GNU Linux-libre 5.10.219-gnu1
[releases.git] / fs / dcache.c
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  * fs/dcache.c
4  *
5  * Complete reimplementation
6  * (C) 1997 Thomas Schoebel-Theuer,
7  * with heavy changes by Linus Torvalds
8  */
9
10 /*
11  * Notes on the allocation strategy:
12  *
13  * The dcache is a master of the icache - whenever a dcache entry
14  * exists, the inode will always exist. "iput()" is done either when
15  * the dcache entry is deleted or garbage collected.
16  */
17
18 #include <linux/ratelimit.h>
19 #include <linux/string.h>
20 #include <linux/mm.h>
21 #include <linux/fs.h>
22 #include <linux/fscrypt.h>
23 #include <linux/fsnotify.h>
24 #include <linux/slab.h>
25 #include <linux/init.h>
26 #include <linux/hash.h>
27 #include <linux/cache.h>
28 #include <linux/export.h>
29 #include <linux/security.h>
30 #include <linux/seqlock.h>
31 #include <linux/memblock.h>
32 #include <linux/bit_spinlock.h>
33 #include <linux/rculist_bl.h>
34 #include <linux/list_lru.h>
35 #include "internal.h"
36 #include "mount.h"
37
38 /*
39  * Usage:
40  * dcache->d_inode->i_lock protects:
41  *   - i_dentry, d_u.d_alias, d_inode of aliases
42  * dcache_hash_bucket lock protects:
43  *   - the dcache hash table
44  * s_roots bl list spinlock protects:
45  *   - the s_roots list (see __d_drop)
46  * dentry->d_sb->s_dentry_lru_lock protects:
47  *   - the dcache lru lists and counters
48  * d_lock protects:
49  *   - d_flags
50  *   - d_name
51  *   - d_lru
52  *   - d_count
53  *   - d_unhashed()
54  *   - d_parent and d_subdirs
55  *   - childrens' d_child and d_parent
56  *   - d_u.d_alias, d_inode
57  *
58  * Ordering:
59  * dentry->d_inode->i_lock
60  *   dentry->d_lock
61  *     dentry->d_sb->s_dentry_lru_lock
62  *     dcache_hash_bucket lock
63  *     s_roots lock
64  *
65  * If there is an ancestor relationship:
66  * dentry->d_parent->...->d_parent->d_lock
67  *   ...
68  *     dentry->d_parent->d_lock
69  *       dentry->d_lock
70  *
71  * If no ancestor relationship:
72  * arbitrary, since it's serialized on rename_lock
73  */
74 int sysctl_vfs_cache_pressure __read_mostly = 100;
75 EXPORT_SYMBOL_GPL(sysctl_vfs_cache_pressure);
76
77 __cacheline_aligned_in_smp DEFINE_SEQLOCK(rename_lock);
78
79 EXPORT_SYMBOL(rename_lock);
80
81 static struct kmem_cache *dentry_cache __read_mostly;
82
83 const struct qstr empty_name = QSTR_INIT("", 0);
84 EXPORT_SYMBOL(empty_name);
85 const struct qstr slash_name = QSTR_INIT("/", 1);
86 EXPORT_SYMBOL(slash_name);
87
88 /*
89  * This is the single most critical data structure when it comes
90  * to the dcache: the hashtable for lookups. Somebody should try
91  * to make this good - I've just made it work.
92  *
93  * This hash-function tries to avoid losing too many bits of hash
94  * information, yet avoid using a prime hash-size or similar.
95  */
96
97 static unsigned int d_hash_shift __read_mostly;
98
99 static struct hlist_bl_head *dentry_hashtable __read_mostly;
100
101 static inline struct hlist_bl_head *d_hash(unsigned int hash)
102 {
103         return dentry_hashtable + (hash >> d_hash_shift);
104 }
105
106 #define IN_LOOKUP_SHIFT 10
107 static struct hlist_bl_head in_lookup_hashtable[1 << IN_LOOKUP_SHIFT];
108
109 static inline struct hlist_bl_head *in_lookup_hash(const struct dentry *parent,
110                                         unsigned int hash)
111 {
112         hash += (unsigned long) parent / L1_CACHE_BYTES;
113         return in_lookup_hashtable + hash_32(hash, IN_LOOKUP_SHIFT);
114 }
115
116
117 /* Statistics gathering. */
118 struct dentry_stat_t dentry_stat = {
119         .age_limit = 45,
120 };
121
122 static DEFINE_PER_CPU(long, nr_dentry);
123 static DEFINE_PER_CPU(long, nr_dentry_unused);
124 static DEFINE_PER_CPU(long, nr_dentry_negative);
125
126 #if defined(CONFIG_SYSCTL) && defined(CONFIG_PROC_FS)
127
128 /*
129  * Here we resort to our own counters instead of using generic per-cpu counters
130  * for consistency with what the vfs inode code does. We are expected to harvest
131  * better code and performance by having our own specialized counters.
132  *
133  * Please note that the loop is done over all possible CPUs, not over all online
134  * CPUs. The reason for this is that we don't want to play games with CPUs going
135  * on and off. If one of them goes off, we will just keep their counters.
136  *
137  * glommer: See cffbc8a for details, and if you ever intend to change this,
138  * please update all vfs counters to match.
139  */
140 static long get_nr_dentry(void)
141 {
142         int i;
143         long sum = 0;
144         for_each_possible_cpu(i)
145                 sum += per_cpu(nr_dentry, i);
146         return sum < 0 ? 0 : sum;
147 }
148
149 static long get_nr_dentry_unused(void)
150 {
151         int i;
152         long sum = 0;
153         for_each_possible_cpu(i)
154                 sum += per_cpu(nr_dentry_unused, i);
155         return sum < 0 ? 0 : sum;
156 }
157
158 static long get_nr_dentry_negative(void)
159 {
160         int i;
161         long sum = 0;
162
163         for_each_possible_cpu(i)
164                 sum += per_cpu(nr_dentry_negative, i);
165         return sum < 0 ? 0 : sum;
166 }
167
168 int proc_nr_dentry(struct ctl_table *table, int write, void *buffer,
169                    size_t *lenp, loff_t *ppos)
170 {
171         dentry_stat.nr_dentry = get_nr_dentry();
172         dentry_stat.nr_unused = get_nr_dentry_unused();
173         dentry_stat.nr_negative = get_nr_dentry_negative();
174         return proc_doulongvec_minmax(table, write, buffer, lenp, ppos);
175 }
176 #endif
177
178 /*
179  * Compare 2 name strings, return 0 if they match, otherwise non-zero.
180  * The strings are both count bytes long, and count is non-zero.
181  */
182 #ifdef CONFIG_DCACHE_WORD_ACCESS
183
184 #include <asm/word-at-a-time.h>
185 /*
186  * NOTE! 'cs' and 'scount' come from a dentry, so it has a
187  * aligned allocation for this particular component. We don't
188  * strictly need the load_unaligned_zeropad() safety, but it
189  * doesn't hurt either.
190  *
191  * In contrast, 'ct' and 'tcount' can be from a pathname, and do
192  * need the careful unaligned handling.
193  */
194 static inline int dentry_string_cmp(const unsigned char *cs, const unsigned char *ct, unsigned tcount)
195 {
196         unsigned long a,b,mask;
197
198         for (;;) {
199                 a = read_word_at_a_time(cs);
200                 b = load_unaligned_zeropad(ct);
201                 if (tcount < sizeof(unsigned long))
202                         break;
203                 if (unlikely(a != b))
204                         return 1;
205                 cs += sizeof(unsigned long);
206                 ct += sizeof(unsigned long);
207                 tcount -= sizeof(unsigned long);
208                 if (!tcount)
209                         return 0;
210         }
211         mask = bytemask_from_count(tcount);
212         return unlikely(!!((a ^ b) & mask));
213 }
214
215 #else
216
217 static inline int dentry_string_cmp(const unsigned char *cs, const unsigned char *ct, unsigned tcount)
218 {
219         do {
220                 if (*cs != *ct)
221                         return 1;
222                 cs++;
223                 ct++;
224                 tcount--;
225         } while (tcount);
226         return 0;
227 }
228
229 #endif
230
231 static inline int dentry_cmp(const struct dentry *dentry, const unsigned char *ct, unsigned tcount)
232 {
233         /*
234          * Be careful about RCU walk racing with rename:
235          * use 'READ_ONCE' to fetch the name pointer.
236          *
237          * NOTE! Even if a rename will mean that the length
238          * was not loaded atomically, we don't care. The
239          * RCU walk will check the sequence count eventually,
240          * and catch it. And we won't overrun the buffer,
241          * because we're reading the name pointer atomically,
242          * and a dentry name is guaranteed to be properly
243          * terminated with a NUL byte.
244          *
245          * End result: even if 'len' is wrong, we'll exit
246          * early because the data cannot match (there can
247          * be no NUL in the ct/tcount data)
248          */
249         const unsigned char *cs = READ_ONCE(dentry->d_name.name);
250
251         return dentry_string_cmp(cs, ct, tcount);
252 }
253
254 struct external_name {
255         union {
256                 atomic_t count;
257                 struct rcu_head head;
258         } u;
259         unsigned char name[];
260 };
261
262 static inline struct external_name *external_name(struct dentry *dentry)
263 {
264         return container_of(dentry->d_name.name, struct external_name, name[0]);
265 }
266
267 static void __d_free(struct rcu_head *head)
268 {
269         struct dentry *dentry = container_of(head, struct dentry, d_u.d_rcu);
270
271         kmem_cache_free(dentry_cache, dentry); 
272 }
273
274 static void __d_free_external(struct rcu_head *head)
275 {
276         struct dentry *dentry = container_of(head, struct dentry, d_u.d_rcu);
277         kfree(external_name(dentry));
278         kmem_cache_free(dentry_cache, dentry);
279 }
280
281 static inline int dname_external(const struct dentry *dentry)
282 {
283         return dentry->d_name.name != dentry->d_iname;
284 }
285
286 void take_dentry_name_snapshot(struct name_snapshot *name, struct dentry *dentry)
287 {
288         spin_lock(&dentry->d_lock);
289         name->name = dentry->d_name;
290         if (unlikely(dname_external(dentry))) {
291                 atomic_inc(&external_name(dentry)->u.count);
292         } else {
293                 memcpy(name->inline_name, dentry->d_iname,
294                        dentry->d_name.len + 1);
295                 name->name.name = name->inline_name;
296         }
297         spin_unlock(&dentry->d_lock);
298 }
299 EXPORT_SYMBOL(take_dentry_name_snapshot);
300
301 void release_dentry_name_snapshot(struct name_snapshot *name)
302 {
303         if (unlikely(name->name.name != name->inline_name)) {
304                 struct external_name *p;
305                 p = container_of(name->name.name, struct external_name, name[0]);
306                 if (unlikely(atomic_dec_and_test(&p->u.count)))
307                         kfree_rcu(p, u.head);
308         }
309 }
310 EXPORT_SYMBOL(release_dentry_name_snapshot);
311
312 static inline void __d_set_inode_and_type(struct dentry *dentry,
313                                           struct inode *inode,
314                                           unsigned type_flags)
315 {
316         unsigned flags;
317
318         dentry->d_inode = inode;
319         flags = READ_ONCE(dentry->d_flags);
320         flags &= ~(DCACHE_ENTRY_TYPE | DCACHE_FALLTHRU);
321         flags |= type_flags;
322         smp_store_release(&dentry->d_flags, flags);
323 }
324
325 static inline void __d_clear_type_and_inode(struct dentry *dentry)
326 {
327         unsigned flags = READ_ONCE(dentry->d_flags);
328
329         flags &= ~(DCACHE_ENTRY_TYPE | DCACHE_FALLTHRU);
330         WRITE_ONCE(dentry->d_flags, flags);
331         dentry->d_inode = NULL;
332         if (dentry->d_flags & DCACHE_LRU_LIST)
333                 this_cpu_inc(nr_dentry_negative);
334 }
335
336 static void dentry_free(struct dentry *dentry)
337 {
338         WARN_ON(!hlist_unhashed(&dentry->d_u.d_alias));
339         if (unlikely(dname_external(dentry))) {
340                 struct external_name *p = external_name(dentry);
341                 if (likely(atomic_dec_and_test(&p->u.count))) {
342                         call_rcu(&dentry->d_u.d_rcu, __d_free_external);
343                         return;
344                 }
345         }
346         /* if dentry was never visible to RCU, immediate free is OK */
347         if (dentry->d_flags & DCACHE_NORCU)
348                 __d_free(&dentry->d_u.d_rcu);
349         else
350                 call_rcu(&dentry->d_u.d_rcu, __d_free);
351 }
352
353 /*
354  * Release the dentry's inode, using the filesystem
355  * d_iput() operation if defined.
356  */
357 static void dentry_unlink_inode(struct dentry * dentry)
358         __releases(dentry->d_lock)
359         __releases(dentry->d_inode->i_lock)
360 {
361         struct inode *inode = dentry->d_inode;
362
363         raw_write_seqcount_begin(&dentry->d_seq);
364         __d_clear_type_and_inode(dentry);
365         hlist_del_init(&dentry->d_u.d_alias);
366         raw_write_seqcount_end(&dentry->d_seq);
367         spin_unlock(&dentry->d_lock);
368         spin_unlock(&inode->i_lock);
369         if (!inode->i_nlink)
370                 fsnotify_inoderemove(inode);
371         if (dentry->d_op && dentry->d_op->d_iput)
372                 dentry->d_op->d_iput(dentry, inode);
373         else
374                 iput(inode);
375 }
376
377 /*
378  * The DCACHE_LRU_LIST bit is set whenever the 'd_lru' entry
379  * is in use - which includes both the "real" per-superblock
380  * LRU list _and_ the DCACHE_SHRINK_LIST use.
381  *
382  * The DCACHE_SHRINK_LIST bit is set whenever the dentry is
383  * on the shrink list (ie not on the superblock LRU list).
384  *
385  * The per-cpu "nr_dentry_unused" counters are updated with
386  * the DCACHE_LRU_LIST bit.
387  *
388  * The per-cpu "nr_dentry_negative" counters are only updated
389  * when deleted from or added to the per-superblock LRU list, not
390  * from/to the shrink list. That is to avoid an unneeded dec/inc
391  * pair when moving from LRU to shrink list in select_collect().
392  *
393  * These helper functions make sure we always follow the
394  * rules. d_lock must be held by the caller.
395  */
396 #define D_FLAG_VERIFY(dentry,x) WARN_ON_ONCE(((dentry)->d_flags & (DCACHE_LRU_LIST | DCACHE_SHRINK_LIST)) != (x))
397 static void d_lru_add(struct dentry *dentry)
398 {
399         D_FLAG_VERIFY(dentry, 0);
400         dentry->d_flags |= DCACHE_LRU_LIST;
401         this_cpu_inc(nr_dentry_unused);
402         if (d_is_negative(dentry))
403                 this_cpu_inc(nr_dentry_negative);
404         WARN_ON_ONCE(!list_lru_add(&dentry->d_sb->s_dentry_lru, &dentry->d_lru));
405 }
406
407 static void d_lru_del(struct dentry *dentry)
408 {
409         D_FLAG_VERIFY(dentry, DCACHE_LRU_LIST);
410         dentry->d_flags &= ~DCACHE_LRU_LIST;
411         this_cpu_dec(nr_dentry_unused);
412         if (d_is_negative(dentry))
413                 this_cpu_dec(nr_dentry_negative);
414         WARN_ON_ONCE(!list_lru_del(&dentry->d_sb->s_dentry_lru, &dentry->d_lru));
415 }
416
417 static void d_shrink_del(struct dentry *dentry)
418 {
419         D_FLAG_VERIFY(dentry, DCACHE_SHRINK_LIST | DCACHE_LRU_LIST);
420         list_del_init(&dentry->d_lru);
421         dentry->d_flags &= ~(DCACHE_SHRINK_LIST | DCACHE_LRU_LIST);
422         this_cpu_dec(nr_dentry_unused);
423 }
424
425 static void d_shrink_add(struct dentry *dentry, struct list_head *list)
426 {
427         D_FLAG_VERIFY(dentry, 0);
428         list_add(&dentry->d_lru, list);
429         dentry->d_flags |= DCACHE_SHRINK_LIST | DCACHE_LRU_LIST;
430         this_cpu_inc(nr_dentry_unused);
431 }
432
433 /*
434  * These can only be called under the global LRU lock, ie during the
435  * callback for freeing the LRU list. "isolate" removes it from the
436  * LRU lists entirely, while shrink_move moves it to the indicated
437  * private list.
438  */
439 static void d_lru_isolate(struct list_lru_one *lru, struct dentry *dentry)
440 {
441         D_FLAG_VERIFY(dentry, DCACHE_LRU_LIST);
442         dentry->d_flags &= ~DCACHE_LRU_LIST;
443         this_cpu_dec(nr_dentry_unused);
444         if (d_is_negative(dentry))
445                 this_cpu_dec(nr_dentry_negative);
446         list_lru_isolate(lru, &dentry->d_lru);
447 }
448
449 static void d_lru_shrink_move(struct list_lru_one *lru, struct dentry *dentry,
450                               struct list_head *list)
451 {
452         D_FLAG_VERIFY(dentry, DCACHE_LRU_LIST);
453         dentry->d_flags |= DCACHE_SHRINK_LIST;
454         if (d_is_negative(dentry))
455                 this_cpu_dec(nr_dentry_negative);
456         list_lru_isolate_move(lru, &dentry->d_lru, list);
457 }
458
459 /**
460  * d_drop - drop a dentry
461  * @dentry: dentry to drop
462  *
463  * d_drop() unhashes the entry from the parent dentry hashes, so that it won't
464  * be found through a VFS lookup any more. Note that this is different from
465  * deleting the dentry - d_delete will try to mark the dentry negative if
466  * possible, giving a successful _negative_ lookup, while d_drop will
467  * just make the cache lookup fail.
468  *
469  * d_drop() is used mainly for stuff that wants to invalidate a dentry for some
470  * reason (NFS timeouts or autofs deletes).
471  *
472  * __d_drop requires dentry->d_lock
473  * ___d_drop doesn't mark dentry as "unhashed"
474  *   (dentry->d_hash.pprev will be LIST_POISON2, not NULL).
475  */
476 static void ___d_drop(struct dentry *dentry)
477 {
478         struct hlist_bl_head *b;
479         /*
480          * Hashed dentries are normally on the dentry hashtable,
481          * with the exception of those newly allocated by
482          * d_obtain_root, which are always IS_ROOT:
483          */
484         if (unlikely(IS_ROOT(dentry)))
485                 b = &dentry->d_sb->s_roots;
486         else
487                 b = d_hash(dentry->d_name.hash);
488
489         hlist_bl_lock(b);
490         __hlist_bl_del(&dentry->d_hash);
491         hlist_bl_unlock(b);
492 }
493
494 void __d_drop(struct dentry *dentry)
495 {
496         if (!d_unhashed(dentry)) {
497                 ___d_drop(dentry);
498                 dentry->d_hash.pprev = NULL;
499                 write_seqcount_invalidate(&dentry->d_seq);
500         }
501 }
502 EXPORT_SYMBOL(__d_drop);
503
504 void d_drop(struct dentry *dentry)
505 {
506         spin_lock(&dentry->d_lock);
507         __d_drop(dentry);
508         spin_unlock(&dentry->d_lock);
509 }
510 EXPORT_SYMBOL(d_drop);
511
512 static inline void dentry_unlist(struct dentry *dentry, struct dentry *parent)
513 {
514         struct dentry *next;
515         /*
516          * Inform d_walk() and shrink_dentry_list() that we are no longer
517          * attached to the dentry tree
518          */
519         dentry->d_flags |= DCACHE_DENTRY_KILLED;
520         if (unlikely(list_empty(&dentry->d_child)))
521                 return;
522         __list_del_entry(&dentry->d_child);
523         /*
524          * Cursors can move around the list of children.  While we'd been
525          * a normal list member, it didn't matter - ->d_child.next would've
526          * been updated.  However, from now on it won't be and for the
527          * things like d_walk() it might end up with a nasty surprise.
528          * Normally d_walk() doesn't care about cursors moving around -
529          * ->d_lock on parent prevents that and since a cursor has no children
530          * of its own, we get through it without ever unlocking the parent.
531          * There is one exception, though - if we ascend from a child that
532          * gets killed as soon as we unlock it, the next sibling is found
533          * using the value left in its ->d_child.next.  And if _that_
534          * pointed to a cursor, and cursor got moved (e.g. by lseek())
535          * before d_walk() regains parent->d_lock, we'll end up skipping
536          * everything the cursor had been moved past.
537          *
538          * Solution: make sure that the pointer left behind in ->d_child.next
539          * points to something that won't be moving around.  I.e. skip the
540          * cursors.
541          */
542         while (dentry->d_child.next != &parent->d_subdirs) {
543                 next = list_entry(dentry->d_child.next, struct dentry, d_child);
544                 if (likely(!(next->d_flags & DCACHE_DENTRY_CURSOR)))
545                         break;
546                 dentry->d_child.next = next->d_child.next;
547         }
548 }
549
550 static void __dentry_kill(struct dentry *dentry)
551 {
552         struct dentry *parent = NULL;
553         bool can_free = true;
554         if (!IS_ROOT(dentry))
555                 parent = dentry->d_parent;
556
557         /*
558          * The dentry is now unrecoverably dead to the world.
559          */
560         lockref_mark_dead(&dentry->d_lockref);
561
562         /*
563          * inform the fs via d_prune that this dentry is about to be
564          * unhashed and destroyed.
565          */
566         if (dentry->d_flags & DCACHE_OP_PRUNE)
567                 dentry->d_op->d_prune(dentry);
568
569         if (dentry->d_flags & DCACHE_LRU_LIST) {
570                 if (!(dentry->d_flags & DCACHE_SHRINK_LIST))
571                         d_lru_del(dentry);
572         }
573         /* if it was on the hash then remove it */
574         __d_drop(dentry);
575         dentry_unlist(dentry, parent);
576         if (parent)
577                 spin_unlock(&parent->d_lock);
578         if (dentry->d_inode)
579                 dentry_unlink_inode(dentry);
580         else
581                 spin_unlock(&dentry->d_lock);
582         this_cpu_dec(nr_dentry);
583         if (dentry->d_op && dentry->d_op->d_release)
584                 dentry->d_op->d_release(dentry);
585
586         spin_lock(&dentry->d_lock);
587         if (dentry->d_flags & DCACHE_SHRINK_LIST) {
588                 dentry->d_flags |= DCACHE_MAY_FREE;
589                 can_free = false;
590         }
591         spin_unlock(&dentry->d_lock);
592         if (likely(can_free))
593                 dentry_free(dentry);
594         cond_resched();
595 }
596
597 static struct dentry *__lock_parent(struct dentry *dentry)
598 {
599         struct dentry *parent;
600         rcu_read_lock();
601         spin_unlock(&dentry->d_lock);
602 again:
603         parent = READ_ONCE(dentry->d_parent);
604         spin_lock(&parent->d_lock);
605         /*
606          * We can't blindly lock dentry until we are sure
607          * that we won't violate the locking order.
608          * Any changes of dentry->d_parent must have
609          * been done with parent->d_lock held, so
610          * spin_lock() above is enough of a barrier
611          * for checking if it's still our child.
612          */
613         if (unlikely(parent != dentry->d_parent)) {
614                 spin_unlock(&parent->d_lock);
615                 goto again;
616         }
617         rcu_read_unlock();
618         if (parent != dentry)
619                 spin_lock_nested(&dentry->d_lock, DENTRY_D_LOCK_NESTED);
620         else
621                 parent = NULL;
622         return parent;
623 }
624
625 static inline struct dentry *lock_parent(struct dentry *dentry)
626 {
627         struct dentry *parent = dentry->d_parent;
628         if (IS_ROOT(dentry))
629                 return NULL;
630         if (likely(spin_trylock(&parent->d_lock)))
631                 return parent;
632         return __lock_parent(dentry);
633 }
634
635 static inline bool retain_dentry(struct dentry *dentry)
636 {
637         WARN_ON(d_in_lookup(dentry));
638
639         /* Unreachable? Get rid of it */
640         if (unlikely(d_unhashed(dentry)))
641                 return false;
642
643         if (unlikely(dentry->d_flags & DCACHE_DISCONNECTED))
644                 return false;
645
646         if (unlikely(dentry->d_flags & DCACHE_OP_DELETE)) {
647                 if (dentry->d_op->d_delete(dentry))
648                         return false;
649         }
650
651         if (unlikely(dentry->d_flags & DCACHE_DONTCACHE))
652                 return false;
653
654         /* retain; LRU fodder */
655         dentry->d_lockref.count--;
656         if (unlikely(!(dentry->d_flags & DCACHE_LRU_LIST)))
657                 d_lru_add(dentry);
658         else if (unlikely(!(dentry->d_flags & DCACHE_REFERENCED)))
659                 dentry->d_flags |= DCACHE_REFERENCED;
660         return true;
661 }
662
663 void d_mark_dontcache(struct inode *inode)
664 {
665         struct dentry *de;
666
667         spin_lock(&inode->i_lock);
668         hlist_for_each_entry(de, &inode->i_dentry, d_u.d_alias) {
669                 spin_lock(&de->d_lock);
670                 de->d_flags |= DCACHE_DONTCACHE;
671                 spin_unlock(&de->d_lock);
672         }
673         inode->i_state |= I_DONTCACHE;
674         spin_unlock(&inode->i_lock);
675 }
676 EXPORT_SYMBOL(d_mark_dontcache);
677
678 /*
679  * Finish off a dentry we've decided to kill.
680  * dentry->d_lock must be held, returns with it unlocked.
681  * Returns dentry requiring refcount drop, or NULL if we're done.
682  */
683 static struct dentry *dentry_kill(struct dentry *dentry)
684         __releases(dentry->d_lock)
685 {
686         struct inode *inode = dentry->d_inode;
687         struct dentry *parent = NULL;
688
689         if (inode && unlikely(!spin_trylock(&inode->i_lock)))
690                 goto slow_positive;
691
692         if (!IS_ROOT(dentry)) {
693                 parent = dentry->d_parent;
694                 if (unlikely(!spin_trylock(&parent->d_lock))) {
695                         parent = __lock_parent(dentry);
696                         if (likely(inode || !dentry->d_inode))
697                                 goto got_locks;
698                         /* negative that became positive */
699                         if (parent)
700                                 spin_unlock(&parent->d_lock);
701                         inode = dentry->d_inode;
702                         goto slow_positive;
703                 }
704         }
705         __dentry_kill(dentry);
706         return parent;
707
708 slow_positive:
709         spin_unlock(&dentry->d_lock);
710         spin_lock(&inode->i_lock);
711         spin_lock(&dentry->d_lock);
712         parent = lock_parent(dentry);
713 got_locks:
714         if (unlikely(dentry->d_lockref.count != 1)) {
715                 dentry->d_lockref.count--;
716         } else if (likely(!retain_dentry(dentry))) {
717                 __dentry_kill(dentry);
718                 return parent;
719         }
720         /* we are keeping it, after all */
721         if (inode)
722                 spin_unlock(&inode->i_lock);
723         if (parent)
724                 spin_unlock(&parent->d_lock);
725         spin_unlock(&dentry->d_lock);
726         return NULL;
727 }
728
729 /*
730  * Try to do a lockless dput(), and return whether that was successful.
731  *
732  * If unsuccessful, we return false, having already taken the dentry lock.
733  *
734  * The caller needs to hold the RCU read lock, so that the dentry is
735  * guaranteed to stay around even if the refcount goes down to zero!
736  */
737 static inline bool fast_dput(struct dentry *dentry)
738 {
739         int ret;
740         unsigned int d_flags;
741
742         /*
743          * If we have a d_op->d_delete() operation, we sould not
744          * let the dentry count go to zero, so use "put_or_lock".
745          */
746         if (unlikely(dentry->d_flags & DCACHE_OP_DELETE))
747                 return lockref_put_or_lock(&dentry->d_lockref);
748
749         /*
750          * .. otherwise, we can try to just decrement the
751          * lockref optimistically.
752          */
753         ret = lockref_put_return(&dentry->d_lockref);
754
755         /*
756          * If the lockref_put_return() failed due to the lock being held
757          * by somebody else, the fast path has failed. We will need to
758          * get the lock, and then check the count again.
759          */
760         if (unlikely(ret < 0)) {
761                 spin_lock(&dentry->d_lock);
762                 if (WARN_ON_ONCE(dentry->d_lockref.count <= 0)) {
763                         spin_unlock(&dentry->d_lock);
764                         return true;
765                 }
766                 dentry->d_lockref.count--;
767                 goto locked;
768         }
769
770         /*
771          * If we weren't the last ref, we're done.
772          */
773         if (ret)
774                 return true;
775
776         /*
777          * Careful, careful. The reference count went down
778          * to zero, but we don't hold the dentry lock, so
779          * somebody else could get it again, and do another
780          * dput(), and we need to not race with that.
781          *
782          * However, there is a very special and common case
783          * where we don't care, because there is nothing to
784          * do: the dentry is still hashed, it does not have
785          * a 'delete' op, and it's referenced and already on
786          * the LRU list.
787          *
788          * NOTE! Since we aren't locked, these values are
789          * not "stable". However, it is sufficient that at
790          * some point after we dropped the reference the
791          * dentry was hashed and the flags had the proper
792          * value. Other dentry users may have re-gotten
793          * a reference to the dentry and change that, but
794          * our work is done - we can leave the dentry
795          * around with a zero refcount.
796          */
797         smp_rmb();
798         d_flags = READ_ONCE(dentry->d_flags);
799         d_flags &= DCACHE_REFERENCED | DCACHE_LRU_LIST | DCACHE_DISCONNECTED;
800
801         /* Nothing to do? Dropping the reference was all we needed? */
802         if (d_flags == (DCACHE_REFERENCED | DCACHE_LRU_LIST) && !d_unhashed(dentry))
803                 return true;
804
805         /*
806          * Not the fast normal case? Get the lock. We've already decremented
807          * the refcount, but we'll need to re-check the situation after
808          * getting the lock.
809          */
810         spin_lock(&dentry->d_lock);
811
812         /*
813          * Did somebody else grab a reference to it in the meantime, and
814          * we're no longer the last user after all? Alternatively, somebody
815          * else could have killed it and marked it dead. Either way, we
816          * don't need to do anything else.
817          */
818 locked:
819         if (dentry->d_lockref.count) {
820                 spin_unlock(&dentry->d_lock);
821                 return true;
822         }
823
824         /*
825          * Re-get the reference we optimistically dropped. We hold the
826          * lock, and we just tested that it was zero, so we can just
827          * set it to 1.
828          */
829         dentry->d_lockref.count = 1;
830         return false;
831 }
832
833
834 /* 
835  * This is dput
836  *
837  * This is complicated by the fact that we do not want to put
838  * dentries that are no longer on any hash chain on the unused
839  * list: we'd much rather just get rid of them immediately.
840  *
841  * However, that implies that we have to traverse the dentry
842  * tree upwards to the parents which might _also_ now be
843  * scheduled for deletion (it may have been only waiting for
844  * its last child to go away).
845  *
846  * This tail recursion is done by hand as we don't want to depend
847  * on the compiler to always get this right (gcc generally doesn't).
848  * Real recursion would eat up our stack space.
849  */
850
851 /*
852  * dput - release a dentry
853  * @dentry: dentry to release 
854  *
855  * Release a dentry. This will drop the usage count and if appropriate
856  * call the dentry unlink method as well as removing it from the queues and
857  * releasing its resources. If the parent dentries were scheduled for release
858  * they too may now get deleted.
859  */
860 void dput(struct dentry *dentry)
861 {
862         while (dentry) {
863                 might_sleep();
864
865                 rcu_read_lock();
866                 if (likely(fast_dput(dentry))) {
867                         rcu_read_unlock();
868                         return;
869                 }
870
871                 /* Slow case: now with the dentry lock held */
872                 rcu_read_unlock();
873
874                 if (likely(retain_dentry(dentry))) {
875                         spin_unlock(&dentry->d_lock);
876                         return;
877                 }
878
879                 dentry = dentry_kill(dentry);
880         }
881 }
882 EXPORT_SYMBOL(dput);
883
884 static void __dput_to_list(struct dentry *dentry, struct list_head *list)
885 __must_hold(&dentry->d_lock)
886 {
887         if (dentry->d_flags & DCACHE_SHRINK_LIST) {
888                 /* let the owner of the list it's on deal with it */
889                 --dentry->d_lockref.count;
890         } else {
891                 if (dentry->d_flags & DCACHE_LRU_LIST)
892                         d_lru_del(dentry);
893                 if (!--dentry->d_lockref.count)
894                         d_shrink_add(dentry, list);
895         }
896 }
897
898 void dput_to_list(struct dentry *dentry, struct list_head *list)
899 {
900         rcu_read_lock();
901         if (likely(fast_dput(dentry))) {
902                 rcu_read_unlock();
903                 return;
904         }
905         rcu_read_unlock();
906         if (!retain_dentry(dentry))
907                 __dput_to_list(dentry, list);
908         spin_unlock(&dentry->d_lock);
909 }
910
911 /* This must be called with d_lock held */
912 static inline void __dget_dlock(struct dentry *dentry)
913 {
914         dentry->d_lockref.count++;
915 }
916
917 static inline void __dget(struct dentry *dentry)
918 {
919         lockref_get(&dentry->d_lockref);
920 }
921
922 struct dentry *dget_parent(struct dentry *dentry)
923 {
924         int gotref;
925         struct dentry *ret;
926         unsigned seq;
927
928         /*
929          * Do optimistic parent lookup without any
930          * locking.
931          */
932         rcu_read_lock();
933         seq = raw_seqcount_begin(&dentry->d_seq);
934         ret = READ_ONCE(dentry->d_parent);
935         gotref = lockref_get_not_zero(&ret->d_lockref);
936         rcu_read_unlock();
937         if (likely(gotref)) {
938                 if (!read_seqcount_retry(&dentry->d_seq, seq))
939                         return ret;
940                 dput(ret);
941         }
942
943 repeat:
944         /*
945          * Don't need rcu_dereference because we re-check it was correct under
946          * the lock.
947          */
948         rcu_read_lock();
949         ret = dentry->d_parent;
950         spin_lock(&ret->d_lock);
951         if (unlikely(ret != dentry->d_parent)) {
952                 spin_unlock(&ret->d_lock);
953                 rcu_read_unlock();
954                 goto repeat;
955         }
956         rcu_read_unlock();
957         BUG_ON(!ret->d_lockref.count);
958         ret->d_lockref.count++;
959         spin_unlock(&ret->d_lock);
960         return ret;
961 }
962 EXPORT_SYMBOL(dget_parent);
963
964 static struct dentry * __d_find_any_alias(struct inode *inode)
965 {
966         struct dentry *alias;
967
968         if (hlist_empty(&inode->i_dentry))
969                 return NULL;
970         alias = hlist_entry(inode->i_dentry.first, struct dentry, d_u.d_alias);
971         __dget(alias);
972         return alias;
973 }
974
975 /**
976  * d_find_any_alias - find any alias for a given inode
977  * @inode: inode to find an alias for
978  *
979  * If any aliases exist for the given inode, take and return a
980  * reference for one of them.  If no aliases exist, return %NULL.
981  */
982 struct dentry *d_find_any_alias(struct inode *inode)
983 {
984         struct dentry *de;
985
986         spin_lock(&inode->i_lock);
987         de = __d_find_any_alias(inode);
988         spin_unlock(&inode->i_lock);
989         return de;
990 }
991 EXPORT_SYMBOL(d_find_any_alias);
992
993 /**
994  * d_find_alias - grab a hashed alias of inode
995  * @inode: inode in question
996  *
997  * If inode has a hashed alias, or is a directory and has any alias,
998  * acquire the reference to alias and return it. Otherwise return NULL.
999  * Notice that if inode is a directory there can be only one alias and
1000  * it can be unhashed only if it has no children, or if it is the root
1001  * of a filesystem, or if the directory was renamed and d_revalidate
1002  * was the first vfs operation to notice.
1003  *
1004  * If the inode has an IS_ROOT, DCACHE_DISCONNECTED alias, then prefer
1005  * any other hashed alias over that one.
1006  */
1007 static struct dentry *__d_find_alias(struct inode *inode)
1008 {
1009         struct dentry *alias;
1010
1011         if (S_ISDIR(inode->i_mode))
1012                 return __d_find_any_alias(inode);
1013
1014         hlist_for_each_entry(alias, &inode->i_dentry, d_u.d_alias) {
1015                 spin_lock(&alias->d_lock);
1016                 if (!d_unhashed(alias)) {
1017                         __dget_dlock(alias);
1018                         spin_unlock(&alias->d_lock);
1019                         return alias;
1020                 }
1021                 spin_unlock(&alias->d_lock);
1022         }
1023         return NULL;
1024 }
1025
1026 struct dentry *d_find_alias(struct inode *inode)
1027 {
1028         struct dentry *de = NULL;
1029
1030         if (!hlist_empty(&inode->i_dentry)) {
1031                 spin_lock(&inode->i_lock);
1032                 de = __d_find_alias(inode);
1033                 spin_unlock(&inode->i_lock);
1034         }
1035         return de;
1036 }
1037 EXPORT_SYMBOL(d_find_alias);
1038
1039 /*
1040  *      Try to kill dentries associated with this inode.
1041  * WARNING: you must own a reference to inode.
1042  */
1043 void d_prune_aliases(struct inode *inode)
1044 {
1045         struct dentry *dentry;
1046 restart:
1047         spin_lock(&inode->i_lock);
1048         hlist_for_each_entry(dentry, &inode->i_dentry, d_u.d_alias) {
1049                 spin_lock(&dentry->d_lock);
1050                 if (!dentry->d_lockref.count) {
1051                         struct dentry *parent = lock_parent(dentry);
1052                         if (likely(!dentry->d_lockref.count)) {
1053                                 __dentry_kill(dentry);
1054                                 dput(parent);
1055                                 goto restart;
1056                         }
1057                         if (parent)
1058                                 spin_unlock(&parent->d_lock);
1059                 }
1060                 spin_unlock(&dentry->d_lock);
1061         }
1062         spin_unlock(&inode->i_lock);
1063 }
1064 EXPORT_SYMBOL(d_prune_aliases);
1065
1066 /*
1067  * Lock a dentry from shrink list.
1068  * Called under rcu_read_lock() and dentry->d_lock; the former
1069  * guarantees that nothing we access will be freed under us.
1070  * Note that dentry is *not* protected from concurrent dentry_kill(),
1071  * d_delete(), etc.
1072  *
1073  * Return false if dentry has been disrupted or grabbed, leaving
1074  * the caller to kick it off-list.  Otherwise, return true and have
1075  * that dentry's inode and parent both locked.
1076  */
1077 static bool shrink_lock_dentry(struct dentry *dentry)
1078 {
1079         struct inode *inode;
1080         struct dentry *parent;
1081
1082         if (dentry->d_lockref.count)
1083                 return false;
1084
1085         inode = dentry->d_inode;
1086         if (inode && unlikely(!spin_trylock(&inode->i_lock))) {
1087                 spin_unlock(&dentry->d_lock);
1088                 spin_lock(&inode->i_lock);
1089                 spin_lock(&dentry->d_lock);
1090                 if (unlikely(dentry->d_lockref.count))
1091                         goto out;
1092                 /* changed inode means that somebody had grabbed it */
1093                 if (unlikely(inode != dentry->d_inode))
1094                         goto out;
1095         }
1096
1097         parent = dentry->d_parent;
1098         if (IS_ROOT(dentry) || likely(spin_trylock(&parent->d_lock)))
1099                 return true;
1100
1101         spin_unlock(&dentry->d_lock);
1102         spin_lock(&parent->d_lock);
1103         if (unlikely(parent != dentry->d_parent)) {
1104                 spin_unlock(&parent->d_lock);
1105                 spin_lock(&dentry->d_lock);
1106                 goto out;
1107         }
1108         spin_lock_nested(&dentry->d_lock, DENTRY_D_LOCK_NESTED);
1109         if (likely(!dentry->d_lockref.count))
1110                 return true;
1111         spin_unlock(&parent->d_lock);
1112 out:
1113         if (inode)
1114                 spin_unlock(&inode->i_lock);
1115         return false;
1116 }
1117
1118 void shrink_dentry_list(struct list_head *list)
1119 {
1120         while (!list_empty(list)) {
1121                 struct dentry *dentry, *parent;
1122
1123                 dentry = list_entry(list->prev, struct dentry, d_lru);
1124                 spin_lock(&dentry->d_lock);
1125                 rcu_read_lock();
1126                 if (!shrink_lock_dentry(dentry)) {
1127                         bool can_free = false;
1128                         rcu_read_unlock();
1129                         d_shrink_del(dentry);
1130                         if (dentry->d_lockref.count < 0)
1131                                 can_free = dentry->d_flags & DCACHE_MAY_FREE;
1132                         spin_unlock(&dentry->d_lock);
1133                         if (can_free)
1134                                 dentry_free(dentry);
1135                         continue;
1136                 }
1137                 rcu_read_unlock();
1138                 d_shrink_del(dentry);
1139                 parent = dentry->d_parent;
1140                 if (parent != dentry)
1141                         __dput_to_list(parent, list);
1142                 __dentry_kill(dentry);
1143         }
1144 }
1145
1146 static enum lru_status dentry_lru_isolate(struct list_head *item,
1147                 struct list_lru_one *lru, spinlock_t *lru_lock, void *arg)
1148 {
1149         struct list_head *freeable = arg;
1150         struct dentry   *dentry = container_of(item, struct dentry, d_lru);
1151
1152
1153         /*
1154          * we are inverting the lru lock/dentry->d_lock here,
1155          * so use a trylock. If we fail to get the lock, just skip
1156          * it
1157          */
1158         if (!spin_trylock(&dentry->d_lock))
1159                 return LRU_SKIP;
1160
1161         /*
1162          * Referenced dentries are still in use. If they have active
1163          * counts, just remove them from the LRU. Otherwise give them
1164          * another pass through the LRU.
1165          */
1166         if (dentry->d_lockref.count) {
1167                 d_lru_isolate(lru, dentry);
1168                 spin_unlock(&dentry->d_lock);
1169                 return LRU_REMOVED;
1170         }
1171
1172         if (dentry->d_flags & DCACHE_REFERENCED) {
1173                 dentry->d_flags &= ~DCACHE_REFERENCED;
1174                 spin_unlock(&dentry->d_lock);
1175
1176                 /*
1177                  * The list move itself will be made by the common LRU code. At
1178                  * this point, we've dropped the dentry->d_lock but keep the
1179                  * lru lock. This is safe to do, since every list movement is
1180                  * protected by the lru lock even if both locks are held.
1181                  *
1182                  * This is guaranteed by the fact that all LRU management
1183                  * functions are intermediated by the LRU API calls like
1184                  * list_lru_add and list_lru_del. List movement in this file
1185                  * only ever occur through this functions or through callbacks
1186                  * like this one, that are called from the LRU API.
1187                  *
1188                  * The only exceptions to this are functions like
1189                  * shrink_dentry_list, and code that first checks for the
1190                  * DCACHE_SHRINK_LIST flag.  Those are guaranteed to be
1191                  * operating only with stack provided lists after they are
1192                  * properly isolated from the main list.  It is thus, always a
1193                  * local access.
1194                  */
1195                 return LRU_ROTATE;
1196         }
1197
1198         d_lru_shrink_move(lru, dentry, freeable);
1199         spin_unlock(&dentry->d_lock);
1200
1201         return LRU_REMOVED;
1202 }
1203
1204 /**
1205  * prune_dcache_sb - shrink the dcache
1206  * @sb: superblock
1207  * @sc: shrink control, passed to list_lru_shrink_walk()
1208  *
1209  * Attempt to shrink the superblock dcache LRU by @sc->nr_to_scan entries. This
1210  * is done when we need more memory and called from the superblock shrinker
1211  * function.
1212  *
1213  * This function may fail to free any resources if all the dentries are in
1214  * use.
1215  */
1216 long prune_dcache_sb(struct super_block *sb, struct shrink_control *sc)
1217 {
1218         LIST_HEAD(dispose);
1219         long freed;
1220
1221         freed = list_lru_shrink_walk(&sb->s_dentry_lru, sc,
1222                                      dentry_lru_isolate, &dispose);
1223         shrink_dentry_list(&dispose);
1224         return freed;
1225 }
1226
1227 static enum lru_status dentry_lru_isolate_shrink(struct list_head *item,
1228                 struct list_lru_one *lru, spinlock_t *lru_lock, void *arg)
1229 {
1230         struct list_head *freeable = arg;
1231         struct dentry   *dentry = container_of(item, struct dentry, d_lru);
1232
1233         /*
1234          * we are inverting the lru lock/dentry->d_lock here,
1235          * so use a trylock. If we fail to get the lock, just skip
1236          * it
1237          */
1238         if (!spin_trylock(&dentry->d_lock))
1239                 return LRU_SKIP;
1240
1241         d_lru_shrink_move(lru, dentry, freeable);
1242         spin_unlock(&dentry->d_lock);
1243
1244         return LRU_REMOVED;
1245 }
1246
1247
1248 /**
1249  * shrink_dcache_sb - shrink dcache for a superblock
1250  * @sb: superblock
1251  *
1252  * Shrink the dcache for the specified super block. This is used to free
1253  * the dcache before unmounting a file system.
1254  */
1255 void shrink_dcache_sb(struct super_block *sb)
1256 {
1257         do {
1258                 LIST_HEAD(dispose);
1259
1260                 list_lru_walk(&sb->s_dentry_lru,
1261                         dentry_lru_isolate_shrink, &dispose, 1024);
1262                 shrink_dentry_list(&dispose);
1263         } while (list_lru_count(&sb->s_dentry_lru) > 0);
1264 }
1265 EXPORT_SYMBOL(shrink_dcache_sb);
1266
1267 /**
1268  * enum d_walk_ret - action to talke during tree walk
1269  * @D_WALK_CONTINUE:    contrinue walk
1270  * @D_WALK_QUIT:        quit walk
1271  * @D_WALK_NORETRY:     quit when retry is needed
1272  * @D_WALK_SKIP:        skip this dentry and its children
1273  */
1274 enum d_walk_ret {
1275         D_WALK_CONTINUE,
1276         D_WALK_QUIT,
1277         D_WALK_NORETRY,
1278         D_WALK_SKIP,
1279 };
1280
1281 /**
1282  * d_walk - walk the dentry tree
1283  * @parent:     start of walk
1284  * @data:       data passed to @enter() and @finish()
1285  * @enter:      callback when first entering the dentry
1286  *
1287  * The @enter() callbacks are called with d_lock held.
1288  */
1289 static void d_walk(struct dentry *parent, void *data,
1290                    enum d_walk_ret (*enter)(void *, struct dentry *))
1291 {
1292         struct dentry *this_parent;
1293         struct list_head *next;
1294         unsigned seq = 0;
1295         enum d_walk_ret ret;
1296         bool retry = true;
1297
1298 again:
1299         read_seqbegin_or_lock(&rename_lock, &seq);
1300         this_parent = parent;
1301         spin_lock(&this_parent->d_lock);
1302
1303         ret = enter(data, this_parent);
1304         switch (ret) {
1305         case D_WALK_CONTINUE:
1306                 break;
1307         case D_WALK_QUIT:
1308         case D_WALK_SKIP:
1309                 goto out_unlock;
1310         case D_WALK_NORETRY:
1311                 retry = false;
1312                 break;
1313         }
1314 repeat:
1315         next = this_parent->d_subdirs.next;
1316 resume:
1317         while (next != &this_parent->d_subdirs) {
1318                 struct list_head *tmp = next;
1319                 struct dentry *dentry = list_entry(tmp, struct dentry, d_child);
1320                 next = tmp->next;
1321
1322                 if (unlikely(dentry->d_flags & DCACHE_DENTRY_CURSOR))
1323                         continue;
1324
1325                 spin_lock_nested(&dentry->d_lock, DENTRY_D_LOCK_NESTED);
1326
1327                 ret = enter(data, dentry);
1328                 switch (ret) {
1329                 case D_WALK_CONTINUE:
1330                         break;
1331                 case D_WALK_QUIT:
1332                         spin_unlock(&dentry->d_lock);
1333                         goto out_unlock;
1334                 case D_WALK_NORETRY:
1335                         retry = false;
1336                         break;
1337                 case D_WALK_SKIP:
1338                         spin_unlock(&dentry->d_lock);
1339                         continue;
1340                 }
1341
1342                 if (!list_empty(&dentry->d_subdirs)) {
1343                         spin_unlock(&this_parent->d_lock);
1344                         spin_release(&dentry->d_lock.dep_map, _RET_IP_);
1345                         this_parent = dentry;
1346                         spin_acquire(&this_parent->d_lock.dep_map, 0, 1, _RET_IP_);
1347                         goto repeat;
1348                 }
1349                 spin_unlock(&dentry->d_lock);
1350         }
1351         /*
1352          * All done at this level ... ascend and resume the search.
1353          */
1354         rcu_read_lock();
1355 ascend:
1356         if (this_parent != parent) {
1357                 struct dentry *child = this_parent;
1358                 this_parent = child->d_parent;
1359
1360                 spin_unlock(&child->d_lock);
1361                 spin_lock(&this_parent->d_lock);
1362
1363                 /* might go back up the wrong parent if we have had a rename. */
1364                 if (need_seqretry(&rename_lock, seq))
1365                         goto rename_retry;
1366                 /* go into the first sibling still alive */
1367                 do {
1368                         next = child->d_child.next;
1369                         if (next == &this_parent->d_subdirs)
1370                                 goto ascend;
1371                         child = list_entry(next, struct dentry, d_child);
1372                 } while (unlikely(child->d_flags & DCACHE_DENTRY_KILLED));
1373                 rcu_read_unlock();
1374                 goto resume;
1375         }
1376         if (need_seqretry(&rename_lock, seq))
1377                 goto rename_retry;
1378         rcu_read_unlock();
1379
1380 out_unlock:
1381         spin_unlock(&this_parent->d_lock);
1382         done_seqretry(&rename_lock, seq);
1383         return;
1384
1385 rename_retry:
1386         spin_unlock(&this_parent->d_lock);
1387         rcu_read_unlock();
1388         BUG_ON(seq & 1);
1389         if (!retry)
1390                 return;
1391         seq = 1;
1392         goto again;
1393 }
1394
1395 struct check_mount {
1396         struct vfsmount *mnt;
1397         unsigned int mounted;
1398 };
1399
1400 static enum d_walk_ret path_check_mount(void *data, struct dentry *dentry)
1401 {
1402         struct check_mount *info = data;
1403         struct path path = { .mnt = info->mnt, .dentry = dentry };
1404
1405         if (likely(!d_mountpoint(dentry)))
1406                 return D_WALK_CONTINUE;
1407         if (__path_is_mountpoint(&path)) {
1408                 info->mounted = 1;
1409                 return D_WALK_QUIT;
1410         }
1411         return D_WALK_CONTINUE;
1412 }
1413
1414 /**
1415  * path_has_submounts - check for mounts over a dentry in the
1416  *                      current namespace.
1417  * @parent: path to check.
1418  *
1419  * Return true if the parent or its subdirectories contain
1420  * a mount point in the current namespace.
1421  */
1422 int path_has_submounts(const struct path *parent)
1423 {
1424         struct check_mount data = { .mnt = parent->mnt, .mounted = 0 };
1425
1426         read_seqlock_excl(&mount_lock);
1427         d_walk(parent->dentry, &data, path_check_mount);
1428         read_sequnlock_excl(&mount_lock);
1429
1430         return data.mounted;
1431 }
1432 EXPORT_SYMBOL(path_has_submounts);
1433
1434 /*
1435  * Called by mount code to set a mountpoint and check if the mountpoint is
1436  * reachable (e.g. NFS can unhash a directory dentry and then the complete
1437  * subtree can become unreachable).
1438  *
1439  * Only one of d_invalidate() and d_set_mounted() must succeed.  For
1440  * this reason take rename_lock and d_lock on dentry and ancestors.
1441  */
1442 int d_set_mounted(struct dentry *dentry)
1443 {
1444         struct dentry *p;
1445         int ret = -ENOENT;
1446         write_seqlock(&rename_lock);
1447         for (p = dentry->d_parent; !IS_ROOT(p); p = p->d_parent) {
1448                 /* Need exclusion wrt. d_invalidate() */
1449                 spin_lock(&p->d_lock);
1450                 if (unlikely(d_unhashed(p))) {
1451                         spin_unlock(&p->d_lock);
1452                         goto out;
1453                 }
1454                 spin_unlock(&p->d_lock);
1455         }
1456         spin_lock(&dentry->d_lock);
1457         if (!d_unlinked(dentry)) {
1458                 ret = -EBUSY;
1459                 if (!d_mountpoint(dentry)) {
1460                         dentry->d_flags |= DCACHE_MOUNTED;
1461                         ret = 0;
1462                 }
1463         }
1464         spin_unlock(&dentry->d_lock);
1465 out:
1466         write_sequnlock(&rename_lock);
1467         return ret;
1468 }
1469
1470 /*
1471  * Search the dentry child list of the specified parent,
1472  * and move any unused dentries to the end of the unused
1473  * list for prune_dcache(). We descend to the next level
1474  * whenever the d_subdirs list is non-empty and continue
1475  * searching.
1476  *
1477  * It returns zero iff there are no unused children,
1478  * otherwise  it returns the number of children moved to
1479  * the end of the unused list. This may not be the total
1480  * number of unused children, because select_parent can
1481  * drop the lock and return early due to latency
1482  * constraints.
1483  */
1484
1485 struct select_data {
1486         struct dentry *start;
1487         union {
1488                 long found;
1489                 struct dentry *victim;
1490         };
1491         struct list_head dispose;
1492 };
1493
1494 static enum d_walk_ret select_collect(void *_data, struct dentry *dentry)
1495 {
1496         struct select_data *data = _data;
1497         enum d_walk_ret ret = D_WALK_CONTINUE;
1498
1499         if (data->start == dentry)
1500                 goto out;
1501
1502         if (dentry->d_flags & DCACHE_SHRINK_LIST) {
1503                 data->found++;
1504         } else {
1505                 if (dentry->d_flags & DCACHE_LRU_LIST)
1506                         d_lru_del(dentry);
1507                 if (!dentry->d_lockref.count) {
1508                         d_shrink_add(dentry, &data->dispose);
1509                         data->found++;
1510                 }
1511         }
1512         /*
1513          * We can return to the caller if we have found some (this
1514          * ensures forward progress). We'll be coming back to find
1515          * the rest.
1516          */
1517         if (!list_empty(&data->dispose))
1518                 ret = need_resched() ? D_WALK_QUIT : D_WALK_NORETRY;
1519 out:
1520         return ret;
1521 }
1522
1523 static enum d_walk_ret select_collect2(void *_data, struct dentry *dentry)
1524 {
1525         struct select_data *data = _data;
1526         enum d_walk_ret ret = D_WALK_CONTINUE;
1527
1528         if (data->start == dentry)
1529                 goto out;
1530
1531         if (dentry->d_flags & DCACHE_SHRINK_LIST) {
1532                 if (!dentry->d_lockref.count) {
1533                         rcu_read_lock();
1534                         data->victim = dentry;
1535                         return D_WALK_QUIT;
1536                 }
1537         } else {
1538                 if (dentry->d_flags & DCACHE_LRU_LIST)
1539                         d_lru_del(dentry);
1540                 if (!dentry->d_lockref.count)
1541                         d_shrink_add(dentry, &data->dispose);
1542         }
1543         /*
1544          * We can return to the caller if we have found some (this
1545          * ensures forward progress). We'll be coming back to find
1546          * the rest.
1547          */
1548         if (!list_empty(&data->dispose))
1549                 ret = need_resched() ? D_WALK_QUIT : D_WALK_NORETRY;
1550 out:
1551         return ret;
1552 }
1553
1554 /**
1555  * shrink_dcache_parent - prune dcache
1556  * @parent: parent of entries to prune
1557  *
1558  * Prune the dcache to remove unused children of the parent dentry.
1559  */
1560 void shrink_dcache_parent(struct dentry *parent)
1561 {
1562         for (;;) {
1563                 struct select_data data = {.start = parent};
1564
1565                 INIT_LIST_HEAD(&data.dispose);
1566                 d_walk(parent, &data, select_collect);
1567
1568                 if (!list_empty(&data.dispose)) {
1569                         shrink_dentry_list(&data.dispose);
1570                         continue;
1571                 }
1572
1573                 cond_resched();
1574                 if (!data.found)
1575                         break;
1576                 data.victim = NULL;
1577                 d_walk(parent, &data, select_collect2);
1578                 if (data.victim) {
1579                         struct dentry *parent;
1580                         spin_lock(&data.victim->d_lock);
1581                         if (!shrink_lock_dentry(data.victim)) {
1582                                 spin_unlock(&data.victim->d_lock);
1583                                 rcu_read_unlock();
1584                         } else {
1585                                 rcu_read_unlock();
1586                                 parent = data.victim->d_parent;
1587                                 if (parent != data.victim)
1588                                         __dput_to_list(parent, &data.dispose);
1589                                 __dentry_kill(data.victim);
1590                         }
1591                 }
1592                 if (!list_empty(&data.dispose))
1593                         shrink_dentry_list(&data.dispose);
1594         }
1595 }
1596 EXPORT_SYMBOL(shrink_dcache_parent);
1597
1598 static enum d_walk_ret umount_check(void *_data, struct dentry *dentry)
1599 {
1600         /* it has busy descendents; complain about those instead */
1601         if (!list_empty(&dentry->d_subdirs))
1602                 return D_WALK_CONTINUE;
1603
1604         /* root with refcount 1 is fine */
1605         if (dentry == _data && dentry->d_lockref.count == 1)
1606                 return D_WALK_CONTINUE;
1607
1608         printk(KERN_ERR "BUG: Dentry %p{i=%lx,n=%pd} "
1609                         " still in use (%d) [unmount of %s %s]\n",
1610                        dentry,
1611                        dentry->d_inode ?
1612                        dentry->d_inode->i_ino : 0UL,
1613                        dentry,
1614                        dentry->d_lockref.count,
1615                        dentry->d_sb->s_type->name,
1616                        dentry->d_sb->s_id);
1617         WARN_ON(1);
1618         return D_WALK_CONTINUE;
1619 }
1620
1621 static void do_one_tree(struct dentry *dentry)
1622 {
1623         shrink_dcache_parent(dentry);
1624         d_walk(dentry, dentry, umount_check);
1625         d_drop(dentry);
1626         dput(dentry);
1627 }
1628
1629 /*
1630  * destroy the dentries attached to a superblock on unmounting
1631  */
1632 void shrink_dcache_for_umount(struct super_block *sb)
1633 {
1634         struct dentry *dentry;
1635
1636         WARN(down_read_trylock(&sb->s_umount), "s_umount should've been locked");
1637
1638         dentry = sb->s_root;
1639         sb->s_root = NULL;
1640         do_one_tree(dentry);
1641
1642         while (!hlist_bl_empty(&sb->s_roots)) {
1643                 dentry = dget(hlist_bl_entry(hlist_bl_first(&sb->s_roots), struct dentry, d_hash));
1644                 do_one_tree(dentry);
1645         }
1646 }
1647
1648 static enum d_walk_ret find_submount(void *_data, struct dentry *dentry)
1649 {
1650         struct dentry **victim = _data;
1651         if (d_mountpoint(dentry)) {
1652                 __dget_dlock(dentry);
1653                 *victim = dentry;
1654                 return D_WALK_QUIT;
1655         }
1656         return D_WALK_CONTINUE;
1657 }
1658
1659 /**
1660  * d_invalidate - detach submounts, prune dcache, and drop
1661  * @dentry: dentry to invalidate (aka detach, prune and drop)
1662  */
1663 void d_invalidate(struct dentry *dentry)
1664 {
1665         bool had_submounts = false;
1666         spin_lock(&dentry->d_lock);
1667         if (d_unhashed(dentry)) {
1668                 spin_unlock(&dentry->d_lock);
1669                 return;
1670         }
1671         __d_drop(dentry);
1672         spin_unlock(&dentry->d_lock);
1673
1674         /* Negative dentries can be dropped without further checks */
1675         if (!dentry->d_inode)
1676                 return;
1677
1678         shrink_dcache_parent(dentry);
1679         for (;;) {
1680                 struct dentry *victim = NULL;
1681                 d_walk(dentry, &victim, find_submount);
1682                 if (!victim) {
1683                         if (had_submounts)
1684                                 shrink_dcache_parent(dentry);
1685                         return;
1686                 }
1687                 had_submounts = true;
1688                 detach_mounts(victim);
1689                 dput(victim);
1690         }
1691 }
1692 EXPORT_SYMBOL(d_invalidate);
1693
1694 /**
1695  * __d_alloc    -       allocate a dcache entry
1696  * @sb: filesystem it will belong to
1697  * @name: qstr of the name
1698  *
1699  * Allocates a dentry. It returns %NULL if there is insufficient memory
1700  * available. On a success the dentry is returned. The name passed in is
1701  * copied and the copy passed in may be reused after this call.
1702  */
1703  
1704 static struct dentry *__d_alloc(struct super_block *sb, const struct qstr *name)
1705 {
1706         struct dentry *dentry;
1707         char *dname;
1708         int err;
1709
1710         dentry = kmem_cache_alloc(dentry_cache, GFP_KERNEL);
1711         if (!dentry)
1712                 return NULL;
1713
1714         /*
1715          * We guarantee that the inline name is always NUL-terminated.
1716          * This way the memcpy() done by the name switching in rename
1717          * will still always have a NUL at the end, even if we might
1718          * be overwriting an internal NUL character
1719          */
1720         dentry->d_iname[DNAME_INLINE_LEN-1] = 0;
1721         if (unlikely(!name)) {
1722                 name = &slash_name;
1723                 dname = dentry->d_iname;
1724         } else if (name->len > DNAME_INLINE_LEN-1) {
1725                 size_t size = offsetof(struct external_name, name[1]);
1726                 struct external_name *p = kmalloc(size + name->len,
1727                                                   GFP_KERNEL_ACCOUNT |
1728                                                   __GFP_RECLAIMABLE);
1729                 if (!p) {
1730                         kmem_cache_free(dentry_cache, dentry); 
1731                         return NULL;
1732                 }
1733                 atomic_set(&p->u.count, 1);
1734                 dname = p->name;
1735         } else  {
1736                 dname = dentry->d_iname;
1737         }       
1738
1739         dentry->d_name.len = name->len;
1740         dentry->d_name.hash = name->hash;
1741         memcpy(dname, name->name, name->len);
1742         dname[name->len] = 0;
1743
1744         /* Make sure we always see the terminating NUL character */
1745         smp_store_release(&dentry->d_name.name, dname); /* ^^^ */
1746
1747         dentry->d_lockref.count = 1;
1748         dentry->d_flags = 0;
1749         spin_lock_init(&dentry->d_lock);
1750         seqcount_spinlock_init(&dentry->d_seq, &dentry->d_lock);
1751         dentry->d_inode = NULL;
1752         dentry->d_parent = dentry;
1753         dentry->d_sb = sb;
1754         dentry->d_op = NULL;
1755         dentry->d_fsdata = NULL;
1756         INIT_HLIST_BL_NODE(&dentry->d_hash);
1757         INIT_LIST_HEAD(&dentry->d_lru);
1758         INIT_LIST_HEAD(&dentry->d_subdirs);
1759         INIT_HLIST_NODE(&dentry->d_u.d_alias);
1760         INIT_LIST_HEAD(&dentry->d_child);
1761         d_set_d_op(dentry, dentry->d_sb->s_d_op);
1762
1763         if (dentry->d_op && dentry->d_op->d_init) {
1764                 err = dentry->d_op->d_init(dentry);
1765                 if (err) {
1766                         if (dname_external(dentry))
1767                                 kfree(external_name(dentry));
1768                         kmem_cache_free(dentry_cache, dentry);
1769                         return NULL;
1770                 }
1771         }
1772
1773         this_cpu_inc(nr_dentry);
1774
1775         return dentry;
1776 }
1777
1778 /**
1779  * d_alloc      -       allocate a dcache entry
1780  * @parent: parent of entry to allocate
1781  * @name: qstr of the name
1782  *
1783  * Allocates a dentry. It returns %NULL if there is insufficient memory
1784  * available. On a success the dentry is returned. The name passed in is
1785  * copied and the copy passed in may be reused after this call.
1786  */
1787 struct dentry *d_alloc(struct dentry * parent, const struct qstr *name)
1788 {
1789         struct dentry *dentry = __d_alloc(parent->d_sb, name);
1790         if (!dentry)
1791                 return NULL;
1792         spin_lock(&parent->d_lock);
1793         /*
1794          * don't need child lock because it is not subject
1795          * to concurrency here
1796          */
1797         __dget_dlock(parent);
1798         dentry->d_parent = parent;
1799         list_add(&dentry->d_child, &parent->d_subdirs);
1800         spin_unlock(&parent->d_lock);
1801
1802         return dentry;
1803 }
1804 EXPORT_SYMBOL(d_alloc);
1805
1806 struct dentry *d_alloc_anon(struct super_block *sb)
1807 {
1808         return __d_alloc(sb, NULL);
1809 }
1810 EXPORT_SYMBOL(d_alloc_anon);
1811
1812 struct dentry *d_alloc_cursor(struct dentry * parent)
1813 {
1814         struct dentry *dentry = d_alloc_anon(parent->d_sb);
1815         if (dentry) {
1816                 dentry->d_flags |= DCACHE_DENTRY_CURSOR;
1817                 dentry->d_parent = dget(parent);
1818         }
1819         return dentry;
1820 }
1821
1822 /**
1823  * d_alloc_pseudo - allocate a dentry (for lookup-less filesystems)
1824  * @sb: the superblock
1825  * @name: qstr of the name
1826  *
1827  * For a filesystem that just pins its dentries in memory and never
1828  * performs lookups at all, return an unhashed IS_ROOT dentry.
1829  * This is used for pipes, sockets et.al. - the stuff that should
1830  * never be anyone's children or parents.  Unlike all other
1831  * dentries, these will not have RCU delay between dropping the
1832  * last reference and freeing them.
1833  *
1834  * The only user is alloc_file_pseudo() and that's what should
1835  * be considered a public interface.  Don't use directly.
1836  */
1837 struct dentry *d_alloc_pseudo(struct super_block *sb, const struct qstr *name)
1838 {
1839         struct dentry *dentry = __d_alloc(sb, name);
1840         if (likely(dentry))
1841                 dentry->d_flags |= DCACHE_NORCU;
1842         return dentry;
1843 }
1844
1845 struct dentry *d_alloc_name(struct dentry *parent, const char *name)
1846 {
1847         struct qstr q;
1848
1849         q.name = name;
1850         q.hash_len = hashlen_string(parent, name);
1851         return d_alloc(parent, &q);
1852 }
1853 EXPORT_SYMBOL(d_alloc_name);
1854
1855 void d_set_d_op(struct dentry *dentry, const struct dentry_operations *op)
1856 {
1857         WARN_ON_ONCE(dentry->d_op);
1858         WARN_ON_ONCE(dentry->d_flags & (DCACHE_OP_HASH  |
1859                                 DCACHE_OP_COMPARE       |
1860                                 DCACHE_OP_REVALIDATE    |
1861                                 DCACHE_OP_WEAK_REVALIDATE       |
1862                                 DCACHE_OP_DELETE        |
1863                                 DCACHE_OP_REAL));
1864         dentry->d_op = op;
1865         if (!op)
1866                 return;
1867         if (op->d_hash)
1868                 dentry->d_flags |= DCACHE_OP_HASH;
1869         if (op->d_compare)
1870                 dentry->d_flags |= DCACHE_OP_COMPARE;
1871         if (op->d_revalidate)
1872                 dentry->d_flags |= DCACHE_OP_REVALIDATE;
1873         if (op->d_weak_revalidate)
1874                 dentry->d_flags |= DCACHE_OP_WEAK_REVALIDATE;
1875         if (op->d_delete)
1876                 dentry->d_flags |= DCACHE_OP_DELETE;
1877         if (op->d_prune)
1878                 dentry->d_flags |= DCACHE_OP_PRUNE;
1879         if (op->d_real)
1880                 dentry->d_flags |= DCACHE_OP_REAL;
1881
1882 }
1883 EXPORT_SYMBOL(d_set_d_op);
1884
1885
1886 /*
1887  * d_set_fallthru - Mark a dentry as falling through to a lower layer
1888  * @dentry - The dentry to mark
1889  *
1890  * Mark a dentry as falling through to the lower layer (as set with
1891  * d_pin_lower()).  This flag may be recorded on the medium.
1892  */
1893 void d_set_fallthru(struct dentry *dentry)
1894 {
1895         spin_lock(&dentry->d_lock);
1896         dentry->d_flags |= DCACHE_FALLTHRU;
1897         spin_unlock(&dentry->d_lock);
1898 }
1899 EXPORT_SYMBOL(d_set_fallthru);
1900
1901 static unsigned d_flags_for_inode(struct inode *inode)
1902 {
1903         unsigned add_flags = DCACHE_REGULAR_TYPE;
1904
1905         if (!inode)
1906                 return DCACHE_MISS_TYPE;
1907
1908         if (S_ISDIR(inode->i_mode)) {
1909                 add_flags = DCACHE_DIRECTORY_TYPE;
1910                 if (unlikely(!(inode->i_opflags & IOP_LOOKUP))) {
1911                         if (unlikely(!inode->i_op->lookup))
1912                                 add_flags = DCACHE_AUTODIR_TYPE;
1913                         else
1914                                 inode->i_opflags |= IOP_LOOKUP;
1915                 }
1916                 goto type_determined;
1917         }
1918
1919         if (unlikely(!(inode->i_opflags & IOP_NOFOLLOW))) {
1920                 if (unlikely(inode->i_op->get_link)) {
1921                         add_flags = DCACHE_SYMLINK_TYPE;
1922                         goto type_determined;
1923                 }
1924                 inode->i_opflags |= IOP_NOFOLLOW;
1925         }
1926
1927         if (unlikely(!S_ISREG(inode->i_mode)))
1928                 add_flags = DCACHE_SPECIAL_TYPE;
1929
1930 type_determined:
1931         if (unlikely(IS_AUTOMOUNT(inode)))
1932                 add_flags |= DCACHE_NEED_AUTOMOUNT;
1933         return add_flags;
1934 }
1935
1936 static void __d_instantiate(struct dentry *dentry, struct inode *inode)
1937 {
1938         unsigned add_flags = d_flags_for_inode(inode);
1939         WARN_ON(d_in_lookup(dentry));
1940
1941         spin_lock(&dentry->d_lock);
1942         /*
1943          * Decrement negative dentry count if it was in the LRU list.
1944          */
1945         if (dentry->d_flags & DCACHE_LRU_LIST)
1946                 this_cpu_dec(nr_dentry_negative);
1947         hlist_add_head(&dentry->d_u.d_alias, &inode->i_dentry);
1948         raw_write_seqcount_begin(&dentry->d_seq);
1949         __d_set_inode_and_type(dentry, inode, add_flags);
1950         raw_write_seqcount_end(&dentry->d_seq);
1951         fsnotify_update_flags(dentry);
1952         spin_unlock(&dentry->d_lock);
1953 }
1954
1955 /**
1956  * d_instantiate - fill in inode information for a dentry
1957  * @entry: dentry to complete
1958  * @inode: inode to attach to this dentry
1959  *
1960  * Fill in inode information in the entry.
1961  *
1962  * This turns negative dentries into productive full members
1963  * of society.
1964  *
1965  * NOTE! This assumes that the inode count has been incremented
1966  * (or otherwise set) by the caller to indicate that it is now
1967  * in use by the dcache.
1968  */
1969  
1970 void d_instantiate(struct dentry *entry, struct inode * inode)
1971 {
1972         BUG_ON(!hlist_unhashed(&entry->d_u.d_alias));
1973         if (inode) {
1974                 security_d_instantiate(entry, inode);
1975                 spin_lock(&inode->i_lock);
1976                 __d_instantiate(entry, inode);
1977                 spin_unlock(&inode->i_lock);
1978         }
1979 }
1980 EXPORT_SYMBOL(d_instantiate);
1981
1982 /*
1983  * This should be equivalent to d_instantiate() + unlock_new_inode(),
1984  * with lockdep-related part of unlock_new_inode() done before
1985  * anything else.  Use that instead of open-coding d_instantiate()/
1986  * unlock_new_inode() combinations.
1987  */
1988 void d_instantiate_new(struct dentry *entry, struct inode *inode)
1989 {
1990         BUG_ON(!hlist_unhashed(&entry->d_u.d_alias));
1991         BUG_ON(!inode);
1992         lockdep_annotate_inode_mutex_key(inode);
1993         security_d_instantiate(entry, inode);
1994         spin_lock(&inode->i_lock);
1995         __d_instantiate(entry, inode);
1996         WARN_ON(!(inode->i_state & I_NEW));
1997         inode->i_state &= ~I_NEW & ~I_CREATING;
1998         smp_mb();
1999         wake_up_bit(&inode->i_state, __I_NEW);
2000         spin_unlock(&inode->i_lock);
2001 }
2002 EXPORT_SYMBOL(d_instantiate_new);
2003
2004 struct dentry *d_make_root(struct inode *root_inode)
2005 {
2006         struct dentry *res = NULL;
2007
2008         if (root_inode) {
2009                 res = d_alloc_anon(root_inode->i_sb);
2010                 if (res)
2011                         d_instantiate(res, root_inode);
2012                 else
2013                         iput(root_inode);
2014         }
2015         return res;
2016 }
2017 EXPORT_SYMBOL(d_make_root);
2018
2019 static struct dentry *__d_instantiate_anon(struct dentry *dentry,
2020                                            struct inode *inode,
2021                                            bool disconnected)
2022 {
2023         struct dentry *res;
2024         unsigned add_flags;
2025
2026         security_d_instantiate(dentry, inode);
2027         spin_lock(&inode->i_lock);
2028         res = __d_find_any_alias(inode);
2029         if (res) {
2030                 spin_unlock(&inode->i_lock);
2031                 dput(dentry);
2032                 goto out_iput;
2033         }
2034
2035         /* attach a disconnected dentry */
2036         add_flags = d_flags_for_inode(inode);
2037
2038         if (disconnected)
2039                 add_flags |= DCACHE_DISCONNECTED;
2040
2041         spin_lock(&dentry->d_lock);
2042         __d_set_inode_and_type(dentry, inode, add_flags);
2043         hlist_add_head(&dentry->d_u.d_alias, &inode->i_dentry);
2044         if (!disconnected) {
2045                 hlist_bl_lock(&dentry->d_sb->s_roots);
2046                 hlist_bl_add_head(&dentry->d_hash, &dentry->d_sb->s_roots);
2047                 hlist_bl_unlock(&dentry->d_sb->s_roots);
2048         }
2049         spin_unlock(&dentry->d_lock);
2050         spin_unlock(&inode->i_lock);
2051
2052         return dentry;
2053
2054  out_iput:
2055         iput(inode);
2056         return res;
2057 }
2058
2059 struct dentry *d_instantiate_anon(struct dentry *dentry, struct inode *inode)
2060 {
2061         return __d_instantiate_anon(dentry, inode, true);
2062 }
2063 EXPORT_SYMBOL(d_instantiate_anon);
2064
2065 static struct dentry *__d_obtain_alias(struct inode *inode, bool disconnected)
2066 {
2067         struct dentry *tmp;
2068         struct dentry *res;
2069
2070         if (!inode)
2071                 return ERR_PTR(-ESTALE);
2072         if (IS_ERR(inode))
2073                 return ERR_CAST(inode);
2074
2075         res = d_find_any_alias(inode);
2076         if (res)
2077                 goto out_iput;
2078
2079         tmp = d_alloc_anon(inode->i_sb);
2080         if (!tmp) {
2081                 res = ERR_PTR(-ENOMEM);
2082                 goto out_iput;
2083         }
2084
2085         return __d_instantiate_anon(tmp, inode, disconnected);
2086
2087 out_iput:
2088         iput(inode);
2089         return res;
2090 }
2091
2092 /**
2093  * d_obtain_alias - find or allocate a DISCONNECTED dentry for a given inode
2094  * @inode: inode to allocate the dentry for
2095  *
2096  * Obtain a dentry for an inode resulting from NFS filehandle conversion or
2097  * similar open by handle operations.  The returned dentry may be anonymous,
2098  * or may have a full name (if the inode was already in the cache).
2099  *
2100  * When called on a directory inode, we must ensure that the inode only ever
2101  * has one dentry.  If a dentry is found, that is returned instead of
2102  * allocating a new one.
2103  *
2104  * On successful return, the reference to the inode has been transferred
2105  * to the dentry.  In case of an error the reference on the inode is released.
2106  * To make it easier to use in export operations a %NULL or IS_ERR inode may
2107  * be passed in and the error will be propagated to the return value,
2108  * with a %NULL @inode replaced by ERR_PTR(-ESTALE).
2109  */
2110 struct dentry *d_obtain_alias(struct inode *inode)
2111 {
2112         return __d_obtain_alias(inode, true);
2113 }
2114 EXPORT_SYMBOL(d_obtain_alias);
2115
2116 /**
2117  * d_obtain_root - find or allocate a dentry for a given inode
2118  * @inode: inode to allocate the dentry for
2119  *
2120  * Obtain an IS_ROOT dentry for the root of a filesystem.
2121  *
2122  * We must ensure that directory inodes only ever have one dentry.  If a
2123  * dentry is found, that is returned instead of allocating a new one.
2124  *
2125  * On successful return, the reference to the inode has been transferred
2126  * to the dentry.  In case of an error the reference on the inode is
2127  * released.  A %NULL or IS_ERR inode may be passed in and will be the
2128  * error will be propagate to the return value, with a %NULL @inode
2129  * replaced by ERR_PTR(-ESTALE).
2130  */
2131 struct dentry *d_obtain_root(struct inode *inode)
2132 {
2133         return __d_obtain_alias(inode, false);
2134 }
2135 EXPORT_SYMBOL(d_obtain_root);
2136
2137 /**
2138  * d_add_ci - lookup or allocate new dentry with case-exact name
2139  * @inode:  the inode case-insensitive lookup has found
2140  * @dentry: the negative dentry that was passed to the parent's lookup func
2141  * @name:   the case-exact name to be associated with the returned dentry
2142  *
2143  * This is to avoid filling the dcache with case-insensitive names to the
2144  * same inode, only the actual correct case is stored in the dcache for
2145  * case-insensitive filesystems.
2146  *
2147  * For a case-insensitive lookup match and if the the case-exact dentry
2148  * already exists in in the dcache, use it and return it.
2149  *
2150  * If no entry exists with the exact case name, allocate new dentry with
2151  * the exact case, and return the spliced entry.
2152  */
2153 struct dentry *d_add_ci(struct dentry *dentry, struct inode *inode,
2154                         struct qstr *name)
2155 {
2156         struct dentry *found, *res;
2157
2158         /*
2159          * First check if a dentry matching the name already exists,
2160          * if not go ahead and create it now.
2161          */
2162         found = d_hash_and_lookup(dentry->d_parent, name);
2163         if (found) {
2164                 iput(inode);
2165                 return found;
2166         }
2167         if (d_in_lookup(dentry)) {
2168                 found = d_alloc_parallel(dentry->d_parent, name,
2169                                         dentry->d_wait);
2170                 if (IS_ERR(found) || !d_in_lookup(found)) {
2171                         iput(inode);
2172                         return found;
2173                 }
2174         } else {
2175                 found = d_alloc(dentry->d_parent, name);
2176                 if (!found) {
2177                         iput(inode);
2178                         return ERR_PTR(-ENOMEM);
2179                 } 
2180         }
2181         res = d_splice_alias(inode, found);
2182         if (res) {
2183                 dput(found);
2184                 return res;
2185         }
2186         return found;
2187 }
2188 EXPORT_SYMBOL(d_add_ci);
2189
2190
2191 static inline bool d_same_name(const struct dentry *dentry,
2192                                 const struct dentry *parent,
2193                                 const struct qstr *name)
2194 {
2195         if (likely(!(parent->d_flags & DCACHE_OP_COMPARE))) {
2196                 if (dentry->d_name.len != name->len)
2197                         return false;
2198                 return dentry_cmp(dentry, name->name, name->len) == 0;
2199         }
2200         return parent->d_op->d_compare(dentry,
2201                                        dentry->d_name.len, dentry->d_name.name,
2202                                        name) == 0;
2203 }
2204
2205 /**
2206  * __d_lookup_rcu - search for a dentry (racy, store-free)
2207  * @parent: parent dentry
2208  * @name: qstr of name we wish to find
2209  * @seqp: returns d_seq value at the point where the dentry was found
2210  * Returns: dentry, or NULL
2211  *
2212  * __d_lookup_rcu is the dcache lookup function for rcu-walk name
2213  * resolution (store-free path walking) design described in
2214  * Documentation/filesystems/path-lookup.txt.
2215  *
2216  * This is not to be used outside core vfs.
2217  *
2218  * __d_lookup_rcu must only be used in rcu-walk mode, ie. with vfsmount lock
2219  * held, and rcu_read_lock held. The returned dentry must not be stored into
2220  * without taking d_lock and checking d_seq sequence count against @seq
2221  * returned here.
2222  *
2223  * A refcount may be taken on the found dentry with the d_rcu_to_refcount
2224  * function.
2225  *
2226  * Alternatively, __d_lookup_rcu may be called again to look up the child of
2227  * the returned dentry, so long as its parent's seqlock is checked after the
2228  * child is looked up. Thus, an interlocking stepping of sequence lock checks
2229  * is formed, giving integrity down the path walk.
2230  *
2231  * NOTE! The caller *has* to check the resulting dentry against the sequence
2232  * number we've returned before using any of the resulting dentry state!
2233  */
2234 struct dentry *__d_lookup_rcu(const struct dentry *parent,
2235                                 const struct qstr *name,
2236                                 unsigned *seqp)
2237 {
2238         u64 hashlen = name->hash_len;
2239         const unsigned char *str = name->name;
2240         struct hlist_bl_head *b = d_hash(hashlen_hash(hashlen));
2241         struct hlist_bl_node *node;
2242         struct dentry *dentry;
2243
2244         /*
2245          * Note: There is significant duplication with __d_lookup_rcu which is
2246          * required to prevent single threaded performance regressions
2247          * especially on architectures where smp_rmb (in seqcounts) are costly.
2248          * Keep the two functions in sync.
2249          */
2250
2251         /*
2252          * The hash list is protected using RCU.
2253          *
2254          * Carefully use d_seq when comparing a candidate dentry, to avoid
2255          * races with d_move().
2256          *
2257          * It is possible that concurrent renames can mess up our list
2258          * walk here and result in missing our dentry, resulting in the
2259          * false-negative result. d_lookup() protects against concurrent
2260          * renames using rename_lock seqlock.
2261          *
2262          * See Documentation/filesystems/path-lookup.txt for more details.
2263          */
2264         hlist_bl_for_each_entry_rcu(dentry, node, b, d_hash) {
2265                 unsigned seq;
2266
2267 seqretry:
2268                 /*
2269                  * The dentry sequence count protects us from concurrent
2270                  * renames, and thus protects parent and name fields.
2271                  *
2272                  * The caller must perform a seqcount check in order
2273                  * to do anything useful with the returned dentry.
2274                  *
2275                  * NOTE! We do a "raw" seqcount_begin here. That means that
2276                  * we don't wait for the sequence count to stabilize if it
2277                  * is in the middle of a sequence change. If we do the slow
2278                  * dentry compare, we will do seqretries until it is stable,
2279                  * and if we end up with a successful lookup, we actually
2280                  * want to exit RCU lookup anyway.
2281                  *
2282                  * Note that raw_seqcount_begin still *does* smp_rmb(), so
2283                  * we are still guaranteed NUL-termination of ->d_name.name.
2284                  */
2285                 seq = raw_seqcount_begin(&dentry->d_seq);
2286                 if (dentry->d_parent != parent)
2287                         continue;
2288                 if (d_unhashed(dentry))
2289                         continue;
2290
2291                 if (unlikely(parent->d_flags & DCACHE_OP_COMPARE)) {
2292                         int tlen;
2293                         const char *tname;
2294                         if (dentry->d_name.hash != hashlen_hash(hashlen))
2295                                 continue;
2296                         tlen = dentry->d_name.len;
2297                         tname = dentry->d_name.name;
2298                         /* we want a consistent (name,len) pair */
2299                         if (read_seqcount_retry(&dentry->d_seq, seq)) {
2300                                 cpu_relax();
2301                                 goto seqretry;
2302                         }
2303                         if (parent->d_op->d_compare(dentry,
2304                                                     tlen, tname, name) != 0)
2305                                 continue;
2306                 } else {
2307                         if (dentry->d_name.hash_len != hashlen)
2308                                 continue;
2309                         if (dentry_cmp(dentry, str, hashlen_len(hashlen)) != 0)
2310                                 continue;
2311                 }
2312                 *seqp = seq;
2313                 return dentry;
2314         }
2315         return NULL;
2316 }
2317
2318 /**
2319  * d_lookup - search for a dentry
2320  * @parent: parent dentry
2321  * @name: qstr of name we wish to find
2322  * Returns: dentry, or NULL
2323  *
2324  * d_lookup searches the children of the parent dentry for the name in
2325  * question. If the dentry is found its reference count is incremented and the
2326  * dentry is returned. The caller must use dput to free the entry when it has
2327  * finished using it. %NULL is returned if the dentry does not exist.
2328  */
2329 struct dentry *d_lookup(const struct dentry *parent, const struct qstr *name)
2330 {
2331         struct dentry *dentry;
2332         unsigned seq;
2333
2334         do {
2335                 seq = read_seqbegin(&rename_lock);
2336                 dentry = __d_lookup(parent, name);
2337                 if (dentry)
2338                         break;
2339         } while (read_seqretry(&rename_lock, seq));
2340         return dentry;
2341 }
2342 EXPORT_SYMBOL(d_lookup);
2343
2344 /**
2345  * __d_lookup - search for a dentry (racy)
2346  * @parent: parent dentry
2347  * @name: qstr of name we wish to find
2348  * Returns: dentry, or NULL
2349  *
2350  * __d_lookup is like d_lookup, however it may (rarely) return a
2351  * false-negative result due to unrelated rename activity.
2352  *
2353  * __d_lookup is slightly faster by avoiding rename_lock read seqlock,
2354  * however it must be used carefully, eg. with a following d_lookup in
2355  * the case of failure.
2356  *
2357  * __d_lookup callers must be commented.
2358  */
2359 struct dentry *__d_lookup(const struct dentry *parent, const struct qstr *name)
2360 {
2361         unsigned int hash = name->hash;
2362         struct hlist_bl_head *b = d_hash(hash);
2363         struct hlist_bl_node *node;
2364         struct dentry *found = NULL;
2365         struct dentry *dentry;
2366
2367         /*
2368          * Note: There is significant duplication with __d_lookup_rcu which is
2369          * required to prevent single threaded performance regressions
2370          * especially on architectures where smp_rmb (in seqcounts) are costly.
2371          * Keep the two functions in sync.
2372          */
2373
2374         /*
2375          * The hash list is protected using RCU.
2376          *
2377          * Take d_lock when comparing a candidate dentry, to avoid races
2378          * with d_move().
2379          *
2380          * It is possible that concurrent renames can mess up our list
2381          * walk here and result in missing our dentry, resulting in the
2382          * false-negative result. d_lookup() protects against concurrent
2383          * renames using rename_lock seqlock.
2384          *
2385          * See Documentation/filesystems/path-lookup.txt for more details.
2386          */
2387         rcu_read_lock();
2388         
2389         hlist_bl_for_each_entry_rcu(dentry, node, b, d_hash) {
2390
2391                 if (dentry->d_name.hash != hash)
2392                         continue;
2393
2394                 spin_lock(&dentry->d_lock);
2395                 if (dentry->d_parent != parent)
2396                         goto next;
2397                 if (d_unhashed(dentry))
2398                         goto next;
2399
2400                 if (!d_same_name(dentry, parent, name))
2401                         goto next;
2402
2403                 dentry->d_lockref.count++;
2404                 found = dentry;
2405                 spin_unlock(&dentry->d_lock);
2406                 break;
2407 next:
2408                 spin_unlock(&dentry->d_lock);
2409         }
2410         rcu_read_unlock();
2411
2412         return found;
2413 }
2414
2415 /**
2416  * d_hash_and_lookup - hash the qstr then search for a dentry
2417  * @dir: Directory to search in
2418  * @name: qstr of name we wish to find
2419  *
2420  * On lookup failure NULL is returned; on bad name - ERR_PTR(-error)
2421  */
2422 struct dentry *d_hash_and_lookup(struct dentry *dir, struct qstr *name)
2423 {
2424         /*
2425          * Check for a fs-specific hash function. Note that we must
2426          * calculate the standard hash first, as the d_op->d_hash()
2427          * routine may choose to leave the hash value unchanged.
2428          */
2429         name->hash = full_name_hash(dir, name->name, name->len);
2430         if (dir->d_flags & DCACHE_OP_HASH) {
2431                 int err = dir->d_op->d_hash(dir, name);
2432                 if (unlikely(err < 0))
2433                         return ERR_PTR(err);
2434         }
2435         return d_lookup(dir, name);
2436 }
2437 EXPORT_SYMBOL(d_hash_and_lookup);
2438
2439 /*
2440  * When a file is deleted, we have two options:
2441  * - turn this dentry into a negative dentry
2442  * - unhash this dentry and free it.
2443  *
2444  * Usually, we want to just turn this into
2445  * a negative dentry, but if anybody else is
2446  * currently using the dentry or the inode
2447  * we can't do that and we fall back on removing
2448  * it from the hash queues and waiting for
2449  * it to be deleted later when it has no users
2450  */
2451  
2452 /**
2453  * d_delete - delete a dentry
2454  * @dentry: The dentry to delete
2455  *
2456  * Turn the dentry into a negative dentry if possible, otherwise
2457  * remove it from the hash queues so it can be deleted later
2458  */
2459  
2460 void d_delete(struct dentry * dentry)
2461 {
2462         struct inode *inode = dentry->d_inode;
2463
2464         spin_lock(&inode->i_lock);
2465         spin_lock(&dentry->d_lock);
2466         /*
2467          * Are we the only user?
2468          */
2469         if (dentry->d_lockref.count == 1) {
2470                 dentry->d_flags &= ~DCACHE_CANT_MOUNT;
2471                 dentry_unlink_inode(dentry);
2472         } else {
2473                 __d_drop(dentry);
2474                 spin_unlock(&dentry->d_lock);
2475                 spin_unlock(&inode->i_lock);
2476         }
2477 }
2478 EXPORT_SYMBOL(d_delete);
2479
2480 static void __d_rehash(struct dentry *entry)
2481 {
2482         struct hlist_bl_head *b = d_hash(entry->d_name.hash);
2483
2484         hlist_bl_lock(b);
2485         hlist_bl_add_head_rcu(&entry->d_hash, b);
2486         hlist_bl_unlock(b);
2487 }
2488
2489 /**
2490  * d_rehash     - add an entry back to the hash
2491  * @entry: dentry to add to the hash
2492  *
2493  * Adds a dentry to the hash according to its name.
2494  */
2495  
2496 void d_rehash(struct dentry * entry)
2497 {
2498         spin_lock(&entry->d_lock);
2499         __d_rehash(entry);
2500         spin_unlock(&entry->d_lock);
2501 }
2502 EXPORT_SYMBOL(d_rehash);
2503
2504 static inline unsigned start_dir_add(struct inode *dir)
2505 {
2506
2507         for (;;) {
2508                 unsigned n = dir->i_dir_seq;
2509                 if (!(n & 1) && cmpxchg(&dir->i_dir_seq, n, n + 1) == n)
2510                         return n;
2511                 cpu_relax();
2512         }
2513 }
2514
2515 static inline void end_dir_add(struct inode *dir, unsigned n)
2516 {
2517         smp_store_release(&dir->i_dir_seq, n + 2);
2518 }
2519
2520 static void d_wait_lookup(struct dentry *dentry)
2521 {
2522         if (d_in_lookup(dentry)) {
2523                 DECLARE_WAITQUEUE(wait, current);
2524                 add_wait_queue(dentry->d_wait, &wait);
2525                 do {
2526                         set_current_state(TASK_UNINTERRUPTIBLE);
2527                         spin_unlock(&dentry->d_lock);
2528                         schedule();
2529                         spin_lock(&dentry->d_lock);
2530                 } while (d_in_lookup(dentry));
2531         }
2532 }
2533
2534 struct dentry *d_alloc_parallel(struct dentry *parent,
2535                                 const struct qstr *name,
2536                                 wait_queue_head_t *wq)
2537 {
2538         unsigned int hash = name->hash;
2539         struct hlist_bl_head *b = in_lookup_hash(parent, hash);
2540         struct hlist_bl_node *node;
2541         struct dentry *new = d_alloc(parent, name);
2542         struct dentry *dentry;
2543         unsigned seq, r_seq, d_seq;
2544
2545         if (unlikely(!new))
2546                 return ERR_PTR(-ENOMEM);
2547
2548 retry:
2549         rcu_read_lock();
2550         seq = smp_load_acquire(&parent->d_inode->i_dir_seq);
2551         r_seq = read_seqbegin(&rename_lock);
2552         dentry = __d_lookup_rcu(parent, name, &d_seq);
2553         if (unlikely(dentry)) {
2554                 if (!lockref_get_not_dead(&dentry->d_lockref)) {
2555                         rcu_read_unlock();
2556                         goto retry;
2557                 }
2558                 if (read_seqcount_retry(&dentry->d_seq, d_seq)) {
2559                         rcu_read_unlock();
2560                         dput(dentry);
2561                         goto retry;
2562                 }
2563                 rcu_read_unlock();
2564                 dput(new);
2565                 return dentry;
2566         }
2567         if (unlikely(read_seqretry(&rename_lock, r_seq))) {
2568                 rcu_read_unlock();
2569                 goto retry;
2570         }
2571
2572         if (unlikely(seq & 1)) {
2573                 rcu_read_unlock();
2574                 goto retry;
2575         }
2576
2577         hlist_bl_lock(b);
2578         if (unlikely(READ_ONCE(parent->d_inode->i_dir_seq) != seq)) {
2579                 hlist_bl_unlock(b);
2580                 rcu_read_unlock();
2581                 goto retry;
2582         }
2583         /*
2584          * No changes for the parent since the beginning of d_lookup().
2585          * Since all removals from the chain happen with hlist_bl_lock(),
2586          * any potential in-lookup matches are going to stay here until
2587          * we unlock the chain.  All fields are stable in everything
2588          * we encounter.
2589          */
2590         hlist_bl_for_each_entry(dentry, node, b, d_u.d_in_lookup_hash) {
2591                 if (dentry->d_name.hash != hash)
2592                         continue;
2593                 if (dentry->d_parent != parent)
2594                         continue;
2595                 if (!d_same_name(dentry, parent, name))
2596                         continue;
2597                 hlist_bl_unlock(b);
2598                 /* now we can try to grab a reference */
2599                 if (!lockref_get_not_dead(&dentry->d_lockref)) {
2600                         rcu_read_unlock();
2601                         goto retry;
2602                 }
2603
2604                 rcu_read_unlock();
2605                 /*
2606                  * somebody is likely to be still doing lookup for it;
2607                  * wait for them to finish
2608                  */
2609                 spin_lock(&dentry->d_lock);
2610                 d_wait_lookup(dentry);
2611                 /*
2612                  * it's not in-lookup anymore; in principle we should repeat
2613                  * everything from dcache lookup, but it's likely to be what
2614                  * d_lookup() would've found anyway.  If it is, just return it;
2615                  * otherwise we really have to repeat the whole thing.
2616                  */
2617                 if (unlikely(dentry->d_name.hash != hash))
2618                         goto mismatch;
2619                 if (unlikely(dentry->d_parent != parent))
2620                         goto mismatch;
2621                 if (unlikely(d_unhashed(dentry)))
2622                         goto mismatch;
2623                 if (unlikely(!d_same_name(dentry, parent, name)))
2624                         goto mismatch;
2625                 /* OK, it *is* a hashed match; return it */
2626                 spin_unlock(&dentry->d_lock);
2627                 dput(new);
2628                 return dentry;
2629         }
2630         rcu_read_unlock();
2631         /* we can't take ->d_lock here; it's OK, though. */
2632         new->d_flags |= DCACHE_PAR_LOOKUP;
2633         new->d_wait = wq;
2634         hlist_bl_add_head_rcu(&new->d_u.d_in_lookup_hash, b);
2635         hlist_bl_unlock(b);
2636         return new;
2637 mismatch:
2638         spin_unlock(&dentry->d_lock);
2639         dput(dentry);
2640         goto retry;
2641 }
2642 EXPORT_SYMBOL(d_alloc_parallel);
2643
2644 void __d_lookup_done(struct dentry *dentry)
2645 {
2646         struct hlist_bl_head *b = in_lookup_hash(dentry->d_parent,
2647                                                  dentry->d_name.hash);
2648         hlist_bl_lock(b);
2649         dentry->d_flags &= ~DCACHE_PAR_LOOKUP;
2650         __hlist_bl_del(&dentry->d_u.d_in_lookup_hash);
2651         wake_up_all(dentry->d_wait);
2652         dentry->d_wait = NULL;
2653         hlist_bl_unlock(b);
2654         INIT_HLIST_NODE(&dentry->d_u.d_alias);
2655         INIT_LIST_HEAD(&dentry->d_lru);
2656 }
2657 EXPORT_SYMBOL(__d_lookup_done);
2658
2659 /* inode->i_lock held if inode is non-NULL */
2660
2661 static inline void __d_add(struct dentry *dentry, struct inode *inode)
2662 {
2663         struct inode *dir = NULL;
2664         unsigned n;
2665         spin_lock(&dentry->d_lock);
2666         if (unlikely(d_in_lookup(dentry))) {
2667                 dir = dentry->d_parent->d_inode;
2668                 n = start_dir_add(dir);
2669                 __d_lookup_done(dentry);
2670         }
2671         if (inode) {
2672                 unsigned add_flags = d_flags_for_inode(inode);
2673                 hlist_add_head(&dentry->d_u.d_alias, &inode->i_dentry);
2674                 raw_write_seqcount_begin(&dentry->d_seq);
2675                 __d_set_inode_and_type(dentry, inode, add_flags);
2676                 raw_write_seqcount_end(&dentry->d_seq);
2677                 fsnotify_update_flags(dentry);
2678         }
2679         __d_rehash(dentry);
2680         if (dir)
2681                 end_dir_add(dir, n);
2682         spin_unlock(&dentry->d_lock);
2683         if (inode)
2684                 spin_unlock(&inode->i_lock);
2685 }
2686
2687 /**
2688  * d_add - add dentry to hash queues
2689  * @entry: dentry to add
2690  * @inode: The inode to attach to this dentry
2691  *
2692  * This adds the entry to the hash queues and initializes @inode.
2693  * The entry was actually filled in earlier during d_alloc().
2694  */
2695
2696 void d_add(struct dentry *entry, struct inode *inode)
2697 {
2698         if (inode) {
2699                 security_d_instantiate(entry, inode);
2700                 spin_lock(&inode->i_lock);
2701         }
2702         __d_add(entry, inode);
2703 }
2704 EXPORT_SYMBOL(d_add);
2705
2706 /**
2707  * d_exact_alias - find and hash an exact unhashed alias
2708  * @entry: dentry to add
2709  * @inode: The inode to go with this dentry
2710  *
2711  * If an unhashed dentry with the same name/parent and desired
2712  * inode already exists, hash and return it.  Otherwise, return
2713  * NULL.
2714  *
2715  * Parent directory should be locked.
2716  */
2717 struct dentry *d_exact_alias(struct dentry *entry, struct inode *inode)
2718 {
2719         struct dentry *alias;
2720         unsigned int hash = entry->d_name.hash;
2721
2722         spin_lock(&inode->i_lock);
2723         hlist_for_each_entry(alias, &inode->i_dentry, d_u.d_alias) {
2724                 /*
2725                  * Don't need alias->d_lock here, because aliases with
2726                  * d_parent == entry->d_parent are not subject to name or
2727                  * parent changes, because the parent inode i_mutex is held.
2728                  */
2729                 if (alias->d_name.hash != hash)
2730                         continue;
2731                 if (alias->d_parent != entry->d_parent)
2732                         continue;
2733                 if (!d_same_name(alias, entry->d_parent, &entry->d_name))
2734                         continue;
2735                 spin_lock(&alias->d_lock);
2736                 if (!d_unhashed(alias)) {
2737                         spin_unlock(&alias->d_lock);
2738                         alias = NULL;
2739                 } else {
2740                         __dget_dlock(alias);
2741                         __d_rehash(alias);
2742                         spin_unlock(&alias->d_lock);
2743                 }
2744                 spin_unlock(&inode->i_lock);
2745                 return alias;
2746         }
2747         spin_unlock(&inode->i_lock);
2748         return NULL;
2749 }
2750 EXPORT_SYMBOL(d_exact_alias);
2751
2752 static void swap_names(struct dentry *dentry, struct dentry *target)
2753 {
2754         if (unlikely(dname_external(target))) {
2755                 if (unlikely(dname_external(dentry))) {
2756                         /*
2757                          * Both external: swap the pointers
2758                          */
2759                         swap(target->d_name.name, dentry->d_name.name);
2760                 } else {
2761                         /*
2762                          * dentry:internal, target:external.  Steal target's
2763                          * storage and make target internal.
2764                          */
2765                         memcpy(target->d_iname, dentry->d_name.name,
2766                                         dentry->d_name.len + 1);
2767                         dentry->d_name.name = target->d_name.name;
2768                         target->d_name.name = target->d_iname;
2769                 }
2770         } else {
2771                 if (unlikely(dname_external(dentry))) {
2772                         /*
2773                          * dentry:external, target:internal.  Give dentry's
2774                          * storage to target and make dentry internal
2775                          */
2776                         memcpy(dentry->d_iname, target->d_name.name,
2777                                         target->d_name.len + 1);
2778                         target->d_name.name = dentry->d_name.name;
2779                         dentry->d_name.name = dentry->d_iname;
2780                 } else {
2781                         /*
2782                          * Both are internal.
2783                          */
2784                         unsigned int i;
2785                         BUILD_BUG_ON(!IS_ALIGNED(DNAME_INLINE_LEN, sizeof(long)));
2786                         for (i = 0; i < DNAME_INLINE_LEN / sizeof(long); i++) {
2787                                 swap(((long *) &dentry->d_iname)[i],
2788                                      ((long *) &target->d_iname)[i]);
2789                         }
2790                 }
2791         }
2792         swap(dentry->d_name.hash_len, target->d_name.hash_len);
2793 }
2794
2795 static void copy_name(struct dentry *dentry, struct dentry *target)
2796 {
2797         struct external_name *old_name = NULL;
2798         if (unlikely(dname_external(dentry)))
2799                 old_name = external_name(dentry);
2800         if (unlikely(dname_external(target))) {
2801                 atomic_inc(&external_name(target)->u.count);
2802                 dentry->d_name = target->d_name;
2803         } else {
2804                 memcpy(dentry->d_iname, target->d_name.name,
2805                                 target->d_name.len + 1);
2806                 dentry->d_name.name = dentry->d_iname;
2807                 dentry->d_name.hash_len = target->d_name.hash_len;
2808         }
2809         if (old_name && likely(atomic_dec_and_test(&old_name->u.count)))
2810                 kfree_rcu(old_name, u.head);
2811 }
2812
2813 /*
2814  * __d_move - move a dentry
2815  * @dentry: entry to move
2816  * @target: new dentry
2817  * @exchange: exchange the two dentries
2818  *
2819  * Update the dcache to reflect the move of a file name. Negative
2820  * dcache entries should not be moved in this way. Caller must hold
2821  * rename_lock, the i_mutex of the source and target directories,
2822  * and the sb->s_vfs_rename_mutex if they differ. See lock_rename().
2823  */
2824 static void __d_move(struct dentry *dentry, struct dentry *target,
2825                      bool exchange)
2826 {
2827         struct dentry *old_parent, *p;
2828         struct inode *dir = NULL;
2829         unsigned n;
2830
2831         WARN_ON(!dentry->d_inode);
2832         if (WARN_ON(dentry == target))
2833                 return;
2834
2835         BUG_ON(d_ancestor(target, dentry));
2836         old_parent = dentry->d_parent;
2837         p = d_ancestor(old_parent, target);
2838         if (IS_ROOT(dentry)) {
2839                 BUG_ON(p);
2840                 spin_lock(&target->d_parent->d_lock);
2841         } else if (!p) {
2842                 /* target is not a descendent of dentry->d_parent */
2843                 spin_lock(&target->d_parent->d_lock);
2844                 spin_lock_nested(&old_parent->d_lock, DENTRY_D_LOCK_NESTED);
2845         } else {
2846                 BUG_ON(p == dentry);
2847                 spin_lock(&old_parent->d_lock);
2848                 if (p != target)
2849                         spin_lock_nested(&target->d_parent->d_lock,
2850                                         DENTRY_D_LOCK_NESTED);
2851         }
2852         spin_lock_nested(&dentry->d_lock, 2);
2853         spin_lock_nested(&target->d_lock, 3);
2854
2855         if (unlikely(d_in_lookup(target))) {
2856                 dir = target->d_parent->d_inode;
2857                 n = start_dir_add(dir);
2858                 __d_lookup_done(target);
2859         }
2860
2861         write_seqcount_begin(&dentry->d_seq);
2862         write_seqcount_begin_nested(&target->d_seq, DENTRY_D_LOCK_NESTED);
2863
2864         /* unhash both */
2865         if (!d_unhashed(dentry))
2866                 ___d_drop(dentry);
2867         if (!d_unhashed(target))
2868                 ___d_drop(target);
2869
2870         /* ... and switch them in the tree */
2871         dentry->d_parent = target->d_parent;
2872         if (!exchange) {
2873                 copy_name(dentry, target);
2874                 target->d_hash.pprev = NULL;
2875                 dentry->d_parent->d_lockref.count++;
2876                 if (dentry != old_parent) /* wasn't IS_ROOT */
2877                         WARN_ON(!--old_parent->d_lockref.count);
2878         } else {
2879                 target->d_parent = old_parent;
2880                 swap_names(dentry, target);
2881                 list_move(&target->d_child, &target->d_parent->d_subdirs);
2882                 __d_rehash(target);
2883                 fsnotify_update_flags(target);
2884         }
2885         list_move(&dentry->d_child, &dentry->d_parent->d_subdirs);
2886         __d_rehash(dentry);
2887         fsnotify_update_flags(dentry);
2888         fscrypt_handle_d_move(dentry);
2889
2890         write_seqcount_end(&target->d_seq);
2891         write_seqcount_end(&dentry->d_seq);
2892
2893         if (dir)
2894                 end_dir_add(dir, n);
2895
2896         if (dentry->d_parent != old_parent)
2897                 spin_unlock(&dentry->d_parent->d_lock);
2898         if (dentry != old_parent)
2899                 spin_unlock(&old_parent->d_lock);
2900         spin_unlock(&target->d_lock);
2901         spin_unlock(&dentry->d_lock);
2902 }
2903
2904 /*
2905  * d_move - move a dentry
2906  * @dentry: entry to move
2907  * @target: new dentry
2908  *
2909  * Update the dcache to reflect the move of a file name. Negative
2910  * dcache entries should not be moved in this way. See the locking
2911  * requirements for __d_move.
2912  */
2913 void d_move(struct dentry *dentry, struct dentry *target)
2914 {
2915         write_seqlock(&rename_lock);
2916         __d_move(dentry, target, false);
2917         write_sequnlock(&rename_lock);
2918 }
2919 EXPORT_SYMBOL(d_move);
2920
2921 /*
2922  * d_exchange - exchange two dentries
2923  * @dentry1: first dentry
2924  * @dentry2: second dentry
2925  */
2926 void d_exchange(struct dentry *dentry1, struct dentry *dentry2)
2927 {
2928         write_seqlock(&rename_lock);
2929
2930         WARN_ON(!dentry1->d_inode);
2931         WARN_ON(!dentry2->d_inode);
2932         WARN_ON(IS_ROOT(dentry1));
2933         WARN_ON(IS_ROOT(dentry2));
2934
2935         __d_move(dentry1, dentry2, true);
2936
2937         write_sequnlock(&rename_lock);
2938 }
2939
2940 /**
2941  * d_ancestor - search for an ancestor
2942  * @p1: ancestor dentry
2943  * @p2: child dentry
2944  *
2945  * Returns the ancestor dentry of p2 which is a child of p1, if p1 is
2946  * an ancestor of p2, else NULL.
2947  */
2948 struct dentry *d_ancestor(struct dentry *p1, struct dentry *p2)
2949 {
2950         struct dentry *p;
2951
2952         for (p = p2; !IS_ROOT(p); p = p->d_parent) {
2953                 if (p->d_parent == p1)
2954                         return p;
2955         }
2956         return NULL;
2957 }
2958
2959 /*
2960  * This helper attempts to cope with remotely renamed directories
2961  *
2962  * It assumes that the caller is already holding
2963  * dentry->d_parent->d_inode->i_mutex, and rename_lock
2964  *
2965  * Note: If ever the locking in lock_rename() changes, then please
2966  * remember to update this too...
2967  */
2968 static int __d_unalias(struct inode *inode,
2969                 struct dentry *dentry, struct dentry *alias)
2970 {
2971         struct mutex *m1 = NULL;
2972         struct rw_semaphore *m2 = NULL;
2973         int ret = -ESTALE;
2974
2975         /* If alias and dentry share a parent, then no extra locks required */
2976         if (alias->d_parent == dentry->d_parent)
2977                 goto out_unalias;
2978
2979         /* See lock_rename() */
2980         if (!mutex_trylock(&dentry->d_sb->s_vfs_rename_mutex))
2981                 goto out_err;
2982         m1 = &dentry->d_sb->s_vfs_rename_mutex;
2983         if (!inode_trylock_shared(alias->d_parent->d_inode))
2984                 goto out_err;
2985         m2 = &alias->d_parent->d_inode->i_rwsem;
2986 out_unalias:
2987         __d_move(alias, dentry, false);
2988         ret = 0;
2989 out_err:
2990         if (m2)
2991                 up_read(m2);
2992         if (m1)
2993                 mutex_unlock(m1);
2994         return ret;
2995 }
2996
2997 /**
2998  * d_splice_alias - splice a disconnected dentry into the tree if one exists
2999  * @inode:  the inode which may have a disconnected dentry
3000  * @dentry: a negative dentry which we want to point to the inode.
3001  *
3002  * If inode is a directory and has an IS_ROOT alias, then d_move that in
3003  * place of the given dentry and return it, else simply d_add the inode
3004  * to the dentry and return NULL.
3005  *
3006  * If a non-IS_ROOT directory is found, the filesystem is corrupt, and
3007  * we should error out: directories can't have multiple aliases.
3008  *
3009  * This is needed in the lookup routine of any filesystem that is exportable
3010  * (via knfsd) so that we can build dcache paths to directories effectively.
3011  *
3012  * If a dentry was found and moved, then it is returned.  Otherwise NULL
3013  * is returned.  This matches the expected return value of ->lookup.
3014  *
3015  * Cluster filesystems may call this function with a negative, hashed dentry.
3016  * In that case, we know that the inode will be a regular file, and also this
3017  * will only occur during atomic_open. So we need to check for the dentry
3018  * being already hashed only in the final case.
3019  */
3020 struct dentry *d_splice_alias(struct inode *inode, struct dentry *dentry)
3021 {
3022         if (IS_ERR(inode))
3023                 return ERR_CAST(inode);
3024
3025         BUG_ON(!d_unhashed(dentry));
3026
3027         if (!inode)
3028                 goto out;
3029
3030         security_d_instantiate(dentry, inode);
3031         spin_lock(&inode->i_lock);
3032         if (S_ISDIR(inode->i_mode)) {
3033                 struct dentry *new = __d_find_any_alias(inode);
3034                 if (unlikely(new)) {
3035                         /* The reference to new ensures it remains an alias */
3036                         spin_unlock(&inode->i_lock);
3037                         write_seqlock(&rename_lock);
3038                         if (unlikely(d_ancestor(new, dentry))) {
3039                                 write_sequnlock(&rename_lock);
3040                                 dput(new);
3041                                 new = ERR_PTR(-ELOOP);
3042                                 pr_warn_ratelimited(
3043                                         "VFS: Lookup of '%s' in %s %s"
3044                                         " would have caused loop\n",
3045                                         dentry->d_name.name,
3046                                         inode->i_sb->s_type->name,
3047                                         inode->i_sb->s_id);
3048                         } else if (!IS_ROOT(new)) {
3049                                 struct dentry *old_parent = dget(new->d_parent);
3050                                 int err = __d_unalias(inode, dentry, new);
3051                                 write_sequnlock(&rename_lock);
3052                                 if (err) {
3053                                         dput(new);
3054                                         new = ERR_PTR(err);
3055                                 }
3056                                 dput(old_parent);
3057                         } else {
3058                                 __d_move(new, dentry, false);
3059                                 write_sequnlock(&rename_lock);
3060                         }
3061                         iput(inode);
3062                         return new;
3063                 }
3064         }
3065 out:
3066         __d_add(dentry, inode);
3067         return NULL;
3068 }
3069 EXPORT_SYMBOL(d_splice_alias);
3070
3071 /*
3072  * Test whether new_dentry is a subdirectory of old_dentry.
3073  *
3074  * Trivially implemented using the dcache structure
3075  */
3076
3077 /**
3078  * is_subdir - is new dentry a subdirectory of old_dentry
3079  * @new_dentry: new dentry
3080  * @old_dentry: old dentry
3081  *
3082  * Returns true if new_dentry is a subdirectory of the parent (at any depth).
3083  * Returns false otherwise.
3084  * Caller must ensure that "new_dentry" is pinned before calling is_subdir()
3085  */
3086   
3087 bool is_subdir(struct dentry *new_dentry, struct dentry *old_dentry)
3088 {
3089         bool result;
3090         unsigned seq;
3091
3092         if (new_dentry == old_dentry)
3093                 return true;
3094
3095         do {
3096                 /* for restarting inner loop in case of seq retry */
3097                 seq = read_seqbegin(&rename_lock);
3098                 /*
3099                  * Need rcu_readlock to protect against the d_parent trashing
3100                  * due to d_move
3101                  */
3102                 rcu_read_lock();
3103                 if (d_ancestor(old_dentry, new_dentry))
3104                         result = true;
3105                 else
3106                         result = false;
3107                 rcu_read_unlock();
3108         } while (read_seqretry(&rename_lock, seq));
3109
3110         return result;
3111 }
3112 EXPORT_SYMBOL(is_subdir);
3113
3114 static enum d_walk_ret d_genocide_kill(void *data, struct dentry *dentry)
3115 {
3116         struct dentry *root = data;
3117         if (dentry != root) {
3118                 if (d_unhashed(dentry) || !dentry->d_inode)
3119                         return D_WALK_SKIP;
3120
3121                 if (!(dentry->d_flags & DCACHE_GENOCIDE)) {
3122                         dentry->d_flags |= DCACHE_GENOCIDE;
3123                         dentry->d_lockref.count--;
3124                 }
3125         }
3126         return D_WALK_CONTINUE;
3127 }
3128
3129 void d_genocide(struct dentry *parent)
3130 {
3131         d_walk(parent, parent, d_genocide_kill);
3132 }
3133
3134 EXPORT_SYMBOL(d_genocide);
3135
3136 void d_tmpfile(struct dentry *dentry, struct inode *inode)
3137 {
3138         inode_dec_link_count(inode);
3139         BUG_ON(dentry->d_name.name != dentry->d_iname ||
3140                 !hlist_unhashed(&dentry->d_u.d_alias) ||
3141                 !d_unlinked(dentry));
3142         spin_lock(&dentry->d_parent->d_lock);
3143         spin_lock_nested(&dentry->d_lock, DENTRY_D_LOCK_NESTED);
3144         dentry->d_name.len = sprintf(dentry->d_iname, "#%llu",
3145                                 (unsigned long long)inode->i_ino);
3146         spin_unlock(&dentry->d_lock);
3147         spin_unlock(&dentry->d_parent->d_lock);
3148         d_instantiate(dentry, inode);
3149 }
3150 EXPORT_SYMBOL(d_tmpfile);
3151
3152 static __initdata unsigned long dhash_entries;
3153 static int __init set_dhash_entries(char *str)
3154 {
3155         if (!str)
3156                 return 0;
3157         dhash_entries = simple_strtoul(str, &str, 0);
3158         return 1;
3159 }
3160 __setup("dhash_entries=", set_dhash_entries);
3161
3162 static void __init dcache_init_early(void)
3163 {
3164         /* If hashes are distributed across NUMA nodes, defer
3165          * hash allocation until vmalloc space is available.
3166          */
3167         if (hashdist)
3168                 return;
3169
3170         dentry_hashtable =
3171                 alloc_large_system_hash("Dentry cache",
3172                                         sizeof(struct hlist_bl_head),
3173                                         dhash_entries,
3174                                         13,
3175                                         HASH_EARLY | HASH_ZERO,
3176                                         &d_hash_shift,
3177                                         NULL,
3178                                         0,
3179                                         0);
3180         d_hash_shift = 32 - d_hash_shift;
3181 }
3182
3183 static void __init dcache_init(void)
3184 {
3185         /*
3186          * A constructor could be added for stable state like the lists,
3187          * but it is probably not worth it because of the cache nature
3188          * of the dcache.
3189          */
3190         dentry_cache = KMEM_CACHE_USERCOPY(dentry,
3191                 SLAB_RECLAIM_ACCOUNT|SLAB_PANIC|SLAB_MEM_SPREAD|SLAB_ACCOUNT,
3192                 d_iname);
3193
3194         /* Hash may have been set up in dcache_init_early */
3195         if (!hashdist)
3196                 return;
3197
3198         dentry_hashtable =
3199                 alloc_large_system_hash("Dentry cache",
3200                                         sizeof(struct hlist_bl_head),
3201                                         dhash_entries,
3202                                         13,
3203                                         HASH_ZERO,
3204                                         &d_hash_shift,
3205                                         NULL,
3206                                         0,
3207                                         0);
3208         d_hash_shift = 32 - d_hash_shift;
3209 }
3210
3211 /* SLAB cache for __getname() consumers */
3212 struct kmem_cache *names_cachep __read_mostly;
3213 EXPORT_SYMBOL(names_cachep);
3214
3215 void __init vfs_caches_init_early(void)
3216 {
3217         int i;
3218
3219         for (i = 0; i < ARRAY_SIZE(in_lookup_hashtable); i++)
3220                 INIT_HLIST_BL_HEAD(&in_lookup_hashtable[i]);
3221
3222         dcache_init_early();
3223         inode_init_early();
3224 }
3225
3226 void __init vfs_caches_init(void)
3227 {
3228         names_cachep = kmem_cache_create_usercopy("names_cache", PATH_MAX, 0,
3229                         SLAB_HWCACHE_ALIGN|SLAB_PANIC, 0, PATH_MAX, NULL);
3230
3231         dcache_init();
3232         inode_init();
3233         files_init();
3234         files_maxfiles_init();
3235         mnt_init();
3236         bdev_cache_init();
3237         chrdev_init();
3238 }