arm64: dts: qcom: sm8550: add TRNG node
[linux-modified.git] / fs / dlm / lowcomms.c
1 // SPDX-License-Identifier: GPL-2.0-only
2 /******************************************************************************
3 *******************************************************************************
4 **
5 **  Copyright (C) Sistina Software, Inc.  1997-2003  All rights reserved.
6 **  Copyright (C) 2004-2009 Red Hat, Inc.  All rights reserved.
7 **
8 **
9 *******************************************************************************
10 ******************************************************************************/
11
12 /*
13  * lowcomms.c
14  *
15  * This is the "low-level" comms layer.
16  *
17  * It is responsible for sending/receiving messages
18  * from other nodes in the cluster.
19  *
20  * Cluster nodes are referred to by their nodeids. nodeids are
21  * simply 32 bit numbers to the locking module - if they need to
22  * be expanded for the cluster infrastructure then that is its
23  * responsibility. It is this layer's
24  * responsibility to resolve these into IP address or
25  * whatever it needs for inter-node communication.
26  *
27  * The comms level is two kernel threads that deal mainly with
28  * the receiving of messages from other nodes and passing them
29  * up to the mid-level comms layer (which understands the
30  * message format) for execution by the locking core, and
31  * a send thread which does all the setting up of connections
32  * to remote nodes and the sending of data. Threads are not allowed
33  * to send their own data because it may cause them to wait in times
34  * of high load. Also, this way, the sending thread can collect together
35  * messages bound for one node and send them in one block.
36  *
37  * lowcomms will choose to use either TCP or SCTP as its transport layer
38  * depending on the configuration variable 'protocol'. This should be set
39  * to 0 (default) for TCP or 1 for SCTP. It should be configured using a
40  * cluster-wide mechanism as it must be the same on all nodes of the cluster
41  * for the DLM to function.
42  *
43  */
44
45 #include <asm/ioctls.h>
46 #include <net/sock.h>
47 #include <net/tcp.h>
48 #include <linux/pagemap.h>
49 #include <linux/file.h>
50 #include <linux/mutex.h>
51 #include <linux/sctp.h>
52 #include <linux/slab.h>
53 #include <net/sctp/sctp.h>
54 #include <net/ipv6.h>
55
56 #include <trace/events/dlm.h>
57 #include <trace/events/sock.h>
58
59 #include "dlm_internal.h"
60 #include "lowcomms.h"
61 #include "midcomms.h"
62 #include "memory.h"
63 #include "config.h"
64
65 #define DLM_SHUTDOWN_WAIT_TIMEOUT msecs_to_jiffies(5000)
66 #define DLM_MAX_PROCESS_BUFFERS 24
67 #define NEEDED_RMEM (4*1024*1024)
68
69 struct connection {
70         struct socket *sock;    /* NULL if not connected */
71         uint32_t nodeid;        /* So we know who we are in the list */
72         /* this semaphore is used to allow parallel recv/send in read
73          * lock mode. When we release a sock we need to held the write lock.
74          *
75          * However this is locking code and not nice. When we remove the
76          * othercon handling we can look into other mechanism to synchronize
77          * io handling to call sock_release() at the right time.
78          */
79         struct rw_semaphore sock_lock;
80         unsigned long flags;
81 #define CF_APP_LIMITED 0
82 #define CF_RECV_PENDING 1
83 #define CF_SEND_PENDING 2
84 #define CF_RECV_INTR 3
85 #define CF_IO_STOP 4
86 #define CF_IS_OTHERCON 5
87         struct list_head writequeue;  /* List of outgoing writequeue_entries */
88         spinlock_t writequeue_lock;
89         int retries;
90         struct hlist_node list;
91         /* due some connect()/accept() races we currently have this cross over
92          * connection attempt second connection for one node.
93          *
94          * There is a solution to avoid the race by introducing a connect
95          * rule as e.g. our_nodeid > nodeid_to_connect who is allowed to
96          * connect. Otherside can connect but will only be considered that
97          * the other side wants to have a reconnect.
98          *
99          * However changing to this behaviour will break backwards compatible.
100          * In a DLM protocol major version upgrade we should remove this!
101          */
102         struct connection *othercon;
103         struct work_struct rwork; /* receive worker */
104         struct work_struct swork; /* send worker */
105         wait_queue_head_t shutdown_wait;
106         unsigned char rx_leftover_buf[DLM_MAX_SOCKET_BUFSIZE];
107         int rx_leftover;
108         int mark;
109         int addr_count;
110         int curr_addr_index;
111         struct sockaddr_storage addr[DLM_MAX_ADDR_COUNT];
112         spinlock_t addrs_lock;
113         struct rcu_head rcu;
114 };
115 #define sock2con(x) ((struct connection *)(x)->sk_user_data)
116
117 struct listen_connection {
118         struct socket *sock;
119         struct work_struct rwork;
120 };
121
122 #define DLM_WQ_REMAIN_BYTES(e) (PAGE_SIZE - e->end)
123 #define DLM_WQ_LENGTH_BYTES(e) (e->end - e->offset)
124
125 /* An entry waiting to be sent */
126 struct writequeue_entry {
127         struct list_head list;
128         struct page *page;
129         int offset;
130         int len;
131         int end;
132         int users;
133         bool dirty;
134         struct connection *con;
135         struct list_head msgs;
136         struct kref ref;
137 };
138
139 struct dlm_msg {
140         struct writequeue_entry *entry;
141         struct dlm_msg *orig_msg;
142         bool retransmit;
143         void *ppc;
144         int len;
145         int idx; /* new()/commit() idx exchange */
146
147         struct list_head list;
148         struct kref ref;
149 };
150
151 struct processqueue_entry {
152         unsigned char *buf;
153         int nodeid;
154         int buflen;
155
156         struct list_head list;
157 };
158
159 struct dlm_proto_ops {
160         bool try_new_addr;
161         const char *name;
162         int proto;
163
164         int (*connect)(struct connection *con, struct socket *sock,
165                        struct sockaddr *addr, int addr_len);
166         void (*sockopts)(struct socket *sock);
167         int (*bind)(struct socket *sock);
168         int (*listen_validate)(void);
169         void (*listen_sockopts)(struct socket *sock);
170         int (*listen_bind)(struct socket *sock);
171 };
172
173 static struct listen_sock_callbacks {
174         void (*sk_error_report)(struct sock *);
175         void (*sk_data_ready)(struct sock *);
176         void (*sk_state_change)(struct sock *);
177         void (*sk_write_space)(struct sock *);
178 } listen_sock;
179
180 static struct listen_connection listen_con;
181 static struct sockaddr_storage dlm_local_addr[DLM_MAX_ADDR_COUNT];
182 static int dlm_local_count;
183
184 /* Work queues */
185 static struct workqueue_struct *io_workqueue;
186 static struct workqueue_struct *process_workqueue;
187
188 static struct hlist_head connection_hash[CONN_HASH_SIZE];
189 static DEFINE_SPINLOCK(connections_lock);
190 DEFINE_STATIC_SRCU(connections_srcu);
191
192 static const struct dlm_proto_ops *dlm_proto_ops;
193
194 #define DLM_IO_SUCCESS 0
195 #define DLM_IO_END 1
196 #define DLM_IO_EOF 2
197 #define DLM_IO_RESCHED 3
198 #define DLM_IO_FLUSH 4
199
200 static void process_recv_sockets(struct work_struct *work);
201 static void process_send_sockets(struct work_struct *work);
202 static void process_dlm_messages(struct work_struct *work);
203
204 static DECLARE_WORK(process_work, process_dlm_messages);
205 static DEFINE_SPINLOCK(processqueue_lock);
206 static bool process_dlm_messages_pending;
207 static atomic_t processqueue_count;
208 static LIST_HEAD(processqueue);
209
210 bool dlm_lowcomms_is_running(void)
211 {
212         return !!listen_con.sock;
213 }
214
215 static void lowcomms_queue_swork(struct connection *con)
216 {
217         assert_spin_locked(&con->writequeue_lock);
218
219         if (!test_bit(CF_IO_STOP, &con->flags) &&
220             !test_bit(CF_APP_LIMITED, &con->flags) &&
221             !test_and_set_bit(CF_SEND_PENDING, &con->flags))
222                 queue_work(io_workqueue, &con->swork);
223 }
224
225 static void lowcomms_queue_rwork(struct connection *con)
226 {
227 #ifdef CONFIG_LOCKDEP
228         WARN_ON_ONCE(!lockdep_sock_is_held(con->sock->sk));
229 #endif
230
231         if (!test_bit(CF_IO_STOP, &con->flags) &&
232             !test_and_set_bit(CF_RECV_PENDING, &con->flags))
233                 queue_work(io_workqueue, &con->rwork);
234 }
235
236 static void writequeue_entry_ctor(void *data)
237 {
238         struct writequeue_entry *entry = data;
239
240         INIT_LIST_HEAD(&entry->msgs);
241 }
242
243 struct kmem_cache *dlm_lowcomms_writequeue_cache_create(void)
244 {
245         return kmem_cache_create("dlm_writequeue", sizeof(struct writequeue_entry),
246                                  0, 0, writequeue_entry_ctor);
247 }
248
249 struct kmem_cache *dlm_lowcomms_msg_cache_create(void)
250 {
251         return kmem_cache_create("dlm_msg", sizeof(struct dlm_msg), 0, 0, NULL);
252 }
253
254 /* need to held writequeue_lock */
255 static struct writequeue_entry *con_next_wq(struct connection *con)
256 {
257         struct writequeue_entry *e;
258
259         e = list_first_entry_or_null(&con->writequeue, struct writequeue_entry,
260                                      list);
261         /* if len is zero nothing is to send, if there are users filling
262          * buffers we wait until the users are done so we can send more.
263          */
264         if (!e || e->users || e->len == 0)
265                 return NULL;
266
267         return e;
268 }
269
270 static struct connection *__find_con(int nodeid, int r)
271 {
272         struct connection *con;
273
274         hlist_for_each_entry_rcu(con, &connection_hash[r], list) {
275                 if (con->nodeid == nodeid)
276                         return con;
277         }
278
279         return NULL;
280 }
281
282 static void dlm_con_init(struct connection *con, int nodeid)
283 {
284         con->nodeid = nodeid;
285         init_rwsem(&con->sock_lock);
286         INIT_LIST_HEAD(&con->writequeue);
287         spin_lock_init(&con->writequeue_lock);
288         INIT_WORK(&con->swork, process_send_sockets);
289         INIT_WORK(&con->rwork, process_recv_sockets);
290         spin_lock_init(&con->addrs_lock);
291         init_waitqueue_head(&con->shutdown_wait);
292 }
293
294 /*
295  * If 'allocation' is zero then we don't attempt to create a new
296  * connection structure for this node.
297  */
298 static struct connection *nodeid2con(int nodeid, gfp_t alloc)
299 {
300         struct connection *con, *tmp;
301         int r;
302
303         r = nodeid_hash(nodeid);
304         con = __find_con(nodeid, r);
305         if (con || !alloc)
306                 return con;
307
308         con = kzalloc(sizeof(*con), alloc);
309         if (!con)
310                 return NULL;
311
312         dlm_con_init(con, nodeid);
313
314         spin_lock(&connections_lock);
315         /* Because multiple workqueues/threads calls this function it can
316          * race on multiple cpu's. Instead of locking hot path __find_con()
317          * we just check in rare cases of recently added nodes again
318          * under protection of connections_lock. If this is the case we
319          * abort our connection creation and return the existing connection.
320          */
321         tmp = __find_con(nodeid, r);
322         if (tmp) {
323                 spin_unlock(&connections_lock);
324                 kfree(con);
325                 return tmp;
326         }
327
328         hlist_add_head_rcu(&con->list, &connection_hash[r]);
329         spin_unlock(&connections_lock);
330
331         return con;
332 }
333
334 static int addr_compare(const struct sockaddr_storage *x,
335                         const struct sockaddr_storage *y)
336 {
337         switch (x->ss_family) {
338         case AF_INET: {
339                 struct sockaddr_in *sinx = (struct sockaddr_in *)x;
340                 struct sockaddr_in *siny = (struct sockaddr_in *)y;
341                 if (sinx->sin_addr.s_addr != siny->sin_addr.s_addr)
342                         return 0;
343                 if (sinx->sin_port != siny->sin_port)
344                         return 0;
345                 break;
346         }
347         case AF_INET6: {
348                 struct sockaddr_in6 *sinx = (struct sockaddr_in6 *)x;
349                 struct sockaddr_in6 *siny = (struct sockaddr_in6 *)y;
350                 if (!ipv6_addr_equal(&sinx->sin6_addr, &siny->sin6_addr))
351                         return 0;
352                 if (sinx->sin6_port != siny->sin6_port)
353                         return 0;
354                 break;
355         }
356         default:
357                 return 0;
358         }
359         return 1;
360 }
361
362 static int nodeid_to_addr(int nodeid, struct sockaddr_storage *sas_out,
363                           struct sockaddr *sa_out, bool try_new_addr,
364                           unsigned int *mark)
365 {
366         struct sockaddr_storage sas;
367         struct connection *con;
368         int idx;
369
370         if (!dlm_local_count)
371                 return -1;
372
373         idx = srcu_read_lock(&connections_srcu);
374         con = nodeid2con(nodeid, 0);
375         if (!con) {
376                 srcu_read_unlock(&connections_srcu, idx);
377                 return -ENOENT;
378         }
379
380         spin_lock(&con->addrs_lock);
381         if (!con->addr_count) {
382                 spin_unlock(&con->addrs_lock);
383                 srcu_read_unlock(&connections_srcu, idx);
384                 return -ENOENT;
385         }
386
387         memcpy(&sas, &con->addr[con->curr_addr_index],
388                sizeof(struct sockaddr_storage));
389
390         if (try_new_addr) {
391                 con->curr_addr_index++;
392                 if (con->curr_addr_index == con->addr_count)
393                         con->curr_addr_index = 0;
394         }
395
396         *mark = con->mark;
397         spin_unlock(&con->addrs_lock);
398
399         if (sas_out)
400                 memcpy(sas_out, &sas, sizeof(struct sockaddr_storage));
401
402         if (!sa_out) {
403                 srcu_read_unlock(&connections_srcu, idx);
404                 return 0;
405         }
406
407         if (dlm_local_addr[0].ss_family == AF_INET) {
408                 struct sockaddr_in *in4  = (struct sockaddr_in *) &sas;
409                 struct sockaddr_in *ret4 = (struct sockaddr_in *) sa_out;
410                 ret4->sin_addr.s_addr = in4->sin_addr.s_addr;
411         } else {
412                 struct sockaddr_in6 *in6  = (struct sockaddr_in6 *) &sas;
413                 struct sockaddr_in6 *ret6 = (struct sockaddr_in6 *) sa_out;
414                 ret6->sin6_addr = in6->sin6_addr;
415         }
416
417         srcu_read_unlock(&connections_srcu, idx);
418         return 0;
419 }
420
421 static int addr_to_nodeid(struct sockaddr_storage *addr, int *nodeid,
422                           unsigned int *mark)
423 {
424         struct connection *con;
425         int i, idx, addr_i;
426
427         idx = srcu_read_lock(&connections_srcu);
428         for (i = 0; i < CONN_HASH_SIZE; i++) {
429                 hlist_for_each_entry_rcu(con, &connection_hash[i], list) {
430                         WARN_ON_ONCE(!con->addr_count);
431
432                         spin_lock(&con->addrs_lock);
433                         for (addr_i = 0; addr_i < con->addr_count; addr_i++) {
434                                 if (addr_compare(&con->addr[addr_i], addr)) {
435                                         *nodeid = con->nodeid;
436                                         *mark = con->mark;
437                                         spin_unlock(&con->addrs_lock);
438                                         srcu_read_unlock(&connections_srcu, idx);
439                                         return 0;
440                                 }
441                         }
442                         spin_unlock(&con->addrs_lock);
443                 }
444         }
445         srcu_read_unlock(&connections_srcu, idx);
446
447         return -ENOENT;
448 }
449
450 static bool dlm_lowcomms_con_has_addr(const struct connection *con,
451                                       const struct sockaddr_storage *addr)
452 {
453         int i;
454
455         for (i = 0; i < con->addr_count; i++) {
456                 if (addr_compare(&con->addr[i], addr))
457                         return true;
458         }
459
460         return false;
461 }
462
463 int dlm_lowcomms_addr(int nodeid, struct sockaddr_storage *addr, int len)
464 {
465         struct connection *con;
466         bool ret, idx;
467
468         idx = srcu_read_lock(&connections_srcu);
469         con = nodeid2con(nodeid, GFP_NOFS);
470         if (!con) {
471                 srcu_read_unlock(&connections_srcu, idx);
472                 return -ENOMEM;
473         }
474
475         spin_lock(&con->addrs_lock);
476         if (!con->addr_count) {
477                 memcpy(&con->addr[0], addr, sizeof(*addr));
478                 con->addr_count = 1;
479                 con->mark = dlm_config.ci_mark;
480                 spin_unlock(&con->addrs_lock);
481                 srcu_read_unlock(&connections_srcu, idx);
482                 return 0;
483         }
484
485         ret = dlm_lowcomms_con_has_addr(con, addr);
486         if (ret) {
487                 spin_unlock(&con->addrs_lock);
488                 srcu_read_unlock(&connections_srcu, idx);
489                 return -EEXIST;
490         }
491
492         if (con->addr_count >= DLM_MAX_ADDR_COUNT) {
493                 spin_unlock(&con->addrs_lock);
494                 srcu_read_unlock(&connections_srcu, idx);
495                 return -ENOSPC;
496         }
497
498         memcpy(&con->addr[con->addr_count++], addr, sizeof(*addr));
499         srcu_read_unlock(&connections_srcu, idx);
500         spin_unlock(&con->addrs_lock);
501         return 0;
502 }
503
504 /* Data available on socket or listen socket received a connect */
505 static void lowcomms_data_ready(struct sock *sk)
506 {
507         struct connection *con = sock2con(sk);
508
509         trace_sk_data_ready(sk);
510
511         set_bit(CF_RECV_INTR, &con->flags);
512         lowcomms_queue_rwork(con);
513 }
514
515 static void lowcomms_write_space(struct sock *sk)
516 {
517         struct connection *con = sock2con(sk);
518
519         clear_bit(SOCK_NOSPACE, &con->sock->flags);
520
521         spin_lock_bh(&con->writequeue_lock);
522         if (test_and_clear_bit(CF_APP_LIMITED, &con->flags)) {
523                 con->sock->sk->sk_write_pending--;
524                 clear_bit(SOCKWQ_ASYNC_NOSPACE, &con->sock->flags);
525         }
526
527         lowcomms_queue_swork(con);
528         spin_unlock_bh(&con->writequeue_lock);
529 }
530
531 static void lowcomms_state_change(struct sock *sk)
532 {
533         /* SCTP layer is not calling sk_data_ready when the connection
534          * is done, so we catch the signal through here.
535          */
536         if (sk->sk_shutdown == RCV_SHUTDOWN)
537                 lowcomms_data_ready(sk);
538 }
539
540 static void lowcomms_listen_data_ready(struct sock *sk)
541 {
542         trace_sk_data_ready(sk);
543
544         queue_work(io_workqueue, &listen_con.rwork);
545 }
546
547 int dlm_lowcomms_connect_node(int nodeid)
548 {
549         struct connection *con;
550         int idx;
551
552         idx = srcu_read_lock(&connections_srcu);
553         con = nodeid2con(nodeid, 0);
554         if (WARN_ON_ONCE(!con)) {
555                 srcu_read_unlock(&connections_srcu, idx);
556                 return -ENOENT;
557         }
558
559         down_read(&con->sock_lock);
560         if (!con->sock) {
561                 spin_lock_bh(&con->writequeue_lock);
562                 lowcomms_queue_swork(con);
563                 spin_unlock_bh(&con->writequeue_lock);
564         }
565         up_read(&con->sock_lock);
566         srcu_read_unlock(&connections_srcu, idx);
567
568         cond_resched();
569         return 0;
570 }
571
572 int dlm_lowcomms_nodes_set_mark(int nodeid, unsigned int mark)
573 {
574         struct connection *con;
575         int idx;
576
577         idx = srcu_read_lock(&connections_srcu);
578         con = nodeid2con(nodeid, 0);
579         if (!con) {
580                 srcu_read_unlock(&connections_srcu, idx);
581                 return -ENOENT;
582         }
583
584         spin_lock(&con->addrs_lock);
585         con->mark = mark;
586         spin_unlock(&con->addrs_lock);
587         srcu_read_unlock(&connections_srcu, idx);
588         return 0;
589 }
590
591 static void lowcomms_error_report(struct sock *sk)
592 {
593         struct connection *con = sock2con(sk);
594         struct inet_sock *inet;
595
596         inet = inet_sk(sk);
597         switch (sk->sk_family) {
598         case AF_INET:
599                 printk_ratelimited(KERN_ERR "dlm: node %d: socket error "
600                                    "sending to node %d at %pI4, dport %d, "
601                                    "sk_err=%d/%d\n", dlm_our_nodeid(),
602                                    con->nodeid, &inet->inet_daddr,
603                                    ntohs(inet->inet_dport), sk->sk_err,
604                                    READ_ONCE(sk->sk_err_soft));
605                 break;
606 #if IS_ENABLED(CONFIG_IPV6)
607         case AF_INET6:
608                 printk_ratelimited(KERN_ERR "dlm: node %d: socket error "
609                                    "sending to node %d at %pI6c, "
610                                    "dport %d, sk_err=%d/%d\n", dlm_our_nodeid(),
611                                    con->nodeid, &sk->sk_v6_daddr,
612                                    ntohs(inet->inet_dport), sk->sk_err,
613                                    READ_ONCE(sk->sk_err_soft));
614                 break;
615 #endif
616         default:
617                 printk_ratelimited(KERN_ERR "dlm: node %d: socket error "
618                                    "invalid socket family %d set, "
619                                    "sk_err=%d/%d\n", dlm_our_nodeid(),
620                                    sk->sk_family, sk->sk_err,
621                                    READ_ONCE(sk->sk_err_soft));
622                 break;
623         }
624
625         dlm_midcomms_unack_msg_resend(con->nodeid);
626
627         listen_sock.sk_error_report(sk);
628 }
629
630 static void restore_callbacks(struct sock *sk)
631 {
632 #ifdef CONFIG_LOCKDEP
633         WARN_ON_ONCE(!lockdep_sock_is_held(sk));
634 #endif
635
636         sk->sk_user_data = NULL;
637         sk->sk_data_ready = listen_sock.sk_data_ready;
638         sk->sk_state_change = listen_sock.sk_state_change;
639         sk->sk_write_space = listen_sock.sk_write_space;
640         sk->sk_error_report = listen_sock.sk_error_report;
641 }
642
643 /* Make a socket active */
644 static void add_sock(struct socket *sock, struct connection *con)
645 {
646         struct sock *sk = sock->sk;
647
648         lock_sock(sk);
649         con->sock = sock;
650
651         sk->sk_user_data = con;
652         sk->sk_data_ready = lowcomms_data_ready;
653         sk->sk_write_space = lowcomms_write_space;
654         if (dlm_config.ci_protocol == DLM_PROTO_SCTP)
655                 sk->sk_state_change = lowcomms_state_change;
656         sk->sk_allocation = GFP_NOFS;
657         sk->sk_use_task_frag = false;
658         sk->sk_error_report = lowcomms_error_report;
659         release_sock(sk);
660 }
661
662 /* Add the port number to an IPv6 or 4 sockaddr and return the address
663    length */
664 static void make_sockaddr(struct sockaddr_storage *saddr, uint16_t port,
665                           int *addr_len)
666 {
667         saddr->ss_family =  dlm_local_addr[0].ss_family;
668         if (saddr->ss_family == AF_INET) {
669                 struct sockaddr_in *in4_addr = (struct sockaddr_in *)saddr;
670                 in4_addr->sin_port = cpu_to_be16(port);
671                 *addr_len = sizeof(struct sockaddr_in);
672                 memset(&in4_addr->sin_zero, 0, sizeof(in4_addr->sin_zero));
673         } else {
674                 struct sockaddr_in6 *in6_addr = (struct sockaddr_in6 *)saddr;
675                 in6_addr->sin6_port = cpu_to_be16(port);
676                 *addr_len = sizeof(struct sockaddr_in6);
677         }
678         memset((char *)saddr + *addr_len, 0, sizeof(struct sockaddr_storage) - *addr_len);
679 }
680
681 static void dlm_page_release(struct kref *kref)
682 {
683         struct writequeue_entry *e = container_of(kref, struct writequeue_entry,
684                                                   ref);
685
686         __free_page(e->page);
687         dlm_free_writequeue(e);
688 }
689
690 static void dlm_msg_release(struct kref *kref)
691 {
692         struct dlm_msg *msg = container_of(kref, struct dlm_msg, ref);
693
694         kref_put(&msg->entry->ref, dlm_page_release);
695         dlm_free_msg(msg);
696 }
697
698 static void free_entry(struct writequeue_entry *e)
699 {
700         struct dlm_msg *msg, *tmp;
701
702         list_for_each_entry_safe(msg, tmp, &e->msgs, list) {
703                 if (msg->orig_msg) {
704                         msg->orig_msg->retransmit = false;
705                         kref_put(&msg->orig_msg->ref, dlm_msg_release);
706                 }
707
708                 list_del(&msg->list);
709                 kref_put(&msg->ref, dlm_msg_release);
710         }
711
712         list_del(&e->list);
713         kref_put(&e->ref, dlm_page_release);
714 }
715
716 static void dlm_close_sock(struct socket **sock)
717 {
718         lock_sock((*sock)->sk);
719         restore_callbacks((*sock)->sk);
720         release_sock((*sock)->sk);
721
722         sock_release(*sock);
723         *sock = NULL;
724 }
725
726 static void allow_connection_io(struct connection *con)
727 {
728         if (con->othercon)
729                 clear_bit(CF_IO_STOP, &con->othercon->flags);
730         clear_bit(CF_IO_STOP, &con->flags);
731 }
732
733 static void stop_connection_io(struct connection *con)
734 {
735         if (con->othercon)
736                 stop_connection_io(con->othercon);
737
738         spin_lock_bh(&con->writequeue_lock);
739         set_bit(CF_IO_STOP, &con->flags);
740         spin_unlock_bh(&con->writequeue_lock);
741
742         down_write(&con->sock_lock);
743         if (con->sock) {
744                 lock_sock(con->sock->sk);
745                 restore_callbacks(con->sock->sk);
746                 release_sock(con->sock->sk);
747         }
748         up_write(&con->sock_lock);
749
750         cancel_work_sync(&con->swork);
751         cancel_work_sync(&con->rwork);
752 }
753
754 /* Close a remote connection and tidy up */
755 static void close_connection(struct connection *con, bool and_other)
756 {
757         struct writequeue_entry *e;
758
759         if (con->othercon && and_other)
760                 close_connection(con->othercon, false);
761
762         down_write(&con->sock_lock);
763         if (!con->sock) {
764                 up_write(&con->sock_lock);
765                 return;
766         }
767
768         dlm_close_sock(&con->sock);
769
770         /* if we send a writequeue entry only a half way, we drop the
771          * whole entry because reconnection and that we not start of the
772          * middle of a msg which will confuse the other end.
773          *
774          * we can always drop messages because retransmits, but what we
775          * cannot allow is to transmit half messages which may be processed
776          * at the other side.
777          *
778          * our policy is to start on a clean state when disconnects, we don't
779          * know what's send/received on transport layer in this case.
780          */
781         spin_lock_bh(&con->writequeue_lock);
782         if (!list_empty(&con->writequeue)) {
783                 e = list_first_entry(&con->writequeue, struct writequeue_entry,
784                                      list);
785                 if (e->dirty)
786                         free_entry(e);
787         }
788         spin_unlock_bh(&con->writequeue_lock);
789
790         con->rx_leftover = 0;
791         con->retries = 0;
792         clear_bit(CF_APP_LIMITED, &con->flags);
793         clear_bit(CF_RECV_PENDING, &con->flags);
794         clear_bit(CF_SEND_PENDING, &con->flags);
795         up_write(&con->sock_lock);
796 }
797
798 static void shutdown_connection(struct connection *con, bool and_other)
799 {
800         int ret;
801
802         if (con->othercon && and_other)
803                 shutdown_connection(con->othercon, false);
804
805         flush_workqueue(io_workqueue);
806         down_read(&con->sock_lock);
807         /* nothing to shutdown */
808         if (!con->sock) {
809                 up_read(&con->sock_lock);
810                 return;
811         }
812
813         ret = kernel_sock_shutdown(con->sock, SHUT_WR);
814         up_read(&con->sock_lock);
815         if (ret) {
816                 log_print("Connection %p failed to shutdown: %d will force close",
817                           con, ret);
818                 goto force_close;
819         } else {
820                 ret = wait_event_timeout(con->shutdown_wait, !con->sock,
821                                          DLM_SHUTDOWN_WAIT_TIMEOUT);
822                 if (ret == 0) {
823                         log_print("Connection %p shutdown timed out, will force close",
824                                   con);
825                         goto force_close;
826                 }
827         }
828
829         return;
830
831 force_close:
832         close_connection(con, false);
833 }
834
835 static struct processqueue_entry *new_processqueue_entry(int nodeid,
836                                                          int buflen)
837 {
838         struct processqueue_entry *pentry;
839
840         pentry = kmalloc(sizeof(*pentry), GFP_NOFS);
841         if (!pentry)
842                 return NULL;
843
844         pentry->buf = kmalloc(buflen, GFP_NOFS);
845         if (!pentry->buf) {
846                 kfree(pentry);
847                 return NULL;
848         }
849
850         pentry->nodeid = nodeid;
851         return pentry;
852 }
853
854 static void free_processqueue_entry(struct processqueue_entry *pentry)
855 {
856         kfree(pentry->buf);
857         kfree(pentry);
858 }
859
860 struct dlm_processed_nodes {
861         int nodeid;
862
863         struct list_head list;
864 };
865
866 static void process_dlm_messages(struct work_struct *work)
867 {
868         struct processqueue_entry *pentry;
869
870         spin_lock(&processqueue_lock);
871         pentry = list_first_entry_or_null(&processqueue,
872                                           struct processqueue_entry, list);
873         if (WARN_ON_ONCE(!pentry)) {
874                 process_dlm_messages_pending = false;
875                 spin_unlock(&processqueue_lock);
876                 return;
877         }
878
879         list_del(&pentry->list);
880         atomic_dec(&processqueue_count);
881         spin_unlock(&processqueue_lock);
882
883         for (;;) {
884                 dlm_process_incoming_buffer(pentry->nodeid, pentry->buf,
885                                             pentry->buflen);
886                 free_processqueue_entry(pentry);
887
888                 spin_lock(&processqueue_lock);
889                 pentry = list_first_entry_or_null(&processqueue,
890                                                   struct processqueue_entry, list);
891                 if (!pentry) {
892                         process_dlm_messages_pending = false;
893                         spin_unlock(&processqueue_lock);
894                         break;
895                 }
896
897                 list_del(&pentry->list);
898                 atomic_dec(&processqueue_count);
899                 spin_unlock(&processqueue_lock);
900         }
901 }
902
903 /* Data received from remote end */
904 static int receive_from_sock(struct connection *con, int buflen)
905 {
906         struct processqueue_entry *pentry;
907         int ret, buflen_real;
908         struct msghdr msg;
909         struct kvec iov;
910
911         pentry = new_processqueue_entry(con->nodeid, buflen);
912         if (!pentry)
913                 return DLM_IO_RESCHED;
914
915         memcpy(pentry->buf, con->rx_leftover_buf, con->rx_leftover);
916
917         /* calculate new buffer parameter regarding last receive and
918          * possible leftover bytes
919          */
920         iov.iov_base = pentry->buf + con->rx_leftover;
921         iov.iov_len = buflen - con->rx_leftover;
922
923         memset(&msg, 0, sizeof(msg));
924         msg.msg_flags = MSG_DONTWAIT | MSG_NOSIGNAL;
925         clear_bit(CF_RECV_INTR, &con->flags);
926 again:
927         ret = kernel_recvmsg(con->sock, &msg, &iov, 1, iov.iov_len,
928                              msg.msg_flags);
929         trace_dlm_recv(con->nodeid, ret);
930         if (ret == -EAGAIN) {
931                 lock_sock(con->sock->sk);
932                 if (test_and_clear_bit(CF_RECV_INTR, &con->flags)) {
933                         release_sock(con->sock->sk);
934                         goto again;
935                 }
936
937                 clear_bit(CF_RECV_PENDING, &con->flags);
938                 release_sock(con->sock->sk);
939                 free_processqueue_entry(pentry);
940                 return DLM_IO_END;
941         } else if (ret == 0) {
942                 /* close will clear CF_RECV_PENDING */
943                 free_processqueue_entry(pentry);
944                 return DLM_IO_EOF;
945         } else if (ret < 0) {
946                 free_processqueue_entry(pentry);
947                 return ret;
948         }
949
950         /* new buflen according readed bytes and leftover from last receive */
951         buflen_real = ret + con->rx_leftover;
952         ret = dlm_validate_incoming_buffer(con->nodeid, pentry->buf,
953                                            buflen_real);
954         if (ret < 0) {
955                 free_processqueue_entry(pentry);
956                 return ret;
957         }
958
959         pentry->buflen = ret;
960
961         /* calculate leftover bytes from process and put it into begin of
962          * the receive buffer, so next receive we have the full message
963          * at the start address of the receive buffer.
964          */
965         con->rx_leftover = buflen_real - ret;
966         memmove(con->rx_leftover_buf, pentry->buf + ret,
967                 con->rx_leftover);
968
969         spin_lock(&processqueue_lock);
970         ret = atomic_inc_return(&processqueue_count);
971         list_add_tail(&pentry->list, &processqueue);
972         if (!process_dlm_messages_pending) {
973                 process_dlm_messages_pending = true;
974                 queue_work(process_workqueue, &process_work);
975         }
976         spin_unlock(&processqueue_lock);
977
978         if (ret > DLM_MAX_PROCESS_BUFFERS)
979                 return DLM_IO_FLUSH;
980
981         return DLM_IO_SUCCESS;
982 }
983
984 /* Listening socket is busy, accept a connection */
985 static int accept_from_sock(void)
986 {
987         struct sockaddr_storage peeraddr;
988         int len, idx, result, nodeid;
989         struct connection *newcon;
990         struct socket *newsock;
991         unsigned int mark;
992
993         result = kernel_accept(listen_con.sock, &newsock, O_NONBLOCK);
994         if (result == -EAGAIN)
995                 return DLM_IO_END;
996         else if (result < 0)
997                 goto accept_err;
998
999         /* Get the connected socket's peer */
1000         memset(&peeraddr, 0, sizeof(peeraddr));
1001         len = newsock->ops->getname(newsock, (struct sockaddr *)&peeraddr, 2);
1002         if (len < 0) {
1003                 result = -ECONNABORTED;
1004                 goto accept_err;
1005         }
1006
1007         /* Get the new node's NODEID */
1008         make_sockaddr(&peeraddr, 0, &len);
1009         if (addr_to_nodeid(&peeraddr, &nodeid, &mark)) {
1010                 switch (peeraddr.ss_family) {
1011                 case AF_INET: {
1012                         struct sockaddr_in *sin = (struct sockaddr_in *)&peeraddr;
1013
1014                         log_print("connect from non cluster IPv4 node %pI4",
1015                                   &sin->sin_addr);
1016                         break;
1017                 }
1018 #if IS_ENABLED(CONFIG_IPV6)
1019                 case AF_INET6: {
1020                         struct sockaddr_in6 *sin6 = (struct sockaddr_in6 *)&peeraddr;
1021
1022                         log_print("connect from non cluster IPv6 node %pI6c",
1023                                   &sin6->sin6_addr);
1024                         break;
1025                 }
1026 #endif
1027                 default:
1028                         log_print("invalid family from non cluster node");
1029                         break;
1030                 }
1031
1032                 sock_release(newsock);
1033                 return -1;
1034         }
1035
1036         log_print("got connection from %d", nodeid);
1037
1038         /*  Check to see if we already have a connection to this node. This
1039          *  could happen if the two nodes initiate a connection at roughly
1040          *  the same time and the connections cross on the wire.
1041          *  In this case we store the incoming one in "othercon"
1042          */
1043         idx = srcu_read_lock(&connections_srcu);
1044         newcon = nodeid2con(nodeid, 0);
1045         if (WARN_ON_ONCE(!newcon)) {
1046                 srcu_read_unlock(&connections_srcu, idx);
1047                 result = -ENOENT;
1048                 goto accept_err;
1049         }
1050
1051         sock_set_mark(newsock->sk, mark);
1052
1053         down_write(&newcon->sock_lock);
1054         if (newcon->sock) {
1055                 struct connection *othercon = newcon->othercon;
1056
1057                 if (!othercon) {
1058                         othercon = kzalloc(sizeof(*othercon), GFP_NOFS);
1059                         if (!othercon) {
1060                                 log_print("failed to allocate incoming socket");
1061                                 up_write(&newcon->sock_lock);
1062                                 srcu_read_unlock(&connections_srcu, idx);
1063                                 result = -ENOMEM;
1064                                 goto accept_err;
1065                         }
1066
1067                         dlm_con_init(othercon, nodeid);
1068                         lockdep_set_subclass(&othercon->sock_lock, 1);
1069                         newcon->othercon = othercon;
1070                         set_bit(CF_IS_OTHERCON, &othercon->flags);
1071                 } else {
1072                         /* close other sock con if we have something new */
1073                         close_connection(othercon, false);
1074                 }
1075
1076                 down_write(&othercon->sock_lock);
1077                 add_sock(newsock, othercon);
1078
1079                 /* check if we receved something while adding */
1080                 lock_sock(othercon->sock->sk);
1081                 lowcomms_queue_rwork(othercon);
1082                 release_sock(othercon->sock->sk);
1083                 up_write(&othercon->sock_lock);
1084         }
1085         else {
1086                 /* accept copies the sk after we've saved the callbacks, so we
1087                    don't want to save them a second time or comm errors will
1088                    result in calling sk_error_report recursively. */
1089                 add_sock(newsock, newcon);
1090
1091                 /* check if we receved something while adding */
1092                 lock_sock(newcon->sock->sk);
1093                 lowcomms_queue_rwork(newcon);
1094                 release_sock(newcon->sock->sk);
1095         }
1096         up_write(&newcon->sock_lock);
1097         srcu_read_unlock(&connections_srcu, idx);
1098
1099         return DLM_IO_SUCCESS;
1100
1101 accept_err:
1102         if (newsock)
1103                 sock_release(newsock);
1104
1105         return result;
1106 }
1107
1108 /*
1109  * writequeue_entry_complete - try to delete and free write queue entry
1110  * @e: write queue entry to try to delete
1111  * @completed: bytes completed
1112  *
1113  * writequeue_lock must be held.
1114  */
1115 static void writequeue_entry_complete(struct writequeue_entry *e, int completed)
1116 {
1117         e->offset += completed;
1118         e->len -= completed;
1119         /* signal that page was half way transmitted */
1120         e->dirty = true;
1121
1122         if (e->len == 0 && e->users == 0)
1123                 free_entry(e);
1124 }
1125
1126 /*
1127  * sctp_bind_addrs - bind a SCTP socket to all our addresses
1128  */
1129 static int sctp_bind_addrs(struct socket *sock, uint16_t port)
1130 {
1131         struct sockaddr_storage localaddr;
1132         struct sockaddr *addr = (struct sockaddr *)&localaddr;
1133         int i, addr_len, result = 0;
1134
1135         for (i = 0; i < dlm_local_count; i++) {
1136                 memcpy(&localaddr, &dlm_local_addr[i], sizeof(localaddr));
1137                 make_sockaddr(&localaddr, port, &addr_len);
1138
1139                 if (!i)
1140                         result = kernel_bind(sock, addr, addr_len);
1141                 else
1142                         result = sock_bind_add(sock->sk, addr, addr_len);
1143
1144                 if (result < 0) {
1145                         log_print("Can't bind to %d addr number %d, %d.\n",
1146                                   port, i + 1, result);
1147                         break;
1148                 }
1149         }
1150         return result;
1151 }
1152
1153 /* Get local addresses */
1154 static void init_local(void)
1155 {
1156         struct sockaddr_storage sas;
1157         int i;
1158
1159         dlm_local_count = 0;
1160         for (i = 0; i < DLM_MAX_ADDR_COUNT; i++) {
1161                 if (dlm_our_addr(&sas, i))
1162                         break;
1163
1164                 memcpy(&dlm_local_addr[dlm_local_count++], &sas, sizeof(sas));
1165         }
1166 }
1167
1168 static struct writequeue_entry *new_writequeue_entry(struct connection *con)
1169 {
1170         struct writequeue_entry *entry;
1171
1172         entry = dlm_allocate_writequeue();
1173         if (!entry)
1174                 return NULL;
1175
1176         entry->page = alloc_page(GFP_ATOMIC | __GFP_ZERO);
1177         if (!entry->page) {
1178                 dlm_free_writequeue(entry);
1179                 return NULL;
1180         }
1181
1182         entry->offset = 0;
1183         entry->len = 0;
1184         entry->end = 0;
1185         entry->dirty = false;
1186         entry->con = con;
1187         entry->users = 1;
1188         kref_init(&entry->ref);
1189         return entry;
1190 }
1191
1192 static struct writequeue_entry *new_wq_entry(struct connection *con, int len,
1193                                              char **ppc, void (*cb)(void *data),
1194                                              void *data)
1195 {
1196         struct writequeue_entry *e;
1197
1198         spin_lock_bh(&con->writequeue_lock);
1199         if (!list_empty(&con->writequeue)) {
1200                 e = list_last_entry(&con->writequeue, struct writequeue_entry, list);
1201                 if (DLM_WQ_REMAIN_BYTES(e) >= len) {
1202                         kref_get(&e->ref);
1203
1204                         *ppc = page_address(e->page) + e->end;
1205                         if (cb)
1206                                 cb(data);
1207
1208                         e->end += len;
1209                         e->users++;
1210                         goto out;
1211                 }
1212         }
1213
1214         e = new_writequeue_entry(con);
1215         if (!e)
1216                 goto out;
1217
1218         kref_get(&e->ref);
1219         *ppc = page_address(e->page);
1220         e->end += len;
1221         if (cb)
1222                 cb(data);
1223
1224         list_add_tail(&e->list, &con->writequeue);
1225
1226 out:
1227         spin_unlock_bh(&con->writequeue_lock);
1228         return e;
1229 };
1230
1231 static struct dlm_msg *dlm_lowcomms_new_msg_con(struct connection *con, int len,
1232                                                 gfp_t allocation, char **ppc,
1233                                                 void (*cb)(void *data),
1234                                                 void *data)
1235 {
1236         struct writequeue_entry *e;
1237         struct dlm_msg *msg;
1238
1239         msg = dlm_allocate_msg(allocation);
1240         if (!msg)
1241                 return NULL;
1242
1243         kref_init(&msg->ref);
1244
1245         e = new_wq_entry(con, len, ppc, cb, data);
1246         if (!e) {
1247                 dlm_free_msg(msg);
1248                 return NULL;
1249         }
1250
1251         msg->retransmit = false;
1252         msg->orig_msg = NULL;
1253         msg->ppc = *ppc;
1254         msg->len = len;
1255         msg->entry = e;
1256
1257         return msg;
1258 }
1259
1260 /* avoid false positive for nodes_srcu, unlock happens in
1261  * dlm_lowcomms_commit_msg which is a must call if success
1262  */
1263 #ifndef __CHECKER__
1264 struct dlm_msg *dlm_lowcomms_new_msg(int nodeid, int len, gfp_t allocation,
1265                                      char **ppc, void (*cb)(void *data),
1266                                      void *data)
1267 {
1268         struct connection *con;
1269         struct dlm_msg *msg;
1270         int idx;
1271
1272         if (len > DLM_MAX_SOCKET_BUFSIZE ||
1273             len < sizeof(struct dlm_header)) {
1274                 BUILD_BUG_ON(PAGE_SIZE < DLM_MAX_SOCKET_BUFSIZE);
1275                 log_print("failed to allocate a buffer of size %d", len);
1276                 WARN_ON_ONCE(1);
1277                 return NULL;
1278         }
1279
1280         idx = srcu_read_lock(&connections_srcu);
1281         con = nodeid2con(nodeid, 0);
1282         if (WARN_ON_ONCE(!con)) {
1283                 srcu_read_unlock(&connections_srcu, idx);
1284                 return NULL;
1285         }
1286
1287         msg = dlm_lowcomms_new_msg_con(con, len, allocation, ppc, cb, data);
1288         if (!msg) {
1289                 srcu_read_unlock(&connections_srcu, idx);
1290                 return NULL;
1291         }
1292
1293         /* for dlm_lowcomms_commit_msg() */
1294         kref_get(&msg->ref);
1295         /* we assume if successful commit must called */
1296         msg->idx = idx;
1297         return msg;
1298 }
1299 #endif
1300
1301 static void _dlm_lowcomms_commit_msg(struct dlm_msg *msg)
1302 {
1303         struct writequeue_entry *e = msg->entry;
1304         struct connection *con = e->con;
1305         int users;
1306
1307         spin_lock_bh(&con->writequeue_lock);
1308         kref_get(&msg->ref);
1309         list_add(&msg->list, &e->msgs);
1310
1311         users = --e->users;
1312         if (users)
1313                 goto out;
1314
1315         e->len = DLM_WQ_LENGTH_BYTES(e);
1316
1317         lowcomms_queue_swork(con);
1318
1319 out:
1320         spin_unlock_bh(&con->writequeue_lock);
1321         return;
1322 }
1323
1324 /* avoid false positive for nodes_srcu, lock was happen in
1325  * dlm_lowcomms_new_msg
1326  */
1327 #ifndef __CHECKER__
1328 void dlm_lowcomms_commit_msg(struct dlm_msg *msg)
1329 {
1330         _dlm_lowcomms_commit_msg(msg);
1331         srcu_read_unlock(&connections_srcu, msg->idx);
1332         /* because dlm_lowcomms_new_msg() */
1333         kref_put(&msg->ref, dlm_msg_release);
1334 }
1335 #endif
1336
1337 void dlm_lowcomms_put_msg(struct dlm_msg *msg)
1338 {
1339         kref_put(&msg->ref, dlm_msg_release);
1340 }
1341
1342 /* does not held connections_srcu, usage lowcomms_error_report only */
1343 int dlm_lowcomms_resend_msg(struct dlm_msg *msg)
1344 {
1345         struct dlm_msg *msg_resend;
1346         char *ppc;
1347
1348         if (msg->retransmit)
1349                 return 1;
1350
1351         msg_resend = dlm_lowcomms_new_msg_con(msg->entry->con, msg->len,
1352                                               GFP_ATOMIC, &ppc, NULL, NULL);
1353         if (!msg_resend)
1354                 return -ENOMEM;
1355
1356         msg->retransmit = true;
1357         kref_get(&msg->ref);
1358         msg_resend->orig_msg = msg;
1359
1360         memcpy(ppc, msg->ppc, msg->len);
1361         _dlm_lowcomms_commit_msg(msg_resend);
1362         dlm_lowcomms_put_msg(msg_resend);
1363
1364         return 0;
1365 }
1366
1367 /* Send a message */
1368 static int send_to_sock(struct connection *con)
1369 {
1370         struct writequeue_entry *e;
1371         struct bio_vec bvec;
1372         struct msghdr msg = {
1373                 .msg_flags = MSG_SPLICE_PAGES | MSG_DONTWAIT | MSG_NOSIGNAL,
1374         };
1375         int len, offset, ret;
1376
1377         spin_lock_bh(&con->writequeue_lock);
1378         e = con_next_wq(con);
1379         if (!e) {
1380                 clear_bit(CF_SEND_PENDING, &con->flags);
1381                 spin_unlock_bh(&con->writequeue_lock);
1382                 return DLM_IO_END;
1383         }
1384
1385         len = e->len;
1386         offset = e->offset;
1387         WARN_ON_ONCE(len == 0 && e->users == 0);
1388         spin_unlock_bh(&con->writequeue_lock);
1389
1390         bvec_set_page(&bvec, e->page, len, offset);
1391         iov_iter_bvec(&msg.msg_iter, ITER_SOURCE, &bvec, 1, len);
1392         ret = sock_sendmsg(con->sock, &msg);
1393         trace_dlm_send(con->nodeid, ret);
1394         if (ret == -EAGAIN || ret == 0) {
1395                 lock_sock(con->sock->sk);
1396                 spin_lock_bh(&con->writequeue_lock);
1397                 if (test_bit(SOCKWQ_ASYNC_NOSPACE, &con->sock->flags) &&
1398                     !test_and_set_bit(CF_APP_LIMITED, &con->flags)) {
1399                         /* Notify TCP that we're limited by the
1400                          * application window size.
1401                          */
1402                         set_bit(SOCK_NOSPACE, &con->sock->sk->sk_socket->flags);
1403                         con->sock->sk->sk_write_pending++;
1404
1405                         clear_bit(CF_SEND_PENDING, &con->flags);
1406                         spin_unlock_bh(&con->writequeue_lock);
1407                         release_sock(con->sock->sk);
1408
1409                         /* wait for write_space() event */
1410                         return DLM_IO_END;
1411                 }
1412                 spin_unlock_bh(&con->writequeue_lock);
1413                 release_sock(con->sock->sk);
1414
1415                 return DLM_IO_RESCHED;
1416         } else if (ret < 0) {
1417                 return ret;
1418         }
1419
1420         spin_lock_bh(&con->writequeue_lock);
1421         writequeue_entry_complete(e, ret);
1422         spin_unlock_bh(&con->writequeue_lock);
1423
1424         return DLM_IO_SUCCESS;
1425 }
1426
1427 static void clean_one_writequeue(struct connection *con)
1428 {
1429         struct writequeue_entry *e, *safe;
1430
1431         spin_lock_bh(&con->writequeue_lock);
1432         list_for_each_entry_safe(e, safe, &con->writequeue, list) {
1433                 free_entry(e);
1434         }
1435         spin_unlock_bh(&con->writequeue_lock);
1436 }
1437
1438 static void connection_release(struct rcu_head *rcu)
1439 {
1440         struct connection *con = container_of(rcu, struct connection, rcu);
1441
1442         WARN_ON_ONCE(!list_empty(&con->writequeue));
1443         WARN_ON_ONCE(con->sock);
1444         kfree(con);
1445 }
1446
1447 /* Called from recovery when it knows that a node has
1448    left the cluster */
1449 int dlm_lowcomms_close(int nodeid)
1450 {
1451         struct connection *con;
1452         int idx;
1453
1454         log_print("closing connection to node %d", nodeid);
1455
1456         idx = srcu_read_lock(&connections_srcu);
1457         con = nodeid2con(nodeid, 0);
1458         if (WARN_ON_ONCE(!con)) {
1459                 srcu_read_unlock(&connections_srcu, idx);
1460                 return -ENOENT;
1461         }
1462
1463         stop_connection_io(con);
1464         log_print("io handling for node: %d stopped", nodeid);
1465         close_connection(con, true);
1466
1467         spin_lock(&connections_lock);
1468         hlist_del_rcu(&con->list);
1469         spin_unlock(&connections_lock);
1470
1471         clean_one_writequeue(con);
1472         call_srcu(&connections_srcu, &con->rcu, connection_release);
1473         if (con->othercon) {
1474                 clean_one_writequeue(con->othercon);
1475                 call_srcu(&connections_srcu, &con->othercon->rcu, connection_release);
1476         }
1477         srcu_read_unlock(&connections_srcu, idx);
1478
1479         /* for debugging we print when we are done to compare with other
1480          * messages in between. This function need to be correctly synchronized
1481          * with io handling
1482          */
1483         log_print("closing connection to node %d done", nodeid);
1484
1485         return 0;
1486 }
1487
1488 /* Receive worker function */
1489 static void process_recv_sockets(struct work_struct *work)
1490 {
1491         struct connection *con = container_of(work, struct connection, rwork);
1492         int ret, buflen;
1493
1494         down_read(&con->sock_lock);
1495         if (!con->sock) {
1496                 up_read(&con->sock_lock);
1497                 return;
1498         }
1499
1500         buflen = READ_ONCE(dlm_config.ci_buffer_size);
1501         do {
1502                 ret = receive_from_sock(con, buflen);
1503         } while (ret == DLM_IO_SUCCESS);
1504         up_read(&con->sock_lock);
1505
1506         switch (ret) {
1507         case DLM_IO_END:
1508                 /* CF_RECV_PENDING cleared */
1509                 break;
1510         case DLM_IO_EOF:
1511                 close_connection(con, false);
1512                 wake_up(&con->shutdown_wait);
1513                 /* CF_RECV_PENDING cleared */
1514                 break;
1515         case DLM_IO_FLUSH:
1516                 flush_workqueue(process_workqueue);
1517                 fallthrough;
1518         case DLM_IO_RESCHED:
1519                 cond_resched();
1520                 queue_work(io_workqueue, &con->rwork);
1521                 /* CF_RECV_PENDING not cleared */
1522                 break;
1523         default:
1524                 if (ret < 0) {
1525                         if (test_bit(CF_IS_OTHERCON, &con->flags)) {
1526                                 close_connection(con, false);
1527                         } else {
1528                                 spin_lock_bh(&con->writequeue_lock);
1529                                 lowcomms_queue_swork(con);
1530                                 spin_unlock_bh(&con->writequeue_lock);
1531                         }
1532
1533                         /* CF_RECV_PENDING cleared for othercon
1534                          * we trigger send queue if not already done
1535                          * and process_send_sockets will handle it
1536                          */
1537                         break;
1538                 }
1539
1540                 WARN_ON_ONCE(1);
1541                 break;
1542         }
1543 }
1544
1545 static void process_listen_recv_socket(struct work_struct *work)
1546 {
1547         int ret;
1548
1549         if (WARN_ON_ONCE(!listen_con.sock))
1550                 return;
1551
1552         do {
1553                 ret = accept_from_sock();
1554         } while (ret == DLM_IO_SUCCESS);
1555
1556         if (ret < 0)
1557                 log_print("critical error accepting connection: %d", ret);
1558 }
1559
1560 static int dlm_connect(struct connection *con)
1561 {
1562         struct sockaddr_storage addr;
1563         int result, addr_len;
1564         struct socket *sock;
1565         unsigned int mark;
1566
1567         memset(&addr, 0, sizeof(addr));
1568         result = nodeid_to_addr(con->nodeid, &addr, NULL,
1569                                 dlm_proto_ops->try_new_addr, &mark);
1570         if (result < 0) {
1571                 log_print("no address for nodeid %d", con->nodeid);
1572                 return result;
1573         }
1574
1575         /* Create a socket to communicate with */
1576         result = sock_create_kern(&init_net, dlm_local_addr[0].ss_family,
1577                                   SOCK_STREAM, dlm_proto_ops->proto, &sock);
1578         if (result < 0)
1579                 return result;
1580
1581         sock_set_mark(sock->sk, mark);
1582         dlm_proto_ops->sockopts(sock);
1583
1584         result = dlm_proto_ops->bind(sock);
1585         if (result < 0) {
1586                 sock_release(sock);
1587                 return result;
1588         }
1589
1590         add_sock(sock, con);
1591
1592         log_print_ratelimited("connecting to %d", con->nodeid);
1593         make_sockaddr(&addr, dlm_config.ci_tcp_port, &addr_len);
1594         result = dlm_proto_ops->connect(con, sock, (struct sockaddr *)&addr,
1595                                         addr_len);
1596         switch (result) {
1597         case -EINPROGRESS:
1598                 /* not an error */
1599                 fallthrough;
1600         case 0:
1601                 break;
1602         default:
1603                 if (result < 0)
1604                         dlm_close_sock(&con->sock);
1605
1606                 break;
1607         }
1608
1609         return result;
1610 }
1611
1612 /* Send worker function */
1613 static void process_send_sockets(struct work_struct *work)
1614 {
1615         struct connection *con = container_of(work, struct connection, swork);
1616         int ret;
1617
1618         WARN_ON_ONCE(test_bit(CF_IS_OTHERCON, &con->flags));
1619
1620         down_read(&con->sock_lock);
1621         if (!con->sock) {
1622                 up_read(&con->sock_lock);
1623                 down_write(&con->sock_lock);
1624                 if (!con->sock) {
1625                         ret = dlm_connect(con);
1626                         switch (ret) {
1627                         case 0:
1628                                 break;
1629                         case -EINPROGRESS:
1630                                 /* avoid spamming resched on connection
1631                                  * we might can switch to a state_change
1632                                  * event based mechanism if established
1633                                  */
1634                                 msleep(100);
1635                                 break;
1636                         default:
1637                                 /* CF_SEND_PENDING not cleared */
1638                                 up_write(&con->sock_lock);
1639                                 log_print("connect to node %d try %d error %d",
1640                                           con->nodeid, con->retries++, ret);
1641                                 msleep(1000);
1642                                 /* For now we try forever to reconnect. In
1643                                  * future we should send a event to cluster
1644                                  * manager to fence itself after certain amount
1645                                  * of retries.
1646                                  */
1647                                 queue_work(io_workqueue, &con->swork);
1648                                 return;
1649                         }
1650                 }
1651                 downgrade_write(&con->sock_lock);
1652         }
1653
1654         do {
1655                 ret = send_to_sock(con);
1656         } while (ret == DLM_IO_SUCCESS);
1657         up_read(&con->sock_lock);
1658
1659         switch (ret) {
1660         case DLM_IO_END:
1661                 /* CF_SEND_PENDING cleared */
1662                 break;
1663         case DLM_IO_RESCHED:
1664                 /* CF_SEND_PENDING not cleared */
1665                 cond_resched();
1666                 queue_work(io_workqueue, &con->swork);
1667                 break;
1668         default:
1669                 if (ret < 0) {
1670                         close_connection(con, false);
1671
1672                         /* CF_SEND_PENDING cleared */
1673                         spin_lock_bh(&con->writequeue_lock);
1674                         lowcomms_queue_swork(con);
1675                         spin_unlock_bh(&con->writequeue_lock);
1676                         break;
1677                 }
1678
1679                 WARN_ON_ONCE(1);
1680                 break;
1681         }
1682 }
1683
1684 static void work_stop(void)
1685 {
1686         if (io_workqueue) {
1687                 destroy_workqueue(io_workqueue);
1688                 io_workqueue = NULL;
1689         }
1690
1691         if (process_workqueue) {
1692                 destroy_workqueue(process_workqueue);
1693                 process_workqueue = NULL;
1694         }
1695 }
1696
1697 static int work_start(void)
1698 {
1699         io_workqueue = alloc_workqueue("dlm_io", WQ_HIGHPRI | WQ_MEM_RECLAIM |
1700                                        WQ_UNBOUND, 0);
1701         if (!io_workqueue) {
1702                 log_print("can't start dlm_io");
1703                 return -ENOMEM;
1704         }
1705
1706         /* ordered dlm message process queue,
1707          * should be converted to a tasklet
1708          */
1709         process_workqueue = alloc_ordered_workqueue("dlm_process",
1710                                                     WQ_HIGHPRI | WQ_MEM_RECLAIM);
1711         if (!process_workqueue) {
1712                 log_print("can't start dlm_process");
1713                 destroy_workqueue(io_workqueue);
1714                 io_workqueue = NULL;
1715                 return -ENOMEM;
1716         }
1717
1718         return 0;
1719 }
1720
1721 void dlm_lowcomms_shutdown(void)
1722 {
1723         struct connection *con;
1724         int i, idx;
1725
1726         /* stop lowcomms_listen_data_ready calls */
1727         lock_sock(listen_con.sock->sk);
1728         listen_con.sock->sk->sk_data_ready = listen_sock.sk_data_ready;
1729         release_sock(listen_con.sock->sk);
1730
1731         cancel_work_sync(&listen_con.rwork);
1732         dlm_close_sock(&listen_con.sock);
1733
1734         idx = srcu_read_lock(&connections_srcu);
1735         for (i = 0; i < CONN_HASH_SIZE; i++) {
1736                 hlist_for_each_entry_rcu(con, &connection_hash[i], list) {
1737                         shutdown_connection(con, true);
1738                         stop_connection_io(con);
1739                         flush_workqueue(process_workqueue);
1740                         close_connection(con, true);
1741
1742                         clean_one_writequeue(con);
1743                         if (con->othercon)
1744                                 clean_one_writequeue(con->othercon);
1745                         allow_connection_io(con);
1746                 }
1747         }
1748         srcu_read_unlock(&connections_srcu, idx);
1749 }
1750
1751 void dlm_lowcomms_stop(void)
1752 {
1753         work_stop();
1754         dlm_proto_ops = NULL;
1755 }
1756
1757 static int dlm_listen_for_all(void)
1758 {
1759         struct socket *sock;
1760         int result;
1761
1762         log_print("Using %s for communications",
1763                   dlm_proto_ops->name);
1764
1765         result = dlm_proto_ops->listen_validate();
1766         if (result < 0)
1767                 return result;
1768
1769         result = sock_create_kern(&init_net, dlm_local_addr[0].ss_family,
1770                                   SOCK_STREAM, dlm_proto_ops->proto, &sock);
1771         if (result < 0) {
1772                 log_print("Can't create comms socket: %d", result);
1773                 return result;
1774         }
1775
1776         sock_set_mark(sock->sk, dlm_config.ci_mark);
1777         dlm_proto_ops->listen_sockopts(sock);
1778
1779         result = dlm_proto_ops->listen_bind(sock);
1780         if (result < 0)
1781                 goto out;
1782
1783         lock_sock(sock->sk);
1784         listen_sock.sk_data_ready = sock->sk->sk_data_ready;
1785         listen_sock.sk_write_space = sock->sk->sk_write_space;
1786         listen_sock.sk_error_report = sock->sk->sk_error_report;
1787         listen_sock.sk_state_change = sock->sk->sk_state_change;
1788
1789         listen_con.sock = sock;
1790
1791         sock->sk->sk_allocation = GFP_NOFS;
1792         sock->sk->sk_use_task_frag = false;
1793         sock->sk->sk_data_ready = lowcomms_listen_data_ready;
1794         release_sock(sock->sk);
1795
1796         result = sock->ops->listen(sock, 128);
1797         if (result < 0) {
1798                 dlm_close_sock(&listen_con.sock);
1799                 return result;
1800         }
1801
1802         return 0;
1803
1804 out:
1805         sock_release(sock);
1806         return result;
1807 }
1808
1809 static int dlm_tcp_bind(struct socket *sock)
1810 {
1811         struct sockaddr_storage src_addr;
1812         int result, addr_len;
1813
1814         /* Bind to our cluster-known address connecting to avoid
1815          * routing problems.
1816          */
1817         memcpy(&src_addr, &dlm_local_addr[0], sizeof(src_addr));
1818         make_sockaddr(&src_addr, 0, &addr_len);
1819
1820         result = sock->ops->bind(sock, (struct sockaddr *)&src_addr,
1821                                  addr_len);
1822         if (result < 0) {
1823                 /* This *may* not indicate a critical error */
1824                 log_print("could not bind for connect: %d", result);
1825         }
1826
1827         return 0;
1828 }
1829
1830 static int dlm_tcp_connect(struct connection *con, struct socket *sock,
1831                            struct sockaddr *addr, int addr_len)
1832 {
1833         return sock->ops->connect(sock, addr, addr_len, O_NONBLOCK);
1834 }
1835
1836 static int dlm_tcp_listen_validate(void)
1837 {
1838         /* We don't support multi-homed hosts */
1839         if (dlm_local_count > 1) {
1840                 log_print("TCP protocol can't handle multi-homed hosts, try SCTP");
1841                 return -EINVAL;
1842         }
1843
1844         return 0;
1845 }
1846
1847 static void dlm_tcp_sockopts(struct socket *sock)
1848 {
1849         /* Turn off Nagle's algorithm */
1850         tcp_sock_set_nodelay(sock->sk);
1851 }
1852
1853 static void dlm_tcp_listen_sockopts(struct socket *sock)
1854 {
1855         dlm_tcp_sockopts(sock);
1856         sock_set_reuseaddr(sock->sk);
1857 }
1858
1859 static int dlm_tcp_listen_bind(struct socket *sock)
1860 {
1861         int addr_len;
1862
1863         /* Bind to our port */
1864         make_sockaddr(&dlm_local_addr[0], dlm_config.ci_tcp_port, &addr_len);
1865         return sock->ops->bind(sock, (struct sockaddr *)&dlm_local_addr[0],
1866                                addr_len);
1867 }
1868
1869 static const struct dlm_proto_ops dlm_tcp_ops = {
1870         .name = "TCP",
1871         .proto = IPPROTO_TCP,
1872         .connect = dlm_tcp_connect,
1873         .sockopts = dlm_tcp_sockopts,
1874         .bind = dlm_tcp_bind,
1875         .listen_validate = dlm_tcp_listen_validate,
1876         .listen_sockopts = dlm_tcp_listen_sockopts,
1877         .listen_bind = dlm_tcp_listen_bind,
1878 };
1879
1880 static int dlm_sctp_bind(struct socket *sock)
1881 {
1882         return sctp_bind_addrs(sock, 0);
1883 }
1884
1885 static int dlm_sctp_connect(struct connection *con, struct socket *sock,
1886                             struct sockaddr *addr, int addr_len)
1887 {
1888         int ret;
1889
1890         /*
1891          * Make sock->ops->connect() function return in specified time,
1892          * since O_NONBLOCK argument in connect() function does not work here,
1893          * then, we should restore the default value of this attribute.
1894          */
1895         sock_set_sndtimeo(sock->sk, 5);
1896         ret = sock->ops->connect(sock, addr, addr_len, 0);
1897         sock_set_sndtimeo(sock->sk, 0);
1898         return ret;
1899 }
1900
1901 static int dlm_sctp_listen_validate(void)
1902 {
1903         if (!IS_ENABLED(CONFIG_IP_SCTP)) {
1904                 log_print("SCTP is not enabled by this kernel");
1905                 return -EOPNOTSUPP;
1906         }
1907
1908         request_module("sctp");
1909         return 0;
1910 }
1911
1912 static int dlm_sctp_bind_listen(struct socket *sock)
1913 {
1914         return sctp_bind_addrs(sock, dlm_config.ci_tcp_port);
1915 }
1916
1917 static void dlm_sctp_sockopts(struct socket *sock)
1918 {
1919         /* Turn off Nagle's algorithm */
1920         sctp_sock_set_nodelay(sock->sk);
1921         sock_set_rcvbuf(sock->sk, NEEDED_RMEM);
1922 }
1923
1924 static const struct dlm_proto_ops dlm_sctp_ops = {
1925         .name = "SCTP",
1926         .proto = IPPROTO_SCTP,
1927         .try_new_addr = true,
1928         .connect = dlm_sctp_connect,
1929         .sockopts = dlm_sctp_sockopts,
1930         .bind = dlm_sctp_bind,
1931         .listen_validate = dlm_sctp_listen_validate,
1932         .listen_sockopts = dlm_sctp_sockopts,
1933         .listen_bind = dlm_sctp_bind_listen,
1934 };
1935
1936 int dlm_lowcomms_start(void)
1937 {
1938         int error;
1939
1940         init_local();
1941         if (!dlm_local_count) {
1942                 error = -ENOTCONN;
1943                 log_print("no local IP address has been set");
1944                 goto fail;
1945         }
1946
1947         error = work_start();
1948         if (error)
1949                 goto fail;
1950
1951         /* Start listening */
1952         switch (dlm_config.ci_protocol) {
1953         case DLM_PROTO_TCP:
1954                 dlm_proto_ops = &dlm_tcp_ops;
1955                 break;
1956         case DLM_PROTO_SCTP:
1957                 dlm_proto_ops = &dlm_sctp_ops;
1958                 break;
1959         default:
1960                 log_print("Invalid protocol identifier %d set",
1961                           dlm_config.ci_protocol);
1962                 error = -EINVAL;
1963                 goto fail_proto_ops;
1964         }
1965
1966         error = dlm_listen_for_all();
1967         if (error)
1968                 goto fail_listen;
1969
1970         return 0;
1971
1972 fail_listen:
1973         dlm_proto_ops = NULL;
1974 fail_proto_ops:
1975         work_stop();
1976 fail:
1977         return error;
1978 }
1979
1980 void dlm_lowcomms_init(void)
1981 {
1982         int i;
1983
1984         for (i = 0; i < CONN_HASH_SIZE; i++)
1985                 INIT_HLIST_HEAD(&connection_hash[i]);
1986
1987         INIT_WORK(&listen_con.rwork, process_listen_recv_socket);
1988 }
1989
1990 void dlm_lowcomms_exit(void)
1991 {
1992         struct connection *con;
1993         int i, idx;
1994
1995         idx = srcu_read_lock(&connections_srcu);
1996         for (i = 0; i < CONN_HASH_SIZE; i++) {
1997                 hlist_for_each_entry_rcu(con, &connection_hash[i], list) {
1998                         spin_lock(&connections_lock);
1999                         hlist_del_rcu(&con->list);
2000                         spin_unlock(&connections_lock);
2001
2002                         if (con->othercon)
2003                                 call_srcu(&connections_srcu, &con->othercon->rcu,
2004                                           connection_release);
2005                         call_srcu(&connections_srcu, &con->rcu, connection_release);
2006                 }
2007         }
2008         srcu_read_unlock(&connections_srcu, idx);
2009 }