GNU Linux-libre 4.19.207-gnu1
[releases.git] / fs / dcache.c
1 /*
2  * fs/dcache.c
3  *
4  * Complete reimplementation
5  * (C) 1997 Thomas Schoebel-Theuer,
6  * with heavy changes by Linus Torvalds
7  */
8
9 /*
10  * Notes on the allocation strategy:
11  *
12  * The dcache is a master of the icache - whenever a dcache entry
13  * exists, the inode will always exist. "iput()" is done either when
14  * the dcache entry is deleted or garbage collected.
15  */
16
17 #include <linux/ratelimit.h>
18 #include <linux/string.h>
19 #include <linux/mm.h>
20 #include <linux/fs.h>
21 #include <linux/fsnotify.h>
22 #include <linux/slab.h>
23 #include <linux/init.h>
24 #include <linux/hash.h>
25 #include <linux/cache.h>
26 #include <linux/export.h>
27 #include <linux/security.h>
28 #include <linux/seqlock.h>
29 #include <linux/bootmem.h>
30 #include <linux/bit_spinlock.h>
31 #include <linux/rculist_bl.h>
32 #include <linux/list_lru.h>
33 #include "internal.h"
34 #include "mount.h"
35
36 /*
37  * Usage:
38  * dcache->d_inode->i_lock protects:
39  *   - i_dentry, d_u.d_alias, d_inode of aliases
40  * dcache_hash_bucket lock protects:
41  *   - the dcache hash table
42  * s_roots bl list spinlock protects:
43  *   - the s_roots list (see __d_drop)
44  * dentry->d_sb->s_dentry_lru_lock protects:
45  *   - the dcache lru lists and counters
46  * d_lock protects:
47  *   - d_flags
48  *   - d_name
49  *   - d_lru
50  *   - d_count
51  *   - d_unhashed()
52  *   - d_parent and d_subdirs
53  *   - childrens' d_child and d_parent
54  *   - d_u.d_alias, d_inode
55  *
56  * Ordering:
57  * dentry->d_inode->i_lock
58  *   dentry->d_lock
59  *     dentry->d_sb->s_dentry_lru_lock
60  *     dcache_hash_bucket lock
61  *     s_roots lock
62  *
63  * If there is an ancestor relationship:
64  * dentry->d_parent->...->d_parent->d_lock
65  *   ...
66  *     dentry->d_parent->d_lock
67  *       dentry->d_lock
68  *
69  * If no ancestor relationship:
70  * arbitrary, since it's serialized on rename_lock
71  */
72 int sysctl_vfs_cache_pressure __read_mostly = 100;
73 EXPORT_SYMBOL_GPL(sysctl_vfs_cache_pressure);
74
75 __cacheline_aligned_in_smp DEFINE_SEQLOCK(rename_lock);
76
77 EXPORT_SYMBOL(rename_lock);
78
79 static struct kmem_cache *dentry_cache __read_mostly;
80
81 const struct qstr empty_name = QSTR_INIT("", 0);
82 EXPORT_SYMBOL(empty_name);
83 const struct qstr slash_name = QSTR_INIT("/", 1);
84 EXPORT_SYMBOL(slash_name);
85
86 /*
87  * This is the single most critical data structure when it comes
88  * to the dcache: the hashtable for lookups. Somebody should try
89  * to make this good - I've just made it work.
90  *
91  * This hash-function tries to avoid losing too many bits of hash
92  * information, yet avoid using a prime hash-size or similar.
93  */
94
95 static unsigned int d_hash_shift __read_mostly;
96
97 static struct hlist_bl_head *dentry_hashtable __read_mostly;
98
99 static inline struct hlist_bl_head *d_hash(unsigned int hash)
100 {
101         return dentry_hashtable + (hash >> d_hash_shift);
102 }
103
104 #define IN_LOOKUP_SHIFT 10
105 static struct hlist_bl_head in_lookup_hashtable[1 << IN_LOOKUP_SHIFT];
106
107 static inline struct hlist_bl_head *in_lookup_hash(const struct dentry *parent,
108                                         unsigned int hash)
109 {
110         hash += (unsigned long) parent / L1_CACHE_BYTES;
111         return in_lookup_hashtable + hash_32(hash, IN_LOOKUP_SHIFT);
112 }
113
114
115 /* Statistics gathering. */
116 struct dentry_stat_t dentry_stat = {
117         .age_limit = 45,
118 };
119
120 static DEFINE_PER_CPU(long, nr_dentry);
121 static DEFINE_PER_CPU(long, nr_dentry_unused);
122
123 #if defined(CONFIG_SYSCTL) && defined(CONFIG_PROC_FS)
124
125 /*
126  * Here we resort to our own counters instead of using generic per-cpu counters
127  * for consistency with what the vfs inode code does. We are expected to harvest
128  * better code and performance by having our own specialized counters.
129  *
130  * Please note that the loop is done over all possible CPUs, not over all online
131  * CPUs. The reason for this is that we don't want to play games with CPUs going
132  * on and off. If one of them goes off, we will just keep their counters.
133  *
134  * glommer: See cffbc8a for details, and if you ever intend to change this,
135  * please update all vfs counters to match.
136  */
137 static long get_nr_dentry(void)
138 {
139         int i;
140         long sum = 0;
141         for_each_possible_cpu(i)
142                 sum += per_cpu(nr_dentry, i);
143         return sum < 0 ? 0 : sum;
144 }
145
146 static long get_nr_dentry_unused(void)
147 {
148         int i;
149         long sum = 0;
150         for_each_possible_cpu(i)
151                 sum += per_cpu(nr_dentry_unused, i);
152         return sum < 0 ? 0 : sum;
153 }
154
155 int proc_nr_dentry(struct ctl_table *table, int write, void __user *buffer,
156                    size_t *lenp, loff_t *ppos)
157 {
158         dentry_stat.nr_dentry = get_nr_dentry();
159         dentry_stat.nr_unused = get_nr_dentry_unused();
160         return proc_doulongvec_minmax(table, write, buffer, lenp, ppos);
161 }
162 #endif
163
164 /*
165  * Compare 2 name strings, return 0 if they match, otherwise non-zero.
166  * The strings are both count bytes long, and count is non-zero.
167  */
168 #ifdef CONFIG_DCACHE_WORD_ACCESS
169
170 #include <asm/word-at-a-time.h>
171 /*
172  * NOTE! 'cs' and 'scount' come from a dentry, so it has a
173  * aligned allocation for this particular component. We don't
174  * strictly need the load_unaligned_zeropad() safety, but it
175  * doesn't hurt either.
176  *
177  * In contrast, 'ct' and 'tcount' can be from a pathname, and do
178  * need the careful unaligned handling.
179  */
180 static inline int dentry_string_cmp(const unsigned char *cs, const unsigned char *ct, unsigned tcount)
181 {
182         unsigned long a,b,mask;
183
184         for (;;) {
185                 a = read_word_at_a_time(cs);
186                 b = load_unaligned_zeropad(ct);
187                 if (tcount < sizeof(unsigned long))
188                         break;
189                 if (unlikely(a != b))
190                         return 1;
191                 cs += sizeof(unsigned long);
192                 ct += sizeof(unsigned long);
193                 tcount -= sizeof(unsigned long);
194                 if (!tcount)
195                         return 0;
196         }
197         mask = bytemask_from_count(tcount);
198         return unlikely(!!((a ^ b) & mask));
199 }
200
201 #else
202
203 static inline int dentry_string_cmp(const unsigned char *cs, const unsigned char *ct, unsigned tcount)
204 {
205         do {
206                 if (*cs != *ct)
207                         return 1;
208                 cs++;
209                 ct++;
210                 tcount--;
211         } while (tcount);
212         return 0;
213 }
214
215 #endif
216
217 static inline int dentry_cmp(const struct dentry *dentry, const unsigned char *ct, unsigned tcount)
218 {
219         /*
220          * Be careful about RCU walk racing with rename:
221          * use 'READ_ONCE' to fetch the name pointer.
222          *
223          * NOTE! Even if a rename will mean that the length
224          * was not loaded atomically, we don't care. The
225          * RCU walk will check the sequence count eventually,
226          * and catch it. And we won't overrun the buffer,
227          * because we're reading the name pointer atomically,
228          * and a dentry name is guaranteed to be properly
229          * terminated with a NUL byte.
230          *
231          * End result: even if 'len' is wrong, we'll exit
232          * early because the data cannot match (there can
233          * be no NUL in the ct/tcount data)
234          */
235         const unsigned char *cs = READ_ONCE(dentry->d_name.name);
236
237         return dentry_string_cmp(cs, ct, tcount);
238 }
239
240 struct external_name {
241         union {
242                 atomic_t count;
243                 struct rcu_head head;
244         } u;
245         unsigned char name[];
246 };
247
248 static inline struct external_name *external_name(struct dentry *dentry)
249 {
250         return container_of(dentry->d_name.name, struct external_name, name[0]);
251 }
252
253 static void __d_free(struct rcu_head *head)
254 {
255         struct dentry *dentry = container_of(head, struct dentry, d_u.d_rcu);
256
257         kmem_cache_free(dentry_cache, dentry); 
258 }
259
260 static void __d_free_external_name(struct rcu_head *head)
261 {
262         struct external_name *name = container_of(head, struct external_name,
263                                                   u.head);
264
265         mod_node_page_state(page_pgdat(virt_to_page(name)),
266                             NR_INDIRECTLY_RECLAIMABLE_BYTES,
267                             -ksize(name));
268
269         kfree(name);
270 }
271
272 static void __d_free_external(struct rcu_head *head)
273 {
274         struct dentry *dentry = container_of(head, struct dentry, d_u.d_rcu);
275
276         __d_free_external_name(&external_name(dentry)->u.head);
277
278         kmem_cache_free(dentry_cache, dentry);
279 }
280
281 static inline int dname_external(const struct dentry *dentry)
282 {
283         return dentry->d_name.name != dentry->d_iname;
284 }
285
286 void take_dentry_name_snapshot(struct name_snapshot *name, struct dentry *dentry)
287 {
288         spin_lock(&dentry->d_lock);
289         if (unlikely(dname_external(dentry))) {
290                 struct external_name *p = external_name(dentry);
291                 atomic_inc(&p->u.count);
292                 spin_unlock(&dentry->d_lock);
293                 name->name = p->name;
294         } else {
295                 memcpy(name->inline_name, dentry->d_iname,
296                        dentry->d_name.len + 1);
297                 spin_unlock(&dentry->d_lock);
298                 name->name = name->inline_name;
299         }
300 }
301 EXPORT_SYMBOL(take_dentry_name_snapshot);
302
303 void release_dentry_name_snapshot(struct name_snapshot *name)
304 {
305         if (unlikely(name->name != name->inline_name)) {
306                 struct external_name *p;
307                 p = container_of(name->name, struct external_name, name[0]);
308                 if (unlikely(atomic_dec_and_test(&p->u.count)))
309                         call_rcu(&p->u.head, __d_free_external_name);
310         }
311 }
312 EXPORT_SYMBOL(release_dentry_name_snapshot);
313
314 static inline void __d_set_inode_and_type(struct dentry *dentry,
315                                           struct inode *inode,
316                                           unsigned type_flags)
317 {
318         unsigned flags;
319
320         dentry->d_inode = inode;
321         flags = READ_ONCE(dentry->d_flags);
322         flags &= ~(DCACHE_ENTRY_TYPE | DCACHE_FALLTHRU);
323         flags |= type_flags;
324         WRITE_ONCE(dentry->d_flags, flags);
325 }
326
327 static inline void __d_clear_type_and_inode(struct dentry *dentry)
328 {
329         unsigned flags = READ_ONCE(dentry->d_flags);
330
331         flags &= ~(DCACHE_ENTRY_TYPE | DCACHE_FALLTHRU);
332         WRITE_ONCE(dentry->d_flags, flags);
333         dentry->d_inode = NULL;
334 }
335
336 static void dentry_free(struct dentry *dentry)
337 {
338         WARN_ON(!hlist_unhashed(&dentry->d_u.d_alias));
339         if (unlikely(dname_external(dentry))) {
340                 struct external_name *p = external_name(dentry);
341                 if (likely(atomic_dec_and_test(&p->u.count))) {
342                         call_rcu(&dentry->d_u.d_rcu, __d_free_external);
343                         return;
344                 }
345         }
346         /* if dentry was never visible to RCU, immediate free is OK */
347         if (dentry->d_flags & DCACHE_NORCU)
348                 __d_free(&dentry->d_u.d_rcu);
349         else
350                 call_rcu(&dentry->d_u.d_rcu, __d_free);
351 }
352
353 /*
354  * Release the dentry's inode, using the filesystem
355  * d_iput() operation if defined.
356  */
357 static void dentry_unlink_inode(struct dentry * dentry)
358         __releases(dentry->d_lock)
359         __releases(dentry->d_inode->i_lock)
360 {
361         struct inode *inode = dentry->d_inode;
362
363         raw_write_seqcount_begin(&dentry->d_seq);
364         __d_clear_type_and_inode(dentry);
365         hlist_del_init(&dentry->d_u.d_alias);
366         raw_write_seqcount_end(&dentry->d_seq);
367         spin_unlock(&dentry->d_lock);
368         spin_unlock(&inode->i_lock);
369         if (!inode->i_nlink)
370                 fsnotify_inoderemove(inode);
371         if (dentry->d_op && dentry->d_op->d_iput)
372                 dentry->d_op->d_iput(dentry, inode);
373         else
374                 iput(inode);
375 }
376
377 /*
378  * The DCACHE_LRU_LIST bit is set whenever the 'd_lru' entry
379  * is in use - which includes both the "real" per-superblock
380  * LRU list _and_ the DCACHE_SHRINK_LIST use.
381  *
382  * The DCACHE_SHRINK_LIST bit is set whenever the dentry is
383  * on the shrink list (ie not on the superblock LRU list).
384  *
385  * The per-cpu "nr_dentry_unused" counters are updated with
386  * the DCACHE_LRU_LIST bit.
387  *
388  * These helper functions make sure we always follow the
389  * rules. d_lock must be held by the caller.
390  */
391 #define D_FLAG_VERIFY(dentry,x) WARN_ON_ONCE(((dentry)->d_flags & (DCACHE_LRU_LIST | DCACHE_SHRINK_LIST)) != (x))
392 static void d_lru_add(struct dentry *dentry)
393 {
394         D_FLAG_VERIFY(dentry, 0);
395         dentry->d_flags |= DCACHE_LRU_LIST;
396         this_cpu_inc(nr_dentry_unused);
397         WARN_ON_ONCE(!list_lru_add(&dentry->d_sb->s_dentry_lru, &dentry->d_lru));
398 }
399
400 static void d_lru_del(struct dentry *dentry)
401 {
402         D_FLAG_VERIFY(dentry, DCACHE_LRU_LIST);
403         dentry->d_flags &= ~DCACHE_LRU_LIST;
404         this_cpu_dec(nr_dentry_unused);
405         WARN_ON_ONCE(!list_lru_del(&dentry->d_sb->s_dentry_lru, &dentry->d_lru));
406 }
407
408 static void d_shrink_del(struct dentry *dentry)
409 {
410         D_FLAG_VERIFY(dentry, DCACHE_SHRINK_LIST | DCACHE_LRU_LIST);
411         list_del_init(&dentry->d_lru);
412         dentry->d_flags &= ~(DCACHE_SHRINK_LIST | DCACHE_LRU_LIST);
413         this_cpu_dec(nr_dentry_unused);
414 }
415
416 static void d_shrink_add(struct dentry *dentry, struct list_head *list)
417 {
418         D_FLAG_VERIFY(dentry, 0);
419         list_add(&dentry->d_lru, list);
420         dentry->d_flags |= DCACHE_SHRINK_LIST | DCACHE_LRU_LIST;
421         this_cpu_inc(nr_dentry_unused);
422 }
423
424 /*
425  * These can only be called under the global LRU lock, ie during the
426  * callback for freeing the LRU list. "isolate" removes it from the
427  * LRU lists entirely, while shrink_move moves it to the indicated
428  * private list.
429  */
430 static void d_lru_isolate(struct list_lru_one *lru, struct dentry *dentry)
431 {
432         D_FLAG_VERIFY(dentry, DCACHE_LRU_LIST);
433         dentry->d_flags &= ~DCACHE_LRU_LIST;
434         this_cpu_dec(nr_dentry_unused);
435         list_lru_isolate(lru, &dentry->d_lru);
436 }
437
438 static void d_lru_shrink_move(struct list_lru_one *lru, struct dentry *dentry,
439                               struct list_head *list)
440 {
441         D_FLAG_VERIFY(dentry, DCACHE_LRU_LIST);
442         dentry->d_flags |= DCACHE_SHRINK_LIST;
443         list_lru_isolate_move(lru, &dentry->d_lru, list);
444 }
445
446 /**
447  * d_drop - drop a dentry
448  * @dentry: dentry to drop
449  *
450  * d_drop() unhashes the entry from the parent dentry hashes, so that it won't
451  * be found through a VFS lookup any more. Note that this is different from
452  * deleting the dentry - d_delete will try to mark the dentry negative if
453  * possible, giving a successful _negative_ lookup, while d_drop will
454  * just make the cache lookup fail.
455  *
456  * d_drop() is used mainly for stuff that wants to invalidate a dentry for some
457  * reason (NFS timeouts or autofs deletes).
458  *
459  * __d_drop requires dentry->d_lock
460  * ___d_drop doesn't mark dentry as "unhashed"
461  *   (dentry->d_hash.pprev will be LIST_POISON2, not NULL).
462  */
463 static void ___d_drop(struct dentry *dentry)
464 {
465         struct hlist_bl_head *b;
466         /*
467          * Hashed dentries are normally on the dentry hashtable,
468          * with the exception of those newly allocated by
469          * d_obtain_root, which are always IS_ROOT:
470          */
471         if (unlikely(IS_ROOT(dentry)))
472                 b = &dentry->d_sb->s_roots;
473         else
474                 b = d_hash(dentry->d_name.hash);
475
476         hlist_bl_lock(b);
477         __hlist_bl_del(&dentry->d_hash);
478         hlist_bl_unlock(b);
479 }
480
481 void __d_drop(struct dentry *dentry)
482 {
483         if (!d_unhashed(dentry)) {
484                 ___d_drop(dentry);
485                 dentry->d_hash.pprev = NULL;
486                 write_seqcount_invalidate(&dentry->d_seq);
487         }
488 }
489 EXPORT_SYMBOL(__d_drop);
490
491 void d_drop(struct dentry *dentry)
492 {
493         spin_lock(&dentry->d_lock);
494         __d_drop(dentry);
495         spin_unlock(&dentry->d_lock);
496 }
497 EXPORT_SYMBOL(d_drop);
498
499 static inline void dentry_unlist(struct dentry *dentry, struct dentry *parent)
500 {
501         struct dentry *next;
502         /*
503          * Inform d_walk() and shrink_dentry_list() that we are no longer
504          * attached to the dentry tree
505          */
506         dentry->d_flags |= DCACHE_DENTRY_KILLED;
507         if (unlikely(list_empty(&dentry->d_child)))
508                 return;
509         __list_del_entry(&dentry->d_child);
510         /*
511          * Cursors can move around the list of children.  While we'd been
512          * a normal list member, it didn't matter - ->d_child.next would've
513          * been updated.  However, from now on it won't be and for the
514          * things like d_walk() it might end up with a nasty surprise.
515          * Normally d_walk() doesn't care about cursors moving around -
516          * ->d_lock on parent prevents that and since a cursor has no children
517          * of its own, we get through it without ever unlocking the parent.
518          * There is one exception, though - if we ascend from a child that
519          * gets killed as soon as we unlock it, the next sibling is found
520          * using the value left in its ->d_child.next.  And if _that_
521          * pointed to a cursor, and cursor got moved (e.g. by lseek())
522          * before d_walk() regains parent->d_lock, we'll end up skipping
523          * everything the cursor had been moved past.
524          *
525          * Solution: make sure that the pointer left behind in ->d_child.next
526          * points to something that won't be moving around.  I.e. skip the
527          * cursors.
528          */
529         while (dentry->d_child.next != &parent->d_subdirs) {
530                 next = list_entry(dentry->d_child.next, struct dentry, d_child);
531                 if (likely(!(next->d_flags & DCACHE_DENTRY_CURSOR)))
532                         break;
533                 dentry->d_child.next = next->d_child.next;
534         }
535 }
536
537 static void __dentry_kill(struct dentry *dentry)
538 {
539         struct dentry *parent = NULL;
540         bool can_free = true;
541         if (!IS_ROOT(dentry))
542                 parent = dentry->d_parent;
543
544         /*
545          * The dentry is now unrecoverably dead to the world.
546          */
547         lockref_mark_dead(&dentry->d_lockref);
548
549         /*
550          * inform the fs via d_prune that this dentry is about to be
551          * unhashed and destroyed.
552          */
553         if (dentry->d_flags & DCACHE_OP_PRUNE)
554                 dentry->d_op->d_prune(dentry);
555
556         if (dentry->d_flags & DCACHE_LRU_LIST) {
557                 if (!(dentry->d_flags & DCACHE_SHRINK_LIST))
558                         d_lru_del(dentry);
559         }
560         /* if it was on the hash then remove it */
561         __d_drop(dentry);
562         dentry_unlist(dentry, parent);
563         if (parent)
564                 spin_unlock(&parent->d_lock);
565         if (dentry->d_inode)
566                 dentry_unlink_inode(dentry);
567         else
568                 spin_unlock(&dentry->d_lock);
569         this_cpu_dec(nr_dentry);
570         if (dentry->d_op && dentry->d_op->d_release)
571                 dentry->d_op->d_release(dentry);
572
573         spin_lock(&dentry->d_lock);
574         if (dentry->d_flags & DCACHE_SHRINK_LIST) {
575                 dentry->d_flags |= DCACHE_MAY_FREE;
576                 can_free = false;
577         }
578         spin_unlock(&dentry->d_lock);
579         if (likely(can_free))
580                 dentry_free(dentry);
581         cond_resched();
582 }
583
584 static struct dentry *__lock_parent(struct dentry *dentry)
585 {
586         struct dentry *parent;
587         rcu_read_lock();
588         spin_unlock(&dentry->d_lock);
589 again:
590         parent = READ_ONCE(dentry->d_parent);
591         spin_lock(&parent->d_lock);
592         /*
593          * We can't blindly lock dentry until we are sure
594          * that we won't violate the locking order.
595          * Any changes of dentry->d_parent must have
596          * been done with parent->d_lock held, so
597          * spin_lock() above is enough of a barrier
598          * for checking if it's still our child.
599          */
600         if (unlikely(parent != dentry->d_parent)) {
601                 spin_unlock(&parent->d_lock);
602                 goto again;
603         }
604         rcu_read_unlock();
605         if (parent != dentry)
606                 spin_lock_nested(&dentry->d_lock, DENTRY_D_LOCK_NESTED);
607         else
608                 parent = NULL;
609         return parent;
610 }
611
612 static inline struct dentry *lock_parent(struct dentry *dentry)
613 {
614         struct dentry *parent = dentry->d_parent;
615         if (IS_ROOT(dentry))
616                 return NULL;
617         if (likely(spin_trylock(&parent->d_lock)))
618                 return parent;
619         return __lock_parent(dentry);
620 }
621
622 static inline bool retain_dentry(struct dentry *dentry)
623 {
624         WARN_ON(d_in_lookup(dentry));
625
626         /* Unreachable? Get rid of it */
627         if (unlikely(d_unhashed(dentry)))
628                 return false;
629
630         if (unlikely(dentry->d_flags & DCACHE_DISCONNECTED))
631                 return false;
632
633         if (unlikely(dentry->d_flags & DCACHE_OP_DELETE)) {
634                 if (dentry->d_op->d_delete(dentry))
635                         return false;
636         }
637         /* retain; LRU fodder */
638         dentry->d_lockref.count--;
639         if (unlikely(!(dentry->d_flags & DCACHE_LRU_LIST)))
640                 d_lru_add(dentry);
641         else if (unlikely(!(dentry->d_flags & DCACHE_REFERENCED)))
642                 dentry->d_flags |= DCACHE_REFERENCED;
643         return true;
644 }
645
646 /*
647  * Finish off a dentry we've decided to kill.
648  * dentry->d_lock must be held, returns with it unlocked.
649  * Returns dentry requiring refcount drop, or NULL if we're done.
650  */
651 static struct dentry *dentry_kill(struct dentry *dentry)
652         __releases(dentry->d_lock)
653 {
654         struct inode *inode = dentry->d_inode;
655         struct dentry *parent = NULL;
656
657         if (inode && unlikely(!spin_trylock(&inode->i_lock)))
658                 goto slow_positive;
659
660         if (!IS_ROOT(dentry)) {
661                 parent = dentry->d_parent;
662                 if (unlikely(!spin_trylock(&parent->d_lock))) {
663                         parent = __lock_parent(dentry);
664                         if (likely(inode || !dentry->d_inode))
665                                 goto got_locks;
666                         /* negative that became positive */
667                         if (parent)
668                                 spin_unlock(&parent->d_lock);
669                         inode = dentry->d_inode;
670                         goto slow_positive;
671                 }
672         }
673         __dentry_kill(dentry);
674         return parent;
675
676 slow_positive:
677         spin_unlock(&dentry->d_lock);
678         spin_lock(&inode->i_lock);
679         spin_lock(&dentry->d_lock);
680         parent = lock_parent(dentry);
681 got_locks:
682         if (unlikely(dentry->d_lockref.count != 1)) {
683                 dentry->d_lockref.count--;
684         } else if (likely(!retain_dentry(dentry))) {
685                 __dentry_kill(dentry);
686                 return parent;
687         }
688         /* we are keeping it, after all */
689         if (inode)
690                 spin_unlock(&inode->i_lock);
691         if (parent)
692                 spin_unlock(&parent->d_lock);
693         spin_unlock(&dentry->d_lock);
694         return NULL;
695 }
696
697 /*
698  * Try to do a lockless dput(), and return whether that was successful.
699  *
700  * If unsuccessful, we return false, having already taken the dentry lock.
701  *
702  * The caller needs to hold the RCU read lock, so that the dentry is
703  * guaranteed to stay around even if the refcount goes down to zero!
704  */
705 static inline bool fast_dput(struct dentry *dentry)
706 {
707         int ret;
708         unsigned int d_flags;
709
710         /*
711          * If we have a d_op->d_delete() operation, we sould not
712          * let the dentry count go to zero, so use "put_or_lock".
713          */
714         if (unlikely(dentry->d_flags & DCACHE_OP_DELETE))
715                 return lockref_put_or_lock(&dentry->d_lockref);
716
717         /*
718          * .. otherwise, we can try to just decrement the
719          * lockref optimistically.
720          */
721         ret = lockref_put_return(&dentry->d_lockref);
722
723         /*
724          * If the lockref_put_return() failed due to the lock being held
725          * by somebody else, the fast path has failed. We will need to
726          * get the lock, and then check the count again.
727          */
728         if (unlikely(ret < 0)) {
729                 spin_lock(&dentry->d_lock);
730                 if (dentry->d_lockref.count > 1) {
731                         dentry->d_lockref.count--;
732                         spin_unlock(&dentry->d_lock);
733                         return true;
734                 }
735                 return false;
736         }
737
738         /*
739          * If we weren't the last ref, we're done.
740          */
741         if (ret)
742                 return true;
743
744         /*
745          * Careful, careful. The reference count went down
746          * to zero, but we don't hold the dentry lock, so
747          * somebody else could get it again, and do another
748          * dput(), and we need to not race with that.
749          *
750          * However, there is a very special and common case
751          * where we don't care, because there is nothing to
752          * do: the dentry is still hashed, it does not have
753          * a 'delete' op, and it's referenced and already on
754          * the LRU list.
755          *
756          * NOTE! Since we aren't locked, these values are
757          * not "stable". However, it is sufficient that at
758          * some point after we dropped the reference the
759          * dentry was hashed and the flags had the proper
760          * value. Other dentry users may have re-gotten
761          * a reference to the dentry and change that, but
762          * our work is done - we can leave the dentry
763          * around with a zero refcount.
764          */
765         smp_rmb();
766         d_flags = READ_ONCE(dentry->d_flags);
767         d_flags &= DCACHE_REFERENCED | DCACHE_LRU_LIST | DCACHE_DISCONNECTED;
768
769         /* Nothing to do? Dropping the reference was all we needed? */
770         if (d_flags == (DCACHE_REFERENCED | DCACHE_LRU_LIST) && !d_unhashed(dentry))
771                 return true;
772
773         /*
774          * Not the fast normal case? Get the lock. We've already decremented
775          * the refcount, but we'll need to re-check the situation after
776          * getting the lock.
777          */
778         spin_lock(&dentry->d_lock);
779
780         /*
781          * Did somebody else grab a reference to it in the meantime, and
782          * we're no longer the last user after all? Alternatively, somebody
783          * else could have killed it and marked it dead. Either way, we
784          * don't need to do anything else.
785          */
786         if (dentry->d_lockref.count) {
787                 spin_unlock(&dentry->d_lock);
788                 return true;
789         }
790
791         /*
792          * Re-get the reference we optimistically dropped. We hold the
793          * lock, and we just tested that it was zero, so we can just
794          * set it to 1.
795          */
796         dentry->d_lockref.count = 1;
797         return false;
798 }
799
800
801 /* 
802  * This is dput
803  *
804  * This is complicated by the fact that we do not want to put
805  * dentries that are no longer on any hash chain on the unused
806  * list: we'd much rather just get rid of them immediately.
807  *
808  * However, that implies that we have to traverse the dentry
809  * tree upwards to the parents which might _also_ now be
810  * scheduled for deletion (it may have been only waiting for
811  * its last child to go away).
812  *
813  * This tail recursion is done by hand as we don't want to depend
814  * on the compiler to always get this right (gcc generally doesn't).
815  * Real recursion would eat up our stack space.
816  */
817
818 /*
819  * dput - release a dentry
820  * @dentry: dentry to release 
821  *
822  * Release a dentry. This will drop the usage count and if appropriate
823  * call the dentry unlink method as well as removing it from the queues and
824  * releasing its resources. If the parent dentries were scheduled for release
825  * they too may now get deleted.
826  */
827 void dput(struct dentry *dentry)
828 {
829         while (dentry) {
830                 might_sleep();
831
832                 rcu_read_lock();
833                 if (likely(fast_dput(dentry))) {
834                         rcu_read_unlock();
835                         return;
836                 }
837
838                 /* Slow case: now with the dentry lock held */
839                 rcu_read_unlock();
840
841                 if (likely(retain_dentry(dentry))) {
842                         spin_unlock(&dentry->d_lock);
843                         return;
844                 }
845
846                 dentry = dentry_kill(dentry);
847         }
848 }
849 EXPORT_SYMBOL(dput);
850
851
852 /* This must be called with d_lock held */
853 static inline void __dget_dlock(struct dentry *dentry)
854 {
855         dentry->d_lockref.count++;
856 }
857
858 static inline void __dget(struct dentry *dentry)
859 {
860         lockref_get(&dentry->d_lockref);
861 }
862
863 struct dentry *dget_parent(struct dentry *dentry)
864 {
865         int gotref;
866         struct dentry *ret;
867         unsigned seq;
868
869         /*
870          * Do optimistic parent lookup without any
871          * locking.
872          */
873         rcu_read_lock();
874         seq = raw_seqcount_begin(&dentry->d_seq);
875         ret = READ_ONCE(dentry->d_parent);
876         gotref = lockref_get_not_zero(&ret->d_lockref);
877         rcu_read_unlock();
878         if (likely(gotref)) {
879                 if (!read_seqcount_retry(&dentry->d_seq, seq))
880                         return ret;
881                 dput(ret);
882         }
883
884 repeat:
885         /*
886          * Don't need rcu_dereference because we re-check it was correct under
887          * the lock.
888          */
889         rcu_read_lock();
890         ret = dentry->d_parent;
891         spin_lock(&ret->d_lock);
892         if (unlikely(ret != dentry->d_parent)) {
893                 spin_unlock(&ret->d_lock);
894                 rcu_read_unlock();
895                 goto repeat;
896         }
897         rcu_read_unlock();
898         BUG_ON(!ret->d_lockref.count);
899         ret->d_lockref.count++;
900         spin_unlock(&ret->d_lock);
901         return ret;
902 }
903 EXPORT_SYMBOL(dget_parent);
904
905 static struct dentry * __d_find_any_alias(struct inode *inode)
906 {
907         struct dentry *alias;
908
909         if (hlist_empty(&inode->i_dentry))
910                 return NULL;
911         alias = hlist_entry(inode->i_dentry.first, struct dentry, d_u.d_alias);
912         __dget(alias);
913         return alias;
914 }
915
916 /**
917  * d_find_any_alias - find any alias for a given inode
918  * @inode: inode to find an alias for
919  *
920  * If any aliases exist for the given inode, take and return a
921  * reference for one of them.  If no aliases exist, return %NULL.
922  */
923 struct dentry *d_find_any_alias(struct inode *inode)
924 {
925         struct dentry *de;
926
927         spin_lock(&inode->i_lock);
928         de = __d_find_any_alias(inode);
929         spin_unlock(&inode->i_lock);
930         return de;
931 }
932 EXPORT_SYMBOL(d_find_any_alias);
933
934 /**
935  * d_find_alias - grab a hashed alias of inode
936  * @inode: inode in question
937  *
938  * If inode has a hashed alias, or is a directory and has any alias,
939  * acquire the reference to alias and return it. Otherwise return NULL.
940  * Notice that if inode is a directory there can be only one alias and
941  * it can be unhashed only if it has no children, or if it is the root
942  * of a filesystem, or if the directory was renamed and d_revalidate
943  * was the first vfs operation to notice.
944  *
945  * If the inode has an IS_ROOT, DCACHE_DISCONNECTED alias, then prefer
946  * any other hashed alias over that one.
947  */
948 static struct dentry *__d_find_alias(struct inode *inode)
949 {
950         struct dentry *alias;
951
952         if (S_ISDIR(inode->i_mode))
953                 return __d_find_any_alias(inode);
954
955         hlist_for_each_entry(alias, &inode->i_dentry, d_u.d_alias) {
956                 spin_lock(&alias->d_lock);
957                 if (!d_unhashed(alias)) {
958                         __dget_dlock(alias);
959                         spin_unlock(&alias->d_lock);
960                         return alias;
961                 }
962                 spin_unlock(&alias->d_lock);
963         }
964         return NULL;
965 }
966
967 struct dentry *d_find_alias(struct inode *inode)
968 {
969         struct dentry *de = NULL;
970
971         if (!hlist_empty(&inode->i_dentry)) {
972                 spin_lock(&inode->i_lock);
973                 de = __d_find_alias(inode);
974                 spin_unlock(&inode->i_lock);
975         }
976         return de;
977 }
978 EXPORT_SYMBOL(d_find_alias);
979
980 /*
981  *      Try to kill dentries associated with this inode.
982  * WARNING: you must own a reference to inode.
983  */
984 void d_prune_aliases(struct inode *inode)
985 {
986         struct dentry *dentry;
987 restart:
988         spin_lock(&inode->i_lock);
989         hlist_for_each_entry(dentry, &inode->i_dentry, d_u.d_alias) {
990                 spin_lock(&dentry->d_lock);
991                 if (!dentry->d_lockref.count) {
992                         struct dentry *parent = lock_parent(dentry);
993                         if (likely(!dentry->d_lockref.count)) {
994                                 __dentry_kill(dentry);
995                                 dput(parent);
996                                 goto restart;
997                         }
998                         if (parent)
999                                 spin_unlock(&parent->d_lock);
1000                 }
1001                 spin_unlock(&dentry->d_lock);
1002         }
1003         spin_unlock(&inode->i_lock);
1004 }
1005 EXPORT_SYMBOL(d_prune_aliases);
1006
1007 /*
1008  * Lock a dentry from shrink list.
1009  * Called under rcu_read_lock() and dentry->d_lock; the former
1010  * guarantees that nothing we access will be freed under us.
1011  * Note that dentry is *not* protected from concurrent dentry_kill(),
1012  * d_delete(), etc.
1013  *
1014  * Return false if dentry has been disrupted or grabbed, leaving
1015  * the caller to kick it off-list.  Otherwise, return true and have
1016  * that dentry's inode and parent both locked.
1017  */
1018 static bool shrink_lock_dentry(struct dentry *dentry)
1019 {
1020         struct inode *inode;
1021         struct dentry *parent;
1022
1023         if (dentry->d_lockref.count)
1024                 return false;
1025
1026         inode = dentry->d_inode;
1027         if (inode && unlikely(!spin_trylock(&inode->i_lock))) {
1028                 spin_unlock(&dentry->d_lock);
1029                 spin_lock(&inode->i_lock);
1030                 spin_lock(&dentry->d_lock);
1031                 if (unlikely(dentry->d_lockref.count))
1032                         goto out;
1033                 /* changed inode means that somebody had grabbed it */
1034                 if (unlikely(inode != dentry->d_inode))
1035                         goto out;
1036         }
1037
1038         parent = dentry->d_parent;
1039         if (IS_ROOT(dentry) || likely(spin_trylock(&parent->d_lock)))
1040                 return true;
1041
1042         spin_unlock(&dentry->d_lock);
1043         spin_lock(&parent->d_lock);
1044         if (unlikely(parent != dentry->d_parent)) {
1045                 spin_unlock(&parent->d_lock);
1046                 spin_lock(&dentry->d_lock);
1047                 goto out;
1048         }
1049         spin_lock_nested(&dentry->d_lock, DENTRY_D_LOCK_NESTED);
1050         if (likely(!dentry->d_lockref.count))
1051                 return true;
1052         spin_unlock(&parent->d_lock);
1053 out:
1054         if (inode)
1055                 spin_unlock(&inode->i_lock);
1056         return false;
1057 }
1058
1059 static void shrink_dentry_list(struct list_head *list)
1060 {
1061         while (!list_empty(list)) {
1062                 struct dentry *dentry, *parent;
1063
1064                 dentry = list_entry(list->prev, struct dentry, d_lru);
1065                 spin_lock(&dentry->d_lock);
1066                 rcu_read_lock();
1067                 if (!shrink_lock_dentry(dentry)) {
1068                         bool can_free = false;
1069                         rcu_read_unlock();
1070                         d_shrink_del(dentry);
1071                         if (dentry->d_lockref.count < 0)
1072                                 can_free = dentry->d_flags & DCACHE_MAY_FREE;
1073                         spin_unlock(&dentry->d_lock);
1074                         if (can_free)
1075                                 dentry_free(dentry);
1076                         continue;
1077                 }
1078                 rcu_read_unlock();
1079                 d_shrink_del(dentry);
1080                 parent = dentry->d_parent;
1081                 __dentry_kill(dentry);
1082                 if (parent == dentry)
1083                         continue;
1084                 /*
1085                  * We need to prune ancestors too. This is necessary to prevent
1086                  * quadratic behavior of shrink_dcache_parent(), but is also
1087                  * expected to be beneficial in reducing dentry cache
1088                  * fragmentation.
1089                  */
1090                 dentry = parent;
1091                 while (dentry && !lockref_put_or_lock(&dentry->d_lockref))
1092                         dentry = dentry_kill(dentry);
1093         }
1094 }
1095
1096 static enum lru_status dentry_lru_isolate(struct list_head *item,
1097                 struct list_lru_one *lru, spinlock_t *lru_lock, void *arg)
1098 {
1099         struct list_head *freeable = arg;
1100         struct dentry   *dentry = container_of(item, struct dentry, d_lru);
1101
1102
1103         /*
1104          * we are inverting the lru lock/dentry->d_lock here,
1105          * so use a trylock. If we fail to get the lock, just skip
1106          * it
1107          */
1108         if (!spin_trylock(&dentry->d_lock))
1109                 return LRU_SKIP;
1110
1111         /*
1112          * Referenced dentries are still in use. If they have active
1113          * counts, just remove them from the LRU. Otherwise give them
1114          * another pass through the LRU.
1115          */
1116         if (dentry->d_lockref.count) {
1117                 d_lru_isolate(lru, dentry);
1118                 spin_unlock(&dentry->d_lock);
1119                 return LRU_REMOVED;
1120         }
1121
1122         if (dentry->d_flags & DCACHE_REFERENCED) {
1123                 dentry->d_flags &= ~DCACHE_REFERENCED;
1124                 spin_unlock(&dentry->d_lock);
1125
1126                 /*
1127                  * The list move itself will be made by the common LRU code. At
1128                  * this point, we've dropped the dentry->d_lock but keep the
1129                  * lru lock. This is safe to do, since every list movement is
1130                  * protected by the lru lock even if both locks are held.
1131                  *
1132                  * This is guaranteed by the fact that all LRU management
1133                  * functions are intermediated by the LRU API calls like
1134                  * list_lru_add and list_lru_del. List movement in this file
1135                  * only ever occur through this functions or through callbacks
1136                  * like this one, that are called from the LRU API.
1137                  *
1138                  * The only exceptions to this are functions like
1139                  * shrink_dentry_list, and code that first checks for the
1140                  * DCACHE_SHRINK_LIST flag.  Those are guaranteed to be
1141                  * operating only with stack provided lists after they are
1142                  * properly isolated from the main list.  It is thus, always a
1143                  * local access.
1144                  */
1145                 return LRU_ROTATE;
1146         }
1147
1148         d_lru_shrink_move(lru, dentry, freeable);
1149         spin_unlock(&dentry->d_lock);
1150
1151         return LRU_REMOVED;
1152 }
1153
1154 /**
1155  * prune_dcache_sb - shrink the dcache
1156  * @sb: superblock
1157  * @sc: shrink control, passed to list_lru_shrink_walk()
1158  *
1159  * Attempt to shrink the superblock dcache LRU by @sc->nr_to_scan entries. This
1160  * is done when we need more memory and called from the superblock shrinker
1161  * function.
1162  *
1163  * This function may fail to free any resources if all the dentries are in
1164  * use.
1165  */
1166 long prune_dcache_sb(struct super_block *sb, struct shrink_control *sc)
1167 {
1168         LIST_HEAD(dispose);
1169         long freed;
1170
1171         freed = list_lru_shrink_walk(&sb->s_dentry_lru, sc,
1172                                      dentry_lru_isolate, &dispose);
1173         shrink_dentry_list(&dispose);
1174         return freed;
1175 }
1176
1177 static enum lru_status dentry_lru_isolate_shrink(struct list_head *item,
1178                 struct list_lru_one *lru, spinlock_t *lru_lock, void *arg)
1179 {
1180         struct list_head *freeable = arg;
1181         struct dentry   *dentry = container_of(item, struct dentry, d_lru);
1182
1183         /*
1184          * we are inverting the lru lock/dentry->d_lock here,
1185          * so use a trylock. If we fail to get the lock, just skip
1186          * it
1187          */
1188         if (!spin_trylock(&dentry->d_lock))
1189                 return LRU_SKIP;
1190
1191         d_lru_shrink_move(lru, dentry, freeable);
1192         spin_unlock(&dentry->d_lock);
1193
1194         return LRU_REMOVED;
1195 }
1196
1197
1198 /**
1199  * shrink_dcache_sb - shrink dcache for a superblock
1200  * @sb: superblock
1201  *
1202  * Shrink the dcache for the specified super block. This is used to free
1203  * the dcache before unmounting a file system.
1204  */
1205 void shrink_dcache_sb(struct super_block *sb)
1206 {
1207         do {
1208                 LIST_HEAD(dispose);
1209
1210                 list_lru_walk(&sb->s_dentry_lru,
1211                         dentry_lru_isolate_shrink, &dispose, 1024);
1212                 shrink_dentry_list(&dispose);
1213         } while (list_lru_count(&sb->s_dentry_lru) > 0);
1214 }
1215 EXPORT_SYMBOL(shrink_dcache_sb);
1216
1217 /**
1218  * enum d_walk_ret - action to talke during tree walk
1219  * @D_WALK_CONTINUE:    contrinue walk
1220  * @D_WALK_QUIT:        quit walk
1221  * @D_WALK_NORETRY:     quit when retry is needed
1222  * @D_WALK_SKIP:        skip this dentry and its children
1223  */
1224 enum d_walk_ret {
1225         D_WALK_CONTINUE,
1226         D_WALK_QUIT,
1227         D_WALK_NORETRY,
1228         D_WALK_SKIP,
1229 };
1230
1231 /**
1232  * d_walk - walk the dentry tree
1233  * @parent:     start of walk
1234  * @data:       data passed to @enter() and @finish()
1235  * @enter:      callback when first entering the dentry
1236  *
1237  * The @enter() callbacks are called with d_lock held.
1238  */
1239 static void d_walk(struct dentry *parent, void *data,
1240                    enum d_walk_ret (*enter)(void *, struct dentry *))
1241 {
1242         struct dentry *this_parent;
1243         struct list_head *next;
1244         unsigned seq = 0;
1245         enum d_walk_ret ret;
1246         bool retry = true;
1247
1248 again:
1249         read_seqbegin_or_lock(&rename_lock, &seq);
1250         this_parent = parent;
1251         spin_lock(&this_parent->d_lock);
1252
1253         ret = enter(data, this_parent);
1254         switch (ret) {
1255         case D_WALK_CONTINUE:
1256                 break;
1257         case D_WALK_QUIT:
1258         case D_WALK_SKIP:
1259                 goto out_unlock;
1260         case D_WALK_NORETRY:
1261                 retry = false;
1262                 break;
1263         }
1264 repeat:
1265         next = this_parent->d_subdirs.next;
1266 resume:
1267         while (next != &this_parent->d_subdirs) {
1268                 struct list_head *tmp = next;
1269                 struct dentry *dentry = list_entry(tmp, struct dentry, d_child);
1270                 next = tmp->next;
1271
1272                 if (unlikely(dentry->d_flags & DCACHE_DENTRY_CURSOR))
1273                         continue;
1274
1275                 spin_lock_nested(&dentry->d_lock, DENTRY_D_LOCK_NESTED);
1276
1277                 ret = enter(data, dentry);
1278                 switch (ret) {
1279                 case D_WALK_CONTINUE:
1280                         break;
1281                 case D_WALK_QUIT:
1282                         spin_unlock(&dentry->d_lock);
1283                         goto out_unlock;
1284                 case D_WALK_NORETRY:
1285                         retry = false;
1286                         break;
1287                 case D_WALK_SKIP:
1288                         spin_unlock(&dentry->d_lock);
1289                         continue;
1290                 }
1291
1292                 if (!list_empty(&dentry->d_subdirs)) {
1293                         spin_unlock(&this_parent->d_lock);
1294                         spin_release(&dentry->d_lock.dep_map, 1, _RET_IP_);
1295                         this_parent = dentry;
1296                         spin_acquire(&this_parent->d_lock.dep_map, 0, 1, _RET_IP_);
1297                         goto repeat;
1298                 }
1299                 spin_unlock(&dentry->d_lock);
1300         }
1301         /*
1302          * All done at this level ... ascend and resume the search.
1303          */
1304         rcu_read_lock();
1305 ascend:
1306         if (this_parent != parent) {
1307                 struct dentry *child = this_parent;
1308                 this_parent = child->d_parent;
1309
1310                 spin_unlock(&child->d_lock);
1311                 spin_lock(&this_parent->d_lock);
1312
1313                 /* might go back up the wrong parent if we have had a rename. */
1314                 if (need_seqretry(&rename_lock, seq))
1315                         goto rename_retry;
1316                 /* go into the first sibling still alive */
1317                 do {
1318                         next = child->d_child.next;
1319                         if (next == &this_parent->d_subdirs)
1320                                 goto ascend;
1321                         child = list_entry(next, struct dentry, d_child);
1322                 } while (unlikely(child->d_flags & DCACHE_DENTRY_KILLED));
1323                 rcu_read_unlock();
1324                 goto resume;
1325         }
1326         if (need_seqretry(&rename_lock, seq))
1327                 goto rename_retry;
1328         rcu_read_unlock();
1329
1330 out_unlock:
1331         spin_unlock(&this_parent->d_lock);
1332         done_seqretry(&rename_lock, seq);
1333         return;
1334
1335 rename_retry:
1336         spin_unlock(&this_parent->d_lock);
1337         rcu_read_unlock();
1338         BUG_ON(seq & 1);
1339         if (!retry)
1340                 return;
1341         seq = 1;
1342         goto again;
1343 }
1344
1345 struct check_mount {
1346         struct vfsmount *mnt;
1347         unsigned int mounted;
1348 };
1349
1350 static enum d_walk_ret path_check_mount(void *data, struct dentry *dentry)
1351 {
1352         struct check_mount *info = data;
1353         struct path path = { .mnt = info->mnt, .dentry = dentry };
1354
1355         if (likely(!d_mountpoint(dentry)))
1356                 return D_WALK_CONTINUE;
1357         if (__path_is_mountpoint(&path)) {
1358                 info->mounted = 1;
1359                 return D_WALK_QUIT;
1360         }
1361         return D_WALK_CONTINUE;
1362 }
1363
1364 /**
1365  * path_has_submounts - check for mounts over a dentry in the
1366  *                      current namespace.
1367  * @parent: path to check.
1368  *
1369  * Return true if the parent or its subdirectories contain
1370  * a mount point in the current namespace.
1371  */
1372 int path_has_submounts(const struct path *parent)
1373 {
1374         struct check_mount data = { .mnt = parent->mnt, .mounted = 0 };
1375
1376         read_seqlock_excl(&mount_lock);
1377         d_walk(parent->dentry, &data, path_check_mount);
1378         read_sequnlock_excl(&mount_lock);
1379
1380         return data.mounted;
1381 }
1382 EXPORT_SYMBOL(path_has_submounts);
1383
1384 /*
1385  * Called by mount code to set a mountpoint and check if the mountpoint is
1386  * reachable (e.g. NFS can unhash a directory dentry and then the complete
1387  * subtree can become unreachable).
1388  *
1389  * Only one of d_invalidate() and d_set_mounted() must succeed.  For
1390  * this reason take rename_lock and d_lock on dentry and ancestors.
1391  */
1392 int d_set_mounted(struct dentry *dentry)
1393 {
1394         struct dentry *p;
1395         int ret = -ENOENT;
1396         write_seqlock(&rename_lock);
1397         for (p = dentry->d_parent; !IS_ROOT(p); p = p->d_parent) {
1398                 /* Need exclusion wrt. d_invalidate() */
1399                 spin_lock(&p->d_lock);
1400                 if (unlikely(d_unhashed(p))) {
1401                         spin_unlock(&p->d_lock);
1402                         goto out;
1403                 }
1404                 spin_unlock(&p->d_lock);
1405         }
1406         spin_lock(&dentry->d_lock);
1407         if (!d_unlinked(dentry)) {
1408                 ret = -EBUSY;
1409                 if (!d_mountpoint(dentry)) {
1410                         dentry->d_flags |= DCACHE_MOUNTED;
1411                         ret = 0;
1412                 }
1413         }
1414         spin_unlock(&dentry->d_lock);
1415 out:
1416         write_sequnlock(&rename_lock);
1417         return ret;
1418 }
1419
1420 /*
1421  * Search the dentry child list of the specified parent,
1422  * and move any unused dentries to the end of the unused
1423  * list for prune_dcache(). We descend to the next level
1424  * whenever the d_subdirs list is non-empty and continue
1425  * searching.
1426  *
1427  * It returns zero iff there are no unused children,
1428  * otherwise  it returns the number of children moved to
1429  * the end of the unused list. This may not be the total
1430  * number of unused children, because select_parent can
1431  * drop the lock and return early due to latency
1432  * constraints.
1433  */
1434
1435 struct select_data {
1436         struct dentry *start;
1437         struct list_head dispose;
1438         int found;
1439 };
1440
1441 static enum d_walk_ret select_collect(void *_data, struct dentry *dentry)
1442 {
1443         struct select_data *data = _data;
1444         enum d_walk_ret ret = D_WALK_CONTINUE;
1445
1446         if (data->start == dentry)
1447                 goto out;
1448
1449         if (dentry->d_flags & DCACHE_SHRINK_LIST) {
1450                 data->found++;
1451         } else {
1452                 if (dentry->d_flags & DCACHE_LRU_LIST)
1453                         d_lru_del(dentry);
1454                 if (!dentry->d_lockref.count) {
1455                         d_shrink_add(dentry, &data->dispose);
1456                         data->found++;
1457                 }
1458         }
1459         /*
1460          * We can return to the caller if we have found some (this
1461          * ensures forward progress). We'll be coming back to find
1462          * the rest.
1463          */
1464         if (!list_empty(&data->dispose))
1465                 ret = need_resched() ? D_WALK_QUIT : D_WALK_NORETRY;
1466 out:
1467         return ret;
1468 }
1469
1470 /**
1471  * shrink_dcache_parent - prune dcache
1472  * @parent: parent of entries to prune
1473  *
1474  * Prune the dcache to remove unused children of the parent dentry.
1475  */
1476 void shrink_dcache_parent(struct dentry *parent)
1477 {
1478         for (;;) {
1479                 struct select_data data;
1480
1481                 INIT_LIST_HEAD(&data.dispose);
1482                 data.start = parent;
1483                 data.found = 0;
1484
1485                 d_walk(parent, &data, select_collect);
1486
1487                 if (!list_empty(&data.dispose)) {
1488                         shrink_dentry_list(&data.dispose);
1489                         continue;
1490                 }
1491
1492                 cond_resched();
1493                 if (!data.found)
1494                         break;
1495         }
1496 }
1497 EXPORT_SYMBOL(shrink_dcache_parent);
1498
1499 static enum d_walk_ret umount_check(void *_data, struct dentry *dentry)
1500 {
1501         /* it has busy descendents; complain about those instead */
1502         if (!list_empty(&dentry->d_subdirs))
1503                 return D_WALK_CONTINUE;
1504
1505         /* root with refcount 1 is fine */
1506         if (dentry == _data && dentry->d_lockref.count == 1)
1507                 return D_WALK_CONTINUE;
1508
1509         printk(KERN_ERR "BUG: Dentry %p{i=%lx,n=%pd} "
1510                         " still in use (%d) [unmount of %s %s]\n",
1511                        dentry,
1512                        dentry->d_inode ?
1513                        dentry->d_inode->i_ino : 0UL,
1514                        dentry,
1515                        dentry->d_lockref.count,
1516                        dentry->d_sb->s_type->name,
1517                        dentry->d_sb->s_id);
1518         WARN_ON(1);
1519         return D_WALK_CONTINUE;
1520 }
1521
1522 static void do_one_tree(struct dentry *dentry)
1523 {
1524         shrink_dcache_parent(dentry);
1525         d_walk(dentry, dentry, umount_check);
1526         d_drop(dentry);
1527         dput(dentry);
1528 }
1529
1530 /*
1531  * destroy the dentries attached to a superblock on unmounting
1532  */
1533 void shrink_dcache_for_umount(struct super_block *sb)
1534 {
1535         struct dentry *dentry;
1536
1537         WARN(down_read_trylock(&sb->s_umount), "s_umount should've been locked");
1538
1539         dentry = sb->s_root;
1540         sb->s_root = NULL;
1541         do_one_tree(dentry);
1542
1543         while (!hlist_bl_empty(&sb->s_roots)) {
1544                 dentry = dget(hlist_bl_entry(hlist_bl_first(&sb->s_roots), struct dentry, d_hash));
1545                 do_one_tree(dentry);
1546         }
1547 }
1548
1549 static enum d_walk_ret find_submount(void *_data, struct dentry *dentry)
1550 {
1551         struct dentry **victim = _data;
1552         if (d_mountpoint(dentry)) {
1553                 __dget_dlock(dentry);
1554                 *victim = dentry;
1555                 return D_WALK_QUIT;
1556         }
1557         return D_WALK_CONTINUE;
1558 }
1559
1560 /**
1561  * d_invalidate - detach submounts, prune dcache, and drop
1562  * @dentry: dentry to invalidate (aka detach, prune and drop)
1563  */
1564 void d_invalidate(struct dentry *dentry)
1565 {
1566         bool had_submounts = false;
1567         spin_lock(&dentry->d_lock);
1568         if (d_unhashed(dentry)) {
1569                 spin_unlock(&dentry->d_lock);
1570                 return;
1571         }
1572         __d_drop(dentry);
1573         spin_unlock(&dentry->d_lock);
1574
1575         /* Negative dentries can be dropped without further checks */
1576         if (!dentry->d_inode)
1577                 return;
1578
1579         shrink_dcache_parent(dentry);
1580         for (;;) {
1581                 struct dentry *victim = NULL;
1582                 d_walk(dentry, &victim, find_submount);
1583                 if (!victim) {
1584                         if (had_submounts)
1585                                 shrink_dcache_parent(dentry);
1586                         return;
1587                 }
1588                 had_submounts = true;
1589                 detach_mounts(victim);
1590                 dput(victim);
1591         }
1592 }
1593 EXPORT_SYMBOL(d_invalidate);
1594
1595 /**
1596  * __d_alloc    -       allocate a dcache entry
1597  * @sb: filesystem it will belong to
1598  * @name: qstr of the name
1599  *
1600  * Allocates a dentry. It returns %NULL if there is insufficient memory
1601  * available. On a success the dentry is returned. The name passed in is
1602  * copied and the copy passed in may be reused after this call.
1603  */
1604  
1605 struct dentry *__d_alloc(struct super_block *sb, const struct qstr *name)
1606 {
1607         struct external_name *ext = NULL;
1608         struct dentry *dentry;
1609         char *dname;
1610         int err;
1611
1612         dentry = kmem_cache_alloc(dentry_cache, GFP_KERNEL);
1613         if (!dentry)
1614                 return NULL;
1615
1616         /*
1617          * We guarantee that the inline name is always NUL-terminated.
1618          * This way the memcpy() done by the name switching in rename
1619          * will still always have a NUL at the end, even if we might
1620          * be overwriting an internal NUL character
1621          */
1622         dentry->d_iname[DNAME_INLINE_LEN-1] = 0;
1623         if (unlikely(!name)) {
1624                 name = &slash_name;
1625                 dname = dentry->d_iname;
1626         } else if (name->len > DNAME_INLINE_LEN-1) {
1627                 size_t size = offsetof(struct external_name, name[1]);
1628
1629                 ext = kmalloc(size + name->len, GFP_KERNEL_ACCOUNT);
1630                 if (!ext) {
1631                         kmem_cache_free(dentry_cache, dentry); 
1632                         return NULL;
1633                 }
1634                 atomic_set(&ext->u.count, 1);
1635                 dname = ext->name;
1636         } else  {
1637                 dname = dentry->d_iname;
1638         }       
1639
1640         dentry->d_name.len = name->len;
1641         dentry->d_name.hash = name->hash;
1642         memcpy(dname, name->name, name->len);
1643         dname[name->len] = 0;
1644
1645         /* Make sure we always see the terminating NUL character */
1646         smp_store_release(&dentry->d_name.name, dname); /* ^^^ */
1647
1648         dentry->d_lockref.count = 1;
1649         dentry->d_flags = 0;
1650         spin_lock_init(&dentry->d_lock);
1651         seqcount_init(&dentry->d_seq);
1652         dentry->d_inode = NULL;
1653         dentry->d_parent = dentry;
1654         dentry->d_sb = sb;
1655         dentry->d_op = NULL;
1656         dentry->d_fsdata = NULL;
1657         INIT_HLIST_BL_NODE(&dentry->d_hash);
1658         INIT_LIST_HEAD(&dentry->d_lru);
1659         INIT_LIST_HEAD(&dentry->d_subdirs);
1660         INIT_HLIST_NODE(&dentry->d_u.d_alias);
1661         INIT_LIST_HEAD(&dentry->d_child);
1662         d_set_d_op(dentry, dentry->d_sb->s_d_op);
1663
1664         if (dentry->d_op && dentry->d_op->d_init) {
1665                 err = dentry->d_op->d_init(dentry);
1666                 if (err) {
1667                         if (dname_external(dentry))
1668                                 kfree(external_name(dentry));
1669                         kmem_cache_free(dentry_cache, dentry);
1670                         return NULL;
1671                 }
1672         }
1673
1674         if (unlikely(ext)) {
1675                 pg_data_t *pgdat = page_pgdat(virt_to_page(ext));
1676                 mod_node_page_state(pgdat, NR_INDIRECTLY_RECLAIMABLE_BYTES,
1677                                     ksize(ext));
1678         }
1679
1680         this_cpu_inc(nr_dentry);
1681
1682         return dentry;
1683 }
1684
1685 /**
1686  * d_alloc      -       allocate a dcache entry
1687  * @parent: parent of entry to allocate
1688  * @name: qstr of the name
1689  *
1690  * Allocates a dentry. It returns %NULL if there is insufficient memory
1691  * available. On a success the dentry is returned. The name passed in is
1692  * copied and the copy passed in may be reused after this call.
1693  */
1694 struct dentry *d_alloc(struct dentry * parent, const struct qstr *name)
1695 {
1696         struct dentry *dentry = __d_alloc(parent->d_sb, name);
1697         if (!dentry)
1698                 return NULL;
1699         spin_lock(&parent->d_lock);
1700         /*
1701          * don't need child lock because it is not subject
1702          * to concurrency here
1703          */
1704         __dget_dlock(parent);
1705         dentry->d_parent = parent;
1706         list_add(&dentry->d_child, &parent->d_subdirs);
1707         spin_unlock(&parent->d_lock);
1708
1709         return dentry;
1710 }
1711 EXPORT_SYMBOL(d_alloc);
1712
1713 struct dentry *d_alloc_anon(struct super_block *sb)
1714 {
1715         return __d_alloc(sb, NULL);
1716 }
1717 EXPORT_SYMBOL(d_alloc_anon);
1718
1719 struct dentry *d_alloc_cursor(struct dentry * parent)
1720 {
1721         struct dentry *dentry = d_alloc_anon(parent->d_sb);
1722         if (dentry) {
1723                 dentry->d_flags |= DCACHE_DENTRY_CURSOR;
1724                 dentry->d_parent = dget(parent);
1725         }
1726         return dentry;
1727 }
1728
1729 /**
1730  * d_alloc_pseudo - allocate a dentry (for lookup-less filesystems)
1731  * @sb: the superblock
1732  * @name: qstr of the name
1733  *
1734  * For a filesystem that just pins its dentries in memory and never
1735  * performs lookups at all, return an unhashed IS_ROOT dentry.
1736  * This is used for pipes, sockets et.al. - the stuff that should
1737  * never be anyone's children or parents.  Unlike all other
1738  * dentries, these will not have RCU delay between dropping the
1739  * last reference and freeing them.
1740  */
1741 struct dentry *d_alloc_pseudo(struct super_block *sb, const struct qstr *name)
1742 {
1743         struct dentry *dentry = __d_alloc(sb, name);
1744         if (likely(dentry))
1745                 dentry->d_flags |= DCACHE_NORCU;
1746         return dentry;
1747 }
1748 EXPORT_SYMBOL(d_alloc_pseudo);
1749
1750 struct dentry *d_alloc_name(struct dentry *parent, const char *name)
1751 {
1752         struct qstr q;
1753
1754         q.name = name;
1755         q.hash_len = hashlen_string(parent, name);
1756         return d_alloc(parent, &q);
1757 }
1758 EXPORT_SYMBOL(d_alloc_name);
1759
1760 void d_set_d_op(struct dentry *dentry, const struct dentry_operations *op)
1761 {
1762         WARN_ON_ONCE(dentry->d_op);
1763         WARN_ON_ONCE(dentry->d_flags & (DCACHE_OP_HASH  |
1764                                 DCACHE_OP_COMPARE       |
1765                                 DCACHE_OP_REVALIDATE    |
1766                                 DCACHE_OP_WEAK_REVALIDATE       |
1767                                 DCACHE_OP_DELETE        |
1768                                 DCACHE_OP_REAL));
1769         dentry->d_op = op;
1770         if (!op)
1771                 return;
1772         if (op->d_hash)
1773                 dentry->d_flags |= DCACHE_OP_HASH;
1774         if (op->d_compare)
1775                 dentry->d_flags |= DCACHE_OP_COMPARE;
1776         if (op->d_revalidate)
1777                 dentry->d_flags |= DCACHE_OP_REVALIDATE;
1778         if (op->d_weak_revalidate)
1779                 dentry->d_flags |= DCACHE_OP_WEAK_REVALIDATE;
1780         if (op->d_delete)
1781                 dentry->d_flags |= DCACHE_OP_DELETE;
1782         if (op->d_prune)
1783                 dentry->d_flags |= DCACHE_OP_PRUNE;
1784         if (op->d_real)
1785                 dentry->d_flags |= DCACHE_OP_REAL;
1786
1787 }
1788 EXPORT_SYMBOL(d_set_d_op);
1789
1790
1791 /*
1792  * d_set_fallthru - Mark a dentry as falling through to a lower layer
1793  * @dentry - The dentry to mark
1794  *
1795  * Mark a dentry as falling through to the lower layer (as set with
1796  * d_pin_lower()).  This flag may be recorded on the medium.
1797  */
1798 void d_set_fallthru(struct dentry *dentry)
1799 {
1800         spin_lock(&dentry->d_lock);
1801         dentry->d_flags |= DCACHE_FALLTHRU;
1802         spin_unlock(&dentry->d_lock);
1803 }
1804 EXPORT_SYMBOL(d_set_fallthru);
1805
1806 static unsigned d_flags_for_inode(struct inode *inode)
1807 {
1808         unsigned add_flags = DCACHE_REGULAR_TYPE;
1809
1810         if (!inode)
1811                 return DCACHE_MISS_TYPE;
1812
1813         if (S_ISDIR(inode->i_mode)) {
1814                 add_flags = DCACHE_DIRECTORY_TYPE;
1815                 if (unlikely(!(inode->i_opflags & IOP_LOOKUP))) {
1816                         if (unlikely(!inode->i_op->lookup))
1817                                 add_flags = DCACHE_AUTODIR_TYPE;
1818                         else
1819                                 inode->i_opflags |= IOP_LOOKUP;
1820                 }
1821                 goto type_determined;
1822         }
1823
1824         if (unlikely(!(inode->i_opflags & IOP_NOFOLLOW))) {
1825                 if (unlikely(inode->i_op->get_link)) {
1826                         add_flags = DCACHE_SYMLINK_TYPE;
1827                         goto type_determined;
1828                 }
1829                 inode->i_opflags |= IOP_NOFOLLOW;
1830         }
1831
1832         if (unlikely(!S_ISREG(inode->i_mode)))
1833                 add_flags = DCACHE_SPECIAL_TYPE;
1834
1835 type_determined:
1836         if (unlikely(IS_AUTOMOUNT(inode)))
1837                 add_flags |= DCACHE_NEED_AUTOMOUNT;
1838         return add_flags;
1839 }
1840
1841 static void __d_instantiate(struct dentry *dentry, struct inode *inode)
1842 {
1843         unsigned add_flags = d_flags_for_inode(inode);
1844         WARN_ON(d_in_lookup(dentry));
1845
1846         spin_lock(&dentry->d_lock);
1847         hlist_add_head(&dentry->d_u.d_alias, &inode->i_dentry);
1848         raw_write_seqcount_begin(&dentry->d_seq);
1849         __d_set_inode_and_type(dentry, inode, add_flags);
1850         raw_write_seqcount_end(&dentry->d_seq);
1851         fsnotify_update_flags(dentry);
1852         spin_unlock(&dentry->d_lock);
1853 }
1854
1855 /**
1856  * d_instantiate - fill in inode information for a dentry
1857  * @entry: dentry to complete
1858  * @inode: inode to attach to this dentry
1859  *
1860  * Fill in inode information in the entry.
1861  *
1862  * This turns negative dentries into productive full members
1863  * of society.
1864  *
1865  * NOTE! This assumes that the inode count has been incremented
1866  * (or otherwise set) by the caller to indicate that it is now
1867  * in use by the dcache.
1868  */
1869  
1870 void d_instantiate(struct dentry *entry, struct inode * inode)
1871 {
1872         BUG_ON(!hlist_unhashed(&entry->d_u.d_alias));
1873         if (inode) {
1874                 security_d_instantiate(entry, inode);
1875                 spin_lock(&inode->i_lock);
1876                 __d_instantiate(entry, inode);
1877                 spin_unlock(&inode->i_lock);
1878         }
1879 }
1880 EXPORT_SYMBOL(d_instantiate);
1881
1882 /*
1883  * This should be equivalent to d_instantiate() + unlock_new_inode(),
1884  * with lockdep-related part of unlock_new_inode() done before
1885  * anything else.  Use that instead of open-coding d_instantiate()/
1886  * unlock_new_inode() combinations.
1887  */
1888 void d_instantiate_new(struct dentry *entry, struct inode *inode)
1889 {
1890         BUG_ON(!hlist_unhashed(&entry->d_u.d_alias));
1891         BUG_ON(!inode);
1892         lockdep_annotate_inode_mutex_key(inode);
1893         security_d_instantiate(entry, inode);
1894         spin_lock(&inode->i_lock);
1895         __d_instantiate(entry, inode);
1896         WARN_ON(!(inode->i_state & I_NEW));
1897         inode->i_state &= ~I_NEW & ~I_CREATING;
1898         smp_mb();
1899         wake_up_bit(&inode->i_state, __I_NEW);
1900         spin_unlock(&inode->i_lock);
1901 }
1902 EXPORT_SYMBOL(d_instantiate_new);
1903
1904 struct dentry *d_make_root(struct inode *root_inode)
1905 {
1906         struct dentry *res = NULL;
1907
1908         if (root_inode) {
1909                 res = d_alloc_anon(root_inode->i_sb);
1910                 if (res)
1911                         d_instantiate(res, root_inode);
1912                 else
1913                         iput(root_inode);
1914         }
1915         return res;
1916 }
1917 EXPORT_SYMBOL(d_make_root);
1918
1919 static struct dentry *__d_instantiate_anon(struct dentry *dentry,
1920                                            struct inode *inode,
1921                                            bool disconnected)
1922 {
1923         struct dentry *res;
1924         unsigned add_flags;
1925
1926         security_d_instantiate(dentry, inode);
1927         spin_lock(&inode->i_lock);
1928         res = __d_find_any_alias(inode);
1929         if (res) {
1930                 spin_unlock(&inode->i_lock);
1931                 dput(dentry);
1932                 goto out_iput;
1933         }
1934
1935         /* attach a disconnected dentry */
1936         add_flags = d_flags_for_inode(inode);
1937
1938         if (disconnected)
1939                 add_flags |= DCACHE_DISCONNECTED;
1940
1941         spin_lock(&dentry->d_lock);
1942         __d_set_inode_and_type(dentry, inode, add_flags);
1943         hlist_add_head(&dentry->d_u.d_alias, &inode->i_dentry);
1944         if (!disconnected) {
1945                 hlist_bl_lock(&dentry->d_sb->s_roots);
1946                 hlist_bl_add_head(&dentry->d_hash, &dentry->d_sb->s_roots);
1947                 hlist_bl_unlock(&dentry->d_sb->s_roots);
1948         }
1949         spin_unlock(&dentry->d_lock);
1950         spin_unlock(&inode->i_lock);
1951
1952         return dentry;
1953
1954  out_iput:
1955         iput(inode);
1956         return res;
1957 }
1958
1959 struct dentry *d_instantiate_anon(struct dentry *dentry, struct inode *inode)
1960 {
1961         return __d_instantiate_anon(dentry, inode, true);
1962 }
1963 EXPORT_SYMBOL(d_instantiate_anon);
1964
1965 static struct dentry *__d_obtain_alias(struct inode *inode, bool disconnected)
1966 {
1967         struct dentry *tmp;
1968         struct dentry *res;
1969
1970         if (!inode)
1971                 return ERR_PTR(-ESTALE);
1972         if (IS_ERR(inode))
1973                 return ERR_CAST(inode);
1974
1975         res = d_find_any_alias(inode);
1976         if (res)
1977                 goto out_iput;
1978
1979         tmp = d_alloc_anon(inode->i_sb);
1980         if (!tmp) {
1981                 res = ERR_PTR(-ENOMEM);
1982                 goto out_iput;
1983         }
1984
1985         return __d_instantiate_anon(tmp, inode, disconnected);
1986
1987 out_iput:
1988         iput(inode);
1989         return res;
1990 }
1991
1992 /**
1993  * d_obtain_alias - find or allocate a DISCONNECTED dentry for a given inode
1994  * @inode: inode to allocate the dentry for
1995  *
1996  * Obtain a dentry for an inode resulting from NFS filehandle conversion or
1997  * similar open by handle operations.  The returned dentry may be anonymous,
1998  * or may have a full name (if the inode was already in the cache).
1999  *
2000  * When called on a directory inode, we must ensure that the inode only ever
2001  * has one dentry.  If a dentry is found, that is returned instead of
2002  * allocating a new one.
2003  *
2004  * On successful return, the reference to the inode has been transferred
2005  * to the dentry.  In case of an error the reference on the inode is released.
2006  * To make it easier to use in export operations a %NULL or IS_ERR inode may
2007  * be passed in and the error will be propagated to the return value,
2008  * with a %NULL @inode replaced by ERR_PTR(-ESTALE).
2009  */
2010 struct dentry *d_obtain_alias(struct inode *inode)
2011 {
2012         return __d_obtain_alias(inode, true);
2013 }
2014 EXPORT_SYMBOL(d_obtain_alias);
2015
2016 /**
2017  * d_obtain_root - find or allocate a dentry for a given inode
2018  * @inode: inode to allocate the dentry for
2019  *
2020  * Obtain an IS_ROOT dentry for the root of a filesystem.
2021  *
2022  * We must ensure that directory inodes only ever have one dentry.  If a
2023  * dentry is found, that is returned instead of allocating a new one.
2024  *
2025  * On successful return, the reference to the inode has been transferred
2026  * to the dentry.  In case of an error the reference on the inode is
2027  * released.  A %NULL or IS_ERR inode may be passed in and will be the
2028  * error will be propagate to the return value, with a %NULL @inode
2029  * replaced by ERR_PTR(-ESTALE).
2030  */
2031 struct dentry *d_obtain_root(struct inode *inode)
2032 {
2033         return __d_obtain_alias(inode, false);
2034 }
2035 EXPORT_SYMBOL(d_obtain_root);
2036
2037 /**
2038  * d_add_ci - lookup or allocate new dentry with case-exact name
2039  * @inode:  the inode case-insensitive lookup has found
2040  * @dentry: the negative dentry that was passed to the parent's lookup func
2041  * @name:   the case-exact name to be associated with the returned dentry
2042  *
2043  * This is to avoid filling the dcache with case-insensitive names to the
2044  * same inode, only the actual correct case is stored in the dcache for
2045  * case-insensitive filesystems.
2046  *
2047  * For a case-insensitive lookup match and if the the case-exact dentry
2048  * already exists in in the dcache, use it and return it.
2049  *
2050  * If no entry exists with the exact case name, allocate new dentry with
2051  * the exact case, and return the spliced entry.
2052  */
2053 struct dentry *d_add_ci(struct dentry *dentry, struct inode *inode,
2054                         struct qstr *name)
2055 {
2056         struct dentry *found, *res;
2057
2058         /*
2059          * First check if a dentry matching the name already exists,
2060          * if not go ahead and create it now.
2061          */
2062         found = d_hash_and_lookup(dentry->d_parent, name);
2063         if (found) {
2064                 iput(inode);
2065                 return found;
2066         }
2067         if (d_in_lookup(dentry)) {
2068                 found = d_alloc_parallel(dentry->d_parent, name,
2069                                         dentry->d_wait);
2070                 if (IS_ERR(found) || !d_in_lookup(found)) {
2071                         iput(inode);
2072                         return found;
2073                 }
2074         } else {
2075                 found = d_alloc(dentry->d_parent, name);
2076                 if (!found) {
2077                         iput(inode);
2078                         return ERR_PTR(-ENOMEM);
2079                 } 
2080         }
2081         res = d_splice_alias(inode, found);
2082         if (res) {
2083                 dput(found);
2084                 return res;
2085         }
2086         return found;
2087 }
2088 EXPORT_SYMBOL(d_add_ci);
2089
2090
2091 static inline bool d_same_name(const struct dentry *dentry,
2092                                 const struct dentry *parent,
2093                                 const struct qstr *name)
2094 {
2095         if (likely(!(parent->d_flags & DCACHE_OP_COMPARE))) {
2096                 if (dentry->d_name.len != name->len)
2097                         return false;
2098                 return dentry_cmp(dentry, name->name, name->len) == 0;
2099         }
2100         return parent->d_op->d_compare(dentry,
2101                                        dentry->d_name.len, dentry->d_name.name,
2102                                        name) == 0;
2103 }
2104
2105 /**
2106  * __d_lookup_rcu - search for a dentry (racy, store-free)
2107  * @parent: parent dentry
2108  * @name: qstr of name we wish to find
2109  * @seqp: returns d_seq value at the point where the dentry was found
2110  * Returns: dentry, or NULL
2111  *
2112  * __d_lookup_rcu is the dcache lookup function for rcu-walk name
2113  * resolution (store-free path walking) design described in
2114  * Documentation/filesystems/path-lookup.txt.
2115  *
2116  * This is not to be used outside core vfs.
2117  *
2118  * __d_lookup_rcu must only be used in rcu-walk mode, ie. with vfsmount lock
2119  * held, and rcu_read_lock held. The returned dentry must not be stored into
2120  * without taking d_lock and checking d_seq sequence count against @seq
2121  * returned here.
2122  *
2123  * A refcount may be taken on the found dentry with the d_rcu_to_refcount
2124  * function.
2125  *
2126  * Alternatively, __d_lookup_rcu may be called again to look up the child of
2127  * the returned dentry, so long as its parent's seqlock is checked after the
2128  * child is looked up. Thus, an interlocking stepping of sequence lock checks
2129  * is formed, giving integrity down the path walk.
2130  *
2131  * NOTE! The caller *has* to check the resulting dentry against the sequence
2132  * number we've returned before using any of the resulting dentry state!
2133  */
2134 struct dentry *__d_lookup_rcu(const struct dentry *parent,
2135                                 const struct qstr *name,
2136                                 unsigned *seqp)
2137 {
2138         u64 hashlen = name->hash_len;
2139         const unsigned char *str = name->name;
2140         struct hlist_bl_head *b = d_hash(hashlen_hash(hashlen));
2141         struct hlist_bl_node *node;
2142         struct dentry *dentry;
2143
2144         /*
2145          * Note: There is significant duplication with __d_lookup_rcu which is
2146          * required to prevent single threaded performance regressions
2147          * especially on architectures where smp_rmb (in seqcounts) are costly.
2148          * Keep the two functions in sync.
2149          */
2150
2151         /*
2152          * The hash list is protected using RCU.
2153          *
2154          * Carefully use d_seq when comparing a candidate dentry, to avoid
2155          * races with d_move().
2156          *
2157          * It is possible that concurrent renames can mess up our list
2158          * walk here and result in missing our dentry, resulting in the
2159          * false-negative result. d_lookup() protects against concurrent
2160          * renames using rename_lock seqlock.
2161          *
2162          * See Documentation/filesystems/path-lookup.txt for more details.
2163          */
2164         hlist_bl_for_each_entry_rcu(dentry, node, b, d_hash) {
2165                 unsigned seq;
2166
2167 seqretry:
2168                 /*
2169                  * The dentry sequence count protects us from concurrent
2170                  * renames, and thus protects parent and name fields.
2171                  *
2172                  * The caller must perform a seqcount check in order
2173                  * to do anything useful with the returned dentry.
2174                  *
2175                  * NOTE! We do a "raw" seqcount_begin here. That means that
2176                  * we don't wait for the sequence count to stabilize if it
2177                  * is in the middle of a sequence change. If we do the slow
2178                  * dentry compare, we will do seqretries until it is stable,
2179                  * and if we end up with a successful lookup, we actually
2180                  * want to exit RCU lookup anyway.
2181                  *
2182                  * Note that raw_seqcount_begin still *does* smp_rmb(), so
2183                  * we are still guaranteed NUL-termination of ->d_name.name.
2184                  */
2185                 seq = raw_seqcount_begin(&dentry->d_seq);
2186                 if (dentry->d_parent != parent)
2187                         continue;
2188                 if (d_unhashed(dentry))
2189                         continue;
2190
2191                 if (unlikely(parent->d_flags & DCACHE_OP_COMPARE)) {
2192                         int tlen;
2193                         const char *tname;
2194                         if (dentry->d_name.hash != hashlen_hash(hashlen))
2195                                 continue;
2196                         tlen = dentry->d_name.len;
2197                         tname = dentry->d_name.name;
2198                         /* we want a consistent (name,len) pair */
2199                         if (read_seqcount_retry(&dentry->d_seq, seq)) {
2200                                 cpu_relax();
2201                                 goto seqretry;
2202                         }
2203                         if (parent->d_op->d_compare(dentry,
2204                                                     tlen, tname, name) != 0)
2205                                 continue;
2206                 } else {
2207                         if (dentry->d_name.hash_len != hashlen)
2208                                 continue;
2209                         if (dentry_cmp(dentry, str, hashlen_len(hashlen)) != 0)
2210                                 continue;
2211                 }
2212                 *seqp = seq;
2213                 return dentry;
2214         }
2215         return NULL;
2216 }
2217
2218 /**
2219  * d_lookup - search for a dentry
2220  * @parent: parent dentry
2221  * @name: qstr of name we wish to find
2222  * Returns: dentry, or NULL
2223  *
2224  * d_lookup searches the children of the parent dentry for the name in
2225  * question. If the dentry is found its reference count is incremented and the
2226  * dentry is returned. The caller must use dput to free the entry when it has
2227  * finished using it. %NULL is returned if the dentry does not exist.
2228  */
2229 struct dentry *d_lookup(const struct dentry *parent, const struct qstr *name)
2230 {
2231         struct dentry *dentry;
2232         unsigned seq;
2233
2234         do {
2235                 seq = read_seqbegin(&rename_lock);
2236                 dentry = __d_lookup(parent, name);
2237                 if (dentry)
2238                         break;
2239         } while (read_seqretry(&rename_lock, seq));
2240         return dentry;
2241 }
2242 EXPORT_SYMBOL(d_lookup);
2243
2244 /**
2245  * __d_lookup - search for a dentry (racy)
2246  * @parent: parent dentry
2247  * @name: qstr of name we wish to find
2248  * Returns: dentry, or NULL
2249  *
2250  * __d_lookup is like d_lookup, however it may (rarely) return a
2251  * false-negative result due to unrelated rename activity.
2252  *
2253  * __d_lookup is slightly faster by avoiding rename_lock read seqlock,
2254  * however it must be used carefully, eg. with a following d_lookup in
2255  * the case of failure.
2256  *
2257  * __d_lookup callers must be commented.
2258  */
2259 struct dentry *__d_lookup(const struct dentry *parent, const struct qstr *name)
2260 {
2261         unsigned int hash = name->hash;
2262         struct hlist_bl_head *b = d_hash(hash);
2263         struct hlist_bl_node *node;
2264         struct dentry *found = NULL;
2265         struct dentry *dentry;
2266
2267         /*
2268          * Note: There is significant duplication with __d_lookup_rcu which is
2269          * required to prevent single threaded performance regressions
2270          * especially on architectures where smp_rmb (in seqcounts) are costly.
2271          * Keep the two functions in sync.
2272          */
2273
2274         /*
2275          * The hash list is protected using RCU.
2276          *
2277          * Take d_lock when comparing a candidate dentry, to avoid races
2278          * with d_move().
2279          *
2280          * It is possible that concurrent renames can mess up our list
2281          * walk here and result in missing our dentry, resulting in the
2282          * false-negative result. d_lookup() protects against concurrent
2283          * renames using rename_lock seqlock.
2284          *
2285          * See Documentation/filesystems/path-lookup.txt for more details.
2286          */
2287         rcu_read_lock();
2288         
2289         hlist_bl_for_each_entry_rcu(dentry, node, b, d_hash) {
2290
2291                 if (dentry->d_name.hash != hash)
2292                         continue;
2293
2294                 spin_lock(&dentry->d_lock);
2295                 if (dentry->d_parent != parent)
2296                         goto next;
2297                 if (d_unhashed(dentry))
2298                         goto next;
2299
2300                 if (!d_same_name(dentry, parent, name))
2301                         goto next;
2302
2303                 dentry->d_lockref.count++;
2304                 found = dentry;
2305                 spin_unlock(&dentry->d_lock);
2306                 break;
2307 next:
2308                 spin_unlock(&dentry->d_lock);
2309         }
2310         rcu_read_unlock();
2311
2312         return found;
2313 }
2314
2315 /**
2316  * d_hash_and_lookup - hash the qstr then search for a dentry
2317  * @dir: Directory to search in
2318  * @name: qstr of name we wish to find
2319  *
2320  * On lookup failure NULL is returned; on bad name - ERR_PTR(-error)
2321  */
2322 struct dentry *d_hash_and_lookup(struct dentry *dir, struct qstr *name)
2323 {
2324         /*
2325          * Check for a fs-specific hash function. Note that we must
2326          * calculate the standard hash first, as the d_op->d_hash()
2327          * routine may choose to leave the hash value unchanged.
2328          */
2329         name->hash = full_name_hash(dir, name->name, name->len);
2330         if (dir->d_flags & DCACHE_OP_HASH) {
2331                 int err = dir->d_op->d_hash(dir, name);
2332                 if (unlikely(err < 0))
2333                         return ERR_PTR(err);
2334         }
2335         return d_lookup(dir, name);
2336 }
2337 EXPORT_SYMBOL(d_hash_and_lookup);
2338
2339 /*
2340  * When a file is deleted, we have two options:
2341  * - turn this dentry into a negative dentry
2342  * - unhash this dentry and free it.
2343  *
2344  * Usually, we want to just turn this into
2345  * a negative dentry, but if anybody else is
2346  * currently using the dentry or the inode
2347  * we can't do that and we fall back on removing
2348  * it from the hash queues and waiting for
2349  * it to be deleted later when it has no users
2350  */
2351  
2352 /**
2353  * d_delete - delete a dentry
2354  * @dentry: The dentry to delete
2355  *
2356  * Turn the dentry into a negative dentry if possible, otherwise
2357  * remove it from the hash queues so it can be deleted later
2358  */
2359  
2360 void d_delete(struct dentry * dentry)
2361 {
2362         struct inode *inode = dentry->d_inode;
2363         int isdir = d_is_dir(dentry);
2364
2365         spin_lock(&inode->i_lock);
2366         spin_lock(&dentry->d_lock);
2367         /*
2368          * Are we the only user?
2369          */
2370         if (dentry->d_lockref.count == 1) {
2371                 dentry->d_flags &= ~DCACHE_CANT_MOUNT;
2372                 dentry_unlink_inode(dentry);
2373         } else {
2374                 __d_drop(dentry);
2375                 spin_unlock(&dentry->d_lock);
2376                 spin_unlock(&inode->i_lock);
2377         }
2378         fsnotify_nameremove(dentry, isdir);
2379 }
2380 EXPORT_SYMBOL(d_delete);
2381
2382 static void __d_rehash(struct dentry *entry)
2383 {
2384         struct hlist_bl_head *b = d_hash(entry->d_name.hash);
2385
2386         hlist_bl_lock(b);
2387         hlist_bl_add_head_rcu(&entry->d_hash, b);
2388         hlist_bl_unlock(b);
2389 }
2390
2391 /**
2392  * d_rehash     - add an entry back to the hash
2393  * @entry: dentry to add to the hash
2394  *
2395  * Adds a dentry to the hash according to its name.
2396  */
2397  
2398 void d_rehash(struct dentry * entry)
2399 {
2400         spin_lock(&entry->d_lock);
2401         __d_rehash(entry);
2402         spin_unlock(&entry->d_lock);
2403 }
2404 EXPORT_SYMBOL(d_rehash);
2405
2406 static inline unsigned start_dir_add(struct inode *dir)
2407 {
2408
2409         for (;;) {
2410                 unsigned n = dir->i_dir_seq;
2411                 if (!(n & 1) && cmpxchg(&dir->i_dir_seq, n, n + 1) == n)
2412                         return n;
2413                 cpu_relax();
2414         }
2415 }
2416
2417 static inline void end_dir_add(struct inode *dir, unsigned n)
2418 {
2419         smp_store_release(&dir->i_dir_seq, n + 2);
2420 }
2421
2422 static void d_wait_lookup(struct dentry *dentry)
2423 {
2424         if (d_in_lookup(dentry)) {
2425                 DECLARE_WAITQUEUE(wait, current);
2426                 add_wait_queue(dentry->d_wait, &wait);
2427                 do {
2428                         set_current_state(TASK_UNINTERRUPTIBLE);
2429                         spin_unlock(&dentry->d_lock);
2430                         schedule();
2431                         spin_lock(&dentry->d_lock);
2432                 } while (d_in_lookup(dentry));
2433         }
2434 }
2435
2436 struct dentry *d_alloc_parallel(struct dentry *parent,
2437                                 const struct qstr *name,
2438                                 wait_queue_head_t *wq)
2439 {
2440         unsigned int hash = name->hash;
2441         struct hlist_bl_head *b = in_lookup_hash(parent, hash);
2442         struct hlist_bl_node *node;
2443         struct dentry *new = d_alloc(parent, name);
2444         struct dentry *dentry;
2445         unsigned seq, r_seq, d_seq;
2446
2447         if (unlikely(!new))
2448                 return ERR_PTR(-ENOMEM);
2449
2450 retry:
2451         rcu_read_lock();
2452         seq = smp_load_acquire(&parent->d_inode->i_dir_seq);
2453         r_seq = read_seqbegin(&rename_lock);
2454         dentry = __d_lookup_rcu(parent, name, &d_seq);
2455         if (unlikely(dentry)) {
2456                 if (!lockref_get_not_dead(&dentry->d_lockref)) {
2457                         rcu_read_unlock();
2458                         goto retry;
2459                 }
2460                 if (read_seqcount_retry(&dentry->d_seq, d_seq)) {
2461                         rcu_read_unlock();
2462                         dput(dentry);
2463                         goto retry;
2464                 }
2465                 rcu_read_unlock();
2466                 dput(new);
2467                 return dentry;
2468         }
2469         if (unlikely(read_seqretry(&rename_lock, r_seq))) {
2470                 rcu_read_unlock();
2471                 goto retry;
2472         }
2473
2474         if (unlikely(seq & 1)) {
2475                 rcu_read_unlock();
2476                 goto retry;
2477         }
2478
2479         hlist_bl_lock(b);
2480         if (unlikely(READ_ONCE(parent->d_inode->i_dir_seq) != seq)) {
2481                 hlist_bl_unlock(b);
2482                 rcu_read_unlock();
2483                 goto retry;
2484         }
2485         /*
2486          * No changes for the parent since the beginning of d_lookup().
2487          * Since all removals from the chain happen with hlist_bl_lock(),
2488          * any potential in-lookup matches are going to stay here until
2489          * we unlock the chain.  All fields are stable in everything
2490          * we encounter.
2491          */
2492         hlist_bl_for_each_entry(dentry, node, b, d_u.d_in_lookup_hash) {
2493                 if (dentry->d_name.hash != hash)
2494                         continue;
2495                 if (dentry->d_parent != parent)
2496                         continue;
2497                 if (!d_same_name(dentry, parent, name))
2498                         continue;
2499                 hlist_bl_unlock(b);
2500                 /* now we can try to grab a reference */
2501                 if (!lockref_get_not_dead(&dentry->d_lockref)) {
2502                         rcu_read_unlock();
2503                         goto retry;
2504                 }
2505
2506                 rcu_read_unlock();
2507                 /*
2508                  * somebody is likely to be still doing lookup for it;
2509                  * wait for them to finish
2510                  */
2511                 spin_lock(&dentry->d_lock);
2512                 d_wait_lookup(dentry);
2513                 /*
2514                  * it's not in-lookup anymore; in principle we should repeat
2515                  * everything from dcache lookup, but it's likely to be what
2516                  * d_lookup() would've found anyway.  If it is, just return it;
2517                  * otherwise we really have to repeat the whole thing.
2518                  */
2519                 if (unlikely(dentry->d_name.hash != hash))
2520                         goto mismatch;
2521                 if (unlikely(dentry->d_parent != parent))
2522                         goto mismatch;
2523                 if (unlikely(d_unhashed(dentry)))
2524                         goto mismatch;
2525                 if (unlikely(!d_same_name(dentry, parent, name)))
2526                         goto mismatch;
2527                 /* OK, it *is* a hashed match; return it */
2528                 spin_unlock(&dentry->d_lock);
2529                 dput(new);
2530                 return dentry;
2531         }
2532         rcu_read_unlock();
2533         /* we can't take ->d_lock here; it's OK, though. */
2534         new->d_flags |= DCACHE_PAR_LOOKUP;
2535         new->d_wait = wq;
2536         hlist_bl_add_head_rcu(&new->d_u.d_in_lookup_hash, b);
2537         hlist_bl_unlock(b);
2538         return new;
2539 mismatch:
2540         spin_unlock(&dentry->d_lock);
2541         dput(dentry);
2542         goto retry;
2543 }
2544 EXPORT_SYMBOL(d_alloc_parallel);
2545
2546 void __d_lookup_done(struct dentry *dentry)
2547 {
2548         struct hlist_bl_head *b = in_lookup_hash(dentry->d_parent,
2549                                                  dentry->d_name.hash);
2550         hlist_bl_lock(b);
2551         dentry->d_flags &= ~DCACHE_PAR_LOOKUP;
2552         __hlist_bl_del(&dentry->d_u.d_in_lookup_hash);
2553         wake_up_all(dentry->d_wait);
2554         dentry->d_wait = NULL;
2555         hlist_bl_unlock(b);
2556         INIT_HLIST_NODE(&dentry->d_u.d_alias);
2557         INIT_LIST_HEAD(&dentry->d_lru);
2558 }
2559 EXPORT_SYMBOL(__d_lookup_done);
2560
2561 /* inode->i_lock held if inode is non-NULL */
2562
2563 static inline void __d_add(struct dentry *dentry, struct inode *inode)
2564 {
2565         struct inode *dir = NULL;
2566         unsigned n;
2567         spin_lock(&dentry->d_lock);
2568         if (unlikely(d_in_lookup(dentry))) {
2569                 dir = dentry->d_parent->d_inode;
2570                 n = start_dir_add(dir);
2571                 __d_lookup_done(dentry);
2572         }
2573         if (inode) {
2574                 unsigned add_flags = d_flags_for_inode(inode);
2575                 hlist_add_head(&dentry->d_u.d_alias, &inode->i_dentry);
2576                 raw_write_seqcount_begin(&dentry->d_seq);
2577                 __d_set_inode_and_type(dentry, inode, add_flags);
2578                 raw_write_seqcount_end(&dentry->d_seq);
2579                 fsnotify_update_flags(dentry);
2580         }
2581         __d_rehash(dentry);
2582         if (dir)
2583                 end_dir_add(dir, n);
2584         spin_unlock(&dentry->d_lock);
2585         if (inode)
2586                 spin_unlock(&inode->i_lock);
2587 }
2588
2589 /**
2590  * d_add - add dentry to hash queues
2591  * @entry: dentry to add
2592  * @inode: The inode to attach to this dentry
2593  *
2594  * This adds the entry to the hash queues and initializes @inode.
2595  * The entry was actually filled in earlier during d_alloc().
2596  */
2597
2598 void d_add(struct dentry *entry, struct inode *inode)
2599 {
2600         if (inode) {
2601                 security_d_instantiate(entry, inode);
2602                 spin_lock(&inode->i_lock);
2603         }
2604         __d_add(entry, inode);
2605 }
2606 EXPORT_SYMBOL(d_add);
2607
2608 /**
2609  * d_exact_alias - find and hash an exact unhashed alias
2610  * @entry: dentry to add
2611  * @inode: The inode to go with this dentry
2612  *
2613  * If an unhashed dentry with the same name/parent and desired
2614  * inode already exists, hash and return it.  Otherwise, return
2615  * NULL.
2616  *
2617  * Parent directory should be locked.
2618  */
2619 struct dentry *d_exact_alias(struct dentry *entry, struct inode *inode)
2620 {
2621         struct dentry *alias;
2622         unsigned int hash = entry->d_name.hash;
2623
2624         spin_lock(&inode->i_lock);
2625         hlist_for_each_entry(alias, &inode->i_dentry, d_u.d_alias) {
2626                 /*
2627                  * Don't need alias->d_lock here, because aliases with
2628                  * d_parent == entry->d_parent are not subject to name or
2629                  * parent changes, because the parent inode i_mutex is held.
2630                  */
2631                 if (alias->d_name.hash != hash)
2632                         continue;
2633                 if (alias->d_parent != entry->d_parent)
2634                         continue;
2635                 if (!d_same_name(alias, entry->d_parent, &entry->d_name))
2636                         continue;
2637                 spin_lock(&alias->d_lock);
2638                 if (!d_unhashed(alias)) {
2639                         spin_unlock(&alias->d_lock);
2640                         alias = NULL;
2641                 } else {
2642                         __dget_dlock(alias);
2643                         __d_rehash(alias);
2644                         spin_unlock(&alias->d_lock);
2645                 }
2646                 spin_unlock(&inode->i_lock);
2647                 return alias;
2648         }
2649         spin_unlock(&inode->i_lock);
2650         return NULL;
2651 }
2652 EXPORT_SYMBOL(d_exact_alias);
2653
2654 static void swap_names(struct dentry *dentry, struct dentry *target)
2655 {
2656         if (unlikely(dname_external(target))) {
2657                 if (unlikely(dname_external(dentry))) {
2658                         /*
2659                          * Both external: swap the pointers
2660                          */
2661                         swap(target->d_name.name, dentry->d_name.name);
2662                 } else {
2663                         /*
2664                          * dentry:internal, target:external.  Steal target's
2665                          * storage and make target internal.
2666                          */
2667                         memcpy(target->d_iname, dentry->d_name.name,
2668                                         dentry->d_name.len + 1);
2669                         dentry->d_name.name = target->d_name.name;
2670                         target->d_name.name = target->d_iname;
2671                 }
2672         } else {
2673                 if (unlikely(dname_external(dentry))) {
2674                         /*
2675                          * dentry:external, target:internal.  Give dentry's
2676                          * storage to target and make dentry internal
2677                          */
2678                         memcpy(dentry->d_iname, target->d_name.name,
2679                                         target->d_name.len + 1);
2680                         target->d_name.name = dentry->d_name.name;
2681                         dentry->d_name.name = dentry->d_iname;
2682                 } else {
2683                         /*
2684                          * Both are internal.
2685                          */
2686                         unsigned int i;
2687                         BUILD_BUG_ON(!IS_ALIGNED(DNAME_INLINE_LEN, sizeof(long)));
2688                         for (i = 0; i < DNAME_INLINE_LEN / sizeof(long); i++) {
2689                                 swap(((long *) &dentry->d_iname)[i],
2690                                      ((long *) &target->d_iname)[i]);
2691                         }
2692                 }
2693         }
2694         swap(dentry->d_name.hash_len, target->d_name.hash_len);
2695 }
2696
2697 static void copy_name(struct dentry *dentry, struct dentry *target)
2698 {
2699         struct external_name *old_name = NULL;
2700         if (unlikely(dname_external(dentry)))
2701                 old_name = external_name(dentry);
2702         if (unlikely(dname_external(target))) {
2703                 atomic_inc(&external_name(target)->u.count);
2704                 dentry->d_name = target->d_name;
2705         } else {
2706                 memcpy(dentry->d_iname, target->d_name.name,
2707                                 target->d_name.len + 1);
2708                 dentry->d_name.name = dentry->d_iname;
2709                 dentry->d_name.hash_len = target->d_name.hash_len;
2710         }
2711         if (old_name && likely(atomic_dec_and_test(&old_name->u.count)))
2712                 call_rcu(&old_name->u.head, __d_free_external_name);
2713 }
2714
2715 /*
2716  * When d_splice_alias() moves a directory's encrypted alias to its decrypted
2717  * alias as a result of the encryption key being added, DCACHE_ENCRYPTED_NAME
2718  * must be cleared.  Note that we don't have to support arbitrary moves of this
2719  * flag because fscrypt doesn't allow encrypted aliases to be the source or
2720  * target of a rename().
2721  */
2722 static inline void fscrypt_handle_d_move(struct dentry *dentry)
2723 {
2724 #if IS_ENABLED(CONFIG_FS_ENCRYPTION)
2725         dentry->d_flags &= ~DCACHE_ENCRYPTED_NAME;
2726 #endif
2727 }
2728
2729 /*
2730  * __d_move - move a dentry
2731  * @dentry: entry to move
2732  * @target: new dentry
2733  * @exchange: exchange the two dentries
2734  *
2735  * Update the dcache to reflect the move of a file name. Negative
2736  * dcache entries should not be moved in this way. Caller must hold
2737  * rename_lock, the i_mutex of the source and target directories,
2738  * and the sb->s_vfs_rename_mutex if they differ. See lock_rename().
2739  */
2740 static void __d_move(struct dentry *dentry, struct dentry *target,
2741                      bool exchange)
2742 {
2743         struct dentry *old_parent, *p;
2744         struct inode *dir = NULL;
2745         unsigned n;
2746
2747         WARN_ON(!dentry->d_inode);
2748         if (WARN_ON(dentry == target))
2749                 return;
2750
2751         BUG_ON(d_ancestor(target, dentry));
2752         old_parent = dentry->d_parent;
2753         p = d_ancestor(old_parent, target);
2754         if (IS_ROOT(dentry)) {
2755                 BUG_ON(p);
2756                 spin_lock(&target->d_parent->d_lock);
2757         } else if (!p) {
2758                 /* target is not a descendent of dentry->d_parent */
2759                 spin_lock(&target->d_parent->d_lock);
2760                 spin_lock_nested(&old_parent->d_lock, DENTRY_D_LOCK_NESTED);
2761         } else {
2762                 BUG_ON(p == dentry);
2763                 spin_lock(&old_parent->d_lock);
2764                 if (p != target)
2765                         spin_lock_nested(&target->d_parent->d_lock,
2766                                         DENTRY_D_LOCK_NESTED);
2767         }
2768         spin_lock_nested(&dentry->d_lock, 2);
2769         spin_lock_nested(&target->d_lock, 3);
2770
2771         if (unlikely(d_in_lookup(target))) {
2772                 dir = target->d_parent->d_inode;
2773                 n = start_dir_add(dir);
2774                 __d_lookup_done(target);
2775         }
2776
2777         write_seqcount_begin(&dentry->d_seq);
2778         write_seqcount_begin_nested(&target->d_seq, DENTRY_D_LOCK_NESTED);
2779
2780         /* unhash both */
2781         if (!d_unhashed(dentry))
2782                 ___d_drop(dentry);
2783         if (!d_unhashed(target))
2784                 ___d_drop(target);
2785
2786         /* ... and switch them in the tree */
2787         dentry->d_parent = target->d_parent;
2788         if (!exchange) {
2789                 copy_name(dentry, target);
2790                 target->d_hash.pprev = NULL;
2791                 dentry->d_parent->d_lockref.count++;
2792                 if (dentry != old_parent) /* wasn't IS_ROOT */
2793                         WARN_ON(!--old_parent->d_lockref.count);
2794         } else {
2795                 target->d_parent = old_parent;
2796                 swap_names(dentry, target);
2797                 list_move(&target->d_child, &target->d_parent->d_subdirs);
2798                 __d_rehash(target);
2799                 fsnotify_update_flags(target);
2800         }
2801         list_move(&dentry->d_child, &dentry->d_parent->d_subdirs);
2802         __d_rehash(dentry);
2803         fsnotify_update_flags(dentry);
2804         fscrypt_handle_d_move(dentry);
2805
2806         write_seqcount_end(&target->d_seq);
2807         write_seqcount_end(&dentry->d_seq);
2808
2809         if (dir)
2810                 end_dir_add(dir, n);
2811
2812         if (dentry->d_parent != old_parent)
2813                 spin_unlock(&dentry->d_parent->d_lock);
2814         if (dentry != old_parent)
2815                 spin_unlock(&old_parent->d_lock);
2816         spin_unlock(&target->d_lock);
2817         spin_unlock(&dentry->d_lock);
2818 }
2819
2820 /*
2821  * d_move - move a dentry
2822  * @dentry: entry to move
2823  * @target: new dentry
2824  *
2825  * Update the dcache to reflect the move of a file name. Negative
2826  * dcache entries should not be moved in this way. See the locking
2827  * requirements for __d_move.
2828  */
2829 void d_move(struct dentry *dentry, struct dentry *target)
2830 {
2831         write_seqlock(&rename_lock);
2832         __d_move(dentry, target, false);
2833         write_sequnlock(&rename_lock);
2834 }
2835 EXPORT_SYMBOL(d_move);
2836
2837 /*
2838  * d_exchange - exchange two dentries
2839  * @dentry1: first dentry
2840  * @dentry2: second dentry
2841  */
2842 void d_exchange(struct dentry *dentry1, struct dentry *dentry2)
2843 {
2844         write_seqlock(&rename_lock);
2845
2846         WARN_ON(!dentry1->d_inode);
2847         WARN_ON(!dentry2->d_inode);
2848         WARN_ON(IS_ROOT(dentry1));
2849         WARN_ON(IS_ROOT(dentry2));
2850
2851         __d_move(dentry1, dentry2, true);
2852
2853         write_sequnlock(&rename_lock);
2854 }
2855
2856 /**
2857  * d_ancestor - search for an ancestor
2858  * @p1: ancestor dentry
2859  * @p2: child dentry
2860  *
2861  * Returns the ancestor dentry of p2 which is a child of p1, if p1 is
2862  * an ancestor of p2, else NULL.
2863  */
2864 struct dentry *d_ancestor(struct dentry *p1, struct dentry *p2)
2865 {
2866         struct dentry *p;
2867
2868         for (p = p2; !IS_ROOT(p); p = p->d_parent) {
2869                 if (p->d_parent == p1)
2870                         return p;
2871         }
2872         return NULL;
2873 }
2874
2875 /*
2876  * This helper attempts to cope with remotely renamed directories
2877  *
2878  * It assumes that the caller is already holding
2879  * dentry->d_parent->d_inode->i_mutex, and rename_lock
2880  *
2881  * Note: If ever the locking in lock_rename() changes, then please
2882  * remember to update this too...
2883  */
2884 static int __d_unalias(struct inode *inode,
2885                 struct dentry *dentry, struct dentry *alias)
2886 {
2887         struct mutex *m1 = NULL;
2888         struct rw_semaphore *m2 = NULL;
2889         int ret = -ESTALE;
2890
2891         /* If alias and dentry share a parent, then no extra locks required */
2892         if (alias->d_parent == dentry->d_parent)
2893                 goto out_unalias;
2894
2895         /* See lock_rename() */
2896         if (!mutex_trylock(&dentry->d_sb->s_vfs_rename_mutex))
2897                 goto out_err;
2898         m1 = &dentry->d_sb->s_vfs_rename_mutex;
2899         if (!inode_trylock_shared(alias->d_parent->d_inode))
2900                 goto out_err;
2901         m2 = &alias->d_parent->d_inode->i_rwsem;
2902 out_unalias:
2903         __d_move(alias, dentry, false);
2904         ret = 0;
2905 out_err:
2906         if (m2)
2907                 up_read(m2);
2908         if (m1)
2909                 mutex_unlock(m1);
2910         return ret;
2911 }
2912
2913 /**
2914  * d_splice_alias - splice a disconnected dentry into the tree if one exists
2915  * @inode:  the inode which may have a disconnected dentry
2916  * @dentry: a negative dentry which we want to point to the inode.
2917  *
2918  * If inode is a directory and has an IS_ROOT alias, then d_move that in
2919  * place of the given dentry and return it, else simply d_add the inode
2920  * to the dentry and return NULL.
2921  *
2922  * If a non-IS_ROOT directory is found, the filesystem is corrupt, and
2923  * we should error out: directories can't have multiple aliases.
2924  *
2925  * This is needed in the lookup routine of any filesystem that is exportable
2926  * (via knfsd) so that we can build dcache paths to directories effectively.
2927  *
2928  * If a dentry was found and moved, then it is returned.  Otherwise NULL
2929  * is returned.  This matches the expected return value of ->lookup.
2930  *
2931  * Cluster filesystems may call this function with a negative, hashed dentry.
2932  * In that case, we know that the inode will be a regular file, and also this
2933  * will only occur during atomic_open. So we need to check for the dentry
2934  * being already hashed only in the final case.
2935  */
2936 struct dentry *d_splice_alias(struct inode *inode, struct dentry *dentry)
2937 {
2938         if (IS_ERR(inode))
2939                 return ERR_CAST(inode);
2940
2941         BUG_ON(!d_unhashed(dentry));
2942
2943         if (!inode)
2944                 goto out;
2945
2946         security_d_instantiate(dentry, inode);
2947         spin_lock(&inode->i_lock);
2948         if (S_ISDIR(inode->i_mode)) {
2949                 struct dentry *new = __d_find_any_alias(inode);
2950                 if (unlikely(new)) {
2951                         /* The reference to new ensures it remains an alias */
2952                         spin_unlock(&inode->i_lock);
2953                         write_seqlock(&rename_lock);
2954                         if (unlikely(d_ancestor(new, dentry))) {
2955                                 write_sequnlock(&rename_lock);
2956                                 dput(new);
2957                                 new = ERR_PTR(-ELOOP);
2958                                 pr_warn_ratelimited(
2959                                         "VFS: Lookup of '%s' in %s %s"
2960                                         " would have caused loop\n",
2961                                         dentry->d_name.name,
2962                                         inode->i_sb->s_type->name,
2963                                         inode->i_sb->s_id);
2964                         } else if (!IS_ROOT(new)) {
2965                                 struct dentry *old_parent = dget(new->d_parent);
2966                                 int err = __d_unalias(inode, dentry, new);
2967                                 write_sequnlock(&rename_lock);
2968                                 if (err) {
2969                                         dput(new);
2970                                         new = ERR_PTR(err);
2971                                 }
2972                                 dput(old_parent);
2973                         } else {
2974                                 __d_move(new, dentry, false);
2975                                 write_sequnlock(&rename_lock);
2976                         }
2977                         iput(inode);
2978                         return new;
2979                 }
2980         }
2981 out:
2982         __d_add(dentry, inode);
2983         return NULL;
2984 }
2985 EXPORT_SYMBOL(d_splice_alias);
2986
2987 /*
2988  * Test whether new_dentry is a subdirectory of old_dentry.
2989  *
2990  * Trivially implemented using the dcache structure
2991  */
2992
2993 /**
2994  * is_subdir - is new dentry a subdirectory of old_dentry
2995  * @new_dentry: new dentry
2996  * @old_dentry: old dentry
2997  *
2998  * Returns true if new_dentry is a subdirectory of the parent (at any depth).
2999  * Returns false otherwise.
3000  * Caller must ensure that "new_dentry" is pinned before calling is_subdir()
3001  */
3002   
3003 bool is_subdir(struct dentry *new_dentry, struct dentry *old_dentry)
3004 {
3005         bool result;
3006         unsigned seq;
3007
3008         if (new_dentry == old_dentry)
3009                 return true;
3010
3011         do {
3012                 /* for restarting inner loop in case of seq retry */
3013                 seq = read_seqbegin(&rename_lock);
3014                 /*
3015                  * Need rcu_readlock to protect against the d_parent trashing
3016                  * due to d_move
3017                  */
3018                 rcu_read_lock();
3019                 if (d_ancestor(old_dentry, new_dentry))
3020                         result = true;
3021                 else
3022                         result = false;
3023                 rcu_read_unlock();
3024         } while (read_seqretry(&rename_lock, seq));
3025
3026         return result;
3027 }
3028 EXPORT_SYMBOL(is_subdir);
3029
3030 static enum d_walk_ret d_genocide_kill(void *data, struct dentry *dentry)
3031 {
3032         struct dentry *root = data;
3033         if (dentry != root) {
3034                 if (d_unhashed(dentry) || !dentry->d_inode)
3035                         return D_WALK_SKIP;
3036
3037                 if (!(dentry->d_flags & DCACHE_GENOCIDE)) {
3038                         dentry->d_flags |= DCACHE_GENOCIDE;
3039                         dentry->d_lockref.count--;
3040                 }
3041         }
3042         return D_WALK_CONTINUE;
3043 }
3044
3045 void d_genocide(struct dentry *parent)
3046 {
3047         d_walk(parent, parent, d_genocide_kill);
3048 }
3049
3050 EXPORT_SYMBOL(d_genocide);
3051
3052 void d_tmpfile(struct dentry *dentry, struct inode *inode)
3053 {
3054         inode_dec_link_count(inode);
3055         BUG_ON(dentry->d_name.name != dentry->d_iname ||
3056                 !hlist_unhashed(&dentry->d_u.d_alias) ||
3057                 !d_unlinked(dentry));
3058         spin_lock(&dentry->d_parent->d_lock);
3059         spin_lock_nested(&dentry->d_lock, DENTRY_D_LOCK_NESTED);
3060         dentry->d_name.len = sprintf(dentry->d_iname, "#%llu",
3061                                 (unsigned long long)inode->i_ino);
3062         spin_unlock(&dentry->d_lock);
3063         spin_unlock(&dentry->d_parent->d_lock);
3064         d_instantiate(dentry, inode);
3065 }
3066 EXPORT_SYMBOL(d_tmpfile);
3067
3068 static __initdata unsigned long dhash_entries;
3069 static int __init set_dhash_entries(char *str)
3070 {
3071         if (!str)
3072                 return 0;
3073         dhash_entries = simple_strtoul(str, &str, 0);
3074         return 1;
3075 }
3076 __setup("dhash_entries=", set_dhash_entries);
3077
3078 static void __init dcache_init_early(void)
3079 {
3080         /* If hashes are distributed across NUMA nodes, defer
3081          * hash allocation until vmalloc space is available.
3082          */
3083         if (hashdist)
3084                 return;
3085
3086         dentry_hashtable =
3087                 alloc_large_system_hash("Dentry cache",
3088                                         sizeof(struct hlist_bl_head),
3089                                         dhash_entries,
3090                                         13,
3091                                         HASH_EARLY | HASH_ZERO,
3092                                         &d_hash_shift,
3093                                         NULL,
3094                                         0,
3095                                         0);
3096         d_hash_shift = 32 - d_hash_shift;
3097 }
3098
3099 static void __init dcache_init(void)
3100 {
3101         /*
3102          * A constructor could be added for stable state like the lists,
3103          * but it is probably not worth it because of the cache nature
3104          * of the dcache.
3105          */
3106         dentry_cache = KMEM_CACHE_USERCOPY(dentry,
3107                 SLAB_RECLAIM_ACCOUNT|SLAB_PANIC|SLAB_MEM_SPREAD|SLAB_ACCOUNT,
3108                 d_iname);
3109
3110         /* Hash may have been set up in dcache_init_early */
3111         if (!hashdist)
3112                 return;
3113
3114         dentry_hashtable =
3115                 alloc_large_system_hash("Dentry cache",
3116                                         sizeof(struct hlist_bl_head),
3117                                         dhash_entries,
3118                                         13,
3119                                         HASH_ZERO,
3120                                         &d_hash_shift,
3121                                         NULL,
3122                                         0,
3123                                         0);
3124         d_hash_shift = 32 - d_hash_shift;
3125 }
3126
3127 /* SLAB cache for __getname() consumers */
3128 struct kmem_cache *names_cachep __read_mostly;
3129 EXPORT_SYMBOL(names_cachep);
3130
3131 void __init vfs_caches_init_early(void)
3132 {
3133         int i;
3134
3135         for (i = 0; i < ARRAY_SIZE(in_lookup_hashtable); i++)
3136                 INIT_HLIST_BL_HEAD(&in_lookup_hashtable[i]);
3137
3138         dcache_init_early();
3139         inode_init_early();
3140 }
3141
3142 void __init vfs_caches_init(void)
3143 {
3144         names_cachep = kmem_cache_create_usercopy("names_cache", PATH_MAX, 0,
3145                         SLAB_HWCACHE_ALIGN|SLAB_PANIC, 0, PATH_MAX, NULL);
3146
3147         dcache_init();
3148         inode_init();
3149         files_init();
3150         files_maxfiles_init();
3151         mnt_init();
3152         bdev_cache_init();
3153         chrdev_init();
3154 }