GNU Linux-libre 5.15.137-gnu
[releases.git] / fs / ext4 / fast_commit.c
1 // SPDX-License-Identifier: GPL-2.0
2
3 /*
4  * fs/ext4/fast_commit.c
5  *
6  * Written by Harshad Shirwadkar <harshadshirwadkar@gmail.com>
7  *
8  * Ext4 fast commits routines.
9  */
10 #include "ext4.h"
11 #include "ext4_jbd2.h"
12 #include "ext4_extents.h"
13 #include "mballoc.h"
14
15 /*
16  * Ext4 Fast Commits
17  * -----------------
18  *
19  * Ext4 fast commits implement fine grained journalling for Ext4.
20  *
21  * Fast commits are organized as a log of tag-length-value (TLV) structs. (See
22  * struct ext4_fc_tl). Each TLV contains some delta that is replayed TLV by
23  * TLV during the recovery phase. For the scenarios for which we currently
24  * don't have replay code, fast commit falls back to full commits.
25  * Fast commits record delta in one of the following three categories.
26  *
27  * (A) Directory entry updates:
28  *
29  * - EXT4_FC_TAG_UNLINK         - records directory entry unlink
30  * - EXT4_FC_TAG_LINK           - records directory entry link
31  * - EXT4_FC_TAG_CREAT          - records inode and directory entry creation
32  *
33  * (B) File specific data range updates:
34  *
35  * - EXT4_FC_TAG_ADD_RANGE      - records addition of new blocks to an inode
36  * - EXT4_FC_TAG_DEL_RANGE      - records deletion of blocks from an inode
37  *
38  * (C) Inode metadata (mtime / ctime etc):
39  *
40  * - EXT4_FC_TAG_INODE          - record the inode that should be replayed
41  *                                during recovery. Note that iblocks field is
42  *                                not replayed and instead derived during
43  *                                replay.
44  * Commit Operation
45  * ----------------
46  * With fast commits, we maintain all the directory entry operations in the
47  * order in which they are issued in an in-memory queue. This queue is flushed
48  * to disk during the commit operation. We also maintain a list of inodes
49  * that need to be committed during a fast commit in another in memory queue of
50  * inodes. During the commit operation, we commit in the following order:
51  *
52  * [1] Lock inodes for any further data updates by setting COMMITTING state
53  * [2] Submit data buffers of all the inodes
54  * [3] Wait for [2] to complete
55  * [4] Commit all the directory entry updates in the fast commit space
56  * [5] Commit all the changed inode structures
57  * [6] Write tail tag (this tag ensures the atomicity, please read the following
58  *     section for more details).
59  * [7] Wait for [4], [5] and [6] to complete.
60  *
61  * All the inode updates must call ext4_fc_start_update() before starting an
62  * update. If such an ongoing update is present, fast commit waits for it to
63  * complete. The completion of such an update is marked by
64  * ext4_fc_stop_update().
65  *
66  * Fast Commit Ineligibility
67  * -------------------------
68  *
69  * Not all operations are supported by fast commits today (e.g extended
70  * attributes). Fast commit ineligibility is marked by calling
71  * ext4_fc_mark_ineligible(): This makes next fast commit operation to fall back
72  * to full commit.
73  *
74  * Atomicity of commits
75  * --------------------
76  * In order to guarantee atomicity during the commit operation, fast commit
77  * uses "EXT4_FC_TAG_TAIL" tag that marks a fast commit as complete. Tail
78  * tag contains CRC of the contents and TID of the transaction after which
79  * this fast commit should be applied. Recovery code replays fast commit
80  * logs only if there's at least 1 valid tail present. For every fast commit
81  * operation, there is 1 tail. This means, we may end up with multiple tails
82  * in the fast commit space. Here's an example:
83  *
84  * - Create a new file A and remove existing file B
85  * - fsync()
86  * - Append contents to file A
87  * - Truncate file A
88  * - fsync()
89  *
90  * The fast commit space at the end of above operations would look like this:
91  *      [HEAD] [CREAT A] [UNLINK B] [TAIL] [ADD_RANGE A] [DEL_RANGE A] [TAIL]
92  *             |<---  Fast Commit 1   --->|<---      Fast Commit 2     ---->|
93  *
94  * Replay code should thus check for all the valid tails in the FC area.
95  *
96  * Fast Commit Replay Idempotence
97  * ------------------------------
98  *
99  * Fast commits tags are idempotent in nature provided the recovery code follows
100  * certain rules. The guiding principle that the commit path follows while
101  * committing is that it stores the result of a particular operation instead of
102  * storing the procedure.
103  *
104  * Let's consider this rename operation: 'mv /a /b'. Let's assume dirent '/a'
105  * was associated with inode 10. During fast commit, instead of storing this
106  * operation as a procedure "rename a to b", we store the resulting file system
107  * state as a "series" of outcomes:
108  *
109  * - Link dirent b to inode 10
110  * - Unlink dirent a
111  * - Inode <10> with valid refcount
112  *
113  * Now when recovery code runs, it needs "enforce" this state on the file
114  * system. This is what guarantees idempotence of fast commit replay.
115  *
116  * Let's take an example of a procedure that is not idempotent and see how fast
117  * commits make it idempotent. Consider following sequence of operations:
118  *
119  *     rm A;    mv B A;    read A
120  *  (x)     (y)        (z)
121  *
122  * (x), (y) and (z) are the points at which we can crash. If we store this
123  * sequence of operations as is then the replay is not idempotent. Let's say
124  * while in replay, we crash at (z). During the second replay, file A (which was
125  * actually created as a result of "mv B A" operation) would get deleted. Thus,
126  * file named A would be absent when we try to read A. So, this sequence of
127  * operations is not idempotent. However, as mentioned above, instead of storing
128  * the procedure fast commits store the outcome of each procedure. Thus the fast
129  * commit log for above procedure would be as follows:
130  *
131  * (Let's assume dirent A was linked to inode 10 and dirent B was linked to
132  * inode 11 before the replay)
133  *
134  *    [Unlink A]   [Link A to inode 11]   [Unlink B]   [Inode 11]
135  * (w)          (x)                    (y)          (z)
136  *
137  * If we crash at (z), we will have file A linked to inode 11. During the second
138  * replay, we will remove file A (inode 11). But we will create it back and make
139  * it point to inode 11. We won't find B, so we'll just skip that step. At this
140  * point, the refcount for inode 11 is not reliable, but that gets fixed by the
141  * replay of last inode 11 tag. Crashes at points (w), (x) and (y) get handled
142  * similarly. Thus, by converting a non-idempotent procedure into a series of
143  * idempotent outcomes, fast commits ensured idempotence during the replay.
144  *
145  * TODOs
146  * -----
147  *
148  * 0) Fast commit replay path hardening: Fast commit replay code should use
149  *    journal handles to make sure all the updates it does during the replay
150  *    path are atomic. With that if we crash during fast commit replay, after
151  *    trying to do recovery again, we will find a file system where fast commit
152  *    area is invalid (because new full commit would be found). In order to deal
153  *    with that, fast commit replay code should ensure that the "FC_REPLAY"
154  *    superblock state is persisted before starting the replay, so that after
155  *    the crash, fast commit recovery code can look at that flag and perform
156  *    fast commit recovery even if that area is invalidated by later full
157  *    commits.
158  *
159  * 1) Make fast commit atomic updates more fine grained. Today, a fast commit
160  *    eligible update must be protected within ext4_fc_start_update() and
161  *    ext4_fc_stop_update(). These routines are called at much higher
162  *    routines. This can be made more fine grained by combining with
163  *    ext4_journal_start().
164  *
165  * 2) Same above for ext4_fc_start_ineligible() and ext4_fc_stop_ineligible()
166  *
167  * 3) Handle more ineligible cases.
168  */
169
170 #include <trace/events/ext4.h>
171 static struct kmem_cache *ext4_fc_dentry_cachep;
172
173 static void ext4_end_buffer_io_sync(struct buffer_head *bh, int uptodate)
174 {
175         BUFFER_TRACE(bh, "");
176         if (uptodate) {
177                 ext4_debug("%s: Block %lld up-to-date",
178                            __func__, bh->b_blocknr);
179                 set_buffer_uptodate(bh);
180         } else {
181                 ext4_debug("%s: Block %lld not up-to-date",
182                            __func__, bh->b_blocknr);
183                 clear_buffer_uptodate(bh);
184         }
185
186         unlock_buffer(bh);
187 }
188
189 static inline void ext4_fc_reset_inode(struct inode *inode)
190 {
191         struct ext4_inode_info *ei = EXT4_I(inode);
192
193         ei->i_fc_lblk_start = 0;
194         ei->i_fc_lblk_len = 0;
195 }
196
197 void ext4_fc_init_inode(struct inode *inode)
198 {
199         struct ext4_inode_info *ei = EXT4_I(inode);
200
201         ext4_fc_reset_inode(inode);
202         ext4_clear_inode_state(inode, EXT4_STATE_FC_COMMITTING);
203         INIT_LIST_HEAD(&ei->i_fc_list);
204         init_waitqueue_head(&ei->i_fc_wait);
205         atomic_set(&ei->i_fc_updates, 0);
206 }
207
208 /* This function must be called with sbi->s_fc_lock held. */
209 static void ext4_fc_wait_committing_inode(struct inode *inode)
210 __releases(&EXT4_SB(inode->i_sb)->s_fc_lock)
211 {
212         wait_queue_head_t *wq;
213         struct ext4_inode_info *ei = EXT4_I(inode);
214
215 #if (BITS_PER_LONG < 64)
216         DEFINE_WAIT_BIT(wait, &ei->i_state_flags,
217                         EXT4_STATE_FC_COMMITTING);
218         wq = bit_waitqueue(&ei->i_state_flags,
219                                 EXT4_STATE_FC_COMMITTING);
220 #else
221         DEFINE_WAIT_BIT(wait, &ei->i_flags,
222                         EXT4_STATE_FC_COMMITTING);
223         wq = bit_waitqueue(&ei->i_flags,
224                                 EXT4_STATE_FC_COMMITTING);
225 #endif
226         lockdep_assert_held(&EXT4_SB(inode->i_sb)->s_fc_lock);
227         prepare_to_wait(wq, &wait.wq_entry, TASK_UNINTERRUPTIBLE);
228         spin_unlock(&EXT4_SB(inode->i_sb)->s_fc_lock);
229         schedule();
230         finish_wait(wq, &wait.wq_entry);
231 }
232
233 /*
234  * Inform Ext4's fast about start of an inode update
235  *
236  * This function is called by the high level call VFS callbacks before
237  * performing any inode update. This function blocks if there's an ongoing
238  * fast commit on the inode in question.
239  */
240 void ext4_fc_start_update(struct inode *inode)
241 {
242         struct ext4_inode_info *ei = EXT4_I(inode);
243
244         if (!test_opt2(inode->i_sb, JOURNAL_FAST_COMMIT) ||
245             (EXT4_SB(inode->i_sb)->s_mount_state & EXT4_FC_REPLAY))
246                 return;
247
248 restart:
249         spin_lock(&EXT4_SB(inode->i_sb)->s_fc_lock);
250         if (list_empty(&ei->i_fc_list))
251                 goto out;
252
253         if (ext4_test_inode_state(inode, EXT4_STATE_FC_COMMITTING)) {
254                 ext4_fc_wait_committing_inode(inode);
255                 goto restart;
256         }
257 out:
258         atomic_inc(&ei->i_fc_updates);
259         spin_unlock(&EXT4_SB(inode->i_sb)->s_fc_lock);
260 }
261
262 /*
263  * Stop inode update and wake up waiting fast commits if any.
264  */
265 void ext4_fc_stop_update(struct inode *inode)
266 {
267         struct ext4_inode_info *ei = EXT4_I(inode);
268
269         if (!test_opt2(inode->i_sb, JOURNAL_FAST_COMMIT) ||
270             (EXT4_SB(inode->i_sb)->s_mount_state & EXT4_FC_REPLAY))
271                 return;
272
273         if (atomic_dec_and_test(&ei->i_fc_updates))
274                 wake_up_all(&ei->i_fc_wait);
275 }
276
277 /*
278  * Remove inode from fast commit list. If the inode is being committed
279  * we wait until inode commit is done.
280  */
281 void ext4_fc_del(struct inode *inode)
282 {
283         struct ext4_inode_info *ei = EXT4_I(inode);
284
285         if (!test_opt2(inode->i_sb, JOURNAL_FAST_COMMIT) ||
286             (EXT4_SB(inode->i_sb)->s_mount_state & EXT4_FC_REPLAY))
287                 return;
288
289 restart:
290         spin_lock(&EXT4_SB(inode->i_sb)->s_fc_lock);
291         if (list_empty(&ei->i_fc_list)) {
292                 spin_unlock(&EXT4_SB(inode->i_sb)->s_fc_lock);
293                 return;
294         }
295
296         if (ext4_test_inode_state(inode, EXT4_STATE_FC_COMMITTING)) {
297                 ext4_fc_wait_committing_inode(inode);
298                 goto restart;
299         }
300         list_del_init(&ei->i_fc_list);
301         spin_unlock(&EXT4_SB(inode->i_sb)->s_fc_lock);
302 }
303
304 /*
305  * Mark file system as fast commit ineligible, and record latest
306  * ineligible transaction tid. This means until the recorded
307  * transaction, commit operation would result in a full jbd2 commit.
308  */
309 void ext4_fc_mark_ineligible(struct super_block *sb, int reason, handle_t *handle)
310 {
311         struct ext4_sb_info *sbi = EXT4_SB(sb);
312         tid_t tid;
313
314         if (!test_opt2(sb, JOURNAL_FAST_COMMIT) ||
315             (EXT4_SB(sb)->s_mount_state & EXT4_FC_REPLAY))
316                 return;
317
318         ext4_set_mount_flag(sb, EXT4_MF_FC_INELIGIBLE);
319         if (handle && !IS_ERR(handle))
320                 tid = handle->h_transaction->t_tid;
321         else {
322                 read_lock(&sbi->s_journal->j_state_lock);
323                 tid = sbi->s_journal->j_running_transaction ?
324                                 sbi->s_journal->j_running_transaction->t_tid : 0;
325                 read_unlock(&sbi->s_journal->j_state_lock);
326         }
327         spin_lock(&sbi->s_fc_lock);
328         if (sbi->s_fc_ineligible_tid < tid)
329                 sbi->s_fc_ineligible_tid = tid;
330         spin_unlock(&sbi->s_fc_lock);
331         WARN_ON(reason >= EXT4_FC_REASON_MAX);
332         sbi->s_fc_stats.fc_ineligible_reason_count[reason]++;
333 }
334
335 /*
336  * Generic fast commit tracking function. If this is the first time this we are
337  * called after a full commit, we initialize fast commit fields and then call
338  * __fc_track_fn() with update = 0. If we have already been called after a full
339  * commit, we pass update = 1. Based on that, the track function can determine
340  * if it needs to track a field for the first time or if it needs to just
341  * update the previously tracked value.
342  *
343  * If enqueue is set, this function enqueues the inode in fast commit list.
344  */
345 static int ext4_fc_track_template(
346         handle_t *handle, struct inode *inode,
347         int (*__fc_track_fn)(struct inode *, void *, bool),
348         void *args, int enqueue)
349 {
350         bool update = false;
351         struct ext4_inode_info *ei = EXT4_I(inode);
352         struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
353         tid_t tid = 0;
354         int ret;
355
356         if (!test_opt2(inode->i_sb, JOURNAL_FAST_COMMIT) ||
357             (sbi->s_mount_state & EXT4_FC_REPLAY))
358                 return -EOPNOTSUPP;
359
360         if (ext4_test_mount_flag(inode->i_sb, EXT4_MF_FC_INELIGIBLE))
361                 return -EINVAL;
362
363         tid = handle->h_transaction->t_tid;
364         mutex_lock(&ei->i_fc_lock);
365         if (tid == ei->i_sync_tid) {
366                 update = true;
367         } else {
368                 ext4_fc_reset_inode(inode);
369                 ei->i_sync_tid = tid;
370         }
371         ret = __fc_track_fn(inode, args, update);
372         mutex_unlock(&ei->i_fc_lock);
373
374         if (!enqueue)
375                 return ret;
376
377         spin_lock(&sbi->s_fc_lock);
378         if (list_empty(&EXT4_I(inode)->i_fc_list))
379                 list_add_tail(&EXT4_I(inode)->i_fc_list,
380                                 (sbi->s_journal->j_flags & JBD2_FULL_COMMIT_ONGOING ||
381                                  sbi->s_journal->j_flags & JBD2_FAST_COMMIT_ONGOING) ?
382                                 &sbi->s_fc_q[FC_Q_STAGING] :
383                                 &sbi->s_fc_q[FC_Q_MAIN]);
384         spin_unlock(&sbi->s_fc_lock);
385
386         return ret;
387 }
388
389 struct __track_dentry_update_args {
390         struct dentry *dentry;
391         int op;
392 };
393
394 /* __track_fn for directory entry updates. Called with ei->i_fc_lock. */
395 static int __track_dentry_update(struct inode *inode, void *arg, bool update)
396 {
397         struct ext4_fc_dentry_update *node;
398         struct ext4_inode_info *ei = EXT4_I(inode);
399         struct __track_dentry_update_args *dentry_update =
400                 (struct __track_dentry_update_args *)arg;
401         struct dentry *dentry = dentry_update->dentry;
402         struct inode *dir = dentry->d_parent->d_inode;
403         struct super_block *sb = inode->i_sb;
404         struct ext4_sb_info *sbi = EXT4_SB(sb);
405
406         mutex_unlock(&ei->i_fc_lock);
407
408         if (IS_ENCRYPTED(dir)) {
409                 ext4_fc_mark_ineligible(sb, EXT4_FC_REASON_ENCRYPTED_FILENAME,
410                                         NULL);
411                 mutex_lock(&ei->i_fc_lock);
412                 return -EOPNOTSUPP;
413         }
414
415         node = kmem_cache_alloc(ext4_fc_dentry_cachep, GFP_NOFS);
416         if (!node) {
417                 ext4_fc_mark_ineligible(sb, EXT4_FC_REASON_NOMEM, NULL);
418                 mutex_lock(&ei->i_fc_lock);
419                 return -ENOMEM;
420         }
421
422         node->fcd_op = dentry_update->op;
423         node->fcd_parent = dir->i_ino;
424         node->fcd_ino = inode->i_ino;
425         if (dentry->d_name.len > DNAME_INLINE_LEN) {
426                 node->fcd_name.name = kmalloc(dentry->d_name.len, GFP_NOFS);
427                 if (!node->fcd_name.name) {
428                         kmem_cache_free(ext4_fc_dentry_cachep, node);
429                         ext4_fc_mark_ineligible(sb, EXT4_FC_REASON_NOMEM, NULL);
430                         mutex_lock(&ei->i_fc_lock);
431                         return -ENOMEM;
432                 }
433                 memcpy((u8 *)node->fcd_name.name, dentry->d_name.name,
434                         dentry->d_name.len);
435         } else {
436                 memcpy(node->fcd_iname, dentry->d_name.name,
437                         dentry->d_name.len);
438                 node->fcd_name.name = node->fcd_iname;
439         }
440         node->fcd_name.len = dentry->d_name.len;
441
442         spin_lock(&sbi->s_fc_lock);
443         if (sbi->s_journal->j_flags & JBD2_FULL_COMMIT_ONGOING ||
444                 sbi->s_journal->j_flags & JBD2_FAST_COMMIT_ONGOING)
445                 list_add_tail(&node->fcd_list,
446                                 &sbi->s_fc_dentry_q[FC_Q_STAGING]);
447         else
448                 list_add_tail(&node->fcd_list, &sbi->s_fc_dentry_q[FC_Q_MAIN]);
449         spin_unlock(&sbi->s_fc_lock);
450         mutex_lock(&ei->i_fc_lock);
451
452         return 0;
453 }
454
455 void __ext4_fc_track_unlink(handle_t *handle,
456                 struct inode *inode, struct dentry *dentry)
457 {
458         struct __track_dentry_update_args args;
459         int ret;
460
461         args.dentry = dentry;
462         args.op = EXT4_FC_TAG_UNLINK;
463
464         ret = ext4_fc_track_template(handle, inode, __track_dentry_update,
465                                         (void *)&args, 0);
466         trace_ext4_fc_track_unlink(inode, dentry, ret);
467 }
468
469 void ext4_fc_track_unlink(handle_t *handle, struct dentry *dentry)
470 {
471         __ext4_fc_track_unlink(handle, d_inode(dentry), dentry);
472 }
473
474 void __ext4_fc_track_link(handle_t *handle,
475         struct inode *inode, struct dentry *dentry)
476 {
477         struct __track_dentry_update_args args;
478         int ret;
479
480         args.dentry = dentry;
481         args.op = EXT4_FC_TAG_LINK;
482
483         ret = ext4_fc_track_template(handle, inode, __track_dentry_update,
484                                         (void *)&args, 0);
485         trace_ext4_fc_track_link(inode, dentry, ret);
486 }
487
488 void ext4_fc_track_link(handle_t *handle, struct dentry *dentry)
489 {
490         __ext4_fc_track_link(handle, d_inode(dentry), dentry);
491 }
492
493 void __ext4_fc_track_create(handle_t *handle, struct inode *inode,
494                           struct dentry *dentry)
495 {
496         struct __track_dentry_update_args args;
497         int ret;
498
499         args.dentry = dentry;
500         args.op = EXT4_FC_TAG_CREAT;
501
502         ret = ext4_fc_track_template(handle, inode, __track_dentry_update,
503                                         (void *)&args, 0);
504         trace_ext4_fc_track_create(inode, dentry, ret);
505 }
506
507 void ext4_fc_track_create(handle_t *handle, struct dentry *dentry)
508 {
509         __ext4_fc_track_create(handle, d_inode(dentry), dentry);
510 }
511
512 /* __track_fn for inode tracking */
513 static int __track_inode(struct inode *inode, void *arg, bool update)
514 {
515         if (update)
516                 return -EEXIST;
517
518         EXT4_I(inode)->i_fc_lblk_len = 0;
519
520         return 0;
521 }
522
523 void ext4_fc_track_inode(handle_t *handle, struct inode *inode)
524 {
525         int ret;
526
527         if (S_ISDIR(inode->i_mode))
528                 return;
529
530         if (ext4_should_journal_data(inode)) {
531                 ext4_fc_mark_ineligible(inode->i_sb,
532                                         EXT4_FC_REASON_INODE_JOURNAL_DATA, handle);
533                 return;
534         }
535
536         ret = ext4_fc_track_template(handle, inode, __track_inode, NULL, 1);
537         trace_ext4_fc_track_inode(inode, ret);
538 }
539
540 struct __track_range_args {
541         ext4_lblk_t start, end;
542 };
543
544 /* __track_fn for tracking data updates */
545 static int __track_range(struct inode *inode, void *arg, bool update)
546 {
547         struct ext4_inode_info *ei = EXT4_I(inode);
548         ext4_lblk_t oldstart;
549         struct __track_range_args *__arg =
550                 (struct __track_range_args *)arg;
551
552         if (inode->i_ino < EXT4_FIRST_INO(inode->i_sb)) {
553                 ext4_debug("Special inode %ld being modified\n", inode->i_ino);
554                 return -ECANCELED;
555         }
556
557         oldstart = ei->i_fc_lblk_start;
558
559         if (update && ei->i_fc_lblk_len > 0) {
560                 ei->i_fc_lblk_start = min(ei->i_fc_lblk_start, __arg->start);
561                 ei->i_fc_lblk_len =
562                         max(oldstart + ei->i_fc_lblk_len - 1, __arg->end) -
563                                 ei->i_fc_lblk_start + 1;
564         } else {
565                 ei->i_fc_lblk_start = __arg->start;
566                 ei->i_fc_lblk_len = __arg->end - __arg->start + 1;
567         }
568
569         return 0;
570 }
571
572 void ext4_fc_track_range(handle_t *handle, struct inode *inode, ext4_lblk_t start,
573                          ext4_lblk_t end)
574 {
575         struct __track_range_args args;
576         int ret;
577
578         if (S_ISDIR(inode->i_mode))
579                 return;
580
581         args.start = start;
582         args.end = end;
583
584         ret = ext4_fc_track_template(handle, inode,  __track_range, &args, 1);
585
586         trace_ext4_fc_track_range(inode, start, end, ret);
587 }
588
589 static void ext4_fc_submit_bh(struct super_block *sb, bool is_tail)
590 {
591         int write_flags = REQ_SYNC;
592         struct buffer_head *bh = EXT4_SB(sb)->s_fc_bh;
593
594         /* Add REQ_FUA | REQ_PREFLUSH only its tail */
595         if (test_opt(sb, BARRIER) && is_tail)
596                 write_flags |= REQ_FUA | REQ_PREFLUSH;
597         lock_buffer(bh);
598         set_buffer_dirty(bh);
599         set_buffer_uptodate(bh);
600         bh->b_end_io = ext4_end_buffer_io_sync;
601         submit_bh(REQ_OP_WRITE, write_flags, bh);
602         EXT4_SB(sb)->s_fc_bh = NULL;
603 }
604
605 /* Ext4 commit path routines */
606
607 /* memcpy to fc reserved space and update CRC */
608 static void *ext4_fc_memcpy(struct super_block *sb, void *dst, const void *src,
609                                 int len, u32 *crc)
610 {
611         if (crc)
612                 *crc = ext4_chksum(EXT4_SB(sb), *crc, src, len);
613         return memcpy(dst, src, len);
614 }
615
616 /* memzero and update CRC */
617 static void *ext4_fc_memzero(struct super_block *sb, void *dst, int len,
618                                 u32 *crc)
619 {
620         void *ret;
621
622         ret = memset(dst, 0, len);
623         if (crc)
624                 *crc = ext4_chksum(EXT4_SB(sb), *crc, dst, len);
625         return ret;
626 }
627
628 /*
629  * Allocate len bytes on a fast commit buffer.
630  *
631  * During the commit time this function is used to manage fast commit
632  * block space. We don't split a fast commit log onto different
633  * blocks. So this function makes sure that if there's not enough space
634  * on the current block, the remaining space in the current block is
635  * marked as unused by adding EXT4_FC_TAG_PAD tag. In that case,
636  * new block is from jbd2 and CRC is updated to reflect the padding
637  * we added.
638  */
639 static u8 *ext4_fc_reserve_space(struct super_block *sb, int len, u32 *crc)
640 {
641         struct ext4_fc_tl tl;
642         struct ext4_sb_info *sbi = EXT4_SB(sb);
643         struct buffer_head *bh;
644         int bsize = sbi->s_journal->j_blocksize;
645         int ret, off = sbi->s_fc_bytes % bsize;
646         int remaining;
647         u8 *dst;
648
649         /*
650          * If 'len' is too long to fit in any block alongside a PAD tlv, then we
651          * cannot fulfill the request.
652          */
653         if (len > bsize - EXT4_FC_TAG_BASE_LEN)
654                 return NULL;
655
656         if (!sbi->s_fc_bh) {
657                 ret = jbd2_fc_get_buf(EXT4_SB(sb)->s_journal, &bh);
658                 if (ret)
659                         return NULL;
660                 sbi->s_fc_bh = bh;
661         }
662         dst = sbi->s_fc_bh->b_data + off;
663
664         /*
665          * Allocate the bytes in the current block if we can do so while still
666          * leaving enough space for a PAD tlv.
667          */
668         remaining = bsize - EXT4_FC_TAG_BASE_LEN - off;
669         if (len <= remaining) {
670                 sbi->s_fc_bytes += len;
671                 return dst;
672         }
673
674         /*
675          * Else, terminate the current block with a PAD tlv, then allocate a new
676          * block and allocate the bytes at the start of that new block.
677          */
678
679         tl.fc_tag = cpu_to_le16(EXT4_FC_TAG_PAD);
680         tl.fc_len = cpu_to_le16(remaining);
681         ext4_fc_memcpy(sb, dst, &tl, EXT4_FC_TAG_BASE_LEN, crc);
682         ext4_fc_memzero(sb, dst + EXT4_FC_TAG_BASE_LEN, remaining, crc);
683
684         ext4_fc_submit_bh(sb, false);
685
686         ret = jbd2_fc_get_buf(EXT4_SB(sb)->s_journal, &bh);
687         if (ret)
688                 return NULL;
689         sbi->s_fc_bh = bh;
690         sbi->s_fc_bytes += bsize - off + len;
691         return sbi->s_fc_bh->b_data;
692 }
693
694 /*
695  * Complete a fast commit by writing tail tag.
696  *
697  * Writing tail tag marks the end of a fast commit. In order to guarantee
698  * atomicity, after writing tail tag, even if there's space remaining
699  * in the block, next commit shouldn't use it. That's why tail tag
700  * has the length as that of the remaining space on the block.
701  */
702 static int ext4_fc_write_tail(struct super_block *sb, u32 crc)
703 {
704         struct ext4_sb_info *sbi = EXT4_SB(sb);
705         struct ext4_fc_tl tl;
706         struct ext4_fc_tail tail;
707         int off, bsize = sbi->s_journal->j_blocksize;
708         u8 *dst;
709
710         /*
711          * ext4_fc_reserve_space takes care of allocating an extra block if
712          * there's no enough space on this block for accommodating this tail.
713          */
714         dst = ext4_fc_reserve_space(sb, EXT4_FC_TAG_BASE_LEN + sizeof(tail), &crc);
715         if (!dst)
716                 return -ENOSPC;
717
718         off = sbi->s_fc_bytes % bsize;
719
720         tl.fc_tag = cpu_to_le16(EXT4_FC_TAG_TAIL);
721         tl.fc_len = cpu_to_le16(bsize - off + sizeof(struct ext4_fc_tail));
722         sbi->s_fc_bytes = round_up(sbi->s_fc_bytes, bsize);
723
724         ext4_fc_memcpy(sb, dst, &tl, EXT4_FC_TAG_BASE_LEN, &crc);
725         dst += EXT4_FC_TAG_BASE_LEN;
726         tail.fc_tid = cpu_to_le32(sbi->s_journal->j_running_transaction->t_tid);
727         ext4_fc_memcpy(sb, dst, &tail.fc_tid, sizeof(tail.fc_tid), &crc);
728         dst += sizeof(tail.fc_tid);
729         tail.fc_crc = cpu_to_le32(crc);
730         ext4_fc_memcpy(sb, dst, &tail.fc_crc, sizeof(tail.fc_crc), NULL);
731         dst += sizeof(tail.fc_crc);
732         memset(dst, 0, bsize - off); /* Don't leak uninitialized memory. */
733
734         ext4_fc_submit_bh(sb, true);
735
736         return 0;
737 }
738
739 /*
740  * Adds tag, length, value and updates CRC. Returns true if tlv was added.
741  * Returns false if there's not enough space.
742  */
743 static bool ext4_fc_add_tlv(struct super_block *sb, u16 tag, u16 len, u8 *val,
744                            u32 *crc)
745 {
746         struct ext4_fc_tl tl;
747         u8 *dst;
748
749         dst = ext4_fc_reserve_space(sb, EXT4_FC_TAG_BASE_LEN + len, crc);
750         if (!dst)
751                 return false;
752
753         tl.fc_tag = cpu_to_le16(tag);
754         tl.fc_len = cpu_to_le16(len);
755
756         ext4_fc_memcpy(sb, dst, &tl, EXT4_FC_TAG_BASE_LEN, crc);
757         ext4_fc_memcpy(sb, dst + EXT4_FC_TAG_BASE_LEN, val, len, crc);
758
759         return true;
760 }
761
762 /* Same as above, but adds dentry tlv. */
763 static bool ext4_fc_add_dentry_tlv(struct super_block *sb, u32 *crc,
764                                    struct ext4_fc_dentry_update *fc_dentry)
765 {
766         struct ext4_fc_dentry_info fcd;
767         struct ext4_fc_tl tl;
768         int dlen = fc_dentry->fcd_name.len;
769         u8 *dst = ext4_fc_reserve_space(sb,
770                         EXT4_FC_TAG_BASE_LEN + sizeof(fcd) + dlen, crc);
771
772         if (!dst)
773                 return false;
774
775         fcd.fc_parent_ino = cpu_to_le32(fc_dentry->fcd_parent);
776         fcd.fc_ino = cpu_to_le32(fc_dentry->fcd_ino);
777         tl.fc_tag = cpu_to_le16(fc_dentry->fcd_op);
778         tl.fc_len = cpu_to_le16(sizeof(fcd) + dlen);
779         ext4_fc_memcpy(sb, dst, &tl, EXT4_FC_TAG_BASE_LEN, crc);
780         dst += EXT4_FC_TAG_BASE_LEN;
781         ext4_fc_memcpy(sb, dst, &fcd, sizeof(fcd), crc);
782         dst += sizeof(fcd);
783         ext4_fc_memcpy(sb, dst, fc_dentry->fcd_name.name, dlen, crc);
784         dst += dlen;
785
786         return true;
787 }
788
789 /*
790  * Writes inode in the fast commit space under TLV with tag @tag.
791  * Returns 0 on success, error on failure.
792  */
793 static int ext4_fc_write_inode(struct inode *inode, u32 *crc)
794 {
795         struct ext4_inode_info *ei = EXT4_I(inode);
796         int inode_len = EXT4_GOOD_OLD_INODE_SIZE;
797         int ret;
798         struct ext4_iloc iloc;
799         struct ext4_fc_inode fc_inode;
800         struct ext4_fc_tl tl;
801         u8 *dst;
802
803         ret = ext4_get_inode_loc(inode, &iloc);
804         if (ret)
805                 return ret;
806
807         if (EXT4_INODE_SIZE(inode->i_sb) > EXT4_GOOD_OLD_INODE_SIZE)
808                 inode_len += ei->i_extra_isize;
809
810         fc_inode.fc_ino = cpu_to_le32(inode->i_ino);
811         tl.fc_tag = cpu_to_le16(EXT4_FC_TAG_INODE);
812         tl.fc_len = cpu_to_le16(inode_len + sizeof(fc_inode.fc_ino));
813
814         ret = -ECANCELED;
815         dst = ext4_fc_reserve_space(inode->i_sb,
816                 EXT4_FC_TAG_BASE_LEN + inode_len + sizeof(fc_inode.fc_ino), crc);
817         if (!dst)
818                 goto err;
819
820         if (!ext4_fc_memcpy(inode->i_sb, dst, &tl, EXT4_FC_TAG_BASE_LEN, crc))
821                 goto err;
822         dst += EXT4_FC_TAG_BASE_LEN;
823         if (!ext4_fc_memcpy(inode->i_sb, dst, &fc_inode, sizeof(fc_inode), crc))
824                 goto err;
825         dst += sizeof(fc_inode);
826         if (!ext4_fc_memcpy(inode->i_sb, dst, (u8 *)ext4_raw_inode(&iloc),
827                                         inode_len, crc))
828                 goto err;
829         ret = 0;
830 err:
831         brelse(iloc.bh);
832         return ret;
833 }
834
835 /*
836  * Writes updated data ranges for the inode in question. Updates CRC.
837  * Returns 0 on success, error otherwise.
838  */
839 static int ext4_fc_write_inode_data(struct inode *inode, u32 *crc)
840 {
841         ext4_lblk_t old_blk_size, cur_lblk_off, new_blk_size;
842         struct ext4_inode_info *ei = EXT4_I(inode);
843         struct ext4_map_blocks map;
844         struct ext4_fc_add_range fc_ext;
845         struct ext4_fc_del_range lrange;
846         struct ext4_extent *ex;
847         int ret;
848
849         mutex_lock(&ei->i_fc_lock);
850         if (ei->i_fc_lblk_len == 0) {
851                 mutex_unlock(&ei->i_fc_lock);
852                 return 0;
853         }
854         old_blk_size = ei->i_fc_lblk_start;
855         new_blk_size = ei->i_fc_lblk_start + ei->i_fc_lblk_len - 1;
856         ei->i_fc_lblk_len = 0;
857         mutex_unlock(&ei->i_fc_lock);
858
859         cur_lblk_off = old_blk_size;
860         ext4_debug("will try writing %d to %d for inode %ld\n",
861                    cur_lblk_off, new_blk_size, inode->i_ino);
862
863         while (cur_lblk_off <= new_blk_size) {
864                 map.m_lblk = cur_lblk_off;
865                 map.m_len = new_blk_size - cur_lblk_off + 1;
866                 ret = ext4_map_blocks(NULL, inode, &map, 0);
867                 if (ret < 0)
868                         return -ECANCELED;
869
870                 if (map.m_len == 0) {
871                         cur_lblk_off++;
872                         continue;
873                 }
874
875                 if (ret == 0) {
876                         lrange.fc_ino = cpu_to_le32(inode->i_ino);
877                         lrange.fc_lblk = cpu_to_le32(map.m_lblk);
878                         lrange.fc_len = cpu_to_le32(map.m_len);
879                         if (!ext4_fc_add_tlv(inode->i_sb, EXT4_FC_TAG_DEL_RANGE,
880                                             sizeof(lrange), (u8 *)&lrange, crc))
881                                 return -ENOSPC;
882                 } else {
883                         unsigned int max = (map.m_flags & EXT4_MAP_UNWRITTEN) ?
884                                 EXT_UNWRITTEN_MAX_LEN : EXT_INIT_MAX_LEN;
885
886                         /* Limit the number of blocks in one extent */
887                         map.m_len = min(max, map.m_len);
888
889                         fc_ext.fc_ino = cpu_to_le32(inode->i_ino);
890                         ex = (struct ext4_extent *)&fc_ext.fc_ex;
891                         ex->ee_block = cpu_to_le32(map.m_lblk);
892                         ex->ee_len = cpu_to_le16(map.m_len);
893                         ext4_ext_store_pblock(ex, map.m_pblk);
894                         if (map.m_flags & EXT4_MAP_UNWRITTEN)
895                                 ext4_ext_mark_unwritten(ex);
896                         else
897                                 ext4_ext_mark_initialized(ex);
898                         if (!ext4_fc_add_tlv(inode->i_sb, EXT4_FC_TAG_ADD_RANGE,
899                                             sizeof(fc_ext), (u8 *)&fc_ext, crc))
900                                 return -ENOSPC;
901                 }
902
903                 cur_lblk_off += map.m_len;
904         }
905
906         return 0;
907 }
908
909
910 /* Submit data for all the fast commit inodes */
911 static int ext4_fc_submit_inode_data_all(journal_t *journal)
912 {
913         struct super_block *sb = (struct super_block *)(journal->j_private);
914         struct ext4_sb_info *sbi = EXT4_SB(sb);
915         struct ext4_inode_info *ei;
916         int ret = 0;
917
918         spin_lock(&sbi->s_fc_lock);
919         list_for_each_entry(ei, &sbi->s_fc_q[FC_Q_MAIN], i_fc_list) {
920                 ext4_set_inode_state(&ei->vfs_inode, EXT4_STATE_FC_COMMITTING);
921                 while (atomic_read(&ei->i_fc_updates)) {
922                         DEFINE_WAIT(wait);
923
924                         prepare_to_wait(&ei->i_fc_wait, &wait,
925                                                 TASK_UNINTERRUPTIBLE);
926                         if (atomic_read(&ei->i_fc_updates)) {
927                                 spin_unlock(&sbi->s_fc_lock);
928                                 schedule();
929                                 spin_lock(&sbi->s_fc_lock);
930                         }
931                         finish_wait(&ei->i_fc_wait, &wait);
932                 }
933                 spin_unlock(&sbi->s_fc_lock);
934                 ret = jbd2_submit_inode_data(ei->jinode);
935                 if (ret)
936                         return ret;
937                 spin_lock(&sbi->s_fc_lock);
938         }
939         spin_unlock(&sbi->s_fc_lock);
940
941         return ret;
942 }
943
944 /* Wait for completion of data for all the fast commit inodes */
945 static int ext4_fc_wait_inode_data_all(journal_t *journal)
946 {
947         struct super_block *sb = (struct super_block *)(journal->j_private);
948         struct ext4_sb_info *sbi = EXT4_SB(sb);
949         struct ext4_inode_info *pos, *n;
950         int ret = 0;
951
952         spin_lock(&sbi->s_fc_lock);
953         list_for_each_entry_safe(pos, n, &sbi->s_fc_q[FC_Q_MAIN], i_fc_list) {
954                 if (!ext4_test_inode_state(&pos->vfs_inode,
955                                            EXT4_STATE_FC_COMMITTING))
956                         continue;
957                 spin_unlock(&sbi->s_fc_lock);
958
959                 ret = jbd2_wait_inode_data(journal, pos->jinode);
960                 if (ret)
961                         return ret;
962                 spin_lock(&sbi->s_fc_lock);
963         }
964         spin_unlock(&sbi->s_fc_lock);
965
966         return 0;
967 }
968
969 /* Commit all the directory entry updates */
970 static int ext4_fc_commit_dentry_updates(journal_t *journal, u32 *crc)
971 __acquires(&sbi->s_fc_lock)
972 __releases(&sbi->s_fc_lock)
973 {
974         struct super_block *sb = (struct super_block *)(journal->j_private);
975         struct ext4_sb_info *sbi = EXT4_SB(sb);
976         struct ext4_fc_dentry_update *fc_dentry, *fc_dentry_n;
977         struct inode *inode;
978         struct ext4_inode_info *ei, *ei_n;
979         int ret;
980
981         if (list_empty(&sbi->s_fc_dentry_q[FC_Q_MAIN]))
982                 return 0;
983         list_for_each_entry_safe(fc_dentry, fc_dentry_n,
984                                  &sbi->s_fc_dentry_q[FC_Q_MAIN], fcd_list) {
985                 if (fc_dentry->fcd_op != EXT4_FC_TAG_CREAT) {
986                         spin_unlock(&sbi->s_fc_lock);
987                         if (!ext4_fc_add_dentry_tlv(sb, crc, fc_dentry)) {
988                                 ret = -ENOSPC;
989                                 goto lock_and_exit;
990                         }
991                         spin_lock(&sbi->s_fc_lock);
992                         continue;
993                 }
994
995                 inode = NULL;
996                 list_for_each_entry_safe(ei, ei_n, &sbi->s_fc_q[FC_Q_MAIN],
997                                          i_fc_list) {
998                         if (ei->vfs_inode.i_ino == fc_dentry->fcd_ino) {
999                                 inode = &ei->vfs_inode;
1000                                 break;
1001                         }
1002                 }
1003                 /*
1004                  * If we don't find inode in our list, then it was deleted,
1005                  * in which case, we don't need to record it's create tag.
1006                  */
1007                 if (!inode)
1008                         continue;
1009                 spin_unlock(&sbi->s_fc_lock);
1010
1011                 /*
1012                  * We first write the inode and then the create dirent. This
1013                  * allows the recovery code to create an unnamed inode first
1014                  * and then link it to a directory entry. This allows us
1015                  * to use namei.c routines almost as is and simplifies
1016                  * the recovery code.
1017                  */
1018                 ret = ext4_fc_write_inode(inode, crc);
1019                 if (ret)
1020                         goto lock_and_exit;
1021
1022                 ret = ext4_fc_write_inode_data(inode, crc);
1023                 if (ret)
1024                         goto lock_and_exit;
1025
1026                 if (!ext4_fc_add_dentry_tlv(sb, crc, fc_dentry)) {
1027                         ret = -ENOSPC;
1028                         goto lock_and_exit;
1029                 }
1030
1031                 spin_lock(&sbi->s_fc_lock);
1032         }
1033         return 0;
1034 lock_and_exit:
1035         spin_lock(&sbi->s_fc_lock);
1036         return ret;
1037 }
1038
1039 static int ext4_fc_perform_commit(journal_t *journal)
1040 {
1041         struct super_block *sb = (struct super_block *)(journal->j_private);
1042         struct ext4_sb_info *sbi = EXT4_SB(sb);
1043         struct ext4_inode_info *iter;
1044         struct ext4_fc_head head;
1045         struct inode *inode;
1046         struct blk_plug plug;
1047         int ret = 0;
1048         u32 crc = 0;
1049
1050         ret = ext4_fc_submit_inode_data_all(journal);
1051         if (ret)
1052                 return ret;
1053
1054         ret = ext4_fc_wait_inode_data_all(journal);
1055         if (ret)
1056                 return ret;
1057
1058         /*
1059          * If file system device is different from journal device, issue a cache
1060          * flush before we start writing fast commit blocks.
1061          */
1062         if (journal->j_fs_dev != journal->j_dev)
1063                 blkdev_issue_flush(journal->j_fs_dev);
1064
1065         blk_start_plug(&plug);
1066         if (sbi->s_fc_bytes == 0) {
1067                 /*
1068                  * Add a head tag only if this is the first fast commit
1069                  * in this TID.
1070                  */
1071                 head.fc_features = cpu_to_le32(EXT4_FC_SUPPORTED_FEATURES);
1072                 head.fc_tid = cpu_to_le32(
1073                         sbi->s_journal->j_running_transaction->t_tid);
1074                 if (!ext4_fc_add_tlv(sb, EXT4_FC_TAG_HEAD, sizeof(head),
1075                         (u8 *)&head, &crc)) {
1076                         ret = -ENOSPC;
1077                         goto out;
1078                 }
1079         }
1080
1081         spin_lock(&sbi->s_fc_lock);
1082         ret = ext4_fc_commit_dentry_updates(journal, &crc);
1083         if (ret) {
1084                 spin_unlock(&sbi->s_fc_lock);
1085                 goto out;
1086         }
1087
1088         list_for_each_entry(iter, &sbi->s_fc_q[FC_Q_MAIN], i_fc_list) {
1089                 inode = &iter->vfs_inode;
1090                 if (!ext4_test_inode_state(inode, EXT4_STATE_FC_COMMITTING))
1091                         continue;
1092
1093                 spin_unlock(&sbi->s_fc_lock);
1094                 ret = ext4_fc_write_inode_data(inode, &crc);
1095                 if (ret)
1096                         goto out;
1097                 ret = ext4_fc_write_inode(inode, &crc);
1098                 if (ret)
1099                         goto out;
1100                 spin_lock(&sbi->s_fc_lock);
1101         }
1102         spin_unlock(&sbi->s_fc_lock);
1103
1104         ret = ext4_fc_write_tail(sb, crc);
1105
1106 out:
1107         blk_finish_plug(&plug);
1108         return ret;
1109 }
1110
1111 static void ext4_fc_update_stats(struct super_block *sb, int status,
1112                                  u64 commit_time, int nblks)
1113 {
1114         struct ext4_fc_stats *stats = &EXT4_SB(sb)->s_fc_stats;
1115
1116         ext4_debug("Fast commit ended with status = %d", status);
1117         if (status == EXT4_FC_STATUS_OK) {
1118                 stats->fc_num_commits++;
1119                 stats->fc_numblks += nblks;
1120                 if (likely(stats->s_fc_avg_commit_time))
1121                         stats->s_fc_avg_commit_time =
1122                                 (commit_time +
1123                                  stats->s_fc_avg_commit_time * 3) / 4;
1124                 else
1125                         stats->s_fc_avg_commit_time = commit_time;
1126         } else if (status == EXT4_FC_STATUS_FAILED ||
1127                    status == EXT4_FC_STATUS_INELIGIBLE) {
1128                 if (status == EXT4_FC_STATUS_FAILED)
1129                         stats->fc_failed_commits++;
1130                 stats->fc_ineligible_commits++;
1131         } else {
1132                 stats->fc_skipped_commits++;
1133         }
1134         trace_ext4_fc_commit_stop(sb, nblks, status);
1135 }
1136
1137 /*
1138  * The main commit entry point. Performs a fast commit for transaction
1139  * commit_tid if needed. If it's not possible to perform a fast commit
1140  * due to various reasons, we fall back to full commit. Returns 0
1141  * on success, error otherwise.
1142  */
1143 int ext4_fc_commit(journal_t *journal, tid_t commit_tid)
1144 {
1145         struct super_block *sb = (struct super_block *)(journal->j_private);
1146         struct ext4_sb_info *sbi = EXT4_SB(sb);
1147         int nblks = 0, ret, bsize = journal->j_blocksize;
1148         int subtid = atomic_read(&sbi->s_fc_subtid);
1149         int status = EXT4_FC_STATUS_OK, fc_bufs_before = 0;
1150         ktime_t start_time, commit_time;
1151
1152         trace_ext4_fc_commit_start(sb);
1153
1154         start_time = ktime_get();
1155
1156         if (!test_opt2(sb, JOURNAL_FAST_COMMIT))
1157                 return jbd2_complete_transaction(journal, commit_tid);
1158
1159 restart_fc:
1160         ret = jbd2_fc_begin_commit(journal, commit_tid);
1161         if (ret == -EALREADY) {
1162                 /* There was an ongoing commit, check if we need to restart */
1163                 if (atomic_read(&sbi->s_fc_subtid) <= subtid &&
1164                         commit_tid > journal->j_commit_sequence)
1165                         goto restart_fc;
1166                 ext4_fc_update_stats(sb, EXT4_FC_STATUS_SKIPPED, 0, 0);
1167                 return 0;
1168         } else if (ret) {
1169                 /*
1170                  * Commit couldn't start. Just update stats and perform a
1171                  * full commit.
1172                  */
1173                 ext4_fc_update_stats(sb, EXT4_FC_STATUS_FAILED, 0, 0);
1174                 return jbd2_complete_transaction(journal, commit_tid);
1175         }
1176
1177         /*
1178          * After establishing journal barrier via jbd2_fc_begin_commit(), check
1179          * if we are fast commit ineligible.
1180          */
1181         if (ext4_test_mount_flag(sb, EXT4_MF_FC_INELIGIBLE)) {
1182                 status = EXT4_FC_STATUS_INELIGIBLE;
1183                 goto fallback;
1184         }
1185
1186         fc_bufs_before = (sbi->s_fc_bytes + bsize - 1) / bsize;
1187         ret = ext4_fc_perform_commit(journal);
1188         if (ret < 0) {
1189                 status = EXT4_FC_STATUS_FAILED;
1190                 goto fallback;
1191         }
1192         nblks = (sbi->s_fc_bytes + bsize - 1) / bsize - fc_bufs_before;
1193         ret = jbd2_fc_wait_bufs(journal, nblks);
1194         if (ret < 0) {
1195                 status = EXT4_FC_STATUS_FAILED;
1196                 goto fallback;
1197         }
1198         atomic_inc(&sbi->s_fc_subtid);
1199         ret = jbd2_fc_end_commit(journal);
1200         /*
1201          * weight the commit time higher than the average time so we
1202          * don't react too strongly to vast changes in the commit time
1203          */
1204         commit_time = ktime_to_ns(ktime_sub(ktime_get(), start_time));
1205         ext4_fc_update_stats(sb, status, commit_time, nblks);
1206         return ret;
1207
1208 fallback:
1209         ret = jbd2_fc_end_commit_fallback(journal);
1210         ext4_fc_update_stats(sb, status, 0, 0);
1211         return ret;
1212 }
1213
1214 /*
1215  * Fast commit cleanup routine. This is called after every fast commit and
1216  * full commit. full is true if we are called after a full commit.
1217  */
1218 static void ext4_fc_cleanup(journal_t *journal, int full, tid_t tid)
1219 {
1220         struct super_block *sb = journal->j_private;
1221         struct ext4_sb_info *sbi = EXT4_SB(sb);
1222         struct ext4_inode_info *iter, *iter_n;
1223         struct ext4_fc_dentry_update *fc_dentry;
1224
1225         if (full && sbi->s_fc_bh)
1226                 sbi->s_fc_bh = NULL;
1227
1228         jbd2_fc_release_bufs(journal);
1229
1230         spin_lock(&sbi->s_fc_lock);
1231         list_for_each_entry_safe(iter, iter_n, &sbi->s_fc_q[FC_Q_MAIN],
1232                                  i_fc_list) {
1233                 list_del_init(&iter->i_fc_list);
1234                 ext4_clear_inode_state(&iter->vfs_inode,
1235                                        EXT4_STATE_FC_COMMITTING);
1236                 if (iter->i_sync_tid <= tid)
1237                         ext4_fc_reset_inode(&iter->vfs_inode);
1238                 /* Make sure EXT4_STATE_FC_COMMITTING bit is clear */
1239                 smp_mb();
1240 #if (BITS_PER_LONG < 64)
1241                 wake_up_bit(&iter->i_state_flags, EXT4_STATE_FC_COMMITTING);
1242 #else
1243                 wake_up_bit(&iter->i_flags, EXT4_STATE_FC_COMMITTING);
1244 #endif
1245         }
1246
1247         while (!list_empty(&sbi->s_fc_dentry_q[FC_Q_MAIN])) {
1248                 fc_dentry = list_first_entry(&sbi->s_fc_dentry_q[FC_Q_MAIN],
1249                                              struct ext4_fc_dentry_update,
1250                                              fcd_list);
1251                 list_del_init(&fc_dentry->fcd_list);
1252                 spin_unlock(&sbi->s_fc_lock);
1253
1254                 if (fc_dentry->fcd_name.name &&
1255                         fc_dentry->fcd_name.len > DNAME_INLINE_LEN)
1256                         kfree(fc_dentry->fcd_name.name);
1257                 kmem_cache_free(ext4_fc_dentry_cachep, fc_dentry);
1258                 spin_lock(&sbi->s_fc_lock);
1259         }
1260
1261         list_splice_init(&sbi->s_fc_dentry_q[FC_Q_STAGING],
1262                                 &sbi->s_fc_dentry_q[FC_Q_MAIN]);
1263         list_splice_init(&sbi->s_fc_q[FC_Q_STAGING],
1264                                 &sbi->s_fc_q[FC_Q_MAIN]);
1265
1266         if (tid >= sbi->s_fc_ineligible_tid) {
1267                 sbi->s_fc_ineligible_tid = 0;
1268                 ext4_clear_mount_flag(sb, EXT4_MF_FC_INELIGIBLE);
1269         }
1270
1271         if (full)
1272                 sbi->s_fc_bytes = 0;
1273         spin_unlock(&sbi->s_fc_lock);
1274         trace_ext4_fc_stats(sb);
1275 }
1276
1277 /* Ext4 Replay Path Routines */
1278
1279 /* Helper struct for dentry replay routines */
1280 struct dentry_info_args {
1281         int parent_ino, dname_len, ino, inode_len;
1282         char *dname;
1283 };
1284
1285 /* Same as struct ext4_fc_tl, but uses native endianness fields */
1286 struct ext4_fc_tl_mem {
1287         u16 fc_tag;
1288         u16 fc_len;
1289 };
1290
1291 static inline void tl_to_darg(struct dentry_info_args *darg,
1292                               struct ext4_fc_tl_mem *tl, u8 *val)
1293 {
1294         struct ext4_fc_dentry_info fcd;
1295
1296         memcpy(&fcd, val, sizeof(fcd));
1297
1298         darg->parent_ino = le32_to_cpu(fcd.fc_parent_ino);
1299         darg->ino = le32_to_cpu(fcd.fc_ino);
1300         darg->dname = val + offsetof(struct ext4_fc_dentry_info, fc_dname);
1301         darg->dname_len = tl->fc_len - sizeof(struct ext4_fc_dentry_info);
1302 }
1303
1304 static inline void ext4_fc_get_tl(struct ext4_fc_tl_mem *tl, u8 *val)
1305 {
1306         struct ext4_fc_tl tl_disk;
1307
1308         memcpy(&tl_disk, val, EXT4_FC_TAG_BASE_LEN);
1309         tl->fc_len = le16_to_cpu(tl_disk.fc_len);
1310         tl->fc_tag = le16_to_cpu(tl_disk.fc_tag);
1311 }
1312
1313 /* Unlink replay function */
1314 static int ext4_fc_replay_unlink(struct super_block *sb,
1315                                  struct ext4_fc_tl_mem *tl, u8 *val)
1316 {
1317         struct inode *inode, *old_parent;
1318         struct qstr entry;
1319         struct dentry_info_args darg;
1320         int ret = 0;
1321
1322         tl_to_darg(&darg, tl, val);
1323
1324         trace_ext4_fc_replay(sb, EXT4_FC_TAG_UNLINK, darg.ino,
1325                         darg.parent_ino, darg.dname_len);
1326
1327         entry.name = darg.dname;
1328         entry.len = darg.dname_len;
1329         inode = ext4_iget(sb, darg.ino, EXT4_IGET_NORMAL);
1330
1331         if (IS_ERR(inode)) {
1332                 ext4_debug("Inode %d not found", darg.ino);
1333                 return 0;
1334         }
1335
1336         old_parent = ext4_iget(sb, darg.parent_ino,
1337                                 EXT4_IGET_NORMAL);
1338         if (IS_ERR(old_parent)) {
1339                 ext4_debug("Dir with inode %d not found", darg.parent_ino);
1340                 iput(inode);
1341                 return 0;
1342         }
1343
1344         ret = __ext4_unlink(old_parent, &entry, inode, NULL);
1345         /* -ENOENT ok coz it might not exist anymore. */
1346         if (ret == -ENOENT)
1347                 ret = 0;
1348         iput(old_parent);
1349         iput(inode);
1350         return ret;
1351 }
1352
1353 static int ext4_fc_replay_link_internal(struct super_block *sb,
1354                                 struct dentry_info_args *darg,
1355                                 struct inode *inode)
1356 {
1357         struct inode *dir = NULL;
1358         struct dentry *dentry_dir = NULL, *dentry_inode = NULL;
1359         struct qstr qstr_dname = QSTR_INIT(darg->dname, darg->dname_len);
1360         int ret = 0;
1361
1362         dir = ext4_iget(sb, darg->parent_ino, EXT4_IGET_NORMAL);
1363         if (IS_ERR(dir)) {
1364                 ext4_debug("Dir with inode %d not found.", darg->parent_ino);
1365                 dir = NULL;
1366                 goto out;
1367         }
1368
1369         dentry_dir = d_obtain_alias(dir);
1370         if (IS_ERR(dentry_dir)) {
1371                 ext4_debug("Failed to obtain dentry");
1372                 dentry_dir = NULL;
1373                 goto out;
1374         }
1375
1376         dentry_inode = d_alloc(dentry_dir, &qstr_dname);
1377         if (!dentry_inode) {
1378                 ext4_debug("Inode dentry not created.");
1379                 ret = -ENOMEM;
1380                 goto out;
1381         }
1382
1383         ret = __ext4_link(dir, inode, dentry_inode);
1384         /*
1385          * It's possible that link already existed since data blocks
1386          * for the dir in question got persisted before we crashed OR
1387          * we replayed this tag and crashed before the entire replay
1388          * could complete.
1389          */
1390         if (ret && ret != -EEXIST) {
1391                 ext4_debug("Failed to link\n");
1392                 goto out;
1393         }
1394
1395         ret = 0;
1396 out:
1397         if (dentry_dir) {
1398                 d_drop(dentry_dir);
1399                 dput(dentry_dir);
1400         } else if (dir) {
1401                 iput(dir);
1402         }
1403         if (dentry_inode) {
1404                 d_drop(dentry_inode);
1405                 dput(dentry_inode);
1406         }
1407
1408         return ret;
1409 }
1410
1411 /* Link replay function */
1412 static int ext4_fc_replay_link(struct super_block *sb,
1413                                struct ext4_fc_tl_mem *tl, u8 *val)
1414 {
1415         struct inode *inode;
1416         struct dentry_info_args darg;
1417         int ret = 0;
1418
1419         tl_to_darg(&darg, tl, val);
1420         trace_ext4_fc_replay(sb, EXT4_FC_TAG_LINK, darg.ino,
1421                         darg.parent_ino, darg.dname_len);
1422
1423         inode = ext4_iget(sb, darg.ino, EXT4_IGET_NORMAL);
1424         if (IS_ERR(inode)) {
1425                 ext4_debug("Inode not found.");
1426                 return 0;
1427         }
1428
1429         ret = ext4_fc_replay_link_internal(sb, &darg, inode);
1430         iput(inode);
1431         return ret;
1432 }
1433
1434 /*
1435  * Record all the modified inodes during replay. We use this later to setup
1436  * block bitmaps correctly.
1437  */
1438 static int ext4_fc_record_modified_inode(struct super_block *sb, int ino)
1439 {
1440         struct ext4_fc_replay_state *state;
1441         int i;
1442
1443         state = &EXT4_SB(sb)->s_fc_replay_state;
1444         for (i = 0; i < state->fc_modified_inodes_used; i++)
1445                 if (state->fc_modified_inodes[i] == ino)
1446                         return 0;
1447         if (state->fc_modified_inodes_used == state->fc_modified_inodes_size) {
1448                 int *fc_modified_inodes;
1449
1450                 fc_modified_inodes = krealloc(state->fc_modified_inodes,
1451                                 sizeof(int) * (state->fc_modified_inodes_size +
1452                                 EXT4_FC_REPLAY_REALLOC_INCREMENT),
1453                                 GFP_KERNEL);
1454                 if (!fc_modified_inodes)
1455                         return -ENOMEM;
1456                 state->fc_modified_inodes = fc_modified_inodes;
1457                 state->fc_modified_inodes_size +=
1458                         EXT4_FC_REPLAY_REALLOC_INCREMENT;
1459         }
1460         state->fc_modified_inodes[state->fc_modified_inodes_used++] = ino;
1461         return 0;
1462 }
1463
1464 /*
1465  * Inode replay function
1466  */
1467 static int ext4_fc_replay_inode(struct super_block *sb,
1468                                 struct ext4_fc_tl_mem *tl, u8 *val)
1469 {
1470         struct ext4_fc_inode fc_inode;
1471         struct ext4_inode *raw_inode;
1472         struct ext4_inode *raw_fc_inode;
1473         struct inode *inode = NULL;
1474         struct ext4_iloc iloc;
1475         int inode_len, ino, ret, tag = tl->fc_tag;
1476         struct ext4_extent_header *eh;
1477
1478         memcpy(&fc_inode, val, sizeof(fc_inode));
1479
1480         ino = le32_to_cpu(fc_inode.fc_ino);
1481         trace_ext4_fc_replay(sb, tag, ino, 0, 0);
1482
1483         inode = ext4_iget(sb, ino, EXT4_IGET_NORMAL);
1484         if (!IS_ERR(inode)) {
1485                 ext4_ext_clear_bb(inode);
1486                 iput(inode);
1487         }
1488         inode = NULL;
1489
1490         ret = ext4_fc_record_modified_inode(sb, ino);
1491         if (ret)
1492                 goto out;
1493
1494         raw_fc_inode = (struct ext4_inode *)
1495                 (val + offsetof(struct ext4_fc_inode, fc_raw_inode));
1496         ret = ext4_get_fc_inode_loc(sb, ino, &iloc);
1497         if (ret)
1498                 goto out;
1499
1500         inode_len = tl->fc_len - sizeof(struct ext4_fc_inode);
1501         raw_inode = ext4_raw_inode(&iloc);
1502
1503         memcpy(raw_inode, raw_fc_inode, offsetof(struct ext4_inode, i_block));
1504         memcpy(&raw_inode->i_generation, &raw_fc_inode->i_generation,
1505                 inode_len - offsetof(struct ext4_inode, i_generation));
1506         if (le32_to_cpu(raw_inode->i_flags) & EXT4_EXTENTS_FL) {
1507                 eh = (struct ext4_extent_header *)(&raw_inode->i_block[0]);
1508                 if (eh->eh_magic != EXT4_EXT_MAGIC) {
1509                         memset(eh, 0, sizeof(*eh));
1510                         eh->eh_magic = EXT4_EXT_MAGIC;
1511                         eh->eh_max = cpu_to_le16(
1512                                 (sizeof(raw_inode->i_block) -
1513                                  sizeof(struct ext4_extent_header))
1514                                  / sizeof(struct ext4_extent));
1515                 }
1516         } else if (le32_to_cpu(raw_inode->i_flags) & EXT4_INLINE_DATA_FL) {
1517                 memcpy(raw_inode->i_block, raw_fc_inode->i_block,
1518                         sizeof(raw_inode->i_block));
1519         }
1520
1521         /* Immediately update the inode on disk. */
1522         ret = ext4_handle_dirty_metadata(NULL, NULL, iloc.bh);
1523         if (ret)
1524                 goto out;
1525         ret = sync_dirty_buffer(iloc.bh);
1526         if (ret)
1527                 goto out;
1528         ret = ext4_mark_inode_used(sb, ino);
1529         if (ret)
1530                 goto out;
1531
1532         /* Given that we just wrote the inode on disk, this SHOULD succeed. */
1533         inode = ext4_iget(sb, ino, EXT4_IGET_NORMAL);
1534         if (IS_ERR(inode)) {
1535                 ext4_debug("Inode not found.");
1536                 return -EFSCORRUPTED;
1537         }
1538
1539         /*
1540          * Our allocator could have made different decisions than before
1541          * crashing. This should be fixed but until then, we calculate
1542          * the number of blocks the inode.
1543          */
1544         ext4_ext_replay_set_iblocks(inode);
1545
1546         inode->i_generation = le32_to_cpu(ext4_raw_inode(&iloc)->i_generation);
1547         ext4_reset_inode_seed(inode);
1548
1549         ext4_inode_csum_set(inode, ext4_raw_inode(&iloc), EXT4_I(inode));
1550         ret = ext4_handle_dirty_metadata(NULL, NULL, iloc.bh);
1551         sync_dirty_buffer(iloc.bh);
1552         brelse(iloc.bh);
1553 out:
1554         iput(inode);
1555         if (!ret)
1556                 blkdev_issue_flush(sb->s_bdev);
1557
1558         return 0;
1559 }
1560
1561 /*
1562  * Dentry create replay function.
1563  *
1564  * EXT4_FC_TAG_CREAT is preceded by EXT4_FC_TAG_INODE_FULL. Which means, the
1565  * inode for which we are trying to create a dentry here, should already have
1566  * been replayed before we start here.
1567  */
1568 static int ext4_fc_replay_create(struct super_block *sb,
1569                                  struct ext4_fc_tl_mem *tl, u8 *val)
1570 {
1571         int ret = 0;
1572         struct inode *inode = NULL;
1573         struct inode *dir = NULL;
1574         struct dentry_info_args darg;
1575
1576         tl_to_darg(&darg, tl, val);
1577
1578         trace_ext4_fc_replay(sb, EXT4_FC_TAG_CREAT, darg.ino,
1579                         darg.parent_ino, darg.dname_len);
1580
1581         /* This takes care of update group descriptor and other metadata */
1582         ret = ext4_mark_inode_used(sb, darg.ino);
1583         if (ret)
1584                 goto out;
1585
1586         inode = ext4_iget(sb, darg.ino, EXT4_IGET_NORMAL);
1587         if (IS_ERR(inode)) {
1588                 ext4_debug("inode %d not found.", darg.ino);
1589                 inode = NULL;
1590                 ret = -EINVAL;
1591                 goto out;
1592         }
1593
1594         if (S_ISDIR(inode->i_mode)) {
1595                 /*
1596                  * If we are creating a directory, we need to make sure that the
1597                  * dot and dot dot dirents are setup properly.
1598                  */
1599                 dir = ext4_iget(sb, darg.parent_ino, EXT4_IGET_NORMAL);
1600                 if (IS_ERR(dir)) {
1601                         ext4_debug("Dir %d not found.", darg.ino);
1602                         goto out;
1603                 }
1604                 ret = ext4_init_new_dir(NULL, dir, inode);
1605                 iput(dir);
1606                 if (ret) {
1607                         ret = 0;
1608                         goto out;
1609                 }
1610         }
1611         ret = ext4_fc_replay_link_internal(sb, &darg, inode);
1612         if (ret)
1613                 goto out;
1614         set_nlink(inode, 1);
1615         ext4_mark_inode_dirty(NULL, inode);
1616 out:
1617         if (inode)
1618                 iput(inode);
1619         return ret;
1620 }
1621
1622 /*
1623  * Record physical disk regions which are in use as per fast commit area,
1624  * and used by inodes during replay phase. Our simple replay phase
1625  * allocator excludes these regions from allocation.
1626  */
1627 int ext4_fc_record_regions(struct super_block *sb, int ino,
1628                 ext4_lblk_t lblk, ext4_fsblk_t pblk, int len, int replay)
1629 {
1630         struct ext4_fc_replay_state *state;
1631         struct ext4_fc_alloc_region *region;
1632
1633         state = &EXT4_SB(sb)->s_fc_replay_state;
1634         /*
1635          * during replay phase, the fc_regions_valid may not same as
1636          * fc_regions_used, update it when do new additions.
1637          */
1638         if (replay && state->fc_regions_used != state->fc_regions_valid)
1639                 state->fc_regions_used = state->fc_regions_valid;
1640         if (state->fc_regions_used == state->fc_regions_size) {
1641                 struct ext4_fc_alloc_region *fc_regions;
1642
1643                 fc_regions = krealloc(state->fc_regions,
1644                                       sizeof(struct ext4_fc_alloc_region) *
1645                                       (state->fc_regions_size +
1646                                        EXT4_FC_REPLAY_REALLOC_INCREMENT),
1647                                       GFP_KERNEL);
1648                 if (!fc_regions)
1649                         return -ENOMEM;
1650                 state->fc_regions_size +=
1651                         EXT4_FC_REPLAY_REALLOC_INCREMENT;
1652                 state->fc_regions = fc_regions;
1653         }
1654         region = &state->fc_regions[state->fc_regions_used++];
1655         region->ino = ino;
1656         region->lblk = lblk;
1657         region->pblk = pblk;
1658         region->len = len;
1659
1660         if (replay)
1661                 state->fc_regions_valid++;
1662
1663         return 0;
1664 }
1665
1666 /* Replay add range tag */
1667 static int ext4_fc_replay_add_range(struct super_block *sb,
1668                                     struct ext4_fc_tl_mem *tl, u8 *val)
1669 {
1670         struct ext4_fc_add_range fc_add_ex;
1671         struct ext4_extent newex, *ex;
1672         struct inode *inode;
1673         ext4_lblk_t start, cur;
1674         int remaining, len;
1675         ext4_fsblk_t start_pblk;
1676         struct ext4_map_blocks map;
1677         struct ext4_ext_path *path = NULL;
1678         int ret;
1679
1680         memcpy(&fc_add_ex, val, sizeof(fc_add_ex));
1681         ex = (struct ext4_extent *)&fc_add_ex.fc_ex;
1682
1683         trace_ext4_fc_replay(sb, EXT4_FC_TAG_ADD_RANGE,
1684                 le32_to_cpu(fc_add_ex.fc_ino), le32_to_cpu(ex->ee_block),
1685                 ext4_ext_get_actual_len(ex));
1686
1687         inode = ext4_iget(sb, le32_to_cpu(fc_add_ex.fc_ino), EXT4_IGET_NORMAL);
1688         if (IS_ERR(inode)) {
1689                 ext4_debug("Inode not found.");
1690                 return 0;
1691         }
1692
1693         ret = ext4_fc_record_modified_inode(sb, inode->i_ino);
1694         if (ret)
1695                 goto out;
1696
1697         start = le32_to_cpu(ex->ee_block);
1698         start_pblk = ext4_ext_pblock(ex);
1699         len = ext4_ext_get_actual_len(ex);
1700
1701         cur = start;
1702         remaining = len;
1703         ext4_debug("ADD_RANGE, lblk %d, pblk %lld, len %d, unwritten %d, inode %ld\n",
1704                   start, start_pblk, len, ext4_ext_is_unwritten(ex),
1705                   inode->i_ino);
1706
1707         while (remaining > 0) {
1708                 map.m_lblk = cur;
1709                 map.m_len = remaining;
1710                 map.m_pblk = 0;
1711                 ret = ext4_map_blocks(NULL, inode, &map, 0);
1712
1713                 if (ret < 0)
1714                         goto out;
1715
1716                 if (ret == 0) {
1717                         /* Range is not mapped */
1718                         path = ext4_find_extent(inode, cur, NULL, 0);
1719                         if (IS_ERR(path))
1720                                 goto out;
1721                         memset(&newex, 0, sizeof(newex));
1722                         newex.ee_block = cpu_to_le32(cur);
1723                         ext4_ext_store_pblock(
1724                                 &newex, start_pblk + cur - start);
1725                         newex.ee_len = cpu_to_le16(map.m_len);
1726                         if (ext4_ext_is_unwritten(ex))
1727                                 ext4_ext_mark_unwritten(&newex);
1728                         down_write(&EXT4_I(inode)->i_data_sem);
1729                         ret = ext4_ext_insert_extent(
1730                                 NULL, inode, &path, &newex, 0);
1731                         up_write((&EXT4_I(inode)->i_data_sem));
1732                         ext4_ext_drop_refs(path);
1733                         kfree(path);
1734                         if (ret)
1735                                 goto out;
1736                         goto next;
1737                 }
1738
1739                 if (start_pblk + cur - start != map.m_pblk) {
1740                         /*
1741                          * Logical to physical mapping changed. This can happen
1742                          * if this range was removed and then reallocated to
1743                          * map to new physical blocks during a fast commit.
1744                          */
1745                         ret = ext4_ext_replay_update_ex(inode, cur, map.m_len,
1746                                         ext4_ext_is_unwritten(ex),
1747                                         start_pblk + cur - start);
1748                         if (ret)
1749                                 goto out;
1750                         /*
1751                          * Mark the old blocks as free since they aren't used
1752                          * anymore. We maintain an array of all the modified
1753                          * inodes. In case these blocks are still used at either
1754                          * a different logical range in the same inode or in
1755                          * some different inode, we will mark them as allocated
1756                          * at the end of the FC replay using our array of
1757                          * modified inodes.
1758                          */
1759                         ext4_mb_mark_bb(inode->i_sb, map.m_pblk, map.m_len, 0);
1760                         goto next;
1761                 }
1762
1763                 /* Range is mapped and needs a state change */
1764                 ext4_debug("Converting from %ld to %d %lld",
1765                                 map.m_flags & EXT4_MAP_UNWRITTEN,
1766                         ext4_ext_is_unwritten(ex), map.m_pblk);
1767                 ret = ext4_ext_replay_update_ex(inode, cur, map.m_len,
1768                                         ext4_ext_is_unwritten(ex), map.m_pblk);
1769                 if (ret)
1770                         goto out;
1771                 /*
1772                  * We may have split the extent tree while toggling the state.
1773                  * Try to shrink the extent tree now.
1774                  */
1775                 ext4_ext_replay_shrink_inode(inode, start + len);
1776 next:
1777                 cur += map.m_len;
1778                 remaining -= map.m_len;
1779         }
1780         ext4_ext_replay_shrink_inode(inode, i_size_read(inode) >>
1781                                         sb->s_blocksize_bits);
1782 out:
1783         iput(inode);
1784         return 0;
1785 }
1786
1787 /* Replay DEL_RANGE tag */
1788 static int
1789 ext4_fc_replay_del_range(struct super_block *sb,
1790                          struct ext4_fc_tl_mem *tl, u8 *val)
1791 {
1792         struct inode *inode;
1793         struct ext4_fc_del_range lrange;
1794         struct ext4_map_blocks map;
1795         ext4_lblk_t cur, remaining;
1796         int ret;
1797
1798         memcpy(&lrange, val, sizeof(lrange));
1799         cur = le32_to_cpu(lrange.fc_lblk);
1800         remaining = le32_to_cpu(lrange.fc_len);
1801
1802         trace_ext4_fc_replay(sb, EXT4_FC_TAG_DEL_RANGE,
1803                 le32_to_cpu(lrange.fc_ino), cur, remaining);
1804
1805         inode = ext4_iget(sb, le32_to_cpu(lrange.fc_ino), EXT4_IGET_NORMAL);
1806         if (IS_ERR(inode)) {
1807                 ext4_debug("Inode %d not found", le32_to_cpu(lrange.fc_ino));
1808                 return 0;
1809         }
1810
1811         ret = ext4_fc_record_modified_inode(sb, inode->i_ino);
1812         if (ret)
1813                 goto out;
1814
1815         ext4_debug("DEL_RANGE, inode %ld, lblk %d, len %d\n",
1816                         inode->i_ino, le32_to_cpu(lrange.fc_lblk),
1817                         le32_to_cpu(lrange.fc_len));
1818         while (remaining > 0) {
1819                 map.m_lblk = cur;
1820                 map.m_len = remaining;
1821
1822                 ret = ext4_map_blocks(NULL, inode, &map, 0);
1823                 if (ret < 0)
1824                         goto out;
1825                 if (ret > 0) {
1826                         remaining -= ret;
1827                         cur += ret;
1828                         ext4_mb_mark_bb(inode->i_sb, map.m_pblk, map.m_len, 0);
1829                 } else {
1830                         remaining -= map.m_len;
1831                         cur += map.m_len;
1832                 }
1833         }
1834
1835         down_write(&EXT4_I(inode)->i_data_sem);
1836         ret = ext4_ext_remove_space(inode, le32_to_cpu(lrange.fc_lblk),
1837                                 le32_to_cpu(lrange.fc_lblk) +
1838                                 le32_to_cpu(lrange.fc_len) - 1);
1839         up_write(&EXT4_I(inode)->i_data_sem);
1840         if (ret)
1841                 goto out;
1842         ext4_ext_replay_shrink_inode(inode,
1843                 i_size_read(inode) >> sb->s_blocksize_bits);
1844         ext4_mark_inode_dirty(NULL, inode);
1845 out:
1846         iput(inode);
1847         return 0;
1848 }
1849
1850 static void ext4_fc_set_bitmaps_and_counters(struct super_block *sb)
1851 {
1852         struct ext4_fc_replay_state *state;
1853         struct inode *inode;
1854         struct ext4_ext_path *path = NULL;
1855         struct ext4_map_blocks map;
1856         int i, ret, j;
1857         ext4_lblk_t cur, end;
1858
1859         state = &EXT4_SB(sb)->s_fc_replay_state;
1860         for (i = 0; i < state->fc_modified_inodes_used; i++) {
1861                 inode = ext4_iget(sb, state->fc_modified_inodes[i],
1862                         EXT4_IGET_NORMAL);
1863                 if (IS_ERR(inode)) {
1864                         ext4_debug("Inode %d not found.",
1865                                 state->fc_modified_inodes[i]);
1866                         continue;
1867                 }
1868                 cur = 0;
1869                 end = EXT_MAX_BLOCKS;
1870                 while (cur < end) {
1871                         map.m_lblk = cur;
1872                         map.m_len = end - cur;
1873
1874                         ret = ext4_map_blocks(NULL, inode, &map, 0);
1875                         if (ret < 0)
1876                                 break;
1877
1878                         if (ret > 0) {
1879                                 path = ext4_find_extent(inode, map.m_lblk, NULL, 0);
1880                                 if (!IS_ERR(path)) {
1881                                         for (j = 0; j < path->p_depth; j++)
1882                                                 ext4_mb_mark_bb(inode->i_sb,
1883                                                         path[j].p_block, 1, 1);
1884                                         ext4_ext_drop_refs(path);
1885                                         kfree(path);
1886                                 }
1887                                 cur += ret;
1888                                 ext4_mb_mark_bb(inode->i_sb, map.m_pblk,
1889                                                         map.m_len, 1);
1890                         } else {
1891                                 cur = cur + (map.m_len ? map.m_len : 1);
1892                         }
1893                 }
1894                 iput(inode);
1895         }
1896 }
1897
1898 /*
1899  * Check if block is in excluded regions for block allocation. The simple
1900  * allocator that runs during replay phase is calls this function to see
1901  * if it is okay to use a block.
1902  */
1903 bool ext4_fc_replay_check_excluded(struct super_block *sb, ext4_fsblk_t blk)
1904 {
1905         int i;
1906         struct ext4_fc_replay_state *state;
1907
1908         state = &EXT4_SB(sb)->s_fc_replay_state;
1909         for (i = 0; i < state->fc_regions_valid; i++) {
1910                 if (state->fc_regions[i].ino == 0 ||
1911                         state->fc_regions[i].len == 0)
1912                         continue;
1913                 if (blk >= state->fc_regions[i].pblk &&
1914                     blk < state->fc_regions[i].pblk + state->fc_regions[i].len)
1915                         return true;
1916         }
1917         return false;
1918 }
1919
1920 /* Cleanup function called after replay */
1921 void ext4_fc_replay_cleanup(struct super_block *sb)
1922 {
1923         struct ext4_sb_info *sbi = EXT4_SB(sb);
1924
1925         sbi->s_mount_state &= ~EXT4_FC_REPLAY;
1926         kfree(sbi->s_fc_replay_state.fc_regions);
1927         kfree(sbi->s_fc_replay_state.fc_modified_inodes);
1928 }
1929
1930 static bool ext4_fc_value_len_isvalid(struct ext4_sb_info *sbi,
1931                                       int tag, int len)
1932 {
1933         switch (tag) {
1934         case EXT4_FC_TAG_ADD_RANGE:
1935                 return len == sizeof(struct ext4_fc_add_range);
1936         case EXT4_FC_TAG_DEL_RANGE:
1937                 return len == sizeof(struct ext4_fc_del_range);
1938         case EXT4_FC_TAG_CREAT:
1939         case EXT4_FC_TAG_LINK:
1940         case EXT4_FC_TAG_UNLINK:
1941                 len -= sizeof(struct ext4_fc_dentry_info);
1942                 return len >= 1 && len <= EXT4_NAME_LEN;
1943         case EXT4_FC_TAG_INODE:
1944                 len -= sizeof(struct ext4_fc_inode);
1945                 return len >= EXT4_GOOD_OLD_INODE_SIZE &&
1946                         len <= sbi->s_inode_size;
1947         case EXT4_FC_TAG_PAD:
1948                 return true; /* padding can have any length */
1949         case EXT4_FC_TAG_TAIL:
1950                 return len >= sizeof(struct ext4_fc_tail);
1951         case EXT4_FC_TAG_HEAD:
1952                 return len == sizeof(struct ext4_fc_head);
1953         }
1954         return false;
1955 }
1956
1957 /*
1958  * Recovery Scan phase handler
1959  *
1960  * This function is called during the scan phase and is responsible
1961  * for doing following things:
1962  * - Make sure the fast commit area has valid tags for replay
1963  * - Count number of tags that need to be replayed by the replay handler
1964  * - Verify CRC
1965  * - Create a list of excluded blocks for allocation during replay phase
1966  *
1967  * This function returns JBD2_FC_REPLAY_CONTINUE to indicate that SCAN is
1968  * incomplete and JBD2 should send more blocks. It returns JBD2_FC_REPLAY_STOP
1969  * to indicate that scan has finished and JBD2 can now start replay phase.
1970  * It returns a negative error to indicate that there was an error. At the end
1971  * of a successful scan phase, sbi->s_fc_replay_state.fc_replay_num_tags is set
1972  * to indicate the number of tags that need to replayed during the replay phase.
1973  */
1974 static int ext4_fc_replay_scan(journal_t *journal,
1975                                 struct buffer_head *bh, int off,
1976                                 tid_t expected_tid)
1977 {
1978         struct super_block *sb = journal->j_private;
1979         struct ext4_sb_info *sbi = EXT4_SB(sb);
1980         struct ext4_fc_replay_state *state;
1981         int ret = JBD2_FC_REPLAY_CONTINUE;
1982         struct ext4_fc_add_range ext;
1983         struct ext4_fc_tl_mem tl;
1984         struct ext4_fc_tail tail;
1985         __u8 *start, *end, *cur, *val;
1986         struct ext4_fc_head head;
1987         struct ext4_extent *ex;
1988
1989         state = &sbi->s_fc_replay_state;
1990
1991         start = (u8 *)bh->b_data;
1992         end = start + journal->j_blocksize;
1993
1994         if (state->fc_replay_expected_off == 0) {
1995                 state->fc_cur_tag = 0;
1996                 state->fc_replay_num_tags = 0;
1997                 state->fc_crc = 0;
1998                 state->fc_regions = NULL;
1999                 state->fc_regions_valid = state->fc_regions_used =
2000                         state->fc_regions_size = 0;
2001                 /* Check if we can stop early */
2002                 if (le16_to_cpu(((struct ext4_fc_tl *)start)->fc_tag)
2003                         != EXT4_FC_TAG_HEAD)
2004                         return 0;
2005         }
2006
2007         if (off != state->fc_replay_expected_off) {
2008                 ret = -EFSCORRUPTED;
2009                 goto out_err;
2010         }
2011
2012         state->fc_replay_expected_off++;
2013         for (cur = start; cur <= end - EXT4_FC_TAG_BASE_LEN;
2014              cur = cur + EXT4_FC_TAG_BASE_LEN + tl.fc_len) {
2015                 ext4_fc_get_tl(&tl, cur);
2016                 val = cur + EXT4_FC_TAG_BASE_LEN;
2017                 if (tl.fc_len > end - val ||
2018                     !ext4_fc_value_len_isvalid(sbi, tl.fc_tag, tl.fc_len)) {
2019                         ret = state->fc_replay_num_tags ?
2020                                 JBD2_FC_REPLAY_STOP : -ECANCELED;
2021                         goto out_err;
2022                 }
2023                 ext4_debug("Scan phase, tag:%s, blk %lld\n",
2024                            tag2str(tl.fc_tag), bh->b_blocknr);
2025                 switch (tl.fc_tag) {
2026                 case EXT4_FC_TAG_ADD_RANGE:
2027                         memcpy(&ext, val, sizeof(ext));
2028                         ex = (struct ext4_extent *)&ext.fc_ex;
2029                         ret = ext4_fc_record_regions(sb,
2030                                 le32_to_cpu(ext.fc_ino),
2031                                 le32_to_cpu(ex->ee_block), ext4_ext_pblock(ex),
2032                                 ext4_ext_get_actual_len(ex), 0);
2033                         if (ret < 0)
2034                                 break;
2035                         ret = JBD2_FC_REPLAY_CONTINUE;
2036                         fallthrough;
2037                 case EXT4_FC_TAG_DEL_RANGE:
2038                 case EXT4_FC_TAG_LINK:
2039                 case EXT4_FC_TAG_UNLINK:
2040                 case EXT4_FC_TAG_CREAT:
2041                 case EXT4_FC_TAG_INODE:
2042                 case EXT4_FC_TAG_PAD:
2043                         state->fc_cur_tag++;
2044                         state->fc_crc = ext4_chksum(sbi, state->fc_crc, cur,
2045                                 EXT4_FC_TAG_BASE_LEN + tl.fc_len);
2046                         break;
2047                 case EXT4_FC_TAG_TAIL:
2048                         state->fc_cur_tag++;
2049                         memcpy(&tail, val, sizeof(tail));
2050                         state->fc_crc = ext4_chksum(sbi, state->fc_crc, cur,
2051                                                 EXT4_FC_TAG_BASE_LEN +
2052                                                 offsetof(struct ext4_fc_tail,
2053                                                 fc_crc));
2054                         if (le32_to_cpu(tail.fc_tid) == expected_tid &&
2055                                 le32_to_cpu(tail.fc_crc) == state->fc_crc) {
2056                                 state->fc_replay_num_tags = state->fc_cur_tag;
2057                                 state->fc_regions_valid =
2058                                         state->fc_regions_used;
2059                         } else {
2060                                 ret = state->fc_replay_num_tags ?
2061                                         JBD2_FC_REPLAY_STOP : -EFSBADCRC;
2062                         }
2063                         state->fc_crc = 0;
2064                         break;
2065                 case EXT4_FC_TAG_HEAD:
2066                         memcpy(&head, val, sizeof(head));
2067                         if (le32_to_cpu(head.fc_features) &
2068                                 ~EXT4_FC_SUPPORTED_FEATURES) {
2069                                 ret = -EOPNOTSUPP;
2070                                 break;
2071                         }
2072                         if (le32_to_cpu(head.fc_tid) != expected_tid) {
2073                                 ret = JBD2_FC_REPLAY_STOP;
2074                                 break;
2075                         }
2076                         state->fc_cur_tag++;
2077                         state->fc_crc = ext4_chksum(sbi, state->fc_crc, cur,
2078                                 EXT4_FC_TAG_BASE_LEN + tl.fc_len);
2079                         break;
2080                 default:
2081                         ret = state->fc_replay_num_tags ?
2082                                 JBD2_FC_REPLAY_STOP : -ECANCELED;
2083                 }
2084                 if (ret < 0 || ret == JBD2_FC_REPLAY_STOP)
2085                         break;
2086         }
2087
2088 out_err:
2089         trace_ext4_fc_replay_scan(sb, ret, off);
2090         return ret;
2091 }
2092
2093 /*
2094  * Main recovery path entry point.
2095  * The meaning of return codes is similar as above.
2096  */
2097 static int ext4_fc_replay(journal_t *journal, struct buffer_head *bh,
2098                                 enum passtype pass, int off, tid_t expected_tid)
2099 {
2100         struct super_block *sb = journal->j_private;
2101         struct ext4_sb_info *sbi = EXT4_SB(sb);
2102         struct ext4_fc_tl_mem tl;
2103         __u8 *start, *end, *cur, *val;
2104         int ret = JBD2_FC_REPLAY_CONTINUE;
2105         struct ext4_fc_replay_state *state = &sbi->s_fc_replay_state;
2106         struct ext4_fc_tail tail;
2107
2108         if (pass == PASS_SCAN) {
2109                 state->fc_current_pass = PASS_SCAN;
2110                 return ext4_fc_replay_scan(journal, bh, off, expected_tid);
2111         }
2112
2113         if (state->fc_current_pass != pass) {
2114                 state->fc_current_pass = pass;
2115                 sbi->s_mount_state |= EXT4_FC_REPLAY;
2116         }
2117         if (!sbi->s_fc_replay_state.fc_replay_num_tags) {
2118                 ext4_debug("Replay stops\n");
2119                 ext4_fc_set_bitmaps_and_counters(sb);
2120                 return 0;
2121         }
2122
2123 #ifdef CONFIG_EXT4_DEBUG
2124         if (sbi->s_fc_debug_max_replay && off >= sbi->s_fc_debug_max_replay) {
2125                 pr_warn("Dropping fc block %d because max_replay set\n", off);
2126                 return JBD2_FC_REPLAY_STOP;
2127         }
2128 #endif
2129
2130         start = (u8 *)bh->b_data;
2131         end = start + journal->j_blocksize;
2132
2133         for (cur = start; cur <= end - EXT4_FC_TAG_BASE_LEN;
2134              cur = cur + EXT4_FC_TAG_BASE_LEN + tl.fc_len) {
2135                 ext4_fc_get_tl(&tl, cur);
2136                 val = cur + EXT4_FC_TAG_BASE_LEN;
2137
2138                 if (state->fc_replay_num_tags == 0) {
2139                         ret = JBD2_FC_REPLAY_STOP;
2140                         ext4_fc_set_bitmaps_and_counters(sb);
2141                         break;
2142                 }
2143
2144                 ext4_debug("Replay phase, tag:%s\n", tag2str(tl.fc_tag));
2145                 state->fc_replay_num_tags--;
2146                 switch (tl.fc_tag) {
2147                 case EXT4_FC_TAG_LINK:
2148                         ret = ext4_fc_replay_link(sb, &tl, val);
2149                         break;
2150                 case EXT4_FC_TAG_UNLINK:
2151                         ret = ext4_fc_replay_unlink(sb, &tl, val);
2152                         break;
2153                 case EXT4_FC_TAG_ADD_RANGE:
2154                         ret = ext4_fc_replay_add_range(sb, &tl, val);
2155                         break;
2156                 case EXT4_FC_TAG_CREAT:
2157                         ret = ext4_fc_replay_create(sb, &tl, val);
2158                         break;
2159                 case EXT4_FC_TAG_DEL_RANGE:
2160                         ret = ext4_fc_replay_del_range(sb, &tl, val);
2161                         break;
2162                 case EXT4_FC_TAG_INODE:
2163                         ret = ext4_fc_replay_inode(sb, &tl, val);
2164                         break;
2165                 case EXT4_FC_TAG_PAD:
2166                         trace_ext4_fc_replay(sb, EXT4_FC_TAG_PAD, 0,
2167                                              tl.fc_len, 0);
2168                         break;
2169                 case EXT4_FC_TAG_TAIL:
2170                         trace_ext4_fc_replay(sb, EXT4_FC_TAG_TAIL,
2171                                              0, tl.fc_len, 0);
2172                         memcpy(&tail, val, sizeof(tail));
2173                         WARN_ON(le32_to_cpu(tail.fc_tid) != expected_tid);
2174                         break;
2175                 case EXT4_FC_TAG_HEAD:
2176                         break;
2177                 default:
2178                         trace_ext4_fc_replay(sb, tl.fc_tag, 0, tl.fc_len, 0);
2179                         ret = -ECANCELED;
2180                         break;
2181                 }
2182                 if (ret < 0)
2183                         break;
2184                 ret = JBD2_FC_REPLAY_CONTINUE;
2185         }
2186         return ret;
2187 }
2188
2189 void ext4_fc_init(struct super_block *sb, journal_t *journal)
2190 {
2191         /*
2192          * We set replay callback even if fast commit disabled because we may
2193          * could still have fast commit blocks that need to be replayed even if
2194          * fast commit has now been turned off.
2195          */
2196         journal->j_fc_replay_callback = ext4_fc_replay;
2197         if (!test_opt2(sb, JOURNAL_FAST_COMMIT))
2198                 return;
2199         journal->j_fc_cleanup_callback = ext4_fc_cleanup;
2200 }
2201
2202 static const char * const fc_ineligible_reasons[] = {
2203         [EXT4_FC_REASON_XATTR] = "Extended attributes changed",
2204         [EXT4_FC_REASON_CROSS_RENAME] = "Cross rename",
2205         [EXT4_FC_REASON_JOURNAL_FLAG_CHANGE] = "Journal flag changed",
2206         [EXT4_FC_REASON_NOMEM] = "Insufficient memory",
2207         [EXT4_FC_REASON_SWAP_BOOT] = "Swap boot",
2208         [EXT4_FC_REASON_RESIZE] = "Resize",
2209         [EXT4_FC_REASON_RENAME_DIR] = "Dir renamed",
2210         [EXT4_FC_REASON_FALLOC_RANGE] = "Falloc range op",
2211         [EXT4_FC_REASON_INODE_JOURNAL_DATA] = "Data journalling",
2212         [EXT4_FC_REASON_ENCRYPTED_FILENAME] = "Encrypted filename",
2213 };
2214
2215 int ext4_fc_info_show(struct seq_file *seq, void *v)
2216 {
2217         struct ext4_sb_info *sbi = EXT4_SB((struct super_block *)seq->private);
2218         struct ext4_fc_stats *stats = &sbi->s_fc_stats;
2219         int i;
2220
2221         if (v != SEQ_START_TOKEN)
2222                 return 0;
2223
2224         seq_printf(seq,
2225                 "fc stats:\n%ld commits\n%ld ineligible\n%ld numblks\n%lluus avg_commit_time\n",
2226                    stats->fc_num_commits, stats->fc_ineligible_commits,
2227                    stats->fc_numblks,
2228                    div_u64(stats->s_fc_avg_commit_time, 1000));
2229         seq_puts(seq, "Ineligible reasons:\n");
2230         for (i = 0; i < EXT4_FC_REASON_MAX; i++)
2231                 seq_printf(seq, "\"%s\":\t%d\n", fc_ineligible_reasons[i],
2232                         stats->fc_ineligible_reason_count[i]);
2233
2234         return 0;
2235 }
2236
2237 int __init ext4_fc_init_dentry_cache(void)
2238 {
2239         ext4_fc_dentry_cachep = KMEM_CACHE(ext4_fc_dentry_update,
2240                                            SLAB_RECLAIM_ACCOUNT);
2241
2242         if (ext4_fc_dentry_cachep == NULL)
2243                 return -ENOMEM;
2244
2245         return 0;
2246 }
2247
2248 void ext4_fc_destroy_dentry_cache(void)
2249 {
2250         kmem_cache_destroy(ext4_fc_dentry_cachep);
2251 }