GNU Linux-libre 4.4.290-gnu1
[releases.git] / fs / ecryptfs / crypto.c
1 /**
2  * eCryptfs: Linux filesystem encryption layer
3  *
4  * Copyright (C) 1997-2004 Erez Zadok
5  * Copyright (C) 2001-2004 Stony Brook University
6  * Copyright (C) 2004-2007 International Business Machines Corp.
7  *   Author(s): Michael A. Halcrow <mahalcro@us.ibm.com>
8  *              Michael C. Thompson <mcthomps@us.ibm.com>
9  *
10  * This program is free software; you can redistribute it and/or
11  * modify it under the terms of the GNU General Public License as
12  * published by the Free Software Foundation; either version 2 of the
13  * License, or (at your option) any later version.
14  *
15  * This program is distributed in the hope that it will be useful, but
16  * WITHOUT ANY WARRANTY; without even the implied warranty of
17  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
18  * General Public License for more details.
19  *
20  * You should have received a copy of the GNU General Public License
21  * along with this program; if not, write to the Free Software
22  * Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA
23  * 02111-1307, USA.
24  */
25
26 #include <linux/fs.h>
27 #include <linux/mount.h>
28 #include <linux/pagemap.h>
29 #include <linux/random.h>
30 #include <linux/compiler.h>
31 #include <linux/key.h>
32 #include <linux/namei.h>
33 #include <linux/crypto.h>
34 #include <linux/file.h>
35 #include <linux/scatterlist.h>
36 #include <linux/slab.h>
37 #include <asm/unaligned.h>
38 #include "ecryptfs_kernel.h"
39
40 #define DECRYPT         0
41 #define ENCRYPT         1
42
43 /**
44  * ecryptfs_to_hex
45  * @dst: Buffer to take hex character representation of contents of
46  *       src; must be at least of size (src_size * 2)
47  * @src: Buffer to be converted to a hex string respresentation
48  * @src_size: number of bytes to convert
49  */
50 void ecryptfs_to_hex(char *dst, char *src, size_t src_size)
51 {
52         int x;
53
54         for (x = 0; x < src_size; x++)
55                 sprintf(&dst[x * 2], "%.2x", (unsigned char)src[x]);
56 }
57
58 /**
59  * ecryptfs_from_hex
60  * @dst: Buffer to take the bytes from src hex; must be at least of
61  *       size (src_size / 2)
62  * @src: Buffer to be converted from a hex string respresentation to raw value
63  * @dst_size: size of dst buffer, or number of hex characters pairs to convert
64  */
65 void ecryptfs_from_hex(char *dst, char *src, int dst_size)
66 {
67         int x;
68         char tmp[3] = { 0, };
69
70         for (x = 0; x < dst_size; x++) {
71                 tmp[0] = src[x * 2];
72                 tmp[1] = src[x * 2 + 1];
73                 dst[x] = (unsigned char)simple_strtol(tmp, NULL, 16);
74         }
75 }
76
77 /**
78  * ecryptfs_calculate_md5 - calculates the md5 of @src
79  * @dst: Pointer to 16 bytes of allocated memory
80  * @crypt_stat: Pointer to crypt_stat struct for the current inode
81  * @src: Data to be md5'd
82  * @len: Length of @src
83  *
84  * Uses the allocated crypto context that crypt_stat references to
85  * generate the MD5 sum of the contents of src.
86  */
87 static int ecryptfs_calculate_md5(char *dst,
88                                   struct ecryptfs_crypt_stat *crypt_stat,
89                                   char *src, int len)
90 {
91         struct scatterlist sg;
92         struct hash_desc desc = {
93                 .tfm = crypt_stat->hash_tfm,
94                 .flags = CRYPTO_TFM_REQ_MAY_SLEEP
95         };
96         int rc = 0;
97
98         mutex_lock(&crypt_stat->cs_hash_tfm_mutex);
99         sg_init_one(&sg, (u8 *)src, len);
100         if (!desc.tfm) {
101                 desc.tfm = crypto_alloc_hash(ECRYPTFS_DEFAULT_HASH, 0,
102                                              CRYPTO_ALG_ASYNC);
103                 if (IS_ERR(desc.tfm)) {
104                         rc = PTR_ERR(desc.tfm);
105                         ecryptfs_printk(KERN_ERR, "Error attempting to "
106                                         "allocate crypto context; rc = [%d]\n",
107                                         rc);
108                         goto out;
109                 }
110                 crypt_stat->hash_tfm = desc.tfm;
111         }
112         rc = crypto_hash_init(&desc);
113         if (rc) {
114                 printk(KERN_ERR
115                        "%s: Error initializing crypto hash; rc = [%d]\n",
116                        __func__, rc);
117                 goto out;
118         }
119         rc = crypto_hash_update(&desc, &sg, len);
120         if (rc) {
121                 printk(KERN_ERR
122                        "%s: Error updating crypto hash; rc = [%d]\n",
123                        __func__, rc);
124                 goto out;
125         }
126         rc = crypto_hash_final(&desc, dst);
127         if (rc) {
128                 printk(KERN_ERR
129                        "%s: Error finalizing crypto hash; rc = [%d]\n",
130                        __func__, rc);
131                 goto out;
132         }
133 out:
134         mutex_unlock(&crypt_stat->cs_hash_tfm_mutex);
135         return rc;
136 }
137
138 static int ecryptfs_crypto_api_algify_cipher_name(char **algified_name,
139                                                   char *cipher_name,
140                                                   char *chaining_modifier)
141 {
142         int cipher_name_len = strlen(cipher_name);
143         int chaining_modifier_len = strlen(chaining_modifier);
144         int algified_name_len;
145         int rc;
146
147         algified_name_len = (chaining_modifier_len + cipher_name_len + 3);
148         (*algified_name) = kmalloc(algified_name_len, GFP_KERNEL);
149         if (!(*algified_name)) {
150                 rc = -ENOMEM;
151                 goto out;
152         }
153         snprintf((*algified_name), algified_name_len, "%s(%s)",
154                  chaining_modifier, cipher_name);
155         rc = 0;
156 out:
157         return rc;
158 }
159
160 /**
161  * ecryptfs_derive_iv
162  * @iv: destination for the derived iv vale
163  * @crypt_stat: Pointer to crypt_stat struct for the current inode
164  * @offset: Offset of the extent whose IV we are to derive
165  *
166  * Generate the initialization vector from the given root IV and page
167  * offset.
168  *
169  * Returns zero on success; non-zero on error.
170  */
171 int ecryptfs_derive_iv(char *iv, struct ecryptfs_crypt_stat *crypt_stat,
172                        loff_t offset)
173 {
174         int rc = 0;
175         char dst[MD5_DIGEST_SIZE];
176         char src[ECRYPTFS_MAX_IV_BYTES + 16];
177
178         if (unlikely(ecryptfs_verbosity > 0)) {
179                 ecryptfs_printk(KERN_DEBUG, "root iv:\n");
180                 ecryptfs_dump_hex(crypt_stat->root_iv, crypt_stat->iv_bytes);
181         }
182         /* TODO: It is probably secure to just cast the least
183          * significant bits of the root IV into an unsigned long and
184          * add the offset to that rather than go through all this
185          * hashing business. -Halcrow */
186         memcpy(src, crypt_stat->root_iv, crypt_stat->iv_bytes);
187         memset((src + crypt_stat->iv_bytes), 0, 16);
188         snprintf((src + crypt_stat->iv_bytes), 16, "%lld", offset);
189         if (unlikely(ecryptfs_verbosity > 0)) {
190                 ecryptfs_printk(KERN_DEBUG, "source:\n");
191                 ecryptfs_dump_hex(src, (crypt_stat->iv_bytes + 16));
192         }
193         rc = ecryptfs_calculate_md5(dst, crypt_stat, src,
194                                     (crypt_stat->iv_bytes + 16));
195         if (rc) {
196                 ecryptfs_printk(KERN_WARNING, "Error attempting to compute "
197                                 "MD5 while generating IV for a page\n");
198                 goto out;
199         }
200         memcpy(iv, dst, crypt_stat->iv_bytes);
201         if (unlikely(ecryptfs_verbosity > 0)) {
202                 ecryptfs_printk(KERN_DEBUG, "derived iv:\n");
203                 ecryptfs_dump_hex(iv, crypt_stat->iv_bytes);
204         }
205 out:
206         return rc;
207 }
208
209 /**
210  * ecryptfs_init_crypt_stat
211  * @crypt_stat: Pointer to the crypt_stat struct to initialize.
212  *
213  * Initialize the crypt_stat structure.
214  */
215 void
216 ecryptfs_init_crypt_stat(struct ecryptfs_crypt_stat *crypt_stat)
217 {
218         memset((void *)crypt_stat, 0, sizeof(struct ecryptfs_crypt_stat));
219         INIT_LIST_HEAD(&crypt_stat->keysig_list);
220         mutex_init(&crypt_stat->keysig_list_mutex);
221         mutex_init(&crypt_stat->cs_mutex);
222         mutex_init(&crypt_stat->cs_tfm_mutex);
223         mutex_init(&crypt_stat->cs_hash_tfm_mutex);
224         crypt_stat->flags |= ECRYPTFS_STRUCT_INITIALIZED;
225 }
226
227 /**
228  * ecryptfs_destroy_crypt_stat
229  * @crypt_stat: Pointer to the crypt_stat struct to initialize.
230  *
231  * Releases all memory associated with a crypt_stat struct.
232  */
233 void ecryptfs_destroy_crypt_stat(struct ecryptfs_crypt_stat *crypt_stat)
234 {
235         struct ecryptfs_key_sig *key_sig, *key_sig_tmp;
236
237         if (crypt_stat->tfm)
238                 crypto_free_ablkcipher(crypt_stat->tfm);
239         if (crypt_stat->hash_tfm)
240                 crypto_free_hash(crypt_stat->hash_tfm);
241         list_for_each_entry_safe(key_sig, key_sig_tmp,
242                                  &crypt_stat->keysig_list, crypt_stat_list) {
243                 list_del(&key_sig->crypt_stat_list);
244                 kmem_cache_free(ecryptfs_key_sig_cache, key_sig);
245         }
246         memset(crypt_stat, 0, sizeof(struct ecryptfs_crypt_stat));
247 }
248
249 void ecryptfs_destroy_mount_crypt_stat(
250         struct ecryptfs_mount_crypt_stat *mount_crypt_stat)
251 {
252         struct ecryptfs_global_auth_tok *auth_tok, *auth_tok_tmp;
253
254         if (!(mount_crypt_stat->flags & ECRYPTFS_MOUNT_CRYPT_STAT_INITIALIZED))
255                 return;
256         mutex_lock(&mount_crypt_stat->global_auth_tok_list_mutex);
257         list_for_each_entry_safe(auth_tok, auth_tok_tmp,
258                                  &mount_crypt_stat->global_auth_tok_list,
259                                  mount_crypt_stat_list) {
260                 list_del(&auth_tok->mount_crypt_stat_list);
261                 if (!(auth_tok->flags & ECRYPTFS_AUTH_TOK_INVALID))
262                         key_put(auth_tok->global_auth_tok_key);
263                 kmem_cache_free(ecryptfs_global_auth_tok_cache, auth_tok);
264         }
265         mutex_unlock(&mount_crypt_stat->global_auth_tok_list_mutex);
266         memset(mount_crypt_stat, 0, sizeof(struct ecryptfs_mount_crypt_stat));
267 }
268
269 /**
270  * virt_to_scatterlist
271  * @addr: Virtual address
272  * @size: Size of data; should be an even multiple of the block size
273  * @sg: Pointer to scatterlist array; set to NULL to obtain only
274  *      the number of scatterlist structs required in array
275  * @sg_size: Max array size
276  *
277  * Fills in a scatterlist array with page references for a passed
278  * virtual address.
279  *
280  * Returns the number of scatterlist structs in array used
281  */
282 int virt_to_scatterlist(const void *addr, int size, struct scatterlist *sg,
283                         int sg_size)
284 {
285         int i = 0;
286         struct page *pg;
287         int offset;
288         int remainder_of_page;
289
290         sg_init_table(sg, sg_size);
291
292         while (size > 0 && i < sg_size) {
293                 pg = virt_to_page(addr);
294                 offset = offset_in_page(addr);
295                 sg_set_page(&sg[i], pg, 0, offset);
296                 remainder_of_page = PAGE_CACHE_SIZE - offset;
297                 if (size >= remainder_of_page) {
298                         sg[i].length = remainder_of_page;
299                         addr += remainder_of_page;
300                         size -= remainder_of_page;
301                 } else {
302                         sg[i].length = size;
303                         addr += size;
304                         size = 0;
305                 }
306                 i++;
307         }
308         if (size > 0)
309                 return -ENOMEM;
310         return i;
311 }
312
313 struct extent_crypt_result {
314         struct completion completion;
315         int rc;
316 };
317
318 static void extent_crypt_complete(struct crypto_async_request *req, int rc)
319 {
320         struct extent_crypt_result *ecr = req->data;
321
322         if (rc == -EINPROGRESS)
323                 return;
324
325         ecr->rc = rc;
326         complete(&ecr->completion);
327 }
328
329 /**
330  * crypt_scatterlist
331  * @crypt_stat: Pointer to the crypt_stat struct to initialize.
332  * @dst_sg: Destination of the data after performing the crypto operation
333  * @src_sg: Data to be encrypted or decrypted
334  * @size: Length of data
335  * @iv: IV to use
336  * @op: ENCRYPT or DECRYPT to indicate the desired operation
337  *
338  * Returns the number of bytes encrypted or decrypted; negative value on error
339  */
340 static int crypt_scatterlist(struct ecryptfs_crypt_stat *crypt_stat,
341                              struct scatterlist *dst_sg,
342                              struct scatterlist *src_sg, int size,
343                              unsigned char *iv, int op)
344 {
345         struct ablkcipher_request *req = NULL;
346         struct extent_crypt_result ecr;
347         int rc = 0;
348
349         BUG_ON(!crypt_stat || !crypt_stat->tfm
350                || !(crypt_stat->flags & ECRYPTFS_STRUCT_INITIALIZED));
351         if (unlikely(ecryptfs_verbosity > 0)) {
352                 ecryptfs_printk(KERN_DEBUG, "Key size [%zd]; key:\n",
353                                 crypt_stat->key_size);
354                 ecryptfs_dump_hex(crypt_stat->key,
355                                   crypt_stat->key_size);
356         }
357
358         init_completion(&ecr.completion);
359
360         mutex_lock(&crypt_stat->cs_tfm_mutex);
361         req = ablkcipher_request_alloc(crypt_stat->tfm, GFP_NOFS);
362         if (!req) {
363                 mutex_unlock(&crypt_stat->cs_tfm_mutex);
364                 rc = -ENOMEM;
365                 goto out;
366         }
367
368         ablkcipher_request_set_callback(req,
369                         CRYPTO_TFM_REQ_MAY_BACKLOG | CRYPTO_TFM_REQ_MAY_SLEEP,
370                         extent_crypt_complete, &ecr);
371         /* Consider doing this once, when the file is opened */
372         if (!(crypt_stat->flags & ECRYPTFS_KEY_SET)) {
373                 rc = crypto_ablkcipher_setkey(crypt_stat->tfm, crypt_stat->key,
374                                               crypt_stat->key_size);
375                 if (rc) {
376                         ecryptfs_printk(KERN_ERR,
377                                         "Error setting key; rc = [%d]\n",
378                                         rc);
379                         mutex_unlock(&crypt_stat->cs_tfm_mutex);
380                         rc = -EINVAL;
381                         goto out;
382                 }
383                 crypt_stat->flags |= ECRYPTFS_KEY_SET;
384         }
385         mutex_unlock(&crypt_stat->cs_tfm_mutex);
386         ablkcipher_request_set_crypt(req, src_sg, dst_sg, size, iv);
387         rc = op == ENCRYPT ? crypto_ablkcipher_encrypt(req) :
388                              crypto_ablkcipher_decrypt(req);
389         if (rc == -EINPROGRESS || rc == -EBUSY) {
390                 struct extent_crypt_result *ecr = req->base.data;
391
392                 wait_for_completion(&ecr->completion);
393                 rc = ecr->rc;
394                 reinit_completion(&ecr->completion);
395         }
396 out:
397         ablkcipher_request_free(req);
398         return rc;
399 }
400
401 /**
402  * lower_offset_for_page
403  *
404  * Convert an eCryptfs page index into a lower byte offset
405  */
406 static loff_t lower_offset_for_page(struct ecryptfs_crypt_stat *crypt_stat,
407                                     struct page *page)
408 {
409         return ecryptfs_lower_header_size(crypt_stat) +
410                ((loff_t)page->index << PAGE_CACHE_SHIFT);
411 }
412
413 /**
414  * crypt_extent
415  * @crypt_stat: crypt_stat containing cryptographic context for the
416  *              encryption operation
417  * @dst_page: The page to write the result into
418  * @src_page: The page to read from
419  * @extent_offset: Page extent offset for use in generating IV
420  * @op: ENCRYPT or DECRYPT to indicate the desired operation
421  *
422  * Encrypts or decrypts one extent of data.
423  *
424  * Return zero on success; non-zero otherwise
425  */
426 static int crypt_extent(struct ecryptfs_crypt_stat *crypt_stat,
427                         struct page *dst_page,
428                         struct page *src_page,
429                         unsigned long extent_offset, int op)
430 {
431         pgoff_t page_index = op == ENCRYPT ? src_page->index : dst_page->index;
432         loff_t extent_base;
433         char extent_iv[ECRYPTFS_MAX_IV_BYTES];
434         struct scatterlist src_sg, dst_sg;
435         size_t extent_size = crypt_stat->extent_size;
436         int rc;
437
438         extent_base = (((loff_t)page_index) * (PAGE_CACHE_SIZE / extent_size));
439         rc = ecryptfs_derive_iv(extent_iv, crypt_stat,
440                                 (extent_base + extent_offset));
441         if (rc) {
442                 ecryptfs_printk(KERN_ERR, "Error attempting to derive IV for "
443                         "extent [0x%.16llx]; rc = [%d]\n",
444                         (unsigned long long)(extent_base + extent_offset), rc);
445                 goto out;
446         }
447
448         sg_init_table(&src_sg, 1);
449         sg_init_table(&dst_sg, 1);
450
451         sg_set_page(&src_sg, src_page, extent_size,
452                     extent_offset * extent_size);
453         sg_set_page(&dst_sg, dst_page, extent_size,
454                     extent_offset * extent_size);
455
456         rc = crypt_scatterlist(crypt_stat, &dst_sg, &src_sg, extent_size,
457                                extent_iv, op);
458         if (rc < 0) {
459                 printk(KERN_ERR "%s: Error attempting to crypt page with "
460                        "page_index = [%ld], extent_offset = [%ld]; "
461                        "rc = [%d]\n", __func__, page_index, extent_offset, rc);
462                 goto out;
463         }
464         rc = 0;
465 out:
466         return rc;
467 }
468
469 /**
470  * ecryptfs_encrypt_page
471  * @page: Page mapped from the eCryptfs inode for the file; contains
472  *        decrypted content that needs to be encrypted (to a temporary
473  *        page; not in place) and written out to the lower file
474  *
475  * Encrypt an eCryptfs page. This is done on a per-extent basis. Note
476  * that eCryptfs pages may straddle the lower pages -- for instance,
477  * if the file was created on a machine with an 8K page size
478  * (resulting in an 8K header), and then the file is copied onto a
479  * host with a 32K page size, then when reading page 0 of the eCryptfs
480  * file, 24K of page 0 of the lower file will be read and decrypted,
481  * and then 8K of page 1 of the lower file will be read and decrypted.
482  *
483  * Returns zero on success; negative on error
484  */
485 int ecryptfs_encrypt_page(struct page *page)
486 {
487         struct inode *ecryptfs_inode;
488         struct ecryptfs_crypt_stat *crypt_stat;
489         char *enc_extent_virt;
490         struct page *enc_extent_page = NULL;
491         loff_t extent_offset;
492         loff_t lower_offset;
493         int rc = 0;
494
495         ecryptfs_inode = page->mapping->host;
496         crypt_stat =
497                 &(ecryptfs_inode_to_private(ecryptfs_inode)->crypt_stat);
498         BUG_ON(!(crypt_stat->flags & ECRYPTFS_ENCRYPTED));
499         enc_extent_page = alloc_page(GFP_USER);
500         if (!enc_extent_page) {
501                 rc = -ENOMEM;
502                 ecryptfs_printk(KERN_ERR, "Error allocating memory for "
503                                 "encrypted extent\n");
504                 goto out;
505         }
506
507         for (extent_offset = 0;
508              extent_offset < (PAGE_CACHE_SIZE / crypt_stat->extent_size);
509              extent_offset++) {
510                 rc = crypt_extent(crypt_stat, enc_extent_page, page,
511                                   extent_offset, ENCRYPT);
512                 if (rc) {
513                         printk(KERN_ERR "%s: Error encrypting extent; "
514                                "rc = [%d]\n", __func__, rc);
515                         goto out;
516                 }
517         }
518
519         lower_offset = lower_offset_for_page(crypt_stat, page);
520         enc_extent_virt = kmap(enc_extent_page);
521         rc = ecryptfs_write_lower(ecryptfs_inode, enc_extent_virt, lower_offset,
522                                   PAGE_CACHE_SIZE);
523         kunmap(enc_extent_page);
524         if (rc < 0) {
525                 ecryptfs_printk(KERN_ERR,
526                         "Error attempting to write lower page; rc = [%d]\n",
527                         rc);
528                 goto out;
529         }
530         rc = 0;
531 out:
532         if (enc_extent_page) {
533                 __free_page(enc_extent_page);
534         }
535         return rc;
536 }
537
538 /**
539  * ecryptfs_decrypt_page
540  * @page: Page mapped from the eCryptfs inode for the file; data read
541  *        and decrypted from the lower file will be written into this
542  *        page
543  *
544  * Decrypt an eCryptfs page. This is done on a per-extent basis. Note
545  * that eCryptfs pages may straddle the lower pages -- for instance,
546  * if the file was created on a machine with an 8K page size
547  * (resulting in an 8K header), and then the file is copied onto a
548  * host with a 32K page size, then when reading page 0 of the eCryptfs
549  * file, 24K of page 0 of the lower file will be read and decrypted,
550  * and then 8K of page 1 of the lower file will be read and decrypted.
551  *
552  * Returns zero on success; negative on error
553  */
554 int ecryptfs_decrypt_page(struct page *page)
555 {
556         struct inode *ecryptfs_inode;
557         struct ecryptfs_crypt_stat *crypt_stat;
558         char *page_virt;
559         unsigned long extent_offset;
560         loff_t lower_offset;
561         int rc = 0;
562
563         ecryptfs_inode = page->mapping->host;
564         crypt_stat =
565                 &(ecryptfs_inode_to_private(ecryptfs_inode)->crypt_stat);
566         BUG_ON(!(crypt_stat->flags & ECRYPTFS_ENCRYPTED));
567
568         lower_offset = lower_offset_for_page(crypt_stat, page);
569         page_virt = kmap(page);
570         rc = ecryptfs_read_lower(page_virt, lower_offset, PAGE_CACHE_SIZE,
571                                  ecryptfs_inode);
572         kunmap(page);
573         if (rc < 0) {
574                 ecryptfs_printk(KERN_ERR,
575                         "Error attempting to read lower page; rc = [%d]\n",
576                         rc);
577                 goto out;
578         }
579
580         for (extent_offset = 0;
581              extent_offset < (PAGE_CACHE_SIZE / crypt_stat->extent_size);
582              extent_offset++) {
583                 rc = crypt_extent(crypt_stat, page, page,
584                                   extent_offset, DECRYPT);
585                 if (rc) {
586                         printk(KERN_ERR "%s: Error encrypting extent; "
587                                "rc = [%d]\n", __func__, rc);
588                         goto out;
589                 }
590         }
591 out:
592         return rc;
593 }
594
595 #define ECRYPTFS_MAX_SCATTERLIST_LEN 4
596
597 /**
598  * ecryptfs_init_crypt_ctx
599  * @crypt_stat: Uninitialized crypt stats structure
600  *
601  * Initialize the crypto context.
602  *
603  * TODO: Performance: Keep a cache of initialized cipher contexts;
604  * only init if needed
605  */
606 int ecryptfs_init_crypt_ctx(struct ecryptfs_crypt_stat *crypt_stat)
607 {
608         char *full_alg_name;
609         int rc = -EINVAL;
610
611         ecryptfs_printk(KERN_DEBUG,
612                         "Initializing cipher [%s]; strlen = [%d]; "
613                         "key_size_bits = [%zd]\n",
614                         crypt_stat->cipher, (int)strlen(crypt_stat->cipher),
615                         crypt_stat->key_size << 3);
616         mutex_lock(&crypt_stat->cs_tfm_mutex);
617         if (crypt_stat->tfm) {
618                 rc = 0;
619                 goto out_unlock;
620         }
621         rc = ecryptfs_crypto_api_algify_cipher_name(&full_alg_name,
622                                                     crypt_stat->cipher, "cbc");
623         if (rc)
624                 goto out_unlock;
625         crypt_stat->tfm = crypto_alloc_ablkcipher(full_alg_name, 0, 0);
626         if (IS_ERR(crypt_stat->tfm)) {
627                 rc = PTR_ERR(crypt_stat->tfm);
628                 crypt_stat->tfm = NULL;
629                 ecryptfs_printk(KERN_ERR, "cryptfs: init_crypt_ctx(): "
630                                 "Error initializing cipher [%s]\n",
631                                 full_alg_name);
632                 goto out_free;
633         }
634         crypto_ablkcipher_set_flags(crypt_stat->tfm, CRYPTO_TFM_REQ_WEAK_KEY);
635         rc = 0;
636 out_free:
637         kfree(full_alg_name);
638 out_unlock:
639         mutex_unlock(&crypt_stat->cs_tfm_mutex);
640         return rc;
641 }
642
643 static void set_extent_mask_and_shift(struct ecryptfs_crypt_stat *crypt_stat)
644 {
645         int extent_size_tmp;
646
647         crypt_stat->extent_mask = 0xFFFFFFFF;
648         crypt_stat->extent_shift = 0;
649         if (crypt_stat->extent_size == 0)
650                 return;
651         extent_size_tmp = crypt_stat->extent_size;
652         while ((extent_size_tmp & 0x01) == 0) {
653                 extent_size_tmp >>= 1;
654                 crypt_stat->extent_mask <<= 1;
655                 crypt_stat->extent_shift++;
656         }
657 }
658
659 void ecryptfs_set_default_sizes(struct ecryptfs_crypt_stat *crypt_stat)
660 {
661         /* Default values; may be overwritten as we are parsing the
662          * packets. */
663         crypt_stat->extent_size = ECRYPTFS_DEFAULT_EXTENT_SIZE;
664         set_extent_mask_and_shift(crypt_stat);
665         crypt_stat->iv_bytes = ECRYPTFS_DEFAULT_IV_BYTES;
666         if (crypt_stat->flags & ECRYPTFS_METADATA_IN_XATTR)
667                 crypt_stat->metadata_size = ECRYPTFS_MINIMUM_HEADER_EXTENT_SIZE;
668         else {
669                 if (PAGE_CACHE_SIZE <= ECRYPTFS_MINIMUM_HEADER_EXTENT_SIZE)
670                         crypt_stat->metadata_size =
671                                 ECRYPTFS_MINIMUM_HEADER_EXTENT_SIZE;
672                 else
673                         crypt_stat->metadata_size = PAGE_CACHE_SIZE;
674         }
675 }
676
677 /**
678  * ecryptfs_compute_root_iv
679  * @crypt_stats
680  *
681  * On error, sets the root IV to all 0's.
682  */
683 int ecryptfs_compute_root_iv(struct ecryptfs_crypt_stat *crypt_stat)
684 {
685         int rc = 0;
686         char dst[MD5_DIGEST_SIZE];
687
688         BUG_ON(crypt_stat->iv_bytes > MD5_DIGEST_SIZE);
689         BUG_ON(crypt_stat->iv_bytes <= 0);
690         if (!(crypt_stat->flags & ECRYPTFS_KEY_VALID)) {
691                 rc = -EINVAL;
692                 ecryptfs_printk(KERN_WARNING, "Session key not valid; "
693                                 "cannot generate root IV\n");
694                 goto out;
695         }
696         rc = ecryptfs_calculate_md5(dst, crypt_stat, crypt_stat->key,
697                                     crypt_stat->key_size);
698         if (rc) {
699                 ecryptfs_printk(KERN_WARNING, "Error attempting to compute "
700                                 "MD5 while generating root IV\n");
701                 goto out;
702         }
703         memcpy(crypt_stat->root_iv, dst, crypt_stat->iv_bytes);
704 out:
705         if (rc) {
706                 memset(crypt_stat->root_iv, 0, crypt_stat->iv_bytes);
707                 crypt_stat->flags |= ECRYPTFS_SECURITY_WARNING;
708         }
709         return rc;
710 }
711
712 static void ecryptfs_generate_new_key(struct ecryptfs_crypt_stat *crypt_stat)
713 {
714         get_random_bytes(crypt_stat->key, crypt_stat->key_size);
715         crypt_stat->flags |= ECRYPTFS_KEY_VALID;
716         ecryptfs_compute_root_iv(crypt_stat);
717         if (unlikely(ecryptfs_verbosity > 0)) {
718                 ecryptfs_printk(KERN_DEBUG, "Generated new session key:\n");
719                 ecryptfs_dump_hex(crypt_stat->key,
720                                   crypt_stat->key_size);
721         }
722 }
723
724 /**
725  * ecryptfs_copy_mount_wide_flags_to_inode_flags
726  * @crypt_stat: The inode's cryptographic context
727  * @mount_crypt_stat: The mount point's cryptographic context
728  *
729  * This function propagates the mount-wide flags to individual inode
730  * flags.
731  */
732 static void ecryptfs_copy_mount_wide_flags_to_inode_flags(
733         struct ecryptfs_crypt_stat *crypt_stat,
734         struct ecryptfs_mount_crypt_stat *mount_crypt_stat)
735 {
736         if (mount_crypt_stat->flags & ECRYPTFS_XATTR_METADATA_ENABLED)
737                 crypt_stat->flags |= ECRYPTFS_METADATA_IN_XATTR;
738         if (mount_crypt_stat->flags & ECRYPTFS_ENCRYPTED_VIEW_ENABLED)
739                 crypt_stat->flags |= ECRYPTFS_VIEW_AS_ENCRYPTED;
740         if (mount_crypt_stat->flags & ECRYPTFS_GLOBAL_ENCRYPT_FILENAMES) {
741                 crypt_stat->flags |= ECRYPTFS_ENCRYPT_FILENAMES;
742                 if (mount_crypt_stat->flags
743                     & ECRYPTFS_GLOBAL_ENCFN_USE_MOUNT_FNEK)
744                         crypt_stat->flags |= ECRYPTFS_ENCFN_USE_MOUNT_FNEK;
745                 else if (mount_crypt_stat->flags
746                          & ECRYPTFS_GLOBAL_ENCFN_USE_FEK)
747                         crypt_stat->flags |= ECRYPTFS_ENCFN_USE_FEK;
748         }
749 }
750
751 static int ecryptfs_copy_mount_wide_sigs_to_inode_sigs(
752         struct ecryptfs_crypt_stat *crypt_stat,
753         struct ecryptfs_mount_crypt_stat *mount_crypt_stat)
754 {
755         struct ecryptfs_global_auth_tok *global_auth_tok;
756         int rc = 0;
757
758         mutex_lock(&crypt_stat->keysig_list_mutex);
759         mutex_lock(&mount_crypt_stat->global_auth_tok_list_mutex);
760
761         list_for_each_entry(global_auth_tok,
762                             &mount_crypt_stat->global_auth_tok_list,
763                             mount_crypt_stat_list) {
764                 if (global_auth_tok->flags & ECRYPTFS_AUTH_TOK_FNEK)
765                         continue;
766                 rc = ecryptfs_add_keysig(crypt_stat, global_auth_tok->sig);
767                 if (rc) {
768                         printk(KERN_ERR "Error adding keysig; rc = [%d]\n", rc);
769                         goto out;
770                 }
771         }
772
773 out:
774         mutex_unlock(&mount_crypt_stat->global_auth_tok_list_mutex);
775         mutex_unlock(&crypt_stat->keysig_list_mutex);
776         return rc;
777 }
778
779 /**
780  * ecryptfs_set_default_crypt_stat_vals
781  * @crypt_stat: The inode's cryptographic context
782  * @mount_crypt_stat: The mount point's cryptographic context
783  *
784  * Default values in the event that policy does not override them.
785  */
786 static void ecryptfs_set_default_crypt_stat_vals(
787         struct ecryptfs_crypt_stat *crypt_stat,
788         struct ecryptfs_mount_crypt_stat *mount_crypt_stat)
789 {
790         ecryptfs_copy_mount_wide_flags_to_inode_flags(crypt_stat,
791                                                       mount_crypt_stat);
792         ecryptfs_set_default_sizes(crypt_stat);
793         strcpy(crypt_stat->cipher, ECRYPTFS_DEFAULT_CIPHER);
794         crypt_stat->key_size = ECRYPTFS_DEFAULT_KEY_BYTES;
795         crypt_stat->flags &= ~(ECRYPTFS_KEY_VALID);
796         crypt_stat->file_version = ECRYPTFS_FILE_VERSION;
797         crypt_stat->mount_crypt_stat = mount_crypt_stat;
798 }
799
800 /**
801  * ecryptfs_new_file_context
802  * @ecryptfs_inode: The eCryptfs inode
803  *
804  * If the crypto context for the file has not yet been established,
805  * this is where we do that.  Establishing a new crypto context
806  * involves the following decisions:
807  *  - What cipher to use?
808  *  - What set of authentication tokens to use?
809  * Here we just worry about getting enough information into the
810  * authentication tokens so that we know that they are available.
811  * We associate the available authentication tokens with the new file
812  * via the set of signatures in the crypt_stat struct.  Later, when
813  * the headers are actually written out, we may again defer to
814  * userspace to perform the encryption of the session key; for the
815  * foreseeable future, this will be the case with public key packets.
816  *
817  * Returns zero on success; non-zero otherwise
818  */
819 int ecryptfs_new_file_context(struct inode *ecryptfs_inode)
820 {
821         struct ecryptfs_crypt_stat *crypt_stat =
822             &ecryptfs_inode_to_private(ecryptfs_inode)->crypt_stat;
823         struct ecryptfs_mount_crypt_stat *mount_crypt_stat =
824             &ecryptfs_superblock_to_private(
825                     ecryptfs_inode->i_sb)->mount_crypt_stat;
826         int cipher_name_len;
827         int rc = 0;
828
829         ecryptfs_set_default_crypt_stat_vals(crypt_stat, mount_crypt_stat);
830         crypt_stat->flags |= (ECRYPTFS_ENCRYPTED | ECRYPTFS_KEY_VALID);
831         ecryptfs_copy_mount_wide_flags_to_inode_flags(crypt_stat,
832                                                       mount_crypt_stat);
833         rc = ecryptfs_copy_mount_wide_sigs_to_inode_sigs(crypt_stat,
834                                                          mount_crypt_stat);
835         if (rc) {
836                 printk(KERN_ERR "Error attempting to copy mount-wide key sigs "
837                        "to the inode key sigs; rc = [%d]\n", rc);
838                 goto out;
839         }
840         cipher_name_len =
841                 strlen(mount_crypt_stat->global_default_cipher_name);
842         memcpy(crypt_stat->cipher,
843                mount_crypt_stat->global_default_cipher_name,
844                cipher_name_len);
845         crypt_stat->cipher[cipher_name_len] = '\0';
846         crypt_stat->key_size =
847                 mount_crypt_stat->global_default_cipher_key_size;
848         ecryptfs_generate_new_key(crypt_stat);
849         rc = ecryptfs_init_crypt_ctx(crypt_stat);
850         if (rc)
851                 ecryptfs_printk(KERN_ERR, "Error initializing cryptographic "
852                                 "context for cipher [%s]: rc = [%d]\n",
853                                 crypt_stat->cipher, rc);
854 out:
855         return rc;
856 }
857
858 /**
859  * ecryptfs_validate_marker - check for the ecryptfs marker
860  * @data: The data block in which to check
861  *
862  * Returns zero if marker found; -EINVAL if not found
863  */
864 static int ecryptfs_validate_marker(char *data)
865 {
866         u32 m_1, m_2;
867
868         m_1 = get_unaligned_be32(data);
869         m_2 = get_unaligned_be32(data + 4);
870         if ((m_1 ^ MAGIC_ECRYPTFS_MARKER) == m_2)
871                 return 0;
872         ecryptfs_printk(KERN_DEBUG, "m_1 = [0x%.8x]; m_2 = [0x%.8x]; "
873                         "MAGIC_ECRYPTFS_MARKER = [0x%.8x]\n", m_1, m_2,
874                         MAGIC_ECRYPTFS_MARKER);
875         ecryptfs_printk(KERN_DEBUG, "(m_1 ^ MAGIC_ECRYPTFS_MARKER) = "
876                         "[0x%.8x]\n", (m_1 ^ MAGIC_ECRYPTFS_MARKER));
877         return -EINVAL;
878 }
879
880 struct ecryptfs_flag_map_elem {
881         u32 file_flag;
882         u32 local_flag;
883 };
884
885 /* Add support for additional flags by adding elements here. */
886 static struct ecryptfs_flag_map_elem ecryptfs_flag_map[] = {
887         {0x00000001, ECRYPTFS_ENABLE_HMAC},
888         {0x00000002, ECRYPTFS_ENCRYPTED},
889         {0x00000004, ECRYPTFS_METADATA_IN_XATTR},
890         {0x00000008, ECRYPTFS_ENCRYPT_FILENAMES}
891 };
892
893 /**
894  * ecryptfs_process_flags
895  * @crypt_stat: The cryptographic context
896  * @page_virt: Source data to be parsed
897  * @bytes_read: Updated with the number of bytes read
898  *
899  * Returns zero on success; non-zero if the flag set is invalid
900  */
901 static int ecryptfs_process_flags(struct ecryptfs_crypt_stat *crypt_stat,
902                                   char *page_virt, int *bytes_read)
903 {
904         int rc = 0;
905         int i;
906         u32 flags;
907
908         flags = get_unaligned_be32(page_virt);
909         for (i = 0; i < ((sizeof(ecryptfs_flag_map)
910                           / sizeof(struct ecryptfs_flag_map_elem))); i++)
911                 if (flags & ecryptfs_flag_map[i].file_flag) {
912                         crypt_stat->flags |= ecryptfs_flag_map[i].local_flag;
913                 } else
914                         crypt_stat->flags &= ~(ecryptfs_flag_map[i].local_flag);
915         /* Version is in top 8 bits of the 32-bit flag vector */
916         crypt_stat->file_version = ((flags >> 24) & 0xFF);
917         (*bytes_read) = 4;
918         return rc;
919 }
920
921 /**
922  * write_ecryptfs_marker
923  * @page_virt: The pointer to in a page to begin writing the marker
924  * @written: Number of bytes written
925  *
926  * Marker = 0x3c81b7f5
927  */
928 static void write_ecryptfs_marker(char *page_virt, size_t *written)
929 {
930         u32 m_1, m_2;
931
932         get_random_bytes(&m_1, (MAGIC_ECRYPTFS_MARKER_SIZE_BYTES / 2));
933         m_2 = (m_1 ^ MAGIC_ECRYPTFS_MARKER);
934         put_unaligned_be32(m_1, page_virt);
935         page_virt += (MAGIC_ECRYPTFS_MARKER_SIZE_BYTES / 2);
936         put_unaligned_be32(m_2, page_virt);
937         (*written) = MAGIC_ECRYPTFS_MARKER_SIZE_BYTES;
938 }
939
940 void ecryptfs_write_crypt_stat_flags(char *page_virt,
941                                      struct ecryptfs_crypt_stat *crypt_stat,
942                                      size_t *written)
943 {
944         u32 flags = 0;
945         int i;
946
947         for (i = 0; i < ((sizeof(ecryptfs_flag_map)
948                           / sizeof(struct ecryptfs_flag_map_elem))); i++)
949                 if (crypt_stat->flags & ecryptfs_flag_map[i].local_flag)
950                         flags |= ecryptfs_flag_map[i].file_flag;
951         /* Version is in top 8 bits of the 32-bit flag vector */
952         flags |= ((((u8)crypt_stat->file_version) << 24) & 0xFF000000);
953         put_unaligned_be32(flags, page_virt);
954         (*written) = 4;
955 }
956
957 struct ecryptfs_cipher_code_str_map_elem {
958         char cipher_str[16];
959         u8 cipher_code;
960 };
961
962 /* Add support for additional ciphers by adding elements here. The
963  * cipher_code is whatever OpenPGP applicatoins use to identify the
964  * ciphers. List in order of probability. */
965 static struct ecryptfs_cipher_code_str_map_elem
966 ecryptfs_cipher_code_str_map[] = {
967         {"aes",RFC2440_CIPHER_AES_128 },
968         {"blowfish", RFC2440_CIPHER_BLOWFISH},
969         {"des3_ede", RFC2440_CIPHER_DES3_EDE},
970         {"cast5", RFC2440_CIPHER_CAST_5},
971         {"twofish", RFC2440_CIPHER_TWOFISH},
972         {"cast6", RFC2440_CIPHER_CAST_6},
973         {"aes", RFC2440_CIPHER_AES_192},
974         {"aes", RFC2440_CIPHER_AES_256}
975 };
976
977 /**
978  * ecryptfs_code_for_cipher_string
979  * @cipher_name: The string alias for the cipher
980  * @key_bytes: Length of key in bytes; used for AES code selection
981  *
982  * Returns zero on no match, or the cipher code on match
983  */
984 u8 ecryptfs_code_for_cipher_string(char *cipher_name, size_t key_bytes)
985 {
986         int i;
987         u8 code = 0;
988         struct ecryptfs_cipher_code_str_map_elem *map =
989                 ecryptfs_cipher_code_str_map;
990
991         if (strcmp(cipher_name, "aes") == 0) {
992                 switch (key_bytes) {
993                 case 16:
994                         code = RFC2440_CIPHER_AES_128;
995                         break;
996                 case 24:
997                         code = RFC2440_CIPHER_AES_192;
998                         break;
999                 case 32:
1000                         code = RFC2440_CIPHER_AES_256;
1001                 }
1002         } else {
1003                 for (i = 0; i < ARRAY_SIZE(ecryptfs_cipher_code_str_map); i++)
1004                         if (strcmp(cipher_name, map[i].cipher_str) == 0) {
1005                                 code = map[i].cipher_code;
1006                                 break;
1007                         }
1008         }
1009         return code;
1010 }
1011
1012 /**
1013  * ecryptfs_cipher_code_to_string
1014  * @str: Destination to write out the cipher name
1015  * @cipher_code: The code to convert to cipher name string
1016  *
1017  * Returns zero on success
1018  */
1019 int ecryptfs_cipher_code_to_string(char *str, u8 cipher_code)
1020 {
1021         int rc = 0;
1022         int i;
1023
1024         str[0] = '\0';
1025         for (i = 0; i < ARRAY_SIZE(ecryptfs_cipher_code_str_map); i++)
1026                 if (cipher_code == ecryptfs_cipher_code_str_map[i].cipher_code)
1027                         strcpy(str, ecryptfs_cipher_code_str_map[i].cipher_str);
1028         if (str[0] == '\0') {
1029                 ecryptfs_printk(KERN_WARNING, "Cipher code not recognized: "
1030                                 "[%d]\n", cipher_code);
1031                 rc = -EINVAL;
1032         }
1033         return rc;
1034 }
1035
1036 int ecryptfs_read_and_validate_header_region(struct inode *inode)
1037 {
1038         u8 file_size[ECRYPTFS_SIZE_AND_MARKER_BYTES];
1039         u8 *marker = file_size + ECRYPTFS_FILE_SIZE_BYTES;
1040         int rc;
1041
1042         rc = ecryptfs_read_lower(file_size, 0, ECRYPTFS_SIZE_AND_MARKER_BYTES,
1043                                  inode);
1044         if (rc < 0)
1045                 return rc;
1046         else if (rc < ECRYPTFS_SIZE_AND_MARKER_BYTES)
1047                 return -EINVAL;
1048         rc = ecryptfs_validate_marker(marker);
1049         if (!rc)
1050                 ecryptfs_i_size_init(file_size, inode);
1051         return rc;
1052 }
1053
1054 void
1055 ecryptfs_write_header_metadata(char *virt,
1056                                struct ecryptfs_crypt_stat *crypt_stat,
1057                                size_t *written)
1058 {
1059         u32 header_extent_size;
1060         u16 num_header_extents_at_front;
1061
1062         header_extent_size = (u32)crypt_stat->extent_size;
1063         num_header_extents_at_front =
1064                 (u16)(crypt_stat->metadata_size / crypt_stat->extent_size);
1065         put_unaligned_be32(header_extent_size, virt);
1066         virt += 4;
1067         put_unaligned_be16(num_header_extents_at_front, virt);
1068         (*written) = 6;
1069 }
1070
1071 struct kmem_cache *ecryptfs_header_cache;
1072
1073 /**
1074  * ecryptfs_write_headers_virt
1075  * @page_virt: The virtual address to write the headers to
1076  * @max: The size of memory allocated at page_virt
1077  * @size: Set to the number of bytes written by this function
1078  * @crypt_stat: The cryptographic context
1079  * @ecryptfs_dentry: The eCryptfs dentry
1080  *
1081  * Format version: 1
1082  *
1083  *   Header Extent:
1084  *     Octets 0-7:        Unencrypted file size (big-endian)
1085  *     Octets 8-15:       eCryptfs special marker
1086  *     Octets 16-19:      Flags
1087  *      Octet 16:         File format version number (between 0 and 255)
1088  *      Octets 17-18:     Reserved
1089  *      Octet 19:         Bit 1 (lsb): Reserved
1090  *                        Bit 2: Encrypted?
1091  *                        Bits 3-8: Reserved
1092  *     Octets 20-23:      Header extent size (big-endian)
1093  *     Octets 24-25:      Number of header extents at front of file
1094  *                        (big-endian)
1095  *     Octet  26:         Begin RFC 2440 authentication token packet set
1096  *   Data Extent 0:
1097  *     Lower data (CBC encrypted)
1098  *   Data Extent 1:
1099  *     Lower data (CBC encrypted)
1100  *   ...
1101  *
1102  * Returns zero on success
1103  */
1104 static int ecryptfs_write_headers_virt(char *page_virt, size_t max,
1105                                        size_t *size,
1106                                        struct ecryptfs_crypt_stat *crypt_stat,
1107                                        struct dentry *ecryptfs_dentry)
1108 {
1109         int rc;
1110         size_t written;
1111         size_t offset;
1112
1113         offset = ECRYPTFS_FILE_SIZE_BYTES;
1114         write_ecryptfs_marker((page_virt + offset), &written);
1115         offset += written;
1116         ecryptfs_write_crypt_stat_flags((page_virt + offset), crypt_stat,
1117                                         &written);
1118         offset += written;
1119         ecryptfs_write_header_metadata((page_virt + offset), crypt_stat,
1120                                        &written);
1121         offset += written;
1122         rc = ecryptfs_generate_key_packet_set((page_virt + offset), crypt_stat,
1123                                               ecryptfs_dentry, &written,
1124                                               max - offset);
1125         if (rc)
1126                 ecryptfs_printk(KERN_WARNING, "Error generating key packet "
1127                                 "set; rc = [%d]\n", rc);
1128         if (size) {
1129                 offset += written;
1130                 *size = offset;
1131         }
1132         return rc;
1133 }
1134
1135 static int
1136 ecryptfs_write_metadata_to_contents(struct inode *ecryptfs_inode,
1137                                     char *virt, size_t virt_len)
1138 {
1139         int rc;
1140
1141         rc = ecryptfs_write_lower(ecryptfs_inode, virt,
1142                                   0, virt_len);
1143         if (rc < 0)
1144                 printk(KERN_ERR "%s: Error attempting to write header "
1145                        "information to lower file; rc = [%d]\n", __func__, rc);
1146         else
1147                 rc = 0;
1148         return rc;
1149 }
1150
1151 static int
1152 ecryptfs_write_metadata_to_xattr(struct dentry *ecryptfs_dentry,
1153                                  char *page_virt, size_t size)
1154 {
1155         int rc;
1156
1157         rc = ecryptfs_setxattr(ecryptfs_dentry, ECRYPTFS_XATTR_NAME, page_virt,
1158                                size, 0);
1159         return rc;
1160 }
1161
1162 static unsigned long ecryptfs_get_zeroed_pages(gfp_t gfp_mask,
1163                                                unsigned int order)
1164 {
1165         struct page *page;
1166
1167         page = alloc_pages(gfp_mask | __GFP_ZERO, order);
1168         if (page)
1169                 return (unsigned long) page_address(page);
1170         return 0;
1171 }
1172
1173 /**
1174  * ecryptfs_write_metadata
1175  * @ecryptfs_dentry: The eCryptfs dentry, which should be negative
1176  * @ecryptfs_inode: The newly created eCryptfs inode
1177  *
1178  * Write the file headers out.  This will likely involve a userspace
1179  * callout, in which the session key is encrypted with one or more
1180  * public keys and/or the passphrase necessary to do the encryption is
1181  * retrieved via a prompt.  Exactly what happens at this point should
1182  * be policy-dependent.
1183  *
1184  * Returns zero on success; non-zero on error
1185  */
1186 int ecryptfs_write_metadata(struct dentry *ecryptfs_dentry,
1187                             struct inode *ecryptfs_inode)
1188 {
1189         struct ecryptfs_crypt_stat *crypt_stat =
1190                 &ecryptfs_inode_to_private(ecryptfs_inode)->crypt_stat;
1191         unsigned int order;
1192         char *virt;
1193         size_t virt_len;
1194         size_t size = 0;
1195         int rc = 0;
1196
1197         if (likely(crypt_stat->flags & ECRYPTFS_ENCRYPTED)) {
1198                 if (!(crypt_stat->flags & ECRYPTFS_KEY_VALID)) {
1199                         printk(KERN_ERR "Key is invalid; bailing out\n");
1200                         rc = -EINVAL;
1201                         goto out;
1202                 }
1203         } else {
1204                 printk(KERN_WARNING "%s: Encrypted flag not set\n",
1205                        __func__);
1206                 rc = -EINVAL;
1207                 goto out;
1208         }
1209         virt_len = crypt_stat->metadata_size;
1210         order = get_order(virt_len);
1211         /* Released in this function */
1212         virt = (char *)ecryptfs_get_zeroed_pages(GFP_KERNEL, order);
1213         if (!virt) {
1214                 printk(KERN_ERR "%s: Out of memory\n", __func__);
1215                 rc = -ENOMEM;
1216                 goto out;
1217         }
1218         /* Zeroed page ensures the in-header unencrypted i_size is set to 0 */
1219         rc = ecryptfs_write_headers_virt(virt, virt_len, &size, crypt_stat,
1220                                          ecryptfs_dentry);
1221         if (unlikely(rc)) {
1222                 printk(KERN_ERR "%s: Error whilst writing headers; rc = [%d]\n",
1223                        __func__, rc);
1224                 goto out_free;
1225         }
1226         if (crypt_stat->flags & ECRYPTFS_METADATA_IN_XATTR)
1227                 rc = ecryptfs_write_metadata_to_xattr(ecryptfs_dentry, virt,
1228                                                       size);
1229         else
1230                 rc = ecryptfs_write_metadata_to_contents(ecryptfs_inode, virt,
1231                                                          virt_len);
1232         if (rc) {
1233                 printk(KERN_ERR "%s: Error writing metadata out to lower file; "
1234                        "rc = [%d]\n", __func__, rc);
1235                 goto out_free;
1236         }
1237 out_free:
1238         free_pages((unsigned long)virt, order);
1239 out:
1240         return rc;
1241 }
1242
1243 #define ECRYPTFS_DONT_VALIDATE_HEADER_SIZE 0
1244 #define ECRYPTFS_VALIDATE_HEADER_SIZE 1
1245 static int parse_header_metadata(struct ecryptfs_crypt_stat *crypt_stat,
1246                                  char *virt, int *bytes_read,
1247                                  int validate_header_size)
1248 {
1249         int rc = 0;
1250         u32 header_extent_size;
1251         u16 num_header_extents_at_front;
1252
1253         header_extent_size = get_unaligned_be32(virt);
1254         virt += sizeof(__be32);
1255         num_header_extents_at_front = get_unaligned_be16(virt);
1256         crypt_stat->metadata_size = (((size_t)num_header_extents_at_front
1257                                      * (size_t)header_extent_size));
1258         (*bytes_read) = (sizeof(__be32) + sizeof(__be16));
1259         if ((validate_header_size == ECRYPTFS_VALIDATE_HEADER_SIZE)
1260             && (crypt_stat->metadata_size
1261                 < ECRYPTFS_MINIMUM_HEADER_EXTENT_SIZE)) {
1262                 rc = -EINVAL;
1263                 printk(KERN_WARNING "Invalid header size: [%zd]\n",
1264                        crypt_stat->metadata_size);
1265         }
1266         return rc;
1267 }
1268
1269 /**
1270  * set_default_header_data
1271  * @crypt_stat: The cryptographic context
1272  *
1273  * For version 0 file format; this function is only for backwards
1274  * compatibility for files created with the prior versions of
1275  * eCryptfs.
1276  */
1277 static void set_default_header_data(struct ecryptfs_crypt_stat *crypt_stat)
1278 {
1279         crypt_stat->metadata_size = ECRYPTFS_MINIMUM_HEADER_EXTENT_SIZE;
1280 }
1281
1282 void ecryptfs_i_size_init(const char *page_virt, struct inode *inode)
1283 {
1284         struct ecryptfs_mount_crypt_stat *mount_crypt_stat;
1285         struct ecryptfs_crypt_stat *crypt_stat;
1286         u64 file_size;
1287
1288         crypt_stat = &ecryptfs_inode_to_private(inode)->crypt_stat;
1289         mount_crypt_stat =
1290                 &ecryptfs_superblock_to_private(inode->i_sb)->mount_crypt_stat;
1291         if (mount_crypt_stat->flags & ECRYPTFS_ENCRYPTED_VIEW_ENABLED) {
1292                 file_size = i_size_read(ecryptfs_inode_to_lower(inode));
1293                 if (crypt_stat->flags & ECRYPTFS_METADATA_IN_XATTR)
1294                         file_size += crypt_stat->metadata_size;
1295         } else
1296                 file_size = get_unaligned_be64(page_virt);
1297         i_size_write(inode, (loff_t)file_size);
1298         crypt_stat->flags |= ECRYPTFS_I_SIZE_INITIALIZED;
1299 }
1300
1301 /**
1302  * ecryptfs_read_headers_virt
1303  * @page_virt: The virtual address into which to read the headers
1304  * @crypt_stat: The cryptographic context
1305  * @ecryptfs_dentry: The eCryptfs dentry
1306  * @validate_header_size: Whether to validate the header size while reading
1307  *
1308  * Read/parse the header data. The header format is detailed in the
1309  * comment block for the ecryptfs_write_headers_virt() function.
1310  *
1311  * Returns zero on success
1312  */
1313 static int ecryptfs_read_headers_virt(char *page_virt,
1314                                       struct ecryptfs_crypt_stat *crypt_stat,
1315                                       struct dentry *ecryptfs_dentry,
1316                                       int validate_header_size)
1317 {
1318         int rc = 0;
1319         int offset;
1320         int bytes_read;
1321
1322         ecryptfs_set_default_sizes(crypt_stat);
1323         crypt_stat->mount_crypt_stat = &ecryptfs_superblock_to_private(
1324                 ecryptfs_dentry->d_sb)->mount_crypt_stat;
1325         offset = ECRYPTFS_FILE_SIZE_BYTES;
1326         rc = ecryptfs_validate_marker(page_virt + offset);
1327         if (rc)
1328                 goto out;
1329         if (!(crypt_stat->flags & ECRYPTFS_I_SIZE_INITIALIZED))
1330                 ecryptfs_i_size_init(page_virt, d_inode(ecryptfs_dentry));
1331         offset += MAGIC_ECRYPTFS_MARKER_SIZE_BYTES;
1332         rc = ecryptfs_process_flags(crypt_stat, (page_virt + offset),
1333                                     &bytes_read);
1334         if (rc) {
1335                 ecryptfs_printk(KERN_WARNING, "Error processing flags\n");
1336                 goto out;
1337         }
1338         if (crypt_stat->file_version > ECRYPTFS_SUPPORTED_FILE_VERSION) {
1339                 ecryptfs_printk(KERN_WARNING, "File version is [%d]; only "
1340                                 "file version [%d] is supported by this "
1341                                 "version of eCryptfs\n",
1342                                 crypt_stat->file_version,
1343                                 ECRYPTFS_SUPPORTED_FILE_VERSION);
1344                 rc = -EINVAL;
1345                 goto out;
1346         }
1347         offset += bytes_read;
1348         if (crypt_stat->file_version >= 1) {
1349                 rc = parse_header_metadata(crypt_stat, (page_virt + offset),
1350                                            &bytes_read, validate_header_size);
1351                 if (rc) {
1352                         ecryptfs_printk(KERN_WARNING, "Error reading header "
1353                                         "metadata; rc = [%d]\n", rc);
1354                 }
1355                 offset += bytes_read;
1356         } else
1357                 set_default_header_data(crypt_stat);
1358         rc = ecryptfs_parse_packet_set(crypt_stat, (page_virt + offset),
1359                                        ecryptfs_dentry);
1360 out:
1361         return rc;
1362 }
1363
1364 /**
1365  * ecryptfs_read_xattr_region
1366  * @page_virt: The vitual address into which to read the xattr data
1367  * @ecryptfs_inode: The eCryptfs inode
1368  *
1369  * Attempts to read the crypto metadata from the extended attribute
1370  * region of the lower file.
1371  *
1372  * Returns zero on success; non-zero on error
1373  */
1374 int ecryptfs_read_xattr_region(char *page_virt, struct inode *ecryptfs_inode)
1375 {
1376         struct dentry *lower_dentry =
1377                 ecryptfs_inode_to_private(ecryptfs_inode)->lower_file->f_path.dentry;
1378         ssize_t size;
1379         int rc = 0;
1380
1381         size = ecryptfs_getxattr_lower(lower_dentry, ECRYPTFS_XATTR_NAME,
1382                                        page_virt, ECRYPTFS_DEFAULT_EXTENT_SIZE);
1383         if (size < 0) {
1384                 if (unlikely(ecryptfs_verbosity > 0))
1385                         printk(KERN_INFO "Error attempting to read the [%s] "
1386                                "xattr from the lower file; return value = "
1387                                "[%zd]\n", ECRYPTFS_XATTR_NAME, size);
1388                 rc = -EINVAL;
1389                 goto out;
1390         }
1391 out:
1392         return rc;
1393 }
1394
1395 int ecryptfs_read_and_validate_xattr_region(struct dentry *dentry,
1396                                             struct inode *inode)
1397 {
1398         u8 file_size[ECRYPTFS_SIZE_AND_MARKER_BYTES];
1399         u8 *marker = file_size + ECRYPTFS_FILE_SIZE_BYTES;
1400         int rc;
1401
1402         rc = ecryptfs_getxattr_lower(ecryptfs_dentry_to_lower(dentry),
1403                                      ECRYPTFS_XATTR_NAME, file_size,
1404                                      ECRYPTFS_SIZE_AND_MARKER_BYTES);
1405         if (rc < 0)
1406                 return rc;
1407         else if (rc < ECRYPTFS_SIZE_AND_MARKER_BYTES)
1408                 return -EINVAL;
1409         rc = ecryptfs_validate_marker(marker);
1410         if (!rc)
1411                 ecryptfs_i_size_init(file_size, inode);
1412         return rc;
1413 }
1414
1415 /**
1416  * ecryptfs_read_metadata
1417  *
1418  * Common entry point for reading file metadata. From here, we could
1419  * retrieve the header information from the header region of the file,
1420  * the xattr region of the file, or some other repostory that is
1421  * stored separately from the file itself. The current implementation
1422  * supports retrieving the metadata information from the file contents
1423  * and from the xattr region.
1424  *
1425  * Returns zero if valid headers found and parsed; non-zero otherwise
1426  */
1427 int ecryptfs_read_metadata(struct dentry *ecryptfs_dentry)
1428 {
1429         int rc;
1430         char *page_virt;
1431         struct inode *ecryptfs_inode = d_inode(ecryptfs_dentry);
1432         struct ecryptfs_crypt_stat *crypt_stat =
1433             &ecryptfs_inode_to_private(ecryptfs_inode)->crypt_stat;
1434         struct ecryptfs_mount_crypt_stat *mount_crypt_stat =
1435                 &ecryptfs_superblock_to_private(
1436                         ecryptfs_dentry->d_sb)->mount_crypt_stat;
1437
1438         ecryptfs_copy_mount_wide_flags_to_inode_flags(crypt_stat,
1439                                                       mount_crypt_stat);
1440         /* Read the first page from the underlying file */
1441         page_virt = kmem_cache_alloc(ecryptfs_header_cache, GFP_USER);
1442         if (!page_virt) {
1443                 rc = -ENOMEM;
1444                 printk(KERN_ERR "%s: Unable to allocate page_virt\n",
1445                        __func__);
1446                 goto out;
1447         }
1448         rc = ecryptfs_read_lower(page_virt, 0, crypt_stat->extent_size,
1449                                  ecryptfs_inode);
1450         if (rc >= 0)
1451                 rc = ecryptfs_read_headers_virt(page_virt, crypt_stat,
1452                                                 ecryptfs_dentry,
1453                                                 ECRYPTFS_VALIDATE_HEADER_SIZE);
1454         if (rc) {
1455                 /* metadata is not in the file header, so try xattrs */
1456                 memset(page_virt, 0, PAGE_CACHE_SIZE);
1457                 rc = ecryptfs_read_xattr_region(page_virt, ecryptfs_inode);
1458                 if (rc) {
1459                         printk(KERN_DEBUG "Valid eCryptfs headers not found in "
1460                                "file header region or xattr region, inode %lu\n",
1461                                 ecryptfs_inode->i_ino);
1462                         rc = -EINVAL;
1463                         goto out;
1464                 }
1465                 rc = ecryptfs_read_headers_virt(page_virt, crypt_stat,
1466                                                 ecryptfs_dentry,
1467                                                 ECRYPTFS_DONT_VALIDATE_HEADER_SIZE);
1468                 if (rc) {
1469                         printk(KERN_DEBUG "Valid eCryptfs headers not found in "
1470                                "file xattr region either, inode %lu\n",
1471                                 ecryptfs_inode->i_ino);
1472                         rc = -EINVAL;
1473                 }
1474                 if (crypt_stat->mount_crypt_stat->flags
1475                     & ECRYPTFS_XATTR_METADATA_ENABLED) {
1476                         crypt_stat->flags |= ECRYPTFS_METADATA_IN_XATTR;
1477                 } else {
1478                         printk(KERN_WARNING "Attempt to access file with "
1479                                "crypto metadata only in the extended attribute "
1480                                "region, but eCryptfs was mounted without "
1481                                "xattr support enabled. eCryptfs will not treat "
1482                                "this like an encrypted file, inode %lu\n",
1483                                 ecryptfs_inode->i_ino);
1484                         rc = -EINVAL;
1485                 }
1486         }
1487 out:
1488         if (page_virt) {
1489                 memset(page_virt, 0, PAGE_CACHE_SIZE);
1490                 kmem_cache_free(ecryptfs_header_cache, page_virt);
1491         }
1492         return rc;
1493 }
1494
1495 /**
1496  * ecryptfs_encrypt_filename - encrypt filename
1497  *
1498  * CBC-encrypts the filename. We do not want to encrypt the same
1499  * filename with the same key and IV, which may happen with hard
1500  * links, so we prepend random bits to each filename.
1501  *
1502  * Returns zero on success; non-zero otherwise
1503  */
1504 static int
1505 ecryptfs_encrypt_filename(struct ecryptfs_filename *filename,
1506                           struct ecryptfs_crypt_stat *crypt_stat,
1507                           struct ecryptfs_mount_crypt_stat *mount_crypt_stat)
1508 {
1509         int rc = 0;
1510
1511         filename->encrypted_filename = NULL;
1512         filename->encrypted_filename_size = 0;
1513         if ((crypt_stat && (crypt_stat->flags & ECRYPTFS_ENCFN_USE_MOUNT_FNEK))
1514             || (mount_crypt_stat && (mount_crypt_stat->flags
1515                                      & ECRYPTFS_GLOBAL_ENCFN_USE_MOUNT_FNEK))) {
1516                 size_t packet_size;
1517                 size_t remaining_bytes;
1518
1519                 rc = ecryptfs_write_tag_70_packet(
1520                         NULL, NULL,
1521                         &filename->encrypted_filename_size,
1522                         mount_crypt_stat, NULL,
1523                         filename->filename_size);
1524                 if (rc) {
1525                         printk(KERN_ERR "%s: Error attempting to get packet "
1526                                "size for tag 72; rc = [%d]\n", __func__,
1527                                rc);
1528                         filename->encrypted_filename_size = 0;
1529                         goto out;
1530                 }
1531                 filename->encrypted_filename =
1532                         kmalloc(filename->encrypted_filename_size, GFP_KERNEL);
1533                 if (!filename->encrypted_filename) {
1534                         printk(KERN_ERR "%s: Out of memory whilst attempting "
1535                                "to kmalloc [%zd] bytes\n", __func__,
1536                                filename->encrypted_filename_size);
1537                         rc = -ENOMEM;
1538                         goto out;
1539                 }
1540                 remaining_bytes = filename->encrypted_filename_size;
1541                 rc = ecryptfs_write_tag_70_packet(filename->encrypted_filename,
1542                                                   &remaining_bytes,
1543                                                   &packet_size,
1544                                                   mount_crypt_stat,
1545                                                   filename->filename,
1546                                                   filename->filename_size);
1547                 if (rc) {
1548                         printk(KERN_ERR "%s: Error attempting to generate "
1549                                "tag 70 packet; rc = [%d]\n", __func__,
1550                                rc);
1551                         kfree(filename->encrypted_filename);
1552                         filename->encrypted_filename = NULL;
1553                         filename->encrypted_filename_size = 0;
1554                         goto out;
1555                 }
1556                 filename->encrypted_filename_size = packet_size;
1557         } else {
1558                 printk(KERN_ERR "%s: No support for requested filename "
1559                        "encryption method in this release\n", __func__);
1560                 rc = -EOPNOTSUPP;
1561                 goto out;
1562         }
1563 out:
1564         return rc;
1565 }
1566
1567 static int ecryptfs_copy_filename(char **copied_name, size_t *copied_name_size,
1568                                   const char *name, size_t name_size)
1569 {
1570         int rc = 0;
1571
1572         (*copied_name) = kmalloc((name_size + 1), GFP_KERNEL);
1573         if (!(*copied_name)) {
1574                 rc = -ENOMEM;
1575                 goto out;
1576         }
1577         memcpy((void *)(*copied_name), (void *)name, name_size);
1578         (*copied_name)[(name_size)] = '\0';     /* Only for convenience
1579                                                  * in printing out the
1580                                                  * string in debug
1581                                                  * messages */
1582         (*copied_name_size) = name_size;
1583 out:
1584         return rc;
1585 }
1586
1587 /**
1588  * ecryptfs_process_key_cipher - Perform key cipher initialization.
1589  * @key_tfm: Crypto context for key material, set by this function
1590  * @cipher_name: Name of the cipher
1591  * @key_size: Size of the key in bytes
1592  *
1593  * Returns zero on success. Any crypto_tfm structs allocated here
1594  * should be released by other functions, such as on a superblock put
1595  * event, regardless of whether this function succeeds for fails.
1596  */
1597 static int
1598 ecryptfs_process_key_cipher(struct crypto_blkcipher **key_tfm,
1599                             char *cipher_name, size_t *key_size)
1600 {
1601         char dummy_key[ECRYPTFS_MAX_KEY_BYTES];
1602         char *full_alg_name = NULL;
1603         int rc;
1604
1605         *key_tfm = NULL;
1606         if (*key_size > ECRYPTFS_MAX_KEY_BYTES) {
1607                 rc = -EINVAL;
1608                 printk(KERN_ERR "Requested key size is [%zd] bytes; maximum "
1609                       "allowable is [%d]\n", *key_size, ECRYPTFS_MAX_KEY_BYTES);
1610                 goto out;
1611         }
1612         rc = ecryptfs_crypto_api_algify_cipher_name(&full_alg_name, cipher_name,
1613                                                     "ecb");
1614         if (rc)
1615                 goto out;
1616         *key_tfm = crypto_alloc_blkcipher(full_alg_name, 0, CRYPTO_ALG_ASYNC);
1617         if (IS_ERR(*key_tfm)) {
1618                 rc = PTR_ERR(*key_tfm);
1619                 printk(KERN_ERR "Unable to allocate crypto cipher with name "
1620                        "[%s]; rc = [%d]\n", full_alg_name, rc);
1621                 goto out;
1622         }
1623         crypto_blkcipher_set_flags(*key_tfm, CRYPTO_TFM_REQ_WEAK_KEY);
1624         if (*key_size == 0) {
1625                 struct blkcipher_alg *alg = crypto_blkcipher_alg(*key_tfm);
1626
1627                 *key_size = alg->max_keysize;
1628         }
1629         get_random_bytes(dummy_key, *key_size);
1630         rc = crypto_blkcipher_setkey(*key_tfm, dummy_key, *key_size);
1631         if (rc) {
1632                 printk(KERN_ERR "Error attempting to set key of size [%zd] for "
1633                        "cipher [%s]; rc = [%d]\n", *key_size, full_alg_name,
1634                        rc);
1635                 rc = -EINVAL;
1636                 goto out;
1637         }
1638 out:
1639         kfree(full_alg_name);
1640         return rc;
1641 }
1642
1643 struct kmem_cache *ecryptfs_key_tfm_cache;
1644 static struct list_head key_tfm_list;
1645 struct mutex key_tfm_list_mutex;
1646
1647 int __init ecryptfs_init_crypto(void)
1648 {
1649         mutex_init(&key_tfm_list_mutex);
1650         INIT_LIST_HEAD(&key_tfm_list);
1651         return 0;
1652 }
1653
1654 /**
1655  * ecryptfs_destroy_crypto - free all cached key_tfms on key_tfm_list
1656  *
1657  * Called only at module unload time
1658  */
1659 int ecryptfs_destroy_crypto(void)
1660 {
1661         struct ecryptfs_key_tfm *key_tfm, *key_tfm_tmp;
1662
1663         mutex_lock(&key_tfm_list_mutex);
1664         list_for_each_entry_safe(key_tfm, key_tfm_tmp, &key_tfm_list,
1665                                  key_tfm_list) {
1666                 list_del(&key_tfm->key_tfm_list);
1667                 if (key_tfm->key_tfm)
1668                         crypto_free_blkcipher(key_tfm->key_tfm);
1669                 kmem_cache_free(ecryptfs_key_tfm_cache, key_tfm);
1670         }
1671         mutex_unlock(&key_tfm_list_mutex);
1672         return 0;
1673 }
1674
1675 int
1676 ecryptfs_add_new_key_tfm(struct ecryptfs_key_tfm **key_tfm, char *cipher_name,
1677                          size_t key_size)
1678 {
1679         struct ecryptfs_key_tfm *tmp_tfm;
1680         int rc = 0;
1681
1682         BUG_ON(!mutex_is_locked(&key_tfm_list_mutex));
1683
1684         tmp_tfm = kmem_cache_alloc(ecryptfs_key_tfm_cache, GFP_KERNEL);
1685         if (key_tfm != NULL)
1686                 (*key_tfm) = tmp_tfm;
1687         if (!tmp_tfm) {
1688                 rc = -ENOMEM;
1689                 printk(KERN_ERR "Error attempting to allocate from "
1690                        "ecryptfs_key_tfm_cache\n");
1691                 goto out;
1692         }
1693         mutex_init(&tmp_tfm->key_tfm_mutex);
1694         strncpy(tmp_tfm->cipher_name, cipher_name,
1695                 ECRYPTFS_MAX_CIPHER_NAME_SIZE);
1696         tmp_tfm->cipher_name[ECRYPTFS_MAX_CIPHER_NAME_SIZE] = '\0';
1697         tmp_tfm->key_size = key_size;
1698         rc = ecryptfs_process_key_cipher(&tmp_tfm->key_tfm,
1699                                          tmp_tfm->cipher_name,
1700                                          &tmp_tfm->key_size);
1701         if (rc) {
1702                 printk(KERN_ERR "Error attempting to initialize key TFM "
1703                        "cipher with name = [%s]; rc = [%d]\n",
1704                        tmp_tfm->cipher_name, rc);
1705                 kmem_cache_free(ecryptfs_key_tfm_cache, tmp_tfm);
1706                 if (key_tfm != NULL)
1707                         (*key_tfm) = NULL;
1708                 goto out;
1709         }
1710         list_add(&tmp_tfm->key_tfm_list, &key_tfm_list);
1711 out:
1712         return rc;
1713 }
1714
1715 /**
1716  * ecryptfs_tfm_exists - Search for existing tfm for cipher_name.
1717  * @cipher_name: the name of the cipher to search for
1718  * @key_tfm: set to corresponding tfm if found
1719  *
1720  * Searches for cached key_tfm matching @cipher_name
1721  * Must be called with &key_tfm_list_mutex held
1722  * Returns 1 if found, with @key_tfm set
1723  * Returns 0 if not found, with @key_tfm set to NULL
1724  */
1725 int ecryptfs_tfm_exists(char *cipher_name, struct ecryptfs_key_tfm **key_tfm)
1726 {
1727         struct ecryptfs_key_tfm *tmp_key_tfm;
1728
1729         BUG_ON(!mutex_is_locked(&key_tfm_list_mutex));
1730
1731         list_for_each_entry(tmp_key_tfm, &key_tfm_list, key_tfm_list) {
1732                 if (strcmp(tmp_key_tfm->cipher_name, cipher_name) == 0) {
1733                         if (key_tfm)
1734                                 (*key_tfm) = tmp_key_tfm;
1735                         return 1;
1736                 }
1737         }
1738         if (key_tfm)
1739                 (*key_tfm) = NULL;
1740         return 0;
1741 }
1742
1743 /**
1744  * ecryptfs_get_tfm_and_mutex_for_cipher_name
1745  *
1746  * @tfm: set to cached tfm found, or new tfm created
1747  * @tfm_mutex: set to mutex for cached tfm found, or new tfm created
1748  * @cipher_name: the name of the cipher to search for and/or add
1749  *
1750  * Sets pointers to @tfm & @tfm_mutex matching @cipher_name.
1751  * Searches for cached item first, and creates new if not found.
1752  * Returns 0 on success, non-zero if adding new cipher failed
1753  */
1754 int ecryptfs_get_tfm_and_mutex_for_cipher_name(struct crypto_blkcipher **tfm,
1755                                                struct mutex **tfm_mutex,
1756                                                char *cipher_name)
1757 {
1758         struct ecryptfs_key_tfm *key_tfm;
1759         int rc = 0;
1760
1761         (*tfm) = NULL;
1762         (*tfm_mutex) = NULL;
1763
1764         mutex_lock(&key_tfm_list_mutex);
1765         if (!ecryptfs_tfm_exists(cipher_name, &key_tfm)) {
1766                 rc = ecryptfs_add_new_key_tfm(&key_tfm, cipher_name, 0);
1767                 if (rc) {
1768                         printk(KERN_ERR "Error adding new key_tfm to list; "
1769                                         "rc = [%d]\n", rc);
1770                         goto out;
1771                 }
1772         }
1773         (*tfm) = key_tfm->key_tfm;
1774         (*tfm_mutex) = &key_tfm->key_tfm_mutex;
1775 out:
1776         mutex_unlock(&key_tfm_list_mutex);
1777         return rc;
1778 }
1779
1780 /* 64 characters forming a 6-bit target field */
1781 static unsigned char *portable_filename_chars = ("-.0123456789ABCD"
1782                                                  "EFGHIJKLMNOPQRST"
1783                                                  "UVWXYZabcdefghij"
1784                                                  "klmnopqrstuvwxyz");
1785
1786 /* We could either offset on every reverse map or just pad some 0x00's
1787  * at the front here */
1788 static const unsigned char filename_rev_map[256] = {
1789         0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, /* 7 */
1790         0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, /* 15 */
1791         0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, /* 23 */
1792         0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, /* 31 */
1793         0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, /* 39 */
1794         0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x01, 0x00, /* 47 */
1795         0x02, 0x03, 0x04, 0x05, 0x06, 0x07, 0x08, 0x09, /* 55 */
1796         0x0A, 0x0B, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, /* 63 */
1797         0x00, 0x0C, 0x0D, 0x0E, 0x0F, 0x10, 0x11, 0x12, /* 71 */
1798         0x13, 0x14, 0x15, 0x16, 0x17, 0x18, 0x19, 0x1A, /* 79 */
1799         0x1B, 0x1C, 0x1D, 0x1E, 0x1F, 0x20, 0x21, 0x22, /* 87 */
1800         0x23, 0x24, 0x25, 0x00, 0x00, 0x00, 0x00, 0x00, /* 95 */
1801         0x00, 0x26, 0x27, 0x28, 0x29, 0x2A, 0x2B, 0x2C, /* 103 */
1802         0x2D, 0x2E, 0x2F, 0x30, 0x31, 0x32, 0x33, 0x34, /* 111 */
1803         0x35, 0x36, 0x37, 0x38, 0x39, 0x3A, 0x3B, 0x3C, /* 119 */
1804         0x3D, 0x3E, 0x3F /* 123 - 255 initialized to 0x00 */
1805 };
1806
1807 /**
1808  * ecryptfs_encode_for_filename
1809  * @dst: Destination location for encoded filename
1810  * @dst_size: Size of the encoded filename in bytes
1811  * @src: Source location for the filename to encode
1812  * @src_size: Size of the source in bytes
1813  */
1814 static void ecryptfs_encode_for_filename(unsigned char *dst, size_t *dst_size,
1815                                   unsigned char *src, size_t src_size)
1816 {
1817         size_t num_blocks;
1818         size_t block_num = 0;
1819         size_t dst_offset = 0;
1820         unsigned char last_block[3];
1821
1822         if (src_size == 0) {
1823                 (*dst_size) = 0;
1824                 goto out;
1825         }
1826         num_blocks = (src_size / 3);
1827         if ((src_size % 3) == 0) {
1828                 memcpy(last_block, (&src[src_size - 3]), 3);
1829         } else {
1830                 num_blocks++;
1831                 last_block[2] = 0x00;
1832                 switch (src_size % 3) {
1833                 case 1:
1834                         last_block[0] = src[src_size - 1];
1835                         last_block[1] = 0x00;
1836                         break;
1837                 case 2:
1838                         last_block[0] = src[src_size - 2];
1839                         last_block[1] = src[src_size - 1];
1840                 }
1841         }
1842         (*dst_size) = (num_blocks * 4);
1843         if (!dst)
1844                 goto out;
1845         while (block_num < num_blocks) {
1846                 unsigned char *src_block;
1847                 unsigned char dst_block[4];
1848
1849                 if (block_num == (num_blocks - 1))
1850                         src_block = last_block;
1851                 else
1852                         src_block = &src[block_num * 3];
1853                 dst_block[0] = ((src_block[0] >> 2) & 0x3F);
1854                 dst_block[1] = (((src_block[0] << 4) & 0x30)
1855                                 | ((src_block[1] >> 4) & 0x0F));
1856                 dst_block[2] = (((src_block[1] << 2) & 0x3C)
1857                                 | ((src_block[2] >> 6) & 0x03));
1858                 dst_block[3] = (src_block[2] & 0x3F);
1859                 dst[dst_offset++] = portable_filename_chars[dst_block[0]];
1860                 dst[dst_offset++] = portable_filename_chars[dst_block[1]];
1861                 dst[dst_offset++] = portable_filename_chars[dst_block[2]];
1862                 dst[dst_offset++] = portable_filename_chars[dst_block[3]];
1863                 block_num++;
1864         }
1865 out:
1866         return;
1867 }
1868
1869 static size_t ecryptfs_max_decoded_size(size_t encoded_size)
1870 {
1871         /* Not exact; conservatively long. Every block of 4
1872          * encoded characters decodes into a block of 3
1873          * decoded characters. This segment of code provides
1874          * the caller with the maximum amount of allocated
1875          * space that @dst will need to point to in a
1876          * subsequent call. */
1877         return ((encoded_size + 1) * 3) / 4;
1878 }
1879
1880 /**
1881  * ecryptfs_decode_from_filename
1882  * @dst: If NULL, this function only sets @dst_size and returns. If
1883  *       non-NULL, this function decodes the encoded octets in @src
1884  *       into the memory that @dst points to.
1885  * @dst_size: Set to the size of the decoded string.
1886  * @src: The encoded set of octets to decode.
1887  * @src_size: The size of the encoded set of octets to decode.
1888  */
1889 static void
1890 ecryptfs_decode_from_filename(unsigned char *dst, size_t *dst_size,
1891                               const unsigned char *src, size_t src_size)
1892 {
1893         u8 current_bit_offset = 0;
1894         size_t src_byte_offset = 0;
1895         size_t dst_byte_offset = 0;
1896
1897         if (dst == NULL) {
1898                 (*dst_size) = ecryptfs_max_decoded_size(src_size);
1899                 goto out;
1900         }
1901         while (src_byte_offset < src_size) {
1902                 unsigned char src_byte =
1903                                 filename_rev_map[(int)src[src_byte_offset]];
1904
1905                 switch (current_bit_offset) {
1906                 case 0:
1907                         dst[dst_byte_offset] = (src_byte << 2);
1908                         current_bit_offset = 6;
1909                         break;
1910                 case 6:
1911                         dst[dst_byte_offset++] |= (src_byte >> 4);
1912                         dst[dst_byte_offset] = ((src_byte & 0xF)
1913                                                  << 4);
1914                         current_bit_offset = 4;
1915                         break;
1916                 case 4:
1917                         dst[dst_byte_offset++] |= (src_byte >> 2);
1918                         dst[dst_byte_offset] = (src_byte << 6);
1919                         current_bit_offset = 2;
1920                         break;
1921                 case 2:
1922                         dst[dst_byte_offset++] |= (src_byte);
1923                         current_bit_offset = 0;
1924                         break;
1925                 }
1926                 src_byte_offset++;
1927         }
1928         (*dst_size) = dst_byte_offset;
1929 out:
1930         return;
1931 }
1932
1933 /**
1934  * ecryptfs_encrypt_and_encode_filename - converts a plaintext file name to cipher text
1935  * @crypt_stat: The crypt_stat struct associated with the file anem to encode
1936  * @name: The plaintext name
1937  * @length: The length of the plaintext
1938  * @encoded_name: The encypted name
1939  *
1940  * Encrypts and encodes a filename into something that constitutes a
1941  * valid filename for a filesystem, with printable characters.
1942  *
1943  * We assume that we have a properly initialized crypto context,
1944  * pointed to by crypt_stat->tfm.
1945  *
1946  * Returns zero on success; non-zero on otherwise
1947  */
1948 int ecryptfs_encrypt_and_encode_filename(
1949         char **encoded_name,
1950         size_t *encoded_name_size,
1951         struct ecryptfs_crypt_stat *crypt_stat,
1952         struct ecryptfs_mount_crypt_stat *mount_crypt_stat,
1953         const char *name, size_t name_size)
1954 {
1955         size_t encoded_name_no_prefix_size;
1956         int rc = 0;
1957
1958         (*encoded_name) = NULL;
1959         (*encoded_name_size) = 0;
1960         if ((crypt_stat && (crypt_stat->flags & ECRYPTFS_ENCRYPT_FILENAMES))
1961             || (mount_crypt_stat && (mount_crypt_stat->flags
1962                                      & ECRYPTFS_GLOBAL_ENCRYPT_FILENAMES))) {
1963                 struct ecryptfs_filename *filename;
1964
1965                 filename = kzalloc(sizeof(*filename), GFP_KERNEL);
1966                 if (!filename) {
1967                         printk(KERN_ERR "%s: Out of memory whilst attempting "
1968                                "to kzalloc [%zd] bytes\n", __func__,
1969                                sizeof(*filename));
1970                         rc = -ENOMEM;
1971                         goto out;
1972                 }
1973                 filename->filename = (char *)name;
1974                 filename->filename_size = name_size;
1975                 rc = ecryptfs_encrypt_filename(filename, crypt_stat,
1976                                                mount_crypt_stat);
1977                 if (rc) {
1978                         printk(KERN_ERR "%s: Error attempting to encrypt "
1979                                "filename; rc = [%d]\n", __func__, rc);
1980                         kfree(filename);
1981                         goto out;
1982                 }
1983                 ecryptfs_encode_for_filename(
1984                         NULL, &encoded_name_no_prefix_size,
1985                         filename->encrypted_filename,
1986                         filename->encrypted_filename_size);
1987                 if ((crypt_stat && (crypt_stat->flags
1988                                     & ECRYPTFS_ENCFN_USE_MOUNT_FNEK))
1989                     || (mount_crypt_stat
1990                         && (mount_crypt_stat->flags
1991                             & ECRYPTFS_GLOBAL_ENCFN_USE_MOUNT_FNEK)))
1992                         (*encoded_name_size) =
1993                                 (ECRYPTFS_FNEK_ENCRYPTED_FILENAME_PREFIX_SIZE
1994                                  + encoded_name_no_prefix_size);
1995                 else
1996                         (*encoded_name_size) =
1997                                 (ECRYPTFS_FEK_ENCRYPTED_FILENAME_PREFIX_SIZE
1998                                  + encoded_name_no_prefix_size);
1999                 (*encoded_name) = kmalloc((*encoded_name_size) + 1, GFP_KERNEL);
2000                 if (!(*encoded_name)) {
2001                         printk(KERN_ERR "%s: Out of memory whilst attempting "
2002                                "to kzalloc [%zd] bytes\n", __func__,
2003                                (*encoded_name_size));
2004                         rc = -ENOMEM;
2005                         kfree(filename->encrypted_filename);
2006                         kfree(filename);
2007                         goto out;
2008                 }
2009                 if ((crypt_stat && (crypt_stat->flags
2010                                     & ECRYPTFS_ENCFN_USE_MOUNT_FNEK))
2011                     || (mount_crypt_stat
2012                         && (mount_crypt_stat->flags
2013                             & ECRYPTFS_GLOBAL_ENCFN_USE_MOUNT_FNEK))) {
2014                         memcpy((*encoded_name),
2015                                ECRYPTFS_FNEK_ENCRYPTED_FILENAME_PREFIX,
2016                                ECRYPTFS_FNEK_ENCRYPTED_FILENAME_PREFIX_SIZE);
2017                         ecryptfs_encode_for_filename(
2018                             ((*encoded_name)
2019                              + ECRYPTFS_FNEK_ENCRYPTED_FILENAME_PREFIX_SIZE),
2020                             &encoded_name_no_prefix_size,
2021                             filename->encrypted_filename,
2022                             filename->encrypted_filename_size);
2023                         (*encoded_name_size) =
2024                                 (ECRYPTFS_FNEK_ENCRYPTED_FILENAME_PREFIX_SIZE
2025                                  + encoded_name_no_prefix_size);
2026                         (*encoded_name)[(*encoded_name_size)] = '\0';
2027                 } else {
2028                         rc = -EOPNOTSUPP;
2029                 }
2030                 if (rc) {
2031                         printk(KERN_ERR "%s: Error attempting to encode "
2032                                "encrypted filename; rc = [%d]\n", __func__,
2033                                rc);
2034                         kfree((*encoded_name));
2035                         (*encoded_name) = NULL;
2036                         (*encoded_name_size) = 0;
2037                 }
2038                 kfree(filename->encrypted_filename);
2039                 kfree(filename);
2040         } else {
2041                 rc = ecryptfs_copy_filename(encoded_name,
2042                                             encoded_name_size,
2043                                             name, name_size);
2044         }
2045 out:
2046         return rc;
2047 }
2048
2049 /**
2050  * ecryptfs_decode_and_decrypt_filename - converts the encoded cipher text name to decoded plaintext
2051  * @plaintext_name: The plaintext name
2052  * @plaintext_name_size: The plaintext name size
2053  * @ecryptfs_dir_dentry: eCryptfs directory dentry
2054  * @name: The filename in cipher text
2055  * @name_size: The cipher text name size
2056  *
2057  * Decrypts and decodes the filename.
2058  *
2059  * Returns zero on error; non-zero otherwise
2060  */
2061 int ecryptfs_decode_and_decrypt_filename(char **plaintext_name,
2062                                          size_t *plaintext_name_size,
2063                                          struct super_block *sb,
2064                                          const char *name, size_t name_size)
2065 {
2066         struct ecryptfs_mount_crypt_stat *mount_crypt_stat =
2067                 &ecryptfs_superblock_to_private(sb)->mount_crypt_stat;
2068         char *decoded_name;
2069         size_t decoded_name_size;
2070         size_t packet_size;
2071         int rc = 0;
2072
2073         if ((mount_crypt_stat->flags & ECRYPTFS_GLOBAL_ENCRYPT_FILENAMES)
2074             && !(mount_crypt_stat->flags & ECRYPTFS_ENCRYPTED_VIEW_ENABLED)
2075             && (name_size > ECRYPTFS_FNEK_ENCRYPTED_FILENAME_PREFIX_SIZE)
2076             && (strncmp(name, ECRYPTFS_FNEK_ENCRYPTED_FILENAME_PREFIX,
2077                         ECRYPTFS_FNEK_ENCRYPTED_FILENAME_PREFIX_SIZE) == 0)) {
2078                 const char *orig_name = name;
2079                 size_t orig_name_size = name_size;
2080
2081                 name += ECRYPTFS_FNEK_ENCRYPTED_FILENAME_PREFIX_SIZE;
2082                 name_size -= ECRYPTFS_FNEK_ENCRYPTED_FILENAME_PREFIX_SIZE;
2083                 ecryptfs_decode_from_filename(NULL, &decoded_name_size,
2084                                               name, name_size);
2085                 decoded_name = kmalloc(decoded_name_size, GFP_KERNEL);
2086                 if (!decoded_name) {
2087                         printk(KERN_ERR "%s: Out of memory whilst attempting "
2088                                "to kmalloc [%zd] bytes\n", __func__,
2089                                decoded_name_size);
2090                         rc = -ENOMEM;
2091                         goto out;
2092                 }
2093                 ecryptfs_decode_from_filename(decoded_name, &decoded_name_size,
2094                                               name, name_size);
2095                 rc = ecryptfs_parse_tag_70_packet(plaintext_name,
2096                                                   plaintext_name_size,
2097                                                   &packet_size,
2098                                                   mount_crypt_stat,
2099                                                   decoded_name,
2100                                                   decoded_name_size);
2101                 if (rc) {
2102                         printk(KERN_INFO "%s: Could not parse tag 70 packet "
2103                                "from filename; copying through filename "
2104                                "as-is\n", __func__);
2105                         rc = ecryptfs_copy_filename(plaintext_name,
2106                                                     plaintext_name_size,
2107                                                     orig_name, orig_name_size);
2108                         goto out_free;
2109                 }
2110         } else {
2111                 rc = ecryptfs_copy_filename(plaintext_name,
2112                                             plaintext_name_size,
2113                                             name, name_size);
2114                 goto out;
2115         }
2116 out_free:
2117         kfree(decoded_name);
2118 out:
2119         return rc;
2120 }
2121
2122 #define ENC_NAME_MAX_BLOCKLEN_8_OR_16   143
2123
2124 int ecryptfs_set_f_namelen(long *namelen, long lower_namelen,
2125                            struct ecryptfs_mount_crypt_stat *mount_crypt_stat)
2126 {
2127         struct blkcipher_desc desc;
2128         struct mutex *tfm_mutex;
2129         size_t cipher_blocksize;
2130         int rc;
2131
2132         if (!(mount_crypt_stat->flags & ECRYPTFS_GLOBAL_ENCRYPT_FILENAMES)) {
2133                 (*namelen) = lower_namelen;
2134                 return 0;
2135         }
2136
2137         rc = ecryptfs_get_tfm_and_mutex_for_cipher_name(&desc.tfm, &tfm_mutex,
2138                         mount_crypt_stat->global_default_fn_cipher_name);
2139         if (unlikely(rc)) {
2140                 (*namelen) = 0;
2141                 return rc;
2142         }
2143
2144         mutex_lock(tfm_mutex);
2145         cipher_blocksize = crypto_blkcipher_blocksize(desc.tfm);
2146         mutex_unlock(tfm_mutex);
2147
2148         /* Return an exact amount for the common cases */
2149         if (lower_namelen == NAME_MAX
2150             && (cipher_blocksize == 8 || cipher_blocksize == 16)) {
2151                 (*namelen) = ENC_NAME_MAX_BLOCKLEN_8_OR_16;
2152                 return 0;
2153         }
2154
2155         /* Return a safe estimate for the uncommon cases */
2156         (*namelen) = lower_namelen;
2157         (*namelen) -= ECRYPTFS_FNEK_ENCRYPTED_FILENAME_PREFIX_SIZE;
2158         /* Since this is the max decoded size, subtract 1 "decoded block" len */
2159         (*namelen) = ecryptfs_max_decoded_size(*namelen) - 3;
2160         (*namelen) -= ECRYPTFS_TAG_70_MAX_METADATA_SIZE;
2161         (*namelen) -= ECRYPTFS_FILENAME_MIN_RANDOM_PREPEND_BYTES;
2162         /* Worst case is that the filename is padded nearly a full block size */
2163         (*namelen) -= cipher_blocksize - 1;
2164
2165         if ((*namelen) < 0)
2166                 (*namelen) = 0;
2167
2168         return 0;
2169 }