4 * Copyright (C) 2002, Linus Torvalds.
8 * 04Jul2002 Andrew Morton
10 * 11Sep2002 janetinc@us.ibm.com
11 * added readv/writev support.
12 * 29Oct2002 Andrew Morton
13 * rewrote bio_add_page() support.
14 * 30Oct2002 pbadari@us.ibm.com
15 * added support for non-aligned IO.
16 * 06Nov2002 pbadari@us.ibm.com
17 * added asynchronous IO support.
18 * 21Jul2003 nathans@sgi.com
19 * added IO completion notifier.
22 #include <linux/kernel.h>
23 #include <linux/module.h>
24 #include <linux/types.h>
27 #include <linux/slab.h>
28 #include <linux/highmem.h>
29 #include <linux/pagemap.h>
30 #include <linux/task_io_accounting_ops.h>
31 #include <linux/bio.h>
32 #include <linux/wait.h>
33 #include <linux/err.h>
34 #include <linux/blkdev.h>
35 #include <linux/buffer_head.h>
36 #include <linux/rwsem.h>
37 #include <linux/uio.h>
38 #include <linux/atomic.h>
39 #include <linux/prefetch.h>
42 * How many user pages to map in one call to get_user_pages(). This determines
43 * the size of a structure in the slab cache
48 * Flags for dio_complete()
50 #define DIO_COMPLETE_ASYNC 0x01 /* This is async IO */
51 #define DIO_COMPLETE_INVALIDATE 0x02 /* Can invalidate pages */
54 * This code generally works in units of "dio_blocks". A dio_block is
55 * somewhere between the hard sector size and the filesystem block size. it
56 * is determined on a per-invocation basis. When talking to the filesystem
57 * we need to convert dio_blocks to fs_blocks by scaling the dio_block quantity
58 * down by dio->blkfactor. Similarly, fs-blocksize quantities are converted
59 * to bio_block quantities by shifting left by blkfactor.
61 * If blkfactor is zero then the user's request was aligned to the filesystem's
65 /* dio_state only used in the submission path */
68 struct bio *bio; /* bio under assembly */
69 unsigned blkbits; /* doesn't change */
70 unsigned blkfactor; /* When we're using an alignment which
71 is finer than the filesystem's soft
72 blocksize, this specifies how much
73 finer. blkfactor=2 means 1/4-block
74 alignment. Does not change */
75 unsigned start_zero_done; /* flag: sub-blocksize zeroing has
76 been performed at the start of a
78 int pages_in_io; /* approximate total IO pages */
79 sector_t block_in_file; /* Current offset into the underlying
80 file in dio_block units. */
81 unsigned blocks_available; /* At block_in_file. changes */
82 int reap_counter; /* rate limit reaping */
83 sector_t final_block_in_request;/* doesn't change */
84 int boundary; /* prev block is at a boundary */
85 get_block_t *get_block; /* block mapping function */
86 dio_submit_t *submit_io; /* IO submition function */
88 loff_t logical_offset_in_bio; /* current first logical block in bio */
89 sector_t final_block_in_bio; /* current final block in bio + 1 */
90 sector_t next_block_for_io; /* next block to be put under IO,
91 in dio_blocks units */
94 * Deferred addition of a page to the dio. These variables are
95 * private to dio_send_cur_page(), submit_page_section() and
98 struct page *cur_page; /* The page */
99 unsigned cur_page_offset; /* Offset into it, in bytes */
100 unsigned cur_page_len; /* Nr of bytes at cur_page_offset */
101 sector_t cur_page_block; /* Where it starts */
102 loff_t cur_page_fs_offset; /* Offset in file */
104 struct iov_iter *iter;
106 * Page queue. These variables belong to dio_refill_pages() and
109 unsigned head; /* next page to process */
110 unsigned tail; /* last valid page + 1 */
114 /* dio_state communicated between submission path and end_io */
116 int flags; /* doesn't change */
120 struct gendisk *bio_disk;
122 loff_t i_size; /* i_size when submitted */
123 dio_iodone_t *end_io; /* IO completion function */
125 void *private; /* copy from map_bh.b_private */
127 /* BIO completion state */
128 spinlock_t bio_lock; /* protects BIO fields below */
129 int page_errors; /* errno from get_user_pages() */
130 int is_async; /* is IO async ? */
131 bool defer_completion; /* defer AIO completion to workqueue? */
132 bool should_dirty; /* if pages should be dirtied */
133 int io_error; /* IO error in completion path */
134 unsigned long refcount; /* direct_io_worker() and bios */
135 struct bio *bio_list; /* singly linked via bi_private */
136 struct task_struct *waiter; /* waiting task (NULL if none) */
138 /* AIO related stuff */
139 struct kiocb *iocb; /* kiocb */
140 ssize_t result; /* IO result */
143 * pages[] (and any fields placed after it) are not zeroed out at
144 * allocation time. Don't add new fields after pages[] unless you
145 * wish that they not be zeroed.
148 struct page *pages[DIO_PAGES]; /* page buffer */
149 struct work_struct complete_work;/* deferred AIO completion */
151 } ____cacheline_aligned_in_smp;
153 static struct kmem_cache *dio_cache __read_mostly;
156 * How many pages are in the queue?
158 static inline unsigned dio_pages_present(struct dio_submit *sdio)
160 return sdio->tail - sdio->head;
164 * Go grab and pin some userspace pages. Typically we'll get 64 at a time.
166 static inline int dio_refill_pages(struct dio *dio, struct dio_submit *sdio)
170 ret = iov_iter_get_pages(sdio->iter, dio->pages, LONG_MAX, DIO_PAGES,
173 if (ret < 0 && sdio->blocks_available && (dio->op == REQ_OP_WRITE)) {
174 struct page *page = ZERO_PAGE(0);
176 * A memory fault, but the filesystem has some outstanding
177 * mapped blocks. We need to use those blocks up to avoid
178 * leaking stale data in the file.
180 if (dio->page_errors == 0)
181 dio->page_errors = ret;
183 dio->pages[0] = page;
187 sdio->to = PAGE_SIZE;
192 iov_iter_advance(sdio->iter, ret);
195 sdio->tail = (ret + PAGE_SIZE - 1) / PAGE_SIZE;
196 sdio->to = ((ret - 1) & (PAGE_SIZE - 1)) + 1;
203 * Get another userspace page. Returns an ERR_PTR on error. Pages are
204 * buffered inside the dio so that we can call get_user_pages() against a
205 * decent number of pages, less frequently. To provide nicer use of the
208 static inline struct page *dio_get_page(struct dio *dio,
209 struct dio_submit *sdio)
211 if (dio_pages_present(sdio) == 0) {
214 ret = dio_refill_pages(dio, sdio);
217 BUG_ON(dio_pages_present(sdio) == 0);
219 return dio->pages[sdio->head];
223 * Warn about a page cache invalidation failure during a direct io write.
225 void dio_warn_stale_pagecache(struct file *filp)
227 static DEFINE_RATELIMIT_STATE(_rs, 86400 * HZ, DEFAULT_RATELIMIT_BURST);
229 struct inode *inode = file_inode(filp);
232 errseq_set(&inode->i_mapping->wb_err, -EIO);
233 if (__ratelimit(&_rs)) {
234 path = file_path(filp, pathname, sizeof(pathname));
237 pr_crit("Page cache invalidation failure on direct I/O. Possible data corruption due to collision with buffered I/O!\n");
238 pr_crit("File: %s PID: %d Comm: %.20s\n", path, current->pid,
244 * dio_complete() - called when all DIO BIO I/O has been completed
245 * @offset: the byte offset in the file of the completed operation
247 * This drops i_dio_count, lets interested parties know that a DIO operation
248 * has completed, and calculates the resulting return code for the operation.
250 * It lets the filesystem know if it registered an interest earlier via
251 * get_block. Pass the private field of the map buffer_head so that
252 * filesystems can use it to hold additional state between get_block calls and
255 static ssize_t dio_complete(struct dio *dio, ssize_t ret, unsigned int flags)
257 loff_t offset = dio->iocb->ki_pos;
258 ssize_t transferred = 0;
262 * AIO submission can race with bio completion to get here while
263 * expecting to have the last io completed by bio completion.
264 * In that case -EIOCBQUEUED is in fact not an error we want
265 * to preserve through this call.
267 if (ret == -EIOCBQUEUED)
271 transferred = dio->result;
273 /* Check for short read case */
274 if ((dio->op == REQ_OP_READ) &&
275 ((offset + transferred) > dio->i_size))
276 transferred = dio->i_size - offset;
277 /* ignore EFAULT if some IO has been done */
278 if (unlikely(ret == -EFAULT) && transferred)
283 ret = dio->page_errors;
291 err = dio->end_io(dio->iocb, offset, ret, dio->private);
297 * Try again to invalidate clean pages which might have been cached by
298 * non-direct readahead, or faulted in by get_user_pages() if the source
299 * of the write was an mmap'ed region of the file we're writing. Either
300 * one is a pretty crazy thing to do, so we don't support it 100%. If
301 * this invalidation fails, tough, the write still worked...
303 * And this page cache invalidation has to be after dio->end_io(), as
304 * some filesystems convert unwritten extents to real allocations in
305 * end_io() when necessary, otherwise a racing buffer read would cache
306 * zeros from unwritten extents.
308 if (flags & DIO_COMPLETE_INVALIDATE &&
309 ret > 0 && dio->op == REQ_OP_WRITE &&
310 dio->inode->i_mapping->nrpages) {
311 err = invalidate_inode_pages2_range(dio->inode->i_mapping,
312 offset >> PAGE_SHIFT,
313 (offset + ret - 1) >> PAGE_SHIFT);
315 dio_warn_stale_pagecache(dio->iocb->ki_filp);
318 inode_dio_end(dio->inode);
320 if (flags & DIO_COMPLETE_ASYNC) {
322 * generic_write_sync expects ki_pos to have been updated
323 * already, but the submission path only does this for
326 dio->iocb->ki_pos += transferred;
328 if (ret > 0 && dio->op == REQ_OP_WRITE)
329 ret = generic_write_sync(dio->iocb, ret);
330 dio->iocb->ki_complete(dio->iocb, ret, 0);
333 kmem_cache_free(dio_cache, dio);
337 static void dio_aio_complete_work(struct work_struct *work)
339 struct dio *dio = container_of(work, struct dio, complete_work);
341 dio_complete(dio, 0, DIO_COMPLETE_ASYNC | DIO_COMPLETE_INVALIDATE);
344 static blk_status_t dio_bio_complete(struct dio *dio, struct bio *bio);
347 * Asynchronous IO callback.
349 static void dio_bio_end_aio(struct bio *bio)
351 struct dio *dio = bio->bi_private;
352 unsigned long remaining;
354 bool defer_completion = false;
356 /* cleanup the bio */
357 dio_bio_complete(dio, bio);
359 spin_lock_irqsave(&dio->bio_lock, flags);
360 remaining = --dio->refcount;
361 if (remaining == 1 && dio->waiter)
362 wake_up_process(dio->waiter);
363 spin_unlock_irqrestore(&dio->bio_lock, flags);
365 if (remaining == 0) {
367 * Defer completion when defer_completion is set or
368 * when the inode has pages mapped and this is AIO write.
369 * We need to invalidate those pages because there is a
370 * chance they contain stale data in the case buffered IO
371 * went in between AIO submission and completion into the
375 defer_completion = dio->defer_completion ||
376 (dio->op == REQ_OP_WRITE &&
377 dio->inode->i_mapping->nrpages);
378 if (defer_completion) {
379 INIT_WORK(&dio->complete_work, dio_aio_complete_work);
380 queue_work(dio->inode->i_sb->s_dio_done_wq,
381 &dio->complete_work);
383 dio_complete(dio, 0, DIO_COMPLETE_ASYNC);
389 * The BIO completion handler simply queues the BIO up for the process-context
392 * During I/O bi_private points at the dio. After I/O, bi_private is used to
393 * implement a singly-linked list of completed BIOs, at dio->bio_list.
395 static void dio_bio_end_io(struct bio *bio)
397 struct dio *dio = bio->bi_private;
400 spin_lock_irqsave(&dio->bio_lock, flags);
401 bio->bi_private = dio->bio_list;
403 if (--dio->refcount == 1 && dio->waiter)
404 wake_up_process(dio->waiter);
405 spin_unlock_irqrestore(&dio->bio_lock, flags);
409 * dio_end_io - handle the end io action for the given bio
410 * @bio: The direct io bio thats being completed
412 * This is meant to be called by any filesystem that uses their own dio_submit_t
413 * so that the DIO specific endio actions are dealt with after the filesystem
414 * has done it's completion work.
416 void dio_end_io(struct bio *bio)
418 struct dio *dio = bio->bi_private;
421 dio_bio_end_aio(bio);
425 EXPORT_SYMBOL_GPL(dio_end_io);
428 dio_bio_alloc(struct dio *dio, struct dio_submit *sdio,
429 struct block_device *bdev,
430 sector_t first_sector, int nr_vecs)
435 * bio_alloc() is guaranteed to return a bio when allowed to sleep and
436 * we request a valid number of vectors.
438 bio = bio_alloc(GFP_KERNEL, nr_vecs);
440 bio_set_dev(bio, bdev);
441 bio->bi_iter.bi_sector = first_sector;
442 bio_set_op_attrs(bio, dio->op, dio->op_flags);
444 bio->bi_end_io = dio_bio_end_aio;
446 bio->bi_end_io = dio_bio_end_io;
448 bio->bi_write_hint = dio->iocb->ki_hint;
451 sdio->logical_offset_in_bio = sdio->cur_page_fs_offset;
455 * In the AIO read case we speculatively dirty the pages before starting IO.
456 * During IO completion, any of these pages which happen to have been written
457 * back will be redirtied by bio_check_pages_dirty().
459 * bios hold a dio reference between submit_bio and ->end_io.
461 static inline void dio_bio_submit(struct dio *dio, struct dio_submit *sdio)
463 struct bio *bio = sdio->bio;
466 bio->bi_private = dio;
468 spin_lock_irqsave(&dio->bio_lock, flags);
470 spin_unlock_irqrestore(&dio->bio_lock, flags);
472 if (dio->is_async && dio->op == REQ_OP_READ && dio->should_dirty)
473 bio_set_pages_dirty(bio);
475 dio->bio_disk = bio->bi_disk;
477 if (sdio->submit_io) {
478 sdio->submit_io(bio, dio->inode, sdio->logical_offset_in_bio);
479 dio->bio_cookie = BLK_QC_T_NONE;
481 dio->bio_cookie = submit_bio(bio);
485 sdio->logical_offset_in_bio = 0;
489 * Release any resources in case of a failure
491 static inline void dio_cleanup(struct dio *dio, struct dio_submit *sdio)
493 while (sdio->head < sdio->tail)
494 put_page(dio->pages[sdio->head++]);
498 * Wait for the next BIO to complete. Remove it and return it. NULL is
499 * returned once all BIOs have been completed. This must only be called once
500 * all bios have been issued so that dio->refcount can only decrease. This
501 * requires that that the caller hold a reference on the dio.
503 static struct bio *dio_await_one(struct dio *dio)
506 struct bio *bio = NULL;
508 spin_lock_irqsave(&dio->bio_lock, flags);
511 * Wait as long as the list is empty and there are bios in flight. bio
512 * completion drops the count, maybe adds to the list, and wakes while
513 * holding the bio_lock so we don't need set_current_state()'s barrier
514 * and can call it after testing our condition.
516 while (dio->refcount > 1 && dio->bio_list == NULL) {
517 __set_current_state(TASK_UNINTERRUPTIBLE);
518 dio->waiter = current;
519 spin_unlock_irqrestore(&dio->bio_lock, flags);
520 if (!(dio->iocb->ki_flags & IOCB_HIPRI) ||
521 !blk_poll(dio->bio_disk->queue, dio->bio_cookie))
523 /* wake up sets us TASK_RUNNING */
524 spin_lock_irqsave(&dio->bio_lock, flags);
529 dio->bio_list = bio->bi_private;
531 spin_unlock_irqrestore(&dio->bio_lock, flags);
536 * Process one completed BIO. No locks are held.
538 static blk_status_t dio_bio_complete(struct dio *dio, struct bio *bio)
540 struct bio_vec *bvec;
542 blk_status_t err = bio->bi_status;
545 if (err == BLK_STS_AGAIN && (bio->bi_opf & REQ_NOWAIT))
546 dio->io_error = -EAGAIN;
548 dio->io_error = -EIO;
551 if (dio->is_async && dio->op == REQ_OP_READ && dio->should_dirty) {
552 bio_check_pages_dirty(bio); /* transfers ownership */
554 bio_for_each_segment_all(bvec, bio, i) {
555 struct page *page = bvec->bv_page;
557 if (dio->op == REQ_OP_READ && !PageCompound(page) &&
559 set_page_dirty_lock(page);
568 * Wait on and process all in-flight BIOs. This must only be called once
569 * all bios have been issued so that the refcount can only decrease.
570 * This just waits for all bios to make it through dio_bio_complete. IO
571 * errors are propagated through dio->io_error and should be propagated via
574 static void dio_await_completion(struct dio *dio)
578 bio = dio_await_one(dio);
580 dio_bio_complete(dio, bio);
585 * A really large O_DIRECT read or write can generate a lot of BIOs. So
586 * to keep the memory consumption sane we periodically reap any completed BIOs
587 * during the BIO generation phase.
589 * This also helps to limit the peak amount of pinned userspace memory.
591 static inline int dio_bio_reap(struct dio *dio, struct dio_submit *sdio)
595 if (sdio->reap_counter++ >= 64) {
596 while (dio->bio_list) {
601 spin_lock_irqsave(&dio->bio_lock, flags);
603 dio->bio_list = bio->bi_private;
604 spin_unlock_irqrestore(&dio->bio_lock, flags);
605 ret2 = blk_status_to_errno(dio_bio_complete(dio, bio));
609 sdio->reap_counter = 0;
615 * Create workqueue for deferred direct IO completions. We allocate the
616 * workqueue when it's first needed. This avoids creating workqueue for
617 * filesystems that don't need it and also allows us to create the workqueue
618 * late enough so the we can include s_id in the name of the workqueue.
620 int sb_init_dio_done_wq(struct super_block *sb)
622 struct workqueue_struct *old;
623 struct workqueue_struct *wq = alloc_workqueue("dio/%s",
629 * This has to be atomic as more DIOs can race to create the workqueue
631 old = cmpxchg(&sb->s_dio_done_wq, NULL, wq);
632 /* Someone created workqueue before us? Free ours... */
634 destroy_workqueue(wq);
638 static int dio_set_defer_completion(struct dio *dio)
640 struct super_block *sb = dio->inode->i_sb;
642 if (dio->defer_completion)
644 dio->defer_completion = true;
645 if (!sb->s_dio_done_wq)
646 return sb_init_dio_done_wq(sb);
651 * Call into the fs to map some more disk blocks. We record the current number
652 * of available blocks at sdio->blocks_available. These are in units of the
653 * fs blocksize, i_blocksize(inode).
655 * The fs is allowed to map lots of blocks at once. If it wants to do that,
656 * it uses the passed inode-relative block number as the file offset, as usual.
658 * get_block() is passed the number of i_blkbits-sized blocks which direct_io
659 * has remaining to do. The fs should not map more than this number of blocks.
661 * If the fs has mapped a lot of blocks, it should populate bh->b_size to
662 * indicate how much contiguous disk space has been made available at
665 * If *any* of the mapped blocks are new, then the fs must set buffer_new().
666 * This isn't very efficient...
668 * In the case of filesystem holes: the fs may return an arbitrarily-large
669 * hole by returning an appropriate value in b_size and by clearing
670 * buffer_mapped(). However the direct-io code will only process holes one
671 * block at a time - it will repeatedly call get_block() as it walks the hole.
673 static int get_more_blocks(struct dio *dio, struct dio_submit *sdio,
674 struct buffer_head *map_bh)
677 sector_t fs_startblk; /* Into file, in filesystem-sized blocks */
678 sector_t fs_endblk; /* Into file, in filesystem-sized blocks */
679 unsigned long fs_count; /* Number of filesystem-sized blocks */
681 unsigned int i_blkbits = sdio->blkbits + sdio->blkfactor;
685 * If there was a memory error and we've overwritten all the
686 * mapped blocks then we can now return that memory error
688 ret = dio->page_errors;
690 BUG_ON(sdio->block_in_file >= sdio->final_block_in_request);
691 fs_startblk = sdio->block_in_file >> sdio->blkfactor;
692 fs_endblk = (sdio->final_block_in_request - 1) >>
694 fs_count = fs_endblk - fs_startblk + 1;
697 map_bh->b_size = fs_count << i_blkbits;
700 * For writes that could fill holes inside i_size on a
701 * DIO_SKIP_HOLES filesystem we forbid block creations: only
702 * overwrites are permitted. We will return early to the caller
703 * once we see an unmapped buffer head returned, and the caller
704 * will fall back to buffered I/O.
706 * Otherwise the decision is left to the get_blocks method,
707 * which may decide to handle it or also return an unmapped
710 create = dio->op == REQ_OP_WRITE;
711 if (dio->flags & DIO_SKIP_HOLES) {
712 i_size = i_size_read(dio->inode);
713 if (i_size && fs_startblk <= (i_size - 1) >> i_blkbits)
717 ret = (*sdio->get_block)(dio->inode, fs_startblk,
720 /* Store for completion */
721 dio->private = map_bh->b_private;
723 if (ret == 0 && buffer_defer_completion(map_bh))
724 ret = dio_set_defer_completion(dio);
730 * There is no bio. Make one now.
732 static inline int dio_new_bio(struct dio *dio, struct dio_submit *sdio,
733 sector_t start_sector, struct buffer_head *map_bh)
738 ret = dio_bio_reap(dio, sdio);
741 sector = start_sector << (sdio->blkbits - 9);
742 nr_pages = min(sdio->pages_in_io, BIO_MAX_PAGES);
743 BUG_ON(nr_pages <= 0);
744 dio_bio_alloc(dio, sdio, map_bh->b_bdev, sector, nr_pages);
751 * Attempt to put the current chunk of 'cur_page' into the current BIO. If
752 * that was successful then update final_block_in_bio and take a ref against
753 * the just-added page.
755 * Return zero on success. Non-zero means the caller needs to start a new BIO.
757 static inline int dio_bio_add_page(struct dio_submit *sdio)
761 ret = bio_add_page(sdio->bio, sdio->cur_page,
762 sdio->cur_page_len, sdio->cur_page_offset);
763 if (ret == sdio->cur_page_len) {
765 * Decrement count only, if we are done with this page
767 if ((sdio->cur_page_len + sdio->cur_page_offset) == PAGE_SIZE)
769 get_page(sdio->cur_page);
770 sdio->final_block_in_bio = sdio->cur_page_block +
771 (sdio->cur_page_len >> sdio->blkbits);
780 * Put cur_page under IO. The section of cur_page which is described by
781 * cur_page_offset,cur_page_len is put into a BIO. The section of cur_page
782 * starts on-disk at cur_page_block.
784 * We take a ref against the page here (on behalf of its presence in the bio).
786 * The caller of this function is responsible for removing cur_page from the
787 * dio, and for dropping the refcount which came from that presence.
789 static inline int dio_send_cur_page(struct dio *dio, struct dio_submit *sdio,
790 struct buffer_head *map_bh)
795 loff_t cur_offset = sdio->cur_page_fs_offset;
796 loff_t bio_next_offset = sdio->logical_offset_in_bio +
797 sdio->bio->bi_iter.bi_size;
800 * See whether this new request is contiguous with the old.
802 * Btrfs cannot handle having logically non-contiguous requests
803 * submitted. For example if you have
805 * Logical: [0-4095][HOLE][8192-12287]
806 * Physical: [0-4095] [4096-8191]
808 * We cannot submit those pages together as one BIO. So if our
809 * current logical offset in the file does not equal what would
810 * be the next logical offset in the bio, submit the bio we
813 if (sdio->final_block_in_bio != sdio->cur_page_block ||
814 cur_offset != bio_next_offset)
815 dio_bio_submit(dio, sdio);
818 if (sdio->bio == NULL) {
819 ret = dio_new_bio(dio, sdio, sdio->cur_page_block, map_bh);
824 if (dio_bio_add_page(sdio) != 0) {
825 dio_bio_submit(dio, sdio);
826 ret = dio_new_bio(dio, sdio, sdio->cur_page_block, map_bh);
828 ret = dio_bio_add_page(sdio);
837 * An autonomous function to put a chunk of a page under deferred IO.
839 * The caller doesn't actually know (or care) whether this piece of page is in
840 * a BIO, or is under IO or whatever. We just take care of all possible
841 * situations here. The separation between the logic of do_direct_IO() and
842 * that of submit_page_section() is important for clarity. Please don't break.
844 * The chunk of page starts on-disk at blocknr.
846 * We perform deferred IO, by recording the last-submitted page inside our
847 * private part of the dio structure. If possible, we just expand the IO
848 * across that page here.
850 * If that doesn't work out then we put the old page into the bio and add this
851 * page to the dio instead.
854 submit_page_section(struct dio *dio, struct dio_submit *sdio, struct page *page,
855 unsigned offset, unsigned len, sector_t blocknr,
856 struct buffer_head *map_bh)
859 int boundary = sdio->boundary; /* dio_send_cur_page may clear it */
861 if (dio->op == REQ_OP_WRITE) {
863 * Read accounting is performed in submit_bio()
865 task_io_account_write(len);
869 * Can we just grow the current page's presence in the dio?
871 if (sdio->cur_page == page &&
872 sdio->cur_page_offset + sdio->cur_page_len == offset &&
873 sdio->cur_page_block +
874 (sdio->cur_page_len >> sdio->blkbits) == blocknr) {
875 sdio->cur_page_len += len;
880 * If there's a deferred page already there then send it.
882 if (sdio->cur_page) {
883 ret = dio_send_cur_page(dio, sdio, map_bh);
884 put_page(sdio->cur_page);
885 sdio->cur_page = NULL;
890 get_page(page); /* It is in dio */
891 sdio->cur_page = page;
892 sdio->cur_page_offset = offset;
893 sdio->cur_page_len = len;
894 sdio->cur_page_block = blocknr;
895 sdio->cur_page_fs_offset = sdio->block_in_file << sdio->blkbits;
898 * If boundary then we want to schedule the IO now to
899 * avoid metadata seeks.
902 ret = dio_send_cur_page(dio, sdio, map_bh);
904 dio_bio_submit(dio, sdio);
905 put_page(sdio->cur_page);
906 sdio->cur_page = NULL;
912 * If we are not writing the entire block and get_block() allocated
913 * the block for us, we need to fill-in the unused portion of the
914 * block with zeros. This happens only if user-buffer, fileoffset or
915 * io length is not filesystem block-size multiple.
917 * `end' is zero if we're doing the start of the IO, 1 at the end of the
920 static inline void dio_zero_block(struct dio *dio, struct dio_submit *sdio,
921 int end, struct buffer_head *map_bh)
923 unsigned dio_blocks_per_fs_block;
924 unsigned this_chunk_blocks; /* In dio_blocks */
925 unsigned this_chunk_bytes;
928 sdio->start_zero_done = 1;
929 if (!sdio->blkfactor || !buffer_new(map_bh))
932 dio_blocks_per_fs_block = 1 << sdio->blkfactor;
933 this_chunk_blocks = sdio->block_in_file & (dio_blocks_per_fs_block - 1);
935 if (!this_chunk_blocks)
939 * We need to zero out part of an fs block. It is either at the
940 * beginning or the end of the fs block.
943 this_chunk_blocks = dio_blocks_per_fs_block - this_chunk_blocks;
945 this_chunk_bytes = this_chunk_blocks << sdio->blkbits;
948 if (submit_page_section(dio, sdio, page, 0, this_chunk_bytes,
949 sdio->next_block_for_io, map_bh))
952 sdio->next_block_for_io += this_chunk_blocks;
956 * Walk the user pages, and the file, mapping blocks to disk and generating
957 * a sequence of (page,offset,len,block) mappings. These mappings are injected
958 * into submit_page_section(), which takes care of the next stage of submission
960 * Direct IO against a blockdev is different from a file. Because we can
961 * happily perform page-sized but 512-byte aligned IOs. It is important that
962 * blockdev IO be able to have fine alignment and large sizes.
964 * So what we do is to permit the ->get_block function to populate bh.b_size
965 * with the size of IO which is permitted at this offset and this i_blkbits.
967 * For best results, the blockdev should be set up with 512-byte i_blkbits and
968 * it should set b_size to PAGE_SIZE or more inside get_block(). This gives
969 * fine alignment but still allows this function to work in PAGE_SIZE units.
971 static int do_direct_IO(struct dio *dio, struct dio_submit *sdio,
972 struct buffer_head *map_bh)
974 const unsigned blkbits = sdio->blkbits;
975 const unsigned i_blkbits = blkbits + sdio->blkfactor;
978 while (sdio->block_in_file < sdio->final_block_in_request) {
982 page = dio_get_page(dio, sdio);
987 from = sdio->head ? 0 : sdio->from;
988 to = (sdio->head == sdio->tail - 1) ? sdio->to : PAGE_SIZE;
992 unsigned this_chunk_bytes; /* # of bytes mapped */
993 unsigned this_chunk_blocks; /* # of blocks */
996 if (sdio->blocks_available == 0) {
998 * Need to go and map some more disk
1000 unsigned long blkmask;
1001 unsigned long dio_remainder;
1003 ret = get_more_blocks(dio, sdio, map_bh);
1008 if (!buffer_mapped(map_bh))
1011 sdio->blocks_available =
1012 map_bh->b_size >> blkbits;
1013 sdio->next_block_for_io =
1014 map_bh->b_blocknr << sdio->blkfactor;
1015 if (buffer_new(map_bh)) {
1019 map_bh->b_size >> i_blkbits);
1022 if (!sdio->blkfactor)
1025 blkmask = (1 << sdio->blkfactor) - 1;
1026 dio_remainder = (sdio->block_in_file & blkmask);
1029 * If we are at the start of IO and that IO
1030 * starts partway into a fs-block,
1031 * dio_remainder will be non-zero. If the IO
1032 * is a read then we can simply advance the IO
1033 * cursor to the first block which is to be
1034 * read. But if the IO is a write and the
1035 * block was newly allocated we cannot do that;
1036 * the start of the fs block must be zeroed out
1039 if (!buffer_new(map_bh))
1040 sdio->next_block_for_io += dio_remainder;
1041 sdio->blocks_available -= dio_remainder;
1045 if (!buffer_mapped(map_bh)) {
1046 loff_t i_size_aligned;
1048 /* AKPM: eargh, -ENOTBLK is a hack */
1049 if (dio->op == REQ_OP_WRITE) {
1055 * Be sure to account for a partial block as the
1056 * last block in the file
1058 i_size_aligned = ALIGN(i_size_read(dio->inode),
1060 if (sdio->block_in_file >=
1061 i_size_aligned >> blkbits) {
1066 zero_user(page, from, 1 << blkbits);
1067 sdio->block_in_file++;
1068 from += 1 << blkbits;
1069 dio->result += 1 << blkbits;
1074 * If we're performing IO which has an alignment which
1075 * is finer than the underlying fs, go check to see if
1076 * we must zero out the start of this block.
1078 if (unlikely(sdio->blkfactor && !sdio->start_zero_done))
1079 dio_zero_block(dio, sdio, 0, map_bh);
1082 * Work out, in this_chunk_blocks, how much disk we
1083 * can add to this page
1085 this_chunk_blocks = sdio->blocks_available;
1086 u = (to - from) >> blkbits;
1087 if (this_chunk_blocks > u)
1088 this_chunk_blocks = u;
1089 u = sdio->final_block_in_request - sdio->block_in_file;
1090 if (this_chunk_blocks > u)
1091 this_chunk_blocks = u;
1092 this_chunk_bytes = this_chunk_blocks << blkbits;
1093 BUG_ON(this_chunk_bytes == 0);
1095 if (this_chunk_blocks == sdio->blocks_available)
1096 sdio->boundary = buffer_boundary(map_bh);
1097 ret = submit_page_section(dio, sdio, page,
1100 sdio->next_block_for_io,
1106 sdio->next_block_for_io += this_chunk_blocks;
1108 sdio->block_in_file += this_chunk_blocks;
1109 from += this_chunk_bytes;
1110 dio->result += this_chunk_bytes;
1111 sdio->blocks_available -= this_chunk_blocks;
1113 BUG_ON(sdio->block_in_file > sdio->final_block_in_request);
1114 if (sdio->block_in_file == sdio->final_block_in_request)
1118 /* Drop the ref which was taken in get_user_pages() */
1125 static inline int drop_refcount(struct dio *dio)
1128 unsigned long flags;
1131 * Sync will always be dropping the final ref and completing the
1132 * operation. AIO can if it was a broken operation described above or
1133 * in fact if all the bios race to complete before we get here. In
1134 * that case dio_complete() translates the EIOCBQUEUED into the proper
1135 * return code that the caller will hand to ->complete().
1137 * This is managed by the bio_lock instead of being an atomic_t so that
1138 * completion paths can drop their ref and use the remaining count to
1139 * decide to wake the submission path atomically.
1141 spin_lock_irqsave(&dio->bio_lock, flags);
1142 ret2 = --dio->refcount;
1143 spin_unlock_irqrestore(&dio->bio_lock, flags);
1148 * This is a library function for use by filesystem drivers.
1150 * The locking rules are governed by the flags parameter:
1151 * - if the flags value contains DIO_LOCKING we use a fancy locking
1152 * scheme for dumb filesystems.
1153 * For writes this function is called under i_mutex and returns with
1154 * i_mutex held, for reads, i_mutex is not held on entry, but it is
1155 * taken and dropped again before returning.
1156 * - if the flags value does NOT contain DIO_LOCKING we don't use any
1157 * internal locking but rather rely on the filesystem to synchronize
1158 * direct I/O reads/writes versus each other and truncate.
1160 * To help with locking against truncate we incremented the i_dio_count
1161 * counter before starting direct I/O, and decrement it once we are done.
1162 * Truncate can wait for it to reach zero to provide exclusion. It is
1163 * expected that filesystem provide exclusion between new direct I/O
1164 * and truncates. For DIO_LOCKING filesystems this is done by i_mutex,
1165 * but other filesystems need to take care of this on their own.
1167 * NOTE: if you pass "sdio" to anything by pointer make sure that function
1168 * is always inlined. Otherwise gcc is unable to split the structure into
1169 * individual fields and will generate much worse code. This is important
1170 * for the whole file.
1172 static inline ssize_t
1173 do_blockdev_direct_IO(struct kiocb *iocb, struct inode *inode,
1174 struct block_device *bdev, struct iov_iter *iter,
1175 get_block_t get_block, dio_iodone_t end_io,
1176 dio_submit_t submit_io, int flags)
1178 unsigned i_blkbits = READ_ONCE(inode->i_blkbits);
1179 unsigned blkbits = i_blkbits;
1180 unsigned blocksize_mask = (1 << blkbits) - 1;
1181 ssize_t retval = -EINVAL;
1182 const size_t count = iov_iter_count(iter);
1183 loff_t offset = iocb->ki_pos;
1184 const loff_t end = offset + count;
1186 struct dio_submit sdio = { 0, };
1187 struct buffer_head map_bh = { 0, };
1188 struct blk_plug plug;
1189 unsigned long align = offset | iov_iter_alignment(iter);
1192 * Avoid references to bdev if not absolutely needed to give
1193 * the early prefetch in the caller enough time.
1196 if (align & blocksize_mask) {
1198 blkbits = blksize_bits(bdev_logical_block_size(bdev));
1199 blocksize_mask = (1 << blkbits) - 1;
1200 if (align & blocksize_mask)
1204 /* watch out for a 0 len io from a tricksy fs */
1205 if (iov_iter_rw(iter) == READ && !count)
1208 dio = kmem_cache_alloc(dio_cache, GFP_KERNEL);
1213 * Believe it or not, zeroing out the page array caused a .5%
1214 * performance regression in a database benchmark. So, we take
1215 * care to only zero out what's needed.
1217 memset(dio, 0, offsetof(struct dio, pages));
1220 if (dio->flags & DIO_LOCKING) {
1221 if (iov_iter_rw(iter) == READ) {
1222 struct address_space *mapping =
1223 iocb->ki_filp->f_mapping;
1225 /* will be released by direct_io_worker */
1228 retval = filemap_write_and_wait_range(mapping, offset,
1231 inode_unlock(inode);
1232 kmem_cache_free(dio_cache, dio);
1238 /* Once we sampled i_size check for reads beyond EOF */
1239 dio->i_size = i_size_read(inode);
1240 if (iov_iter_rw(iter) == READ && offset >= dio->i_size) {
1241 if (dio->flags & DIO_LOCKING)
1242 inode_unlock(inode);
1243 kmem_cache_free(dio_cache, dio);
1249 * For file extending writes updating i_size before data writeouts
1250 * complete can expose uninitialized blocks in dumb filesystems.
1251 * In that case we need to wait for I/O completion even if asked
1252 * for an asynchronous write.
1254 if (is_sync_kiocb(iocb))
1255 dio->is_async = false;
1256 else if (iov_iter_rw(iter) == WRITE && end > i_size_read(inode))
1257 dio->is_async = false;
1259 dio->is_async = true;
1262 if (iov_iter_rw(iter) == WRITE) {
1263 dio->op = REQ_OP_WRITE;
1264 dio->op_flags = REQ_SYNC | REQ_IDLE;
1265 if (iocb->ki_flags & IOCB_NOWAIT)
1266 dio->op_flags |= REQ_NOWAIT;
1268 dio->op = REQ_OP_READ;
1272 * For AIO O_(D)SYNC writes we need to defer completions to a workqueue
1273 * so that we can call ->fsync.
1275 if (dio->is_async && iov_iter_rw(iter) == WRITE) {
1277 if (iocb->ki_flags & IOCB_DSYNC)
1278 retval = dio_set_defer_completion(dio);
1279 else if (!dio->inode->i_sb->s_dio_done_wq) {
1281 * In case of AIO write racing with buffered read we
1282 * need to defer completion. We can't decide this now,
1283 * however the workqueue needs to be initialized here.
1285 retval = sb_init_dio_done_wq(dio->inode->i_sb);
1289 * We grab i_mutex only for reads so we don't have
1290 * to release it here
1292 kmem_cache_free(dio_cache, dio);
1298 * Will be decremented at I/O completion time.
1300 inode_dio_begin(inode);
1303 sdio.blkbits = blkbits;
1304 sdio.blkfactor = i_blkbits - blkbits;
1305 sdio.block_in_file = offset >> blkbits;
1307 sdio.get_block = get_block;
1308 dio->end_io = end_io;
1309 sdio.submit_io = submit_io;
1310 sdio.final_block_in_bio = -1;
1311 sdio.next_block_for_io = -1;
1315 spin_lock_init(&dio->bio_lock);
1318 dio->should_dirty = (iter->type == ITER_IOVEC);
1320 sdio.final_block_in_request = end >> blkbits;
1323 * In case of non-aligned buffers, we may need 2 more
1324 * pages since we need to zero out first and last block.
1326 if (unlikely(sdio.blkfactor))
1327 sdio.pages_in_io = 2;
1329 sdio.pages_in_io += iov_iter_npages(iter, INT_MAX);
1331 blk_start_plug(&plug);
1333 retval = do_direct_IO(dio, &sdio, &map_bh);
1335 dio_cleanup(dio, &sdio);
1337 if (retval == -ENOTBLK) {
1339 * The remaining part of the request will be
1340 * be handled by buffered I/O when we return
1345 * There may be some unwritten disk at the end of a part-written
1346 * fs-block-sized block. Go zero that now.
1348 dio_zero_block(dio, &sdio, 1, &map_bh);
1350 if (sdio.cur_page) {
1353 ret2 = dio_send_cur_page(dio, &sdio, &map_bh);
1356 put_page(sdio.cur_page);
1357 sdio.cur_page = NULL;
1360 dio_bio_submit(dio, &sdio);
1362 blk_finish_plug(&plug);
1365 * It is possible that, we return short IO due to end of file.
1366 * In that case, we need to release all the pages we got hold on.
1368 dio_cleanup(dio, &sdio);
1371 * All block lookups have been performed. For READ requests
1372 * we can let i_mutex go now that its achieved its purpose
1373 * of protecting us from looking up uninitialized blocks.
1375 if (iov_iter_rw(iter) == READ && (dio->flags & DIO_LOCKING))
1376 inode_unlock(dio->inode);
1379 * The only time we want to leave bios in flight is when a successful
1380 * partial aio read or full aio write have been setup. In that case
1381 * bio completion will call aio_complete. The only time it's safe to
1382 * call aio_complete is when we return -EIOCBQUEUED, so we key on that.
1383 * This had *better* be the only place that raises -EIOCBQUEUED.
1385 BUG_ON(retval == -EIOCBQUEUED);
1386 if (dio->is_async && retval == 0 && dio->result &&
1387 (iov_iter_rw(iter) == READ || dio->result == count))
1388 retval = -EIOCBQUEUED;
1390 dio_await_completion(dio);
1392 if (drop_refcount(dio) == 0) {
1393 retval = dio_complete(dio, retval, DIO_COMPLETE_INVALIDATE);
1395 BUG_ON(retval != -EIOCBQUEUED);
1401 ssize_t __blockdev_direct_IO(struct kiocb *iocb, struct inode *inode,
1402 struct block_device *bdev, struct iov_iter *iter,
1403 get_block_t get_block,
1404 dio_iodone_t end_io, dio_submit_t submit_io,
1408 * The block device state is needed in the end to finally
1409 * submit everything. Since it's likely to be cache cold
1410 * prefetch it here as first thing to hide some of the
1413 * Attempt to prefetch the pieces we likely need later.
1415 prefetch(&bdev->bd_disk->part_tbl);
1416 prefetch(bdev->bd_queue);
1417 prefetch((char *)bdev->bd_queue + SMP_CACHE_BYTES);
1419 return do_blockdev_direct_IO(iocb, inode, bdev, iter, get_block,
1420 end_io, submit_io, flags);
1423 EXPORT_SYMBOL(__blockdev_direct_IO);
1425 static __init int dio_init(void)
1427 dio_cache = KMEM_CACHE(dio, SLAB_PANIC);
1430 module_init(dio_init)