GNU Linux-libre 5.10.153-gnu1
[releases.git] / fs / ecryptfs / crypto.c
1 // SPDX-License-Identifier: GPL-2.0-or-later
2 /**
3  * eCryptfs: Linux filesystem encryption layer
4  *
5  * Copyright (C) 1997-2004 Erez Zadok
6  * Copyright (C) 2001-2004 Stony Brook University
7  * Copyright (C) 2004-2007 International Business Machines Corp.
8  *   Author(s): Michael A. Halcrow <mahalcro@us.ibm.com>
9  *              Michael C. Thompson <mcthomps@us.ibm.com>
10  */
11
12 #include <crypto/hash.h>
13 #include <crypto/skcipher.h>
14 #include <linux/fs.h>
15 #include <linux/mount.h>
16 #include <linux/pagemap.h>
17 #include <linux/random.h>
18 #include <linux/compiler.h>
19 #include <linux/key.h>
20 #include <linux/namei.h>
21 #include <linux/file.h>
22 #include <linux/scatterlist.h>
23 #include <linux/slab.h>
24 #include <asm/unaligned.h>
25 #include <linux/kernel.h>
26 #include <linux/xattr.h>
27 #include "ecryptfs_kernel.h"
28
29 #define DECRYPT         0
30 #define ENCRYPT         1
31
32 /**
33  * ecryptfs_from_hex
34  * @dst: Buffer to take the bytes from src hex; must be at least of
35  *       size (src_size / 2)
36  * @src: Buffer to be converted from a hex string representation to raw value
37  * @dst_size: size of dst buffer, or number of hex characters pairs to convert
38  */
39 void ecryptfs_from_hex(char *dst, char *src, int dst_size)
40 {
41         int x;
42         char tmp[3] = { 0, };
43
44         for (x = 0; x < dst_size; x++) {
45                 tmp[0] = src[x * 2];
46                 tmp[1] = src[x * 2 + 1];
47                 dst[x] = (unsigned char)simple_strtol(tmp, NULL, 16);
48         }
49 }
50
51 /**
52  * ecryptfs_calculate_md5 - calculates the md5 of @src
53  * @dst: Pointer to 16 bytes of allocated memory
54  * @crypt_stat: Pointer to crypt_stat struct for the current inode
55  * @src: Data to be md5'd
56  * @len: Length of @src
57  *
58  * Uses the allocated crypto context that crypt_stat references to
59  * generate the MD5 sum of the contents of src.
60  */
61 static int ecryptfs_calculate_md5(char *dst,
62                                   struct ecryptfs_crypt_stat *crypt_stat,
63                                   char *src, int len)
64 {
65         int rc = crypto_shash_tfm_digest(crypt_stat->hash_tfm, src, len, dst);
66
67         if (rc) {
68                 printk(KERN_ERR
69                        "%s: Error computing crypto hash; rc = [%d]\n",
70                        __func__, rc);
71                 goto out;
72         }
73 out:
74         return rc;
75 }
76
77 static int ecryptfs_crypto_api_algify_cipher_name(char **algified_name,
78                                                   char *cipher_name,
79                                                   char *chaining_modifier)
80 {
81         int cipher_name_len = strlen(cipher_name);
82         int chaining_modifier_len = strlen(chaining_modifier);
83         int algified_name_len;
84         int rc;
85
86         algified_name_len = (chaining_modifier_len + cipher_name_len + 3);
87         (*algified_name) = kmalloc(algified_name_len, GFP_KERNEL);
88         if (!(*algified_name)) {
89                 rc = -ENOMEM;
90                 goto out;
91         }
92         snprintf((*algified_name), algified_name_len, "%s(%s)",
93                  chaining_modifier, cipher_name);
94         rc = 0;
95 out:
96         return rc;
97 }
98
99 /**
100  * ecryptfs_derive_iv
101  * @iv: destination for the derived iv vale
102  * @crypt_stat: Pointer to crypt_stat struct for the current inode
103  * @offset: Offset of the extent whose IV we are to derive
104  *
105  * Generate the initialization vector from the given root IV and page
106  * offset.
107  *
108  * Returns zero on success; non-zero on error.
109  */
110 int ecryptfs_derive_iv(char *iv, struct ecryptfs_crypt_stat *crypt_stat,
111                        loff_t offset)
112 {
113         int rc = 0;
114         char dst[MD5_DIGEST_SIZE];
115         char src[ECRYPTFS_MAX_IV_BYTES + 16];
116
117         if (unlikely(ecryptfs_verbosity > 0)) {
118                 ecryptfs_printk(KERN_DEBUG, "root iv:\n");
119                 ecryptfs_dump_hex(crypt_stat->root_iv, crypt_stat->iv_bytes);
120         }
121         /* TODO: It is probably secure to just cast the least
122          * significant bits of the root IV into an unsigned long and
123          * add the offset to that rather than go through all this
124          * hashing business. -Halcrow */
125         memcpy(src, crypt_stat->root_iv, crypt_stat->iv_bytes);
126         memset((src + crypt_stat->iv_bytes), 0, 16);
127         snprintf((src + crypt_stat->iv_bytes), 16, "%lld", offset);
128         if (unlikely(ecryptfs_verbosity > 0)) {
129                 ecryptfs_printk(KERN_DEBUG, "source:\n");
130                 ecryptfs_dump_hex(src, (crypt_stat->iv_bytes + 16));
131         }
132         rc = ecryptfs_calculate_md5(dst, crypt_stat, src,
133                                     (crypt_stat->iv_bytes + 16));
134         if (rc) {
135                 ecryptfs_printk(KERN_WARNING, "Error attempting to compute "
136                                 "MD5 while generating IV for a page\n");
137                 goto out;
138         }
139         memcpy(iv, dst, crypt_stat->iv_bytes);
140         if (unlikely(ecryptfs_verbosity > 0)) {
141                 ecryptfs_printk(KERN_DEBUG, "derived iv:\n");
142                 ecryptfs_dump_hex(iv, crypt_stat->iv_bytes);
143         }
144 out:
145         return rc;
146 }
147
148 /**
149  * ecryptfs_init_crypt_stat
150  * @crypt_stat: Pointer to the crypt_stat struct to initialize.
151  *
152  * Initialize the crypt_stat structure.
153  */
154 int ecryptfs_init_crypt_stat(struct ecryptfs_crypt_stat *crypt_stat)
155 {
156         struct crypto_shash *tfm;
157         int rc;
158
159         tfm = crypto_alloc_shash(ECRYPTFS_DEFAULT_HASH, 0, 0);
160         if (IS_ERR(tfm)) {
161                 rc = PTR_ERR(tfm);
162                 ecryptfs_printk(KERN_ERR, "Error attempting to "
163                                 "allocate crypto context; rc = [%d]\n",
164                                 rc);
165                 return rc;
166         }
167
168         memset((void *)crypt_stat, 0, sizeof(struct ecryptfs_crypt_stat));
169         INIT_LIST_HEAD(&crypt_stat->keysig_list);
170         mutex_init(&crypt_stat->keysig_list_mutex);
171         mutex_init(&crypt_stat->cs_mutex);
172         mutex_init(&crypt_stat->cs_tfm_mutex);
173         crypt_stat->hash_tfm = tfm;
174         crypt_stat->flags |= ECRYPTFS_STRUCT_INITIALIZED;
175
176         return 0;
177 }
178
179 /**
180  * ecryptfs_destroy_crypt_stat
181  * @crypt_stat: Pointer to the crypt_stat struct to initialize.
182  *
183  * Releases all memory associated with a crypt_stat struct.
184  */
185 void ecryptfs_destroy_crypt_stat(struct ecryptfs_crypt_stat *crypt_stat)
186 {
187         struct ecryptfs_key_sig *key_sig, *key_sig_tmp;
188
189         crypto_free_skcipher(crypt_stat->tfm);
190         crypto_free_shash(crypt_stat->hash_tfm);
191         list_for_each_entry_safe(key_sig, key_sig_tmp,
192                                  &crypt_stat->keysig_list, crypt_stat_list) {
193                 list_del(&key_sig->crypt_stat_list);
194                 kmem_cache_free(ecryptfs_key_sig_cache, key_sig);
195         }
196         memset(crypt_stat, 0, sizeof(struct ecryptfs_crypt_stat));
197 }
198
199 void ecryptfs_destroy_mount_crypt_stat(
200         struct ecryptfs_mount_crypt_stat *mount_crypt_stat)
201 {
202         struct ecryptfs_global_auth_tok *auth_tok, *auth_tok_tmp;
203
204         if (!(mount_crypt_stat->flags & ECRYPTFS_MOUNT_CRYPT_STAT_INITIALIZED))
205                 return;
206         mutex_lock(&mount_crypt_stat->global_auth_tok_list_mutex);
207         list_for_each_entry_safe(auth_tok, auth_tok_tmp,
208                                  &mount_crypt_stat->global_auth_tok_list,
209                                  mount_crypt_stat_list) {
210                 list_del(&auth_tok->mount_crypt_stat_list);
211                 if (!(auth_tok->flags & ECRYPTFS_AUTH_TOK_INVALID))
212                         key_put(auth_tok->global_auth_tok_key);
213                 kmem_cache_free(ecryptfs_global_auth_tok_cache, auth_tok);
214         }
215         mutex_unlock(&mount_crypt_stat->global_auth_tok_list_mutex);
216         memset(mount_crypt_stat, 0, sizeof(struct ecryptfs_mount_crypt_stat));
217 }
218
219 /**
220  * virt_to_scatterlist
221  * @addr: Virtual address
222  * @size: Size of data; should be an even multiple of the block size
223  * @sg: Pointer to scatterlist array; set to NULL to obtain only
224  *      the number of scatterlist structs required in array
225  * @sg_size: Max array size
226  *
227  * Fills in a scatterlist array with page references for a passed
228  * virtual address.
229  *
230  * Returns the number of scatterlist structs in array used
231  */
232 int virt_to_scatterlist(const void *addr, int size, struct scatterlist *sg,
233                         int sg_size)
234 {
235         int i = 0;
236         struct page *pg;
237         int offset;
238         int remainder_of_page;
239
240         sg_init_table(sg, sg_size);
241
242         while (size > 0 && i < sg_size) {
243                 pg = virt_to_page(addr);
244                 offset = offset_in_page(addr);
245                 sg_set_page(&sg[i], pg, 0, offset);
246                 remainder_of_page = PAGE_SIZE - offset;
247                 if (size >= remainder_of_page) {
248                         sg[i].length = remainder_of_page;
249                         addr += remainder_of_page;
250                         size -= remainder_of_page;
251                 } else {
252                         sg[i].length = size;
253                         addr += size;
254                         size = 0;
255                 }
256                 i++;
257         }
258         if (size > 0)
259                 return -ENOMEM;
260         return i;
261 }
262
263 struct extent_crypt_result {
264         struct completion completion;
265         int rc;
266 };
267
268 static void extent_crypt_complete(struct crypto_async_request *req, int rc)
269 {
270         struct extent_crypt_result *ecr = req->data;
271
272         if (rc == -EINPROGRESS)
273                 return;
274
275         ecr->rc = rc;
276         complete(&ecr->completion);
277 }
278
279 /**
280  * crypt_scatterlist
281  * @crypt_stat: Pointer to the crypt_stat struct to initialize.
282  * @dst_sg: Destination of the data after performing the crypto operation
283  * @src_sg: Data to be encrypted or decrypted
284  * @size: Length of data
285  * @iv: IV to use
286  * @op: ENCRYPT or DECRYPT to indicate the desired operation
287  *
288  * Returns the number of bytes encrypted or decrypted; negative value on error
289  */
290 static int crypt_scatterlist(struct ecryptfs_crypt_stat *crypt_stat,
291                              struct scatterlist *dst_sg,
292                              struct scatterlist *src_sg, int size,
293                              unsigned char *iv, int op)
294 {
295         struct skcipher_request *req = NULL;
296         struct extent_crypt_result ecr;
297         int rc = 0;
298
299         BUG_ON(!crypt_stat || !crypt_stat->tfm
300                || !(crypt_stat->flags & ECRYPTFS_STRUCT_INITIALIZED));
301         if (unlikely(ecryptfs_verbosity > 0)) {
302                 ecryptfs_printk(KERN_DEBUG, "Key size [%zd]; key:\n",
303                                 crypt_stat->key_size);
304                 ecryptfs_dump_hex(crypt_stat->key,
305                                   crypt_stat->key_size);
306         }
307
308         init_completion(&ecr.completion);
309
310         mutex_lock(&crypt_stat->cs_tfm_mutex);
311         req = skcipher_request_alloc(crypt_stat->tfm, GFP_NOFS);
312         if (!req) {
313                 mutex_unlock(&crypt_stat->cs_tfm_mutex);
314                 rc = -ENOMEM;
315                 goto out;
316         }
317
318         skcipher_request_set_callback(req,
319                         CRYPTO_TFM_REQ_MAY_BACKLOG | CRYPTO_TFM_REQ_MAY_SLEEP,
320                         extent_crypt_complete, &ecr);
321         /* Consider doing this once, when the file is opened */
322         if (!(crypt_stat->flags & ECRYPTFS_KEY_SET)) {
323                 rc = crypto_skcipher_setkey(crypt_stat->tfm, crypt_stat->key,
324                                             crypt_stat->key_size);
325                 if (rc) {
326                         ecryptfs_printk(KERN_ERR,
327                                         "Error setting key; rc = [%d]\n",
328                                         rc);
329                         mutex_unlock(&crypt_stat->cs_tfm_mutex);
330                         rc = -EINVAL;
331                         goto out;
332                 }
333                 crypt_stat->flags |= ECRYPTFS_KEY_SET;
334         }
335         mutex_unlock(&crypt_stat->cs_tfm_mutex);
336         skcipher_request_set_crypt(req, src_sg, dst_sg, size, iv);
337         rc = op == ENCRYPT ? crypto_skcipher_encrypt(req) :
338                              crypto_skcipher_decrypt(req);
339         if (rc == -EINPROGRESS || rc == -EBUSY) {
340                 struct extent_crypt_result *ecr = req->base.data;
341
342                 wait_for_completion(&ecr->completion);
343                 rc = ecr->rc;
344                 reinit_completion(&ecr->completion);
345         }
346 out:
347         skcipher_request_free(req);
348         return rc;
349 }
350
351 /**
352  * lower_offset_for_page
353  *
354  * Convert an eCryptfs page index into a lower byte offset
355  */
356 static loff_t lower_offset_for_page(struct ecryptfs_crypt_stat *crypt_stat,
357                                     struct page *page)
358 {
359         return ecryptfs_lower_header_size(crypt_stat) +
360                ((loff_t)page->index << PAGE_SHIFT);
361 }
362
363 /**
364  * crypt_extent
365  * @crypt_stat: crypt_stat containing cryptographic context for the
366  *              encryption operation
367  * @dst_page: The page to write the result into
368  * @src_page: The page to read from
369  * @extent_offset: Page extent offset for use in generating IV
370  * @op: ENCRYPT or DECRYPT to indicate the desired operation
371  *
372  * Encrypts or decrypts one extent of data.
373  *
374  * Return zero on success; non-zero otherwise
375  */
376 static int crypt_extent(struct ecryptfs_crypt_stat *crypt_stat,
377                         struct page *dst_page,
378                         struct page *src_page,
379                         unsigned long extent_offset, int op)
380 {
381         pgoff_t page_index = op == ENCRYPT ? src_page->index : dst_page->index;
382         loff_t extent_base;
383         char extent_iv[ECRYPTFS_MAX_IV_BYTES];
384         struct scatterlist src_sg, dst_sg;
385         size_t extent_size = crypt_stat->extent_size;
386         int rc;
387
388         extent_base = (((loff_t)page_index) * (PAGE_SIZE / extent_size));
389         rc = ecryptfs_derive_iv(extent_iv, crypt_stat,
390                                 (extent_base + extent_offset));
391         if (rc) {
392                 ecryptfs_printk(KERN_ERR, "Error attempting to derive IV for "
393                         "extent [0x%.16llx]; rc = [%d]\n",
394                         (unsigned long long)(extent_base + extent_offset), rc);
395                 goto out;
396         }
397
398         sg_init_table(&src_sg, 1);
399         sg_init_table(&dst_sg, 1);
400
401         sg_set_page(&src_sg, src_page, extent_size,
402                     extent_offset * extent_size);
403         sg_set_page(&dst_sg, dst_page, extent_size,
404                     extent_offset * extent_size);
405
406         rc = crypt_scatterlist(crypt_stat, &dst_sg, &src_sg, extent_size,
407                                extent_iv, op);
408         if (rc < 0) {
409                 printk(KERN_ERR "%s: Error attempting to crypt page with "
410                        "page_index = [%ld], extent_offset = [%ld]; "
411                        "rc = [%d]\n", __func__, page_index, extent_offset, rc);
412                 goto out;
413         }
414         rc = 0;
415 out:
416         return rc;
417 }
418
419 /**
420  * ecryptfs_encrypt_page
421  * @page: Page mapped from the eCryptfs inode for the file; contains
422  *        decrypted content that needs to be encrypted (to a temporary
423  *        page; not in place) and written out to the lower file
424  *
425  * Encrypt an eCryptfs page. This is done on a per-extent basis. Note
426  * that eCryptfs pages may straddle the lower pages -- for instance,
427  * if the file was created on a machine with an 8K page size
428  * (resulting in an 8K header), and then the file is copied onto a
429  * host with a 32K page size, then when reading page 0 of the eCryptfs
430  * file, 24K of page 0 of the lower file will be read and decrypted,
431  * and then 8K of page 1 of the lower file will be read and decrypted.
432  *
433  * Returns zero on success; negative on error
434  */
435 int ecryptfs_encrypt_page(struct page *page)
436 {
437         struct inode *ecryptfs_inode;
438         struct ecryptfs_crypt_stat *crypt_stat;
439         char *enc_extent_virt;
440         struct page *enc_extent_page = NULL;
441         loff_t extent_offset;
442         loff_t lower_offset;
443         int rc = 0;
444
445         ecryptfs_inode = page->mapping->host;
446         crypt_stat =
447                 &(ecryptfs_inode_to_private(ecryptfs_inode)->crypt_stat);
448         BUG_ON(!(crypt_stat->flags & ECRYPTFS_ENCRYPTED));
449         enc_extent_page = alloc_page(GFP_USER);
450         if (!enc_extent_page) {
451                 rc = -ENOMEM;
452                 ecryptfs_printk(KERN_ERR, "Error allocating memory for "
453                                 "encrypted extent\n");
454                 goto out;
455         }
456
457         for (extent_offset = 0;
458              extent_offset < (PAGE_SIZE / crypt_stat->extent_size);
459              extent_offset++) {
460                 rc = crypt_extent(crypt_stat, enc_extent_page, page,
461                                   extent_offset, ENCRYPT);
462                 if (rc) {
463                         printk(KERN_ERR "%s: Error encrypting extent; "
464                                "rc = [%d]\n", __func__, rc);
465                         goto out;
466                 }
467         }
468
469         lower_offset = lower_offset_for_page(crypt_stat, page);
470         enc_extent_virt = kmap(enc_extent_page);
471         rc = ecryptfs_write_lower(ecryptfs_inode, enc_extent_virt, lower_offset,
472                                   PAGE_SIZE);
473         kunmap(enc_extent_page);
474         if (rc < 0) {
475                 ecryptfs_printk(KERN_ERR,
476                         "Error attempting to write lower page; rc = [%d]\n",
477                         rc);
478                 goto out;
479         }
480         rc = 0;
481 out:
482         if (enc_extent_page) {
483                 __free_page(enc_extent_page);
484         }
485         return rc;
486 }
487
488 /**
489  * ecryptfs_decrypt_page
490  * @page: Page mapped from the eCryptfs inode for the file; data read
491  *        and decrypted from the lower file will be written into this
492  *        page
493  *
494  * Decrypt an eCryptfs page. This is done on a per-extent basis. Note
495  * that eCryptfs pages may straddle the lower pages -- for instance,
496  * if the file was created on a machine with an 8K page size
497  * (resulting in an 8K header), and then the file is copied onto a
498  * host with a 32K page size, then when reading page 0 of the eCryptfs
499  * file, 24K of page 0 of the lower file will be read and decrypted,
500  * and then 8K of page 1 of the lower file will be read and decrypted.
501  *
502  * Returns zero on success; negative on error
503  */
504 int ecryptfs_decrypt_page(struct page *page)
505 {
506         struct inode *ecryptfs_inode;
507         struct ecryptfs_crypt_stat *crypt_stat;
508         char *page_virt;
509         unsigned long extent_offset;
510         loff_t lower_offset;
511         int rc = 0;
512
513         ecryptfs_inode = page->mapping->host;
514         crypt_stat =
515                 &(ecryptfs_inode_to_private(ecryptfs_inode)->crypt_stat);
516         BUG_ON(!(crypt_stat->flags & ECRYPTFS_ENCRYPTED));
517
518         lower_offset = lower_offset_for_page(crypt_stat, page);
519         page_virt = kmap(page);
520         rc = ecryptfs_read_lower(page_virt, lower_offset, PAGE_SIZE,
521                                  ecryptfs_inode);
522         kunmap(page);
523         if (rc < 0) {
524                 ecryptfs_printk(KERN_ERR,
525                         "Error attempting to read lower page; rc = [%d]\n",
526                         rc);
527                 goto out;
528         }
529
530         for (extent_offset = 0;
531              extent_offset < (PAGE_SIZE / crypt_stat->extent_size);
532              extent_offset++) {
533                 rc = crypt_extent(crypt_stat, page, page,
534                                   extent_offset, DECRYPT);
535                 if (rc) {
536                         printk(KERN_ERR "%s: Error encrypting extent; "
537                                "rc = [%d]\n", __func__, rc);
538                         goto out;
539                 }
540         }
541 out:
542         return rc;
543 }
544
545 #define ECRYPTFS_MAX_SCATTERLIST_LEN 4
546
547 /**
548  * ecryptfs_init_crypt_ctx
549  * @crypt_stat: Uninitialized crypt stats structure
550  *
551  * Initialize the crypto context.
552  *
553  * TODO: Performance: Keep a cache of initialized cipher contexts;
554  * only init if needed
555  */
556 int ecryptfs_init_crypt_ctx(struct ecryptfs_crypt_stat *crypt_stat)
557 {
558         char *full_alg_name;
559         int rc = -EINVAL;
560
561         ecryptfs_printk(KERN_DEBUG,
562                         "Initializing cipher [%s]; strlen = [%d]; "
563                         "key_size_bits = [%zd]\n",
564                         crypt_stat->cipher, (int)strlen(crypt_stat->cipher),
565                         crypt_stat->key_size << 3);
566         mutex_lock(&crypt_stat->cs_tfm_mutex);
567         if (crypt_stat->tfm) {
568                 rc = 0;
569                 goto out_unlock;
570         }
571         rc = ecryptfs_crypto_api_algify_cipher_name(&full_alg_name,
572                                                     crypt_stat->cipher, "cbc");
573         if (rc)
574                 goto out_unlock;
575         crypt_stat->tfm = crypto_alloc_skcipher(full_alg_name, 0, 0);
576         if (IS_ERR(crypt_stat->tfm)) {
577                 rc = PTR_ERR(crypt_stat->tfm);
578                 crypt_stat->tfm = NULL;
579                 ecryptfs_printk(KERN_ERR, "cryptfs: init_crypt_ctx(): "
580                                 "Error initializing cipher [%s]\n",
581                                 full_alg_name);
582                 goto out_free;
583         }
584         crypto_skcipher_set_flags(crypt_stat->tfm,
585                                   CRYPTO_TFM_REQ_FORBID_WEAK_KEYS);
586         rc = 0;
587 out_free:
588         kfree(full_alg_name);
589 out_unlock:
590         mutex_unlock(&crypt_stat->cs_tfm_mutex);
591         return rc;
592 }
593
594 static void set_extent_mask_and_shift(struct ecryptfs_crypt_stat *crypt_stat)
595 {
596         int extent_size_tmp;
597
598         crypt_stat->extent_mask = 0xFFFFFFFF;
599         crypt_stat->extent_shift = 0;
600         if (crypt_stat->extent_size == 0)
601                 return;
602         extent_size_tmp = crypt_stat->extent_size;
603         while ((extent_size_tmp & 0x01) == 0) {
604                 extent_size_tmp >>= 1;
605                 crypt_stat->extent_mask <<= 1;
606                 crypt_stat->extent_shift++;
607         }
608 }
609
610 void ecryptfs_set_default_sizes(struct ecryptfs_crypt_stat *crypt_stat)
611 {
612         /* Default values; may be overwritten as we are parsing the
613          * packets. */
614         crypt_stat->extent_size = ECRYPTFS_DEFAULT_EXTENT_SIZE;
615         set_extent_mask_and_shift(crypt_stat);
616         crypt_stat->iv_bytes = ECRYPTFS_DEFAULT_IV_BYTES;
617         if (crypt_stat->flags & ECRYPTFS_METADATA_IN_XATTR)
618                 crypt_stat->metadata_size = ECRYPTFS_MINIMUM_HEADER_EXTENT_SIZE;
619         else {
620                 if (PAGE_SIZE <= ECRYPTFS_MINIMUM_HEADER_EXTENT_SIZE)
621                         crypt_stat->metadata_size =
622                                 ECRYPTFS_MINIMUM_HEADER_EXTENT_SIZE;
623                 else
624                         crypt_stat->metadata_size = PAGE_SIZE;
625         }
626 }
627
628 /**
629  * ecryptfs_compute_root_iv
630  * @crypt_stats
631  *
632  * On error, sets the root IV to all 0's.
633  */
634 int ecryptfs_compute_root_iv(struct ecryptfs_crypt_stat *crypt_stat)
635 {
636         int rc = 0;
637         char dst[MD5_DIGEST_SIZE];
638
639         BUG_ON(crypt_stat->iv_bytes > MD5_DIGEST_SIZE);
640         BUG_ON(crypt_stat->iv_bytes <= 0);
641         if (!(crypt_stat->flags & ECRYPTFS_KEY_VALID)) {
642                 rc = -EINVAL;
643                 ecryptfs_printk(KERN_WARNING, "Session key not valid; "
644                                 "cannot generate root IV\n");
645                 goto out;
646         }
647         rc = ecryptfs_calculate_md5(dst, crypt_stat, crypt_stat->key,
648                                     crypt_stat->key_size);
649         if (rc) {
650                 ecryptfs_printk(KERN_WARNING, "Error attempting to compute "
651                                 "MD5 while generating root IV\n");
652                 goto out;
653         }
654         memcpy(crypt_stat->root_iv, dst, crypt_stat->iv_bytes);
655 out:
656         if (rc) {
657                 memset(crypt_stat->root_iv, 0, crypt_stat->iv_bytes);
658                 crypt_stat->flags |= ECRYPTFS_SECURITY_WARNING;
659         }
660         return rc;
661 }
662
663 static void ecryptfs_generate_new_key(struct ecryptfs_crypt_stat *crypt_stat)
664 {
665         get_random_bytes(crypt_stat->key, crypt_stat->key_size);
666         crypt_stat->flags |= ECRYPTFS_KEY_VALID;
667         ecryptfs_compute_root_iv(crypt_stat);
668         if (unlikely(ecryptfs_verbosity > 0)) {
669                 ecryptfs_printk(KERN_DEBUG, "Generated new session key:\n");
670                 ecryptfs_dump_hex(crypt_stat->key,
671                                   crypt_stat->key_size);
672         }
673 }
674
675 /**
676  * ecryptfs_copy_mount_wide_flags_to_inode_flags
677  * @crypt_stat: The inode's cryptographic context
678  * @mount_crypt_stat: The mount point's cryptographic context
679  *
680  * This function propagates the mount-wide flags to individual inode
681  * flags.
682  */
683 static void ecryptfs_copy_mount_wide_flags_to_inode_flags(
684         struct ecryptfs_crypt_stat *crypt_stat,
685         struct ecryptfs_mount_crypt_stat *mount_crypt_stat)
686 {
687         if (mount_crypt_stat->flags & ECRYPTFS_XATTR_METADATA_ENABLED)
688                 crypt_stat->flags |= ECRYPTFS_METADATA_IN_XATTR;
689         if (mount_crypt_stat->flags & ECRYPTFS_ENCRYPTED_VIEW_ENABLED)
690                 crypt_stat->flags |= ECRYPTFS_VIEW_AS_ENCRYPTED;
691         if (mount_crypt_stat->flags & ECRYPTFS_GLOBAL_ENCRYPT_FILENAMES) {
692                 crypt_stat->flags |= ECRYPTFS_ENCRYPT_FILENAMES;
693                 if (mount_crypt_stat->flags
694                     & ECRYPTFS_GLOBAL_ENCFN_USE_MOUNT_FNEK)
695                         crypt_stat->flags |= ECRYPTFS_ENCFN_USE_MOUNT_FNEK;
696                 else if (mount_crypt_stat->flags
697                          & ECRYPTFS_GLOBAL_ENCFN_USE_FEK)
698                         crypt_stat->flags |= ECRYPTFS_ENCFN_USE_FEK;
699         }
700 }
701
702 static int ecryptfs_copy_mount_wide_sigs_to_inode_sigs(
703         struct ecryptfs_crypt_stat *crypt_stat,
704         struct ecryptfs_mount_crypt_stat *mount_crypt_stat)
705 {
706         struct ecryptfs_global_auth_tok *global_auth_tok;
707         int rc = 0;
708
709         mutex_lock(&crypt_stat->keysig_list_mutex);
710         mutex_lock(&mount_crypt_stat->global_auth_tok_list_mutex);
711
712         list_for_each_entry(global_auth_tok,
713                             &mount_crypt_stat->global_auth_tok_list,
714                             mount_crypt_stat_list) {
715                 if (global_auth_tok->flags & ECRYPTFS_AUTH_TOK_FNEK)
716                         continue;
717                 rc = ecryptfs_add_keysig(crypt_stat, global_auth_tok->sig);
718                 if (rc) {
719                         printk(KERN_ERR "Error adding keysig; rc = [%d]\n", rc);
720                         goto out;
721                 }
722         }
723
724 out:
725         mutex_unlock(&mount_crypt_stat->global_auth_tok_list_mutex);
726         mutex_unlock(&crypt_stat->keysig_list_mutex);
727         return rc;
728 }
729
730 /**
731  * ecryptfs_set_default_crypt_stat_vals
732  * @crypt_stat: The inode's cryptographic context
733  * @mount_crypt_stat: The mount point's cryptographic context
734  *
735  * Default values in the event that policy does not override them.
736  */
737 static void ecryptfs_set_default_crypt_stat_vals(
738         struct ecryptfs_crypt_stat *crypt_stat,
739         struct ecryptfs_mount_crypt_stat *mount_crypt_stat)
740 {
741         ecryptfs_copy_mount_wide_flags_to_inode_flags(crypt_stat,
742                                                       mount_crypt_stat);
743         ecryptfs_set_default_sizes(crypt_stat);
744         strcpy(crypt_stat->cipher, ECRYPTFS_DEFAULT_CIPHER);
745         crypt_stat->key_size = ECRYPTFS_DEFAULT_KEY_BYTES;
746         crypt_stat->flags &= ~(ECRYPTFS_KEY_VALID);
747         crypt_stat->file_version = ECRYPTFS_FILE_VERSION;
748         crypt_stat->mount_crypt_stat = mount_crypt_stat;
749 }
750
751 /**
752  * ecryptfs_new_file_context
753  * @ecryptfs_inode: The eCryptfs inode
754  *
755  * If the crypto context for the file has not yet been established,
756  * this is where we do that.  Establishing a new crypto context
757  * involves the following decisions:
758  *  - What cipher to use?
759  *  - What set of authentication tokens to use?
760  * Here we just worry about getting enough information into the
761  * authentication tokens so that we know that they are available.
762  * We associate the available authentication tokens with the new file
763  * via the set of signatures in the crypt_stat struct.  Later, when
764  * the headers are actually written out, we may again defer to
765  * userspace to perform the encryption of the session key; for the
766  * foreseeable future, this will be the case with public key packets.
767  *
768  * Returns zero on success; non-zero otherwise
769  */
770 int ecryptfs_new_file_context(struct inode *ecryptfs_inode)
771 {
772         struct ecryptfs_crypt_stat *crypt_stat =
773             &ecryptfs_inode_to_private(ecryptfs_inode)->crypt_stat;
774         struct ecryptfs_mount_crypt_stat *mount_crypt_stat =
775             &ecryptfs_superblock_to_private(
776                     ecryptfs_inode->i_sb)->mount_crypt_stat;
777         int cipher_name_len;
778         int rc = 0;
779
780         ecryptfs_set_default_crypt_stat_vals(crypt_stat, mount_crypt_stat);
781         crypt_stat->flags |= (ECRYPTFS_ENCRYPTED | ECRYPTFS_KEY_VALID);
782         ecryptfs_copy_mount_wide_flags_to_inode_flags(crypt_stat,
783                                                       mount_crypt_stat);
784         rc = ecryptfs_copy_mount_wide_sigs_to_inode_sigs(crypt_stat,
785                                                          mount_crypt_stat);
786         if (rc) {
787                 printk(KERN_ERR "Error attempting to copy mount-wide key sigs "
788                        "to the inode key sigs; rc = [%d]\n", rc);
789                 goto out;
790         }
791         cipher_name_len =
792                 strlen(mount_crypt_stat->global_default_cipher_name);
793         memcpy(crypt_stat->cipher,
794                mount_crypt_stat->global_default_cipher_name,
795                cipher_name_len);
796         crypt_stat->cipher[cipher_name_len] = '\0';
797         crypt_stat->key_size =
798                 mount_crypt_stat->global_default_cipher_key_size;
799         ecryptfs_generate_new_key(crypt_stat);
800         rc = ecryptfs_init_crypt_ctx(crypt_stat);
801         if (rc)
802                 ecryptfs_printk(KERN_ERR, "Error initializing cryptographic "
803                                 "context for cipher [%s]: rc = [%d]\n",
804                                 crypt_stat->cipher, rc);
805 out:
806         return rc;
807 }
808
809 /**
810  * ecryptfs_validate_marker - check for the ecryptfs marker
811  * @data: The data block in which to check
812  *
813  * Returns zero if marker found; -EINVAL if not found
814  */
815 static int ecryptfs_validate_marker(char *data)
816 {
817         u32 m_1, m_2;
818
819         m_1 = get_unaligned_be32(data);
820         m_2 = get_unaligned_be32(data + 4);
821         if ((m_1 ^ MAGIC_ECRYPTFS_MARKER) == m_2)
822                 return 0;
823         ecryptfs_printk(KERN_DEBUG, "m_1 = [0x%.8x]; m_2 = [0x%.8x]; "
824                         "MAGIC_ECRYPTFS_MARKER = [0x%.8x]\n", m_1, m_2,
825                         MAGIC_ECRYPTFS_MARKER);
826         ecryptfs_printk(KERN_DEBUG, "(m_1 ^ MAGIC_ECRYPTFS_MARKER) = "
827                         "[0x%.8x]\n", (m_1 ^ MAGIC_ECRYPTFS_MARKER));
828         return -EINVAL;
829 }
830
831 struct ecryptfs_flag_map_elem {
832         u32 file_flag;
833         u32 local_flag;
834 };
835
836 /* Add support for additional flags by adding elements here. */
837 static struct ecryptfs_flag_map_elem ecryptfs_flag_map[] = {
838         {0x00000001, ECRYPTFS_ENABLE_HMAC},
839         {0x00000002, ECRYPTFS_ENCRYPTED},
840         {0x00000004, ECRYPTFS_METADATA_IN_XATTR},
841         {0x00000008, ECRYPTFS_ENCRYPT_FILENAMES}
842 };
843
844 /**
845  * ecryptfs_process_flags
846  * @crypt_stat: The cryptographic context
847  * @page_virt: Source data to be parsed
848  * @bytes_read: Updated with the number of bytes read
849  */
850 static void ecryptfs_process_flags(struct ecryptfs_crypt_stat *crypt_stat,
851                                   char *page_virt, int *bytes_read)
852 {
853         int i;
854         u32 flags;
855
856         flags = get_unaligned_be32(page_virt);
857         for (i = 0; i < ARRAY_SIZE(ecryptfs_flag_map); i++)
858                 if (flags & ecryptfs_flag_map[i].file_flag) {
859                         crypt_stat->flags |= ecryptfs_flag_map[i].local_flag;
860                 } else
861                         crypt_stat->flags &= ~(ecryptfs_flag_map[i].local_flag);
862         /* Version is in top 8 bits of the 32-bit flag vector */
863         crypt_stat->file_version = ((flags >> 24) & 0xFF);
864         (*bytes_read) = 4;
865 }
866
867 /**
868  * write_ecryptfs_marker
869  * @page_virt: The pointer to in a page to begin writing the marker
870  * @written: Number of bytes written
871  *
872  * Marker = 0x3c81b7f5
873  */
874 static void write_ecryptfs_marker(char *page_virt, size_t *written)
875 {
876         u32 m_1, m_2;
877
878         get_random_bytes(&m_1, (MAGIC_ECRYPTFS_MARKER_SIZE_BYTES / 2));
879         m_2 = (m_1 ^ MAGIC_ECRYPTFS_MARKER);
880         put_unaligned_be32(m_1, page_virt);
881         page_virt += (MAGIC_ECRYPTFS_MARKER_SIZE_BYTES / 2);
882         put_unaligned_be32(m_2, page_virt);
883         (*written) = MAGIC_ECRYPTFS_MARKER_SIZE_BYTES;
884 }
885
886 void ecryptfs_write_crypt_stat_flags(char *page_virt,
887                                      struct ecryptfs_crypt_stat *crypt_stat,
888                                      size_t *written)
889 {
890         u32 flags = 0;
891         int i;
892
893         for (i = 0; i < ARRAY_SIZE(ecryptfs_flag_map); i++)
894                 if (crypt_stat->flags & ecryptfs_flag_map[i].local_flag)
895                         flags |= ecryptfs_flag_map[i].file_flag;
896         /* Version is in top 8 bits of the 32-bit flag vector */
897         flags |= ((((u8)crypt_stat->file_version) << 24) & 0xFF000000);
898         put_unaligned_be32(flags, page_virt);
899         (*written) = 4;
900 }
901
902 struct ecryptfs_cipher_code_str_map_elem {
903         char cipher_str[16];
904         u8 cipher_code;
905 };
906
907 /* Add support for additional ciphers by adding elements here. The
908  * cipher_code is whatever OpenPGP applications use to identify the
909  * ciphers. List in order of probability. */
910 static struct ecryptfs_cipher_code_str_map_elem
911 ecryptfs_cipher_code_str_map[] = {
912         {"aes",RFC2440_CIPHER_AES_128 },
913         {"blowfish", RFC2440_CIPHER_BLOWFISH},
914         {"des3_ede", RFC2440_CIPHER_DES3_EDE},
915         {"cast5", RFC2440_CIPHER_CAST_5},
916         {"twofish", RFC2440_CIPHER_TWOFISH},
917         {"cast6", RFC2440_CIPHER_CAST_6},
918         {"aes", RFC2440_CIPHER_AES_192},
919         {"aes", RFC2440_CIPHER_AES_256}
920 };
921
922 /**
923  * ecryptfs_code_for_cipher_string
924  * @cipher_name: The string alias for the cipher
925  * @key_bytes: Length of key in bytes; used for AES code selection
926  *
927  * Returns zero on no match, or the cipher code on match
928  */
929 u8 ecryptfs_code_for_cipher_string(char *cipher_name, size_t key_bytes)
930 {
931         int i;
932         u8 code = 0;
933         struct ecryptfs_cipher_code_str_map_elem *map =
934                 ecryptfs_cipher_code_str_map;
935
936         if (strcmp(cipher_name, "aes") == 0) {
937                 switch (key_bytes) {
938                 case 16:
939                         code = RFC2440_CIPHER_AES_128;
940                         break;
941                 case 24:
942                         code = RFC2440_CIPHER_AES_192;
943                         break;
944                 case 32:
945                         code = RFC2440_CIPHER_AES_256;
946                 }
947         } else {
948                 for (i = 0; i < ARRAY_SIZE(ecryptfs_cipher_code_str_map); i++)
949                         if (strcmp(cipher_name, map[i].cipher_str) == 0) {
950                                 code = map[i].cipher_code;
951                                 break;
952                         }
953         }
954         return code;
955 }
956
957 /**
958  * ecryptfs_cipher_code_to_string
959  * @str: Destination to write out the cipher name
960  * @cipher_code: The code to convert to cipher name string
961  *
962  * Returns zero on success
963  */
964 int ecryptfs_cipher_code_to_string(char *str, u8 cipher_code)
965 {
966         int rc = 0;
967         int i;
968
969         str[0] = '\0';
970         for (i = 0; i < ARRAY_SIZE(ecryptfs_cipher_code_str_map); i++)
971                 if (cipher_code == ecryptfs_cipher_code_str_map[i].cipher_code)
972                         strcpy(str, ecryptfs_cipher_code_str_map[i].cipher_str);
973         if (str[0] == '\0') {
974                 ecryptfs_printk(KERN_WARNING, "Cipher code not recognized: "
975                                 "[%d]\n", cipher_code);
976                 rc = -EINVAL;
977         }
978         return rc;
979 }
980
981 int ecryptfs_read_and_validate_header_region(struct inode *inode)
982 {
983         u8 file_size[ECRYPTFS_SIZE_AND_MARKER_BYTES];
984         u8 *marker = file_size + ECRYPTFS_FILE_SIZE_BYTES;
985         int rc;
986
987         rc = ecryptfs_read_lower(file_size, 0, ECRYPTFS_SIZE_AND_MARKER_BYTES,
988                                  inode);
989         if (rc < 0)
990                 return rc;
991         else if (rc < ECRYPTFS_SIZE_AND_MARKER_BYTES)
992                 return -EINVAL;
993         rc = ecryptfs_validate_marker(marker);
994         if (!rc)
995                 ecryptfs_i_size_init(file_size, inode);
996         return rc;
997 }
998
999 void
1000 ecryptfs_write_header_metadata(char *virt,
1001                                struct ecryptfs_crypt_stat *crypt_stat,
1002                                size_t *written)
1003 {
1004         u32 header_extent_size;
1005         u16 num_header_extents_at_front;
1006
1007         header_extent_size = (u32)crypt_stat->extent_size;
1008         num_header_extents_at_front =
1009                 (u16)(crypt_stat->metadata_size / crypt_stat->extent_size);
1010         put_unaligned_be32(header_extent_size, virt);
1011         virt += 4;
1012         put_unaligned_be16(num_header_extents_at_front, virt);
1013         (*written) = 6;
1014 }
1015
1016 struct kmem_cache *ecryptfs_header_cache;
1017
1018 /**
1019  * ecryptfs_write_headers_virt
1020  * @page_virt: The virtual address to write the headers to
1021  * @max: The size of memory allocated at page_virt
1022  * @size: Set to the number of bytes written by this function
1023  * @crypt_stat: The cryptographic context
1024  * @ecryptfs_dentry: The eCryptfs dentry
1025  *
1026  * Format version: 1
1027  *
1028  *   Header Extent:
1029  *     Octets 0-7:        Unencrypted file size (big-endian)
1030  *     Octets 8-15:       eCryptfs special marker
1031  *     Octets 16-19:      Flags
1032  *      Octet 16:         File format version number (between 0 and 255)
1033  *      Octets 17-18:     Reserved
1034  *      Octet 19:         Bit 1 (lsb): Reserved
1035  *                        Bit 2: Encrypted?
1036  *                        Bits 3-8: Reserved
1037  *     Octets 20-23:      Header extent size (big-endian)
1038  *     Octets 24-25:      Number of header extents at front of file
1039  *                        (big-endian)
1040  *     Octet  26:         Begin RFC 2440 authentication token packet set
1041  *   Data Extent 0:
1042  *     Lower data (CBC encrypted)
1043  *   Data Extent 1:
1044  *     Lower data (CBC encrypted)
1045  *   ...
1046  *
1047  * Returns zero on success
1048  */
1049 static int ecryptfs_write_headers_virt(char *page_virt, size_t max,
1050                                        size_t *size,
1051                                        struct ecryptfs_crypt_stat *crypt_stat,
1052                                        struct dentry *ecryptfs_dentry)
1053 {
1054         int rc;
1055         size_t written;
1056         size_t offset;
1057
1058         offset = ECRYPTFS_FILE_SIZE_BYTES;
1059         write_ecryptfs_marker((page_virt + offset), &written);
1060         offset += written;
1061         ecryptfs_write_crypt_stat_flags((page_virt + offset), crypt_stat,
1062                                         &written);
1063         offset += written;
1064         ecryptfs_write_header_metadata((page_virt + offset), crypt_stat,
1065                                        &written);
1066         offset += written;
1067         rc = ecryptfs_generate_key_packet_set((page_virt + offset), crypt_stat,
1068                                               ecryptfs_dentry, &written,
1069                                               max - offset);
1070         if (rc)
1071                 ecryptfs_printk(KERN_WARNING, "Error generating key packet "
1072                                 "set; rc = [%d]\n", rc);
1073         if (size) {
1074                 offset += written;
1075                 *size = offset;
1076         }
1077         return rc;
1078 }
1079
1080 static int
1081 ecryptfs_write_metadata_to_contents(struct inode *ecryptfs_inode,
1082                                     char *virt, size_t virt_len)
1083 {
1084         int rc;
1085
1086         rc = ecryptfs_write_lower(ecryptfs_inode, virt,
1087                                   0, virt_len);
1088         if (rc < 0)
1089                 printk(KERN_ERR "%s: Error attempting to write header "
1090                        "information to lower file; rc = [%d]\n", __func__, rc);
1091         else
1092                 rc = 0;
1093         return rc;
1094 }
1095
1096 static int
1097 ecryptfs_write_metadata_to_xattr(struct dentry *ecryptfs_dentry,
1098                                  struct inode *ecryptfs_inode,
1099                                  char *page_virt, size_t size)
1100 {
1101         int rc;
1102         struct dentry *lower_dentry = ecryptfs_dentry_to_lower(ecryptfs_dentry);
1103         struct inode *lower_inode = d_inode(lower_dentry);
1104
1105         if (!(lower_inode->i_opflags & IOP_XATTR)) {
1106                 rc = -EOPNOTSUPP;
1107                 goto out;
1108         }
1109
1110         inode_lock(lower_inode);
1111         rc = __vfs_setxattr(lower_dentry, lower_inode, ECRYPTFS_XATTR_NAME,
1112                             page_virt, size, 0);
1113         if (!rc && ecryptfs_inode)
1114                 fsstack_copy_attr_all(ecryptfs_inode, lower_inode);
1115         inode_unlock(lower_inode);
1116 out:
1117         return rc;
1118 }
1119
1120 static unsigned long ecryptfs_get_zeroed_pages(gfp_t gfp_mask,
1121                                                unsigned int order)
1122 {
1123         struct page *page;
1124
1125         page = alloc_pages(gfp_mask | __GFP_ZERO, order);
1126         if (page)
1127                 return (unsigned long) page_address(page);
1128         return 0;
1129 }
1130
1131 /**
1132  * ecryptfs_write_metadata
1133  * @ecryptfs_dentry: The eCryptfs dentry, which should be negative
1134  * @ecryptfs_inode: The newly created eCryptfs inode
1135  *
1136  * Write the file headers out.  This will likely involve a userspace
1137  * callout, in which the session key is encrypted with one or more
1138  * public keys and/or the passphrase necessary to do the encryption is
1139  * retrieved via a prompt.  Exactly what happens at this point should
1140  * be policy-dependent.
1141  *
1142  * Returns zero on success; non-zero on error
1143  */
1144 int ecryptfs_write_metadata(struct dentry *ecryptfs_dentry,
1145                             struct inode *ecryptfs_inode)
1146 {
1147         struct ecryptfs_crypt_stat *crypt_stat =
1148                 &ecryptfs_inode_to_private(ecryptfs_inode)->crypt_stat;
1149         unsigned int order;
1150         char *virt;
1151         size_t virt_len;
1152         size_t size = 0;
1153         int rc = 0;
1154
1155         if (likely(crypt_stat->flags & ECRYPTFS_ENCRYPTED)) {
1156                 if (!(crypt_stat->flags & ECRYPTFS_KEY_VALID)) {
1157                         printk(KERN_ERR "Key is invalid; bailing out\n");
1158                         rc = -EINVAL;
1159                         goto out;
1160                 }
1161         } else {
1162                 printk(KERN_WARNING "%s: Encrypted flag not set\n",
1163                        __func__);
1164                 rc = -EINVAL;
1165                 goto out;
1166         }
1167         virt_len = crypt_stat->metadata_size;
1168         order = get_order(virt_len);
1169         /* Released in this function */
1170         virt = (char *)ecryptfs_get_zeroed_pages(GFP_KERNEL, order);
1171         if (!virt) {
1172                 printk(KERN_ERR "%s: Out of memory\n", __func__);
1173                 rc = -ENOMEM;
1174                 goto out;
1175         }
1176         /* Zeroed page ensures the in-header unencrypted i_size is set to 0 */
1177         rc = ecryptfs_write_headers_virt(virt, virt_len, &size, crypt_stat,
1178                                          ecryptfs_dentry);
1179         if (unlikely(rc)) {
1180                 printk(KERN_ERR "%s: Error whilst writing headers; rc = [%d]\n",
1181                        __func__, rc);
1182                 goto out_free;
1183         }
1184         if (crypt_stat->flags & ECRYPTFS_METADATA_IN_XATTR)
1185                 rc = ecryptfs_write_metadata_to_xattr(ecryptfs_dentry, ecryptfs_inode,
1186                                                       virt, size);
1187         else
1188                 rc = ecryptfs_write_metadata_to_contents(ecryptfs_inode, virt,
1189                                                          virt_len);
1190         if (rc) {
1191                 printk(KERN_ERR "%s: Error writing metadata out to lower file; "
1192                        "rc = [%d]\n", __func__, rc);
1193                 goto out_free;
1194         }
1195 out_free:
1196         free_pages((unsigned long)virt, order);
1197 out:
1198         return rc;
1199 }
1200
1201 #define ECRYPTFS_DONT_VALIDATE_HEADER_SIZE 0
1202 #define ECRYPTFS_VALIDATE_HEADER_SIZE 1
1203 static int parse_header_metadata(struct ecryptfs_crypt_stat *crypt_stat,
1204                                  char *virt, int *bytes_read,
1205                                  int validate_header_size)
1206 {
1207         int rc = 0;
1208         u32 header_extent_size;
1209         u16 num_header_extents_at_front;
1210
1211         header_extent_size = get_unaligned_be32(virt);
1212         virt += sizeof(__be32);
1213         num_header_extents_at_front = get_unaligned_be16(virt);
1214         crypt_stat->metadata_size = (((size_t)num_header_extents_at_front
1215                                      * (size_t)header_extent_size));
1216         (*bytes_read) = (sizeof(__be32) + sizeof(__be16));
1217         if ((validate_header_size == ECRYPTFS_VALIDATE_HEADER_SIZE)
1218             && (crypt_stat->metadata_size
1219                 < ECRYPTFS_MINIMUM_HEADER_EXTENT_SIZE)) {
1220                 rc = -EINVAL;
1221                 printk(KERN_WARNING "Invalid header size: [%zd]\n",
1222                        crypt_stat->metadata_size);
1223         }
1224         return rc;
1225 }
1226
1227 /**
1228  * set_default_header_data
1229  * @crypt_stat: The cryptographic context
1230  *
1231  * For version 0 file format; this function is only for backwards
1232  * compatibility for files created with the prior versions of
1233  * eCryptfs.
1234  */
1235 static void set_default_header_data(struct ecryptfs_crypt_stat *crypt_stat)
1236 {
1237         crypt_stat->metadata_size = ECRYPTFS_MINIMUM_HEADER_EXTENT_SIZE;
1238 }
1239
1240 void ecryptfs_i_size_init(const char *page_virt, struct inode *inode)
1241 {
1242         struct ecryptfs_mount_crypt_stat *mount_crypt_stat;
1243         struct ecryptfs_crypt_stat *crypt_stat;
1244         u64 file_size;
1245
1246         crypt_stat = &ecryptfs_inode_to_private(inode)->crypt_stat;
1247         mount_crypt_stat =
1248                 &ecryptfs_superblock_to_private(inode->i_sb)->mount_crypt_stat;
1249         if (mount_crypt_stat->flags & ECRYPTFS_ENCRYPTED_VIEW_ENABLED) {
1250                 file_size = i_size_read(ecryptfs_inode_to_lower(inode));
1251                 if (crypt_stat->flags & ECRYPTFS_METADATA_IN_XATTR)
1252                         file_size += crypt_stat->metadata_size;
1253         } else
1254                 file_size = get_unaligned_be64(page_virt);
1255         i_size_write(inode, (loff_t)file_size);
1256         crypt_stat->flags |= ECRYPTFS_I_SIZE_INITIALIZED;
1257 }
1258
1259 /**
1260  * ecryptfs_read_headers_virt
1261  * @page_virt: The virtual address into which to read the headers
1262  * @crypt_stat: The cryptographic context
1263  * @ecryptfs_dentry: The eCryptfs dentry
1264  * @validate_header_size: Whether to validate the header size while reading
1265  *
1266  * Read/parse the header data. The header format is detailed in the
1267  * comment block for the ecryptfs_write_headers_virt() function.
1268  *
1269  * Returns zero on success
1270  */
1271 static int ecryptfs_read_headers_virt(char *page_virt,
1272                                       struct ecryptfs_crypt_stat *crypt_stat,
1273                                       struct dentry *ecryptfs_dentry,
1274                                       int validate_header_size)
1275 {
1276         int rc = 0;
1277         int offset;
1278         int bytes_read;
1279
1280         ecryptfs_set_default_sizes(crypt_stat);
1281         crypt_stat->mount_crypt_stat = &ecryptfs_superblock_to_private(
1282                 ecryptfs_dentry->d_sb)->mount_crypt_stat;
1283         offset = ECRYPTFS_FILE_SIZE_BYTES;
1284         rc = ecryptfs_validate_marker(page_virt + offset);
1285         if (rc)
1286                 goto out;
1287         if (!(crypt_stat->flags & ECRYPTFS_I_SIZE_INITIALIZED))
1288                 ecryptfs_i_size_init(page_virt, d_inode(ecryptfs_dentry));
1289         offset += MAGIC_ECRYPTFS_MARKER_SIZE_BYTES;
1290         ecryptfs_process_flags(crypt_stat, (page_virt + offset), &bytes_read);
1291         if (crypt_stat->file_version > ECRYPTFS_SUPPORTED_FILE_VERSION) {
1292                 ecryptfs_printk(KERN_WARNING, "File version is [%d]; only "
1293                                 "file version [%d] is supported by this "
1294                                 "version of eCryptfs\n",
1295                                 crypt_stat->file_version,
1296                                 ECRYPTFS_SUPPORTED_FILE_VERSION);
1297                 rc = -EINVAL;
1298                 goto out;
1299         }
1300         offset += bytes_read;
1301         if (crypt_stat->file_version >= 1) {
1302                 rc = parse_header_metadata(crypt_stat, (page_virt + offset),
1303                                            &bytes_read, validate_header_size);
1304                 if (rc) {
1305                         ecryptfs_printk(KERN_WARNING, "Error reading header "
1306                                         "metadata; rc = [%d]\n", rc);
1307                 }
1308                 offset += bytes_read;
1309         } else
1310                 set_default_header_data(crypt_stat);
1311         rc = ecryptfs_parse_packet_set(crypt_stat, (page_virt + offset),
1312                                        ecryptfs_dentry);
1313 out:
1314         return rc;
1315 }
1316
1317 /**
1318  * ecryptfs_read_xattr_region
1319  * @page_virt: The vitual address into which to read the xattr data
1320  * @ecryptfs_inode: The eCryptfs inode
1321  *
1322  * Attempts to read the crypto metadata from the extended attribute
1323  * region of the lower file.
1324  *
1325  * Returns zero on success; non-zero on error
1326  */
1327 int ecryptfs_read_xattr_region(char *page_virt, struct inode *ecryptfs_inode)
1328 {
1329         struct dentry *lower_dentry =
1330                 ecryptfs_inode_to_private(ecryptfs_inode)->lower_file->f_path.dentry;
1331         ssize_t size;
1332         int rc = 0;
1333
1334         size = ecryptfs_getxattr_lower(lower_dentry,
1335                                        ecryptfs_inode_to_lower(ecryptfs_inode),
1336                                        ECRYPTFS_XATTR_NAME,
1337                                        page_virt, ECRYPTFS_DEFAULT_EXTENT_SIZE);
1338         if (size < 0) {
1339                 if (unlikely(ecryptfs_verbosity > 0))
1340                         printk(KERN_INFO "Error attempting to read the [%s] "
1341                                "xattr from the lower file; return value = "
1342                                "[%zd]\n", ECRYPTFS_XATTR_NAME, size);
1343                 rc = -EINVAL;
1344                 goto out;
1345         }
1346 out:
1347         return rc;
1348 }
1349
1350 int ecryptfs_read_and_validate_xattr_region(struct dentry *dentry,
1351                                             struct inode *inode)
1352 {
1353         u8 file_size[ECRYPTFS_SIZE_AND_MARKER_BYTES];
1354         u8 *marker = file_size + ECRYPTFS_FILE_SIZE_BYTES;
1355         int rc;
1356
1357         rc = ecryptfs_getxattr_lower(ecryptfs_dentry_to_lower(dentry),
1358                                      ecryptfs_inode_to_lower(inode),
1359                                      ECRYPTFS_XATTR_NAME, file_size,
1360                                      ECRYPTFS_SIZE_AND_MARKER_BYTES);
1361         if (rc < 0)
1362                 return rc;
1363         else if (rc < ECRYPTFS_SIZE_AND_MARKER_BYTES)
1364                 return -EINVAL;
1365         rc = ecryptfs_validate_marker(marker);
1366         if (!rc)
1367                 ecryptfs_i_size_init(file_size, inode);
1368         return rc;
1369 }
1370
1371 /**
1372  * ecryptfs_read_metadata
1373  *
1374  * Common entry point for reading file metadata. From here, we could
1375  * retrieve the header information from the header region of the file,
1376  * the xattr region of the file, or some other repository that is
1377  * stored separately from the file itself. The current implementation
1378  * supports retrieving the metadata information from the file contents
1379  * and from the xattr region.
1380  *
1381  * Returns zero if valid headers found and parsed; non-zero otherwise
1382  */
1383 int ecryptfs_read_metadata(struct dentry *ecryptfs_dentry)
1384 {
1385         int rc;
1386         char *page_virt;
1387         struct inode *ecryptfs_inode = d_inode(ecryptfs_dentry);
1388         struct ecryptfs_crypt_stat *crypt_stat =
1389             &ecryptfs_inode_to_private(ecryptfs_inode)->crypt_stat;
1390         struct ecryptfs_mount_crypt_stat *mount_crypt_stat =
1391                 &ecryptfs_superblock_to_private(
1392                         ecryptfs_dentry->d_sb)->mount_crypt_stat;
1393
1394         ecryptfs_copy_mount_wide_flags_to_inode_flags(crypt_stat,
1395                                                       mount_crypt_stat);
1396         /* Read the first page from the underlying file */
1397         page_virt = kmem_cache_alloc(ecryptfs_header_cache, GFP_USER);
1398         if (!page_virt) {
1399                 rc = -ENOMEM;
1400                 goto out;
1401         }
1402         rc = ecryptfs_read_lower(page_virt, 0, crypt_stat->extent_size,
1403                                  ecryptfs_inode);
1404         if (rc >= 0)
1405                 rc = ecryptfs_read_headers_virt(page_virt, crypt_stat,
1406                                                 ecryptfs_dentry,
1407                                                 ECRYPTFS_VALIDATE_HEADER_SIZE);
1408         if (rc) {
1409                 /* metadata is not in the file header, so try xattrs */
1410                 memset(page_virt, 0, PAGE_SIZE);
1411                 rc = ecryptfs_read_xattr_region(page_virt, ecryptfs_inode);
1412                 if (rc) {
1413                         printk(KERN_DEBUG "Valid eCryptfs headers not found in "
1414                                "file header region or xattr region, inode %lu\n",
1415                                 ecryptfs_inode->i_ino);
1416                         rc = -EINVAL;
1417                         goto out;
1418                 }
1419                 rc = ecryptfs_read_headers_virt(page_virt, crypt_stat,
1420                                                 ecryptfs_dentry,
1421                                                 ECRYPTFS_DONT_VALIDATE_HEADER_SIZE);
1422                 if (rc) {
1423                         printk(KERN_DEBUG "Valid eCryptfs headers not found in "
1424                                "file xattr region either, inode %lu\n",
1425                                 ecryptfs_inode->i_ino);
1426                         rc = -EINVAL;
1427                 }
1428                 if (crypt_stat->mount_crypt_stat->flags
1429                     & ECRYPTFS_XATTR_METADATA_ENABLED) {
1430                         crypt_stat->flags |= ECRYPTFS_METADATA_IN_XATTR;
1431                 } else {
1432                         printk(KERN_WARNING "Attempt to access file with "
1433                                "crypto metadata only in the extended attribute "
1434                                "region, but eCryptfs was mounted without "
1435                                "xattr support enabled. eCryptfs will not treat "
1436                                "this like an encrypted file, inode %lu\n",
1437                                 ecryptfs_inode->i_ino);
1438                         rc = -EINVAL;
1439                 }
1440         }
1441 out:
1442         if (page_virt) {
1443                 memset(page_virt, 0, PAGE_SIZE);
1444                 kmem_cache_free(ecryptfs_header_cache, page_virt);
1445         }
1446         return rc;
1447 }
1448
1449 /**
1450  * ecryptfs_encrypt_filename - encrypt filename
1451  *
1452  * CBC-encrypts the filename. We do not want to encrypt the same
1453  * filename with the same key and IV, which may happen with hard
1454  * links, so we prepend random bits to each filename.
1455  *
1456  * Returns zero on success; non-zero otherwise
1457  */
1458 static int
1459 ecryptfs_encrypt_filename(struct ecryptfs_filename *filename,
1460                           struct ecryptfs_mount_crypt_stat *mount_crypt_stat)
1461 {
1462         int rc = 0;
1463
1464         filename->encrypted_filename = NULL;
1465         filename->encrypted_filename_size = 0;
1466         if (mount_crypt_stat && (mount_crypt_stat->flags
1467                                      & ECRYPTFS_GLOBAL_ENCFN_USE_MOUNT_FNEK)) {
1468                 size_t packet_size;
1469                 size_t remaining_bytes;
1470
1471                 rc = ecryptfs_write_tag_70_packet(
1472                         NULL, NULL,
1473                         &filename->encrypted_filename_size,
1474                         mount_crypt_stat, NULL,
1475                         filename->filename_size);
1476                 if (rc) {
1477                         printk(KERN_ERR "%s: Error attempting to get packet "
1478                                "size for tag 72; rc = [%d]\n", __func__,
1479                                rc);
1480                         filename->encrypted_filename_size = 0;
1481                         goto out;
1482                 }
1483                 filename->encrypted_filename =
1484                         kmalloc(filename->encrypted_filename_size, GFP_KERNEL);
1485                 if (!filename->encrypted_filename) {
1486                         rc = -ENOMEM;
1487                         goto out;
1488                 }
1489                 remaining_bytes = filename->encrypted_filename_size;
1490                 rc = ecryptfs_write_tag_70_packet(filename->encrypted_filename,
1491                                                   &remaining_bytes,
1492                                                   &packet_size,
1493                                                   mount_crypt_stat,
1494                                                   filename->filename,
1495                                                   filename->filename_size);
1496                 if (rc) {
1497                         printk(KERN_ERR "%s: Error attempting to generate "
1498                                "tag 70 packet; rc = [%d]\n", __func__,
1499                                rc);
1500                         kfree(filename->encrypted_filename);
1501                         filename->encrypted_filename = NULL;
1502                         filename->encrypted_filename_size = 0;
1503                         goto out;
1504                 }
1505                 filename->encrypted_filename_size = packet_size;
1506         } else {
1507                 printk(KERN_ERR "%s: No support for requested filename "
1508                        "encryption method in this release\n", __func__);
1509                 rc = -EOPNOTSUPP;
1510                 goto out;
1511         }
1512 out:
1513         return rc;
1514 }
1515
1516 static int ecryptfs_copy_filename(char **copied_name, size_t *copied_name_size,
1517                                   const char *name, size_t name_size)
1518 {
1519         int rc = 0;
1520
1521         (*copied_name) = kmalloc((name_size + 1), GFP_KERNEL);
1522         if (!(*copied_name)) {
1523                 rc = -ENOMEM;
1524                 goto out;
1525         }
1526         memcpy((void *)(*copied_name), (void *)name, name_size);
1527         (*copied_name)[(name_size)] = '\0';     /* Only for convenience
1528                                                  * in printing out the
1529                                                  * string in debug
1530                                                  * messages */
1531         (*copied_name_size) = name_size;
1532 out:
1533         return rc;
1534 }
1535
1536 /**
1537  * ecryptfs_process_key_cipher - Perform key cipher initialization.
1538  * @key_tfm: Crypto context for key material, set by this function
1539  * @cipher_name: Name of the cipher
1540  * @key_size: Size of the key in bytes
1541  *
1542  * Returns zero on success. Any crypto_tfm structs allocated here
1543  * should be released by other functions, such as on a superblock put
1544  * event, regardless of whether this function succeeds for fails.
1545  */
1546 static int
1547 ecryptfs_process_key_cipher(struct crypto_skcipher **key_tfm,
1548                             char *cipher_name, size_t *key_size)
1549 {
1550         char dummy_key[ECRYPTFS_MAX_KEY_BYTES];
1551         char *full_alg_name = NULL;
1552         int rc;
1553
1554         *key_tfm = NULL;
1555         if (*key_size > ECRYPTFS_MAX_KEY_BYTES) {
1556                 rc = -EINVAL;
1557                 printk(KERN_ERR "Requested key size is [%zd] bytes; maximum "
1558                       "allowable is [%d]\n", *key_size, ECRYPTFS_MAX_KEY_BYTES);
1559                 goto out;
1560         }
1561         rc = ecryptfs_crypto_api_algify_cipher_name(&full_alg_name, cipher_name,
1562                                                     "ecb");
1563         if (rc)
1564                 goto out;
1565         *key_tfm = crypto_alloc_skcipher(full_alg_name, 0, CRYPTO_ALG_ASYNC);
1566         if (IS_ERR(*key_tfm)) {
1567                 rc = PTR_ERR(*key_tfm);
1568                 printk(KERN_ERR "Unable to allocate crypto cipher with name "
1569                        "[%s]; rc = [%d]\n", full_alg_name, rc);
1570                 goto out;
1571         }
1572         crypto_skcipher_set_flags(*key_tfm, CRYPTO_TFM_REQ_FORBID_WEAK_KEYS);
1573         if (*key_size == 0)
1574                 *key_size = crypto_skcipher_max_keysize(*key_tfm);
1575         get_random_bytes(dummy_key, *key_size);
1576         rc = crypto_skcipher_setkey(*key_tfm, dummy_key, *key_size);
1577         if (rc) {
1578                 printk(KERN_ERR "Error attempting to set key of size [%zd] for "
1579                        "cipher [%s]; rc = [%d]\n", *key_size, full_alg_name,
1580                        rc);
1581                 rc = -EINVAL;
1582                 goto out;
1583         }
1584 out:
1585         kfree(full_alg_name);
1586         return rc;
1587 }
1588
1589 struct kmem_cache *ecryptfs_key_tfm_cache;
1590 static struct list_head key_tfm_list;
1591 struct mutex key_tfm_list_mutex;
1592
1593 int __init ecryptfs_init_crypto(void)
1594 {
1595         mutex_init(&key_tfm_list_mutex);
1596         INIT_LIST_HEAD(&key_tfm_list);
1597         return 0;
1598 }
1599
1600 /**
1601  * ecryptfs_destroy_crypto - free all cached key_tfms on key_tfm_list
1602  *
1603  * Called only at module unload time
1604  */
1605 int ecryptfs_destroy_crypto(void)
1606 {
1607         struct ecryptfs_key_tfm *key_tfm, *key_tfm_tmp;
1608
1609         mutex_lock(&key_tfm_list_mutex);
1610         list_for_each_entry_safe(key_tfm, key_tfm_tmp, &key_tfm_list,
1611                                  key_tfm_list) {
1612                 list_del(&key_tfm->key_tfm_list);
1613                 crypto_free_skcipher(key_tfm->key_tfm);
1614                 kmem_cache_free(ecryptfs_key_tfm_cache, key_tfm);
1615         }
1616         mutex_unlock(&key_tfm_list_mutex);
1617         return 0;
1618 }
1619
1620 int
1621 ecryptfs_add_new_key_tfm(struct ecryptfs_key_tfm **key_tfm, char *cipher_name,
1622                          size_t key_size)
1623 {
1624         struct ecryptfs_key_tfm *tmp_tfm;
1625         int rc = 0;
1626
1627         BUG_ON(!mutex_is_locked(&key_tfm_list_mutex));
1628
1629         tmp_tfm = kmem_cache_alloc(ecryptfs_key_tfm_cache, GFP_KERNEL);
1630         if (key_tfm)
1631                 (*key_tfm) = tmp_tfm;
1632         if (!tmp_tfm) {
1633                 rc = -ENOMEM;
1634                 goto out;
1635         }
1636         mutex_init(&tmp_tfm->key_tfm_mutex);
1637         strncpy(tmp_tfm->cipher_name, cipher_name,
1638                 ECRYPTFS_MAX_CIPHER_NAME_SIZE);
1639         tmp_tfm->cipher_name[ECRYPTFS_MAX_CIPHER_NAME_SIZE] = '\0';
1640         tmp_tfm->key_size = key_size;
1641         rc = ecryptfs_process_key_cipher(&tmp_tfm->key_tfm,
1642                                          tmp_tfm->cipher_name,
1643                                          &tmp_tfm->key_size);
1644         if (rc) {
1645                 printk(KERN_ERR "Error attempting to initialize key TFM "
1646                        "cipher with name = [%s]; rc = [%d]\n",
1647                        tmp_tfm->cipher_name, rc);
1648                 kmem_cache_free(ecryptfs_key_tfm_cache, tmp_tfm);
1649                 if (key_tfm)
1650                         (*key_tfm) = NULL;
1651                 goto out;
1652         }
1653         list_add(&tmp_tfm->key_tfm_list, &key_tfm_list);
1654 out:
1655         return rc;
1656 }
1657
1658 /**
1659  * ecryptfs_tfm_exists - Search for existing tfm for cipher_name.
1660  * @cipher_name: the name of the cipher to search for
1661  * @key_tfm: set to corresponding tfm if found
1662  *
1663  * Searches for cached key_tfm matching @cipher_name
1664  * Must be called with &key_tfm_list_mutex held
1665  * Returns 1 if found, with @key_tfm set
1666  * Returns 0 if not found, with @key_tfm set to NULL
1667  */
1668 int ecryptfs_tfm_exists(char *cipher_name, struct ecryptfs_key_tfm **key_tfm)
1669 {
1670         struct ecryptfs_key_tfm *tmp_key_tfm;
1671
1672         BUG_ON(!mutex_is_locked(&key_tfm_list_mutex));
1673
1674         list_for_each_entry(tmp_key_tfm, &key_tfm_list, key_tfm_list) {
1675                 if (strcmp(tmp_key_tfm->cipher_name, cipher_name) == 0) {
1676                         if (key_tfm)
1677                                 (*key_tfm) = tmp_key_tfm;
1678                         return 1;
1679                 }
1680         }
1681         if (key_tfm)
1682                 (*key_tfm) = NULL;
1683         return 0;
1684 }
1685
1686 /**
1687  * ecryptfs_get_tfm_and_mutex_for_cipher_name
1688  *
1689  * @tfm: set to cached tfm found, or new tfm created
1690  * @tfm_mutex: set to mutex for cached tfm found, or new tfm created
1691  * @cipher_name: the name of the cipher to search for and/or add
1692  *
1693  * Sets pointers to @tfm & @tfm_mutex matching @cipher_name.
1694  * Searches for cached item first, and creates new if not found.
1695  * Returns 0 on success, non-zero if adding new cipher failed
1696  */
1697 int ecryptfs_get_tfm_and_mutex_for_cipher_name(struct crypto_skcipher **tfm,
1698                                                struct mutex **tfm_mutex,
1699                                                char *cipher_name)
1700 {
1701         struct ecryptfs_key_tfm *key_tfm;
1702         int rc = 0;
1703
1704         (*tfm) = NULL;
1705         (*tfm_mutex) = NULL;
1706
1707         mutex_lock(&key_tfm_list_mutex);
1708         if (!ecryptfs_tfm_exists(cipher_name, &key_tfm)) {
1709                 rc = ecryptfs_add_new_key_tfm(&key_tfm, cipher_name, 0);
1710                 if (rc) {
1711                         printk(KERN_ERR "Error adding new key_tfm to list; "
1712                                         "rc = [%d]\n", rc);
1713                         goto out;
1714                 }
1715         }
1716         (*tfm) = key_tfm->key_tfm;
1717         (*tfm_mutex) = &key_tfm->key_tfm_mutex;
1718 out:
1719         mutex_unlock(&key_tfm_list_mutex);
1720         return rc;
1721 }
1722
1723 /* 64 characters forming a 6-bit target field */
1724 static unsigned char *portable_filename_chars = ("-.0123456789ABCD"
1725                                                  "EFGHIJKLMNOPQRST"
1726                                                  "UVWXYZabcdefghij"
1727                                                  "klmnopqrstuvwxyz");
1728
1729 /* We could either offset on every reverse map or just pad some 0x00's
1730  * at the front here */
1731 static const unsigned char filename_rev_map[256] = {
1732         0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, /* 7 */
1733         0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, /* 15 */
1734         0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, /* 23 */
1735         0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, /* 31 */
1736         0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, /* 39 */
1737         0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x01, 0x00, /* 47 */
1738         0x02, 0x03, 0x04, 0x05, 0x06, 0x07, 0x08, 0x09, /* 55 */
1739         0x0A, 0x0B, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, /* 63 */
1740         0x00, 0x0C, 0x0D, 0x0E, 0x0F, 0x10, 0x11, 0x12, /* 71 */
1741         0x13, 0x14, 0x15, 0x16, 0x17, 0x18, 0x19, 0x1A, /* 79 */
1742         0x1B, 0x1C, 0x1D, 0x1E, 0x1F, 0x20, 0x21, 0x22, /* 87 */
1743         0x23, 0x24, 0x25, 0x00, 0x00, 0x00, 0x00, 0x00, /* 95 */
1744         0x00, 0x26, 0x27, 0x28, 0x29, 0x2A, 0x2B, 0x2C, /* 103 */
1745         0x2D, 0x2E, 0x2F, 0x30, 0x31, 0x32, 0x33, 0x34, /* 111 */
1746         0x35, 0x36, 0x37, 0x38, 0x39, 0x3A, 0x3B, 0x3C, /* 119 */
1747         0x3D, 0x3E, 0x3F /* 123 - 255 initialized to 0x00 */
1748 };
1749
1750 /**
1751  * ecryptfs_encode_for_filename
1752  * @dst: Destination location for encoded filename
1753  * @dst_size: Size of the encoded filename in bytes
1754  * @src: Source location for the filename to encode
1755  * @src_size: Size of the source in bytes
1756  */
1757 static void ecryptfs_encode_for_filename(unsigned char *dst, size_t *dst_size,
1758                                   unsigned char *src, size_t src_size)
1759 {
1760         size_t num_blocks;
1761         size_t block_num = 0;
1762         size_t dst_offset = 0;
1763         unsigned char last_block[3];
1764
1765         if (src_size == 0) {
1766                 (*dst_size) = 0;
1767                 goto out;
1768         }
1769         num_blocks = (src_size / 3);
1770         if ((src_size % 3) == 0) {
1771                 memcpy(last_block, (&src[src_size - 3]), 3);
1772         } else {
1773                 num_blocks++;
1774                 last_block[2] = 0x00;
1775                 switch (src_size % 3) {
1776                 case 1:
1777                         last_block[0] = src[src_size - 1];
1778                         last_block[1] = 0x00;
1779                         break;
1780                 case 2:
1781                         last_block[0] = src[src_size - 2];
1782                         last_block[1] = src[src_size - 1];
1783                 }
1784         }
1785         (*dst_size) = (num_blocks * 4);
1786         if (!dst)
1787                 goto out;
1788         while (block_num < num_blocks) {
1789                 unsigned char *src_block;
1790                 unsigned char dst_block[4];
1791
1792                 if (block_num == (num_blocks - 1))
1793                         src_block = last_block;
1794                 else
1795                         src_block = &src[block_num * 3];
1796                 dst_block[0] = ((src_block[0] >> 2) & 0x3F);
1797                 dst_block[1] = (((src_block[0] << 4) & 0x30)
1798                                 | ((src_block[1] >> 4) & 0x0F));
1799                 dst_block[2] = (((src_block[1] << 2) & 0x3C)
1800                                 | ((src_block[2] >> 6) & 0x03));
1801                 dst_block[3] = (src_block[2] & 0x3F);
1802                 dst[dst_offset++] = portable_filename_chars[dst_block[0]];
1803                 dst[dst_offset++] = portable_filename_chars[dst_block[1]];
1804                 dst[dst_offset++] = portable_filename_chars[dst_block[2]];
1805                 dst[dst_offset++] = portable_filename_chars[dst_block[3]];
1806                 block_num++;
1807         }
1808 out:
1809         return;
1810 }
1811
1812 static size_t ecryptfs_max_decoded_size(size_t encoded_size)
1813 {
1814         /* Not exact; conservatively long. Every block of 4
1815          * encoded characters decodes into a block of 3
1816          * decoded characters. This segment of code provides
1817          * the caller with the maximum amount of allocated
1818          * space that @dst will need to point to in a
1819          * subsequent call. */
1820         return ((encoded_size + 1) * 3) / 4;
1821 }
1822
1823 /**
1824  * ecryptfs_decode_from_filename
1825  * @dst: If NULL, this function only sets @dst_size and returns. If
1826  *       non-NULL, this function decodes the encoded octets in @src
1827  *       into the memory that @dst points to.
1828  * @dst_size: Set to the size of the decoded string.
1829  * @src: The encoded set of octets to decode.
1830  * @src_size: The size of the encoded set of octets to decode.
1831  */
1832 static void
1833 ecryptfs_decode_from_filename(unsigned char *dst, size_t *dst_size,
1834                               const unsigned char *src, size_t src_size)
1835 {
1836         u8 current_bit_offset = 0;
1837         size_t src_byte_offset = 0;
1838         size_t dst_byte_offset = 0;
1839
1840         if (!dst) {
1841                 (*dst_size) = ecryptfs_max_decoded_size(src_size);
1842                 goto out;
1843         }
1844         while (src_byte_offset < src_size) {
1845                 unsigned char src_byte =
1846                                 filename_rev_map[(int)src[src_byte_offset]];
1847
1848                 switch (current_bit_offset) {
1849                 case 0:
1850                         dst[dst_byte_offset] = (src_byte << 2);
1851                         current_bit_offset = 6;
1852                         break;
1853                 case 6:
1854                         dst[dst_byte_offset++] |= (src_byte >> 4);
1855                         dst[dst_byte_offset] = ((src_byte & 0xF)
1856                                                  << 4);
1857                         current_bit_offset = 4;
1858                         break;
1859                 case 4:
1860                         dst[dst_byte_offset++] |= (src_byte >> 2);
1861                         dst[dst_byte_offset] = (src_byte << 6);
1862                         current_bit_offset = 2;
1863                         break;
1864                 case 2:
1865                         dst[dst_byte_offset++] |= (src_byte);
1866                         current_bit_offset = 0;
1867                         break;
1868                 }
1869                 src_byte_offset++;
1870         }
1871         (*dst_size) = dst_byte_offset;
1872 out:
1873         return;
1874 }
1875
1876 /**
1877  * ecryptfs_encrypt_and_encode_filename - converts a plaintext file name to cipher text
1878  * @crypt_stat: The crypt_stat struct associated with the file anem to encode
1879  * @name: The plaintext name
1880  * @length: The length of the plaintext
1881  * @encoded_name: The encypted name
1882  *
1883  * Encrypts and encodes a filename into something that constitutes a
1884  * valid filename for a filesystem, with printable characters.
1885  *
1886  * We assume that we have a properly initialized crypto context,
1887  * pointed to by crypt_stat->tfm.
1888  *
1889  * Returns zero on success; non-zero on otherwise
1890  */
1891 int ecryptfs_encrypt_and_encode_filename(
1892         char **encoded_name,
1893         size_t *encoded_name_size,
1894         struct ecryptfs_mount_crypt_stat *mount_crypt_stat,
1895         const char *name, size_t name_size)
1896 {
1897         size_t encoded_name_no_prefix_size;
1898         int rc = 0;
1899
1900         (*encoded_name) = NULL;
1901         (*encoded_name_size) = 0;
1902         if (mount_crypt_stat && (mount_crypt_stat->flags
1903                                      & ECRYPTFS_GLOBAL_ENCRYPT_FILENAMES)) {
1904                 struct ecryptfs_filename *filename;
1905
1906                 filename = kzalloc(sizeof(*filename), GFP_KERNEL);
1907                 if (!filename) {
1908                         rc = -ENOMEM;
1909                         goto out;
1910                 }
1911                 filename->filename = (char *)name;
1912                 filename->filename_size = name_size;
1913                 rc = ecryptfs_encrypt_filename(filename, mount_crypt_stat);
1914                 if (rc) {
1915                         printk(KERN_ERR "%s: Error attempting to encrypt "
1916                                "filename; rc = [%d]\n", __func__, rc);
1917                         kfree(filename);
1918                         goto out;
1919                 }
1920                 ecryptfs_encode_for_filename(
1921                         NULL, &encoded_name_no_prefix_size,
1922                         filename->encrypted_filename,
1923                         filename->encrypted_filename_size);
1924                 if (mount_crypt_stat
1925                         && (mount_crypt_stat->flags
1926                             & ECRYPTFS_GLOBAL_ENCFN_USE_MOUNT_FNEK))
1927                         (*encoded_name_size) =
1928                                 (ECRYPTFS_FNEK_ENCRYPTED_FILENAME_PREFIX_SIZE
1929                                  + encoded_name_no_prefix_size);
1930                 else
1931                         (*encoded_name_size) =
1932                                 (ECRYPTFS_FEK_ENCRYPTED_FILENAME_PREFIX_SIZE
1933                                  + encoded_name_no_prefix_size);
1934                 (*encoded_name) = kmalloc((*encoded_name_size) + 1, GFP_KERNEL);
1935                 if (!(*encoded_name)) {
1936                         rc = -ENOMEM;
1937                         kfree(filename->encrypted_filename);
1938                         kfree(filename);
1939                         goto out;
1940                 }
1941                 if (mount_crypt_stat
1942                         && (mount_crypt_stat->flags
1943                             & ECRYPTFS_GLOBAL_ENCFN_USE_MOUNT_FNEK)) {
1944                         memcpy((*encoded_name),
1945                                ECRYPTFS_FNEK_ENCRYPTED_FILENAME_PREFIX,
1946                                ECRYPTFS_FNEK_ENCRYPTED_FILENAME_PREFIX_SIZE);
1947                         ecryptfs_encode_for_filename(
1948                             ((*encoded_name)
1949                              + ECRYPTFS_FNEK_ENCRYPTED_FILENAME_PREFIX_SIZE),
1950                             &encoded_name_no_prefix_size,
1951                             filename->encrypted_filename,
1952                             filename->encrypted_filename_size);
1953                         (*encoded_name_size) =
1954                                 (ECRYPTFS_FNEK_ENCRYPTED_FILENAME_PREFIX_SIZE
1955                                  + encoded_name_no_prefix_size);
1956                         (*encoded_name)[(*encoded_name_size)] = '\0';
1957                 } else {
1958                         rc = -EOPNOTSUPP;
1959                 }
1960                 if (rc) {
1961                         printk(KERN_ERR "%s: Error attempting to encode "
1962                                "encrypted filename; rc = [%d]\n", __func__,
1963                                rc);
1964                         kfree((*encoded_name));
1965                         (*encoded_name) = NULL;
1966                         (*encoded_name_size) = 0;
1967                 }
1968                 kfree(filename->encrypted_filename);
1969                 kfree(filename);
1970         } else {
1971                 rc = ecryptfs_copy_filename(encoded_name,
1972                                             encoded_name_size,
1973                                             name, name_size);
1974         }
1975 out:
1976         return rc;
1977 }
1978
1979 static bool is_dot_dotdot(const char *name, size_t name_size)
1980 {
1981         if (name_size == 1 && name[0] == '.')
1982                 return true;
1983         else if (name_size == 2 && name[0] == '.' && name[1] == '.')
1984                 return true;
1985
1986         return false;
1987 }
1988
1989 /**
1990  * ecryptfs_decode_and_decrypt_filename - converts the encoded cipher text name to decoded plaintext
1991  * @plaintext_name: The plaintext name
1992  * @plaintext_name_size: The plaintext name size
1993  * @ecryptfs_dir_dentry: eCryptfs directory dentry
1994  * @name: The filename in cipher text
1995  * @name_size: The cipher text name size
1996  *
1997  * Decrypts and decodes the filename.
1998  *
1999  * Returns zero on error; non-zero otherwise
2000  */
2001 int ecryptfs_decode_and_decrypt_filename(char **plaintext_name,
2002                                          size_t *plaintext_name_size,
2003                                          struct super_block *sb,
2004                                          const char *name, size_t name_size)
2005 {
2006         struct ecryptfs_mount_crypt_stat *mount_crypt_stat =
2007                 &ecryptfs_superblock_to_private(sb)->mount_crypt_stat;
2008         char *decoded_name;
2009         size_t decoded_name_size;
2010         size_t packet_size;
2011         int rc = 0;
2012
2013         if ((mount_crypt_stat->flags & ECRYPTFS_GLOBAL_ENCRYPT_FILENAMES) &&
2014             !(mount_crypt_stat->flags & ECRYPTFS_ENCRYPTED_VIEW_ENABLED)) {
2015                 if (is_dot_dotdot(name, name_size)) {
2016                         rc = ecryptfs_copy_filename(plaintext_name,
2017                                                     plaintext_name_size,
2018                                                     name, name_size);
2019                         goto out;
2020                 }
2021
2022                 if (name_size <= ECRYPTFS_FNEK_ENCRYPTED_FILENAME_PREFIX_SIZE ||
2023                     strncmp(name, ECRYPTFS_FNEK_ENCRYPTED_FILENAME_PREFIX,
2024                             ECRYPTFS_FNEK_ENCRYPTED_FILENAME_PREFIX_SIZE)) {
2025                         rc = -EINVAL;
2026                         goto out;
2027                 }
2028
2029                 name += ECRYPTFS_FNEK_ENCRYPTED_FILENAME_PREFIX_SIZE;
2030                 name_size -= ECRYPTFS_FNEK_ENCRYPTED_FILENAME_PREFIX_SIZE;
2031                 ecryptfs_decode_from_filename(NULL, &decoded_name_size,
2032                                               name, name_size);
2033                 decoded_name = kmalloc(decoded_name_size, GFP_KERNEL);
2034                 if (!decoded_name) {
2035                         rc = -ENOMEM;
2036                         goto out;
2037                 }
2038                 ecryptfs_decode_from_filename(decoded_name, &decoded_name_size,
2039                                               name, name_size);
2040                 rc = ecryptfs_parse_tag_70_packet(plaintext_name,
2041                                                   plaintext_name_size,
2042                                                   &packet_size,
2043                                                   mount_crypt_stat,
2044                                                   decoded_name,
2045                                                   decoded_name_size);
2046                 if (rc) {
2047                         ecryptfs_printk(KERN_DEBUG,
2048                                         "%s: Could not parse tag 70 packet from filename\n",
2049                                         __func__);
2050                         goto out_free;
2051                 }
2052         } else {
2053                 rc = ecryptfs_copy_filename(plaintext_name,
2054                                             plaintext_name_size,
2055                                             name, name_size);
2056                 goto out;
2057         }
2058 out_free:
2059         kfree(decoded_name);
2060 out:
2061         return rc;
2062 }
2063
2064 #define ENC_NAME_MAX_BLOCKLEN_8_OR_16   143
2065
2066 int ecryptfs_set_f_namelen(long *namelen, long lower_namelen,
2067                            struct ecryptfs_mount_crypt_stat *mount_crypt_stat)
2068 {
2069         struct crypto_skcipher *tfm;
2070         struct mutex *tfm_mutex;
2071         size_t cipher_blocksize;
2072         int rc;
2073
2074         if (!(mount_crypt_stat->flags & ECRYPTFS_GLOBAL_ENCRYPT_FILENAMES)) {
2075                 (*namelen) = lower_namelen;
2076                 return 0;
2077         }
2078
2079         rc = ecryptfs_get_tfm_and_mutex_for_cipher_name(&tfm, &tfm_mutex,
2080                         mount_crypt_stat->global_default_fn_cipher_name);
2081         if (unlikely(rc)) {
2082                 (*namelen) = 0;
2083                 return rc;
2084         }
2085
2086         mutex_lock(tfm_mutex);
2087         cipher_blocksize = crypto_skcipher_blocksize(tfm);
2088         mutex_unlock(tfm_mutex);
2089
2090         /* Return an exact amount for the common cases */
2091         if (lower_namelen == NAME_MAX
2092             && (cipher_blocksize == 8 || cipher_blocksize == 16)) {
2093                 (*namelen) = ENC_NAME_MAX_BLOCKLEN_8_OR_16;
2094                 return 0;
2095         }
2096
2097         /* Return a safe estimate for the uncommon cases */
2098         (*namelen) = lower_namelen;
2099         (*namelen) -= ECRYPTFS_FNEK_ENCRYPTED_FILENAME_PREFIX_SIZE;
2100         /* Since this is the max decoded size, subtract 1 "decoded block" len */
2101         (*namelen) = ecryptfs_max_decoded_size(*namelen) - 3;
2102         (*namelen) -= ECRYPTFS_TAG_70_MAX_METADATA_SIZE;
2103         (*namelen) -= ECRYPTFS_FILENAME_MIN_RANDOM_PREPEND_BYTES;
2104         /* Worst case is that the filename is padded nearly a full block size */
2105         (*namelen) -= cipher_blocksize - 1;
2106
2107         if ((*namelen) < 0)
2108                 (*namelen) = 0;
2109
2110         return 0;
2111 }