GNU Linux-libre 4.19.314-gnu1
[releases.git] / fs / exec.c
1 /*
2  *  linux/fs/exec.c
3  *
4  *  Copyright (C) 1991, 1992  Linus Torvalds
5  */
6
7 /*
8  * #!-checking implemented by tytso.
9  */
10 /*
11  * Demand-loading implemented 01.12.91 - no need to read anything but
12  * the header into memory. The inode of the executable is put into
13  * "current->executable", and page faults do the actual loading. Clean.
14  *
15  * Once more I can proudly say that linux stood up to being changed: it
16  * was less than 2 hours work to get demand-loading completely implemented.
17  *
18  * Demand loading changed July 1993 by Eric Youngdale.   Use mmap instead,
19  * current->executable is only used by the procfs.  This allows a dispatch
20  * table to check for several different types  of binary formats.  We keep
21  * trying until we recognize the file or we run out of supported binary
22  * formats.
23  */
24
25 #include <linux/slab.h>
26 #include <linux/file.h>
27 #include <linux/fdtable.h>
28 #include <linux/mm.h>
29 #include <linux/vmacache.h>
30 #include <linux/stat.h>
31 #include <linux/fcntl.h>
32 #include <linux/swap.h>
33 #include <linux/string.h>
34 #include <linux/init.h>
35 #include <linux/sched/mm.h>
36 #include <linux/sched/coredump.h>
37 #include <linux/sched/signal.h>
38 #include <linux/sched/numa_balancing.h>
39 #include <linux/sched/task.h>
40 #include <linux/pagemap.h>
41 #include <linux/perf_event.h>
42 #include <linux/highmem.h>
43 #include <linux/spinlock.h>
44 #include <linux/key.h>
45 #include <linux/personality.h>
46 #include <linux/binfmts.h>
47 #include <linux/utsname.h>
48 #include <linux/pid_namespace.h>
49 #include <linux/module.h>
50 #include <linux/namei.h>
51 #include <linux/mount.h>
52 #include <linux/security.h>
53 #include <linux/syscalls.h>
54 #include <linux/tsacct_kern.h>
55 #include <linux/cn_proc.h>
56 #include <linux/audit.h>
57 #include <linux/tracehook.h>
58 #include <linux/kmod.h>
59 #include <linux/fsnotify.h>
60 #include <linux/fs_struct.h>
61 #include <linux/pipe_fs_i.h>
62 #include <linux/oom.h>
63 #include <linux/compat.h>
64 #include <linux/vmalloc.h>
65
66 #include <linux/uaccess.h>
67 #include <asm/mmu_context.h>
68 #include <asm/tlb.h>
69
70 #include <trace/events/task.h>
71 #include "internal.h"
72
73 #include <trace/events/sched.h>
74
75 int suid_dumpable = 0;
76
77 static LIST_HEAD(formats);
78 static DEFINE_RWLOCK(binfmt_lock);
79
80 void __register_binfmt(struct linux_binfmt * fmt, int insert)
81 {
82         BUG_ON(!fmt);
83         if (WARN_ON(!fmt->load_binary))
84                 return;
85         write_lock(&binfmt_lock);
86         insert ? list_add(&fmt->lh, &formats) :
87                  list_add_tail(&fmt->lh, &formats);
88         write_unlock(&binfmt_lock);
89 }
90
91 EXPORT_SYMBOL(__register_binfmt);
92
93 void unregister_binfmt(struct linux_binfmt * fmt)
94 {
95         write_lock(&binfmt_lock);
96         list_del(&fmt->lh);
97         write_unlock(&binfmt_lock);
98 }
99
100 EXPORT_SYMBOL(unregister_binfmt);
101
102 static inline void put_binfmt(struct linux_binfmt * fmt)
103 {
104         module_put(fmt->module);
105 }
106
107 bool path_noexec(const struct path *path)
108 {
109         return (path->mnt->mnt_flags & MNT_NOEXEC) ||
110                (path->mnt->mnt_sb->s_iflags & SB_I_NOEXEC);
111 }
112
113 #ifdef CONFIG_USELIB
114 /*
115  * Note that a shared library must be both readable and executable due to
116  * security reasons.
117  *
118  * Also note that we take the address to load from from the file itself.
119  */
120 SYSCALL_DEFINE1(uselib, const char __user *, library)
121 {
122         struct linux_binfmt *fmt;
123         struct file *file;
124         struct filename *tmp = getname(library);
125         int error = PTR_ERR(tmp);
126         static const struct open_flags uselib_flags = {
127                 .open_flag = O_LARGEFILE | O_RDONLY | __FMODE_EXEC,
128                 .acc_mode = MAY_READ | MAY_EXEC,
129                 .intent = LOOKUP_OPEN,
130                 .lookup_flags = LOOKUP_FOLLOW,
131         };
132
133         if (IS_ERR(tmp))
134                 goto out;
135
136         file = do_filp_open(AT_FDCWD, tmp, &uselib_flags);
137         putname(tmp);
138         error = PTR_ERR(file);
139         if (IS_ERR(file))
140                 goto out;
141
142         error = -EINVAL;
143         if (!S_ISREG(file_inode(file)->i_mode))
144                 goto exit;
145
146         error = -EACCES;
147         if (path_noexec(&file->f_path))
148                 goto exit;
149
150         fsnotify_open(file);
151
152         error = -ENOEXEC;
153
154         read_lock(&binfmt_lock);
155         list_for_each_entry(fmt, &formats, lh) {
156                 if (!fmt->load_shlib)
157                         continue;
158                 if (!try_module_get(fmt->module))
159                         continue;
160                 read_unlock(&binfmt_lock);
161                 error = fmt->load_shlib(file);
162                 read_lock(&binfmt_lock);
163                 put_binfmt(fmt);
164                 if (error != -ENOEXEC)
165                         break;
166         }
167         read_unlock(&binfmt_lock);
168 exit:
169         fput(file);
170 out:
171         return error;
172 }
173 #endif /* #ifdef CONFIG_USELIB */
174
175 #ifdef CONFIG_MMU
176 /*
177  * The nascent bprm->mm is not visible until exec_mmap() but it can
178  * use a lot of memory, account these pages in current->mm temporary
179  * for oom_badness()->get_mm_rss(). Once exec succeeds or fails, we
180  * change the counter back via acct_arg_size(0).
181  */
182 static void acct_arg_size(struct linux_binprm *bprm, unsigned long pages)
183 {
184         struct mm_struct *mm = current->mm;
185         long diff = (long)(pages - bprm->vma_pages);
186
187         if (!mm || !diff)
188                 return;
189
190         bprm->vma_pages = pages;
191         add_mm_counter(mm, MM_ANONPAGES, diff);
192 }
193
194 static struct page *get_arg_page(struct linux_binprm *bprm, unsigned long pos,
195                 int write)
196 {
197         struct page *page;
198         int ret;
199         unsigned int gup_flags = FOLL_FORCE;
200
201 #ifdef CONFIG_STACK_GROWSUP
202         if (write) {
203                 ret = expand_downwards(bprm->vma, pos);
204                 if (ret < 0)
205                         return NULL;
206         }
207 #endif
208
209         if (write)
210                 gup_flags |= FOLL_WRITE;
211
212         /*
213          * We are doing an exec().  'current' is the process
214          * doing the exec and bprm->mm is the new process's mm.
215          */
216         ret = get_user_pages_remote(current, bprm->mm, pos, 1, gup_flags,
217                         &page, NULL, NULL);
218         if (ret <= 0)
219                 return NULL;
220
221         if (write) {
222                 unsigned long size = bprm->vma->vm_end - bprm->vma->vm_start;
223                 unsigned long ptr_size, limit;
224
225                 /*
226                  * Since the stack will hold pointers to the strings, we
227                  * must account for them as well.
228                  *
229                  * The size calculation is the entire vma while each arg page is
230                  * built, so each time we get here it's calculating how far it
231                  * is currently (rather than each call being just the newly
232                  * added size from the arg page).  As a result, we need to
233                  * always add the entire size of the pointers, so that on the
234                  * last call to get_arg_page() we'll actually have the entire
235                  * correct size.
236                  */
237                 ptr_size = (bprm->argc + bprm->envc) * sizeof(void *);
238                 if (ptr_size > ULONG_MAX - size)
239                         goto fail;
240                 size += ptr_size;
241
242                 acct_arg_size(bprm, size / PAGE_SIZE);
243
244                 /*
245                  * We've historically supported up to 32 pages (ARG_MAX)
246                  * of argument strings even with small stacks
247                  */
248                 if (size <= ARG_MAX)
249                         return page;
250
251                 /*
252                  * Limit to 1/4 of the max stack size or 3/4 of _STK_LIM
253                  * (whichever is smaller) for the argv+env strings.
254                  * This ensures that:
255                  *  - the remaining binfmt code will not run out of stack space,
256                  *  - the program will have a reasonable amount of stack left
257                  *    to work from.
258                  */
259                 limit = _STK_LIM / 4 * 3;
260                 limit = min(limit, bprm->rlim_stack.rlim_cur / 4);
261                 if (size > limit)
262                         goto fail;
263         }
264
265         return page;
266
267 fail:
268         put_page(page);
269         return NULL;
270 }
271
272 static void put_arg_page(struct page *page)
273 {
274         put_page(page);
275 }
276
277 static void free_arg_pages(struct linux_binprm *bprm)
278 {
279 }
280
281 static void flush_arg_page(struct linux_binprm *bprm, unsigned long pos,
282                 struct page *page)
283 {
284         flush_cache_page(bprm->vma, pos, page_to_pfn(page));
285 }
286
287 static int __bprm_mm_init(struct linux_binprm *bprm)
288 {
289         int err;
290         struct vm_area_struct *vma = NULL;
291         struct mm_struct *mm = bprm->mm;
292
293         bprm->vma = vma = vm_area_alloc(mm);
294         if (!vma)
295                 return -ENOMEM;
296         vma_set_anonymous(vma);
297
298         if (down_write_killable(&mm->mmap_sem)) {
299                 err = -EINTR;
300                 goto err_free;
301         }
302
303         /*
304          * Place the stack at the largest stack address the architecture
305          * supports. Later, we'll move this to an appropriate place. We don't
306          * use STACK_TOP because that can depend on attributes which aren't
307          * configured yet.
308          */
309         BUILD_BUG_ON(VM_STACK_FLAGS & VM_STACK_INCOMPLETE_SETUP);
310         vma->vm_end = STACK_TOP_MAX;
311         vma->vm_start = vma->vm_end - PAGE_SIZE;
312         vma->vm_flags = VM_SOFTDIRTY | VM_STACK_FLAGS | VM_STACK_INCOMPLETE_SETUP;
313         vma->vm_page_prot = vm_get_page_prot(vma->vm_flags);
314
315         err = insert_vm_struct(mm, vma);
316         if (err)
317                 goto err;
318
319         mm->stack_vm = mm->total_vm = 1;
320         arch_bprm_mm_init(mm, vma);
321         up_write(&mm->mmap_sem);
322         bprm->p = vma->vm_end - sizeof(void *);
323         return 0;
324 err:
325         up_write(&mm->mmap_sem);
326 err_free:
327         bprm->vma = NULL;
328         vm_area_free(vma);
329         return err;
330 }
331
332 static bool valid_arg_len(struct linux_binprm *bprm, long len)
333 {
334         return len <= MAX_ARG_STRLEN;
335 }
336
337 #else
338
339 static inline void acct_arg_size(struct linux_binprm *bprm, unsigned long pages)
340 {
341 }
342
343 static struct page *get_arg_page(struct linux_binprm *bprm, unsigned long pos,
344                 int write)
345 {
346         struct page *page;
347
348         page = bprm->page[pos / PAGE_SIZE];
349         if (!page && write) {
350                 page = alloc_page(GFP_HIGHUSER|__GFP_ZERO);
351                 if (!page)
352                         return NULL;
353                 bprm->page[pos / PAGE_SIZE] = page;
354         }
355
356         return page;
357 }
358
359 static void put_arg_page(struct page *page)
360 {
361 }
362
363 static void free_arg_page(struct linux_binprm *bprm, int i)
364 {
365         if (bprm->page[i]) {
366                 __free_page(bprm->page[i]);
367                 bprm->page[i] = NULL;
368         }
369 }
370
371 static void free_arg_pages(struct linux_binprm *bprm)
372 {
373         int i;
374
375         for (i = 0; i < MAX_ARG_PAGES; i++)
376                 free_arg_page(bprm, i);
377 }
378
379 static void flush_arg_page(struct linux_binprm *bprm, unsigned long pos,
380                 struct page *page)
381 {
382 }
383
384 static int __bprm_mm_init(struct linux_binprm *bprm)
385 {
386         bprm->p = PAGE_SIZE * MAX_ARG_PAGES - sizeof(void *);
387         return 0;
388 }
389
390 static bool valid_arg_len(struct linux_binprm *bprm, long len)
391 {
392         return len <= bprm->p;
393 }
394
395 #endif /* CONFIG_MMU */
396
397 /*
398  * Create a new mm_struct and populate it with a temporary stack
399  * vm_area_struct.  We don't have enough context at this point to set the stack
400  * flags, permissions, and offset, so we use temporary values.  We'll update
401  * them later in setup_arg_pages().
402  */
403 static int bprm_mm_init(struct linux_binprm *bprm)
404 {
405         int err;
406         struct mm_struct *mm = NULL;
407
408         bprm->mm = mm = mm_alloc();
409         err = -ENOMEM;
410         if (!mm)
411                 goto err;
412
413         /* Save current stack limit for all calculations made during exec. */
414         task_lock(current->group_leader);
415         bprm->rlim_stack = current->signal->rlim[RLIMIT_STACK];
416         task_unlock(current->group_leader);
417
418         err = __bprm_mm_init(bprm);
419         if (err)
420                 goto err;
421
422         return 0;
423
424 err:
425         if (mm) {
426                 bprm->mm = NULL;
427                 mmdrop(mm);
428         }
429
430         return err;
431 }
432
433 struct user_arg_ptr {
434 #ifdef CONFIG_COMPAT
435         bool is_compat;
436 #endif
437         union {
438                 const char __user *const __user *native;
439 #ifdef CONFIG_COMPAT
440                 const compat_uptr_t __user *compat;
441 #endif
442         } ptr;
443 };
444
445 static const char __user *get_user_arg_ptr(struct user_arg_ptr argv, int nr)
446 {
447         const char __user *native;
448
449 #ifdef CONFIG_COMPAT
450         if (unlikely(argv.is_compat)) {
451                 compat_uptr_t compat;
452
453                 if (get_user(compat, argv.ptr.compat + nr))
454                         return ERR_PTR(-EFAULT);
455
456                 return compat_ptr(compat);
457         }
458 #endif
459
460         if (get_user(native, argv.ptr.native + nr))
461                 return ERR_PTR(-EFAULT);
462
463         return native;
464 }
465
466 /*
467  * count() counts the number of strings in array ARGV.
468  */
469 static int count(struct user_arg_ptr argv, int max)
470 {
471         int i = 0;
472
473         if (argv.ptr.native != NULL) {
474                 for (;;) {
475                         const char __user *p = get_user_arg_ptr(argv, i);
476
477                         if (!p)
478                                 break;
479
480                         if (IS_ERR(p))
481                                 return -EFAULT;
482
483                         if (i >= max)
484                                 return -E2BIG;
485                         ++i;
486
487                         if (fatal_signal_pending(current))
488                                 return -ERESTARTNOHAND;
489                         cond_resched();
490                 }
491         }
492         return i;
493 }
494
495 /*
496  * 'copy_strings()' copies argument/environment strings from the old
497  * processes's memory to the new process's stack.  The call to get_user_pages()
498  * ensures the destination page is created and not swapped out.
499  */
500 static int copy_strings(int argc, struct user_arg_ptr argv,
501                         struct linux_binprm *bprm)
502 {
503         struct page *kmapped_page = NULL;
504         char *kaddr = NULL;
505         unsigned long kpos = 0;
506         int ret;
507
508         while (argc-- > 0) {
509                 const char __user *str;
510                 int len;
511                 unsigned long pos;
512
513                 ret = -EFAULT;
514                 str = get_user_arg_ptr(argv, argc);
515                 if (IS_ERR(str))
516                         goto out;
517
518                 len = strnlen_user(str, MAX_ARG_STRLEN);
519                 if (!len)
520                         goto out;
521
522                 ret = -E2BIG;
523                 if (!valid_arg_len(bprm, len))
524                         goto out;
525
526                 /* We're going to work our way backwords. */
527                 pos = bprm->p;
528                 str += len;
529                 bprm->p -= len;
530
531                 while (len > 0) {
532                         int offset, bytes_to_copy;
533
534                         if (fatal_signal_pending(current)) {
535                                 ret = -ERESTARTNOHAND;
536                                 goto out;
537                         }
538                         cond_resched();
539
540                         offset = pos % PAGE_SIZE;
541                         if (offset == 0)
542                                 offset = PAGE_SIZE;
543
544                         bytes_to_copy = offset;
545                         if (bytes_to_copy > len)
546                                 bytes_to_copy = len;
547
548                         offset -= bytes_to_copy;
549                         pos -= bytes_to_copy;
550                         str -= bytes_to_copy;
551                         len -= bytes_to_copy;
552
553                         if (!kmapped_page || kpos != (pos & PAGE_MASK)) {
554                                 struct page *page;
555
556                                 page = get_arg_page(bprm, pos, 1);
557                                 if (!page) {
558                                         ret = -E2BIG;
559                                         goto out;
560                                 }
561
562                                 if (kmapped_page) {
563                                         flush_kernel_dcache_page(kmapped_page);
564                                         kunmap(kmapped_page);
565                                         put_arg_page(kmapped_page);
566                                 }
567                                 kmapped_page = page;
568                                 kaddr = kmap(kmapped_page);
569                                 kpos = pos & PAGE_MASK;
570                                 flush_arg_page(bprm, kpos, kmapped_page);
571                         }
572                         if (copy_from_user(kaddr+offset, str, bytes_to_copy)) {
573                                 ret = -EFAULT;
574                                 goto out;
575                         }
576                 }
577         }
578         ret = 0;
579 out:
580         if (kmapped_page) {
581                 flush_kernel_dcache_page(kmapped_page);
582                 kunmap(kmapped_page);
583                 put_arg_page(kmapped_page);
584         }
585         return ret;
586 }
587
588 /*
589  * Like copy_strings, but get argv and its values from kernel memory.
590  */
591 int copy_strings_kernel(int argc, const char *const *__argv,
592                         struct linux_binprm *bprm)
593 {
594         int r;
595         mm_segment_t oldfs = get_fs();
596         struct user_arg_ptr argv = {
597                 .ptr.native = (const char __user *const  __user *)__argv,
598         };
599
600         set_fs(KERNEL_DS);
601         r = copy_strings(argc, argv, bprm);
602         set_fs(oldfs);
603
604         return r;
605 }
606 EXPORT_SYMBOL(copy_strings_kernel);
607
608 #ifdef CONFIG_MMU
609
610 /*
611  * During bprm_mm_init(), we create a temporary stack at STACK_TOP_MAX.  Once
612  * the binfmt code determines where the new stack should reside, we shift it to
613  * its final location.  The process proceeds as follows:
614  *
615  * 1) Use shift to calculate the new vma endpoints.
616  * 2) Extend vma to cover both the old and new ranges.  This ensures the
617  *    arguments passed to subsequent functions are consistent.
618  * 3) Move vma's page tables to the new range.
619  * 4) Free up any cleared pgd range.
620  * 5) Shrink the vma to cover only the new range.
621  */
622 static int shift_arg_pages(struct vm_area_struct *vma, unsigned long shift)
623 {
624         struct mm_struct *mm = vma->vm_mm;
625         unsigned long old_start = vma->vm_start;
626         unsigned long old_end = vma->vm_end;
627         unsigned long length = old_end - old_start;
628         unsigned long new_start = old_start - shift;
629         unsigned long new_end = old_end - shift;
630         struct mmu_gather tlb;
631
632         BUG_ON(new_start > new_end);
633
634         /*
635          * ensure there are no vmas between where we want to go
636          * and where we are
637          */
638         if (vma != find_vma(mm, new_start))
639                 return -EFAULT;
640
641         /*
642          * cover the whole range: [new_start, old_end)
643          */
644         if (vma_adjust(vma, new_start, old_end, vma->vm_pgoff, NULL))
645                 return -ENOMEM;
646
647         /*
648          * move the page tables downwards, on failure we rely on
649          * process cleanup to remove whatever mess we made.
650          */
651         if (length != move_page_tables(vma, old_start,
652                                        vma, new_start, length, false))
653                 return -ENOMEM;
654
655         lru_add_drain();
656         tlb_gather_mmu(&tlb, mm, old_start, old_end);
657         if (new_end > old_start) {
658                 /*
659                  * when the old and new regions overlap clear from new_end.
660                  */
661                 free_pgd_range(&tlb, new_end, old_end, new_end,
662                         vma->vm_next ? vma->vm_next->vm_start : USER_PGTABLES_CEILING);
663         } else {
664                 /*
665                  * otherwise, clean from old_start; this is done to not touch
666                  * the address space in [new_end, old_start) some architectures
667                  * have constraints on va-space that make this illegal (IA64) -
668                  * for the others its just a little faster.
669                  */
670                 free_pgd_range(&tlb, old_start, old_end, new_end,
671                         vma->vm_next ? vma->vm_next->vm_start : USER_PGTABLES_CEILING);
672         }
673         tlb_finish_mmu(&tlb, old_start, old_end);
674
675         /*
676          * Shrink the vma to just the new range.  Always succeeds.
677          */
678         vma_adjust(vma, new_start, new_end, vma->vm_pgoff, NULL);
679
680         return 0;
681 }
682
683 /*
684  * Finalizes the stack vm_area_struct. The flags and permissions are updated,
685  * the stack is optionally relocated, and some extra space is added.
686  */
687 int setup_arg_pages(struct linux_binprm *bprm,
688                     unsigned long stack_top,
689                     int executable_stack)
690 {
691         unsigned long ret;
692         unsigned long stack_shift;
693         struct mm_struct *mm = current->mm;
694         struct vm_area_struct *vma = bprm->vma;
695         struct vm_area_struct *prev = NULL;
696         unsigned long vm_flags;
697         unsigned long stack_base;
698         unsigned long stack_size;
699         unsigned long stack_expand;
700         unsigned long rlim_stack;
701
702 #ifdef CONFIG_STACK_GROWSUP
703         /* Limit stack size */
704         stack_base = bprm->rlim_stack.rlim_max;
705         if (stack_base > STACK_SIZE_MAX)
706                 stack_base = STACK_SIZE_MAX;
707
708         /* Add space for stack randomization. */
709         stack_base += (STACK_RND_MASK << PAGE_SHIFT);
710
711         /* Make sure we didn't let the argument array grow too large. */
712         if (vma->vm_end - vma->vm_start > stack_base)
713                 return -ENOMEM;
714
715         stack_base = PAGE_ALIGN(stack_top - stack_base);
716
717         stack_shift = vma->vm_start - stack_base;
718         mm->arg_start = bprm->p - stack_shift;
719         bprm->p = vma->vm_end - stack_shift;
720 #else
721         stack_top = arch_align_stack(stack_top);
722         stack_top = PAGE_ALIGN(stack_top);
723
724         if (unlikely(stack_top < mmap_min_addr) ||
725             unlikely(vma->vm_end - vma->vm_start >= stack_top - mmap_min_addr))
726                 return -ENOMEM;
727
728         stack_shift = vma->vm_end - stack_top;
729
730         bprm->p -= stack_shift;
731         mm->arg_start = bprm->p;
732 #endif
733
734         if (bprm->loader)
735                 bprm->loader -= stack_shift;
736         bprm->exec -= stack_shift;
737
738         if (down_write_killable(&mm->mmap_sem))
739                 return -EINTR;
740
741         vm_flags = VM_STACK_FLAGS;
742
743         /*
744          * Adjust stack execute permissions; explicitly enable for
745          * EXSTACK_ENABLE_X, disable for EXSTACK_DISABLE_X and leave alone
746          * (arch default) otherwise.
747          */
748         if (unlikely(executable_stack == EXSTACK_ENABLE_X))
749                 vm_flags |= VM_EXEC;
750         else if (executable_stack == EXSTACK_DISABLE_X)
751                 vm_flags &= ~VM_EXEC;
752         vm_flags |= mm->def_flags;
753         vm_flags |= VM_STACK_INCOMPLETE_SETUP;
754
755         ret = mprotect_fixup(vma, &prev, vma->vm_start, vma->vm_end,
756                         vm_flags);
757         if (ret)
758                 goto out_unlock;
759         BUG_ON(prev != vma);
760
761         /* Move stack pages down in memory. */
762         if (stack_shift) {
763                 ret = shift_arg_pages(vma, stack_shift);
764                 if (ret)
765                         goto out_unlock;
766         }
767
768         /* mprotect_fixup is overkill to remove the temporary stack flags */
769         vma->vm_flags &= ~VM_STACK_INCOMPLETE_SETUP;
770
771         stack_expand = 131072UL; /* randomly 32*4k (or 2*64k) pages */
772         stack_size = vma->vm_end - vma->vm_start;
773         /*
774          * Align this down to a page boundary as expand_stack
775          * will align it up.
776          */
777         rlim_stack = bprm->rlim_stack.rlim_cur & PAGE_MASK;
778 #ifdef CONFIG_STACK_GROWSUP
779         if (stack_size + stack_expand > rlim_stack)
780                 stack_base = vma->vm_start + rlim_stack;
781         else
782                 stack_base = vma->vm_end + stack_expand;
783 #else
784         if (stack_size + stack_expand > rlim_stack)
785                 stack_base = vma->vm_end - rlim_stack;
786         else
787                 stack_base = vma->vm_start - stack_expand;
788 #endif
789         current->mm->start_stack = bprm->p;
790         ret = expand_stack(vma, stack_base);
791         if (ret)
792                 ret = -EFAULT;
793
794 out_unlock:
795         up_write(&mm->mmap_sem);
796         return ret;
797 }
798 EXPORT_SYMBOL(setup_arg_pages);
799
800 #else
801
802 /*
803  * Transfer the program arguments and environment from the holding pages
804  * onto the stack. The provided stack pointer is adjusted accordingly.
805  */
806 int transfer_args_to_stack(struct linux_binprm *bprm,
807                            unsigned long *sp_location)
808 {
809         unsigned long index, stop, sp;
810         int ret = 0;
811
812         stop = bprm->p >> PAGE_SHIFT;
813         sp = *sp_location;
814
815         for (index = MAX_ARG_PAGES - 1; index >= stop; index--) {
816                 unsigned int offset = index == stop ? bprm->p & ~PAGE_MASK : 0;
817                 char *src = kmap(bprm->page[index]) + offset;
818                 sp -= PAGE_SIZE - offset;
819                 if (copy_to_user((void *) sp, src, PAGE_SIZE - offset) != 0)
820                         ret = -EFAULT;
821                 kunmap(bprm->page[index]);
822                 if (ret)
823                         goto out;
824         }
825
826         bprm->exec += *sp_location - MAX_ARG_PAGES * PAGE_SIZE;
827         *sp_location = sp;
828
829 out:
830         return ret;
831 }
832 EXPORT_SYMBOL(transfer_args_to_stack);
833
834 #endif /* CONFIG_MMU */
835
836 static struct file *do_open_execat(int fd, struct filename *name, int flags)
837 {
838         struct file *file;
839         int err;
840         struct open_flags open_exec_flags = {
841                 .open_flag = O_LARGEFILE | O_RDONLY | __FMODE_EXEC,
842                 .acc_mode = MAY_EXEC,
843                 .intent = LOOKUP_OPEN,
844                 .lookup_flags = LOOKUP_FOLLOW,
845         };
846
847         if ((flags & ~(AT_SYMLINK_NOFOLLOW | AT_EMPTY_PATH)) != 0)
848                 return ERR_PTR(-EINVAL);
849         if (flags & AT_SYMLINK_NOFOLLOW)
850                 open_exec_flags.lookup_flags &= ~LOOKUP_FOLLOW;
851         if (flags & AT_EMPTY_PATH)
852                 open_exec_flags.lookup_flags |= LOOKUP_EMPTY;
853
854         file = do_filp_open(fd, name, &open_exec_flags);
855         if (IS_ERR(file))
856                 goto out;
857
858         err = -EACCES;
859         if (!S_ISREG(file_inode(file)->i_mode))
860                 goto exit;
861
862         if (path_noexec(&file->f_path))
863                 goto exit;
864
865         err = deny_write_access(file);
866         if (err)
867                 goto exit;
868
869         if (name->name[0] != '\0')
870                 fsnotify_open(file);
871
872 out:
873         return file;
874
875 exit:
876         fput(file);
877         return ERR_PTR(err);
878 }
879
880 struct file *open_exec(const char *name)
881 {
882         struct filename *filename = getname_kernel(name);
883         struct file *f = ERR_CAST(filename);
884
885         if (!IS_ERR(filename)) {
886                 f = do_open_execat(AT_FDCWD, filename, 0);
887                 putname(filename);
888         }
889         return f;
890 }
891 EXPORT_SYMBOL(open_exec);
892
893 int kernel_read_file(struct file *file, void **buf, loff_t *size,
894                      loff_t max_size, enum kernel_read_file_id id)
895 {
896         loff_t i_size, pos;
897         ssize_t bytes = 0;
898         int ret;
899
900         if (!S_ISREG(file_inode(file)->i_mode) || max_size < 0)
901                 return -EINVAL;
902
903         ret = deny_write_access(file);
904         if (ret)
905                 return ret;
906
907         ret = security_kernel_read_file(file, id);
908         if (ret)
909                 goto out;
910
911         i_size = i_size_read(file_inode(file));
912         if (max_size > 0 && i_size > max_size) {
913                 ret = -EFBIG;
914                 goto out;
915         }
916         if (i_size <= 0) {
917                 ret = -EINVAL;
918                 goto out;
919         }
920
921         if (id != READING_FIRMWARE_PREALLOC_BUFFER)
922                 *buf = vmalloc(i_size);
923         if (!*buf) {
924                 ret = -ENOMEM;
925                 goto out;
926         }
927
928         pos = 0;
929         while (pos < i_size) {
930                 bytes = kernel_read(file, *buf + pos, i_size - pos, &pos);
931                 if (bytes < 0) {
932                         ret = bytes;
933                         goto out_free;
934                 }
935
936                 if (bytes == 0)
937                         break;
938         }
939
940         if (pos != i_size) {
941                 ret = -EIO;
942                 goto out_free;
943         }
944
945         ret = security_kernel_post_read_file(file, *buf, i_size, id);
946         if (!ret)
947                 *size = pos;
948
949 out_free:
950         if (ret < 0) {
951                 if (id != READING_FIRMWARE_PREALLOC_BUFFER) {
952                         vfree(*buf);
953                         *buf = NULL;
954                 }
955         }
956
957 out:
958         allow_write_access(file);
959         return ret;
960 }
961 EXPORT_SYMBOL_GPL(kernel_read_file);
962
963 int kernel_read_file_from_path(const char *path, void **buf, loff_t *size,
964                                loff_t max_size, enum kernel_read_file_id id)
965 {
966         struct file *file;
967         int ret;
968
969         if (!path || !*path)
970                 return -EINVAL;
971
972         file = filp_open(path, O_RDONLY, 0);
973         if (IS_ERR(file))
974                 return PTR_ERR(file);
975
976         ret = kernel_read_file(file, buf, size, max_size, id);
977         fput(file);
978         return ret;
979 }
980 EXPORT_SYMBOL_GPL(kernel_read_file_from_path);
981
982 int kernel_read_file_from_fd(int fd, void **buf, loff_t *size, loff_t max_size,
983                              enum kernel_read_file_id id)
984 {
985         struct fd f = fdget(fd);
986         int ret = -EBADF;
987
988         if (!f.file || !(f.file->f_mode & FMODE_READ))
989                 goto out;
990
991         ret = kernel_read_file(f.file, buf, size, max_size, id);
992 out:
993         fdput(f);
994         return ret;
995 }
996 EXPORT_SYMBOL_GPL(kernel_read_file_from_fd);
997
998 ssize_t read_code(struct file *file, unsigned long addr, loff_t pos, size_t len)
999 {
1000         ssize_t res = vfs_read(file, (void __user *)addr, len, &pos);
1001         if (res > 0)
1002                 flush_icache_range(addr, addr + len);
1003         return res;
1004 }
1005 EXPORT_SYMBOL(read_code);
1006
1007 static int exec_mmap(struct mm_struct *mm)
1008 {
1009         struct task_struct *tsk;
1010         struct mm_struct *old_mm, *active_mm;
1011
1012         /* Notify parent that we're no longer interested in the old VM */
1013         tsk = current;
1014         old_mm = current->mm;
1015         exec_mm_release(tsk, old_mm);
1016
1017         if (old_mm) {
1018                 sync_mm_rss(old_mm);
1019                 /*
1020                  * Make sure that if there is a core dump in progress
1021                  * for the old mm, we get out and die instead of going
1022                  * through with the exec.  We must hold mmap_sem around
1023                  * checking core_state and changing tsk->mm.
1024                  */
1025                 down_read(&old_mm->mmap_sem);
1026                 if (unlikely(old_mm->core_state)) {
1027                         up_read(&old_mm->mmap_sem);
1028                         return -EINTR;
1029                 }
1030         }
1031         task_lock(tsk);
1032
1033         local_irq_disable();
1034         active_mm = tsk->active_mm;
1035         tsk->active_mm = mm;
1036         tsk->mm = mm;
1037         /*
1038          * This prevents preemption while active_mm is being loaded and
1039          * it and mm are being updated, which could cause problems for
1040          * lazy tlb mm refcounting when these are updated by context
1041          * switches. Not all architectures can handle irqs off over
1042          * activate_mm yet.
1043          */
1044         if (!IS_ENABLED(CONFIG_ARCH_WANT_IRQS_OFF_ACTIVATE_MM))
1045                 local_irq_enable();
1046         activate_mm(active_mm, mm);
1047         if (IS_ENABLED(CONFIG_ARCH_WANT_IRQS_OFF_ACTIVATE_MM))
1048                 local_irq_enable();
1049         tsk->mm->vmacache_seqnum = 0;
1050         vmacache_flush(tsk);
1051         task_unlock(tsk);
1052         if (old_mm) {
1053                 up_read(&old_mm->mmap_sem);
1054                 BUG_ON(active_mm != old_mm);
1055                 setmax_mm_hiwater_rss(&tsk->signal->maxrss, old_mm);
1056                 mm_update_next_owner(old_mm);
1057                 mmput(old_mm);
1058                 return 0;
1059         }
1060         mmdrop(active_mm);
1061         return 0;
1062 }
1063
1064 /*
1065  * This function makes sure the current process has its own signal table,
1066  * so that flush_signal_handlers can later reset the handlers without
1067  * disturbing other processes.  (Other processes might share the signal
1068  * table via the CLONE_SIGHAND option to clone().)
1069  */
1070 static int de_thread(struct task_struct *tsk)
1071 {
1072         struct signal_struct *sig = tsk->signal;
1073         struct sighand_struct *oldsighand = tsk->sighand;
1074         spinlock_t *lock = &oldsighand->siglock;
1075
1076         if (thread_group_empty(tsk))
1077                 goto no_thread_group;
1078
1079         /*
1080          * Kill all other threads in the thread group.
1081          */
1082         spin_lock_irq(lock);
1083         if (signal_group_exit(sig)) {
1084                 /*
1085                  * Another group action in progress, just
1086                  * return so that the signal is processed.
1087                  */
1088                 spin_unlock_irq(lock);
1089                 return -EAGAIN;
1090         }
1091
1092         sig->group_exit_task = tsk;
1093         sig->notify_count = zap_other_threads(tsk);
1094         if (!thread_group_leader(tsk))
1095                 sig->notify_count--;
1096
1097         while (sig->notify_count) {
1098                 __set_current_state(TASK_KILLABLE);
1099                 spin_unlock_irq(lock);
1100                 schedule();
1101                 if (unlikely(__fatal_signal_pending(tsk)))
1102                         goto killed;
1103                 spin_lock_irq(lock);
1104         }
1105         spin_unlock_irq(lock);
1106
1107         /*
1108          * At this point all other threads have exited, all we have to
1109          * do is to wait for the thread group leader to become inactive,
1110          * and to assume its PID:
1111          */
1112         if (!thread_group_leader(tsk)) {
1113                 struct task_struct *leader = tsk->group_leader;
1114
1115                 for (;;) {
1116                         cgroup_threadgroup_change_begin(tsk);
1117                         write_lock_irq(&tasklist_lock);
1118                         /*
1119                          * Do this under tasklist_lock to ensure that
1120                          * exit_notify() can't miss ->group_exit_task
1121                          */
1122                         sig->notify_count = -1;
1123                         if (likely(leader->exit_state))
1124                                 break;
1125                         __set_current_state(TASK_KILLABLE);
1126                         write_unlock_irq(&tasklist_lock);
1127                         cgroup_threadgroup_change_end(tsk);
1128                         schedule();
1129                         if (unlikely(__fatal_signal_pending(tsk)))
1130                                 goto killed;
1131                 }
1132
1133                 /*
1134                  * The only record we have of the real-time age of a
1135                  * process, regardless of execs it's done, is start_time.
1136                  * All the past CPU time is accumulated in signal_struct
1137                  * from sister threads now dead.  But in this non-leader
1138                  * exec, nothing survives from the original leader thread,
1139                  * whose birth marks the true age of this process now.
1140                  * When we take on its identity by switching to its PID, we
1141                  * also take its birthdate (always earlier than our own).
1142                  */
1143                 tsk->start_time = leader->start_time;
1144                 tsk->real_start_time = leader->real_start_time;
1145
1146                 BUG_ON(!same_thread_group(leader, tsk));
1147                 BUG_ON(has_group_leader_pid(tsk));
1148                 /*
1149                  * An exec() starts a new thread group with the
1150                  * TGID of the previous thread group. Rehash the
1151                  * two threads with a switched PID, and release
1152                  * the former thread group leader:
1153                  */
1154
1155                 /* Become a process group leader with the old leader's pid.
1156                  * The old leader becomes a thread of the this thread group.
1157                  * Note: The old leader also uses this pid until release_task
1158                  *       is called.  Odd but simple and correct.
1159                  */
1160                 tsk->pid = leader->pid;
1161                 change_pid(tsk, PIDTYPE_PID, task_pid(leader));
1162                 transfer_pid(leader, tsk, PIDTYPE_TGID);
1163                 transfer_pid(leader, tsk, PIDTYPE_PGID);
1164                 transfer_pid(leader, tsk, PIDTYPE_SID);
1165
1166                 list_replace_rcu(&leader->tasks, &tsk->tasks);
1167                 list_replace_init(&leader->sibling, &tsk->sibling);
1168
1169                 tsk->group_leader = tsk;
1170                 leader->group_leader = tsk;
1171
1172                 tsk->exit_signal = SIGCHLD;
1173                 leader->exit_signal = -1;
1174
1175                 BUG_ON(leader->exit_state != EXIT_ZOMBIE);
1176                 leader->exit_state = EXIT_DEAD;
1177
1178                 /*
1179                  * We are going to release_task()->ptrace_unlink() silently,
1180                  * the tracer can sleep in do_wait(). EXIT_DEAD guarantees
1181                  * the tracer wont't block again waiting for this thread.
1182                  */
1183                 if (unlikely(leader->ptrace))
1184                         __wake_up_parent(leader, leader->parent);
1185                 write_unlock_irq(&tasklist_lock);
1186                 cgroup_threadgroup_change_end(tsk);
1187
1188                 release_task(leader);
1189         }
1190
1191         sig->group_exit_task = NULL;
1192         sig->notify_count = 0;
1193
1194 no_thread_group:
1195         /* we have changed execution domain */
1196         tsk->exit_signal = SIGCHLD;
1197
1198 #ifdef CONFIG_POSIX_TIMERS
1199         exit_itimers(sig);
1200         flush_itimer_signals();
1201 #endif
1202
1203         if (atomic_read(&oldsighand->count) != 1) {
1204                 struct sighand_struct *newsighand;
1205                 /*
1206                  * This ->sighand is shared with the CLONE_SIGHAND
1207                  * but not CLONE_THREAD task, switch to the new one.
1208                  */
1209                 newsighand = kmem_cache_alloc(sighand_cachep, GFP_KERNEL);
1210                 if (!newsighand)
1211                         return -ENOMEM;
1212
1213                 atomic_set(&newsighand->count, 1);
1214                 memcpy(newsighand->action, oldsighand->action,
1215                        sizeof(newsighand->action));
1216
1217                 write_lock_irq(&tasklist_lock);
1218                 spin_lock(&oldsighand->siglock);
1219                 rcu_assign_pointer(tsk->sighand, newsighand);
1220                 spin_unlock(&oldsighand->siglock);
1221                 write_unlock_irq(&tasklist_lock);
1222
1223                 __cleanup_sighand(oldsighand);
1224         }
1225
1226         BUG_ON(!thread_group_leader(tsk));
1227         return 0;
1228
1229 killed:
1230         /* protects against exit_notify() and __exit_signal() */
1231         read_lock(&tasklist_lock);
1232         sig->group_exit_task = NULL;
1233         sig->notify_count = 0;
1234         read_unlock(&tasklist_lock);
1235         return -EAGAIN;
1236 }
1237
1238 char *__get_task_comm(char *buf, size_t buf_size, struct task_struct *tsk)
1239 {
1240         task_lock(tsk);
1241         strncpy(buf, tsk->comm, buf_size);
1242         task_unlock(tsk);
1243         return buf;
1244 }
1245 EXPORT_SYMBOL_GPL(__get_task_comm);
1246
1247 /*
1248  * These functions flushes out all traces of the currently running executable
1249  * so that a new one can be started
1250  */
1251
1252 void __set_task_comm(struct task_struct *tsk, const char *buf, bool exec)
1253 {
1254         task_lock(tsk);
1255         trace_task_rename(tsk, buf);
1256         strlcpy(tsk->comm, buf, sizeof(tsk->comm));
1257         task_unlock(tsk);
1258         perf_event_comm(tsk, exec);
1259 }
1260
1261 /*
1262  * Calling this is the point of no return. None of the failures will be
1263  * seen by userspace since either the process is already taking a fatal
1264  * signal (via de_thread() or coredump), or will have SEGV raised
1265  * (after exec_mmap()) by search_binary_handlers (see below).
1266  */
1267 int flush_old_exec(struct linux_binprm * bprm)
1268 {
1269         int retval;
1270
1271         /*
1272          * Make sure we have a private signal table and that
1273          * we are unassociated from the previous thread group.
1274          */
1275         retval = de_thread(current);
1276         if (retval)
1277                 goto out;
1278
1279         /*
1280          * Must be called _before_ exec_mmap() as bprm->mm is
1281          * not visibile until then. This also enables the update
1282          * to be lockless.
1283          */
1284         set_mm_exe_file(bprm->mm, bprm->file);
1285
1286         would_dump(bprm, bprm->file);
1287
1288         /*
1289          * Release all of the old mmap stuff
1290          */
1291         acct_arg_size(bprm, 0);
1292         retval = exec_mmap(bprm->mm);
1293         if (retval)
1294                 goto out;
1295
1296         /*
1297          * After clearing bprm->mm (to mark that current is using the
1298          * prepared mm now), we have nothing left of the original
1299          * process. If anything from here on returns an error, the check
1300          * in search_binary_handler() will SEGV current.
1301          */
1302         bprm->mm = NULL;
1303
1304         set_fs(USER_DS);
1305         current->flags &= ~(PF_RANDOMIZE | PF_FORKNOEXEC | PF_KTHREAD |
1306                                         PF_NOFREEZE | PF_NO_SETAFFINITY);
1307         flush_thread();
1308         current->personality &= ~bprm->per_clear;
1309
1310         /*
1311          * We have to apply CLOEXEC before we change whether the process is
1312          * dumpable (in setup_new_exec) to avoid a race with a process in userspace
1313          * trying to access the should-be-closed file descriptors of a process
1314          * undergoing exec(2).
1315          */
1316         do_close_on_exec(current->files);
1317         return 0;
1318
1319 out:
1320         return retval;
1321 }
1322 EXPORT_SYMBOL(flush_old_exec);
1323
1324 void would_dump(struct linux_binprm *bprm, struct file *file)
1325 {
1326         struct inode *inode = file_inode(file);
1327         if (inode_permission(inode, MAY_READ) < 0) {
1328                 struct user_namespace *old, *user_ns;
1329                 bprm->interp_flags |= BINPRM_FLAGS_ENFORCE_NONDUMP;
1330
1331                 /* Ensure mm->user_ns contains the executable */
1332                 user_ns = old = bprm->mm->user_ns;
1333                 while ((user_ns != &init_user_ns) &&
1334                        !privileged_wrt_inode_uidgid(user_ns, inode))
1335                         user_ns = user_ns->parent;
1336
1337                 if (old != user_ns) {
1338                         bprm->mm->user_ns = get_user_ns(user_ns);
1339                         put_user_ns(old);
1340                 }
1341         }
1342 }
1343 EXPORT_SYMBOL(would_dump);
1344
1345 void setup_new_exec(struct linux_binprm * bprm)
1346 {
1347         /*
1348          * Once here, prepare_binrpm() will not be called any more, so
1349          * the final state of setuid/setgid/fscaps can be merged into the
1350          * secureexec flag.
1351          */
1352         bprm->secureexec |= bprm->cap_elevated;
1353
1354         if (bprm->secureexec) {
1355                 /* Make sure parent cannot signal privileged process. */
1356                 current->pdeath_signal = 0;
1357
1358                 /*
1359                  * For secureexec, reset the stack limit to sane default to
1360                  * avoid bad behavior from the prior rlimits. This has to
1361                  * happen before arch_pick_mmap_layout(), which examines
1362                  * RLIMIT_STACK, but after the point of no return to avoid
1363                  * needing to clean up the change on failure.
1364                  */
1365                 if (bprm->rlim_stack.rlim_cur > _STK_LIM)
1366                         bprm->rlim_stack.rlim_cur = _STK_LIM;
1367         }
1368
1369         arch_pick_mmap_layout(current->mm, &bprm->rlim_stack);
1370
1371         current->sas_ss_sp = current->sas_ss_size = 0;
1372
1373         /*
1374          * Figure out dumpability. Note that this checking only of current
1375          * is wrong, but userspace depends on it. This should be testing
1376          * bprm->secureexec instead.
1377          */
1378         if (bprm->interp_flags & BINPRM_FLAGS_ENFORCE_NONDUMP ||
1379             !(uid_eq(current_euid(), current_uid()) &&
1380               gid_eq(current_egid(), current_gid())))
1381                 set_dumpable(current->mm, suid_dumpable);
1382         else
1383                 set_dumpable(current->mm, SUID_DUMP_USER);
1384
1385         arch_setup_new_exec();
1386         perf_event_exec();
1387         __set_task_comm(current, kbasename(bprm->filename), true);
1388
1389         /* Set the new mm task size. We have to do that late because it may
1390          * depend on TIF_32BIT which is only updated in flush_thread() on
1391          * some architectures like powerpc
1392          */
1393         current->mm->task_size = TASK_SIZE;
1394
1395         /* An exec changes our domain. We are no longer part of the thread
1396            group */
1397         WRITE_ONCE(current->self_exec_id, current->self_exec_id + 1);
1398         flush_signal_handlers(current, 0);
1399 }
1400 EXPORT_SYMBOL(setup_new_exec);
1401
1402 /* Runs immediately before start_thread() takes over. */
1403 void finalize_exec(struct linux_binprm *bprm)
1404 {
1405         /* Store any stack rlimit changes before starting thread. */
1406         task_lock(current->group_leader);
1407         current->signal->rlim[RLIMIT_STACK] = bprm->rlim_stack;
1408         task_unlock(current->group_leader);
1409 }
1410 EXPORT_SYMBOL(finalize_exec);
1411
1412 /*
1413  * Prepare credentials and lock ->cred_guard_mutex.
1414  * install_exec_creds() commits the new creds and drops the lock.
1415  * Or, if exec fails before, free_bprm() should release ->cred and
1416  * and unlock.
1417  */
1418 int prepare_bprm_creds(struct linux_binprm *bprm)
1419 {
1420         if (mutex_lock_interruptible(&current->signal->cred_guard_mutex))
1421                 return -ERESTARTNOINTR;
1422
1423         bprm->cred = prepare_exec_creds();
1424         if (likely(bprm->cred))
1425                 return 0;
1426
1427         mutex_unlock(&current->signal->cred_guard_mutex);
1428         return -ENOMEM;
1429 }
1430
1431 static void free_bprm(struct linux_binprm *bprm)
1432 {
1433         free_arg_pages(bprm);
1434         if (bprm->cred) {
1435                 mutex_unlock(&current->signal->cred_guard_mutex);
1436                 abort_creds(bprm->cred);
1437         }
1438         if (bprm->file) {
1439                 allow_write_access(bprm->file);
1440                 fput(bprm->file);
1441         }
1442         /* If a binfmt changed the interp, free it. */
1443         if (bprm->interp != bprm->filename)
1444                 kfree(bprm->interp);
1445         kfree(bprm);
1446 }
1447
1448 int bprm_change_interp(const char *interp, struct linux_binprm *bprm)
1449 {
1450         /* If a binfmt changed the interp, free it first. */
1451         if (bprm->interp != bprm->filename)
1452                 kfree(bprm->interp);
1453         bprm->interp = kstrdup(interp, GFP_KERNEL);
1454         if (!bprm->interp)
1455                 return -ENOMEM;
1456         return 0;
1457 }
1458 EXPORT_SYMBOL(bprm_change_interp);
1459
1460 /*
1461  * install the new credentials for this executable
1462  */
1463 void install_exec_creds(struct linux_binprm *bprm)
1464 {
1465         security_bprm_committing_creds(bprm);
1466
1467         commit_creds(bprm->cred);
1468         bprm->cred = NULL;
1469
1470         /*
1471          * Disable monitoring for regular users
1472          * when executing setuid binaries. Must
1473          * wait until new credentials are committed
1474          * by commit_creds() above
1475          */
1476         if (get_dumpable(current->mm) != SUID_DUMP_USER)
1477                 perf_event_exit_task(current);
1478         /*
1479          * cred_guard_mutex must be held at least to this point to prevent
1480          * ptrace_attach() from altering our determination of the task's
1481          * credentials; any time after this it may be unlocked.
1482          */
1483         security_bprm_committed_creds(bprm);
1484         mutex_unlock(&current->signal->cred_guard_mutex);
1485 }
1486 EXPORT_SYMBOL(install_exec_creds);
1487
1488 /*
1489  * determine how safe it is to execute the proposed program
1490  * - the caller must hold ->cred_guard_mutex to protect against
1491  *   PTRACE_ATTACH or seccomp thread-sync
1492  */
1493 static void check_unsafe_exec(struct linux_binprm *bprm)
1494 {
1495         struct task_struct *p = current, *t;
1496         unsigned n_fs;
1497
1498         if (p->ptrace)
1499                 bprm->unsafe |= LSM_UNSAFE_PTRACE;
1500
1501         /*
1502          * This isn't strictly necessary, but it makes it harder for LSMs to
1503          * mess up.
1504          */
1505         if (task_no_new_privs(current))
1506                 bprm->unsafe |= LSM_UNSAFE_NO_NEW_PRIVS;
1507
1508         t = p;
1509         n_fs = 1;
1510         spin_lock(&p->fs->lock);
1511         rcu_read_lock();
1512         while_each_thread(p, t) {
1513                 if (t->fs == p->fs)
1514                         n_fs++;
1515         }
1516         rcu_read_unlock();
1517
1518         if (p->fs->users > n_fs)
1519                 bprm->unsafe |= LSM_UNSAFE_SHARE;
1520         else
1521                 p->fs->in_exec = 1;
1522         spin_unlock(&p->fs->lock);
1523 }
1524
1525 static void bprm_fill_uid(struct linux_binprm *bprm)
1526 {
1527         struct inode *inode;
1528         unsigned int mode;
1529         kuid_t uid;
1530         kgid_t gid;
1531
1532         /*
1533          * Since this can be called multiple times (via prepare_binprm),
1534          * we must clear any previous work done when setting set[ug]id
1535          * bits from any earlier bprm->file uses (for example when run
1536          * first for a setuid script then again for its interpreter).
1537          */
1538         bprm->cred->euid = current_euid();
1539         bprm->cred->egid = current_egid();
1540
1541         if (!mnt_may_suid(bprm->file->f_path.mnt))
1542                 return;
1543
1544         if (task_no_new_privs(current))
1545                 return;
1546
1547         inode = bprm->file->f_path.dentry->d_inode;
1548         mode = READ_ONCE(inode->i_mode);
1549         if (!(mode & (S_ISUID|S_ISGID)))
1550                 return;
1551
1552         /* Be careful if suid/sgid is set */
1553         inode_lock(inode);
1554
1555         /* reload atomically mode/uid/gid now that lock held */
1556         mode = inode->i_mode;
1557         uid = inode->i_uid;
1558         gid = inode->i_gid;
1559         inode_unlock(inode);
1560
1561         /* We ignore suid/sgid if there are no mappings for them in the ns */
1562         if (!kuid_has_mapping(bprm->cred->user_ns, uid) ||
1563                  !kgid_has_mapping(bprm->cred->user_ns, gid))
1564                 return;
1565
1566         if (mode & S_ISUID) {
1567                 bprm->per_clear |= PER_CLEAR_ON_SETID;
1568                 bprm->cred->euid = uid;
1569         }
1570
1571         if ((mode & (S_ISGID | S_IXGRP)) == (S_ISGID | S_IXGRP)) {
1572                 bprm->per_clear |= PER_CLEAR_ON_SETID;
1573                 bprm->cred->egid = gid;
1574         }
1575 }
1576
1577 /*
1578  * Fill the binprm structure from the inode.
1579  * Check permissions, then read the first 128 (BINPRM_BUF_SIZE) bytes
1580  *
1581  * This may be called multiple times for binary chains (scripts for example).
1582  */
1583 int prepare_binprm(struct linux_binprm *bprm)
1584 {
1585         int retval;
1586         loff_t pos = 0;
1587
1588         bprm_fill_uid(bprm);
1589
1590         /* fill in binprm security blob */
1591         retval = security_bprm_set_creds(bprm);
1592         if (retval)
1593                 return retval;
1594         bprm->called_set_creds = 1;
1595
1596         memset(bprm->buf, 0, BINPRM_BUF_SIZE);
1597         return kernel_read(bprm->file, bprm->buf, BINPRM_BUF_SIZE, &pos);
1598 }
1599
1600 EXPORT_SYMBOL(prepare_binprm);
1601
1602 /*
1603  * Arguments are '\0' separated strings found at the location bprm->p
1604  * points to; chop off the first by relocating brpm->p to right after
1605  * the first '\0' encountered.
1606  */
1607 int remove_arg_zero(struct linux_binprm *bprm)
1608 {
1609         int ret = 0;
1610         unsigned long offset;
1611         char *kaddr;
1612         struct page *page;
1613
1614         if (!bprm->argc)
1615                 return 0;
1616
1617         do {
1618                 offset = bprm->p & ~PAGE_MASK;
1619                 page = get_arg_page(bprm, bprm->p, 0);
1620                 if (!page) {
1621                         ret = -EFAULT;
1622                         goto out;
1623                 }
1624                 kaddr = kmap_atomic(page);
1625
1626                 for (; offset < PAGE_SIZE && kaddr[offset];
1627                                 offset++, bprm->p++)
1628                         ;
1629
1630                 kunmap_atomic(kaddr);
1631                 put_arg_page(page);
1632         } while (offset == PAGE_SIZE);
1633
1634         bprm->p++;
1635         bprm->argc--;
1636         ret = 0;
1637
1638 out:
1639         return ret;
1640 }
1641 EXPORT_SYMBOL(remove_arg_zero);
1642
1643 #define printable(c) (((c)=='\t') || ((c)=='\n') || (0x20<=(c) && (c)<=0x7e))
1644 /*
1645  * cycle the list of binary formats handler, until one recognizes the image
1646  */
1647 int search_binary_handler(struct linux_binprm *bprm)
1648 {
1649         bool need_retry = IS_ENABLED(CONFIG_MODULES);
1650         struct linux_binfmt *fmt;
1651         int retval;
1652
1653         /* This allows 4 levels of binfmt rewrites before failing hard. */
1654         if (bprm->recursion_depth > 5)
1655                 return -ELOOP;
1656
1657         retval = security_bprm_check(bprm);
1658         if (retval)
1659                 return retval;
1660
1661         retval = -ENOENT;
1662  retry:
1663         read_lock(&binfmt_lock);
1664         list_for_each_entry(fmt, &formats, lh) {
1665                 if (!try_module_get(fmt->module))
1666                         continue;
1667                 read_unlock(&binfmt_lock);
1668                 bprm->recursion_depth++;
1669                 retval = fmt->load_binary(bprm);
1670                 read_lock(&binfmt_lock);
1671                 put_binfmt(fmt);
1672                 bprm->recursion_depth--;
1673                 if (retval < 0 && !bprm->mm) {
1674                         /* we got to flush_old_exec() and failed after it */
1675                         read_unlock(&binfmt_lock);
1676                         force_sigsegv(SIGSEGV, current);
1677                         return retval;
1678                 }
1679                 if (retval != -ENOEXEC || !bprm->file) {
1680                         read_unlock(&binfmt_lock);
1681                         return retval;
1682                 }
1683         }
1684         read_unlock(&binfmt_lock);
1685
1686         if (need_retry) {
1687                 if (printable(bprm->buf[0]) && printable(bprm->buf[1]) &&
1688                     printable(bprm->buf[2]) && printable(bprm->buf[3]))
1689                         return retval;
1690                 if (request_module("binfmt-%04x", *(ushort *)(bprm->buf + 2)) < 0)
1691                         return retval;
1692                 need_retry = false;
1693                 goto retry;
1694         }
1695
1696         return retval;
1697 }
1698 EXPORT_SYMBOL(search_binary_handler);
1699
1700 static int exec_binprm(struct linux_binprm *bprm)
1701 {
1702         pid_t old_pid, old_vpid;
1703         int ret;
1704
1705         /* Need to fetch pid before load_binary changes it */
1706         old_pid = current->pid;
1707         rcu_read_lock();
1708         old_vpid = task_pid_nr_ns(current, task_active_pid_ns(current->parent));
1709         rcu_read_unlock();
1710
1711         ret = search_binary_handler(bprm);
1712         if (ret >= 0) {
1713                 audit_bprm(bprm);
1714                 trace_sched_process_exec(current, old_pid, bprm);
1715                 ptrace_event(PTRACE_EVENT_EXEC, old_vpid);
1716                 proc_exec_connector(current);
1717         }
1718
1719         return ret;
1720 }
1721
1722 /*
1723  * sys_execve() executes a new program.
1724  */
1725 static int __do_execve_file(int fd, struct filename *filename,
1726                             struct user_arg_ptr argv,
1727                             struct user_arg_ptr envp,
1728                             int flags, struct file *file)
1729 {
1730         char *pathbuf = NULL;
1731         struct linux_binprm *bprm;
1732         struct files_struct *displaced;
1733         int retval;
1734
1735         if (IS_ERR(filename))
1736                 return PTR_ERR(filename);
1737
1738         /*
1739          * We move the actual failure in case of RLIMIT_NPROC excess from
1740          * set*uid() to execve() because too many poorly written programs
1741          * don't check setuid() return code.  Here we additionally recheck
1742          * whether NPROC limit is still exceeded.
1743          */
1744         if ((current->flags & PF_NPROC_EXCEEDED) &&
1745             atomic_read(&current_user()->processes) > rlimit(RLIMIT_NPROC)) {
1746                 retval = -EAGAIN;
1747                 goto out_ret;
1748         }
1749
1750         /* We're below the limit (still or again), so we don't want to make
1751          * further execve() calls fail. */
1752         current->flags &= ~PF_NPROC_EXCEEDED;
1753
1754         retval = unshare_files(&displaced);
1755         if (retval)
1756                 goto out_ret;
1757
1758         retval = -ENOMEM;
1759         bprm = kzalloc(sizeof(*bprm), GFP_KERNEL);
1760         if (!bprm)
1761                 goto out_files;
1762
1763         retval = prepare_bprm_creds(bprm);
1764         if (retval)
1765                 goto out_free;
1766
1767         check_unsafe_exec(bprm);
1768         current->in_execve = 1;
1769
1770         if (!file)
1771                 file = do_open_execat(fd, filename, flags);
1772         retval = PTR_ERR(file);
1773         if (IS_ERR(file))
1774                 goto out_unmark;
1775
1776         sched_exec();
1777
1778         bprm->file = file;
1779         if (!filename) {
1780                 bprm->filename = "none";
1781         } else if (fd == AT_FDCWD || filename->name[0] == '/') {
1782                 bprm->filename = filename->name;
1783         } else {
1784                 if (filename->name[0] == '\0')
1785                         pathbuf = kasprintf(GFP_KERNEL, "/dev/fd/%d", fd);
1786                 else
1787                         pathbuf = kasprintf(GFP_KERNEL, "/dev/fd/%d/%s",
1788                                             fd, filename->name);
1789                 if (!pathbuf) {
1790                         retval = -ENOMEM;
1791                         goto out_unmark;
1792                 }
1793                 /*
1794                  * Record that a name derived from an O_CLOEXEC fd will be
1795                  * inaccessible after exec. Relies on having exclusive access to
1796                  * current->files (due to unshare_files above).
1797                  */
1798                 if (close_on_exec(fd, rcu_dereference_raw(current->files->fdt)))
1799                         bprm->interp_flags |= BINPRM_FLAGS_PATH_INACCESSIBLE;
1800                 bprm->filename = pathbuf;
1801         }
1802         bprm->interp = bprm->filename;
1803
1804         retval = bprm_mm_init(bprm);
1805         if (retval)
1806                 goto out_unmark;
1807
1808         bprm->argc = count(argv, MAX_ARG_STRINGS);
1809         if (bprm->argc == 0)
1810                 pr_warn_once("process '%s' launched '%s' with NULL argv: empty string added\n",
1811                              current->comm, bprm->filename);
1812         if ((retval = bprm->argc) < 0)
1813                 goto out;
1814
1815         bprm->envc = count(envp, MAX_ARG_STRINGS);
1816         if ((retval = bprm->envc) < 0)
1817                 goto out;
1818
1819         retval = prepare_binprm(bprm);
1820         if (retval < 0)
1821                 goto out;
1822
1823         retval = copy_strings_kernel(1, &bprm->filename, bprm);
1824         if (retval < 0)
1825                 goto out;
1826
1827         bprm->exec = bprm->p;
1828         retval = copy_strings(bprm->envc, envp, bprm);
1829         if (retval < 0)
1830                 goto out;
1831
1832         retval = copy_strings(bprm->argc, argv, bprm);
1833         if (retval < 0)
1834                 goto out;
1835
1836         /*
1837          * When argv is empty, add an empty string ("") as argv[0] to
1838          * ensure confused userspace programs that start processing
1839          * from argv[1] won't end up walking envp. See also
1840          * bprm_stack_limits().
1841          */
1842         if (bprm->argc == 0) {
1843                 const char *argv[] = { "", NULL };
1844                 retval = copy_strings_kernel(1, argv, bprm);
1845                 if (retval < 0)
1846                         goto out;
1847                 bprm->argc = 1;
1848         }
1849
1850         retval = exec_binprm(bprm);
1851         if (retval < 0)
1852                 goto out;
1853
1854         /* execve succeeded */
1855         current->fs->in_exec = 0;
1856         current->in_execve = 0;
1857         membarrier_execve(current);
1858         rseq_execve(current);
1859         acct_update_integrals(current);
1860         task_numa_free(current, false);
1861         free_bprm(bprm);
1862         kfree(pathbuf);
1863         if (filename)
1864                 putname(filename);
1865         if (displaced)
1866                 put_files_struct(displaced);
1867         return retval;
1868
1869 out:
1870         if (bprm->mm) {
1871                 acct_arg_size(bprm, 0);
1872                 mmput(bprm->mm);
1873         }
1874
1875 out_unmark:
1876         current->fs->in_exec = 0;
1877         current->in_execve = 0;
1878
1879 out_free:
1880         free_bprm(bprm);
1881         kfree(pathbuf);
1882
1883 out_files:
1884         if (displaced)
1885                 reset_files_struct(displaced);
1886 out_ret:
1887         if (filename)
1888                 putname(filename);
1889         return retval;
1890 }
1891
1892 static int do_execveat_common(int fd, struct filename *filename,
1893                               struct user_arg_ptr argv,
1894                               struct user_arg_ptr envp,
1895                               int flags)
1896 {
1897         return __do_execve_file(fd, filename, argv, envp, flags, NULL);
1898 }
1899
1900 int do_execve_file(struct file *file, void *__argv, void *__envp)
1901 {
1902         struct user_arg_ptr argv = { .ptr.native = __argv };
1903         struct user_arg_ptr envp = { .ptr.native = __envp };
1904
1905         return __do_execve_file(AT_FDCWD, NULL, argv, envp, 0, file);
1906 }
1907
1908 int do_execve(struct filename *filename,
1909         const char __user *const __user *__argv,
1910         const char __user *const __user *__envp)
1911 {
1912         struct user_arg_ptr argv = { .ptr.native = __argv };
1913         struct user_arg_ptr envp = { .ptr.native = __envp };
1914         return do_execveat_common(AT_FDCWD, filename, argv, envp, 0);
1915 }
1916
1917 int do_execveat(int fd, struct filename *filename,
1918                 const char __user *const __user *__argv,
1919                 const char __user *const __user *__envp,
1920                 int flags)
1921 {
1922         struct user_arg_ptr argv = { .ptr.native = __argv };
1923         struct user_arg_ptr envp = { .ptr.native = __envp };
1924
1925         return do_execveat_common(fd, filename, argv, envp, flags);
1926 }
1927
1928 #ifdef CONFIG_COMPAT
1929 static int compat_do_execve(struct filename *filename,
1930         const compat_uptr_t __user *__argv,
1931         const compat_uptr_t __user *__envp)
1932 {
1933         struct user_arg_ptr argv = {
1934                 .is_compat = true,
1935                 .ptr.compat = __argv,
1936         };
1937         struct user_arg_ptr envp = {
1938                 .is_compat = true,
1939                 .ptr.compat = __envp,
1940         };
1941         return do_execveat_common(AT_FDCWD, filename, argv, envp, 0);
1942 }
1943
1944 static int compat_do_execveat(int fd, struct filename *filename,
1945                               const compat_uptr_t __user *__argv,
1946                               const compat_uptr_t __user *__envp,
1947                               int flags)
1948 {
1949         struct user_arg_ptr argv = {
1950                 .is_compat = true,
1951                 .ptr.compat = __argv,
1952         };
1953         struct user_arg_ptr envp = {
1954                 .is_compat = true,
1955                 .ptr.compat = __envp,
1956         };
1957         return do_execveat_common(fd, filename, argv, envp, flags);
1958 }
1959 #endif
1960
1961 void set_binfmt(struct linux_binfmt *new)
1962 {
1963         struct mm_struct *mm = current->mm;
1964
1965         if (mm->binfmt)
1966                 module_put(mm->binfmt->module);
1967
1968         mm->binfmt = new;
1969         if (new)
1970                 __module_get(new->module);
1971 }
1972 EXPORT_SYMBOL(set_binfmt);
1973
1974 /*
1975  * set_dumpable stores three-value SUID_DUMP_* into mm->flags.
1976  */
1977 void set_dumpable(struct mm_struct *mm, int value)
1978 {
1979         unsigned long old, new;
1980
1981         if (WARN_ON((unsigned)value > SUID_DUMP_ROOT))
1982                 return;
1983
1984         do {
1985                 old = READ_ONCE(mm->flags);
1986                 new = (old & ~MMF_DUMPABLE_MASK) | value;
1987         } while (cmpxchg(&mm->flags, old, new) != old);
1988 }
1989
1990 SYSCALL_DEFINE3(execve,
1991                 const char __user *, filename,
1992                 const char __user *const __user *, argv,
1993                 const char __user *const __user *, envp)
1994 {
1995         return do_execve(getname(filename), argv, envp);
1996 }
1997
1998 SYSCALL_DEFINE5(execveat,
1999                 int, fd, const char __user *, filename,
2000                 const char __user *const __user *, argv,
2001                 const char __user *const __user *, envp,
2002                 int, flags)
2003 {
2004         int lookup_flags = (flags & AT_EMPTY_PATH) ? LOOKUP_EMPTY : 0;
2005
2006         return do_execveat(fd,
2007                            getname_flags(filename, lookup_flags, NULL),
2008                            argv, envp, flags);
2009 }
2010
2011 #ifdef CONFIG_COMPAT
2012 COMPAT_SYSCALL_DEFINE3(execve, const char __user *, filename,
2013         const compat_uptr_t __user *, argv,
2014         const compat_uptr_t __user *, envp)
2015 {
2016         return compat_do_execve(getname(filename), argv, envp);
2017 }
2018
2019 COMPAT_SYSCALL_DEFINE5(execveat, int, fd,
2020                        const char __user *, filename,
2021                        const compat_uptr_t __user *, argv,
2022                        const compat_uptr_t __user *, envp,
2023                        int,  flags)
2024 {
2025         int lookup_flags = (flags & AT_EMPTY_PATH) ? LOOKUP_EMPTY : 0;
2026
2027         return compat_do_execveat(fd,
2028                                   getname_flags(filename, lookup_flags, NULL),
2029                                   argv, envp, flags);
2030 }
2031 #endif