GNU Linux-libre 4.14.319-gnu1
[releases.git] / fs / ext4 / indirect.c
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  *  linux/fs/ext4/indirect.c
4  *
5  *  from
6  *
7  *  linux/fs/ext4/inode.c
8  *
9  * Copyright (C) 1992, 1993, 1994, 1995
10  * Remy Card (card@masi.ibp.fr)
11  * Laboratoire MASI - Institut Blaise Pascal
12  * Universite Pierre et Marie Curie (Paris VI)
13  *
14  *  from
15  *
16  *  linux/fs/minix/inode.c
17  *
18  *  Copyright (C) 1991, 1992  Linus Torvalds
19  *
20  *  Goal-directed block allocation by Stephen Tweedie
21  *      (sct@redhat.com), 1993, 1998
22  */
23
24 #include "ext4_jbd2.h"
25 #include "truncate.h"
26 #include <linux/dax.h>
27 #include <linux/uio.h>
28
29 #include <trace/events/ext4.h>
30
31 typedef struct {
32         __le32  *p;
33         __le32  key;
34         struct buffer_head *bh;
35 } Indirect;
36
37 static inline void add_chain(Indirect *p, struct buffer_head *bh, __le32 *v)
38 {
39         p->key = *(p->p = v);
40         p->bh = bh;
41 }
42
43 /**
44  *      ext4_block_to_path - parse the block number into array of offsets
45  *      @inode: inode in question (we are only interested in its superblock)
46  *      @i_block: block number to be parsed
47  *      @offsets: array to store the offsets in
48  *      @boundary: set this non-zero if the referred-to block is likely to be
49  *             followed (on disk) by an indirect block.
50  *
51  *      To store the locations of file's data ext4 uses a data structure common
52  *      for UNIX filesystems - tree of pointers anchored in the inode, with
53  *      data blocks at leaves and indirect blocks in intermediate nodes.
54  *      This function translates the block number into path in that tree -
55  *      return value is the path length and @offsets[n] is the offset of
56  *      pointer to (n+1)th node in the nth one. If @block is out of range
57  *      (negative or too large) warning is printed and zero returned.
58  *
59  *      Note: function doesn't find node addresses, so no IO is needed. All
60  *      we need to know is the capacity of indirect blocks (taken from the
61  *      inode->i_sb).
62  */
63
64 /*
65  * Portability note: the last comparison (check that we fit into triple
66  * indirect block) is spelled differently, because otherwise on an
67  * architecture with 32-bit longs and 8Kb pages we might get into trouble
68  * if our filesystem had 8Kb blocks. We might use long long, but that would
69  * kill us on x86. Oh, well, at least the sign propagation does not matter -
70  * i_block would have to be negative in the very beginning, so we would not
71  * get there at all.
72  */
73
74 static int ext4_block_to_path(struct inode *inode,
75                               ext4_lblk_t i_block,
76                               ext4_lblk_t offsets[4], int *boundary)
77 {
78         int ptrs = EXT4_ADDR_PER_BLOCK(inode->i_sb);
79         int ptrs_bits = EXT4_ADDR_PER_BLOCK_BITS(inode->i_sb);
80         const long direct_blocks = EXT4_NDIR_BLOCKS,
81                 indirect_blocks = ptrs,
82                 double_blocks = (1 << (ptrs_bits * 2));
83         int n = 0;
84         int final = 0;
85
86         if (i_block < direct_blocks) {
87                 offsets[n++] = i_block;
88                 final = direct_blocks;
89         } else if ((i_block -= direct_blocks) < indirect_blocks) {
90                 offsets[n++] = EXT4_IND_BLOCK;
91                 offsets[n++] = i_block;
92                 final = ptrs;
93         } else if ((i_block -= indirect_blocks) < double_blocks) {
94                 offsets[n++] = EXT4_DIND_BLOCK;
95                 offsets[n++] = i_block >> ptrs_bits;
96                 offsets[n++] = i_block & (ptrs - 1);
97                 final = ptrs;
98         } else if (((i_block -= double_blocks) >> (ptrs_bits * 2)) < ptrs) {
99                 offsets[n++] = EXT4_TIND_BLOCK;
100                 offsets[n++] = i_block >> (ptrs_bits * 2);
101                 offsets[n++] = (i_block >> ptrs_bits) & (ptrs - 1);
102                 offsets[n++] = i_block & (ptrs - 1);
103                 final = ptrs;
104         } else {
105                 ext4_warning(inode->i_sb, "block %lu > max in inode %lu",
106                              i_block + direct_blocks +
107                              indirect_blocks + double_blocks, inode->i_ino);
108         }
109         if (boundary)
110                 *boundary = final - 1 - (i_block & (ptrs - 1));
111         return n;
112 }
113
114 /**
115  *      ext4_get_branch - read the chain of indirect blocks leading to data
116  *      @inode: inode in question
117  *      @depth: depth of the chain (1 - direct pointer, etc.)
118  *      @offsets: offsets of pointers in inode/indirect blocks
119  *      @chain: place to store the result
120  *      @err: here we store the error value
121  *
122  *      Function fills the array of triples <key, p, bh> and returns %NULL
123  *      if everything went OK or the pointer to the last filled triple
124  *      (incomplete one) otherwise. Upon the return chain[i].key contains
125  *      the number of (i+1)-th block in the chain (as it is stored in memory,
126  *      i.e. little-endian 32-bit), chain[i].p contains the address of that
127  *      number (it points into struct inode for i==0 and into the bh->b_data
128  *      for i>0) and chain[i].bh points to the buffer_head of i-th indirect
129  *      block for i>0 and NULL for i==0. In other words, it holds the block
130  *      numbers of the chain, addresses they were taken from (and where we can
131  *      verify that chain did not change) and buffer_heads hosting these
132  *      numbers.
133  *
134  *      Function stops when it stumbles upon zero pointer (absent block)
135  *              (pointer to last triple returned, *@err == 0)
136  *      or when it gets an IO error reading an indirect block
137  *              (ditto, *@err == -EIO)
138  *      or when it reads all @depth-1 indirect blocks successfully and finds
139  *      the whole chain, all way to the data (returns %NULL, *err == 0).
140  *
141  *      Need to be called with
142  *      down_read(&EXT4_I(inode)->i_data_sem)
143  */
144 static Indirect *ext4_get_branch(struct inode *inode, int depth,
145                                  ext4_lblk_t  *offsets,
146                                  Indirect chain[4], int *err)
147 {
148         struct super_block *sb = inode->i_sb;
149         Indirect *p = chain;
150         struct buffer_head *bh;
151         unsigned int key;
152         int ret = -EIO;
153
154         *err = 0;
155         /* i_data is not going away, no lock needed */
156         add_chain(chain, NULL, EXT4_I(inode)->i_data + *offsets);
157         if (!p->key)
158                 goto no_block;
159         while (--depth) {
160                 key = le32_to_cpu(p->key);
161                 if (key > ext4_blocks_count(EXT4_SB(sb)->s_es)) {
162                         /* the block was out of range */
163                         ret = -EFSCORRUPTED;
164                         goto failure;
165                 }
166                 bh = sb_getblk(sb, key);
167                 if (unlikely(!bh)) {
168                         ret = -ENOMEM;
169                         goto failure;
170                 }
171
172                 if (!bh_uptodate_or_lock(bh)) {
173                         if (bh_submit_read(bh) < 0) {
174                                 put_bh(bh);
175                                 goto failure;
176                         }
177                         /* validate block references */
178                         if (ext4_check_indirect_blockref(inode, bh)) {
179                                 put_bh(bh);
180                                 goto failure;
181                         }
182                 }
183
184                 add_chain(++p, bh, (__le32 *)bh->b_data + *++offsets);
185                 /* Reader: end */
186                 if (!p->key)
187                         goto no_block;
188         }
189         return NULL;
190
191 failure:
192         *err = ret;
193 no_block:
194         return p;
195 }
196
197 /**
198  *      ext4_find_near - find a place for allocation with sufficient locality
199  *      @inode: owner
200  *      @ind: descriptor of indirect block.
201  *
202  *      This function returns the preferred place for block allocation.
203  *      It is used when heuristic for sequential allocation fails.
204  *      Rules are:
205  *        + if there is a block to the left of our position - allocate near it.
206  *        + if pointer will live in indirect block - allocate near that block.
207  *        + if pointer will live in inode - allocate in the same
208  *          cylinder group.
209  *
210  * In the latter case we colour the starting block by the callers PID to
211  * prevent it from clashing with concurrent allocations for a different inode
212  * in the same block group.   The PID is used here so that functionally related
213  * files will be close-by on-disk.
214  *
215  *      Caller must make sure that @ind is valid and will stay that way.
216  */
217 static ext4_fsblk_t ext4_find_near(struct inode *inode, Indirect *ind)
218 {
219         struct ext4_inode_info *ei = EXT4_I(inode);
220         __le32 *start = ind->bh ? (__le32 *) ind->bh->b_data : ei->i_data;
221         __le32 *p;
222
223         /* Try to find previous block */
224         for (p = ind->p - 1; p >= start; p--) {
225                 if (*p)
226                         return le32_to_cpu(*p);
227         }
228
229         /* No such thing, so let's try location of indirect block */
230         if (ind->bh)
231                 return ind->bh->b_blocknr;
232
233         /*
234          * It is going to be referred to from the inode itself? OK, just put it
235          * into the same cylinder group then.
236          */
237         return ext4_inode_to_goal_block(inode);
238 }
239
240 /**
241  *      ext4_find_goal - find a preferred place for allocation.
242  *      @inode: owner
243  *      @block:  block we want
244  *      @partial: pointer to the last triple within a chain
245  *
246  *      Normally this function find the preferred place for block allocation,
247  *      returns it.
248  *      Because this is only used for non-extent files, we limit the block nr
249  *      to 32 bits.
250  */
251 static ext4_fsblk_t ext4_find_goal(struct inode *inode, ext4_lblk_t block,
252                                    Indirect *partial)
253 {
254         ext4_fsblk_t goal;
255
256         /*
257          * XXX need to get goal block from mballoc's data structures
258          */
259
260         goal = ext4_find_near(inode, partial);
261         goal = goal & EXT4_MAX_BLOCK_FILE_PHYS;
262         return goal;
263 }
264
265 /**
266  *      ext4_blks_to_allocate - Look up the block map and count the number
267  *      of direct blocks need to be allocated for the given branch.
268  *
269  *      @branch: chain of indirect blocks
270  *      @k: number of blocks need for indirect blocks
271  *      @blks: number of data blocks to be mapped.
272  *      @blocks_to_boundary:  the offset in the indirect block
273  *
274  *      return the total number of blocks to be allocate, including the
275  *      direct and indirect blocks.
276  */
277 static int ext4_blks_to_allocate(Indirect *branch, int k, unsigned int blks,
278                                  int blocks_to_boundary)
279 {
280         unsigned int count = 0;
281
282         /*
283          * Simple case, [t,d]Indirect block(s) has not allocated yet
284          * then it's clear blocks on that path have not allocated
285          */
286         if (k > 0) {
287                 /* right now we don't handle cross boundary allocation */
288                 if (blks < blocks_to_boundary + 1)
289                         count += blks;
290                 else
291                         count += blocks_to_boundary + 1;
292                 return count;
293         }
294
295         count++;
296         while (count < blks && count <= blocks_to_boundary &&
297                 le32_to_cpu(*(branch[0].p + count)) == 0) {
298                 count++;
299         }
300         return count;
301 }
302
303 /**
304  *      ext4_alloc_branch - allocate and set up a chain of blocks.
305  *      @handle: handle for this transaction
306  *      @inode: owner
307  *      @indirect_blks: number of allocated indirect blocks
308  *      @blks: number of allocated direct blocks
309  *      @goal: preferred place for allocation
310  *      @offsets: offsets (in the blocks) to store the pointers to next.
311  *      @branch: place to store the chain in.
312  *
313  *      This function allocates blocks, zeroes out all but the last one,
314  *      links them into chain and (if we are synchronous) writes them to disk.
315  *      In other words, it prepares a branch that can be spliced onto the
316  *      inode. It stores the information about that chain in the branch[], in
317  *      the same format as ext4_get_branch() would do. We are calling it after
318  *      we had read the existing part of chain and partial points to the last
319  *      triple of that (one with zero ->key). Upon the exit we have the same
320  *      picture as after the successful ext4_get_block(), except that in one
321  *      place chain is disconnected - *branch->p is still zero (we did not
322  *      set the last link), but branch->key contains the number that should
323  *      be placed into *branch->p to fill that gap.
324  *
325  *      If allocation fails we free all blocks we've allocated (and forget
326  *      their buffer_heads) and return the error value the from failed
327  *      ext4_alloc_block() (normally -ENOSPC). Otherwise we set the chain
328  *      as described above and return 0.
329  */
330 static int ext4_alloc_branch(handle_t *handle,
331                              struct ext4_allocation_request *ar,
332                              int indirect_blks, ext4_lblk_t *offsets,
333                              Indirect *branch)
334 {
335         struct buffer_head *            bh;
336         ext4_fsblk_t                    b, new_blocks[4];
337         __le32                          *p;
338         int                             i, j, err, len = 1;
339
340         for (i = 0; i <= indirect_blks; i++) {
341                 if (i == indirect_blks) {
342                         new_blocks[i] = ext4_mb_new_blocks(handle, ar, &err);
343                 } else
344                         ar->goal = new_blocks[i] = ext4_new_meta_blocks(handle,
345                                         ar->inode, ar->goal,
346                                         ar->flags & EXT4_MB_DELALLOC_RESERVED,
347                                         NULL, &err);
348                 if (err) {
349                         i--;
350                         goto failed;
351                 }
352                 branch[i].key = cpu_to_le32(new_blocks[i]);
353                 if (i == 0)
354                         continue;
355
356                 bh = branch[i].bh = sb_getblk(ar->inode->i_sb, new_blocks[i-1]);
357                 if (unlikely(!bh)) {
358                         err = -ENOMEM;
359                         goto failed;
360                 }
361                 lock_buffer(bh);
362                 BUFFER_TRACE(bh, "call get_create_access");
363                 err = ext4_journal_get_create_access(handle, bh);
364                 if (err) {
365                         unlock_buffer(bh);
366                         goto failed;
367                 }
368
369                 memset(bh->b_data, 0, bh->b_size);
370                 p = branch[i].p = (__le32 *) bh->b_data + offsets[i];
371                 b = new_blocks[i];
372
373                 if (i == indirect_blks)
374                         len = ar->len;
375                 for (j = 0; j < len; j++)
376                         *p++ = cpu_to_le32(b++);
377
378                 BUFFER_TRACE(bh, "marking uptodate");
379                 set_buffer_uptodate(bh);
380                 unlock_buffer(bh);
381
382                 BUFFER_TRACE(bh, "call ext4_handle_dirty_metadata");
383                 err = ext4_handle_dirty_metadata(handle, ar->inode, bh);
384                 if (err)
385                         goto failed;
386         }
387         return 0;
388 failed:
389         for (; i >= 0; i--) {
390                 /*
391                  * We want to ext4_forget() only freshly allocated indirect
392                  * blocks.  Buffer for new_blocks[i-1] is at branch[i].bh and
393                  * buffer at branch[0].bh is indirect block / inode already
394                  * existing before ext4_alloc_branch() was called.
395                  */
396                 if (i > 0 && i != indirect_blks && branch[i].bh)
397                         ext4_forget(handle, 1, ar->inode, branch[i].bh,
398                                     branch[i].bh->b_blocknr);
399                 ext4_free_blocks(handle, ar->inode, NULL, new_blocks[i],
400                                  (i == indirect_blks) ? ar->len : 1, 0);
401         }
402         return err;
403 }
404
405 /**
406  * ext4_splice_branch - splice the allocated branch onto inode.
407  * @handle: handle for this transaction
408  * @inode: owner
409  * @block: (logical) number of block we are adding
410  * @chain: chain of indirect blocks (with a missing link - see
411  *      ext4_alloc_branch)
412  * @where: location of missing link
413  * @num:   number of indirect blocks we are adding
414  * @blks:  number of direct blocks we are adding
415  *
416  * This function fills the missing link and does all housekeeping needed in
417  * inode (->i_blocks, etc.). In case of success we end up with the full
418  * chain to new block and return 0.
419  */
420 static int ext4_splice_branch(handle_t *handle,
421                               struct ext4_allocation_request *ar,
422                               Indirect *where, int num)
423 {
424         int i;
425         int err = 0;
426         ext4_fsblk_t current_block;
427
428         /*
429          * If we're splicing into a [td]indirect block (as opposed to the
430          * inode) then we need to get write access to the [td]indirect block
431          * before the splice.
432          */
433         if (where->bh) {
434                 BUFFER_TRACE(where->bh, "get_write_access");
435                 err = ext4_journal_get_write_access(handle, where->bh);
436                 if (err)
437                         goto err_out;
438         }
439         /* That's it */
440
441         *where->p = where->key;
442
443         /*
444          * Update the host buffer_head or inode to point to more just allocated
445          * direct blocks blocks
446          */
447         if (num == 0 && ar->len > 1) {
448                 current_block = le32_to_cpu(where->key) + 1;
449                 for (i = 1; i < ar->len; i++)
450                         *(where->p + i) = cpu_to_le32(current_block++);
451         }
452
453         /* We are done with atomic stuff, now do the rest of housekeeping */
454         /* had we spliced it onto indirect block? */
455         if (where->bh) {
456                 /*
457                  * If we spliced it onto an indirect block, we haven't
458                  * altered the inode.  Note however that if it is being spliced
459                  * onto an indirect block at the very end of the file (the
460                  * file is growing) then we *will* alter the inode to reflect
461                  * the new i_size.  But that is not done here - it is done in
462                  * generic_commit_write->__mark_inode_dirty->ext4_dirty_inode.
463                  */
464                 jbd_debug(5, "splicing indirect only\n");
465                 BUFFER_TRACE(where->bh, "call ext4_handle_dirty_metadata");
466                 err = ext4_handle_dirty_metadata(handle, ar->inode, where->bh);
467                 if (err)
468                         goto err_out;
469         } else {
470                 /*
471                  * OK, we spliced it into the inode itself on a direct block.
472                  */
473                 ext4_mark_inode_dirty(handle, ar->inode);
474                 jbd_debug(5, "splicing direct\n");
475         }
476         return err;
477
478 err_out:
479         for (i = 1; i <= num; i++) {
480                 /*
481                  * branch[i].bh is newly allocated, so there is no
482                  * need to revoke the block, which is why we don't
483                  * need to set EXT4_FREE_BLOCKS_METADATA.
484                  */
485                 ext4_free_blocks(handle, ar->inode, where[i].bh, 0, 1,
486                                  EXT4_FREE_BLOCKS_FORGET);
487         }
488         ext4_free_blocks(handle, ar->inode, NULL, le32_to_cpu(where[num].key),
489                          ar->len, 0);
490
491         return err;
492 }
493
494 /*
495  * The ext4_ind_map_blocks() function handles non-extents inodes
496  * (i.e., using the traditional indirect/double-indirect i_blocks
497  * scheme) for ext4_map_blocks().
498  *
499  * Allocation strategy is simple: if we have to allocate something, we will
500  * have to go the whole way to leaf. So let's do it before attaching anything
501  * to tree, set linkage between the newborn blocks, write them if sync is
502  * required, recheck the path, free and repeat if check fails, otherwise
503  * set the last missing link (that will protect us from any truncate-generated
504  * removals - all blocks on the path are immune now) and possibly force the
505  * write on the parent block.
506  * That has a nice additional property: no special recovery from the failed
507  * allocations is needed - we simply release blocks and do not touch anything
508  * reachable from inode.
509  *
510  * `handle' can be NULL if create == 0.
511  *
512  * return > 0, # of blocks mapped or allocated.
513  * return = 0, if plain lookup failed.
514  * return < 0, error case.
515  *
516  * The ext4_ind_get_blocks() function should be called with
517  * down_write(&EXT4_I(inode)->i_data_sem) if allocating filesystem
518  * blocks (i.e., flags has EXT4_GET_BLOCKS_CREATE set) or
519  * down_read(&EXT4_I(inode)->i_data_sem) if not allocating file system
520  * blocks.
521  */
522 int ext4_ind_map_blocks(handle_t *handle, struct inode *inode,
523                         struct ext4_map_blocks *map,
524                         int flags)
525 {
526         struct ext4_allocation_request ar;
527         int err = -EIO;
528         ext4_lblk_t offsets[4];
529         Indirect chain[4];
530         Indirect *partial;
531         int indirect_blks;
532         int blocks_to_boundary = 0;
533         int depth;
534         int count = 0;
535         ext4_fsblk_t first_block = 0;
536
537         trace_ext4_ind_map_blocks_enter(inode, map->m_lblk, map->m_len, flags);
538         J_ASSERT(!(ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS)));
539         J_ASSERT(handle != NULL || (flags & EXT4_GET_BLOCKS_CREATE) == 0);
540         depth = ext4_block_to_path(inode, map->m_lblk, offsets,
541                                    &blocks_to_boundary);
542
543         if (depth == 0)
544                 goto out;
545
546         partial = ext4_get_branch(inode, depth, offsets, chain, &err);
547
548         /* Simplest case - block found, no allocation needed */
549         if (!partial) {
550                 first_block = le32_to_cpu(chain[depth - 1].key);
551                 count++;
552                 /*map more blocks*/
553                 while (count < map->m_len && count <= blocks_to_boundary) {
554                         ext4_fsblk_t blk;
555
556                         blk = le32_to_cpu(*(chain[depth-1].p + count));
557
558                         if (blk == first_block + count)
559                                 count++;
560                         else
561                                 break;
562                 }
563                 goto got_it;
564         }
565
566         /* Next simple case - plain lookup failed */
567         if ((flags & EXT4_GET_BLOCKS_CREATE) == 0) {
568                 unsigned epb = inode->i_sb->s_blocksize / sizeof(u32);
569                 int i;
570
571                 /*
572                  * Count number blocks in a subtree under 'partial'. At each
573                  * level we count number of complete empty subtrees beyond
574                  * current offset and then descend into the subtree only
575                  * partially beyond current offset.
576                  */
577                 count = 0;
578                 for (i = partial - chain + 1; i < depth; i++)
579                         count = count * epb + (epb - offsets[i] - 1);
580                 count++;
581                 /* Fill in size of a hole we found */
582                 map->m_pblk = 0;
583                 map->m_len = min_t(unsigned int, map->m_len, count);
584                 goto cleanup;
585         }
586
587         /* Failed read of indirect block */
588         if (err == -EIO)
589                 goto cleanup;
590
591         /*
592          * Okay, we need to do block allocation.
593         */
594         if (ext4_has_feature_bigalloc(inode->i_sb)) {
595                 EXT4_ERROR_INODE(inode, "Can't allocate blocks for "
596                                  "non-extent mapped inodes with bigalloc");
597                 return -EFSCORRUPTED;
598         }
599
600         /* Set up for the direct block allocation */
601         memset(&ar, 0, sizeof(ar));
602         ar.inode = inode;
603         ar.logical = map->m_lblk;
604         if (S_ISREG(inode->i_mode))
605                 ar.flags = EXT4_MB_HINT_DATA;
606         if (flags & EXT4_GET_BLOCKS_DELALLOC_RESERVE)
607                 ar.flags |= EXT4_MB_DELALLOC_RESERVED;
608         if (flags & EXT4_GET_BLOCKS_METADATA_NOFAIL)
609                 ar.flags |= EXT4_MB_USE_RESERVED;
610
611         ar.goal = ext4_find_goal(inode, map->m_lblk, partial);
612
613         /* the number of blocks need to allocate for [d,t]indirect blocks */
614         indirect_blks = (chain + depth) - partial - 1;
615
616         /*
617          * Next look up the indirect map to count the totoal number of
618          * direct blocks to allocate for this branch.
619          */
620         ar.len = ext4_blks_to_allocate(partial, indirect_blks,
621                                        map->m_len, blocks_to_boundary);
622
623         /*
624          * Block out ext4_truncate while we alter the tree
625          */
626         err = ext4_alloc_branch(handle, &ar, indirect_blks,
627                                 offsets + (partial - chain), partial);
628
629         /*
630          * The ext4_splice_branch call will free and forget any buffers
631          * on the new chain if there is a failure, but that risks using
632          * up transaction credits, especially for bitmaps where the
633          * credits cannot be returned.  Can we handle this somehow?  We
634          * may need to return -EAGAIN upwards in the worst case.  --sct
635          */
636         if (!err)
637                 err = ext4_splice_branch(handle, &ar, partial, indirect_blks);
638         if (err)
639                 goto cleanup;
640
641         map->m_flags |= EXT4_MAP_NEW;
642
643         ext4_update_inode_fsync_trans(handle, inode, 1);
644         count = ar.len;
645 got_it:
646         map->m_flags |= EXT4_MAP_MAPPED;
647         map->m_pblk = le32_to_cpu(chain[depth-1].key);
648         map->m_len = count;
649         if (count > blocks_to_boundary)
650                 map->m_flags |= EXT4_MAP_BOUNDARY;
651         err = count;
652         /* Clean up and exit */
653         partial = chain + depth - 1;    /* the whole chain */
654 cleanup:
655         while (partial > chain) {
656                 BUFFER_TRACE(partial->bh, "call brelse");
657                 brelse(partial->bh);
658                 partial--;
659         }
660 out:
661         trace_ext4_ind_map_blocks_exit(inode, flags, map, err);
662         return err;
663 }
664
665 /*
666  * Calculate the number of metadata blocks need to reserve
667  * to allocate a new block at @lblocks for non extent file based file
668  */
669 int ext4_ind_calc_metadata_amount(struct inode *inode, sector_t lblock)
670 {
671         struct ext4_inode_info *ei = EXT4_I(inode);
672         sector_t dind_mask = ~((sector_t)EXT4_ADDR_PER_BLOCK(inode->i_sb) - 1);
673         int blk_bits;
674
675         if (lblock < EXT4_NDIR_BLOCKS)
676                 return 0;
677
678         lblock -= EXT4_NDIR_BLOCKS;
679
680         if (ei->i_da_metadata_calc_len &&
681             (lblock & dind_mask) == ei->i_da_metadata_calc_last_lblock) {
682                 ei->i_da_metadata_calc_len++;
683                 return 0;
684         }
685         ei->i_da_metadata_calc_last_lblock = lblock & dind_mask;
686         ei->i_da_metadata_calc_len = 1;
687         blk_bits = order_base_2(lblock);
688         return (blk_bits / EXT4_ADDR_PER_BLOCK_BITS(inode->i_sb)) + 1;
689 }
690
691 /*
692  * Calculate number of indirect blocks touched by mapping @nrblocks logically
693  * contiguous blocks
694  */
695 int ext4_ind_trans_blocks(struct inode *inode, int nrblocks)
696 {
697         /*
698          * With N contiguous data blocks, we need at most
699          * N/EXT4_ADDR_PER_BLOCK(inode->i_sb) + 1 indirect blocks,
700          * 2 dindirect blocks, and 1 tindirect block
701          */
702         return DIV_ROUND_UP(nrblocks, EXT4_ADDR_PER_BLOCK(inode->i_sb)) + 4;
703 }
704
705 /*
706  * Truncate transactions can be complex and absolutely huge.  So we need to
707  * be able to restart the transaction at a conventient checkpoint to make
708  * sure we don't overflow the journal.
709  *
710  * Try to extend this transaction for the purposes of truncation.  If
711  * extend fails, we need to propagate the failure up and restart the
712  * transaction in the top-level truncate loop. --sct
713  *
714  * Returns 0 if we managed to create more room.  If we can't create more
715  * room, and the transaction must be restarted we return 1.
716  */
717 static int try_to_extend_transaction(handle_t *handle, struct inode *inode)
718 {
719         if (!ext4_handle_valid(handle))
720                 return 0;
721         if (ext4_handle_has_enough_credits(handle, EXT4_RESERVE_TRANS_BLOCKS+1))
722                 return 0;
723         if (!ext4_journal_extend(handle, ext4_blocks_for_truncate(inode)))
724                 return 0;
725         return 1;
726 }
727
728 /*
729  * Probably it should be a library function... search for first non-zero word
730  * or memcmp with zero_page, whatever is better for particular architecture.
731  * Linus?
732  */
733 static inline int all_zeroes(__le32 *p, __le32 *q)
734 {
735         while (p < q)
736                 if (*p++)
737                         return 0;
738         return 1;
739 }
740
741 /**
742  *      ext4_find_shared - find the indirect blocks for partial truncation.
743  *      @inode:   inode in question
744  *      @depth:   depth of the affected branch
745  *      @offsets: offsets of pointers in that branch (see ext4_block_to_path)
746  *      @chain:   place to store the pointers to partial indirect blocks
747  *      @top:     place to the (detached) top of branch
748  *
749  *      This is a helper function used by ext4_truncate().
750  *
751  *      When we do truncate() we may have to clean the ends of several
752  *      indirect blocks but leave the blocks themselves alive. Block is
753  *      partially truncated if some data below the new i_size is referred
754  *      from it (and it is on the path to the first completely truncated
755  *      data block, indeed).  We have to free the top of that path along
756  *      with everything to the right of the path. Since no allocation
757  *      past the truncation point is possible until ext4_truncate()
758  *      finishes, we may safely do the latter, but top of branch may
759  *      require special attention - pageout below the truncation point
760  *      might try to populate it.
761  *
762  *      We atomically detach the top of branch from the tree, store the
763  *      block number of its root in *@top, pointers to buffer_heads of
764  *      partially truncated blocks - in @chain[].bh and pointers to
765  *      their last elements that should not be removed - in
766  *      @chain[].p. Return value is the pointer to last filled element
767  *      of @chain.
768  *
769  *      The work left to caller to do the actual freeing of subtrees:
770  *              a) free the subtree starting from *@top
771  *              b) free the subtrees whose roots are stored in
772  *                      (@chain[i].p+1 .. end of @chain[i].bh->b_data)
773  *              c) free the subtrees growing from the inode past the @chain[0].
774  *                      (no partially truncated stuff there).  */
775
776 static Indirect *ext4_find_shared(struct inode *inode, int depth,
777                                   ext4_lblk_t offsets[4], Indirect chain[4],
778                                   __le32 *top)
779 {
780         Indirect *partial, *p;
781         int k, err;
782
783         *top = 0;
784         /* Make k index the deepest non-null offset + 1 */
785         for (k = depth; k > 1 && !offsets[k-1]; k--)
786                 ;
787         partial = ext4_get_branch(inode, k, offsets, chain, &err);
788         /* Writer: pointers */
789         if (!partial)
790                 partial = chain + k-1;
791         /*
792          * If the branch acquired continuation since we've looked at it -
793          * fine, it should all survive and (new) top doesn't belong to us.
794          */
795         if (!partial->key && *partial->p)
796                 /* Writer: end */
797                 goto no_top;
798         for (p = partial; (p > chain) && all_zeroes((__le32 *) p->bh->b_data, p->p); p--)
799                 ;
800         /*
801          * OK, we've found the last block that must survive. The rest of our
802          * branch should be detached before unlocking. However, if that rest
803          * of branch is all ours and does not grow immediately from the inode
804          * it's easier to cheat and just decrement partial->p.
805          */
806         if (p == chain + k - 1 && p > chain) {
807                 p->p--;
808         } else {
809                 *top = *p->p;
810                 /* Nope, don't do this in ext4.  Must leave the tree intact */
811 #if 0
812                 *p->p = 0;
813 #endif
814         }
815         /* Writer: end */
816
817         while (partial > p) {
818                 brelse(partial->bh);
819                 partial--;
820         }
821 no_top:
822         return partial;
823 }
824
825 /*
826  * Zero a number of block pointers in either an inode or an indirect block.
827  * If we restart the transaction we must again get write access to the
828  * indirect block for further modification.
829  *
830  * We release `count' blocks on disk, but (last - first) may be greater
831  * than `count' because there can be holes in there.
832  *
833  * Return 0 on success, 1 on invalid block range
834  * and < 0 on fatal error.
835  */
836 static int ext4_clear_blocks(handle_t *handle, struct inode *inode,
837                              struct buffer_head *bh,
838                              ext4_fsblk_t block_to_free,
839                              unsigned long count, __le32 *first,
840                              __le32 *last)
841 {
842         __le32 *p;
843         int     flags = EXT4_FREE_BLOCKS_VALIDATED;
844         int     err;
845
846         if (S_ISDIR(inode->i_mode) || S_ISLNK(inode->i_mode) ||
847             ext4_test_inode_flag(inode, EXT4_INODE_EA_INODE))
848                 flags |= EXT4_FREE_BLOCKS_FORGET | EXT4_FREE_BLOCKS_METADATA;
849         else if (ext4_should_journal_data(inode))
850                 flags |= EXT4_FREE_BLOCKS_FORGET;
851
852         if (!ext4_inode_block_valid(inode, block_to_free, count)) {
853                 EXT4_ERROR_INODE(inode, "attempt to clear invalid "
854                                  "blocks %llu len %lu",
855                                  (unsigned long long) block_to_free, count);
856                 return 1;
857         }
858
859         if (try_to_extend_transaction(handle, inode)) {
860                 if (bh) {
861                         BUFFER_TRACE(bh, "call ext4_handle_dirty_metadata");
862                         err = ext4_handle_dirty_metadata(handle, inode, bh);
863                         if (unlikely(err))
864                                 goto out_err;
865                 }
866                 err = ext4_mark_inode_dirty(handle, inode);
867                 if (unlikely(err))
868                         goto out_err;
869                 err = ext4_truncate_restart_trans(handle, inode,
870                                         ext4_blocks_for_truncate(inode));
871                 if (unlikely(err))
872                         goto out_err;
873                 if (bh) {
874                         BUFFER_TRACE(bh, "retaking write access");
875                         err = ext4_journal_get_write_access(handle, bh);
876                         if (unlikely(err))
877                                 goto out_err;
878                 }
879         }
880
881         for (p = first; p < last; p++)
882                 *p = 0;
883
884         ext4_free_blocks(handle, inode, NULL, block_to_free, count, flags);
885         return 0;
886 out_err:
887         ext4_std_error(inode->i_sb, err);
888         return err;
889 }
890
891 /**
892  * ext4_free_data - free a list of data blocks
893  * @handle:     handle for this transaction
894  * @inode:      inode we are dealing with
895  * @this_bh:    indirect buffer_head which contains *@first and *@last
896  * @first:      array of block numbers
897  * @last:       points immediately past the end of array
898  *
899  * We are freeing all blocks referred from that array (numbers are stored as
900  * little-endian 32-bit) and updating @inode->i_blocks appropriately.
901  *
902  * We accumulate contiguous runs of blocks to free.  Conveniently, if these
903  * blocks are contiguous then releasing them at one time will only affect one
904  * or two bitmap blocks (+ group descriptor(s) and superblock) and we won't
905  * actually use a lot of journal space.
906  *
907  * @this_bh will be %NULL if @first and @last point into the inode's direct
908  * block pointers.
909  */
910 static void ext4_free_data(handle_t *handle, struct inode *inode,
911                            struct buffer_head *this_bh,
912                            __le32 *first, __le32 *last)
913 {
914         ext4_fsblk_t block_to_free = 0;    /* Starting block # of a run */
915         unsigned long count = 0;            /* Number of blocks in the run */
916         __le32 *block_to_free_p = NULL;     /* Pointer into inode/ind
917                                                corresponding to
918                                                block_to_free */
919         ext4_fsblk_t nr;                    /* Current block # */
920         __le32 *p;                          /* Pointer into inode/ind
921                                                for current block */
922         int err = 0;
923
924         if (this_bh) {                          /* For indirect block */
925                 BUFFER_TRACE(this_bh, "get_write_access");
926                 err = ext4_journal_get_write_access(handle, this_bh);
927                 /* Important: if we can't update the indirect pointers
928                  * to the blocks, we can't free them. */
929                 if (err)
930                         return;
931         }
932
933         for (p = first; p < last; p++) {
934                 nr = le32_to_cpu(*p);
935                 if (nr) {
936                         /* accumulate blocks to free if they're contiguous */
937                         if (count == 0) {
938                                 block_to_free = nr;
939                                 block_to_free_p = p;
940                                 count = 1;
941                         } else if (nr == block_to_free + count) {
942                                 count++;
943                         } else {
944                                 err = ext4_clear_blocks(handle, inode, this_bh,
945                                                         block_to_free, count,
946                                                         block_to_free_p, p);
947                                 if (err)
948                                         break;
949                                 block_to_free = nr;
950                                 block_to_free_p = p;
951                                 count = 1;
952                         }
953                 }
954         }
955
956         if (!err && count > 0)
957                 err = ext4_clear_blocks(handle, inode, this_bh, block_to_free,
958                                         count, block_to_free_p, p);
959         if (err < 0)
960                 /* fatal error */
961                 return;
962
963         if (this_bh) {
964                 BUFFER_TRACE(this_bh, "call ext4_handle_dirty_metadata");
965
966                 /*
967                  * The buffer head should have an attached journal head at this
968                  * point. However, if the data is corrupted and an indirect
969                  * block pointed to itself, it would have been detached when
970                  * the block was cleared. Check for this instead of OOPSing.
971                  */
972                 if ((EXT4_JOURNAL(inode) == NULL) || bh2jh(this_bh))
973                         ext4_handle_dirty_metadata(handle, inode, this_bh);
974                 else
975                         EXT4_ERROR_INODE(inode,
976                                          "circular indirect block detected at "
977                                          "block %llu",
978                                 (unsigned long long) this_bh->b_blocknr);
979         }
980 }
981
982 /**
983  *      ext4_free_branches - free an array of branches
984  *      @handle: JBD handle for this transaction
985  *      @inode: inode we are dealing with
986  *      @parent_bh: the buffer_head which contains *@first and *@last
987  *      @first: array of block numbers
988  *      @last:  pointer immediately past the end of array
989  *      @depth: depth of the branches to free
990  *
991  *      We are freeing all blocks referred from these branches (numbers are
992  *      stored as little-endian 32-bit) and updating @inode->i_blocks
993  *      appropriately.
994  */
995 static void ext4_free_branches(handle_t *handle, struct inode *inode,
996                                struct buffer_head *parent_bh,
997                                __le32 *first, __le32 *last, int depth)
998 {
999         ext4_fsblk_t nr;
1000         __le32 *p;
1001
1002         if (ext4_handle_is_aborted(handle))
1003                 return;
1004
1005         if (depth--) {
1006                 struct buffer_head *bh;
1007                 int addr_per_block = EXT4_ADDR_PER_BLOCK(inode->i_sb);
1008                 p = last;
1009                 while (--p >= first) {
1010                         nr = le32_to_cpu(*p);
1011                         if (!nr)
1012                                 continue;               /* A hole */
1013
1014                         if (!ext4_inode_block_valid(inode, nr, 1)) {
1015                                 EXT4_ERROR_INODE(inode,
1016                                                  "invalid indirect mapped "
1017                                                  "block %lu (level %d)",
1018                                                  (unsigned long) nr, depth);
1019                                 break;
1020                         }
1021
1022                         /* Go read the buffer for the next level down */
1023                         bh = sb_bread(inode->i_sb, nr);
1024
1025                         /*
1026                          * A read failure? Report error and clear slot
1027                          * (should be rare).
1028                          */
1029                         if (!bh) {
1030                                 EXT4_ERROR_INODE_BLOCK(inode, nr,
1031                                                        "Read failure");
1032                                 continue;
1033                         }
1034
1035                         /* This zaps the entire block.  Bottom up. */
1036                         BUFFER_TRACE(bh, "free child branches");
1037                         ext4_free_branches(handle, inode, bh,
1038                                         (__le32 *) bh->b_data,
1039                                         (__le32 *) bh->b_data + addr_per_block,
1040                                         depth);
1041                         brelse(bh);
1042
1043                         /*
1044                          * Everything below this this pointer has been
1045                          * released.  Now let this top-of-subtree go.
1046                          *
1047                          * We want the freeing of this indirect block to be
1048                          * atomic in the journal with the updating of the
1049                          * bitmap block which owns it.  So make some room in
1050                          * the journal.
1051                          *
1052                          * We zero the parent pointer *after* freeing its
1053                          * pointee in the bitmaps, so if extend_transaction()
1054                          * for some reason fails to put the bitmap changes and
1055                          * the release into the same transaction, recovery
1056                          * will merely complain about releasing a free block,
1057                          * rather than leaking blocks.
1058                          */
1059                         if (ext4_handle_is_aborted(handle))
1060                                 return;
1061                         if (try_to_extend_transaction(handle, inode)) {
1062                                 ext4_mark_inode_dirty(handle, inode);
1063                                 ext4_truncate_restart_trans(handle, inode,
1064                                             ext4_blocks_for_truncate(inode));
1065                         }
1066
1067                         /*
1068                          * The forget flag here is critical because if
1069                          * we are journaling (and not doing data
1070                          * journaling), we have to make sure a revoke
1071                          * record is written to prevent the journal
1072                          * replay from overwriting the (former)
1073                          * indirect block if it gets reallocated as a
1074                          * data block.  This must happen in the same
1075                          * transaction where the data blocks are
1076                          * actually freed.
1077                          */
1078                         ext4_free_blocks(handle, inode, NULL, nr, 1,
1079                                          EXT4_FREE_BLOCKS_METADATA|
1080                                          EXT4_FREE_BLOCKS_FORGET);
1081
1082                         if (parent_bh) {
1083                                 /*
1084                                  * The block which we have just freed is
1085                                  * pointed to by an indirect block: journal it
1086                                  */
1087                                 BUFFER_TRACE(parent_bh, "get_write_access");
1088                                 if (!ext4_journal_get_write_access(handle,
1089                                                                    parent_bh)){
1090                                         *p = 0;
1091                                         BUFFER_TRACE(parent_bh,
1092                                         "call ext4_handle_dirty_metadata");
1093                                         ext4_handle_dirty_metadata(handle,
1094                                                                    inode,
1095                                                                    parent_bh);
1096                                 }
1097                         }
1098                 }
1099         } else {
1100                 /* We have reached the bottom of the tree. */
1101                 BUFFER_TRACE(parent_bh, "free data blocks");
1102                 ext4_free_data(handle, inode, parent_bh, first, last);
1103         }
1104 }
1105
1106 void ext4_ind_truncate(handle_t *handle, struct inode *inode)
1107 {
1108         struct ext4_inode_info *ei = EXT4_I(inode);
1109         __le32 *i_data = ei->i_data;
1110         int addr_per_block = EXT4_ADDR_PER_BLOCK(inode->i_sb);
1111         ext4_lblk_t offsets[4];
1112         Indirect chain[4];
1113         Indirect *partial;
1114         __le32 nr = 0;
1115         int n = 0;
1116         ext4_lblk_t last_block, max_block;
1117         unsigned blocksize = inode->i_sb->s_blocksize;
1118
1119         last_block = (inode->i_size + blocksize-1)
1120                                         >> EXT4_BLOCK_SIZE_BITS(inode->i_sb);
1121         max_block = (EXT4_SB(inode->i_sb)->s_bitmap_maxbytes + blocksize-1)
1122                                         >> EXT4_BLOCK_SIZE_BITS(inode->i_sb);
1123
1124         if (last_block != max_block) {
1125                 n = ext4_block_to_path(inode, last_block, offsets, NULL);
1126                 if (n == 0)
1127                         return;
1128         }
1129
1130         ext4_es_remove_extent(inode, last_block, EXT_MAX_BLOCKS - last_block);
1131
1132         /*
1133          * The orphan list entry will now protect us from any crash which
1134          * occurs before the truncate completes, so it is now safe to propagate
1135          * the new, shorter inode size (held for now in i_size) into the
1136          * on-disk inode. We do this via i_disksize, which is the value which
1137          * ext4 *really* writes onto the disk inode.
1138          */
1139         ei->i_disksize = inode->i_size;
1140
1141         if (last_block == max_block) {
1142                 /*
1143                  * It is unnecessary to free any data blocks if last_block is
1144                  * equal to the indirect block limit.
1145                  */
1146                 return;
1147         } else if (n == 1) {            /* direct blocks */
1148                 ext4_free_data(handle, inode, NULL, i_data+offsets[0],
1149                                i_data + EXT4_NDIR_BLOCKS);
1150                 goto do_indirects;
1151         }
1152
1153         partial = ext4_find_shared(inode, n, offsets, chain, &nr);
1154         /* Kill the top of shared branch (not detached) */
1155         if (nr) {
1156                 if (partial == chain) {
1157                         /* Shared branch grows from the inode */
1158                         ext4_free_branches(handle, inode, NULL,
1159                                            &nr, &nr+1, (chain+n-1) - partial);
1160                         *partial->p = 0;
1161                         /*
1162                          * We mark the inode dirty prior to restart,
1163                          * and prior to stop.  No need for it here.
1164                          */
1165                 } else {
1166                         /* Shared branch grows from an indirect block */
1167                         BUFFER_TRACE(partial->bh, "get_write_access");
1168                         ext4_free_branches(handle, inode, partial->bh,
1169                                         partial->p,
1170                                         partial->p+1, (chain+n-1) - partial);
1171                 }
1172         }
1173         /* Clear the ends of indirect blocks on the shared branch */
1174         while (partial > chain) {
1175                 ext4_free_branches(handle, inode, partial->bh, partial->p + 1,
1176                                    (__le32*)partial->bh->b_data+addr_per_block,
1177                                    (chain+n-1) - partial);
1178                 BUFFER_TRACE(partial->bh, "call brelse");
1179                 brelse(partial->bh);
1180                 partial--;
1181         }
1182 do_indirects:
1183         /* Kill the remaining (whole) subtrees */
1184         switch (offsets[0]) {
1185         default:
1186                 nr = i_data[EXT4_IND_BLOCK];
1187                 if (nr) {
1188                         ext4_free_branches(handle, inode, NULL, &nr, &nr+1, 1);
1189                         i_data[EXT4_IND_BLOCK] = 0;
1190                 }
1191         case EXT4_IND_BLOCK:
1192                 nr = i_data[EXT4_DIND_BLOCK];
1193                 if (nr) {
1194                         ext4_free_branches(handle, inode, NULL, &nr, &nr+1, 2);
1195                         i_data[EXT4_DIND_BLOCK] = 0;
1196                 }
1197         case EXT4_DIND_BLOCK:
1198                 nr = i_data[EXT4_TIND_BLOCK];
1199                 if (nr) {
1200                         ext4_free_branches(handle, inode, NULL, &nr, &nr+1, 3);
1201                         i_data[EXT4_TIND_BLOCK] = 0;
1202                 }
1203         case EXT4_TIND_BLOCK:
1204                 ;
1205         }
1206 }
1207
1208 /**
1209  *      ext4_ind_remove_space - remove space from the range
1210  *      @handle: JBD handle for this transaction
1211  *      @inode: inode we are dealing with
1212  *      @start: First block to remove
1213  *      @end:   One block after the last block to remove (exclusive)
1214  *
1215  *      Free the blocks in the defined range (end is exclusive endpoint of
1216  *      range). This is used by ext4_punch_hole().
1217  */
1218 int ext4_ind_remove_space(handle_t *handle, struct inode *inode,
1219                           ext4_lblk_t start, ext4_lblk_t end)
1220 {
1221         struct ext4_inode_info *ei = EXT4_I(inode);
1222         __le32 *i_data = ei->i_data;
1223         int addr_per_block = EXT4_ADDR_PER_BLOCK(inode->i_sb);
1224         ext4_lblk_t offsets[4], offsets2[4];
1225         Indirect chain[4], chain2[4];
1226         Indirect *partial, *partial2;
1227         Indirect *p = NULL, *p2 = NULL;
1228         ext4_lblk_t max_block;
1229         __le32 nr = 0, nr2 = 0;
1230         int n = 0, n2 = 0;
1231         unsigned blocksize = inode->i_sb->s_blocksize;
1232
1233         max_block = (EXT4_SB(inode->i_sb)->s_bitmap_maxbytes + blocksize-1)
1234                                         >> EXT4_BLOCK_SIZE_BITS(inode->i_sb);
1235         if (end >= max_block)
1236                 end = max_block;
1237         if ((start >= end) || (start > max_block))
1238                 return 0;
1239
1240         n = ext4_block_to_path(inode, start, offsets, NULL);
1241         n2 = ext4_block_to_path(inode, end, offsets2, NULL);
1242
1243         BUG_ON(n > n2);
1244
1245         if ((n == 1) && (n == n2)) {
1246                 /* We're punching only within direct block range */
1247                 ext4_free_data(handle, inode, NULL, i_data + offsets[0],
1248                                i_data + offsets2[0]);
1249                 return 0;
1250         } else if (n2 > n) {
1251                 /*
1252                  * Start and end are on a different levels so we're going to
1253                  * free partial block at start, and partial block at end of
1254                  * the range. If there are some levels in between then
1255                  * do_indirects label will take care of that.
1256                  */
1257
1258                 if (n == 1) {
1259                         /*
1260                          * Start is at the direct block level, free
1261                          * everything to the end of the level.
1262                          */
1263                         ext4_free_data(handle, inode, NULL, i_data + offsets[0],
1264                                        i_data + EXT4_NDIR_BLOCKS);
1265                         goto end_range;
1266                 }
1267
1268
1269                 partial = p = ext4_find_shared(inode, n, offsets, chain, &nr);
1270                 if (nr) {
1271                         if (partial == chain) {
1272                                 /* Shared branch grows from the inode */
1273                                 ext4_free_branches(handle, inode, NULL,
1274                                            &nr, &nr+1, (chain+n-1) - partial);
1275                                 *partial->p = 0;
1276                         } else {
1277                                 /* Shared branch grows from an indirect block */
1278                                 BUFFER_TRACE(partial->bh, "get_write_access");
1279                                 ext4_free_branches(handle, inode, partial->bh,
1280                                         partial->p,
1281                                         partial->p+1, (chain+n-1) - partial);
1282                         }
1283                 }
1284
1285                 /*
1286                  * Clear the ends of indirect blocks on the shared branch
1287                  * at the start of the range
1288                  */
1289                 while (partial > chain) {
1290                         ext4_free_branches(handle, inode, partial->bh,
1291                                 partial->p + 1,
1292                                 (__le32 *)partial->bh->b_data+addr_per_block,
1293                                 (chain+n-1) - partial);
1294                         partial--;
1295                 }
1296
1297 end_range:
1298                 partial2 = p2 = ext4_find_shared(inode, n2, offsets2, chain2, &nr2);
1299                 if (nr2) {
1300                         if (partial2 == chain2) {
1301                                 /*
1302                                  * Remember, end is exclusive so here we're at
1303                                  * the start of the next level we're not going
1304                                  * to free. Everything was covered by the start
1305                                  * of the range.
1306                                  */
1307                                 goto do_indirects;
1308                         }
1309                 } else {
1310                         /*
1311                          * ext4_find_shared returns Indirect structure which
1312                          * points to the last element which should not be
1313                          * removed by truncate. But this is end of the range
1314                          * in punch_hole so we need to point to the next element
1315                          */
1316                         partial2->p++;
1317                 }
1318
1319                 /*
1320                  * Clear the ends of indirect blocks on the shared branch
1321                  * at the end of the range
1322                  */
1323                 while (partial2 > chain2) {
1324                         ext4_free_branches(handle, inode, partial2->bh,
1325                                            (__le32 *)partial2->bh->b_data,
1326                                            partial2->p,
1327                                            (chain2+n2-1) - partial2);
1328                         partial2--;
1329                 }
1330                 goto do_indirects;
1331         }
1332
1333         /* Punch happened within the same level (n == n2) */
1334         partial = p = ext4_find_shared(inode, n, offsets, chain, &nr);
1335         partial2 = p2 = ext4_find_shared(inode, n2, offsets2, chain2, &nr2);
1336
1337         /* Free top, but only if partial2 isn't its subtree. */
1338         if (nr) {
1339                 int level = min(partial - chain, partial2 - chain2);
1340                 int i;
1341                 int subtree = 1;
1342
1343                 for (i = 0; i <= level; i++) {
1344                         if (offsets[i] != offsets2[i]) {
1345                                 subtree = 0;
1346                                 break;
1347                         }
1348                 }
1349
1350                 if (!subtree) {
1351                         if (partial == chain) {
1352                                 /* Shared branch grows from the inode */
1353                                 ext4_free_branches(handle, inode, NULL,
1354                                                    &nr, &nr+1,
1355                                                    (chain+n-1) - partial);
1356                                 *partial->p = 0;
1357                         } else {
1358                                 /* Shared branch grows from an indirect block */
1359                                 BUFFER_TRACE(partial->bh, "get_write_access");
1360                                 ext4_free_branches(handle, inode, partial->bh,
1361                                                    partial->p,
1362                                                    partial->p+1,
1363                                                    (chain+n-1) - partial);
1364                         }
1365                 }
1366         }
1367
1368         if (!nr2) {
1369                 /*
1370                  * ext4_find_shared returns Indirect structure which
1371                  * points to the last element which should not be
1372                  * removed by truncate. But this is end of the range
1373                  * in punch_hole so we need to point to the next element
1374                  */
1375                 partial2->p++;
1376         }
1377
1378         while (partial > chain || partial2 > chain2) {
1379                 int depth = (chain+n-1) - partial;
1380                 int depth2 = (chain2+n2-1) - partial2;
1381
1382                 if (partial > chain && partial2 > chain2 &&
1383                     partial->bh->b_blocknr == partial2->bh->b_blocknr) {
1384                         /*
1385                          * We've converged on the same block. Clear the range,
1386                          * then we're done.
1387                          */
1388                         ext4_free_branches(handle, inode, partial->bh,
1389                                            partial->p + 1,
1390                                            partial2->p,
1391                                            (chain+n-1) - partial);
1392                         goto cleanup;
1393                 }
1394
1395                 /*
1396                  * The start and end partial branches may not be at the same
1397                  * level even though the punch happened within one level. So, we
1398                  * give them a chance to arrive at the same level, then walk
1399                  * them in step with each other until we converge on the same
1400                  * block.
1401                  */
1402                 if (partial > chain && depth <= depth2) {
1403                         ext4_free_branches(handle, inode, partial->bh,
1404                                            partial->p + 1,
1405                                            (__le32 *)partial->bh->b_data+addr_per_block,
1406                                            (chain+n-1) - partial);
1407                         partial--;
1408                 }
1409                 if (partial2 > chain2 && depth2 <= depth) {
1410                         ext4_free_branches(handle, inode, partial2->bh,
1411                                            (__le32 *)partial2->bh->b_data,
1412                                            partial2->p,
1413                                            (chain2+n2-1) - partial2);
1414                         partial2--;
1415                 }
1416         }
1417
1418 cleanup:
1419         while (p && p > chain) {
1420                 BUFFER_TRACE(p->bh, "call brelse");
1421                 brelse(p->bh);
1422                 p--;
1423         }
1424         while (p2 && p2 > chain2) {
1425                 BUFFER_TRACE(p2->bh, "call brelse");
1426                 brelse(p2->bh);
1427                 p2--;
1428         }
1429         return 0;
1430
1431 do_indirects:
1432         /* Kill the remaining (whole) subtrees */
1433         switch (offsets[0]) {
1434         default:
1435                 if (++n >= n2)
1436                         break;
1437                 nr = i_data[EXT4_IND_BLOCK];
1438                 if (nr) {
1439                         ext4_free_branches(handle, inode, NULL, &nr, &nr+1, 1);
1440                         i_data[EXT4_IND_BLOCK] = 0;
1441                 }
1442         case EXT4_IND_BLOCK:
1443                 if (++n >= n2)
1444                         break;
1445                 nr = i_data[EXT4_DIND_BLOCK];
1446                 if (nr) {
1447                         ext4_free_branches(handle, inode, NULL, &nr, &nr+1, 2);
1448                         i_data[EXT4_DIND_BLOCK] = 0;
1449                 }
1450         case EXT4_DIND_BLOCK:
1451                 if (++n >= n2)
1452                         break;
1453                 nr = i_data[EXT4_TIND_BLOCK];
1454                 if (nr) {
1455                         ext4_free_branches(handle, inode, NULL, &nr, &nr+1, 3);
1456                         i_data[EXT4_TIND_BLOCK] = 0;
1457                 }
1458         case EXT4_TIND_BLOCK:
1459                 ;
1460         }
1461         goto cleanup;
1462 }