3670         .error_remove_page      = generic_error_remove_page,
3671         .swap_activate          = ext4_iomap_swap_activate,
3672 };
3673
3674 static const struct address_space_operations ext4_da_aops = {
3675         .read_folio             = ext4_read_folio,
3676         .readahead              = ext4_readahead,
3677         .writepage              = ext4_writepage,
3678         .writepages             = ext4_writepages,
3679         .write_begin            = ext4_da_write_begin,
3680         .write_end              = ext4_da_write_end,
3681         .dirty_folio            = ext4_dirty_folio,
3682         .bmap                   = ext4_bmap,
3683         .invalidate_folio       = ext4_invalidate_folio,
3684         .release_folio          = ext4_release_folio,
3685         .direct_IO              = noop_direct_IO,
3686         .migrate_folio          = buffer_migrate_folio,
3687         .is_partially_uptodate  = block_is_partially_uptodate,
3688         .error_remove_page      = generic_error_remove_page,
3689         .swap_activate          = ext4_iomap_swap_activate,
3690 };
3691
3692 static const struct address_space_operations ext4_dax_aops = {
3693         .writepages             = ext4_dax_writepages,
3694         .direct_IO              = noop_direct_IO,
3695         .dirty_folio            = noop_dirty_folio,
3696         .bmap                   = ext4_bmap,
3697         .swap_activate          = ext4_iomap_swap_activate,
3698 };
3699
3700 void ext4_set_aops(struct inode *inode)
3701 {
3702         switch (ext4_inode_journal_mode(inode)) {
3703         case EXT4_INODE_ORDERED_DATA_MODE:
3704         case EXT4_INODE_WRITEBACK_DATA_MODE:
3705                 break;
3706         case EXT4_INODE_JOURNAL_DATA_MODE:
3707                 inode->i_mapping->a_ops = &ext4_journalled_aops;
3708                 return;
3709         default:
3710                 BUG();
3711         }
3712         if (IS_DAX(inode))
3713                 inode->i_mapping->a_ops = &ext4_dax_aops;
3714         else if (test_opt(inode->i_sb, DELALLOC))
3715                 inode->i_mapping->a_ops = &ext4_da_aops;
3716         else
3717                 inode->i_mapping->a_ops = &ext4_aops;
3718 }
3719
3720 static int __ext4_block_zero_page_range(handle_t *handle,
3721                 struct address_space *mapping, loff_t from, loff_t length)
3722 {
3723         ext4_fsblk_t index = from >> PAGE_SHIFT;
3724         unsigned offset = from & (PAGE_SIZE-1);
3725         unsigned blocksize, pos;
3726         ext4_lblk_t iblock;
3727         struct inode *inode = mapping->host;
3728         struct buffer_head *bh;
3729         struct page *page;
3730         int err = 0;
3731
3732         page = find_or_create_page(mapping, from >> PAGE_SHIFT,
3733                                    mapping_gfp_constraint(mapping, ~__GFP_FS));
3734         if (!page)
3735                 return -ENOMEM;
3736
3737         blocksize = inode->i_sb->s_blocksize;
3738
3739         iblock = index << (PAGE_SHIFT - inode->i_sb->s_blocksize_bits);
3740
3741         if (!page_has_buffers(page))
3742                 create_empty_buffers(page, blocksize, 0);
3743
3744         /* Find the buffer that contains "offset" */
3745         bh = page_buffers(page);
3746         pos = blocksize;
3747         while (offset >= pos) {
3748                 bh = bh->b_this_page;
3749                 iblock++;
3750                 pos += blocksize;
3751         }
3752         if (buffer_freed(bh)) {
3753                 BUFFER_TRACE(bh, "freed: skip");
3754                 goto unlock;
3755         }
3756         if (!buffer_mapped(bh)) {
3757                 BUFFER_TRACE(bh, "unmapped");
3758                 ext4_get_block(inode, iblock, bh, 0);
3759                 /* unmapped? It's a hole - nothing to do */
3760                 if (!buffer_mapped(bh)) {
3761                         BUFFER_TRACE(bh, "still unmapped");
3762                         goto unlock;
3763                 }
3764         }
3765
3766         /* Ok, it's mapped. Make sure it's up-to-date */
3767         if (PageUptodate(page))
3768                 set_buffer_uptodate(bh);
3769
3770         if (!buffer_uptodate(bh)) {
3771                 err = ext4_read_bh_lock(bh, 0, true);
3772                 if (err)
3773                         goto unlock;
3774                 if (fscrypt_inode_uses_fs_layer_crypto(inode)) {
3775                         /* We expect the key to be set. */
3776                         BUG_ON(!fscrypt_has_encryption_key(inode));
3777                         err = fscrypt_decrypt_pagecache_blocks(page, blocksize,
3778                                                                bh_offset(bh));
3779                         if (err) {
3780                                 clear_buffer_uptodate(bh);
3781                                 goto unlock;
3782                         }
3783                 }
3784         }
3785         if (ext4_should_journal_data(inode)) {
3786                 BUFFER_TRACE(bh, "get write access");
3787                 err = ext4_journal_get_write_access(handle, inode->i_sb, bh,
3788                                                     EXT4_JTR_NONE);
3789                 if (err)
3790                         goto unlock;
3791         }
3792         zero_user(page, offset, length);
3793         BUFFER_TRACE(bh, "zeroed end of block");
3794
3795         if (ext4_should_journal_data(inode)) {
3796                 err = ext4_handle_dirty_metadata(handle, inode, bh);
3797         } else {
3798                 err = 0;
3799                 mark_buffer_dirty(bh);
3800                 if (ext4_should_order_data(inode))
3801                         err = ext4_jbd2_inode_add_write(handle, inode, from,
3802                                         length);
3803         }
3804
3805 unlock:
3806         unlock_page(page);
3807         put_page(page);
3808         return err;
3809 }
3810
3811 /*
3812  * ext4_block_zero_page_range() zeros out a mapping of length 'length'
3813  * starting from file offset 'from'.  The range to be zero'd must
3814  * be contained with in one block.  If the specified range exceeds
3815  * the end of the block it will be shortened to end of the block
3816  * that corresponds to 'from'
3817  */
3818 static int ext4_block_zero_page_range(handle_t *handle,
3819                 struct address_space *mapping, loff_t from, loff_t length)
3820 {
3821         struct inode *inode = mapping->host;
3822         unsigned offset = from & (PAGE_SIZE-1);
3823         unsigned blocksize = inode->i_sb->s_blocksize;
3824         unsigned max = blocksize - (offset & (blocksize - 1));
3825
3826         /*
3827          * correct length if it does not fall between
3828          * 'from' and the end of the block
3829          */
3830         if (length > max || length < 0)
3831                 length = max;
3832
3833         if (IS_DAX(inode)) {
3834                 return dax_zero_range(inode, from, length, NULL,
3835                                       &ext4_iomap_ops);
3836         }
3837         return __ext4_block_zero_page_range(handle, mapping, from, length);
3838 }
3839
3840 /*
3841  * ext4_block_truncate_page() zeroes out a mapping from file offset `from'
3842  * up to the end of the block which corresponds to `from'.
3843  * This required during truncate. We need to physically zero the tail end
3844  * of that block so it doesn't yield old data if the file is later grown.
3845  */
3846 static int ext4_block_truncate_page(handle_t *handle,
3847                 struct address_space *mapping, loff_t from)
3848 {
3849         unsigned offset = from & (PAGE_SIZE-1);
3850         unsigned length;
3851         unsigned blocksize;
3852         struct inode *inode = mapping->host;
3853
3854         /* If we are processing an encrypted inode during orphan list handling */
3855         if (IS_ENCRYPTED(inode) && !fscrypt_has_encryption_key(inode))
3856                 return 0;
3857
3858         blocksize = inode->i_sb->s_blocksize;
3859         length = blocksize - (offset & (blocksize - 1));
3860
3861         return ext4_block_zero_page_range(handle, mapping, from, length);
3862 }
3863
3864 int ext4_zero_partial_blocks(handle_t *handle, struct inode *inode,
3865                              loff_t lstart, loff_t length)
3866 {
3867         struct super_block *sb = inode->i_sb;
3868         struct address_space *mapping = inode->i_mapping;
3869         unsigned partial_start, partial_end;
3870         ext4_fsblk_t start, end;
3871         loff_t byte_end = (lstart + length - 1);
3872         int err = 0;
3873
3874         partial_start = lstart & (sb->s_blocksize - 1);
3875         partial_end = byte_end & (sb->s_blocksize - 1);
3876
3877         start = lstart >> sb->s_blocksize_bits;
3878         end = byte_end >> sb->s_blocksize_bits;
3879
3880         /* Handle partial zero within the single block */
3881         if (start == end &&
3882             (partial_start || (partial_end != sb->s_blocksize - 1))) {
3883                 err = ext4_block_zero_page_range(handle, mapping,
3884                                                  lstart, length);
3885                 return err;
3886         }
3887         /* Handle partial zero out on the start of the range */
3888         if (partial_start) {
3889                 err = ext4_block_zero_page_range(handle, mapping,
3890                                                  lstart, sb->s_blocksize);
3891                 if (err)
3892                         return err;
3893         }
3894         /* Handle partial zero out on the end of the range */
3895         if (partial_end != sb->s_blocksize - 1)
3896                 err = ext4_block_zero_page_range(handle, mapping,
3897                                                  byte_end - partial_end,
3898                                                  partial_end + 1);
3899         return err;
3900 }
3901
3902 int ext4_can_truncate(struct inode *inode)
3903 {
3904         if (S_ISREG(inode->i_mode))
3905                 return 1;
3906         if (S_ISDIR(inode->i_mode))
3907                 return 1;
3908         if (S_ISLNK(inode->i_mode))
3909                 return !ext4_inode_is_fast_symlink(inode);
3910         return 0;
3911 }
3912
3913 /*
3914  * We have to make sure i_disksize gets properly updated before we truncate
3915  * page cache due to hole punching or zero range. Otherwise i_disksize update
3916  * can get lost as it may have been postponed to submission of writeback but
3917  * that will never happen after we truncate page cache.
3918  */
3919 int ext4_update_disksize_before_punch(struct inode *inode, loff_t offset,
3920                                       loff_t len)
3921 {
3922         handle_t *handle;
3923         int ret;
3924
3925         loff_t size = i_size_read(inode);
3926
3927         WARN_ON(!inode_is_locked(inode));
3928         if (offset > size || offset + len < size)
3929                 return 0;
3930
3931         if (EXT4_I(inode)->i_disksize >= size)
3932                 return 0;
3933
3934         handle = ext4_journal_start(inode, EXT4_HT_MISC, 1);
3935         if (IS_ERR(handle))
3936                 return PTR_ERR(handle);
3937         ext4_update_i_disksize(inode, size);
3938         ret = ext4_mark_inode_dirty(handle, inode);
3939         ext4_journal_stop(handle);
3940
3941         return ret;
3942 }
3943
3944 static void ext4_wait_dax_page(struct inode *inode)
3945 {
3946         filemap_invalidate_unlock(inode->i_mapping);
3947         schedule();
3948         filemap_invalidate_lock(inode->i_mapping);
3949 }
3950
3951 int ext4_break_layouts(struct inode *inode)
3952 {
3953         struct page *page;
3954         int error;
3955
3956         if (WARN_ON_ONCE(!rwsem_is_locked(&inode->i_mapping->invalidate_lock)))
3957                 return -EINVAL;
3958
3959         do {
3960                 page = dax_layout_busy_page(inode->i_mapping);
3961                 if (!page)
3962                         return 0;
3963
3964                 error = ___wait_var_event(&page->_refcount,
3965                                 atomic_read(&page->_refcount) == 1,
3966                                 TASK_INTERRUPTIBLE, 0, 0,
3967                                 ext4_wait_dax_page(inode));
3968         } while (error == 0);
3969
3970         return error;
3971 }
3972
3973 /*
3974  * ext4_punch_hole: punches a hole in a file by releasing the blocks
3975  * associated with the given offset and length
3976  *
3977  * @inode:  File inode
3978  * @offset: The offset where the hole will begin
3979  * @len:    The length of the hole
3980  *
3981  * Returns: 0 on success or negative on failure
3982  */
3983
3984 int ext4_punch_hole(struct file *file, loff_t offset, loff_t length)
3985 {
3986         struct inode *inode = file_inode(file);
3987         struct super_block *sb = inode->i_sb;
3988         ext4_lblk_t first_block, stop_block;
3989         struct address_space *mapping = inode->i_mapping;
3990         loff_t first_block_offset, last_block_offset, max_length;
3991         struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
3992         handle_t *handle;
3993         unsigned int credits;
3994         int ret = 0, ret2 = 0;
3995
3996         trace_ext4_punch_hole(inode, offset, length, 0);
3997
3998         /*
3999          * Write out all dirty pages to avoid race conditions
4000          * Then release them.
4001          */
4002         if (mapping_tagged(mapping, PAGECACHE_TAG_DIRTY)) {
4003                 ret = filemap_write_and_wait_range(mapping, offset,
4004                                                    offset + length - 1);
4005                 if (ret)
4006                         return ret;
4007         }
4008
4009         inode_lock(inode);
4010
4011         /* No need to punch hole beyond i_size */
4012         if (offset >= inode->i_size)
4013                 goto out_mutex;
4014
4015         /*
4016          * If the hole extends beyond i_size, set the hole
4017          * to end after the page that contains i_size
4018          */
4019         if (offset + length > inode->i_size) {
4020                 length = inode->i_size +
4021                    PAGE_SIZE - (inode->i_size & (PAGE_SIZE - 1)) -
4022                    offset;
4023         }
4024
4025         /*
4026          * For punch hole the length + offset needs to be within one block
4027          * before last range. Adjust the length if it goes beyond that limit.
4028          */
4029         max_length = sbi->s_bitmap_maxbytes - inode->i_sb->s_blocksize;
4030         if (offset + length > max_length)
4031                 length = max_length - offset;
4032
4033         if (offset & (sb->s_blocksize - 1) ||
4034             (offset + length) & (sb->s_blocksize - 1)) {
4035                 /*
4036                  * Attach jinode to inode for jbd2 if we do any zeroing of
4037                  * partial block
4038                  */
4039                 ret = ext4_inode_attach_jinode(inode);
4040                 if (ret < 0)
4041                         goto out_mutex;
4042
4043         }
4044
4045         /* Wait all existing dio workers, newcomers will block on i_rwsem */
4046         inode_dio_wait(inode);
4047
4048         ret = file_modified(file);
4049         if (ret)
4050                 goto out_mutex;
4051
4052         /*
4053          * Prevent page faults from reinstantiating pages we have released from
4054          * page cache.
4055          */
4056         filemap_invalidate_lock(mapping);
4057
4058         ret = ext4_break_layouts(inode);
4059         if (ret)
4060                 goto out_dio;
4061
4062         first_block_offset = round_up(offset, sb->s_blocksize);
4063         last_block_offset = round_down((offset + length), sb->s_blocksize) - 1;
4064
4065         /* Now release the pages and zero block aligned part of pages*/
4066         if (last_block_offset > first_block_offset) {
4067                 ret = ext4_update_disksize_before_punch(inode, offset, length);
4068                 if (ret)
4069                         goto out_dio;
4070                 truncate_pagecache_range(inode, first_block_offset,
4071                                          last_block_offset);
4072         }
4073
4074         if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS))
4075                 credits = ext4_writepage_trans_blocks(inode);
4076         else
4077                 credits = ext4_blocks_for_truncate(inode);
4078         handle = ext4_journal_start(inode, EXT4_HT_TRUNCATE, credits);
4079         if (IS_ERR(handle)) {
4080                 ret = PTR_ERR(handle);
4081                 ext4_std_error(sb, ret);
4082                 goto out_dio;
4083         }
4084
4085         ret = ext4_zero_partial_blocks(handle, inode, offset,
4086                                        length);
4087         if (ret)
4088                 goto out_stop;
4089
4090         first_block = (offset + sb->s_blocksize - 1) >>
4091                 EXT4_BLOCK_SIZE_BITS(sb);
4092         stop_block = (offset + length) >> EXT4_BLOCK_SIZE_BITS(sb);
4093
4094         /* If there are blocks to remove, do it */
4095         if (stop_block > first_block) {
4096
4097                 down_write(&EXT4_I(inode)->i_data_sem);
4098                 ext4_discard_preallocations(inode, 0);
4099
4100                 ret = ext4_es_remove_extent(inode, first_block,
4101                                             stop_block - first_block);
4102                 if (ret) {
4103                         up_write(&EXT4_I(inode)->i_data_sem);
4104                         goto out_stop;
4105                 }
4106
4107                 if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS))
4108                         ret = ext4_ext_remove_space(inode, first_block,
4109                                                     stop_block - 1);
4110                 else
4111                         ret = ext4_ind_remove_space(handle, inode, first_block,
4112                                                     stop_block);
4113
4114                 up_write(&EXT4_I(inode)->i_data_sem);
4115         }
4116         ext4_fc_track_range(handle, inode, first_block, stop_block);
4117         if (IS_SYNC(inode))
4118                 ext4_handle_sync(handle);
4119
4120         inode->i_mtime = inode->i_ctime = current_time(inode);
4121         ret2 = ext4_mark_inode_dirty(handle, inode);
4122         if (unlikely(ret2))
4123                 ret = ret2;
4124         if (ret >= 0)
4125                 ext4_update_inode_fsync_trans(handle, inode, 1);
4126 out_stop:
4127         ext4_journal_stop(handle);
4128 out_dio:
4129         filemap_invalidate_unlock(mapping);
4130 out_mutex:
4131         inode_unlock(inode);
4132         return ret;
4133 }
4134
4135 int ext4_inode_attach_jinode(struct inode *inode)
4136 {
4137         struct ext4_inode_info *ei = EXT4_I(inode);
4138         struct jbd2_inode *jinode;
4139
4140         if (ei->jinode || !EXT4_SB(inode->i_sb)->s_journal)
4141                 return 0;
4142
4143         jinode = jbd2_alloc_inode(GFP_KERNEL);
4144         spin_lock(&inode->i_lock);
4145         if (!ei->jinode) {
4146                 if (!jinode) {
4147                         spin_unlock(&inode->i_lock);
4148                         return -ENOMEM;
4149                 }
4150                 ei->jinode = jinode;
4151                 jbd2_journal_init_jbd_inode(ei->jinode, inode);
4152                 jinode = NULL;
4153         }
4154         spin_unlock(&inode->i_lock);
4155         if (unlikely(jinode != NULL))
4156                 jbd2_free_inode(jinode);
4157         return 0;
4158 }
4159
4160 /*
4161  * ext4_truncate()
4162  *
4163  * We block out ext4_get_block() block instantiations across the entire
4164  * transaction, and VFS/VM ensures that ext4_truncate() cannot run
4165  * simultaneously on behalf of the same inode.
4166  *
4167  * As we work through the truncate and commit bits of it to the journal there
4168  * is one core, guiding principle: the file's tree must always be consistent on
4169  * disk.  We must be able to restart the truncate after a crash.
4170  *
4171  * The file's tree may be transiently inconsistent in memory (although it
4172  * probably isn't), but whenever we close off and commit a journal transaction,
4173  * the contents of (the filesystem + the journal) must be consistent and
4174  * restartable.  It's pretty simple, really: bottom up, right to left (although
4175  * left-to-right works OK too).
4176  *
4177  * Note that at recovery time, journal replay occurs *before* the restart of
4178  * truncate against the orphan inode list.
4179  *
4180  * The committed inode has the new, desired i_size (which is the same as
4181  * i_disksize in this case).  After a crash, ext4_orphan_cleanup() will see
4182  * that this inode's truncate did not complete and it will again call
4183  * ext4_truncate() to have another go.  So there will be instantiated blocks
4184  * to the right of the truncation point in a crashed ext4 filesystem.  But
4185  * that's fine - as long as they are linked from the inode, the post-crash
4186  * ext4_truncate() run will find them and release them.
4187  */
4188 int ext4_truncate(struct inode *inode)
4189 {
4190         struct ext4_inode_info *ei = EXT4_I(inode);
4191         unsigned int credits;
4192         int err = 0, err2;
4193         handle_t *handle;
4194         struct address_space *mapping = inode->i_mapping;
4195
4196         /*
4197          * There is a possibility that we're either freeing the inode
4198          * or it's a completely new inode. In those cases we might not
4199          * have i_rwsem locked because it's not necessary.
4200          */
4201         if (!(inode->i_state & (I_NEW|I_FREEING)))
4202                 WARN_ON(!inode_is_locked(inode));
4203         trace_ext4_truncate_enter(inode);
4204
4205         if (!ext4_can_truncate(inode))
4206                 goto out_trace;
4207
4208         if (inode->i_size == 0 && !test_opt(inode->i_sb, NO_AUTO_DA_ALLOC))
4209                 ext4_set_inode_state(inode, EXT4_STATE_DA_ALLOC_CLOSE);
4210
4211         if (ext4_has_inline_data(inode)) {
4212                 int has_inline = 1;
4213
4214                 err = ext4_inline_data_truncate(inode, &has_inline);
4215                 if (err || has_inline)
4216                         goto out_trace;
4217         }
4218
4219         /* If we zero-out tail of the page, we have to create jinode for jbd2 */
4220         if (inode->i_size & (inode->i_sb->s_blocksize - 1)) {
4221                 if (ext4_inode_attach_jinode(inode) < 0)
4222                         goto out_trace;
4223         }
4224
4225         if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS))
4226                 credits = ext4_writepage_trans_blocks(inode);
4227         else
4228                 credits = ext4_blocks_for_truncate(inode);
4229
4230         handle = ext4_journal_start(inode, EXT4_HT_TRUNCATE, credits);
4231         if (IS_ERR(handle)) {
4232                 err = PTR_ERR(handle);
4233                 goto out_trace;
4234         }
4235
4236         if (inode->i_size & (inode->i_sb->s_blocksize - 1))
4237                 ext4_block_truncate_page(handle, mapping, inode->i_size);
4238
4239         /*
4240          * We add the inode to the orphan list, so that if this
4241          * truncate spans multiple transactions, and we crash, we will
4242          * resume the truncate when the filesystem recovers.  It also
4243          * marks the inode dirty, to catch the new size.
4244          *
4245          * Implication: the file must always be in a sane, consistent
4246          * truncatable state while each transaction commits.
4247          */
4248         err = ext4_orphan_add(handle, inode);
4249         if (err)
4250                 goto out_stop;
4251
4252         down_write(&EXT4_I(inode)->i_data_sem);
4253
4254         ext4_discard_preallocations(inode, 0);
4255
4256         if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS))
4257                 err = ext4_ext_truncate(handle, inode);
4258         else
4259                 ext4_ind_truncate(handle, inode);
4260
4261         up_write(&ei->i_data_sem);
4262         if (err)
4263                 goto out_stop;
4264
4265         if (IS_SYNC(inode))
4266                 ext4_handle_sync(handle);
4267
4268 out_stop:
4269         /*
4270          * If this was a simple ftruncate() and the file will remain alive,
4271          * then we need to clear up the orphan record which we created above.
4272          * However, if this was a real unlink then we were called by
4273          * ext4_evict_inode(), and we allow that function to clean up the
4274          * orphan info for us.
4275          */
4276         if (inode->i_nlink)
4277                 ext4_orphan_del(handle, inode);
4278
4279         inode->i_mtime = inode->i_ctime = current_time(inode);
4280         err2 = ext4_mark_inode_dirty(handle, inode);
4281         if (unlikely(err2 && !err))
4282                 err = err2;
4283         ext4_journal_stop(handle);
4284
4285 out_trace:
4286         trace_ext4_truncate_exit(inode);
4287         return err;
4288 }
4289
4290 static inline u64 ext4_inode_peek_iversion(const struct inode *inode)
4291 {
4292         if (unlikely(EXT4_I(inode)->i_flags & EXT4_EA_INODE_FL))
4293                 return inode_peek_iversion_raw(inode);
4294         else
4295                 return inode_peek_iversion(inode);
4296 }
4297
4298 static int ext4_inode_blocks_set(struct ext4_inode *raw_inode,
4299                                  struct ext4_inode_info *ei)
4300 {
4301         struct inode *inode = &(ei->vfs_inode);
4302         u64 i_blocks = READ_ONCE(inode->i_blocks);
4303         struct super_block *sb = inode->i_sb;
4304
4305         if (i_blocks <= ~0U) {
4306                 /*
4307                  * i_blocks can be represented in a 32 bit variable
4308                  * as multiple of 512 bytes
4309                  */
4310                 raw_inode->i_blocks_lo   = cpu_to_le32(i_blocks);
4311                 raw_inode->i_blocks_high = 0;
4312                 ext4_clear_inode_flag(inode, EXT4_INODE_HUGE_FILE);
4313                 return 0;
4314         }
4315
4316         /*
4317          * This should never happen since sb->s_maxbytes should not have
4318          * allowed this, sb->s_maxbytes was set according to the huge_file
4319          * feature in ext4_fill_super().
4320          */
4321         if (!ext4_has_feature_huge_file(sb))
4322                 return -EFSCORRUPTED;
4323
4324         if (i_blocks <= 0xffffffffffffULL) {
4325                 /*
4326                  * i_blocks can be represented in a 48 bit variable
4327                  * as multiple of 512 bytes
4328                  */
4329                 raw_inode->i_blocks_lo   = cpu_to_le32(i_blocks);
4330                 raw_inode->i_blocks_high = cpu_to_le16(i_blocks >> 32);
4331                 ext4_clear_inode_flag(inode, EXT4_INODE_HUGE_FILE);
4332         } else {
4333                 ext4_set_inode_flag(inode, EXT4_INODE_HUGE_FILE);
4334                 /* i_block is stored in file system block size */
4335                 i_blocks = i_blocks >> (inode->i_blkbits - 9);
4336                 raw_inode->i_blocks_lo   = cpu_to_le32(i_blocks);
4337                 raw_inode->i_blocks_high = cpu_to_le16(i_blocks >> 32);
4338         }
4339         return 0;
4340 }
4341
4342 static int ext4_fill_raw_inode(struct inode *inode, struct ext4_inode *raw_inode)
4343 {
4344         struct ext4_inode_info *ei = EXT4_I(inode);
4345         uid_t i_uid;
4346         gid_t i_gid;
4347         projid_t i_projid;
4348         int block;
4349         int err;
4350
4351         err = ext4_inode_blocks_set(raw_inode, ei);
4352
4353         raw_inode->i_mode = cpu_to_le16(inode->i_mode);
4354         i_uid = i_uid_read(inode);
4355         i_gid = i_gid_read(inode);
4356         i_projid = from_kprojid(&init_user_ns, ei->i_projid);
4357         if (!(test_opt(inode->i_sb, NO_UID32))) {
4358                 raw_inode->i_uid_low = cpu_to_le16(low_16_bits(i_uid));
4359                 raw_inode->i_gid_low = cpu_to_le16(low_16_bits(i_gid));
4360                 /*
4361                  * Fix up interoperability with old kernels. Otherwise,
4362                  * old inodes get re-used with the upper 16 bits of the
4363                  * uid/gid intact.
4364                  */
4365                 if (ei->i_dtime && list_empty(&ei->i_orphan)) {
4366                         raw_inode->i_uid_high = 0;
4367                         raw_inode->i_gid_high = 0;
4368                 } else {
4369                         raw_inode->i_uid_high =
4370                                 cpu_to_le16(high_16_bits(i_uid));
4371                         raw_inode->i_gid_high =
4372                                 cpu_to_le16(high_16_bits(i_gid));
4373                 }
4374         } else {
4375                 raw_inode->i_uid_low = cpu_to_le16(fs_high2lowuid(i_uid));
4376                 raw_inode->i_gid_low = cpu_to_le16(fs_high2lowgid(i_gid));
4377                 raw_inode->i_uid_high = 0;
4378                 raw_inode->i_gid_high = 0;
4379         }
4380         raw_inode->i_links_count = cpu_to_le16(inode->i_nlink);
4381
4382         EXT4_INODE_SET_XTIME(i_ctime, inode, raw_inode);
4383         EXT4_INODE_SET_XTIME(i_mtime, inode, raw_inode);
4384         EXT4_INODE_SET_XTIME(i_atime, inode, raw_inode);
4385         EXT4_EINODE_SET_XTIME(i_crtime, ei, raw_inode);
4386
4387         raw_inode->i_dtime = cpu_to_le32(ei->i_dtime);
4388         raw_inode->i_flags = cpu_to_le32(ei->i_flags & 0xFFFFFFFF);
4389         if (likely(!test_opt2(inode->i_sb, HURD_COMPAT)))
4390                 raw_inode->i_file_acl_high =
4391                         cpu_to_le16(ei->i_file_acl >> 32);
4392         raw_inode->i_file_acl_lo = cpu_to_le32(ei->i_file_acl);
4393         ext4_isize_set(raw_inode, ei->i_disksize);
4394
4395         raw_inode->i_generation = cpu_to_le32(inode->i_generation);
4396         if (S_ISCHR(inode->i_mode) || S_ISBLK(inode->i_mode)) {
4397                 if (old_valid_dev(inode->i_rdev)) {
4398                         raw_inode->i_block[0] =
4399                                 cpu_to_le32(old_encode_dev(inode->i_rdev));
4400                         raw_inode->i_block[1] = 0;
4401                 } else {
4402                         raw_inode->i_block[0] = 0;
4403                         raw_inode->i_block[1] =
4404                                 cpu_to_le32(new_encode_dev(inode->i_rdev));
4405                         raw_inode->i_block[2] = 0;
4406                 }
4407         } else if (!ext4_has_inline_data(inode)) {
4408                 for (block = 0; block < EXT4_N_BLOCKS; block++)
4409                         raw_inode->i_block[block] = ei->i_data[block];
4410         }
4411
4412         if (likely(!test_opt2(inode->i_sb, HURD_COMPAT))) {
4413                 u64 ivers = ext4_inode_peek_iversion(inode);
4414
4415                 raw_inode->i_disk_version = cpu_to_le32(ivers);
4416                 if (ei->i_extra_isize) {
4417                         if (EXT4_FITS_IN_INODE(raw_inode, ei, i_version_hi))
4418                                 raw_inode->i_version_hi =
4419                                         cpu_to_le32(ivers >> 32);
4420                         raw_inode->i_extra_isize =
4421                                 cpu_to_le16(ei->i_extra_isize);
4422                 }
4423         }
4424
4425         if (i_projid != EXT4_DEF_PROJID &&
4426             !ext4_has_feature_project(inode->i_sb))
4427                 err = err ?: -EFSCORRUPTED;
4428
4429         if (EXT4_INODE_SIZE(inode->i_sb) > EXT4_GOOD_OLD_INODE_SIZE &&
4430             EXT4_FITS_IN_INODE(raw_inode, ei, i_projid))
4431                 raw_inode->i_projid = cpu_to_le32(i_projid);
4432
4433         ext4_inode_csum_set(inode, raw_inode, ei);
4434         return err;
4435 }
4436
4437 /*
4438  * ext4_get_inode_loc returns with an extra refcount against the inode's
4439  * underlying buffer_head on success. If we pass 'inode' and it does not
4440  * have in-inode xattr, we have all inode data in memory that is needed
4441  * to recreate the on-disk version of this inode.
4442  */
4443 static int __ext4_get_inode_loc(struct super_block *sb, unsigned long ino,
4444                                 struct inode *inode, struct ext4_iloc *iloc,
4445                                 ext4_fsblk_t *ret_block)
4446 {
4447         struct ext4_group_desc  *gdp;
4448         struct buffer_head      *bh;
4449         ext4_fsblk_t            block;
4450         struct blk_plug         plug;
4451         int                     inodes_per_block, inode_offset;
4452
4453         iloc->bh = NULL;
4454         if (ino < EXT4_ROOT_INO ||
4455             ino > le32_to_cpu(EXT4_SB(sb)->s_es->s_inodes_count))
4456                 return -EFSCORRUPTED;
4457
4458         iloc->block_group = (ino - 1) / EXT4_INODES_PER_GROUP(sb);
4459         gdp = ext4_get_group_desc(sb, iloc->block_group, NULL);
4460         if (!gdp)
4461                 return -EIO;
4462
4463         /*
4464          * Figure out the offset within the block group inode table
4465          */
4466         inodes_per_block = EXT4_SB(sb)->s_inodes_per_block;
4467         inode_offset = ((ino - 1) %
4468                         EXT4_INODES_PER_GROUP(sb));
4469         block = ext4_inode_table(sb, gdp) + (inode_offset / inodes_per_block);
4470         iloc->offset = (inode_offset % inodes_per_block) * EXT4_INODE_SIZE(sb);
4471
4472         bh = sb_getblk(sb, block);
4473         if (unlikely(!bh))
4474                 return -ENOMEM;
4475         if (ext4_buffer_uptodate(bh))
4476                 goto has_buffer;
4477
4478         lock_buffer(bh);
4479         if (ext4_buffer_uptodate(bh)) {
4480                 /* Someone brought it uptodate while we waited */
4481                 unlock_buffer(bh);
4482                 goto has_buffer;
4483         }
4484
4485         /*
4486          * If we have all information of the inode in memory and this
4487          * is the only valid inode in the block, we need not read the
4488          * block.
4489          */
4490         if (inode && !ext4_test_inode_state(inode, EXT4_STATE_XATTR)) {
4491                 struct buffer_head *bitmap_bh;
4492                 int i, start;
4493
4494                 start = inode_offset & ~(inodes_per_block - 1);
4495
4496                 /* Is the inode bitmap in cache? */
4497                 bitmap_bh = sb_getblk(sb, ext4_inode_bitmap(sb, gdp));
4498                 if (unlikely(!bitmap_bh))
4499                         goto make_io;
4500
4501                 /*
4502                  * If the inode bitmap isn't in cache then the
4503                  * optimisation may end up performing two reads instead
4504                  * of one, so skip it.
4505                  */
4506                 if (!buffer_uptodate(bitmap_bh)) {
4507                         brelse(bitmap_bh);
4508                         goto make_io;
4509                 }
4510                 for (i = start; i < start + inodes_per_block; i++) {
4511                         if (i == inode_offset)
4512                                 continue;
4513                         if (ext4_test_bit(i, bitmap_bh->b_data))
4514                                 break;
4515                 }
4516                 brelse(bitmap_bh);
4517                 if (i == start + inodes_per_block) {
4518                         struct ext4_inode *raw_inode =
4519                                 (struct ext4_inode *) (bh->b_data + iloc->offset);
4520
4521                         /* all other inodes are free, so skip I/O */
4522                         memset(bh->b_data, 0, bh->b_size);
4523                         if (!ext4_test_inode_state(inode, EXT4_STATE_NEW))
4524                                 ext4_fill_raw_inode(inode, raw_inode);
4525                         set_buffer_uptodate(bh);
4526                         unlock_buffer(bh);
4527                         goto has_buffer;
4528                 }
4529         }
4530
4531 make_io:
4532         /*
4533          * If we need to do any I/O, try to pre-readahead extra
4534          * blocks from the inode table.
4535          */
4536         blk_start_plug(&plug);
4537         if (EXT4_SB(sb)->s_inode_readahead_blks) {
4538                 ext4_fsblk_t b, end, table;
4539                 unsigned num;
4540                 __u32 ra_blks = EXT4_SB(sb)->s_inode_readahead_blks;
4541
4542                 table = ext4_inode_table(sb, gdp);
4543                 /* s_inode_readahead_blks is always a power of 2 */
4544                 b = block & ~((ext4_fsblk_t) ra_blks - 1);
4545                 if (table > b)
4546                         b = table;
4547                 end = b + ra_blks;
4548                 num = EXT4_INODES_PER_GROUP(sb);
4549                 if (ext4_has_group_desc_csum(sb))
4550                         num -= ext4_itable_unused_count(sb, gdp);
4551                 table += num / inodes_per_block;
4552                 if (end > table)
4553                         end = table;
4554                 while (b <= end)
4555                         ext4_sb_breadahead_unmovable(sb, b++);
4556         }
4557
4558         /*
4559          * There are other valid inodes in the buffer, this inode
4560          * has in-inode xattrs, or we don't have this inode in memory.
4561          * Read the block from disk.
4562          */
4563         trace_ext4_load_inode(sb, ino);
4564         ext4_read_bh_nowait(bh, REQ_META | REQ_PRIO, NULL);
4565         blk_finish_plug(&plug);
4566         wait_on_buffer(bh);
4567         ext4_simulate_fail_bh(sb, bh, EXT4_SIM_INODE_EIO);
4568         if (!buffer_uptodate(bh)) {
4569                 if (ret_block)
4570                         *ret_block = block;
4571                 brelse(bh);
4572                 return -EIO;
4573         }
4574 has_buffer:
4575         iloc->bh = bh;
4576         return 0;
4577 }
4578
4579 static int __ext4_get_inode_loc_noinmem(struct inode *inode,
4580                                         struct ext4_iloc *iloc)
4581 {
4582         ext4_fsblk_t err_blk = 0;
4583         int ret;
4584
4585         ret = __ext4_get_inode_loc(inode->i_sb, inode->i_ino, NULL, iloc,
4586                                         &err_blk);
4587
4588         if (ret == -EIO)
4589                 ext4_error_inode_block(inode, err_blk, EIO,
4590                                         "unable to read itable block");
4591
4592         return ret;
4593 }
4594
4595 int ext4_get_inode_loc(struct inode *inode, struct ext4_iloc *iloc)
4596 {
4597         ext4_fsblk_t err_blk = 0;
4598         int ret;
4599
4600         ret = __ext4_get_inode_loc(inode->i_sb, inode->i_ino, inode, iloc,
4601                                         &err_blk);
4602
4603         if (ret == -EIO)
4604                 ext4_error_inode_block(inode, err_blk, EIO,
4605                                         "unable to read itable block");
4606
4607         return ret;
4608 }
4609
4610
4611 int ext4_get_fc_inode_loc(struct super_block *sb, unsigned long ino,
4612                           struct ext4_iloc *iloc)
4613 {
4614         return __ext4_get_inode_loc(sb, ino, NULL, iloc, NULL);
4615 }
4616
4617 static bool ext4_should_enable_dax(struct inode *inode)
4618 {
4619         struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
4620
4621         if (test_opt2(inode->i_sb, DAX_NEVER))
4622                 return false;
4623         if (!S_ISREG(inode->i_mode))
4624                 return false;
4625         if (ext4_should_journal_data(inode))
4626                 return false;
4627         if (ext4_has_inline_data(inode))
4628                 return false;
4629         if (ext4_test_inode_flag(inode, EXT4_INODE_ENCRYPT))
4630                 return false;
4631         if (ext4_test_inode_flag(inode, EXT4_INODE_VERITY))
4632                 return false;
4633         if (!test_bit(EXT4_FLAGS_BDEV_IS_DAX, &sbi->s_ext4_flags))
4634                 return false;
4635         if (test_opt(inode->i_sb, DAX_ALWAYS))
4636                 return true;
4637
4638         return ext4_test_inode_flag(inode, EXT4_INODE_DAX);
4639 }
4640
4641 void ext4_set_inode_flags(struct inode *inode, bool init)
4642 {
4643         unsigned int flags = EXT4_I(inode)->i_flags;
4644         unsigned int new_fl = 0;
4645
4646         WARN_ON_ONCE(IS_DAX(inode) && init);
4647
4648         if (flags & EXT4_SYNC_FL)
4649                 new_fl |= S_SYNC;
4650         if (flags & EXT4_APPEND_FL)
4651                 new_fl |= S_APPEND;
4652         if (flags & EXT4_IMMUTABLE_FL)
4653                 new_fl |= S_IMMUTABLE;
4654         if (flags & EXT4_NOATIME_FL)
4655                 new_fl |= S_NOATIME;
4656         if (flags & EXT4_DIRSYNC_FL)
4657                 new_fl |= S_DIRSYNC;
4658
4659         /* Because of the way inode_set_flags() works we must preserve S_DAX
4660          * here if already set. */
4661         new_fl |= (inode->i_flags & S_DAX);
4662         if (init && ext4_should_enable_dax(inode))
4663                 new_fl |= S_DAX;
4664
4665         if (flags & EXT4_ENCRYPT_FL)
4666                 new_fl |= S_ENCRYPTED;
4667         if (flags & EXT4_CASEFOLD_FL)
4668                 new_fl |= S_CASEFOLD;
4669         if (flags & EXT4_VERITY_FL)
4670                 new_fl |= S_VERITY;
4671         inode_set_flags(inode, new_fl,
4672                         S_SYNC|S_APPEND|S_IMMUTABLE|S_NOATIME|S_DIRSYNC|S_DAX|
4673                         S_ENCRYPTED|S_CASEFOLD|S_VERITY);
4674 }
4675
4676 static blkcnt_t ext4_inode_blocks(struct ext4_inode *raw_inode,
4677                                   struct ext4_inode_info *ei)
4678 {
4679         blkcnt_t i_blocks ;
4680         struct inode *inode = &(ei->vfs_inode);
4681         struct super_block *sb = inode->i_sb;
4682
4683         if (ext4_has_feature_huge_file(sb)) {
4684                 /* we are using combined 48 bit field */
4685                 i_blocks = ((u64)le16_to_cpu(raw_inode->i_blocks_high)) << 32 |
4686                                         le32_to_cpu(raw_inode->i_blocks_lo);
4687                 if (ext4_test_inode_flag(inode, EXT4_INODE_HUGE_FILE)) {
4688                         /* i_blocks represent file system block size */
4689                         return i_blocks  << (inode->i_blkbits - 9);
4690                 } else {
4691                         return i_blocks;
4692                 }
4693         } else {
4694                 return le32_to_cpu(raw_inode->i_blocks_lo);
4695         }
4696 }
4697
4698 static inline int ext4_iget_extra_inode(struct inode *inode,
4699                                          struct ext4_inode *raw_inode,
4700                                          struct ext4_inode_info *ei)
4701 {
4702         __le32 *magic = (void *)raw_inode +
4703                         EXT4_GOOD_OLD_INODE_SIZE + ei->i_extra_isize;
4704
4705         if (EXT4_INODE_HAS_XATTR_SPACE(inode)  &&
4706             *magic == cpu_to_le32(EXT4_XATTR_MAGIC)) {
4707                 ext4_set_inode_state(inode, EXT4_STATE_XATTR);
4708                 return ext4_find_inline_data_nolock(inode);
4709         } else
4710                 EXT4_I(inode)->i_inline_off = 0;
4711         return 0;
4712 }
4713
4714 int ext4_get_projid(struct inode *inode, kprojid_t *projid)
4715 {
4716         if (!ext4_has_feature_project(inode->i_sb))
4717                 return -EOPNOTSUPP;
4718         *projid = EXT4_I(inode)->i_projid;
4719         return 0;
4720 }
4721
4722 /*
4723  * ext4 has self-managed i_version for ea inodes, it stores the lower 32bit of
4724  * refcount in i_version, so use raw values if inode has EXT4_EA_INODE_FL flag
4725  * set.
4726  */
4727 static inline void ext4_inode_set_iversion_queried(struct inode *inode, u64 val)
4728 {
4729         if (unlikely(EXT4_I(inode)->i_flags & EXT4_EA_INODE_FL))
4730                 inode_set_iversion_raw(inode, val);
4731         else
4732                 inode_set_iversion_queried(inode, val);
4733 }
4734
4735 struct inode *__ext4_iget(struct super_block *sb, unsigned long ino,
4736                           ext4_iget_flags flags, const char *function,
4737                           unsigned int line)
4738 {
4739         struct ext4_iloc iloc;
4740         struct ext4_inode *raw_inode;
4741         struct ext4_inode_info *ei;
4742         struct ext4_super_block *es = EXT4_SB(sb)->s_es;
4743         struct inode *inode;
4744         journal_t *journal = EXT4_SB(sb)->s_journal;
4745         long ret;
4746         loff_t size;
4747         int block;
4748         uid_t i_uid;
4749         gid_t i_gid;
4750         projid_t i_projid;
4751
4752         if ((!(flags & EXT4_IGET_SPECIAL) &&
4753              ((ino < EXT4_FIRST_INO(sb) && ino != EXT4_ROOT_INO) ||
4754               ino == le32_to_cpu(es->s_usr_quota_inum) ||
4755               ino == le32_to_cpu(es->s_grp_quota_inum) ||
4756               ino == le32_to_cpu(es->s_prj_quota_inum) ||
4757               ino == le32_to_cpu(es->s_orphan_file_inum))) ||
4758             (ino < EXT4_ROOT_INO) ||
4759             (ino > le32_to_cpu(es->s_inodes_count))) {
4760                 if (flags & EXT4_IGET_HANDLE)
4761                         return ERR_PTR(-ESTALE);
4762                 __ext4_error(sb, function, line, false, EFSCORRUPTED, 0,
4763                              "inode #%lu: comm %s: iget: illegal inode #",
4764                              ino, current->comm);
4765                 return ERR_PTR(-EFSCORRUPTED);
4766         }
4767
4768         inode = iget_locked(sb, ino);
4769         if (!inode)
4770                 return ERR_PTR(-ENOMEM);
4771         if (!(inode->i_state & I_NEW))
4772                 return inode;
4773
4774         ei = EXT4_I(inode);
4775         iloc.bh = NULL;
4776
4777         ret = __ext4_get_inode_loc_noinmem(inode, &iloc);
4778         if (ret < 0)
4779                 goto bad_inode;
4780         raw_inode = ext4_raw_inode(&iloc);
4781
4782         if ((ino == EXT4_ROOT_INO) && (raw_inode->i_links_count == 0)) {
4783                 ext4_error_inode(inode, function, line, 0,
4784                                  "iget: root inode unallocated");
4785                 ret = -EFSCORRUPTED;
4786                 goto bad_inode;
4787         }
4788
4789         if ((flags & EXT4_IGET_HANDLE) &&
4790             (raw_inode->i_links_count == 0) && (raw_inode->i_mode == 0)) {
4791                 ret = -ESTALE;
4792                 goto bad_inode;
4793         }
4794
4795         if (EXT4_INODE_SIZE(inode->i_sb) > EXT4_GOOD_OLD_INODE_SIZE) {
4796                 ei->i_extra_isize = le16_to_cpu(raw_inode->i_extra_isize);
4797                 if (EXT4_GOOD_OLD_INODE_SIZE + ei->i_extra_isize >
4798                         EXT4_INODE_SIZE(inode->i_sb) ||
4799                     (ei->i_extra_isize & 3)) {
4800                         ext4_error_inode(inode, function, line, 0,
4801                                          "iget: bad extra_isize %u "
4802                                          "(inode size %u)",
4803                                          ei->i_extra_isize,
4804                                          EXT4_INODE_SIZE(inode->i_sb));
4805                         ret = -EFSCORRUPTED;
4806                         goto bad_inode;
4807                 }
4808         } else
4809                 ei->i_extra_isize = 0;
4810
4811         /* Precompute checksum seed for inode metadata */
4812         if (ext4_has_metadata_csum(sb)) {
4813                 struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
4814                 __u32 csum;
4815                 __le32 inum = cpu_to_le32(inode->i_ino);
4816                 __le32 gen = raw_inode->i_generation;
4817                 csum = ext4_chksum(sbi, sbi->s_csum_seed, (__u8 *)&inum,
4818                                    sizeof(inum));
4819                 ei->i_csum_seed = ext4_chksum(sbi, csum, (__u8 *)&gen,
4820                                               sizeof(gen));
4821         }
4822
4823         if ((!ext4_inode_csum_verify(inode, raw_inode, ei) ||
4824             ext4_simulate_fail(sb, EXT4_SIM_INODE_CRC)) &&
4825              (!(EXT4_SB(sb)->s_mount_state & EXT4_FC_REPLAY))) {
4826                 ext4_error_inode_err(inode, function, line, 0,
4827                                 EFSBADCRC, "iget: checksum invalid");
4828                 ret = -EFSBADCRC;
4829                 goto bad_inode;
4830         }
4831
4832         inode->i_mode = le16_to_cpu(raw_inode->i_mode);
4833         i_uid = (uid_t)le16_to_cpu(raw_inode->i_uid_low);
4834         i_gid = (gid_t)le16_to_cpu(raw_inode->i_gid_low);
4835         if (ext4_has_feature_project(sb) &&
4836             EXT4_INODE_SIZE(sb) > EXT4_GOOD_OLD_INODE_SIZE &&
4837             EXT4_FITS_IN_INODE(raw_inode, ei, i_projid))
4838                 i_projid = (projid_t)le32_to_cpu(raw_inode->i_projid);
4839         else
4840                 i_projid = EXT4_DEF_PROJID;
4841
4842         if (!(test_opt(inode->i_sb, NO_UID32))) {
4843                 i_uid |= le16_to_cpu(raw_inode->i_uid_high) << 16;
4844                 i_gid |= le16_to_cpu(raw_inode->i_gid_high) << 16;
4845         }
4846         i_uid_write(inode, i_uid);
4847         i_gid_write(inode, i_gid);
4848         ei->i_projid = make_kprojid(&init_user_ns, i_projid);
4849         set_nlink(inode, le16_to_cpu(raw_inode->i_links_count));
4850
4851         ext4_clear_state_flags(ei);     /* Only relevant on 32-bit archs */
4852         ei->i_inline_off = 0;
4853         ei->i_dir_start_lookup = 0;
4854         ei->i_dtime = le32_to_cpu(raw_inode->i_dtime);
4855         /* We now have enough fields to check if the inode was active or not.
4856          * This is needed because nfsd might try to access dead inodes
4857          * the test is that same one that e2fsck uses
4858          * NeilBrown 1999oct15
4859          */
4860         if (inode->i_nlink == 0) {
4861                 if ((inode->i_mode == 0 ||
4862                      !(EXT4_SB(inode->i_sb)->s_mount_state & EXT4_ORPHAN_FS)) &&
4863                     ino != EXT4_BOOT_LOADER_INO) {
4864                         /* this inode is deleted */
4865                         ret = -ESTALE;
4866                         goto bad_inode;
4867                 }
4868                 /* The only unlinked inodes we let through here have
4869                  * valid i_mode and are being read by the orphan
4870                  * recovery code: that's fine, we're about to complete
4871                  * the process of deleting those.
4872                  * OR it is the EXT4_BOOT_LOADER_INO which is
4873                  * not initialized on a new filesystem. */
4874         }
4875         ei->i_flags = le32_to_cpu(raw_inode->i_flags);
4876         ext4_set_inode_flags(inode, true);
4877         inode->i_blocks = ext4_inode_blocks(raw_inode, ei);
4878         ei->i_file_acl = le32_to_cpu(raw_inode->i_file_acl_lo);
4879         if (ext4_has_feature_64bit(sb))
4880                 ei->i_file_acl |=
4881                         ((__u64)le16_to_cpu(raw_inode->i_file_acl_high)) << 32;
4882         inode->i_size = ext4_isize(sb, raw_inode);
4883         if ((size = i_size_read(inode)) < 0) {
4884                 ext4_error_inode(inode, function, line, 0,
4885                                  "iget: bad i_size value: %lld", size);
4886                 ret = -EFSCORRUPTED;
4887                 goto bad_inode;
4888         }
4889         /*
4890          * If dir_index is not enabled but there's dir with INDEX flag set,
4891          * we'd normally treat htree data as empty space. But with metadata
4892          * checksumming that corrupts checksums so forbid that.
4893          */
4894         if (!ext4_has_feature_dir_index(sb) && ext4_has_metadata_csum(sb) &&
4895             ext4_test_inode_flag(inode, EXT4_INODE_INDEX)) {
4896                 ext4_error_inode(inode, function, line, 0,
4897                          "iget: Dir with htree data on filesystem without dir_index feature.");
4898                 ret = -EFSCORRUPTED;
4899                 goto bad_inode;
4900         }
4901         ei->i_disksize = inode->i_size;
4902 #ifdef CONFIG_QUOTA
4903         ei->i_reserved_quota = 0;
4904 #endif
4905         inode->i_generation = le32_to_cpu(raw_inode->i_generation);
4906         ei->i_block_group = iloc.block_group;
4907         ei->i_last_alloc_group = ~0;
4908         /*
4909          * NOTE! The in-memory inode i_data array is in little-endian order
4910          * even on big-endian machines: we do NOT byteswap the block numbers!
4911          */
4912         for (block = 0; block < EXT4_N_BLOCKS; block++)
4913                 ei->i_data[block] = raw_inode->i_block[block];
4914         INIT_LIST_HEAD(&ei->i_orphan);
4915         ext4_fc_init_inode(&ei->vfs_inode);
4916
4917         /*
4918          * Set transaction id's of transactions that have to be committed
4919          * to finish f[data]sync. We set them to currently running transaction
4920          * as we cannot be sure that the inode or some of its metadata isn't
4921          * part of the transaction - the inode could have been reclaimed and
4922          * now it is reread from disk.
4923          */
4924         if (journal) {
4925                 transaction_t *transaction;
4926                 tid_t tid;
4927
4928                 read_lock(&journal->j_state_lock);
4929                 if (journal->j_running_transaction)
4930                         transaction = journal->j_running_transaction;
4931                 else
4932                         transaction = journal->j_committing_transaction;
4933                 if (transaction)
4934                         tid = transaction->t_tid;
4935                 else
4936                         tid = journal->j_commit_sequence;
4937                 read_unlock(&journal->j_state_lock);
4938                 ei->i_sync_tid = tid;
4939                 ei->i_datasync_tid = tid;
4940         }
4941
4942         if (EXT4_INODE_SIZE(inode->i_sb) > EXT4_GOOD_OLD_INODE_SIZE) {
4943                 if (ei->i_extra_isize == 0) {
4944                         /* The extra space is currently unused. Use it. */
4945                         BUILD_BUG_ON(sizeof(struct ext4_inode) & 3);
4946                         ei->i_extra_isize = sizeof(struct ext4_inode) -
4947                                             EXT4_GOOD_OLD_INODE_SIZE;
4948                 } else {
4949                         ret = ext4_iget_extra_inode(inode, raw_inode, ei);
4950                         if (ret)
4951                                 goto bad_inode;
4952                 }
4953         }
4954
4955         EXT4_INODE_GET_XTIME(i_ctime, inode, raw_inode);
4956         EXT4_INODE_GET_XTIME(i_mtime, inode, raw_inode);
4957         EXT4_INODE_GET_XTIME(i_atime, inode, raw_inode);
4958         EXT4_EINODE_GET_XTIME(i_crtime, ei, raw_inode);
4959
4960         if (likely(!test_opt2(inode->i_sb, HURD_COMPAT))) {
4961                 u64 ivers = le32_to_cpu(raw_inode->i_disk_version);
4962
4963                 if (EXT4_INODE_SIZE(inode->i_sb) > EXT4_GOOD_OLD_INODE_SIZE) {
4964                         if (EXT4_FITS_IN_INODE(raw_inode, ei, i_version_hi))
4965                                 ivers |=
4966                     (__u64)(le32_to_cpu(raw_inode->i_version_hi)) << 32;
4967                 }
4968                 ext4_inode_set_iversion_queried(inode, ivers);
4969         }
4970
4971         ret = 0;
4972         if (ei->i_file_acl &&
4973             !ext4_inode_block_valid(inode, ei->i_file_acl, 1)) {
4974                 ext4_error_inode(inode, function, line, 0,
4975                                  "iget: bad extended attribute block %llu",
4976                                  ei->i_file_acl);
4977                 ret = -EFSCORRUPTED;
4978                 goto bad_inode;
4979         } else if (!ext4_has_inline_data(inode)) {
4980                 /* validate the block references in the inode */
4981                 if (!(EXT4_SB(sb)->s_mount_state & EXT4_FC_REPLAY) &&
4982                         (S_ISREG(inode->i_mode) || S_ISDIR(inode->i_mode) ||
4983                         (S_ISLNK(inode->i_mode) &&
4984                         !ext4_inode_is_fast_symlink(inode)))) {
4985                         if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS))
4986                                 ret = ext4_ext_check_inode(inode);
4987                         else
4988                                 ret = ext4_ind_check_inode(inode);
4989                 }
4990         }
4991         if (ret)
4992                 goto bad_inode;
4993
4994         if (S_ISREG(inode->i_mode)) {
4995                 inode->i_op = &ext4_file_inode_operations;
4996                 inode->i_fop = &ext4_file_operations;
4997                 ext4_set_aops(inode);
4998         } else if (S_ISDIR(inode->i_mode)) {
4999                 inode->i_op = &ext4_dir_inode_operations;
5000                 inode->i_fop = &ext4_dir_operations;
5001         } else if (S_ISLNK(inode->i_mode)) {
5002                 /* VFS does not allow setting these so must be corruption */
5003                 if (IS_APPEND(inode) || IS_IMMUTABLE(inode)) {
5004                         ext4_error_inode(inode, function, line, 0,
5005                                          "iget: immutable or append flags "
5006                                          "not allowed on symlinks");
5007                         ret = -EFSCORRUPTED;
5008                         goto bad_inode;
5009                 }
5010                 if (IS_ENCRYPTED(inode)) {
5011                         inode->i_op = &ext4_encrypted_symlink_inode_operations;
5012                 } else if (ext4_inode_is_fast_symlink(inode)) {
5013                         inode->i_link = (char *)ei->i_data;
5014                         inode->i_op = &ext4_fast_symlink_inode_operations;
5015                         nd_terminate_link(ei->i_data, inode->i_size,
5016                                 sizeof(ei->i_data) - 1);
5017                 } else {
5018                         inode->i_op = &ext4_symlink_inode_operations;
5019                 }
5020         } else if (S_ISCHR(inode->i_mode) || S_ISBLK(inode->i_mode) ||
5021               S_ISFIFO(inode->i_mode) || S_ISSOCK(inode->i_mode)) {
5022                 inode->i_op = &ext4_special_inode_operations;
5023                 if (raw_inode->i_block[0])
5024                         init_special_inode(inode, inode->i_mode,
5025                            old_decode_dev(le32_to_cpu(raw_inode->i_block[0])));
5026                 else
5027                         init_special_inode(inode, inode->i_mode,
5028                            new_decode_dev(le32_to_cpu(raw_inode->i_block[1])));
5029         } else if (ino == EXT4_BOOT_LOADER_INO) {
5030                 make_bad_inode(inode);
5031         } else {
5032                 ret = -EFSCORRUPTED;
5033                 ext4_error_inode(inode, function, line, 0,
5034                                  "iget: bogus i_mode (%o)", inode->i_mode);
5035                 goto bad_inode;
5036         }
5037         if (IS_CASEFOLDED(inode) && !ext4_has_feature_casefold(inode->i_sb))
5038                 ext4_error_inode(inode, function, line, 0,
5039                                  "casefold flag without casefold feature");
5040         brelse(iloc.bh);
5041
5042         unlock_new_inode(inode);
5043         return inode;
5044
5045 bad_inode:
5046         brelse(iloc.bh);
5047         iget_failed(inode);
5048         return ERR_PTR(ret);
5049 }
5050
5051 static void __ext4_update_other_inode_time(struct super_block *sb,
5052                                            unsigned long orig_ino,
5053                                            unsigned long ino,
5054                                            struct ext4_inode *raw_inode)
5055 {
5056         struct inode *inode;
5057
5058         inode = find_inode_by_ino_rcu(sb, ino);
5059         if (!inode)
5060                 return;
5061
5062         if (!inode_is_dirtytime_only(inode))
5063                 return;
5064
5065         spin_lock(&inode->i_lock);
5066         if (inode_is_dirtytime_only(inode)) {
5067                 struct ext4_inode_info  *ei = EXT4_I(inode);
5068
5069                 inode->i_state &= ~I_DIRTY_TIME;
5070                 spin_unlock(&inode->i_lock);
5071
5072                 spin_lock(&ei->i_raw_lock);
5073                 EXT4_INODE_SET_XTIME(i_ctime, inode, raw_inode);
5074                 EXT4_INODE_SET_XTIME(i_mtime, inode, raw_inode);
5075                 EXT4_INODE_SET_XTIME(i_atime, inode, raw_inode);
5076                 ext4_inode_csum_set(inode, raw_inode, ei);
5077                 spin_unlock(&ei->i_raw_lock);
5078                 trace_ext4_other_inode_update_time(inode, orig_ino);
5079                 return;
5080         }
5081         spin_unlock(&inode->i_lock);
5082 }
5083
5084 /*
5085  * Opportunistically update the other time fields for other inodes in
5086  * the same inode table block.
5087  */
5088 static void ext4_update_other_inodes_time(struct super_block *sb,
5089                                           unsigned long orig_ino, char *buf)
5090 {
5091         unsigned long ino;
5092         int i, inodes_per_block = EXT4_SB(sb)->s_inodes_per_block;
5093         int inode_size = EXT4_INODE_SIZE(sb);
5094
5095         /*
5096          * Calculate the first inode in the inode table block.  Inode
5097          * numbers are one-based.  That is, the first inode in a block
5098          * (assuming 4k blocks and 256 byte inodes) is (n*16 + 1).
5099          */
5100         ino = ((orig_ino - 1) & ~(inodes_per_block - 1)) + 1;
5101         rcu_read_lock();
5102         for (i = 0; i < inodes_per_block; i++, ino++, buf += inode_size) {
5103                 if (ino == orig_ino)
5104                         continue;
5105                 __ext4_update_other_inode_time(sb, orig_ino, ino,
5106                                                (struct ext4_inode *)buf);
5107         }
5108         rcu_read_unlock();
5109 }
5110
5111 /*
5112  * Post the struct inode info into an on-disk inode location in the
5113  * buffer-cache.  This gobbles the caller's reference to the
5114  * buffer_head in the inode location struct.
5115  *
5116  * The caller must have write access to iloc->bh.
5117  */
5118 static int ext4_do_update_inode(handle_t *handle,
5119                                 struct inode *inode,
5120                                 struct ext4_iloc *iloc)
5121 {
5122         struct ext4_inode *raw_inode = ext4_raw_inode(iloc);
5123         struct ext4_inode_info *ei = EXT4_I(inode);
5124         struct buffer_head *bh = iloc->bh;
5125         struct super_block *sb = inode->i_sb;
5126         int err;
5127         int need_datasync = 0, set_large_file = 0;
5128
5129         spin_lock(&ei->i_raw_lock);
5130
5131         /*
5132          * For fields not tracked in the in-memory inode, initialise them
5133          * to zero for new inodes.
5134          */
5135         if (ext4_test_inode_state(inode, EXT4_STATE_NEW))
5136                 memset(raw_inode, 0, EXT4_SB(inode->i_sb)->s_inode_size);
5137
5138         if (READ_ONCE(ei->i_disksize) != ext4_isize(inode->i_sb, raw_inode))
5139                 need_datasync = 1;
5140         if (ei->i_disksize > 0x7fffffffULL) {
5141                 if (!ext4_has_feature_large_file(sb) ||
5142                     EXT4_SB(sb)->s_es->s_rev_level == cpu_to_le32(EXT4_GOOD_OLD_REV))
5143                         set_large_file = 1;
5144         }
5145
5146         err = ext4_fill_raw_inode(inode, raw_inode);
5147         spin_unlock(&ei->i_raw_lock);
5148         if (err) {
5149                 EXT4_ERROR_INODE(inode, "corrupted inode contents");
5150                 goto out_brelse;
5151         }
5152
5153         if (inode->i_sb->s_flags & SB_LAZYTIME)
5154                 ext4_update_other_inodes_time(inode->i_sb, inode->i_ino,
5155                                               bh->b_data);
5156
5157         BUFFER_TRACE(bh, "call ext4_handle_dirty_metadata");
5158         err = ext4_handle_dirty_metadata(handle, NULL, bh);
5159         if (err)
5160                 goto out_error;
5161         ext4_clear_inode_state(inode, EXT4_STATE_NEW);
5162         if (set_large_file) {
5163                 BUFFER_TRACE(EXT4_SB(sb)->s_sbh, "get write access");
5164                 err = ext4_journal_get_write_access(handle, sb,
5165                                                     EXT4_SB(sb)->s_sbh,
5166                                                     EXT4_JTR_NONE);
5167                 if (err)
5168                         goto out_error;
5169                 lock_buffer(EXT4_SB(sb)->s_sbh);
5170                 ext4_set_feature_large_file(sb);
5171                 ext4_superblock_csum_set(sb);
5172                 unlock_buffer(EXT4_SB(sb)->s_sbh);
5173                 ext4_handle_sync(handle);
5174                 err = ext4_handle_dirty_metadata(handle, NULL,
5175                                                  EXT4_SB(sb)->s_sbh);
5176         }
5177         ext4_update_inode_fsync_trans(handle, inode, need_datasync);
5178 out_error:
5179         ext4_std_error(inode->i_sb, err);
5180 out_brelse:
5181         brelse(bh);
5182         return err;
5183 }
5184
5185 /*
5186  * ext4_write_inode()
5187  *
5188  * We are called from a few places:
5189  *
5190  * - Within generic_file_aio_write() -> generic_write_sync() for O_SYNC files.
5191  *   Here, there will be no transaction running. We wait for any running
5192  *   transaction to commit.
5193  *
5194  * - Within flush work (sys_sync(), kupdate and such).
5195  *   We wait on commit, if told to.
5196  *
5197  * - Within iput_final() -> write_inode_now()
5198  *   We wait on commit, if told to.
5199  *
5200  * In all cases it is actually safe for us to return without doing anything,
5201  * because the inode has been copied into a raw inode buffer in
5202  * ext4_mark_inode_dirty().  This is a correctness thing for WB_SYNC_ALL
5203  * writeback.
5204  *
5205  * Note that we are absolutely dependent upon all inode dirtiers doing the
5206  * right thing: they *must* call mark_inode_dirty() after dirtying info in
5207  * which we are interested.
5208  *
5209  * It would be a bug for them to not do this.  The code:
5210  *
5211  *      mark_inode_dirty(inode)
5212  *      stuff();
5213  *      inode->i_size = expr;
5214  *
5215  * is in error because write_inode() could occur while `stuff()' is running,
5216  * and the new i_size will be lost.  Plus the inode will no longer be on the
5217  * superblock's dirty inode list.
5218  */
5219 int ext4_write_inode(struct inode *inode, struct writeback_control *wbc)
5220 {
5221         int err;
5222
5223         if (WARN_ON_ONCE(current->flags & PF_MEMALLOC) ||
5224             sb_rdonly(inode->i_sb))
5225                 return 0;
5226
5227         if (unlikely(ext4_forced_shutdown(EXT4_SB(inode->i_sb))))
5228                 return -EIO;
5229
5230         if (EXT4_SB(inode->i_sb)->s_journal) {
5231                 if (ext4_journal_current_handle()) {
5232                         ext4_debug("called recursively, non-PF_MEMALLOC!\n");
5233                         dump_stack();
5234                         return -EIO;
5235                 }
5236
5237                 /*
5238                  * No need to force transaction in WB_SYNC_NONE mode. Also
5239                  * ext4_sync_fs() will force the commit after everything is
5240                  * written.
5241                  */
5242                 if (wbc->sync_mode != WB_SYNC_ALL || wbc->for_sync)
5243                         return 0;
5244
5245                 err = ext4_fc_commit(EXT4_SB(inode->i_sb)->s_journal,
5246                                                 EXT4_I(inode)->i_sync_tid);
5247         } else {
5248                 struct ext4_iloc iloc;
5249
5250                 err = __ext4_get_inode_loc_noinmem(inode, &iloc);
5251                 if (err)
5252                         return err;
5253                 /*
5254                  * sync(2) will flush the whole buffer cache. No need to do
5255                  * it here separately for each inode.
5256                  */
5257                 if (wbc->sync_mode == WB_SYNC_ALL && !wbc->for_sync)
5258                         sync_dirty_buffer(iloc.bh);
5259                 if (buffer_req(iloc.bh) && !buffer_uptodate(iloc.bh)) {
5260                         ext4_error_inode_block(inode, iloc.bh->b_blocknr, EIO,
5261                                                "IO error syncing inode");
5262                         err = -EIO;
5263                 }
5264                 brelse(iloc.bh);
5265         }
5266         return err;
5267 }
5268
5269 /*
5270  * In data=journal mode ext4_journalled_invalidate_folio() may fail to invalidate
5271  * buffers that are attached to a folio straddling i_size and are undergoing
5272  * commit. In that case we have to wait for commit to finish and try again.
5273  */
5274 static void ext4_wait_for_tail_page_commit(struct inode *inode)
5275 {
5276         unsigned offset;
5277         journal_t *journal = EXT4_SB(inode->i_sb)->s_journal;
5278         tid_t commit_tid = 0;
5279         int ret;
5280
5281         offset = inode->i_size & (PAGE_SIZE - 1);
5282         /*
5283          * If the folio is fully truncated, we don't need to wait for any commit
5284          * (and we even should not as __ext4_journalled_invalidate_folio() may
5285          * strip all buffers from the folio but keep the folio dirty which can then
5286          * confuse e.g. concurrent ext4_writepage() seeing dirty folio without
5287          * buffers). Also we don't need to wait for any commit if all buffers in
5288          * the folio remain valid. This is most beneficial for the common case of
5289          * blocksize == PAGESIZE.
5290          */
5291         if (!offset || offset > (PAGE_SIZE - i_blocksize(inode)))
5292                 return;
5293         while (1) {
5294                 struct folio *folio = filemap_lock_folio(inode->i_mapping,
5295                                       inode->i_size >> PAGE_SHIFT);
5296                 if (!folio)
5297                         return;
5298                 ret = __ext4_journalled_invalidate_folio(folio, offset,
5299                                                 folio_size(folio) - offset);
5300                 folio_unlock(folio);
5301                 folio_put(folio);
5302                 if (ret != -EBUSY)
5303                         return;
5304                 commit_tid = 0;
5305                 read_lock(&journal->j_state_lock);
5306                 if (journal->j_committing_transaction)
5307                         commit_tid = journal->j_committing_transaction->t_tid;
5308                 read_unlock(&journal->j_state_lock);
5309                 if (commit_tid)
5310                         jbd2_log_wait_commit(journal, commit_tid);
5311         }
5312 }
5313
5314 /*
5315  * ext4_setattr()
5316  *
5317  * Called from notify_change.
5318  *
5319  * We want to trap VFS attempts to truncate the file as soon as
5320  * possible.  In particular, we want to make sure that when the VFS
5321  * shrinks i_size, we put the inode on the orphan list and modify
5322  * i_disksize immediately, so that during the subsequent flushing of
5323  * dirty pages and freeing of disk blocks, we can guarantee that any
5324  * commit will leave the blocks being flushed in an unused state on
5325  * disk.  (On recovery, the inode will get truncated and the blocks will
5326  * be freed, so we have a strong guarantee that no future commit will
5327  * leave these blocks visible to the user.)
5328  *
5329  * Another thing we have to assure is that if we are in ordered mode
5330  * and inode is still attached to the committing transaction, we must
5331  * we start writeout of all the dirty pages which are being truncated.
5332  * This way we are sure that all the data written in the previous
5333  * transaction are already on disk (truncate waits for pages under
5334  * writeback).
5335  *
5336  * Called with inode->i_rwsem down.
5337  */
5338 int ext4_setattr(struct user_namespace *mnt_userns, struct dentry *dentry,
5339                  struct iattr *attr)
5340 {
5341         struct inode *inode = d_inode(dentry);
5342         int error, rc = 0;
5343         int orphan = 0;
5344         const unsigned int ia_valid = attr->ia_valid;
5345
5346         if (unlikely(ext4_forced_shutdown(EXT4_SB(inode->i_sb))))
5347                 return -EIO;
5348
5349         if (unlikely(IS_IMMUTABLE(inode)))
5350                 return -EPERM;
5351
5352         if (unlikely(IS_APPEND(inode) &&
5353                      (ia_valid & (ATTR_MODE | ATTR_UID |
5354                                   ATTR_GID | ATTR_TIMES_SET))))
5355                 return -EPERM;
5356
5357         error = setattr_prepare(mnt_userns, dentry, attr);
5358         if (error)
5359                 return error;
5360
5361         error = fscrypt_prepare_setattr(dentry, attr);
5362         if (error)
5363                 return error;
5364
5365         error = fsverity_prepare_setattr(dentry, attr);
5366         if (error)
5367                 return error;
5368
5369         if (is_quota_modification(mnt_userns, inode, attr)) {
5370                 error = dquot_initialize(inode);
5371                 if (error)
5372                         return error;
5373         }
5374
5375         if (i_uid_needs_update(mnt_userns, attr, inode) ||
5376             i_gid_needs_update(mnt_userns, attr, inode)) {
5377                 handle_t *handle;
5378
5379                 /* (user+group)*(old+new) structure, inode write (sb,
5380                  * inode block, ? - but truncate inode update has it) */
5381                 handle = ext4_journal_start(inode, EXT4_HT_QUOTA,
5382                         (EXT4_MAXQUOTAS_INIT_BLOCKS(inode->i_sb) +
5383                          EXT4_MAXQUOTAS_DEL_BLOCKS(inode->i_sb)) + 3);
5384                 if (IS_ERR(handle)) {
5385                         error = PTR_ERR(handle);
5386                         goto err_out;
5387                 }
5388
5389                 /* dquot_transfer() calls back ext4_get_inode_usage() which
5390                  * counts xattr inode references.
5391                  */
5392                 down_read(&EXT4_I(inode)->xattr_sem);
5393                 error = dquot_transfer(mnt_userns, inode, attr);
5394                 up_read(&EXT4_I(inode)->xattr_sem);
5395
5396                 if (error) {
5397                         ext4_journal_stop(handle);
5398                         return error;
5399                 }
5400                 /* Update corresponding info in inode so that everything is in
5401                  * one transaction */
5402                 i_uid_update(mnt_userns, attr, inode);
5403                 i_gid_update(mnt_userns, attr, inode);
5404                 error = ext4_mark_inode_dirty(handle, inode);
5405                 ext4_journal_stop(handle);
5406                 if (unlikely(error)) {
5407                         return error;
5408                 }
5409         }
5410
5411         if (attr->ia_valid & ATTR_SIZE) {
5412                 handle_t *handle;
5413                 loff_t oldsize = inode->i_size;
5414                 loff_t old_disksize;
5415                 int shrink = (attr->ia_size < inode->i_size);
5416
5417                 if (!(ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS))) {
5418                         struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
5419
5420                         if (attr->ia_size > sbi->s_bitmap_maxbytes) {
5421                                 return -EFBIG;
5422                         }
5423                 }
5424                 if (!S_ISREG(inode->i_mode)) {
5425                         return -EINVAL;
5426                 }
5427
5428                 if (IS_I_VERSION(inode) && attr->ia_size != inode->i_size)
5429                         inode_inc_iversion(inode);
5430
5431                 if (shrink) {
5432                         if (ext4_should_order_data(inode)) {
5433                                 error = ext4_begin_ordered_truncate(inode,
5434                                                             attr->ia_size);
5435                                 if (error)
5436                                         goto err_out;
5437                         }
5438                         /*
5439                          * Blocks are going to be removed from the inode. Wait
5440                          * for dio in flight.
5441                          */
5442                         inode_dio_wait(inode);
5443                 }
5444
5445                 filemap_invalidate_lock(inode->i_mapping);
5446
5447                 rc = ext4_break_layouts(inode);
5448                 if (rc) {
5449                         filemap_invalidate_unlock(inode->i_mapping);
5450                         goto err_out;
5451                 }
5452
5453                 if (attr->ia_size != inode->i_size) {
5454                         handle = ext4_journal_start(inode, EXT4_HT_INODE, 3);
5455                         if (IS_ERR(handle)) {
5456                                 error = PTR_ERR(handle);
5457                                 goto out_mmap_sem;
5458                         }
5459                         if (ext4_handle_valid(handle) && shrink) {
5460                                 error = ext4_orphan_add(handle, inode);
5461                                 orphan = 1;
5462                         }
5463                         /*
5464                          * Update c/mtime on truncate up, ext4_truncate() will
5465                          * update c/mtime in shrink case below
5466                          */
5467                         if (!shrink) {
5468                                 inode->i_mtime = current_time(inode);
5469                                 inode->i_ctime = inode->i_mtime;
5470                         }
5471
5472                         if (shrink)
5473                                 ext4_fc_track_range(handle, inode,
5474                                         (attr->ia_size > 0 ? attr->ia_size - 1 : 0) >>
5475                                         inode->i_sb->s_blocksize_bits,
5476                                         EXT_MAX_BLOCKS - 1);
5477                         else
5478                                 ext4_fc_track_range(
5479                                         handle, inode,
5480                                         (oldsize > 0 ? oldsize - 1 : oldsize) >>
5481                                         inode->i_sb->s_blocksize_bits,
5482                                         (attr->ia_size > 0 ? attr->ia_size - 1 : 0) >>
5483                                         inode->i_sb->s_blocksize_bits);
5484
5485                         down_write(&EXT4_I(inode)->i_data_sem);
5486                         old_disksize = EXT4_I(inode)->i_disksize;
5487                         EXT4_I(inode)->i_disksize = attr->ia_size;
5488                         rc = ext4_mark_inode_dirty(handle, inode);
5489                         if (!error)
5490                                 error = rc;
5491                         /*
5492                          * We have to update i_size under i_data_sem together
5493                          * with i_disksize to avoid races with writeback code
5494                          * running ext4_wb_update_i_disksize().
5495                          */
5496                         if (!error)
5497                                 i_size_write(inode, attr->ia_size);
5498                         else
5499                                 EXT4_I(inode)->i_disksize = old_disksize;
5500                         up_write(&EXT4_I(inode)->i_data_sem);
5501                         ext4_journal_stop(handle);
5502                         if (error)
5503                                 goto out_mmap_sem;
5504                         if (!shrink) {
5505                                 pagecache_isize_extended(inode, oldsize,
5506                                                          inode->i_size);
5507                         } else if (ext4_should_journal_data(inode)) {
5508                                 ext4_wait_for_tail_page_commit(inode);
5509                         }
5510                 }
5511
5512                 /*
5513                  * Truncate pagecache after we've waited for commit
5514                  * in data=journal mode to make pages freeable.
5515                  */
5516                 truncate_pagecache(inode, inode->i_size);
5517                 /*
5518                  * Call ext4_truncate() even if i_size didn't change to
5519                  * truncate possible preallocated blocks.
5520                  */
5521                 if (attr->ia_size <= oldsize) {
5522                         rc = ext4_truncate(inode);
5523                         if (rc)
5524                                 error = rc;
5525                 }
5526 out_mmap_sem:
5527                 filemap_invalidate_unlock(inode->i_mapping);
5528         }
5529
5530         if (!error) {
5531                 setattr_copy(mnt_userns, inode, attr);
5532                 mark_inode_dirty(inode);
5533         }
5534
5535         /*
5536          * If the call to ext4_truncate failed to get a transaction handle at
5537          * all, we need to clean up the in-core orphan list manually.
5538          */
5539         if (orphan && inode->i_nlink)
5540                 ext4_orphan_del(NULL, inode);
5541
5542         if (!error && (ia_valid & ATTR_MODE))
5543                 rc = posix_acl_chmod(mnt_userns, inode, inode->i_mode);
5544
5545 err_out:
5546         if  (error)
5547                 ext4_std_error(inode->i_sb, error);
5548         if (!error)
5549                 error = rc;
5550         return error;
5551 }
5552
5553 int ext4_getattr(struct user_namespace *mnt_userns, const struct path *path,
5554                  struct kstat *stat, u32 request_mask, unsigned int query_flags)
5555 {
5556         struct inode *inode = d_inode(path->dentry);
5557         struct ext4_inode *raw_inode;
5558         struct ext4_inode_info *ei = EXT4_I(inode);
5559         unsigned int flags;
5560
5561         if ((request_mask & STATX_BTIME) &&
5562             EXT4_FITS_IN_INODE(raw_inode, ei, i_crtime)) {
5563                 stat->result_mask |= STATX_BTIME;
5564                 stat->btime.tv_sec = ei->i_crtime.tv_sec;
5565                 stat->btime.tv_nsec = ei->i_crtime.tv_nsec;
5566         }
5567
5568         flags = ei->i_flags & EXT4_FL_USER_VISIBLE;
5569         if (flags & EXT4_APPEND_FL)
5570                 stat->attributes |= STATX_ATTR_APPEND;
5571         if (flags & EXT4_COMPR_FL)
5572                 stat->attributes |= STATX_ATTR_COMPRESSED;
5573         if (flags & EXT4_ENCRYPT_FL)
5574                 stat->attributes |= STATX_ATTR_ENCRYPTED;
5575         if (flags & EXT4_IMMUTABLE_FL)
5576                 stat->attributes |= STATX_ATTR_IMMUTABLE;
5577         if (flags & EXT4_NODUMP_FL)
5578                 stat->attributes |= STATX_ATTR_NODUMP;
5579         if (flags & EXT4_VERITY_FL)
5580                 stat->attributes |= STATX_ATTR_VERITY;
5581
5582         stat->attributes_mask |= (STATX_ATTR_APPEND |
5583                                   STATX_ATTR_COMPRESSED |
5584                                   STATX_ATTR_ENCRYPTED |
5585                                   STATX_ATTR_IMMUTABLE |
5586                                   STATX_ATTR_NODUMP |
5587                                   STATX_ATTR_VERITY);
5588
5589         generic_fillattr(mnt_userns, inode, stat);
5590         return 0;
5591 }
5592
5593 int ext4_file_getattr(struct user_namespace *mnt_userns,
5594                       const struct path *path, struct kstat *stat,
5595                       u32 request_mask, unsigned int query_flags)
5596 {
5597         struct inode *inode = d_inode(path->dentry);
5598         u64 delalloc_blocks;
5599
5600         ext4_getattr(mnt_userns, path, stat, request_mask, query_flags);
5601
5602         /*
5603          * If there is inline data in the inode, the inode will normally not
5604          * have data blocks allocated (it may have an external xattr block).
5605          * Report at least one sector for such files, so tools like tar, rsync,
5606          * others don't incorrectly think the file is completely sparse.
5607          */
5608         if (unlikely(ext4_has_inline_data(inode)))
5609                 stat->blocks += (stat->size + 511) >> 9;
5610
5611         /*
5612          * We can't update i_blocks if the block allocation is delayed
5613          * otherwise in the case of system crash before the real block
5614          * allocation is done, we will have i_blocks inconsistent with
5615          * on-disk file blocks.
5616          * We always keep i_blocks updated together with real
5617          * allocation. But to not confuse with user, stat
5618          * will return the blocks that include the delayed allocation
5619          * blocks for this file.
5620          */
5621         delalloc_blocks = EXT4_C2B(EXT4_SB(inode->i_sb),
5622                                    EXT4_I(inode)->i_reserved_data_blocks);
5623         stat->blocks += delalloc_blocks << (inode->i_sb->s_blocksize_bits - 9);
5624         return 0;
5625 }
5626
5627 static int ext4_index_trans_blocks(struct inode *inode, int lblocks,
5628                                    int pextents)
5629 {
5630         if (!(ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS)))
5631                 return ext4_ind_trans_blocks(inode, lblocks);
5632         return ext4_ext_index_trans_blocks(inode, pextents);
5633 }
5634
5635 /*
5636  * Account for index blocks, block groups bitmaps and block group
5637  * descriptor blocks if modify datablocks and index blocks
5638  * worse case, the indexs blocks spread over different block groups
5639  *
5640  * If datablocks are discontiguous, they are possible to spread over
5641  * different block groups too. If they are contiguous, with flexbg,
5642  * they could still across block group boundary.
5643  *
5644  * Also account for superblock, inode, quota and xattr blocks
5645  */
5646 static int ext4_meta_trans_blocks(struct inode *inode, int lblocks,
5647                                   int pextents)
5648 {
5649         ext4_group_t groups, ngroups = ext4_get_groups_count(inode->i_sb);
5650         int gdpblocks;
5651         int idxblocks;
5652         int ret = 0;
5653
5654         /*
5655          * How many index blocks need to touch to map @lblocks logical blocks
5656          * to @pextents physical extents?
5657          */
5658         idxblocks = ext4_index_trans_blocks(inode, lblocks, pextents);
5659
5660         ret = idxblocks;
5661
5662         /*
5663          * Now let's see how many group bitmaps and group descriptors need
5664          * to account
5665          */
5666         groups = idxblocks + pextents;
5667         gdpblocks = groups;
5668         if (groups > ngroups)
5669                 groups = ngroups;
5670         if (groups > EXT4_SB(inode->i_sb)->s_gdb_count)
5671                 gdpblocks = EXT4_SB(inode->i_sb)->s_gdb_count;
5672
5673         /* bitmaps and block group descriptor blocks */
5674         ret += groups + gdpblocks;
5675
5676         /* Blocks for super block, inode, quota and xattr blocks */
5677         ret += EXT4_META_TRANS_BLOCKS(inode->i_sb);
5678
5679         return ret;
5680 }
5681
5682 /*
5683  * Calculate the total number of credits to reserve to fit
5684  * the modification of a single pages into a single transaction,
5685  * which may include multiple chunks of block allocations.
5686  *
5687  * This could be called via ext4_write_begin()
5688  *
5689  * We need to consider the worse case, when
5690  * one new block per extent.
5691  */
5692 int ext4_writepage_trans_blocks(struct inode *inode)
5693 {
5694         int bpp = ext4_journal_blocks_per_page(inode);
5695         int ret;
5696
5697         ret = ext4_meta_trans_blocks(inode, bpp, bpp);
5698
5699         /* Account for data blocks for journalled mode */
5700         if (ext4_should_journal_data(inode))
5701                 ret += bpp;
5702         return ret;
5703 }
5704
5705 /*
5706  * Calculate the journal credits for a chunk of data modification.
5707  *
5708  * This is called from DIO, fallocate or whoever calling
5709  * ext4_map_blocks() to map/allocate a chunk of contiguous disk blocks.
5710  *
5711  * journal buffers for data blocks are not included here, as DIO
5712  * and fallocate do no need to journal data buffers.
5713  */
5714 int ext4_chunk_trans_blocks(struct inode *inode, int nrblocks)
5715 {
5716         return ext4_meta_trans_blocks(inode, nrblocks, 1);
5717 }
5718
5719 /*
5720  * The caller must have previously called ext4_reserve_inode_write().
5721  * Give this, we know that the caller already has write access to iloc->bh.
5722  */
5723 int ext4_mark_iloc_dirty(handle_t *handle,
5724                          struct inode *inode, struct ext4_iloc *iloc)
5725 {
5726         int err = 0;
5727
5728         if (unlikely(ext4_forced_shutdown(EXT4_SB(inode->i_sb)))) {
5729                 put_bh(iloc->bh);
5730                 return -EIO;
5731         }
5732         ext4_fc_track_inode(handle, inode);
5733
5734         if (IS_I_VERSION(inode))
5735                 inode_inc_iversion(inode);
5736
5737         /* the do_update_inode consumes one bh->b_count */
5738         get_bh(iloc->bh);
5739
5740         /* ext4_do_update_inode() does jbd2_journal_dirty_metadata */
5741         err = ext4_do_update_inode(handle, inode, iloc);
5742         put_bh(iloc->bh);
5743         return err;
5744 }
5745
5746 /*
5747  * On success, We end up with an outstanding reference count against
5748  * iloc->bh.  This _must_ be cleaned up later.
5749  */
5750
5751 int
5752 ext4_reserve_inode_write(handle_t *handle, struct inode *inode,
5753                          struct ext4_iloc *iloc)
5754 {
5755         int err;
5756
5757         if (unlikely(ext4_forced_shutdown(EXT4_SB(inode->i_sb))))
5758                 return -EIO;
5759
5760         err = ext4_get_inode_loc(inode, iloc);
5761         if (!err) {
5762                 BUFFER_TRACE(iloc->bh, "get_write_access");
5763                 err = ext4_journal_get_write_access(handle, inode->i_sb,
5764                                                     iloc->bh, EXT4_JTR_NONE);
5765                 if (err) {
5766                         brelse(iloc->bh);
5767                         iloc->bh = NULL;
5768                 }
5769         }
5770         ext4_std_error(inode->i_sb, err);
5771         return err;
5772 }
5773
5774 static int __ext4_expand_extra_isize(struct inode *inode,
5775                                      unsigned int new_extra_isize,
5776                                      struct ext4_iloc *iloc,
5777                                      handle_t *handle, int *no_expand)
5778 {
5779         struct ext4_inode *raw_inode;
5780         struct ext4_xattr_ibody_header *header;
5781         unsigned int inode_size = EXT4_INODE_SIZE(inode->i_sb);
5782         struct ext4_inode_info *ei = EXT4_I(inode);
5783         int error;
5784
5785         /* this was checked at iget time, but double check for good measure */
5786         if ((EXT4_GOOD_OLD_INODE_SIZE + ei->i_extra_isize > inode_size) ||
5787             (ei->i_extra_isize & 3)) {
5788                 EXT4_ERROR_INODE(inode, "bad extra_isize %u (inode size %u)",
5789                                  ei->i_extra_isize,
5790                                  EXT4_INODE_SIZE(inode->i_sb));
5791                 return -EFSCORRUPTED;
5792         }
5793         if ((new_extra_isize < ei->i_extra_isize) ||
5794             (new_extra_isize < 4) ||
5795             (new_extra_isize > inode_size - EXT4_GOOD_OLD_INODE_SIZE))
5796                 return -EINVAL; /* Should never happen */
5797
5798         raw_inode = ext4_raw_inode(iloc);
5799
5800         header = IHDR(inode, raw_inode);
5801
5802         /* No extended attributes present */
5803         if (!ext4_test_inode_state(inode, EXT4_STATE_XATTR) ||
5804             header->h_magic != cpu_to_le32(EXT4_XATTR_MAGIC)) {
5805                 memset((void *)raw_inode + EXT4_GOOD_OLD_INODE_SIZE +
5806                        EXT4_I(inode)->i_extra_isize, 0,
5807                        new_extra_isize - EXT4_I(inode)->i_extra_isize);
5808                 EXT4_I(inode)->i_extra_isize = new_extra_isize;
5809                 return 0;
5810         }
5811
5812         /* try to expand with EAs present */
5813         error = ext4_expand_extra_isize_ea(inode, new_extra_isize,
5814                                            raw_inode, handle);
5815         if (error) {
5816                 /*
5817                  * Inode size expansion failed; don't try again
5818                  */
5819                 *no_expand = 1;
5820         }
5821
5822         return error;
5823 }
5824
5825 /*
5826  * Expand an inode by new_extra_isize bytes.
5827  * Returns 0 on success or negative error number on failure.
5828  */
5829 static int ext4_try_to_expand_extra_isize(struct inode *inode,
5830                                           unsigned int new_extra_isize,
5831                                           struct ext4_iloc iloc,
5832                                           handle_t *handle)
5833 {
5834         int no_expand;
5835         int error;
5836
5837         if (ext4_test_inode_state(inode, EXT4_STATE_NO_EXPAND))
5838                 return -EOVERFLOW;
5839
5840         /*
5841          * In nojournal mode, we can immediately attempt to expand
5842          * the inode.  When journaled, we first need to obtain extra
5843          * buffer credits since we may write into the EA block
5844          * with this same handle. If journal_extend fails, then it will
5845          * only result in a minor loss of functionality for that inode.
5846          * If this is felt to be critical, then e2fsck should be run to
5847          * force a large enough s_min_extra_isize.
5848          */
5849         if (ext4_journal_extend(handle,
5850                                 EXT4_DATA_TRANS_BLOCKS(inode->i_sb), 0) != 0)
5851                 return -ENOSPC;
5852
5853         if (ext4_write_trylock_xattr(inode, &no_expand) == 0)
5854                 return -EBUSY;
5855
5856         error = __ext4_expand_extra_isize(inode, new_extra_isize, &iloc,
5857                                           handle, &no_expand);
5858         ext4_write_unlock_xattr(inode, &no_expand);
5859
5860         return error;
5861 }
5862
5863 int ext4_expand_extra_isize(struct inode *inode,
5864                             unsigned int new_extra_isize,
5865                             struct ext4_iloc *iloc)
5866 {
5867         handle_t *handle;
5868         int no_expand;
5869         int error, rc;
5870
5871         if (ext4_test_inode_state(inode, EXT4_STATE_NO_EXPAND)) {
5872                 brelse(iloc->bh);
5873                 return -EOVERFLOW;
5874         }
5875
5876         handle = ext4_journal_start(inode, EXT4_HT_INODE,
5877                                     EXT4_DATA_TRANS_BLOCKS(inode->i_sb));
5878         if (IS_ERR(handle)) {
5879                 error = PTR_ERR(handle);
5880                 brelse(iloc->bh);
5881                 return error;
5882         }
5883
5884         ext4_write_lock_xattr(inode, &no_expand);
5885
5886         BUFFER_TRACE(iloc->bh, "get_write_access");
5887         error = ext4_journal_get_write_access(handle, inode->i_sb, iloc->bh,
5888                                               EXT4_JTR_NONE);
5889         if (error) {
5890                 brelse(iloc->bh);
5891                 goto out_unlock;
5892         }
5893
5894         error = __ext4_expand_extra_isize(inode, new_extra_isize, iloc,
5895                                           handle, &no_expand);
5896
5897         rc = ext4_mark_iloc_dirty(handle, inode, iloc);
5898         if (!error)
5899                 error = rc;
5900
5901 out_unlock:
5902         ext4_write_unlock_xattr(inode, &no_expand);
5903         ext4_journal_stop(handle);
5904         return error;
5905 }
5906
5907 /*
5908  * What we do here is to mark the in-core inode as clean with respect to inode
5909  * dirtiness (it may still be data-dirty).
5910  * This means that the in-core inode may be reaped by prune_icache
5911  * without having to perform any I/O.  This is a very good thing,
5912  * because *any* task may call prune_icache - even ones which
5913  * have a transaction open against a different journal.
5914  *
5915  * Is this cheating?  Not really.  Sure, we haven't written the
5916  * inode out, but prune_icache isn't a user-visible syncing function.
5917  * Whenever the user wants stuff synced (sys_sync, sys_msync, sys_fsync)
5918  * we start and wait on commits.
5919  */
5920 int __ext4_mark_inode_dirty(handle_t *handle, struct inode *inode,
5921                                 const char *func, unsigned int line)
5922 {
5923         struct ext4_iloc iloc;
5924         struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
5925         int err;
5926
5927         might_sleep();
5928         trace_ext4_mark_inode_dirty(inode, _RET_IP_);
5929         err = ext4_reserve_inode_write(handle, inode, &iloc);
5930         if (err)
5931                 goto out;
5932
5933         if (EXT4_I(inode)->i_extra_isize < sbi->s_want_extra_isize)
5934                 ext4_try_to_expand_extra_isize(inode, sbi->s_want_extra_isize,
5935                                                iloc, handle);
5936
5937         err = ext4_mark_iloc_dirty(handle, inode, &iloc);
5938 out:
5939         if (unlikely(err))
5940                 ext4_error_inode_err(inode, func, line, 0, err,
5941                                         "mark_inode_dirty error");
5942         return err;
5943 }
5944
5945 /*
5946  * ext4_dirty_inode() is called from __mark_inode_dirty()
5947  *
5948  * We're really interested in the case where a file is being extended.
5949  * i_size has been changed by generic_commit_write() and we thus need
5950  * to include the updated inode in the current transaction.
5951  *
5952  * Also, dquot_alloc_block() will always dirty the inode when blocks
5953  * are allocated to the file.
5954  *
5955  * If the inode is marked synchronous, we don't honour that here - doing
5956  * so would cause a commit on atime updates, which we don't bother doing.
5957  * We handle synchronous inodes at the highest possible level.
5958  */
5959 void ext4_dirty_inode(struct inode *inode, int flags)
5960 {
5961         handle_t *handle;
5962
5963         handle = ext4_journal_start(inode, EXT4_HT_INODE, 2);
5964         if (IS_ERR(handle))
5965                 return;
5966         ext4_mark_inode_dirty(handle, inode);
5967         ext4_journal_stop(handle);
5968 }
5969
5970 int ext4_change_inode_journal_flag(struct inode *inode, int val)
5971 {
5972         journal_t *journal;
5973         handle_t *handle;
5974         int err;
5975         struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
5976
5977         /*
5978          * We have to be very careful here: changing a data block's
5979          * journaling status dynamically is dangerous.  If we write a
5980          * data block to the journal, change the status and then delete
5981          * that block, we risk forgetting to revoke the old log record
5982          * from the journal and so a subsequent replay can corrupt data.
5983          * So, first we make sure that the journal is empty and that
5984          * nobody is changing anything.
5985          */
5986
5987         journal = EXT4_JOURNAL(inode);
5988         if (!journal)
5989                 return 0;
5990         if (is_journal_aborted(journal))
5991                 return -EROFS;
5992
5993         /* Wait for all existing dio workers */
5994         inode_dio_wait(inode);
5995
5996         /*
5997          * Before flushing the journal and switching inode's aops, we have
5998          * to flush all dirty data the inode has. There can be outstanding
5999          * delayed allocations, there can be unwritten extents created by
6000          * fallocate or buffered writes in dioread_nolock mode covered by
6001          * dirty data which can be converted only after flushing the dirty
6002          * data (and journalled aops don't know how to handle these cases).
6003          */
6004         if (val) {
6005                 filemap_invalidate_lock(inode->i_mapping);
6006                 err = filemap_write_and_wait(inode->i_mapping);
6007                 if (err < 0) {
6008                         filemap_invalidate_unlock(inode->i_mapping);
6009                         return err;
6010                 }
6011         }
6012
6013         percpu_down_write(&sbi->s_writepages_rwsem);
6014         jbd2_journal_lock_updates(journal);
6015
6016         /*
6017          * OK, there are no updates running now, and all cached data is
6018          * synced to disk.  We are now in a completely consistent state
6019          * which doesn't have anything in the journal, and we know that
6020          * no filesystem updates are running, so it is safe to modify
6021          * the inode's in-core data-journaling state flag now.
6022          */
6023
6024         if (val)
6025                 ext4_set_inode_flag(inode, EXT4_INODE_JOURNAL_DATA);
6026         else {
6027                 err = jbd2_journal_flush(journal, 0);
6028                 if (err < 0) {
6029                         jbd2_journal_unlock_updates(journal);
6030                         percpu_up_write(&sbi->s_writepages_rwsem);
6031                         return err;
6032                 }
6033                 ext4_clear_inode_flag(inode, EXT4_INODE_JOURNAL_DATA);
6034         }
6035         ext4_set_aops(inode);
6036
6037         jbd2_journal_unlock_updates(journal);
6038         percpu_up_write(&sbi->s_writepages_rwsem);
6039
6040         if (val)
6041                 filemap_invalidate_unlock(inode->i_mapping);
6042
6043         /* Finally we can mark the inode as dirty. */
6044
6045         handle = ext4_journal_start(inode, EXT4_HT_INODE, 1);
6046         if (IS_ERR(handle))
6047                 return PTR_ERR(handle);
6048
6049         ext4_fc_mark_ineligible(inode->i_sb,
6050                 EXT4_FC_REASON_JOURNAL_FLAG_CHANGE, handle);
6051         err = ext4_mark_inode_dirty(handle, inode);
6052         ext4_handle_sync(handle);
6053         ext4_journal_stop(handle);
6054         ext4_std_error(inode->i_sb, err);
6055
6056         return err;
6057 }
6058
6059 static int ext4_bh_unmapped(handle_t *handle, struct inode *inode,
6060                             struct buffer_head *bh)
6061 {
6062         return !buffer_mapped(bh);
6063 }
6064
6065 vm_fault_t ext4_page_mkwrite(struct vm_fault *vmf)
6066 {
6067         struct vm_area_struct *vma = vmf->vma;
6068         struct page *page = vmf->page;
6069         loff_t size;
6070         unsigned long len;
6071         int err;
6072         vm_fault_t ret;
6073         struct file *file = vma->vm_file;
6074         struct inode *inode = file_inode(file);
6075         struct address_space *mapping = inode->i_mapping;
6076         handle_t *handle;
6077         get_block_t *get_block;
6078         int retries = 0;
6079
6080         if (unlikely(IS_IMMUTABLE(inode)))
6081                 return VM_FAULT_SIGBUS;
6082
6083         sb_start_pagefault(inode->i_sb);
6084         file_update_time(vma->vm_file);
6085
6086         filemap_invalidate_lock_shared(mapping);
6087
6088         err = ext4_convert_inline_data(inode);
6089         if (err)
6090                 goto out_ret;
6091
6092         /*
6093          * On data journalling we skip straight to the transaction handle:
6094          * there's no delalloc; page truncated will be checked later; the
6095          * early return w/ all buffers mapped (calculates size/len) can't
6096          * be used; and there's no dioread_nolock, so only ext4_get_block.
6097          */
6098         if (ext4_should_journal_data(inode))
6099                 goto retry_alloc;
6100
6101         /* Delalloc case is easy... */
6102         if (test_opt(inode->i_sb, DELALLOC) &&
6103             !ext4_nonda_switch(inode->i_sb)) {
6104                 do {
6105                         err = block_page_mkwrite(vma, vmf,
6106                                                    ext4_da_get_block_prep);
6107                 } while (err == -ENOSPC &&
6108                        ext4_should_retry_alloc(inode->i_sb, &retries));
6109                 goto out_ret;
6110         }
6111
6112         lock_page(page);
6113         size = i_size_read(inode);
6114         /* Page got truncated from under us? */
6115         if (page->mapping != mapping || page_offset(page) > size) {
6116                 unlock_page(page);
6117                 ret = VM_FAULT_NOPAGE;
6118                 goto out;
6119         }
6120
6121         if (page->index == size >> PAGE_SHIFT)
6122                 len = size & ~PAGE_MASK;
6123         else
6124                 len = PAGE_SIZE;
6125         /*
6126          * Return if we have all the buffers mapped. This avoids the need to do
6127          * journal_start/journal_stop which can block and take a long time
6128          *
6129          * This cannot be done for data journalling, as we have to add the
6130          * inode to the transaction's list to writeprotect pages on commit.
6131          */
6132         if (page_has_buffers(page)) {
6133                 if (!ext4_walk_page_buffers(NULL, inode, page_buffers(page),
6134                                             0, len, NULL,
6135                                             ext4_bh_unmapped)) {
6136                         /* Wait so that we don't change page under IO */
6137                         wait_for_stable_page(page);
6138                         ret = VM_FAULT_LOCKED;
6139                         goto out;
6140                 }
6141         }
6142         unlock_page(page);
6143         /* OK, we need to fill the hole... */
6144         if (ext4_should_dioread_nolock(inode))
6145                 get_block = ext4_get_block_unwritten;
6146         else
6147                 get_block = ext4_get_block;
6148 retry_alloc:
6149         handle = ext4_journal_start(inode, EXT4_HT_WRITE_PAGE,
6150                                     ext4_writepage_trans_blocks(inode));
6151         if (IS_ERR(handle)) {
6152                 ret = VM_FAULT_SIGBUS;
6153                 goto out;
6154         }
6155         /*
6156          * Data journalling can't use block_page_mkwrite() because it
6157          * will set_buffer_dirty() before do_journal_get_write_access()
6158          * thus might hit warning messages for dirty metadata buffers.
6159          */
6160         if (!ext4_should_journal_data(inode)) {
6161                 err = block_page_mkwrite(vma, vmf, get_block);
6162         } else {
6163                 lock_page(page);
6164                 size = i_size_read(inode);
6165                 /* Page got truncated from under us? */
6166                 if (page->mapping != mapping || page_offset(page) > size) {
6167                         ret = VM_FAULT_NOPAGE;
6168                         goto out_error;
6169                 }
6170
6171                 if (page->index == size >> PAGE_SHIFT)
6172                         len = size & ~PAGE_MASK;
6173                 else
6174                         len = PAGE_SIZE;
6175
6176                 err = __block_write_begin(page, 0, len, ext4_get_block);
6177                 if (!err) {
6178                         ret = VM_FAULT_SIGBUS;
6179                         if (ext4_walk_page_buffers(handle, inode,
6180                                         page_buffers(page), 0, len, NULL,
6181                                         do_journal_get_write_access))
6182                                 goto out_error;
6183                         if (ext4_walk_page_buffers(handle, inode,
6184                                         page_buffers(page), 0, len, NULL,
6185                                         write_end_fn))
6186                                 goto out_error;
6187                         if (ext4_jbd2_inode_add_write(handle, inode,
6188                                                       page_offset(page), len))
6189                                 goto out_error;
6190                         ext4_set_inode_state(inode, EXT4_STATE_JDATA);
6191                 } else {
6192                         unlock_page(page);
6193                 }
6194         }
6195         ext4_journal_stop(handle);
6196         if (err == -ENOSPC && ext4_should_retry_alloc(inode->i_sb, &retries))
6197                 goto retry_alloc;
6198 out_ret:
6199         ret = block_page_mkwrite_return(err);
6200 out:
6201         filemap_invalidate_unlock_shared(mapping);
6202         sb_end_pagefault(inode->i_sb);
6203         return ret;
6204 out_error:
6205         unlock_page(page);
6206         ext4_journal_stop(handle);
6207         goto out;
6208 }