GNU Linux-libre 5.4.257-gnu1
[releases.git] / fs / ecryptfs / crypto.c
1 // SPDX-License-Identifier: GPL-2.0-or-later
2 /**
3  * eCryptfs: Linux filesystem encryption layer
4  *
5  * Copyright (C) 1997-2004 Erez Zadok
6  * Copyright (C) 2001-2004 Stony Brook University
7  * Copyright (C) 2004-2007 International Business Machines Corp.
8  *   Author(s): Michael A. Halcrow <mahalcro@us.ibm.com>
9  *              Michael C. Thompson <mcthomps@us.ibm.com>
10  */
11
12 #include <crypto/hash.h>
13 #include <crypto/skcipher.h>
14 #include <linux/fs.h>
15 #include <linux/mount.h>
16 #include <linux/pagemap.h>
17 #include <linux/random.h>
18 #include <linux/compiler.h>
19 #include <linux/key.h>
20 #include <linux/namei.h>
21 #include <linux/file.h>
22 #include <linux/scatterlist.h>
23 #include <linux/slab.h>
24 #include <asm/unaligned.h>
25 #include <linux/kernel.h>
26 #include <linux/xattr.h>
27 #include "ecryptfs_kernel.h"
28
29 #define DECRYPT         0
30 #define ENCRYPT         1
31
32 /**
33  * ecryptfs_from_hex
34  * @dst: Buffer to take the bytes from src hex; must be at least of
35  *       size (src_size / 2)
36  * @src: Buffer to be converted from a hex string representation to raw value
37  * @dst_size: size of dst buffer, or number of hex characters pairs to convert
38  */
39 void ecryptfs_from_hex(char *dst, char *src, int dst_size)
40 {
41         int x;
42         char tmp[3] = { 0, };
43
44         for (x = 0; x < dst_size; x++) {
45                 tmp[0] = src[x * 2];
46                 tmp[1] = src[x * 2 + 1];
47                 dst[x] = (unsigned char)simple_strtol(tmp, NULL, 16);
48         }
49 }
50
51 static int ecryptfs_hash_digest(struct crypto_shash *tfm,
52                                 char *src, int len, char *dst)
53 {
54         SHASH_DESC_ON_STACK(desc, tfm);
55         int err;
56
57         desc->tfm = tfm;
58         err = crypto_shash_digest(desc, src, len, dst);
59         shash_desc_zero(desc);
60         return err;
61 }
62
63 /**
64  * ecryptfs_calculate_md5 - calculates the md5 of @src
65  * @dst: Pointer to 16 bytes of allocated memory
66  * @crypt_stat: Pointer to crypt_stat struct for the current inode
67  * @src: Data to be md5'd
68  * @len: Length of @src
69  *
70  * Uses the allocated crypto context that crypt_stat references to
71  * generate the MD5 sum of the contents of src.
72  */
73 static int ecryptfs_calculate_md5(char *dst,
74                                   struct ecryptfs_crypt_stat *crypt_stat,
75                                   char *src, int len)
76 {
77         struct crypto_shash *tfm;
78         int rc = 0;
79
80         tfm = crypt_stat->hash_tfm;
81         rc = ecryptfs_hash_digest(tfm, src, len, dst);
82         if (rc) {
83                 printk(KERN_ERR
84                        "%s: Error computing crypto hash; rc = [%d]\n",
85                        __func__, rc);
86                 goto out;
87         }
88 out:
89         return rc;
90 }
91
92 static int ecryptfs_crypto_api_algify_cipher_name(char **algified_name,
93                                                   char *cipher_name,
94                                                   char *chaining_modifier)
95 {
96         int cipher_name_len = strlen(cipher_name);
97         int chaining_modifier_len = strlen(chaining_modifier);
98         int algified_name_len;
99         int rc;
100
101         algified_name_len = (chaining_modifier_len + cipher_name_len + 3);
102         (*algified_name) = kmalloc(algified_name_len, GFP_KERNEL);
103         if (!(*algified_name)) {
104                 rc = -ENOMEM;
105                 goto out;
106         }
107         snprintf((*algified_name), algified_name_len, "%s(%s)",
108                  chaining_modifier, cipher_name);
109         rc = 0;
110 out:
111         return rc;
112 }
113
114 /**
115  * ecryptfs_derive_iv
116  * @iv: destination for the derived iv vale
117  * @crypt_stat: Pointer to crypt_stat struct for the current inode
118  * @offset: Offset of the extent whose IV we are to derive
119  *
120  * Generate the initialization vector from the given root IV and page
121  * offset.
122  *
123  * Returns zero on success; non-zero on error.
124  */
125 int ecryptfs_derive_iv(char *iv, struct ecryptfs_crypt_stat *crypt_stat,
126                        loff_t offset)
127 {
128         int rc = 0;
129         char dst[MD5_DIGEST_SIZE];
130         char src[ECRYPTFS_MAX_IV_BYTES + 16];
131
132         if (unlikely(ecryptfs_verbosity > 0)) {
133                 ecryptfs_printk(KERN_DEBUG, "root iv:\n");
134                 ecryptfs_dump_hex(crypt_stat->root_iv, crypt_stat->iv_bytes);
135         }
136         /* TODO: It is probably secure to just cast the least
137          * significant bits of the root IV into an unsigned long and
138          * add the offset to that rather than go through all this
139          * hashing business. -Halcrow */
140         memcpy(src, crypt_stat->root_iv, crypt_stat->iv_bytes);
141         memset((src + crypt_stat->iv_bytes), 0, 16);
142         snprintf((src + crypt_stat->iv_bytes), 16, "%lld", offset);
143         if (unlikely(ecryptfs_verbosity > 0)) {
144                 ecryptfs_printk(KERN_DEBUG, "source:\n");
145                 ecryptfs_dump_hex(src, (crypt_stat->iv_bytes + 16));
146         }
147         rc = ecryptfs_calculate_md5(dst, crypt_stat, src,
148                                     (crypt_stat->iv_bytes + 16));
149         if (rc) {
150                 ecryptfs_printk(KERN_WARNING, "Error attempting to compute "
151                                 "MD5 while generating IV for a page\n");
152                 goto out;
153         }
154         memcpy(iv, dst, crypt_stat->iv_bytes);
155         if (unlikely(ecryptfs_verbosity > 0)) {
156                 ecryptfs_printk(KERN_DEBUG, "derived iv:\n");
157                 ecryptfs_dump_hex(iv, crypt_stat->iv_bytes);
158         }
159 out:
160         return rc;
161 }
162
163 /**
164  * ecryptfs_init_crypt_stat
165  * @crypt_stat: Pointer to the crypt_stat struct to initialize.
166  *
167  * Initialize the crypt_stat structure.
168  */
169 int ecryptfs_init_crypt_stat(struct ecryptfs_crypt_stat *crypt_stat)
170 {
171         struct crypto_shash *tfm;
172         int rc;
173
174         tfm = crypto_alloc_shash(ECRYPTFS_DEFAULT_HASH, 0, 0);
175         if (IS_ERR(tfm)) {
176                 rc = PTR_ERR(tfm);
177                 ecryptfs_printk(KERN_ERR, "Error attempting to "
178                                 "allocate crypto context; rc = [%d]\n",
179                                 rc);
180                 return rc;
181         }
182
183         memset((void *)crypt_stat, 0, sizeof(struct ecryptfs_crypt_stat));
184         INIT_LIST_HEAD(&crypt_stat->keysig_list);
185         mutex_init(&crypt_stat->keysig_list_mutex);
186         mutex_init(&crypt_stat->cs_mutex);
187         mutex_init(&crypt_stat->cs_tfm_mutex);
188         crypt_stat->hash_tfm = tfm;
189         crypt_stat->flags |= ECRYPTFS_STRUCT_INITIALIZED;
190
191         return 0;
192 }
193
194 /**
195  * ecryptfs_destroy_crypt_stat
196  * @crypt_stat: Pointer to the crypt_stat struct to initialize.
197  *
198  * Releases all memory associated with a crypt_stat struct.
199  */
200 void ecryptfs_destroy_crypt_stat(struct ecryptfs_crypt_stat *crypt_stat)
201 {
202         struct ecryptfs_key_sig *key_sig, *key_sig_tmp;
203
204         crypto_free_skcipher(crypt_stat->tfm);
205         crypto_free_shash(crypt_stat->hash_tfm);
206         list_for_each_entry_safe(key_sig, key_sig_tmp,
207                                  &crypt_stat->keysig_list, crypt_stat_list) {
208                 list_del(&key_sig->crypt_stat_list);
209                 kmem_cache_free(ecryptfs_key_sig_cache, key_sig);
210         }
211         memset(crypt_stat, 0, sizeof(struct ecryptfs_crypt_stat));
212 }
213
214 void ecryptfs_destroy_mount_crypt_stat(
215         struct ecryptfs_mount_crypt_stat *mount_crypt_stat)
216 {
217         struct ecryptfs_global_auth_tok *auth_tok, *auth_tok_tmp;
218
219         if (!(mount_crypt_stat->flags & ECRYPTFS_MOUNT_CRYPT_STAT_INITIALIZED))
220                 return;
221         mutex_lock(&mount_crypt_stat->global_auth_tok_list_mutex);
222         list_for_each_entry_safe(auth_tok, auth_tok_tmp,
223                                  &mount_crypt_stat->global_auth_tok_list,
224                                  mount_crypt_stat_list) {
225                 list_del(&auth_tok->mount_crypt_stat_list);
226                 if (!(auth_tok->flags & ECRYPTFS_AUTH_TOK_INVALID))
227                         key_put(auth_tok->global_auth_tok_key);
228                 kmem_cache_free(ecryptfs_global_auth_tok_cache, auth_tok);
229         }
230         mutex_unlock(&mount_crypt_stat->global_auth_tok_list_mutex);
231         memset(mount_crypt_stat, 0, sizeof(struct ecryptfs_mount_crypt_stat));
232 }
233
234 /**
235  * virt_to_scatterlist
236  * @addr: Virtual address
237  * @size: Size of data; should be an even multiple of the block size
238  * @sg: Pointer to scatterlist array; set to NULL to obtain only
239  *      the number of scatterlist structs required in array
240  * @sg_size: Max array size
241  *
242  * Fills in a scatterlist array with page references for a passed
243  * virtual address.
244  *
245  * Returns the number of scatterlist structs in array used
246  */
247 int virt_to_scatterlist(const void *addr, int size, struct scatterlist *sg,
248                         int sg_size)
249 {
250         int i = 0;
251         struct page *pg;
252         int offset;
253         int remainder_of_page;
254
255         sg_init_table(sg, sg_size);
256
257         while (size > 0 && i < sg_size) {
258                 pg = virt_to_page(addr);
259                 offset = offset_in_page(addr);
260                 sg_set_page(&sg[i], pg, 0, offset);
261                 remainder_of_page = PAGE_SIZE - offset;
262                 if (size >= remainder_of_page) {
263                         sg[i].length = remainder_of_page;
264                         addr += remainder_of_page;
265                         size -= remainder_of_page;
266                 } else {
267                         sg[i].length = size;
268                         addr += size;
269                         size = 0;
270                 }
271                 i++;
272         }
273         if (size > 0)
274                 return -ENOMEM;
275         return i;
276 }
277
278 struct extent_crypt_result {
279         struct completion completion;
280         int rc;
281 };
282
283 static void extent_crypt_complete(struct crypto_async_request *req, int rc)
284 {
285         struct extent_crypt_result *ecr = req->data;
286
287         if (rc == -EINPROGRESS)
288                 return;
289
290         ecr->rc = rc;
291         complete(&ecr->completion);
292 }
293
294 /**
295  * crypt_scatterlist
296  * @crypt_stat: Pointer to the crypt_stat struct to initialize.
297  * @dst_sg: Destination of the data after performing the crypto operation
298  * @src_sg: Data to be encrypted or decrypted
299  * @size: Length of data
300  * @iv: IV to use
301  * @op: ENCRYPT or DECRYPT to indicate the desired operation
302  *
303  * Returns the number of bytes encrypted or decrypted; negative value on error
304  */
305 static int crypt_scatterlist(struct ecryptfs_crypt_stat *crypt_stat,
306                              struct scatterlist *dst_sg,
307                              struct scatterlist *src_sg, int size,
308                              unsigned char *iv, int op)
309 {
310         struct skcipher_request *req = NULL;
311         struct extent_crypt_result ecr;
312         int rc = 0;
313
314         BUG_ON(!crypt_stat || !crypt_stat->tfm
315                || !(crypt_stat->flags & ECRYPTFS_STRUCT_INITIALIZED));
316         if (unlikely(ecryptfs_verbosity > 0)) {
317                 ecryptfs_printk(KERN_DEBUG, "Key size [%zd]; key:\n",
318                                 crypt_stat->key_size);
319                 ecryptfs_dump_hex(crypt_stat->key,
320                                   crypt_stat->key_size);
321         }
322
323         init_completion(&ecr.completion);
324
325         mutex_lock(&crypt_stat->cs_tfm_mutex);
326         req = skcipher_request_alloc(crypt_stat->tfm, GFP_NOFS);
327         if (!req) {
328                 mutex_unlock(&crypt_stat->cs_tfm_mutex);
329                 rc = -ENOMEM;
330                 goto out;
331         }
332
333         skcipher_request_set_callback(req,
334                         CRYPTO_TFM_REQ_MAY_BACKLOG | CRYPTO_TFM_REQ_MAY_SLEEP,
335                         extent_crypt_complete, &ecr);
336         /* Consider doing this once, when the file is opened */
337         if (!(crypt_stat->flags & ECRYPTFS_KEY_SET)) {
338                 rc = crypto_skcipher_setkey(crypt_stat->tfm, crypt_stat->key,
339                                             crypt_stat->key_size);
340                 if (rc) {
341                         ecryptfs_printk(KERN_ERR,
342                                         "Error setting key; rc = [%d]\n",
343                                         rc);
344                         mutex_unlock(&crypt_stat->cs_tfm_mutex);
345                         rc = -EINVAL;
346                         goto out;
347                 }
348                 crypt_stat->flags |= ECRYPTFS_KEY_SET;
349         }
350         mutex_unlock(&crypt_stat->cs_tfm_mutex);
351         skcipher_request_set_crypt(req, src_sg, dst_sg, size, iv);
352         rc = op == ENCRYPT ? crypto_skcipher_encrypt(req) :
353                              crypto_skcipher_decrypt(req);
354         if (rc == -EINPROGRESS || rc == -EBUSY) {
355                 struct extent_crypt_result *ecr = req->base.data;
356
357                 wait_for_completion(&ecr->completion);
358                 rc = ecr->rc;
359                 reinit_completion(&ecr->completion);
360         }
361 out:
362         skcipher_request_free(req);
363         return rc;
364 }
365
366 /**
367  * lower_offset_for_page
368  *
369  * Convert an eCryptfs page index into a lower byte offset
370  */
371 static loff_t lower_offset_for_page(struct ecryptfs_crypt_stat *crypt_stat,
372                                     struct page *page)
373 {
374         return ecryptfs_lower_header_size(crypt_stat) +
375                ((loff_t)page->index << PAGE_SHIFT);
376 }
377
378 /**
379  * crypt_extent
380  * @crypt_stat: crypt_stat containing cryptographic context for the
381  *              encryption operation
382  * @dst_page: The page to write the result into
383  * @src_page: The page to read from
384  * @extent_offset: Page extent offset for use in generating IV
385  * @op: ENCRYPT or DECRYPT to indicate the desired operation
386  *
387  * Encrypts or decrypts one extent of data.
388  *
389  * Return zero on success; non-zero otherwise
390  */
391 static int crypt_extent(struct ecryptfs_crypt_stat *crypt_stat,
392                         struct page *dst_page,
393                         struct page *src_page,
394                         unsigned long extent_offset, int op)
395 {
396         pgoff_t page_index = op == ENCRYPT ? src_page->index : dst_page->index;
397         loff_t extent_base;
398         char extent_iv[ECRYPTFS_MAX_IV_BYTES];
399         struct scatterlist src_sg, dst_sg;
400         size_t extent_size = crypt_stat->extent_size;
401         int rc;
402
403         extent_base = (((loff_t)page_index) * (PAGE_SIZE / extent_size));
404         rc = ecryptfs_derive_iv(extent_iv, crypt_stat,
405                                 (extent_base + extent_offset));
406         if (rc) {
407                 ecryptfs_printk(KERN_ERR, "Error attempting to derive IV for "
408                         "extent [0x%.16llx]; rc = [%d]\n",
409                         (unsigned long long)(extent_base + extent_offset), rc);
410                 goto out;
411         }
412
413         sg_init_table(&src_sg, 1);
414         sg_init_table(&dst_sg, 1);
415
416         sg_set_page(&src_sg, src_page, extent_size,
417                     extent_offset * extent_size);
418         sg_set_page(&dst_sg, dst_page, extent_size,
419                     extent_offset * extent_size);
420
421         rc = crypt_scatterlist(crypt_stat, &dst_sg, &src_sg, extent_size,
422                                extent_iv, op);
423         if (rc < 0) {
424                 printk(KERN_ERR "%s: Error attempting to crypt page with "
425                        "page_index = [%ld], extent_offset = [%ld]; "
426                        "rc = [%d]\n", __func__, page_index, extent_offset, rc);
427                 goto out;
428         }
429         rc = 0;
430 out:
431         return rc;
432 }
433
434 /**
435  * ecryptfs_encrypt_page
436  * @page: Page mapped from the eCryptfs inode for the file; contains
437  *        decrypted content that needs to be encrypted (to a temporary
438  *        page; not in place) and written out to the lower file
439  *
440  * Encrypt an eCryptfs page. This is done on a per-extent basis. Note
441  * that eCryptfs pages may straddle the lower pages -- for instance,
442  * if the file was created on a machine with an 8K page size
443  * (resulting in an 8K header), and then the file is copied onto a
444  * host with a 32K page size, then when reading page 0 of the eCryptfs
445  * file, 24K of page 0 of the lower file will be read and decrypted,
446  * and then 8K of page 1 of the lower file will be read and decrypted.
447  *
448  * Returns zero on success; negative on error
449  */
450 int ecryptfs_encrypt_page(struct page *page)
451 {
452         struct inode *ecryptfs_inode;
453         struct ecryptfs_crypt_stat *crypt_stat;
454         char *enc_extent_virt;
455         struct page *enc_extent_page = NULL;
456         loff_t extent_offset;
457         loff_t lower_offset;
458         int rc = 0;
459
460         ecryptfs_inode = page->mapping->host;
461         crypt_stat =
462                 &(ecryptfs_inode_to_private(ecryptfs_inode)->crypt_stat);
463         BUG_ON(!(crypt_stat->flags & ECRYPTFS_ENCRYPTED));
464         enc_extent_page = alloc_page(GFP_USER);
465         if (!enc_extent_page) {
466                 rc = -ENOMEM;
467                 ecryptfs_printk(KERN_ERR, "Error allocating memory for "
468                                 "encrypted extent\n");
469                 goto out;
470         }
471
472         for (extent_offset = 0;
473              extent_offset < (PAGE_SIZE / crypt_stat->extent_size);
474              extent_offset++) {
475                 rc = crypt_extent(crypt_stat, enc_extent_page, page,
476                                   extent_offset, ENCRYPT);
477                 if (rc) {
478                         printk(KERN_ERR "%s: Error encrypting extent; "
479                                "rc = [%d]\n", __func__, rc);
480                         goto out;
481                 }
482         }
483
484         lower_offset = lower_offset_for_page(crypt_stat, page);
485         enc_extent_virt = kmap(enc_extent_page);
486         rc = ecryptfs_write_lower(ecryptfs_inode, enc_extent_virt, lower_offset,
487                                   PAGE_SIZE);
488         kunmap(enc_extent_page);
489         if (rc < 0) {
490                 ecryptfs_printk(KERN_ERR,
491                         "Error attempting to write lower page; rc = [%d]\n",
492                         rc);
493                 goto out;
494         }
495         rc = 0;
496 out:
497         if (enc_extent_page) {
498                 __free_page(enc_extent_page);
499         }
500         return rc;
501 }
502
503 /**
504  * ecryptfs_decrypt_page
505  * @page: Page mapped from the eCryptfs inode for the file; data read
506  *        and decrypted from the lower file will be written into this
507  *        page
508  *
509  * Decrypt an eCryptfs page. This is done on a per-extent basis. Note
510  * that eCryptfs pages may straddle the lower pages -- for instance,
511  * if the file was created on a machine with an 8K page size
512  * (resulting in an 8K header), and then the file is copied onto a
513  * host with a 32K page size, then when reading page 0 of the eCryptfs
514  * file, 24K of page 0 of the lower file will be read and decrypted,
515  * and then 8K of page 1 of the lower file will be read and decrypted.
516  *
517  * Returns zero on success; negative on error
518  */
519 int ecryptfs_decrypt_page(struct page *page)
520 {
521         struct inode *ecryptfs_inode;
522         struct ecryptfs_crypt_stat *crypt_stat;
523         char *page_virt;
524         unsigned long extent_offset;
525         loff_t lower_offset;
526         int rc = 0;
527
528         ecryptfs_inode = page->mapping->host;
529         crypt_stat =
530                 &(ecryptfs_inode_to_private(ecryptfs_inode)->crypt_stat);
531         BUG_ON(!(crypt_stat->flags & ECRYPTFS_ENCRYPTED));
532
533         lower_offset = lower_offset_for_page(crypt_stat, page);
534         page_virt = kmap(page);
535         rc = ecryptfs_read_lower(page_virt, lower_offset, PAGE_SIZE,
536                                  ecryptfs_inode);
537         kunmap(page);
538         if (rc < 0) {
539                 ecryptfs_printk(KERN_ERR,
540                         "Error attempting to read lower page; rc = [%d]\n",
541                         rc);
542                 goto out;
543         }
544
545         for (extent_offset = 0;
546              extent_offset < (PAGE_SIZE / crypt_stat->extent_size);
547              extent_offset++) {
548                 rc = crypt_extent(crypt_stat, page, page,
549                                   extent_offset, DECRYPT);
550                 if (rc) {
551                         printk(KERN_ERR "%s: Error encrypting extent; "
552                                "rc = [%d]\n", __func__, rc);
553                         goto out;
554                 }
555         }
556 out:
557         return rc;
558 }
559
560 #define ECRYPTFS_MAX_SCATTERLIST_LEN 4
561
562 /**
563  * ecryptfs_init_crypt_ctx
564  * @crypt_stat: Uninitialized crypt stats structure
565  *
566  * Initialize the crypto context.
567  *
568  * TODO: Performance: Keep a cache of initialized cipher contexts;
569  * only init if needed
570  */
571 int ecryptfs_init_crypt_ctx(struct ecryptfs_crypt_stat *crypt_stat)
572 {
573         char *full_alg_name;
574         int rc = -EINVAL;
575
576         ecryptfs_printk(KERN_DEBUG,
577                         "Initializing cipher [%s]; strlen = [%d]; "
578                         "key_size_bits = [%zd]\n",
579                         crypt_stat->cipher, (int)strlen(crypt_stat->cipher),
580                         crypt_stat->key_size << 3);
581         mutex_lock(&crypt_stat->cs_tfm_mutex);
582         if (crypt_stat->tfm) {
583                 rc = 0;
584                 goto out_unlock;
585         }
586         rc = ecryptfs_crypto_api_algify_cipher_name(&full_alg_name,
587                                                     crypt_stat->cipher, "cbc");
588         if (rc)
589                 goto out_unlock;
590         crypt_stat->tfm = crypto_alloc_skcipher(full_alg_name, 0, 0);
591         if (IS_ERR(crypt_stat->tfm)) {
592                 rc = PTR_ERR(crypt_stat->tfm);
593                 crypt_stat->tfm = NULL;
594                 ecryptfs_printk(KERN_ERR, "cryptfs: init_crypt_ctx(): "
595                                 "Error initializing cipher [%s]\n",
596                                 full_alg_name);
597                 goto out_free;
598         }
599         crypto_skcipher_set_flags(crypt_stat->tfm,
600                                   CRYPTO_TFM_REQ_FORBID_WEAK_KEYS);
601         rc = 0;
602 out_free:
603         kfree(full_alg_name);
604 out_unlock:
605         mutex_unlock(&crypt_stat->cs_tfm_mutex);
606         return rc;
607 }
608
609 static void set_extent_mask_and_shift(struct ecryptfs_crypt_stat *crypt_stat)
610 {
611         int extent_size_tmp;
612
613         crypt_stat->extent_mask = 0xFFFFFFFF;
614         crypt_stat->extent_shift = 0;
615         if (crypt_stat->extent_size == 0)
616                 return;
617         extent_size_tmp = crypt_stat->extent_size;
618         while ((extent_size_tmp & 0x01) == 0) {
619                 extent_size_tmp >>= 1;
620                 crypt_stat->extent_mask <<= 1;
621                 crypt_stat->extent_shift++;
622         }
623 }
624
625 void ecryptfs_set_default_sizes(struct ecryptfs_crypt_stat *crypt_stat)
626 {
627         /* Default values; may be overwritten as we are parsing the
628          * packets. */
629         crypt_stat->extent_size = ECRYPTFS_DEFAULT_EXTENT_SIZE;
630         set_extent_mask_and_shift(crypt_stat);
631         crypt_stat->iv_bytes = ECRYPTFS_DEFAULT_IV_BYTES;
632         if (crypt_stat->flags & ECRYPTFS_METADATA_IN_XATTR)
633                 crypt_stat->metadata_size = ECRYPTFS_MINIMUM_HEADER_EXTENT_SIZE;
634         else {
635                 if (PAGE_SIZE <= ECRYPTFS_MINIMUM_HEADER_EXTENT_SIZE)
636                         crypt_stat->metadata_size =
637                                 ECRYPTFS_MINIMUM_HEADER_EXTENT_SIZE;
638                 else
639                         crypt_stat->metadata_size = PAGE_SIZE;
640         }
641 }
642
643 /**
644  * ecryptfs_compute_root_iv
645  * @crypt_stats
646  *
647  * On error, sets the root IV to all 0's.
648  */
649 int ecryptfs_compute_root_iv(struct ecryptfs_crypt_stat *crypt_stat)
650 {
651         int rc = 0;
652         char dst[MD5_DIGEST_SIZE];
653
654         BUG_ON(crypt_stat->iv_bytes > MD5_DIGEST_SIZE);
655         BUG_ON(crypt_stat->iv_bytes <= 0);
656         if (!(crypt_stat->flags & ECRYPTFS_KEY_VALID)) {
657                 rc = -EINVAL;
658                 ecryptfs_printk(KERN_WARNING, "Session key not valid; "
659                                 "cannot generate root IV\n");
660                 goto out;
661         }
662         rc = ecryptfs_calculate_md5(dst, crypt_stat, crypt_stat->key,
663                                     crypt_stat->key_size);
664         if (rc) {
665                 ecryptfs_printk(KERN_WARNING, "Error attempting to compute "
666                                 "MD5 while generating root IV\n");
667                 goto out;
668         }
669         memcpy(crypt_stat->root_iv, dst, crypt_stat->iv_bytes);
670 out:
671         if (rc) {
672                 memset(crypt_stat->root_iv, 0, crypt_stat->iv_bytes);
673                 crypt_stat->flags |= ECRYPTFS_SECURITY_WARNING;
674         }
675         return rc;
676 }
677
678 static void ecryptfs_generate_new_key(struct ecryptfs_crypt_stat *crypt_stat)
679 {
680         get_random_bytes(crypt_stat->key, crypt_stat->key_size);
681         crypt_stat->flags |= ECRYPTFS_KEY_VALID;
682         ecryptfs_compute_root_iv(crypt_stat);
683         if (unlikely(ecryptfs_verbosity > 0)) {
684                 ecryptfs_printk(KERN_DEBUG, "Generated new session key:\n");
685                 ecryptfs_dump_hex(crypt_stat->key,
686                                   crypt_stat->key_size);
687         }
688 }
689
690 /**
691  * ecryptfs_copy_mount_wide_flags_to_inode_flags
692  * @crypt_stat: The inode's cryptographic context
693  * @mount_crypt_stat: The mount point's cryptographic context
694  *
695  * This function propagates the mount-wide flags to individual inode
696  * flags.
697  */
698 static void ecryptfs_copy_mount_wide_flags_to_inode_flags(
699         struct ecryptfs_crypt_stat *crypt_stat,
700         struct ecryptfs_mount_crypt_stat *mount_crypt_stat)
701 {
702         if (mount_crypt_stat->flags & ECRYPTFS_XATTR_METADATA_ENABLED)
703                 crypt_stat->flags |= ECRYPTFS_METADATA_IN_XATTR;
704         if (mount_crypt_stat->flags & ECRYPTFS_ENCRYPTED_VIEW_ENABLED)
705                 crypt_stat->flags |= ECRYPTFS_VIEW_AS_ENCRYPTED;
706         if (mount_crypt_stat->flags & ECRYPTFS_GLOBAL_ENCRYPT_FILENAMES) {
707                 crypt_stat->flags |= ECRYPTFS_ENCRYPT_FILENAMES;
708                 if (mount_crypt_stat->flags
709                     & ECRYPTFS_GLOBAL_ENCFN_USE_MOUNT_FNEK)
710                         crypt_stat->flags |= ECRYPTFS_ENCFN_USE_MOUNT_FNEK;
711                 else if (mount_crypt_stat->flags
712                          & ECRYPTFS_GLOBAL_ENCFN_USE_FEK)
713                         crypt_stat->flags |= ECRYPTFS_ENCFN_USE_FEK;
714         }
715 }
716
717 static int ecryptfs_copy_mount_wide_sigs_to_inode_sigs(
718         struct ecryptfs_crypt_stat *crypt_stat,
719         struct ecryptfs_mount_crypt_stat *mount_crypt_stat)
720 {
721         struct ecryptfs_global_auth_tok *global_auth_tok;
722         int rc = 0;
723
724         mutex_lock(&crypt_stat->keysig_list_mutex);
725         mutex_lock(&mount_crypt_stat->global_auth_tok_list_mutex);
726
727         list_for_each_entry(global_auth_tok,
728                             &mount_crypt_stat->global_auth_tok_list,
729                             mount_crypt_stat_list) {
730                 if (global_auth_tok->flags & ECRYPTFS_AUTH_TOK_FNEK)
731                         continue;
732                 rc = ecryptfs_add_keysig(crypt_stat, global_auth_tok->sig);
733                 if (rc) {
734                         printk(KERN_ERR "Error adding keysig; rc = [%d]\n", rc);
735                         goto out;
736                 }
737         }
738
739 out:
740         mutex_unlock(&mount_crypt_stat->global_auth_tok_list_mutex);
741         mutex_unlock(&crypt_stat->keysig_list_mutex);
742         return rc;
743 }
744
745 /**
746  * ecryptfs_set_default_crypt_stat_vals
747  * @crypt_stat: The inode's cryptographic context
748  * @mount_crypt_stat: The mount point's cryptographic context
749  *
750  * Default values in the event that policy does not override them.
751  */
752 static void ecryptfs_set_default_crypt_stat_vals(
753         struct ecryptfs_crypt_stat *crypt_stat,
754         struct ecryptfs_mount_crypt_stat *mount_crypt_stat)
755 {
756         ecryptfs_copy_mount_wide_flags_to_inode_flags(crypt_stat,
757                                                       mount_crypt_stat);
758         ecryptfs_set_default_sizes(crypt_stat);
759         strcpy(crypt_stat->cipher, ECRYPTFS_DEFAULT_CIPHER);
760         crypt_stat->key_size = ECRYPTFS_DEFAULT_KEY_BYTES;
761         crypt_stat->flags &= ~(ECRYPTFS_KEY_VALID);
762         crypt_stat->file_version = ECRYPTFS_FILE_VERSION;
763         crypt_stat->mount_crypt_stat = mount_crypt_stat;
764 }
765
766 /**
767  * ecryptfs_new_file_context
768  * @ecryptfs_inode: The eCryptfs inode
769  *
770  * If the crypto context for the file has not yet been established,
771  * this is where we do that.  Establishing a new crypto context
772  * involves the following decisions:
773  *  - What cipher to use?
774  *  - What set of authentication tokens to use?
775  * Here we just worry about getting enough information into the
776  * authentication tokens so that we know that they are available.
777  * We associate the available authentication tokens with the new file
778  * via the set of signatures in the crypt_stat struct.  Later, when
779  * the headers are actually written out, we may again defer to
780  * userspace to perform the encryption of the session key; for the
781  * foreseeable future, this will be the case with public key packets.
782  *
783  * Returns zero on success; non-zero otherwise
784  */
785 int ecryptfs_new_file_context(struct inode *ecryptfs_inode)
786 {
787         struct ecryptfs_crypt_stat *crypt_stat =
788             &ecryptfs_inode_to_private(ecryptfs_inode)->crypt_stat;
789         struct ecryptfs_mount_crypt_stat *mount_crypt_stat =
790             &ecryptfs_superblock_to_private(
791                     ecryptfs_inode->i_sb)->mount_crypt_stat;
792         int cipher_name_len;
793         int rc = 0;
794
795         ecryptfs_set_default_crypt_stat_vals(crypt_stat, mount_crypt_stat);
796         crypt_stat->flags |= (ECRYPTFS_ENCRYPTED | ECRYPTFS_KEY_VALID);
797         ecryptfs_copy_mount_wide_flags_to_inode_flags(crypt_stat,
798                                                       mount_crypt_stat);
799         rc = ecryptfs_copy_mount_wide_sigs_to_inode_sigs(crypt_stat,
800                                                          mount_crypt_stat);
801         if (rc) {
802                 printk(KERN_ERR "Error attempting to copy mount-wide key sigs "
803                        "to the inode key sigs; rc = [%d]\n", rc);
804                 goto out;
805         }
806         cipher_name_len =
807                 strlen(mount_crypt_stat->global_default_cipher_name);
808         memcpy(crypt_stat->cipher,
809                mount_crypt_stat->global_default_cipher_name,
810                cipher_name_len);
811         crypt_stat->cipher[cipher_name_len] = '\0';
812         crypt_stat->key_size =
813                 mount_crypt_stat->global_default_cipher_key_size;
814         ecryptfs_generate_new_key(crypt_stat);
815         rc = ecryptfs_init_crypt_ctx(crypt_stat);
816         if (rc)
817                 ecryptfs_printk(KERN_ERR, "Error initializing cryptographic "
818                                 "context for cipher [%s]: rc = [%d]\n",
819                                 crypt_stat->cipher, rc);
820 out:
821         return rc;
822 }
823
824 /**
825  * ecryptfs_validate_marker - check for the ecryptfs marker
826  * @data: The data block in which to check
827  *
828  * Returns zero if marker found; -EINVAL if not found
829  */
830 static int ecryptfs_validate_marker(char *data)
831 {
832         u32 m_1, m_2;
833
834         m_1 = get_unaligned_be32(data);
835         m_2 = get_unaligned_be32(data + 4);
836         if ((m_1 ^ MAGIC_ECRYPTFS_MARKER) == m_2)
837                 return 0;
838         ecryptfs_printk(KERN_DEBUG, "m_1 = [0x%.8x]; m_2 = [0x%.8x]; "
839                         "MAGIC_ECRYPTFS_MARKER = [0x%.8x]\n", m_1, m_2,
840                         MAGIC_ECRYPTFS_MARKER);
841         ecryptfs_printk(KERN_DEBUG, "(m_1 ^ MAGIC_ECRYPTFS_MARKER) = "
842                         "[0x%.8x]\n", (m_1 ^ MAGIC_ECRYPTFS_MARKER));
843         return -EINVAL;
844 }
845
846 struct ecryptfs_flag_map_elem {
847         u32 file_flag;
848         u32 local_flag;
849 };
850
851 /* Add support for additional flags by adding elements here. */
852 static struct ecryptfs_flag_map_elem ecryptfs_flag_map[] = {
853         {0x00000001, ECRYPTFS_ENABLE_HMAC},
854         {0x00000002, ECRYPTFS_ENCRYPTED},
855         {0x00000004, ECRYPTFS_METADATA_IN_XATTR},
856         {0x00000008, ECRYPTFS_ENCRYPT_FILENAMES}
857 };
858
859 /**
860  * ecryptfs_process_flags
861  * @crypt_stat: The cryptographic context
862  * @page_virt: Source data to be parsed
863  * @bytes_read: Updated with the number of bytes read
864  */
865 static void ecryptfs_process_flags(struct ecryptfs_crypt_stat *crypt_stat,
866                                   char *page_virt, int *bytes_read)
867 {
868         int i;
869         u32 flags;
870
871         flags = get_unaligned_be32(page_virt);
872         for (i = 0; i < ARRAY_SIZE(ecryptfs_flag_map); i++)
873                 if (flags & ecryptfs_flag_map[i].file_flag) {
874                         crypt_stat->flags |= ecryptfs_flag_map[i].local_flag;
875                 } else
876                         crypt_stat->flags &= ~(ecryptfs_flag_map[i].local_flag);
877         /* Version is in top 8 bits of the 32-bit flag vector */
878         crypt_stat->file_version = ((flags >> 24) & 0xFF);
879         (*bytes_read) = 4;
880 }
881
882 /**
883  * write_ecryptfs_marker
884  * @page_virt: The pointer to in a page to begin writing the marker
885  * @written: Number of bytes written
886  *
887  * Marker = 0x3c81b7f5
888  */
889 static void write_ecryptfs_marker(char *page_virt, size_t *written)
890 {
891         u32 m_1, m_2;
892
893         get_random_bytes(&m_1, (MAGIC_ECRYPTFS_MARKER_SIZE_BYTES / 2));
894         m_2 = (m_1 ^ MAGIC_ECRYPTFS_MARKER);
895         put_unaligned_be32(m_1, page_virt);
896         page_virt += (MAGIC_ECRYPTFS_MARKER_SIZE_BYTES / 2);
897         put_unaligned_be32(m_2, page_virt);
898         (*written) = MAGIC_ECRYPTFS_MARKER_SIZE_BYTES;
899 }
900
901 void ecryptfs_write_crypt_stat_flags(char *page_virt,
902                                      struct ecryptfs_crypt_stat *crypt_stat,
903                                      size_t *written)
904 {
905         u32 flags = 0;
906         int i;
907
908         for (i = 0; i < ARRAY_SIZE(ecryptfs_flag_map); i++)
909                 if (crypt_stat->flags & ecryptfs_flag_map[i].local_flag)
910                         flags |= ecryptfs_flag_map[i].file_flag;
911         /* Version is in top 8 bits of the 32-bit flag vector */
912         flags |= ((((u8)crypt_stat->file_version) << 24) & 0xFF000000);
913         put_unaligned_be32(flags, page_virt);
914         (*written) = 4;
915 }
916
917 struct ecryptfs_cipher_code_str_map_elem {
918         char cipher_str[16];
919         u8 cipher_code;
920 };
921
922 /* Add support for additional ciphers by adding elements here. The
923  * cipher_code is whatever OpenPGP applications use to identify the
924  * ciphers. List in order of probability. */
925 static struct ecryptfs_cipher_code_str_map_elem
926 ecryptfs_cipher_code_str_map[] = {
927         {"aes",RFC2440_CIPHER_AES_128 },
928         {"blowfish", RFC2440_CIPHER_BLOWFISH},
929         {"des3_ede", RFC2440_CIPHER_DES3_EDE},
930         {"cast5", RFC2440_CIPHER_CAST_5},
931         {"twofish", RFC2440_CIPHER_TWOFISH},
932         {"cast6", RFC2440_CIPHER_CAST_6},
933         {"aes", RFC2440_CIPHER_AES_192},
934         {"aes", RFC2440_CIPHER_AES_256}
935 };
936
937 /**
938  * ecryptfs_code_for_cipher_string
939  * @cipher_name: The string alias for the cipher
940  * @key_bytes: Length of key in bytes; used for AES code selection
941  *
942  * Returns zero on no match, or the cipher code on match
943  */
944 u8 ecryptfs_code_for_cipher_string(char *cipher_name, size_t key_bytes)
945 {
946         int i;
947         u8 code = 0;
948         struct ecryptfs_cipher_code_str_map_elem *map =
949                 ecryptfs_cipher_code_str_map;
950
951         if (strcmp(cipher_name, "aes") == 0) {
952                 switch (key_bytes) {
953                 case 16:
954                         code = RFC2440_CIPHER_AES_128;
955                         break;
956                 case 24:
957                         code = RFC2440_CIPHER_AES_192;
958                         break;
959                 case 32:
960                         code = RFC2440_CIPHER_AES_256;
961                 }
962         } else {
963                 for (i = 0; i < ARRAY_SIZE(ecryptfs_cipher_code_str_map); i++)
964                         if (strcmp(cipher_name, map[i].cipher_str) == 0) {
965                                 code = map[i].cipher_code;
966                                 break;
967                         }
968         }
969         return code;
970 }
971
972 /**
973  * ecryptfs_cipher_code_to_string
974  * @str: Destination to write out the cipher name
975  * @cipher_code: The code to convert to cipher name string
976  *
977  * Returns zero on success
978  */
979 int ecryptfs_cipher_code_to_string(char *str, u8 cipher_code)
980 {
981         int rc = 0;
982         int i;
983
984         str[0] = '\0';
985         for (i = 0; i < ARRAY_SIZE(ecryptfs_cipher_code_str_map); i++)
986                 if (cipher_code == ecryptfs_cipher_code_str_map[i].cipher_code)
987                         strcpy(str, ecryptfs_cipher_code_str_map[i].cipher_str);
988         if (str[0] == '\0') {
989                 ecryptfs_printk(KERN_WARNING, "Cipher code not recognized: "
990                                 "[%d]\n", cipher_code);
991                 rc = -EINVAL;
992         }
993         return rc;
994 }
995
996 int ecryptfs_read_and_validate_header_region(struct inode *inode)
997 {
998         u8 file_size[ECRYPTFS_SIZE_AND_MARKER_BYTES];
999         u8 *marker = file_size + ECRYPTFS_FILE_SIZE_BYTES;
1000         int rc;
1001
1002         rc = ecryptfs_read_lower(file_size, 0, ECRYPTFS_SIZE_AND_MARKER_BYTES,
1003                                  inode);
1004         if (rc < 0)
1005                 return rc;
1006         else if (rc < ECRYPTFS_SIZE_AND_MARKER_BYTES)
1007                 return -EINVAL;
1008         rc = ecryptfs_validate_marker(marker);
1009         if (!rc)
1010                 ecryptfs_i_size_init(file_size, inode);
1011         return rc;
1012 }
1013
1014 void
1015 ecryptfs_write_header_metadata(char *virt,
1016                                struct ecryptfs_crypt_stat *crypt_stat,
1017                                size_t *written)
1018 {
1019         u32 header_extent_size;
1020         u16 num_header_extents_at_front;
1021
1022         header_extent_size = (u32)crypt_stat->extent_size;
1023         num_header_extents_at_front =
1024                 (u16)(crypt_stat->metadata_size / crypt_stat->extent_size);
1025         put_unaligned_be32(header_extent_size, virt);
1026         virt += 4;
1027         put_unaligned_be16(num_header_extents_at_front, virt);
1028         (*written) = 6;
1029 }
1030
1031 struct kmem_cache *ecryptfs_header_cache;
1032
1033 /**
1034  * ecryptfs_write_headers_virt
1035  * @page_virt: The virtual address to write the headers to
1036  * @max: The size of memory allocated at page_virt
1037  * @size: Set to the number of bytes written by this function
1038  * @crypt_stat: The cryptographic context
1039  * @ecryptfs_dentry: The eCryptfs dentry
1040  *
1041  * Format version: 1
1042  *
1043  *   Header Extent:
1044  *     Octets 0-7:        Unencrypted file size (big-endian)
1045  *     Octets 8-15:       eCryptfs special marker
1046  *     Octets 16-19:      Flags
1047  *      Octet 16:         File format version number (between 0 and 255)
1048  *      Octets 17-18:     Reserved
1049  *      Octet 19:         Bit 1 (lsb): Reserved
1050  *                        Bit 2: Encrypted?
1051  *                        Bits 3-8: Reserved
1052  *     Octets 20-23:      Header extent size (big-endian)
1053  *     Octets 24-25:      Number of header extents at front of file
1054  *                        (big-endian)
1055  *     Octet  26:         Begin RFC 2440 authentication token packet set
1056  *   Data Extent 0:
1057  *     Lower data (CBC encrypted)
1058  *   Data Extent 1:
1059  *     Lower data (CBC encrypted)
1060  *   ...
1061  *
1062  * Returns zero on success
1063  */
1064 static int ecryptfs_write_headers_virt(char *page_virt, size_t max,
1065                                        size_t *size,
1066                                        struct ecryptfs_crypt_stat *crypt_stat,
1067                                        struct dentry *ecryptfs_dentry)
1068 {
1069         int rc;
1070         size_t written;
1071         size_t offset;
1072
1073         offset = ECRYPTFS_FILE_SIZE_BYTES;
1074         write_ecryptfs_marker((page_virt + offset), &written);
1075         offset += written;
1076         ecryptfs_write_crypt_stat_flags((page_virt + offset), crypt_stat,
1077                                         &written);
1078         offset += written;
1079         ecryptfs_write_header_metadata((page_virt + offset), crypt_stat,
1080                                        &written);
1081         offset += written;
1082         rc = ecryptfs_generate_key_packet_set((page_virt + offset), crypt_stat,
1083                                               ecryptfs_dentry, &written,
1084                                               max - offset);
1085         if (rc)
1086                 ecryptfs_printk(KERN_WARNING, "Error generating key packet "
1087                                 "set; rc = [%d]\n", rc);
1088         if (size) {
1089                 offset += written;
1090                 *size = offset;
1091         }
1092         return rc;
1093 }
1094
1095 static int
1096 ecryptfs_write_metadata_to_contents(struct inode *ecryptfs_inode,
1097                                     char *virt, size_t virt_len)
1098 {
1099         int rc;
1100
1101         rc = ecryptfs_write_lower(ecryptfs_inode, virt,
1102                                   0, virt_len);
1103         if (rc < 0)
1104                 printk(KERN_ERR "%s: Error attempting to write header "
1105                        "information to lower file; rc = [%d]\n", __func__, rc);
1106         else
1107                 rc = 0;
1108         return rc;
1109 }
1110
1111 static int
1112 ecryptfs_write_metadata_to_xattr(struct dentry *ecryptfs_dentry,
1113                                  struct inode *ecryptfs_inode,
1114                                  char *page_virt, size_t size)
1115 {
1116         int rc;
1117         struct dentry *lower_dentry = ecryptfs_dentry_to_lower(ecryptfs_dentry);
1118         struct inode *lower_inode = d_inode(lower_dentry);
1119
1120         if (!(lower_inode->i_opflags & IOP_XATTR)) {
1121                 rc = -EOPNOTSUPP;
1122                 goto out;
1123         }
1124
1125         inode_lock(lower_inode);
1126         rc = __vfs_setxattr(lower_dentry, lower_inode, ECRYPTFS_XATTR_NAME,
1127                             page_virt, size, 0);
1128         if (!rc && ecryptfs_inode)
1129                 fsstack_copy_attr_all(ecryptfs_inode, lower_inode);
1130         inode_unlock(lower_inode);
1131 out:
1132         return rc;
1133 }
1134
1135 static unsigned long ecryptfs_get_zeroed_pages(gfp_t gfp_mask,
1136                                                unsigned int order)
1137 {
1138         struct page *page;
1139
1140         page = alloc_pages(gfp_mask | __GFP_ZERO, order);
1141         if (page)
1142                 return (unsigned long) page_address(page);
1143         return 0;
1144 }
1145
1146 /**
1147  * ecryptfs_write_metadata
1148  * @ecryptfs_dentry: The eCryptfs dentry, which should be negative
1149  * @ecryptfs_inode: The newly created eCryptfs inode
1150  *
1151  * Write the file headers out.  This will likely involve a userspace
1152  * callout, in which the session key is encrypted with one or more
1153  * public keys and/or the passphrase necessary to do the encryption is
1154  * retrieved via a prompt.  Exactly what happens at this point should
1155  * be policy-dependent.
1156  *
1157  * Returns zero on success; non-zero on error
1158  */
1159 int ecryptfs_write_metadata(struct dentry *ecryptfs_dentry,
1160                             struct inode *ecryptfs_inode)
1161 {
1162         struct ecryptfs_crypt_stat *crypt_stat =
1163                 &ecryptfs_inode_to_private(ecryptfs_inode)->crypt_stat;
1164         unsigned int order;
1165         char *virt;
1166         size_t virt_len;
1167         size_t size = 0;
1168         int rc = 0;
1169
1170         if (likely(crypt_stat->flags & ECRYPTFS_ENCRYPTED)) {
1171                 if (!(crypt_stat->flags & ECRYPTFS_KEY_VALID)) {
1172                         printk(KERN_ERR "Key is invalid; bailing out\n");
1173                         rc = -EINVAL;
1174                         goto out;
1175                 }
1176         } else {
1177                 printk(KERN_WARNING "%s: Encrypted flag not set\n",
1178                        __func__);
1179                 rc = -EINVAL;
1180                 goto out;
1181         }
1182         virt_len = crypt_stat->metadata_size;
1183         order = get_order(virt_len);
1184         /* Released in this function */
1185         virt = (char *)ecryptfs_get_zeroed_pages(GFP_KERNEL, order);
1186         if (!virt) {
1187                 printk(KERN_ERR "%s: Out of memory\n", __func__);
1188                 rc = -ENOMEM;
1189                 goto out;
1190         }
1191         /* Zeroed page ensures the in-header unencrypted i_size is set to 0 */
1192         rc = ecryptfs_write_headers_virt(virt, virt_len, &size, crypt_stat,
1193                                          ecryptfs_dentry);
1194         if (unlikely(rc)) {
1195                 printk(KERN_ERR "%s: Error whilst writing headers; rc = [%d]\n",
1196                        __func__, rc);
1197                 goto out_free;
1198         }
1199         if (crypt_stat->flags & ECRYPTFS_METADATA_IN_XATTR)
1200                 rc = ecryptfs_write_metadata_to_xattr(ecryptfs_dentry, ecryptfs_inode,
1201                                                       virt, size);
1202         else
1203                 rc = ecryptfs_write_metadata_to_contents(ecryptfs_inode, virt,
1204                                                          virt_len);
1205         if (rc) {
1206                 printk(KERN_ERR "%s: Error writing metadata out to lower file; "
1207                        "rc = [%d]\n", __func__, rc);
1208                 goto out_free;
1209         }
1210 out_free:
1211         free_pages((unsigned long)virt, order);
1212 out:
1213         return rc;
1214 }
1215
1216 #define ECRYPTFS_DONT_VALIDATE_HEADER_SIZE 0
1217 #define ECRYPTFS_VALIDATE_HEADER_SIZE 1
1218 static int parse_header_metadata(struct ecryptfs_crypt_stat *crypt_stat,
1219                                  char *virt, int *bytes_read,
1220                                  int validate_header_size)
1221 {
1222         int rc = 0;
1223         u32 header_extent_size;
1224         u16 num_header_extents_at_front;
1225
1226         header_extent_size = get_unaligned_be32(virt);
1227         virt += sizeof(__be32);
1228         num_header_extents_at_front = get_unaligned_be16(virt);
1229         crypt_stat->metadata_size = (((size_t)num_header_extents_at_front
1230                                      * (size_t)header_extent_size));
1231         (*bytes_read) = (sizeof(__be32) + sizeof(__be16));
1232         if ((validate_header_size == ECRYPTFS_VALIDATE_HEADER_SIZE)
1233             && (crypt_stat->metadata_size
1234                 < ECRYPTFS_MINIMUM_HEADER_EXTENT_SIZE)) {
1235                 rc = -EINVAL;
1236                 printk(KERN_WARNING "Invalid header size: [%zd]\n",
1237                        crypt_stat->metadata_size);
1238         }
1239         return rc;
1240 }
1241
1242 /**
1243  * set_default_header_data
1244  * @crypt_stat: The cryptographic context
1245  *
1246  * For version 0 file format; this function is only for backwards
1247  * compatibility for files created with the prior versions of
1248  * eCryptfs.
1249  */
1250 static void set_default_header_data(struct ecryptfs_crypt_stat *crypt_stat)
1251 {
1252         crypt_stat->metadata_size = ECRYPTFS_MINIMUM_HEADER_EXTENT_SIZE;
1253 }
1254
1255 void ecryptfs_i_size_init(const char *page_virt, struct inode *inode)
1256 {
1257         struct ecryptfs_mount_crypt_stat *mount_crypt_stat;
1258         struct ecryptfs_crypt_stat *crypt_stat;
1259         u64 file_size;
1260
1261         crypt_stat = &ecryptfs_inode_to_private(inode)->crypt_stat;
1262         mount_crypt_stat =
1263                 &ecryptfs_superblock_to_private(inode->i_sb)->mount_crypt_stat;
1264         if (mount_crypt_stat->flags & ECRYPTFS_ENCRYPTED_VIEW_ENABLED) {
1265                 file_size = i_size_read(ecryptfs_inode_to_lower(inode));
1266                 if (crypt_stat->flags & ECRYPTFS_METADATA_IN_XATTR)
1267                         file_size += crypt_stat->metadata_size;
1268         } else
1269                 file_size = get_unaligned_be64(page_virt);
1270         i_size_write(inode, (loff_t)file_size);
1271         crypt_stat->flags |= ECRYPTFS_I_SIZE_INITIALIZED;
1272 }
1273
1274 /**
1275  * ecryptfs_read_headers_virt
1276  * @page_virt: The virtual address into which to read the headers
1277  * @crypt_stat: The cryptographic context
1278  * @ecryptfs_dentry: The eCryptfs dentry
1279  * @validate_header_size: Whether to validate the header size while reading
1280  *
1281  * Read/parse the header data. The header format is detailed in the
1282  * comment block for the ecryptfs_write_headers_virt() function.
1283  *
1284  * Returns zero on success
1285  */
1286 static int ecryptfs_read_headers_virt(char *page_virt,
1287                                       struct ecryptfs_crypt_stat *crypt_stat,
1288                                       struct dentry *ecryptfs_dentry,
1289                                       int validate_header_size)
1290 {
1291         int rc = 0;
1292         int offset;
1293         int bytes_read;
1294
1295         ecryptfs_set_default_sizes(crypt_stat);
1296         crypt_stat->mount_crypt_stat = &ecryptfs_superblock_to_private(
1297                 ecryptfs_dentry->d_sb)->mount_crypt_stat;
1298         offset = ECRYPTFS_FILE_SIZE_BYTES;
1299         rc = ecryptfs_validate_marker(page_virt + offset);
1300         if (rc)
1301                 goto out;
1302         if (!(crypt_stat->flags & ECRYPTFS_I_SIZE_INITIALIZED))
1303                 ecryptfs_i_size_init(page_virt, d_inode(ecryptfs_dentry));
1304         offset += MAGIC_ECRYPTFS_MARKER_SIZE_BYTES;
1305         ecryptfs_process_flags(crypt_stat, (page_virt + offset), &bytes_read);
1306         if (crypt_stat->file_version > ECRYPTFS_SUPPORTED_FILE_VERSION) {
1307                 ecryptfs_printk(KERN_WARNING, "File version is [%d]; only "
1308                                 "file version [%d] is supported by this "
1309                                 "version of eCryptfs\n",
1310                                 crypt_stat->file_version,
1311                                 ECRYPTFS_SUPPORTED_FILE_VERSION);
1312                 rc = -EINVAL;
1313                 goto out;
1314         }
1315         offset += bytes_read;
1316         if (crypt_stat->file_version >= 1) {
1317                 rc = parse_header_metadata(crypt_stat, (page_virt + offset),
1318                                            &bytes_read, validate_header_size);
1319                 if (rc) {
1320                         ecryptfs_printk(KERN_WARNING, "Error reading header "
1321                                         "metadata; rc = [%d]\n", rc);
1322                 }
1323                 offset += bytes_read;
1324         } else
1325                 set_default_header_data(crypt_stat);
1326         rc = ecryptfs_parse_packet_set(crypt_stat, (page_virt + offset),
1327                                        ecryptfs_dentry);
1328 out:
1329         return rc;
1330 }
1331
1332 /**
1333  * ecryptfs_read_xattr_region
1334  * @page_virt: The vitual address into which to read the xattr data
1335  * @ecryptfs_inode: The eCryptfs inode
1336  *
1337  * Attempts to read the crypto metadata from the extended attribute
1338  * region of the lower file.
1339  *
1340  * Returns zero on success; non-zero on error
1341  */
1342 int ecryptfs_read_xattr_region(char *page_virt, struct inode *ecryptfs_inode)
1343 {
1344         struct dentry *lower_dentry =
1345                 ecryptfs_inode_to_private(ecryptfs_inode)->lower_file->f_path.dentry;
1346         ssize_t size;
1347         int rc = 0;
1348
1349         size = ecryptfs_getxattr_lower(lower_dentry,
1350                                        ecryptfs_inode_to_lower(ecryptfs_inode),
1351                                        ECRYPTFS_XATTR_NAME,
1352                                        page_virt, ECRYPTFS_DEFAULT_EXTENT_SIZE);
1353         if (size < 0) {
1354                 if (unlikely(ecryptfs_verbosity > 0))
1355                         printk(KERN_INFO "Error attempting to read the [%s] "
1356                                "xattr from the lower file; return value = "
1357                                "[%zd]\n", ECRYPTFS_XATTR_NAME, size);
1358                 rc = -EINVAL;
1359                 goto out;
1360         }
1361 out:
1362         return rc;
1363 }
1364
1365 int ecryptfs_read_and_validate_xattr_region(struct dentry *dentry,
1366                                             struct inode *inode)
1367 {
1368         u8 file_size[ECRYPTFS_SIZE_AND_MARKER_BYTES];
1369         u8 *marker = file_size + ECRYPTFS_FILE_SIZE_BYTES;
1370         int rc;
1371
1372         rc = ecryptfs_getxattr_lower(ecryptfs_dentry_to_lower(dentry),
1373                                      ecryptfs_inode_to_lower(inode),
1374                                      ECRYPTFS_XATTR_NAME, file_size,
1375                                      ECRYPTFS_SIZE_AND_MARKER_BYTES);
1376         if (rc < 0)
1377                 return rc;
1378         else if (rc < ECRYPTFS_SIZE_AND_MARKER_BYTES)
1379                 return -EINVAL;
1380         rc = ecryptfs_validate_marker(marker);
1381         if (!rc)
1382                 ecryptfs_i_size_init(file_size, inode);
1383         return rc;
1384 }
1385
1386 /**
1387  * ecryptfs_read_metadata
1388  *
1389  * Common entry point for reading file metadata. From here, we could
1390  * retrieve the header information from the header region of the file,
1391  * the xattr region of the file, or some other repository that is
1392  * stored separately from the file itself. The current implementation
1393  * supports retrieving the metadata information from the file contents
1394  * and from the xattr region.
1395  *
1396  * Returns zero if valid headers found and parsed; non-zero otherwise
1397  */
1398 int ecryptfs_read_metadata(struct dentry *ecryptfs_dentry)
1399 {
1400         int rc;
1401         char *page_virt;
1402         struct inode *ecryptfs_inode = d_inode(ecryptfs_dentry);
1403         struct ecryptfs_crypt_stat *crypt_stat =
1404             &ecryptfs_inode_to_private(ecryptfs_inode)->crypt_stat;
1405         struct ecryptfs_mount_crypt_stat *mount_crypt_stat =
1406                 &ecryptfs_superblock_to_private(
1407                         ecryptfs_dentry->d_sb)->mount_crypt_stat;
1408
1409         ecryptfs_copy_mount_wide_flags_to_inode_flags(crypt_stat,
1410                                                       mount_crypt_stat);
1411         /* Read the first page from the underlying file */
1412         page_virt = kmem_cache_alloc(ecryptfs_header_cache, GFP_USER);
1413         if (!page_virt) {
1414                 rc = -ENOMEM;
1415                 goto out;
1416         }
1417         rc = ecryptfs_read_lower(page_virt, 0, crypt_stat->extent_size,
1418                                  ecryptfs_inode);
1419         if (rc >= 0)
1420                 rc = ecryptfs_read_headers_virt(page_virt, crypt_stat,
1421                                                 ecryptfs_dentry,
1422                                                 ECRYPTFS_VALIDATE_HEADER_SIZE);
1423         if (rc) {
1424                 /* metadata is not in the file header, so try xattrs */
1425                 memset(page_virt, 0, PAGE_SIZE);
1426                 rc = ecryptfs_read_xattr_region(page_virt, ecryptfs_inode);
1427                 if (rc) {
1428                         printk(KERN_DEBUG "Valid eCryptfs headers not found in "
1429                                "file header region or xattr region, inode %lu\n",
1430                                 ecryptfs_inode->i_ino);
1431                         rc = -EINVAL;
1432                         goto out;
1433                 }
1434                 rc = ecryptfs_read_headers_virt(page_virt, crypt_stat,
1435                                                 ecryptfs_dentry,
1436                                                 ECRYPTFS_DONT_VALIDATE_HEADER_SIZE);
1437                 if (rc) {
1438                         printk(KERN_DEBUG "Valid eCryptfs headers not found in "
1439                                "file xattr region either, inode %lu\n",
1440                                 ecryptfs_inode->i_ino);
1441                         rc = -EINVAL;
1442                 }
1443                 if (crypt_stat->mount_crypt_stat->flags
1444                     & ECRYPTFS_XATTR_METADATA_ENABLED) {
1445                         crypt_stat->flags |= ECRYPTFS_METADATA_IN_XATTR;
1446                 } else {
1447                         printk(KERN_WARNING "Attempt to access file with "
1448                                "crypto metadata only in the extended attribute "
1449                                "region, but eCryptfs was mounted without "
1450                                "xattr support enabled. eCryptfs will not treat "
1451                                "this like an encrypted file, inode %lu\n",
1452                                 ecryptfs_inode->i_ino);
1453                         rc = -EINVAL;
1454                 }
1455         }
1456 out:
1457         if (page_virt) {
1458                 memset(page_virt, 0, PAGE_SIZE);
1459                 kmem_cache_free(ecryptfs_header_cache, page_virt);
1460         }
1461         return rc;
1462 }
1463
1464 /**
1465  * ecryptfs_encrypt_filename - encrypt filename
1466  *
1467  * CBC-encrypts the filename. We do not want to encrypt the same
1468  * filename with the same key and IV, which may happen with hard
1469  * links, so we prepend random bits to each filename.
1470  *
1471  * Returns zero on success; non-zero otherwise
1472  */
1473 static int
1474 ecryptfs_encrypt_filename(struct ecryptfs_filename *filename,
1475                           struct ecryptfs_mount_crypt_stat *mount_crypt_stat)
1476 {
1477         int rc = 0;
1478
1479         filename->encrypted_filename = NULL;
1480         filename->encrypted_filename_size = 0;
1481         if (mount_crypt_stat && (mount_crypt_stat->flags
1482                                      & ECRYPTFS_GLOBAL_ENCFN_USE_MOUNT_FNEK)) {
1483                 size_t packet_size;
1484                 size_t remaining_bytes;
1485
1486                 rc = ecryptfs_write_tag_70_packet(
1487                         NULL, NULL,
1488                         &filename->encrypted_filename_size,
1489                         mount_crypt_stat, NULL,
1490                         filename->filename_size);
1491                 if (rc) {
1492                         printk(KERN_ERR "%s: Error attempting to get packet "
1493                                "size for tag 72; rc = [%d]\n", __func__,
1494                                rc);
1495                         filename->encrypted_filename_size = 0;
1496                         goto out;
1497                 }
1498                 filename->encrypted_filename =
1499                         kmalloc(filename->encrypted_filename_size, GFP_KERNEL);
1500                 if (!filename->encrypted_filename) {
1501                         rc = -ENOMEM;
1502                         goto out;
1503                 }
1504                 remaining_bytes = filename->encrypted_filename_size;
1505                 rc = ecryptfs_write_tag_70_packet(filename->encrypted_filename,
1506                                                   &remaining_bytes,
1507                                                   &packet_size,
1508                                                   mount_crypt_stat,
1509                                                   filename->filename,
1510                                                   filename->filename_size);
1511                 if (rc) {
1512                         printk(KERN_ERR "%s: Error attempting to generate "
1513                                "tag 70 packet; rc = [%d]\n", __func__,
1514                                rc);
1515                         kfree(filename->encrypted_filename);
1516                         filename->encrypted_filename = NULL;
1517                         filename->encrypted_filename_size = 0;
1518                         goto out;
1519                 }
1520                 filename->encrypted_filename_size = packet_size;
1521         } else {
1522                 printk(KERN_ERR "%s: No support for requested filename "
1523                        "encryption method in this release\n", __func__);
1524                 rc = -EOPNOTSUPP;
1525                 goto out;
1526         }
1527 out:
1528         return rc;
1529 }
1530
1531 static int ecryptfs_copy_filename(char **copied_name, size_t *copied_name_size,
1532                                   const char *name, size_t name_size)
1533 {
1534         int rc = 0;
1535
1536         (*copied_name) = kmalloc((name_size + 1), GFP_KERNEL);
1537         if (!(*copied_name)) {
1538                 rc = -ENOMEM;
1539                 goto out;
1540         }
1541         memcpy((void *)(*copied_name), (void *)name, name_size);
1542         (*copied_name)[(name_size)] = '\0';     /* Only for convenience
1543                                                  * in printing out the
1544                                                  * string in debug
1545                                                  * messages */
1546         (*copied_name_size) = name_size;
1547 out:
1548         return rc;
1549 }
1550
1551 /**
1552  * ecryptfs_process_key_cipher - Perform key cipher initialization.
1553  * @key_tfm: Crypto context for key material, set by this function
1554  * @cipher_name: Name of the cipher
1555  * @key_size: Size of the key in bytes
1556  *
1557  * Returns zero on success. Any crypto_tfm structs allocated here
1558  * should be released by other functions, such as on a superblock put
1559  * event, regardless of whether this function succeeds for fails.
1560  */
1561 static int
1562 ecryptfs_process_key_cipher(struct crypto_skcipher **key_tfm,
1563                             char *cipher_name, size_t *key_size)
1564 {
1565         char dummy_key[ECRYPTFS_MAX_KEY_BYTES];
1566         char *full_alg_name = NULL;
1567         int rc;
1568
1569         *key_tfm = NULL;
1570         if (*key_size > ECRYPTFS_MAX_KEY_BYTES) {
1571                 rc = -EINVAL;
1572                 printk(KERN_ERR "Requested key size is [%zd] bytes; maximum "
1573                       "allowable is [%d]\n", *key_size, ECRYPTFS_MAX_KEY_BYTES);
1574                 goto out;
1575         }
1576         rc = ecryptfs_crypto_api_algify_cipher_name(&full_alg_name, cipher_name,
1577                                                     "ecb");
1578         if (rc)
1579                 goto out;
1580         *key_tfm = crypto_alloc_skcipher(full_alg_name, 0, CRYPTO_ALG_ASYNC);
1581         if (IS_ERR(*key_tfm)) {
1582                 rc = PTR_ERR(*key_tfm);
1583                 printk(KERN_ERR "Unable to allocate crypto cipher with name "
1584                        "[%s]; rc = [%d]\n", full_alg_name, rc);
1585                 goto out;
1586         }
1587         crypto_skcipher_set_flags(*key_tfm, CRYPTO_TFM_REQ_FORBID_WEAK_KEYS);
1588         if (*key_size == 0)
1589                 *key_size = crypto_skcipher_default_keysize(*key_tfm);
1590         get_random_bytes(dummy_key, *key_size);
1591         rc = crypto_skcipher_setkey(*key_tfm, dummy_key, *key_size);
1592         if (rc) {
1593                 printk(KERN_ERR "Error attempting to set key of size [%zd] for "
1594                        "cipher [%s]; rc = [%d]\n", *key_size, full_alg_name,
1595                        rc);
1596                 rc = -EINVAL;
1597                 goto out;
1598         }
1599 out:
1600         kfree(full_alg_name);
1601         return rc;
1602 }
1603
1604 struct kmem_cache *ecryptfs_key_tfm_cache;
1605 static struct list_head key_tfm_list;
1606 struct mutex key_tfm_list_mutex;
1607
1608 int __init ecryptfs_init_crypto(void)
1609 {
1610         mutex_init(&key_tfm_list_mutex);
1611         INIT_LIST_HEAD(&key_tfm_list);
1612         return 0;
1613 }
1614
1615 /**
1616  * ecryptfs_destroy_crypto - free all cached key_tfms on key_tfm_list
1617  *
1618  * Called only at module unload time
1619  */
1620 int ecryptfs_destroy_crypto(void)
1621 {
1622         struct ecryptfs_key_tfm *key_tfm, *key_tfm_tmp;
1623
1624         mutex_lock(&key_tfm_list_mutex);
1625         list_for_each_entry_safe(key_tfm, key_tfm_tmp, &key_tfm_list,
1626                                  key_tfm_list) {
1627                 list_del(&key_tfm->key_tfm_list);
1628                 crypto_free_skcipher(key_tfm->key_tfm);
1629                 kmem_cache_free(ecryptfs_key_tfm_cache, key_tfm);
1630         }
1631         mutex_unlock(&key_tfm_list_mutex);
1632         return 0;
1633 }
1634
1635 int
1636 ecryptfs_add_new_key_tfm(struct ecryptfs_key_tfm **key_tfm, char *cipher_name,
1637                          size_t key_size)
1638 {
1639         struct ecryptfs_key_tfm *tmp_tfm;
1640         int rc = 0;
1641
1642         BUG_ON(!mutex_is_locked(&key_tfm_list_mutex));
1643
1644         tmp_tfm = kmem_cache_alloc(ecryptfs_key_tfm_cache, GFP_KERNEL);
1645         if (key_tfm)
1646                 (*key_tfm) = tmp_tfm;
1647         if (!tmp_tfm) {
1648                 rc = -ENOMEM;
1649                 goto out;
1650         }
1651         mutex_init(&tmp_tfm->key_tfm_mutex);
1652         strncpy(tmp_tfm->cipher_name, cipher_name,
1653                 ECRYPTFS_MAX_CIPHER_NAME_SIZE);
1654         tmp_tfm->cipher_name[ECRYPTFS_MAX_CIPHER_NAME_SIZE] = '\0';
1655         tmp_tfm->key_size = key_size;
1656         rc = ecryptfs_process_key_cipher(&tmp_tfm->key_tfm,
1657                                          tmp_tfm->cipher_name,
1658                                          &tmp_tfm->key_size);
1659         if (rc) {
1660                 printk(KERN_ERR "Error attempting to initialize key TFM "
1661                        "cipher with name = [%s]; rc = [%d]\n",
1662                        tmp_tfm->cipher_name, rc);
1663                 kmem_cache_free(ecryptfs_key_tfm_cache, tmp_tfm);
1664                 if (key_tfm)
1665                         (*key_tfm) = NULL;
1666                 goto out;
1667         }
1668         list_add(&tmp_tfm->key_tfm_list, &key_tfm_list);
1669 out:
1670         return rc;
1671 }
1672
1673 /**
1674  * ecryptfs_tfm_exists - Search for existing tfm for cipher_name.
1675  * @cipher_name: the name of the cipher to search for
1676  * @key_tfm: set to corresponding tfm if found
1677  *
1678  * Searches for cached key_tfm matching @cipher_name
1679  * Must be called with &key_tfm_list_mutex held
1680  * Returns 1 if found, with @key_tfm set
1681  * Returns 0 if not found, with @key_tfm set to NULL
1682  */
1683 int ecryptfs_tfm_exists(char *cipher_name, struct ecryptfs_key_tfm **key_tfm)
1684 {
1685         struct ecryptfs_key_tfm *tmp_key_tfm;
1686
1687         BUG_ON(!mutex_is_locked(&key_tfm_list_mutex));
1688
1689         list_for_each_entry(tmp_key_tfm, &key_tfm_list, key_tfm_list) {
1690                 if (strcmp(tmp_key_tfm->cipher_name, cipher_name) == 0) {
1691                         if (key_tfm)
1692                                 (*key_tfm) = tmp_key_tfm;
1693                         return 1;
1694                 }
1695         }
1696         if (key_tfm)
1697                 (*key_tfm) = NULL;
1698         return 0;
1699 }
1700
1701 /**
1702  * ecryptfs_get_tfm_and_mutex_for_cipher_name
1703  *
1704  * @tfm: set to cached tfm found, or new tfm created
1705  * @tfm_mutex: set to mutex for cached tfm found, or new tfm created
1706  * @cipher_name: the name of the cipher to search for and/or add
1707  *
1708  * Sets pointers to @tfm & @tfm_mutex matching @cipher_name.
1709  * Searches for cached item first, and creates new if not found.
1710  * Returns 0 on success, non-zero if adding new cipher failed
1711  */
1712 int ecryptfs_get_tfm_and_mutex_for_cipher_name(struct crypto_skcipher **tfm,
1713                                                struct mutex **tfm_mutex,
1714                                                char *cipher_name)
1715 {
1716         struct ecryptfs_key_tfm *key_tfm;
1717         int rc = 0;
1718
1719         (*tfm) = NULL;
1720         (*tfm_mutex) = NULL;
1721
1722         mutex_lock(&key_tfm_list_mutex);
1723         if (!ecryptfs_tfm_exists(cipher_name, &key_tfm)) {
1724                 rc = ecryptfs_add_new_key_tfm(&key_tfm, cipher_name, 0);
1725                 if (rc) {
1726                         printk(KERN_ERR "Error adding new key_tfm to list; "
1727                                         "rc = [%d]\n", rc);
1728                         goto out;
1729                 }
1730         }
1731         (*tfm) = key_tfm->key_tfm;
1732         (*tfm_mutex) = &key_tfm->key_tfm_mutex;
1733 out:
1734         mutex_unlock(&key_tfm_list_mutex);
1735         return rc;
1736 }
1737
1738 /* 64 characters forming a 6-bit target field */
1739 static unsigned char *portable_filename_chars = ("-.0123456789ABCD"
1740                                                  "EFGHIJKLMNOPQRST"
1741                                                  "UVWXYZabcdefghij"
1742                                                  "klmnopqrstuvwxyz");
1743
1744 /* We could either offset on every reverse map or just pad some 0x00's
1745  * at the front here */
1746 static const unsigned char filename_rev_map[256] = {
1747         0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, /* 7 */
1748         0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, /* 15 */
1749         0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, /* 23 */
1750         0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, /* 31 */
1751         0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, /* 39 */
1752         0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x01, 0x00, /* 47 */
1753         0x02, 0x03, 0x04, 0x05, 0x06, 0x07, 0x08, 0x09, /* 55 */
1754         0x0A, 0x0B, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, /* 63 */
1755         0x00, 0x0C, 0x0D, 0x0E, 0x0F, 0x10, 0x11, 0x12, /* 71 */
1756         0x13, 0x14, 0x15, 0x16, 0x17, 0x18, 0x19, 0x1A, /* 79 */
1757         0x1B, 0x1C, 0x1D, 0x1E, 0x1F, 0x20, 0x21, 0x22, /* 87 */
1758         0x23, 0x24, 0x25, 0x00, 0x00, 0x00, 0x00, 0x00, /* 95 */
1759         0x00, 0x26, 0x27, 0x28, 0x29, 0x2A, 0x2B, 0x2C, /* 103 */
1760         0x2D, 0x2E, 0x2F, 0x30, 0x31, 0x32, 0x33, 0x34, /* 111 */
1761         0x35, 0x36, 0x37, 0x38, 0x39, 0x3A, 0x3B, 0x3C, /* 119 */
1762         0x3D, 0x3E, 0x3F /* 123 - 255 initialized to 0x00 */
1763 };
1764
1765 /**
1766  * ecryptfs_encode_for_filename
1767  * @dst: Destination location for encoded filename
1768  * @dst_size: Size of the encoded filename in bytes
1769  * @src: Source location for the filename to encode
1770  * @src_size: Size of the source in bytes
1771  */
1772 static void ecryptfs_encode_for_filename(unsigned char *dst, size_t *dst_size,
1773                                   unsigned char *src, size_t src_size)
1774 {
1775         size_t num_blocks;
1776         size_t block_num = 0;
1777         size_t dst_offset = 0;
1778         unsigned char last_block[3];
1779
1780         if (src_size == 0) {
1781                 (*dst_size) = 0;
1782                 goto out;
1783         }
1784         num_blocks = (src_size / 3);
1785         if ((src_size % 3) == 0) {
1786                 memcpy(last_block, (&src[src_size - 3]), 3);
1787         } else {
1788                 num_blocks++;
1789                 last_block[2] = 0x00;
1790                 switch (src_size % 3) {
1791                 case 1:
1792                         last_block[0] = src[src_size - 1];
1793                         last_block[1] = 0x00;
1794                         break;
1795                 case 2:
1796                         last_block[0] = src[src_size - 2];
1797                         last_block[1] = src[src_size - 1];
1798                 }
1799         }
1800         (*dst_size) = (num_blocks * 4);
1801         if (!dst)
1802                 goto out;
1803         while (block_num < num_blocks) {
1804                 unsigned char *src_block;
1805                 unsigned char dst_block[4];
1806
1807                 if (block_num == (num_blocks - 1))
1808                         src_block = last_block;
1809                 else
1810                         src_block = &src[block_num * 3];
1811                 dst_block[0] = ((src_block[0] >> 2) & 0x3F);
1812                 dst_block[1] = (((src_block[0] << 4) & 0x30)
1813                                 | ((src_block[1] >> 4) & 0x0F));
1814                 dst_block[2] = (((src_block[1] << 2) & 0x3C)
1815                                 | ((src_block[2] >> 6) & 0x03));
1816                 dst_block[3] = (src_block[2] & 0x3F);
1817                 dst[dst_offset++] = portable_filename_chars[dst_block[0]];
1818                 dst[dst_offset++] = portable_filename_chars[dst_block[1]];
1819                 dst[dst_offset++] = portable_filename_chars[dst_block[2]];
1820                 dst[dst_offset++] = portable_filename_chars[dst_block[3]];
1821                 block_num++;
1822         }
1823 out:
1824         return;
1825 }
1826
1827 static size_t ecryptfs_max_decoded_size(size_t encoded_size)
1828 {
1829         /* Not exact; conservatively long. Every block of 4
1830          * encoded characters decodes into a block of 3
1831          * decoded characters. This segment of code provides
1832          * the caller with the maximum amount of allocated
1833          * space that @dst will need to point to in a
1834          * subsequent call. */
1835         return ((encoded_size + 1) * 3) / 4;
1836 }
1837
1838 /**
1839  * ecryptfs_decode_from_filename
1840  * @dst: If NULL, this function only sets @dst_size and returns. If
1841  *       non-NULL, this function decodes the encoded octets in @src
1842  *       into the memory that @dst points to.
1843  * @dst_size: Set to the size of the decoded string.
1844  * @src: The encoded set of octets to decode.
1845  * @src_size: The size of the encoded set of octets to decode.
1846  */
1847 static void
1848 ecryptfs_decode_from_filename(unsigned char *dst, size_t *dst_size,
1849                               const unsigned char *src, size_t src_size)
1850 {
1851         u8 current_bit_offset = 0;
1852         size_t src_byte_offset = 0;
1853         size_t dst_byte_offset = 0;
1854
1855         if (!dst) {
1856                 (*dst_size) = ecryptfs_max_decoded_size(src_size);
1857                 goto out;
1858         }
1859         while (src_byte_offset < src_size) {
1860                 unsigned char src_byte =
1861                                 filename_rev_map[(int)src[src_byte_offset]];
1862
1863                 switch (current_bit_offset) {
1864                 case 0:
1865                         dst[dst_byte_offset] = (src_byte << 2);
1866                         current_bit_offset = 6;
1867                         break;
1868                 case 6:
1869                         dst[dst_byte_offset++] |= (src_byte >> 4);
1870                         dst[dst_byte_offset] = ((src_byte & 0xF)
1871                                                  << 4);
1872                         current_bit_offset = 4;
1873                         break;
1874                 case 4:
1875                         dst[dst_byte_offset++] |= (src_byte >> 2);
1876                         dst[dst_byte_offset] = (src_byte << 6);
1877                         current_bit_offset = 2;
1878                         break;
1879                 case 2:
1880                         dst[dst_byte_offset++] |= (src_byte);
1881                         current_bit_offset = 0;
1882                         break;
1883                 }
1884                 src_byte_offset++;
1885         }
1886         (*dst_size) = dst_byte_offset;
1887 out:
1888         return;
1889 }
1890
1891 /**
1892  * ecryptfs_encrypt_and_encode_filename - converts a plaintext file name to cipher text
1893  * @crypt_stat: The crypt_stat struct associated with the file anem to encode
1894  * @name: The plaintext name
1895  * @length: The length of the plaintext
1896  * @encoded_name: The encypted name
1897  *
1898  * Encrypts and encodes a filename into something that constitutes a
1899  * valid filename for a filesystem, with printable characters.
1900  *
1901  * We assume that we have a properly initialized crypto context,
1902  * pointed to by crypt_stat->tfm.
1903  *
1904  * Returns zero on success; non-zero on otherwise
1905  */
1906 int ecryptfs_encrypt_and_encode_filename(
1907         char **encoded_name,
1908         size_t *encoded_name_size,
1909         struct ecryptfs_mount_crypt_stat *mount_crypt_stat,
1910         const char *name, size_t name_size)
1911 {
1912         size_t encoded_name_no_prefix_size;
1913         int rc = 0;
1914
1915         (*encoded_name) = NULL;
1916         (*encoded_name_size) = 0;
1917         if (mount_crypt_stat && (mount_crypt_stat->flags
1918                                      & ECRYPTFS_GLOBAL_ENCRYPT_FILENAMES)) {
1919                 struct ecryptfs_filename *filename;
1920
1921                 filename = kzalloc(sizeof(*filename), GFP_KERNEL);
1922                 if (!filename) {
1923                         rc = -ENOMEM;
1924                         goto out;
1925                 }
1926                 filename->filename = (char *)name;
1927                 filename->filename_size = name_size;
1928                 rc = ecryptfs_encrypt_filename(filename, mount_crypt_stat);
1929                 if (rc) {
1930                         printk(KERN_ERR "%s: Error attempting to encrypt "
1931                                "filename; rc = [%d]\n", __func__, rc);
1932                         kfree(filename);
1933                         goto out;
1934                 }
1935                 ecryptfs_encode_for_filename(
1936                         NULL, &encoded_name_no_prefix_size,
1937                         filename->encrypted_filename,
1938                         filename->encrypted_filename_size);
1939                 if (mount_crypt_stat
1940                         && (mount_crypt_stat->flags
1941                             & ECRYPTFS_GLOBAL_ENCFN_USE_MOUNT_FNEK))
1942                         (*encoded_name_size) =
1943                                 (ECRYPTFS_FNEK_ENCRYPTED_FILENAME_PREFIX_SIZE
1944                                  + encoded_name_no_prefix_size);
1945                 else
1946                         (*encoded_name_size) =
1947                                 (ECRYPTFS_FEK_ENCRYPTED_FILENAME_PREFIX_SIZE
1948                                  + encoded_name_no_prefix_size);
1949                 (*encoded_name) = kmalloc((*encoded_name_size) + 1, GFP_KERNEL);
1950                 if (!(*encoded_name)) {
1951                         rc = -ENOMEM;
1952                         kfree(filename->encrypted_filename);
1953                         kfree(filename);
1954                         goto out;
1955                 }
1956                 if (mount_crypt_stat
1957                         && (mount_crypt_stat->flags
1958                             & ECRYPTFS_GLOBAL_ENCFN_USE_MOUNT_FNEK)) {
1959                         memcpy((*encoded_name),
1960                                ECRYPTFS_FNEK_ENCRYPTED_FILENAME_PREFIX,
1961                                ECRYPTFS_FNEK_ENCRYPTED_FILENAME_PREFIX_SIZE);
1962                         ecryptfs_encode_for_filename(
1963                             ((*encoded_name)
1964                              + ECRYPTFS_FNEK_ENCRYPTED_FILENAME_PREFIX_SIZE),
1965                             &encoded_name_no_prefix_size,
1966                             filename->encrypted_filename,
1967                             filename->encrypted_filename_size);
1968                         (*encoded_name_size) =
1969                                 (ECRYPTFS_FNEK_ENCRYPTED_FILENAME_PREFIX_SIZE
1970                                  + encoded_name_no_prefix_size);
1971                         (*encoded_name)[(*encoded_name_size)] = '\0';
1972                 } else {
1973                         rc = -EOPNOTSUPP;
1974                 }
1975                 if (rc) {
1976                         printk(KERN_ERR "%s: Error attempting to encode "
1977                                "encrypted filename; rc = [%d]\n", __func__,
1978                                rc);
1979                         kfree((*encoded_name));
1980                         (*encoded_name) = NULL;
1981                         (*encoded_name_size) = 0;
1982                 }
1983                 kfree(filename->encrypted_filename);
1984                 kfree(filename);
1985         } else {
1986                 rc = ecryptfs_copy_filename(encoded_name,
1987                                             encoded_name_size,
1988                                             name, name_size);
1989         }
1990 out:
1991         return rc;
1992 }
1993
1994 static bool is_dot_dotdot(const char *name, size_t name_size)
1995 {
1996         if (name_size == 1 && name[0] == '.')
1997                 return true;
1998         else if (name_size == 2 && name[0] == '.' && name[1] == '.')
1999                 return true;
2000
2001         return false;
2002 }
2003
2004 /**
2005  * ecryptfs_decode_and_decrypt_filename - converts the encoded cipher text name to decoded plaintext
2006  * @plaintext_name: The plaintext name
2007  * @plaintext_name_size: The plaintext name size
2008  * @ecryptfs_dir_dentry: eCryptfs directory dentry
2009  * @name: The filename in cipher text
2010  * @name_size: The cipher text name size
2011  *
2012  * Decrypts and decodes the filename.
2013  *
2014  * Returns zero on error; non-zero otherwise
2015  */
2016 int ecryptfs_decode_and_decrypt_filename(char **plaintext_name,
2017                                          size_t *plaintext_name_size,
2018                                          struct super_block *sb,
2019                                          const char *name, size_t name_size)
2020 {
2021         struct ecryptfs_mount_crypt_stat *mount_crypt_stat =
2022                 &ecryptfs_superblock_to_private(sb)->mount_crypt_stat;
2023         char *decoded_name;
2024         size_t decoded_name_size;
2025         size_t packet_size;
2026         int rc = 0;
2027
2028         if ((mount_crypt_stat->flags & ECRYPTFS_GLOBAL_ENCRYPT_FILENAMES) &&
2029             !(mount_crypt_stat->flags & ECRYPTFS_ENCRYPTED_VIEW_ENABLED)) {
2030                 if (is_dot_dotdot(name, name_size)) {
2031                         rc = ecryptfs_copy_filename(plaintext_name,
2032                                                     plaintext_name_size,
2033                                                     name, name_size);
2034                         goto out;
2035                 }
2036
2037                 if (name_size <= ECRYPTFS_FNEK_ENCRYPTED_FILENAME_PREFIX_SIZE ||
2038                     strncmp(name, ECRYPTFS_FNEK_ENCRYPTED_FILENAME_PREFIX,
2039                             ECRYPTFS_FNEK_ENCRYPTED_FILENAME_PREFIX_SIZE)) {
2040                         rc = -EINVAL;
2041                         goto out;
2042                 }
2043
2044                 name += ECRYPTFS_FNEK_ENCRYPTED_FILENAME_PREFIX_SIZE;
2045                 name_size -= ECRYPTFS_FNEK_ENCRYPTED_FILENAME_PREFIX_SIZE;
2046                 ecryptfs_decode_from_filename(NULL, &decoded_name_size,
2047                                               name, name_size);
2048                 decoded_name = kmalloc(decoded_name_size, GFP_KERNEL);
2049                 if (!decoded_name) {
2050                         rc = -ENOMEM;
2051                         goto out;
2052                 }
2053                 ecryptfs_decode_from_filename(decoded_name, &decoded_name_size,
2054                                               name, name_size);
2055                 rc = ecryptfs_parse_tag_70_packet(plaintext_name,
2056                                                   plaintext_name_size,
2057                                                   &packet_size,
2058                                                   mount_crypt_stat,
2059                                                   decoded_name,
2060                                                   decoded_name_size);
2061                 if (rc) {
2062                         ecryptfs_printk(KERN_DEBUG,
2063                                         "%s: Could not parse tag 70 packet from filename\n",
2064                                         __func__);
2065                         goto out_free;
2066                 }
2067         } else {
2068                 rc = ecryptfs_copy_filename(plaintext_name,
2069                                             plaintext_name_size,
2070                                             name, name_size);
2071                 goto out;
2072         }
2073 out_free:
2074         kfree(decoded_name);
2075 out:
2076         return rc;
2077 }
2078
2079 #define ENC_NAME_MAX_BLOCKLEN_8_OR_16   143
2080
2081 int ecryptfs_set_f_namelen(long *namelen, long lower_namelen,
2082                            struct ecryptfs_mount_crypt_stat *mount_crypt_stat)
2083 {
2084         struct crypto_skcipher *tfm;
2085         struct mutex *tfm_mutex;
2086         size_t cipher_blocksize;
2087         int rc;
2088
2089         if (!(mount_crypt_stat->flags & ECRYPTFS_GLOBAL_ENCRYPT_FILENAMES)) {
2090                 (*namelen) = lower_namelen;
2091                 return 0;
2092         }
2093
2094         rc = ecryptfs_get_tfm_and_mutex_for_cipher_name(&tfm, &tfm_mutex,
2095                         mount_crypt_stat->global_default_fn_cipher_name);
2096         if (unlikely(rc)) {
2097                 (*namelen) = 0;
2098                 return rc;
2099         }
2100
2101         mutex_lock(tfm_mutex);
2102         cipher_blocksize = crypto_skcipher_blocksize(tfm);
2103         mutex_unlock(tfm_mutex);
2104
2105         /* Return an exact amount for the common cases */
2106         if (lower_namelen == NAME_MAX
2107             && (cipher_blocksize == 8 || cipher_blocksize == 16)) {
2108                 (*namelen) = ENC_NAME_MAX_BLOCKLEN_8_OR_16;
2109                 return 0;
2110         }
2111
2112         /* Return a safe estimate for the uncommon cases */
2113         (*namelen) = lower_namelen;
2114         (*namelen) -= ECRYPTFS_FNEK_ENCRYPTED_FILENAME_PREFIX_SIZE;
2115         /* Since this is the max decoded size, subtract 1 "decoded block" len */
2116         (*namelen) = ecryptfs_max_decoded_size(*namelen) - 3;
2117         (*namelen) -= ECRYPTFS_TAG_70_MAX_METADATA_SIZE;
2118         (*namelen) -= ECRYPTFS_FILENAME_MIN_RANDOM_PREPEND_BYTES;
2119         /* Worst case is that the filename is padded nearly a full block size */
2120         (*namelen) -= cipher_blocksize - 1;
2121
2122         if ((*namelen) < 0)
2123                 (*namelen) = 0;
2124
2125         return 0;
2126 }