GNU Linux-libre 5.4.257-gnu1
[releases.git] / fs / dax.c
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  * fs/dax.c - Direct Access filesystem code
4  * Copyright (c) 2013-2014 Intel Corporation
5  * Author: Matthew Wilcox <matthew.r.wilcox@intel.com>
6  * Author: Ross Zwisler <ross.zwisler@linux.intel.com>
7  */
8
9 #include <linux/atomic.h>
10 #include <linux/blkdev.h>
11 #include <linux/buffer_head.h>
12 #include <linux/dax.h>
13 #include <linux/fs.h>
14 #include <linux/genhd.h>
15 #include <linux/highmem.h>
16 #include <linux/memcontrol.h>
17 #include <linux/mm.h>
18 #include <linux/mutex.h>
19 #include <linux/pagevec.h>
20 #include <linux/sched.h>
21 #include <linux/sched/signal.h>
22 #include <linux/uio.h>
23 #include <linux/vmstat.h>
24 #include <linux/pfn_t.h>
25 #include <linux/sizes.h>
26 #include <linux/mmu_notifier.h>
27 #include <linux/iomap.h>
28 #include <asm/pgalloc.h>
29
30 #define CREATE_TRACE_POINTS
31 #include <trace/events/fs_dax.h>
32
33 static inline unsigned int pe_order(enum page_entry_size pe_size)
34 {
35         if (pe_size == PE_SIZE_PTE)
36                 return PAGE_SHIFT - PAGE_SHIFT;
37         if (pe_size == PE_SIZE_PMD)
38                 return PMD_SHIFT - PAGE_SHIFT;
39         if (pe_size == PE_SIZE_PUD)
40                 return PUD_SHIFT - PAGE_SHIFT;
41         return ~0;
42 }
43
44 /* We choose 4096 entries - same as per-zone page wait tables */
45 #define DAX_WAIT_TABLE_BITS 12
46 #define DAX_WAIT_TABLE_ENTRIES (1 << DAX_WAIT_TABLE_BITS)
47
48 /* The 'colour' (ie low bits) within a PMD of a page offset.  */
49 #define PG_PMD_COLOUR   ((PMD_SIZE >> PAGE_SHIFT) - 1)
50 #define PG_PMD_NR       (PMD_SIZE >> PAGE_SHIFT)
51
52 /* The order of a PMD entry */
53 #define PMD_ORDER       (PMD_SHIFT - PAGE_SHIFT)
54
55 static wait_queue_head_t wait_table[DAX_WAIT_TABLE_ENTRIES];
56
57 static int __init init_dax_wait_table(void)
58 {
59         int i;
60
61         for (i = 0; i < DAX_WAIT_TABLE_ENTRIES; i++)
62                 init_waitqueue_head(wait_table + i);
63         return 0;
64 }
65 fs_initcall(init_dax_wait_table);
66
67 /*
68  * DAX pagecache entries use XArray value entries so they can't be mistaken
69  * for pages.  We use one bit for locking, one bit for the entry size (PMD)
70  * and two more to tell us if the entry is a zero page or an empty entry that
71  * is just used for locking.  In total four special bits.
72  *
73  * If the PMD bit isn't set the entry has size PAGE_SIZE, and if the ZERO_PAGE
74  * and EMPTY bits aren't set the entry is a normal DAX entry with a filesystem
75  * block allocation.
76  */
77 #define DAX_SHIFT       (4)
78 #define DAX_LOCKED      (1UL << 0)
79 #define DAX_PMD         (1UL << 1)
80 #define DAX_ZERO_PAGE   (1UL << 2)
81 #define DAX_EMPTY       (1UL << 3)
82
83 static unsigned long dax_to_pfn(void *entry)
84 {
85         return xa_to_value(entry) >> DAX_SHIFT;
86 }
87
88 static void *dax_make_entry(pfn_t pfn, unsigned long flags)
89 {
90         return xa_mk_value(flags | (pfn_t_to_pfn(pfn) << DAX_SHIFT));
91 }
92
93 static bool dax_is_locked(void *entry)
94 {
95         return xa_to_value(entry) & DAX_LOCKED;
96 }
97
98 static unsigned int dax_entry_order(void *entry)
99 {
100         if (xa_to_value(entry) & DAX_PMD)
101                 return PMD_ORDER;
102         return 0;
103 }
104
105 static unsigned long dax_is_pmd_entry(void *entry)
106 {
107         return xa_to_value(entry) & DAX_PMD;
108 }
109
110 static bool dax_is_pte_entry(void *entry)
111 {
112         return !(xa_to_value(entry) & DAX_PMD);
113 }
114
115 static int dax_is_zero_entry(void *entry)
116 {
117         return xa_to_value(entry) & DAX_ZERO_PAGE;
118 }
119
120 static int dax_is_empty_entry(void *entry)
121 {
122         return xa_to_value(entry) & DAX_EMPTY;
123 }
124
125 /*
126  * true if the entry that was found is of a smaller order than the entry
127  * we were looking for
128  */
129 static bool dax_is_conflict(void *entry)
130 {
131         return entry == XA_RETRY_ENTRY;
132 }
133
134 /*
135  * DAX page cache entry locking
136  */
137 struct exceptional_entry_key {
138         struct xarray *xa;
139         pgoff_t entry_start;
140 };
141
142 struct wait_exceptional_entry_queue {
143         wait_queue_entry_t wait;
144         struct exceptional_entry_key key;
145 };
146
147 static wait_queue_head_t *dax_entry_waitqueue(struct xa_state *xas,
148                 void *entry, struct exceptional_entry_key *key)
149 {
150         unsigned long hash;
151         unsigned long index = xas->xa_index;
152
153         /*
154          * If 'entry' is a PMD, align the 'index' that we use for the wait
155          * queue to the start of that PMD.  This ensures that all offsets in
156          * the range covered by the PMD map to the same bit lock.
157          */
158         if (dax_is_pmd_entry(entry))
159                 index &= ~PG_PMD_COLOUR;
160         key->xa = xas->xa;
161         key->entry_start = index;
162
163         hash = hash_long((unsigned long)xas->xa ^ index, DAX_WAIT_TABLE_BITS);
164         return wait_table + hash;
165 }
166
167 static int wake_exceptional_entry_func(wait_queue_entry_t *wait,
168                 unsigned int mode, int sync, void *keyp)
169 {
170         struct exceptional_entry_key *key = keyp;
171         struct wait_exceptional_entry_queue *ewait =
172                 container_of(wait, struct wait_exceptional_entry_queue, wait);
173
174         if (key->xa != ewait->key.xa ||
175             key->entry_start != ewait->key.entry_start)
176                 return 0;
177         return autoremove_wake_function(wait, mode, sync, NULL);
178 }
179
180 /*
181  * @entry may no longer be the entry at the index in the mapping.
182  * The important information it's conveying is whether the entry at
183  * this index used to be a PMD entry.
184  */
185 static void dax_wake_entry(struct xa_state *xas, void *entry, bool wake_all)
186 {
187         struct exceptional_entry_key key;
188         wait_queue_head_t *wq;
189
190         wq = dax_entry_waitqueue(xas, entry, &key);
191
192         /*
193          * Checking for locked entry and prepare_to_wait_exclusive() happens
194          * under the i_pages lock, ditto for entry handling in our callers.
195          * So at this point all tasks that could have seen our entry locked
196          * must be in the waitqueue and the following check will see them.
197          */
198         if (waitqueue_active(wq))
199                 __wake_up(wq, TASK_NORMAL, wake_all ? 0 : 1, &key);
200 }
201
202 /*
203  * Look up entry in page cache, wait for it to become unlocked if it
204  * is a DAX entry and return it.  The caller must subsequently call
205  * put_unlocked_entry() if it did not lock the entry or dax_unlock_entry()
206  * if it did.  The entry returned may have a larger order than @order.
207  * If @order is larger than the order of the entry found in i_pages, this
208  * function returns a dax_is_conflict entry.
209  *
210  * Must be called with the i_pages lock held.
211  */
212 static void *get_unlocked_entry(struct xa_state *xas, unsigned int order)
213 {
214         void *entry;
215         struct wait_exceptional_entry_queue ewait;
216         wait_queue_head_t *wq;
217
218         init_wait(&ewait.wait);
219         ewait.wait.func = wake_exceptional_entry_func;
220
221         for (;;) {
222                 entry = xas_find_conflict(xas);
223                 if (!entry || WARN_ON_ONCE(!xa_is_value(entry)))
224                         return entry;
225                 if (dax_entry_order(entry) < order)
226                         return XA_RETRY_ENTRY;
227                 if (!dax_is_locked(entry))
228                         return entry;
229
230                 wq = dax_entry_waitqueue(xas, entry, &ewait.key);
231                 prepare_to_wait_exclusive(wq, &ewait.wait,
232                                           TASK_UNINTERRUPTIBLE);
233                 xas_unlock_irq(xas);
234                 xas_reset(xas);
235                 schedule();
236                 finish_wait(wq, &ewait.wait);
237                 xas_lock_irq(xas);
238         }
239 }
240
241 /*
242  * The only thing keeping the address space around is the i_pages lock
243  * (it's cycled in clear_inode() after removing the entries from i_pages)
244  * After we call xas_unlock_irq(), we cannot touch xas->xa.
245  */
246 static void wait_entry_unlocked(struct xa_state *xas, void *entry)
247 {
248         struct wait_exceptional_entry_queue ewait;
249         wait_queue_head_t *wq;
250
251         init_wait(&ewait.wait);
252         ewait.wait.func = wake_exceptional_entry_func;
253
254         wq = dax_entry_waitqueue(xas, entry, &ewait.key);
255         /*
256          * Unlike get_unlocked_entry() there is no guarantee that this
257          * path ever successfully retrieves an unlocked entry before an
258          * inode dies. Perform a non-exclusive wait in case this path
259          * never successfully performs its own wake up.
260          */
261         prepare_to_wait(wq, &ewait.wait, TASK_UNINTERRUPTIBLE);
262         xas_unlock_irq(xas);
263         schedule();
264         finish_wait(wq, &ewait.wait);
265 }
266
267 static void put_unlocked_entry(struct xa_state *xas, void *entry)
268 {
269         /* If we were the only waiter woken, wake the next one */
270         if (entry && !dax_is_conflict(entry))
271                 dax_wake_entry(xas, entry, false);
272 }
273
274 /*
275  * We used the xa_state to get the entry, but then we locked the entry and
276  * dropped the xa_lock, so we know the xa_state is stale and must be reset
277  * before use.
278  */
279 static void dax_unlock_entry(struct xa_state *xas, void *entry)
280 {
281         void *old;
282
283         BUG_ON(dax_is_locked(entry));
284         xas_reset(xas);
285         xas_lock_irq(xas);
286         old = xas_store(xas, entry);
287         xas_unlock_irq(xas);
288         BUG_ON(!dax_is_locked(old));
289         dax_wake_entry(xas, entry, false);
290 }
291
292 /*
293  * Return: The entry stored at this location before it was locked.
294  */
295 static void *dax_lock_entry(struct xa_state *xas, void *entry)
296 {
297         unsigned long v = xa_to_value(entry);
298         return xas_store(xas, xa_mk_value(v | DAX_LOCKED));
299 }
300
301 static unsigned long dax_entry_size(void *entry)
302 {
303         if (dax_is_zero_entry(entry))
304                 return 0;
305         else if (dax_is_empty_entry(entry))
306                 return 0;
307         else if (dax_is_pmd_entry(entry))
308                 return PMD_SIZE;
309         else
310                 return PAGE_SIZE;
311 }
312
313 static unsigned long dax_end_pfn(void *entry)
314 {
315         return dax_to_pfn(entry) + dax_entry_size(entry) / PAGE_SIZE;
316 }
317
318 /*
319  * Iterate through all mapped pfns represented by an entry, i.e. skip
320  * 'empty' and 'zero' entries.
321  */
322 #define for_each_mapped_pfn(entry, pfn) \
323         for (pfn = dax_to_pfn(entry); \
324                         pfn < dax_end_pfn(entry); pfn++)
325
326 /*
327  * TODO: for reflink+dax we need a way to associate a single page with
328  * multiple address_space instances at different linear_page_index()
329  * offsets.
330  */
331 static void dax_associate_entry(void *entry, struct address_space *mapping,
332                 struct vm_area_struct *vma, unsigned long address)
333 {
334         unsigned long size = dax_entry_size(entry), pfn, index;
335         int i = 0;
336
337         if (IS_ENABLED(CONFIG_FS_DAX_LIMITED))
338                 return;
339
340         index = linear_page_index(vma, address & ~(size - 1));
341         for_each_mapped_pfn(entry, pfn) {
342                 struct page *page = pfn_to_page(pfn);
343
344                 WARN_ON_ONCE(page->mapping);
345                 page->mapping = mapping;
346                 page->index = index + i++;
347         }
348 }
349
350 static void dax_disassociate_entry(void *entry, struct address_space *mapping,
351                 bool trunc)
352 {
353         unsigned long pfn;
354
355         if (IS_ENABLED(CONFIG_FS_DAX_LIMITED))
356                 return;
357
358         for_each_mapped_pfn(entry, pfn) {
359                 struct page *page = pfn_to_page(pfn);
360
361                 WARN_ON_ONCE(trunc && page_ref_count(page) > 1);
362                 WARN_ON_ONCE(page->mapping && page->mapping != mapping);
363                 page->mapping = NULL;
364                 page->index = 0;
365         }
366 }
367
368 static struct page *dax_busy_page(void *entry)
369 {
370         unsigned long pfn;
371
372         for_each_mapped_pfn(entry, pfn) {
373                 struct page *page = pfn_to_page(pfn);
374
375                 if (page_ref_count(page) > 1)
376                         return page;
377         }
378         return NULL;
379 }
380
381 /*
382  * dax_lock_mapping_entry - Lock the DAX entry corresponding to a page
383  * @page: The page whose entry we want to lock
384  *
385  * Context: Process context.
386  * Return: A cookie to pass to dax_unlock_page() or 0 if the entry could
387  * not be locked.
388  */
389 dax_entry_t dax_lock_page(struct page *page)
390 {
391         XA_STATE(xas, NULL, 0);
392         void *entry;
393
394         /* Ensure page->mapping isn't freed while we look at it */
395         rcu_read_lock();
396         for (;;) {
397                 struct address_space *mapping = READ_ONCE(page->mapping);
398
399                 entry = NULL;
400                 if (!mapping || !dax_mapping(mapping))
401                         break;
402
403                 /*
404                  * In the device-dax case there's no need to lock, a
405                  * struct dev_pagemap pin is sufficient to keep the
406                  * inode alive, and we assume we have dev_pagemap pin
407                  * otherwise we would not have a valid pfn_to_page()
408                  * translation.
409                  */
410                 entry = (void *)~0UL;
411                 if (S_ISCHR(mapping->host->i_mode))
412                         break;
413
414                 xas.xa = &mapping->i_pages;
415                 xas_lock_irq(&xas);
416                 if (mapping != page->mapping) {
417                         xas_unlock_irq(&xas);
418                         continue;
419                 }
420                 xas_set(&xas, page->index);
421                 entry = xas_load(&xas);
422                 if (dax_is_locked(entry)) {
423                         rcu_read_unlock();
424                         wait_entry_unlocked(&xas, entry);
425                         rcu_read_lock();
426                         continue;
427                 }
428                 dax_lock_entry(&xas, entry);
429                 xas_unlock_irq(&xas);
430                 break;
431         }
432         rcu_read_unlock();
433         return (dax_entry_t)entry;
434 }
435
436 void dax_unlock_page(struct page *page, dax_entry_t cookie)
437 {
438         struct address_space *mapping = page->mapping;
439         XA_STATE(xas, &mapping->i_pages, page->index);
440
441         if (S_ISCHR(mapping->host->i_mode))
442                 return;
443
444         dax_unlock_entry(&xas, (void *)cookie);
445 }
446
447 /*
448  * Find page cache entry at given index. If it is a DAX entry, return it
449  * with the entry locked. If the page cache doesn't contain an entry at
450  * that index, add a locked empty entry.
451  *
452  * When requesting an entry with size DAX_PMD, grab_mapping_entry() will
453  * either return that locked entry or will return VM_FAULT_FALLBACK.
454  * This will happen if there are any PTE entries within the PMD range
455  * that we are requesting.
456  *
457  * We always favor PTE entries over PMD entries. There isn't a flow where we
458  * evict PTE entries in order to 'upgrade' them to a PMD entry.  A PMD
459  * insertion will fail if it finds any PTE entries already in the tree, and a
460  * PTE insertion will cause an existing PMD entry to be unmapped and
461  * downgraded to PTE entries.  This happens for both PMD zero pages as
462  * well as PMD empty entries.
463  *
464  * The exception to this downgrade path is for PMD entries that have
465  * real storage backing them.  We will leave these real PMD entries in
466  * the tree, and PTE writes will simply dirty the entire PMD entry.
467  *
468  * Note: Unlike filemap_fault() we don't honor FAULT_FLAG_RETRY flags. For
469  * persistent memory the benefit is doubtful. We can add that later if we can
470  * show it helps.
471  *
472  * On error, this function does not return an ERR_PTR.  Instead it returns
473  * a VM_FAULT code, encoded as an xarray internal entry.  The ERR_PTR values
474  * overlap with xarray value entries.
475  */
476 static void *grab_mapping_entry(struct xa_state *xas,
477                 struct address_space *mapping, unsigned int order)
478 {
479         unsigned long index = xas->xa_index;
480         bool pmd_downgrade;     /* splitting PMD entry into PTE entries? */
481         void *entry;
482
483 retry:
484         pmd_downgrade = false;
485         xas_lock_irq(xas);
486         entry = get_unlocked_entry(xas, order);
487
488         if (entry) {
489                 if (dax_is_conflict(entry))
490                         goto fallback;
491                 if (!xa_is_value(entry)) {
492                         xas_set_err(xas, EIO);
493                         goto out_unlock;
494                 }
495
496                 if (order == 0) {
497                         if (dax_is_pmd_entry(entry) &&
498                             (dax_is_zero_entry(entry) ||
499                              dax_is_empty_entry(entry))) {
500                                 pmd_downgrade = true;
501                         }
502                 }
503         }
504
505         if (pmd_downgrade) {
506                 /*
507                  * Make sure 'entry' remains valid while we drop
508                  * the i_pages lock.
509                  */
510                 dax_lock_entry(xas, entry);
511
512                 /*
513                  * Besides huge zero pages the only other thing that gets
514                  * downgraded are empty entries which don't need to be
515                  * unmapped.
516                  */
517                 if (dax_is_zero_entry(entry)) {
518                         xas_unlock_irq(xas);
519                         unmap_mapping_pages(mapping,
520                                         xas->xa_index & ~PG_PMD_COLOUR,
521                                         PG_PMD_NR, false);
522                         xas_reset(xas);
523                         xas_lock_irq(xas);
524                 }
525
526                 dax_disassociate_entry(entry, mapping, false);
527                 xas_store(xas, NULL);   /* undo the PMD join */
528                 dax_wake_entry(xas, entry, true);
529                 mapping->nrexceptional--;
530                 entry = NULL;
531                 xas_set(xas, index);
532         }
533
534         if (entry) {
535                 dax_lock_entry(xas, entry);
536         } else {
537                 unsigned long flags = DAX_EMPTY;
538
539                 if (order > 0)
540                         flags |= DAX_PMD;
541                 entry = dax_make_entry(pfn_to_pfn_t(0), flags);
542                 dax_lock_entry(xas, entry);
543                 if (xas_error(xas))
544                         goto out_unlock;
545                 mapping->nrexceptional++;
546         }
547
548 out_unlock:
549         xas_unlock_irq(xas);
550         if (xas_nomem(xas, mapping_gfp_mask(mapping) & ~__GFP_HIGHMEM))
551                 goto retry;
552         if (xas->xa_node == XA_ERROR(-ENOMEM))
553                 return xa_mk_internal(VM_FAULT_OOM);
554         if (xas_error(xas))
555                 return xa_mk_internal(VM_FAULT_SIGBUS);
556         return entry;
557 fallback:
558         xas_unlock_irq(xas);
559         return xa_mk_internal(VM_FAULT_FALLBACK);
560 }
561
562 /**
563  * dax_layout_busy_page - find first pinned page in @mapping
564  * @mapping: address space to scan for a page with ref count > 1
565  *
566  * DAX requires ZONE_DEVICE mapped pages. These pages are never
567  * 'onlined' to the page allocator so they are considered idle when
568  * page->count == 1. A filesystem uses this interface to determine if
569  * any page in the mapping is busy, i.e. for DMA, or other
570  * get_user_pages() usages.
571  *
572  * It is expected that the filesystem is holding locks to block the
573  * establishment of new mappings in this address_space. I.e. it expects
574  * to be able to run unmap_mapping_range() and subsequently not race
575  * mapping_mapped() becoming true.
576  */
577 struct page *dax_layout_busy_page(struct address_space *mapping)
578 {
579         XA_STATE(xas, &mapping->i_pages, 0);
580         void *entry;
581         unsigned int scanned = 0;
582         struct page *page = NULL;
583
584         /*
585          * In the 'limited' case get_user_pages() for dax is disabled.
586          */
587         if (IS_ENABLED(CONFIG_FS_DAX_LIMITED))
588                 return NULL;
589
590         if (!dax_mapping(mapping) || !mapping_mapped(mapping))
591                 return NULL;
592
593         /*
594          * If we race get_user_pages_fast() here either we'll see the
595          * elevated page count in the iteration and wait, or
596          * get_user_pages_fast() will see that the page it took a reference
597          * against is no longer mapped in the page tables and bail to the
598          * get_user_pages() slow path.  The slow path is protected by
599          * pte_lock() and pmd_lock(). New references are not taken without
600          * holding those locks, and unmap_mapping_range() will not zero the
601          * pte or pmd without holding the respective lock, so we are
602          * guaranteed to either see new references or prevent new
603          * references from being established.
604          */
605         unmap_mapping_range(mapping, 0, 0, 0);
606
607         xas_lock_irq(&xas);
608         xas_for_each(&xas, entry, ULONG_MAX) {
609                 if (WARN_ON_ONCE(!xa_is_value(entry)))
610                         continue;
611                 if (unlikely(dax_is_locked(entry)))
612                         entry = get_unlocked_entry(&xas, 0);
613                 if (entry)
614                         page = dax_busy_page(entry);
615                 put_unlocked_entry(&xas, entry);
616                 if (page)
617                         break;
618                 if (++scanned % XA_CHECK_SCHED)
619                         continue;
620
621                 xas_pause(&xas);
622                 xas_unlock_irq(&xas);
623                 cond_resched();
624                 xas_lock_irq(&xas);
625         }
626         xas_unlock_irq(&xas);
627         return page;
628 }
629 EXPORT_SYMBOL_GPL(dax_layout_busy_page);
630
631 static int __dax_invalidate_entry(struct address_space *mapping,
632                                           pgoff_t index, bool trunc)
633 {
634         XA_STATE(xas, &mapping->i_pages, index);
635         int ret = 0;
636         void *entry;
637
638         xas_lock_irq(&xas);
639         entry = get_unlocked_entry(&xas, 0);
640         if (!entry || WARN_ON_ONCE(!xa_is_value(entry)))
641                 goto out;
642         if (!trunc &&
643             (xas_get_mark(&xas, PAGECACHE_TAG_DIRTY) ||
644              xas_get_mark(&xas, PAGECACHE_TAG_TOWRITE)))
645                 goto out;
646         dax_disassociate_entry(entry, mapping, trunc);
647         xas_store(&xas, NULL);
648         mapping->nrexceptional--;
649         ret = 1;
650 out:
651         put_unlocked_entry(&xas, entry);
652         xas_unlock_irq(&xas);
653         return ret;
654 }
655
656 /*
657  * Delete DAX entry at @index from @mapping.  Wait for it
658  * to be unlocked before deleting it.
659  */
660 int dax_delete_mapping_entry(struct address_space *mapping, pgoff_t index)
661 {
662         int ret = __dax_invalidate_entry(mapping, index, true);
663
664         /*
665          * This gets called from truncate / punch_hole path. As such, the caller
666          * must hold locks protecting against concurrent modifications of the
667          * page cache (usually fs-private i_mmap_sem for writing). Since the
668          * caller has seen a DAX entry for this index, we better find it
669          * at that index as well...
670          */
671         WARN_ON_ONCE(!ret);
672         return ret;
673 }
674
675 /*
676  * Invalidate DAX entry if it is clean.
677  */
678 int dax_invalidate_mapping_entry_sync(struct address_space *mapping,
679                                       pgoff_t index)
680 {
681         return __dax_invalidate_entry(mapping, index, false);
682 }
683
684 static int copy_user_dax(struct block_device *bdev, struct dax_device *dax_dev,
685                 sector_t sector, size_t size, struct page *to,
686                 unsigned long vaddr)
687 {
688         void *vto, *kaddr;
689         pgoff_t pgoff;
690         long rc;
691         int id;
692
693         rc = bdev_dax_pgoff(bdev, sector, size, &pgoff);
694         if (rc)
695                 return rc;
696
697         id = dax_read_lock();
698         rc = dax_direct_access(dax_dev, pgoff, PHYS_PFN(size), &kaddr, NULL);
699         if (rc < 0) {
700                 dax_read_unlock(id);
701                 return rc;
702         }
703         vto = kmap_atomic(to);
704         copy_user_page(vto, (void __force *)kaddr, vaddr, to);
705         kunmap_atomic(vto);
706         dax_read_unlock(id);
707         return 0;
708 }
709
710 /*
711  * By this point grab_mapping_entry() has ensured that we have a locked entry
712  * of the appropriate size so we don't have to worry about downgrading PMDs to
713  * PTEs.  If we happen to be trying to insert a PTE and there is a PMD
714  * already in the tree, we will skip the insertion and just dirty the PMD as
715  * appropriate.
716  */
717 static void *dax_insert_entry(struct xa_state *xas,
718                 struct address_space *mapping, struct vm_fault *vmf,
719                 void *entry, pfn_t pfn, unsigned long flags, bool dirty)
720 {
721         void *new_entry = dax_make_entry(pfn, flags);
722
723         if (dirty)
724                 __mark_inode_dirty(mapping->host, I_DIRTY_PAGES);
725
726         if (dax_is_zero_entry(entry) && !(flags & DAX_ZERO_PAGE)) {
727                 unsigned long index = xas->xa_index;
728                 /* we are replacing a zero page with block mapping */
729                 if (dax_is_pmd_entry(entry))
730                         unmap_mapping_pages(mapping, index & ~PG_PMD_COLOUR,
731                                         PG_PMD_NR, false);
732                 else /* pte entry */
733                         unmap_mapping_pages(mapping, index, 1, false);
734         }
735
736         xas_reset(xas);
737         xas_lock_irq(xas);
738         if (dax_is_zero_entry(entry) || dax_is_empty_entry(entry)) {
739                 void *old;
740
741                 dax_disassociate_entry(entry, mapping, false);
742                 dax_associate_entry(new_entry, mapping, vmf->vma, vmf->address);
743                 /*
744                  * Only swap our new entry into the page cache if the current
745                  * entry is a zero page or an empty entry.  If a normal PTE or
746                  * PMD entry is already in the cache, we leave it alone.  This
747                  * means that if we are trying to insert a PTE and the
748                  * existing entry is a PMD, we will just leave the PMD in the
749                  * tree and dirty it if necessary.
750                  */
751                 old = dax_lock_entry(xas, new_entry);
752                 WARN_ON_ONCE(old != xa_mk_value(xa_to_value(entry) |
753                                         DAX_LOCKED));
754                 entry = new_entry;
755         } else {
756                 xas_load(xas);  /* Walk the xa_state */
757         }
758
759         if (dirty)
760                 xas_set_mark(xas, PAGECACHE_TAG_DIRTY);
761
762         xas_unlock_irq(xas);
763         return entry;
764 }
765
766 static inline
767 unsigned long pgoff_address(pgoff_t pgoff, struct vm_area_struct *vma)
768 {
769         unsigned long address;
770
771         address = vma->vm_start + ((pgoff - vma->vm_pgoff) << PAGE_SHIFT);
772         VM_BUG_ON_VMA(address < vma->vm_start || address >= vma->vm_end, vma);
773         return address;
774 }
775
776 /* Walk all mappings of a given index of a file and writeprotect them */
777 static void dax_entry_mkclean(struct address_space *mapping, pgoff_t index,
778                 unsigned long pfn)
779 {
780         struct vm_area_struct *vma;
781         pte_t pte, *ptep = NULL;
782         pmd_t *pmdp = NULL;
783         spinlock_t *ptl;
784
785         i_mmap_lock_read(mapping);
786         vma_interval_tree_foreach(vma, &mapping->i_mmap, index, index) {
787                 struct mmu_notifier_range range;
788                 unsigned long address;
789
790                 cond_resched();
791
792                 if (!(vma->vm_flags & VM_SHARED))
793                         continue;
794
795                 address = pgoff_address(index, vma);
796
797                 /*
798                  * follow_invalidate_pte() will use the range to call
799                  * mmu_notifier_invalidate_range_start() on our behalf before
800                  * taking any lock.
801                  */
802                 if (follow_invalidate_pte(vma->vm_mm, address, &range, &ptep,
803                                           &pmdp, &ptl))
804                         continue;
805
806                 /*
807                  * No need to call mmu_notifier_invalidate_range() as we are
808                  * downgrading page table protection not changing it to point
809                  * to a new page.
810                  *
811                  * See Documentation/vm/mmu_notifier.rst
812                  */
813                 if (pmdp) {
814 #ifdef CONFIG_FS_DAX_PMD
815                         pmd_t pmd;
816
817                         if (pfn != pmd_pfn(*pmdp))
818                                 goto unlock_pmd;
819                         if (!pmd_dirty(*pmdp) && !pmd_write(*pmdp))
820                                 goto unlock_pmd;
821
822                         flush_cache_range(vma, address,
823                                           address + HPAGE_PMD_SIZE);
824                         pmd = pmdp_invalidate(vma, address, pmdp);
825                         pmd = pmd_wrprotect(pmd);
826                         pmd = pmd_mkclean(pmd);
827                         set_pmd_at(vma->vm_mm, address, pmdp, pmd);
828 unlock_pmd:
829 #endif
830                         spin_unlock(ptl);
831                 } else {
832                         if (pfn != pte_pfn(*ptep))
833                                 goto unlock_pte;
834                         if (!pte_dirty(*ptep) && !pte_write(*ptep))
835                                 goto unlock_pte;
836
837                         flush_cache_page(vma, address, pfn);
838                         pte = ptep_clear_flush(vma, address, ptep);
839                         pte = pte_wrprotect(pte);
840                         pte = pte_mkclean(pte);
841                         set_pte_at(vma->vm_mm, address, ptep, pte);
842 unlock_pte:
843                         pte_unmap_unlock(ptep, ptl);
844                 }
845
846                 mmu_notifier_invalidate_range_end(&range);
847         }
848         i_mmap_unlock_read(mapping);
849 }
850
851 static int dax_writeback_one(struct xa_state *xas, struct dax_device *dax_dev,
852                 struct address_space *mapping, void *entry)
853 {
854         unsigned long pfn, index, count;
855         long ret = 0;
856
857         /*
858          * A page got tagged dirty in DAX mapping? Something is seriously
859          * wrong.
860          */
861         if (WARN_ON(!xa_is_value(entry)))
862                 return -EIO;
863
864         if (unlikely(dax_is_locked(entry))) {
865                 void *old_entry = entry;
866
867                 entry = get_unlocked_entry(xas, 0);
868
869                 /* Entry got punched out / reallocated? */
870                 if (!entry || WARN_ON_ONCE(!xa_is_value(entry)))
871                         goto put_unlocked;
872                 /*
873                  * Entry got reallocated elsewhere? No need to writeback.
874                  * We have to compare pfns as we must not bail out due to
875                  * difference in lockbit or entry type.
876                  */
877                 if (dax_to_pfn(old_entry) != dax_to_pfn(entry))
878                         goto put_unlocked;
879                 if (WARN_ON_ONCE(dax_is_empty_entry(entry) ||
880                                         dax_is_zero_entry(entry))) {
881                         ret = -EIO;
882                         goto put_unlocked;
883                 }
884
885                 /* Another fsync thread may have already done this entry */
886                 if (!xas_get_mark(xas, PAGECACHE_TAG_TOWRITE))
887                         goto put_unlocked;
888         }
889
890         /* Lock the entry to serialize with page faults */
891         dax_lock_entry(xas, entry);
892
893         /*
894          * We can clear the tag now but we have to be careful so that concurrent
895          * dax_writeback_one() calls for the same index cannot finish before we
896          * actually flush the caches. This is achieved as the calls will look
897          * at the entry only under the i_pages lock and once they do that
898          * they will see the entry locked and wait for it to unlock.
899          */
900         xas_clear_mark(xas, PAGECACHE_TAG_TOWRITE);
901         xas_unlock_irq(xas);
902
903         /*
904          * If dax_writeback_mapping_range() was given a wbc->range_start
905          * in the middle of a PMD, the 'index' we use needs to be
906          * aligned to the start of the PMD.
907          * This allows us to flush for PMD_SIZE and not have to worry about
908          * partial PMD writebacks.
909          */
910         pfn = dax_to_pfn(entry);
911         count = 1UL << dax_entry_order(entry);
912         index = xas->xa_index & ~(count - 1);
913
914         dax_entry_mkclean(mapping, index, pfn);
915         dax_flush(dax_dev, page_address(pfn_to_page(pfn)), count * PAGE_SIZE);
916         /*
917          * After we have flushed the cache, we can clear the dirty tag. There
918          * cannot be new dirty data in the pfn after the flush has completed as
919          * the pfn mappings are writeprotected and fault waits for mapping
920          * entry lock.
921          */
922         xas_reset(xas);
923         xas_lock_irq(xas);
924         xas_store(xas, entry);
925         xas_clear_mark(xas, PAGECACHE_TAG_DIRTY);
926         dax_wake_entry(xas, entry, false);
927
928         trace_dax_writeback_one(mapping->host, index, count);
929         return ret;
930
931  put_unlocked:
932         put_unlocked_entry(xas, entry);
933         return ret;
934 }
935
936 /*
937  * Flush the mapping to the persistent domain within the byte range of [start,
938  * end]. This is required by data integrity operations to ensure file data is
939  * on persistent storage prior to completion of the operation.
940  */
941 int dax_writeback_mapping_range(struct address_space *mapping,
942                 struct block_device *bdev, struct writeback_control *wbc)
943 {
944         XA_STATE(xas, &mapping->i_pages, wbc->range_start >> PAGE_SHIFT);
945         struct inode *inode = mapping->host;
946         pgoff_t end_index = wbc->range_end >> PAGE_SHIFT;
947         struct dax_device *dax_dev;
948         void *entry;
949         int ret = 0;
950         unsigned int scanned = 0;
951
952         if (WARN_ON_ONCE(inode->i_blkbits != PAGE_SHIFT))
953                 return -EIO;
954
955         if (!mapping->nrexceptional || wbc->sync_mode != WB_SYNC_ALL)
956                 return 0;
957
958         dax_dev = dax_get_by_host(bdev->bd_disk->disk_name);
959         if (!dax_dev)
960                 return -EIO;
961
962         trace_dax_writeback_range(inode, xas.xa_index, end_index);
963
964         tag_pages_for_writeback(mapping, xas.xa_index, end_index);
965
966         xas_lock_irq(&xas);
967         xas_for_each_marked(&xas, entry, end_index, PAGECACHE_TAG_TOWRITE) {
968                 ret = dax_writeback_one(&xas, dax_dev, mapping, entry);
969                 if (ret < 0) {
970                         mapping_set_error(mapping, ret);
971                         break;
972                 }
973                 if (++scanned % XA_CHECK_SCHED)
974                         continue;
975
976                 xas_pause(&xas);
977                 xas_unlock_irq(&xas);
978                 cond_resched();
979                 xas_lock_irq(&xas);
980         }
981         xas_unlock_irq(&xas);
982         put_dax(dax_dev);
983         trace_dax_writeback_range_done(inode, xas.xa_index, end_index);
984         return ret;
985 }
986 EXPORT_SYMBOL_GPL(dax_writeback_mapping_range);
987
988 static sector_t dax_iomap_sector(struct iomap *iomap, loff_t pos)
989 {
990         return (iomap->addr + (pos & PAGE_MASK) - iomap->offset) >> 9;
991 }
992
993 static int dax_iomap_pfn(struct iomap *iomap, loff_t pos, size_t size,
994                          pfn_t *pfnp)
995 {
996         const sector_t sector = dax_iomap_sector(iomap, pos);
997         pgoff_t pgoff;
998         int id, rc;
999         long length;
1000
1001         rc = bdev_dax_pgoff(iomap->bdev, sector, size, &pgoff);
1002         if (rc)
1003                 return rc;
1004         id = dax_read_lock();
1005         length = dax_direct_access(iomap->dax_dev, pgoff, PHYS_PFN(size),
1006                                    NULL, pfnp);
1007         if (length < 0) {
1008                 rc = length;
1009                 goto out;
1010         }
1011         rc = -EINVAL;
1012         if (PFN_PHYS(length) < size)
1013                 goto out;
1014         if (pfn_t_to_pfn(*pfnp) & (PHYS_PFN(size)-1))
1015                 goto out;
1016         /* For larger pages we need devmap */
1017         if (length > 1 && !pfn_t_devmap(*pfnp))
1018                 goto out;
1019         rc = 0;
1020 out:
1021         dax_read_unlock(id);
1022         return rc;
1023 }
1024
1025 /*
1026  * The user has performed a load from a hole in the file.  Allocating a new
1027  * page in the file would cause excessive storage usage for workloads with
1028  * sparse files.  Instead we insert a read-only mapping of the 4k zero page.
1029  * If this page is ever written to we will re-fault and change the mapping to
1030  * point to real DAX storage instead.
1031  */
1032 static vm_fault_t dax_load_hole(struct xa_state *xas,
1033                 struct address_space *mapping, void **entry,
1034                 struct vm_fault *vmf)
1035 {
1036         struct inode *inode = mapping->host;
1037         unsigned long vaddr = vmf->address;
1038         pfn_t pfn = pfn_to_pfn_t(my_zero_pfn(vaddr));
1039         vm_fault_t ret;
1040
1041         *entry = dax_insert_entry(xas, mapping, vmf, *entry, pfn,
1042                         DAX_ZERO_PAGE, false);
1043
1044         ret = vmf_insert_mixed(vmf->vma, vaddr, pfn);
1045         trace_dax_load_hole(inode, vmf, ret);
1046         return ret;
1047 }
1048
1049 static bool dax_range_is_aligned(struct block_device *bdev,
1050                                  unsigned int offset, unsigned int length)
1051 {
1052         unsigned short sector_size = bdev_logical_block_size(bdev);
1053
1054         if (!IS_ALIGNED(offset, sector_size))
1055                 return false;
1056         if (!IS_ALIGNED(length, sector_size))
1057                 return false;
1058
1059         return true;
1060 }
1061
1062 int __dax_zero_page_range(struct block_device *bdev,
1063                 struct dax_device *dax_dev, sector_t sector,
1064                 unsigned int offset, unsigned int size)
1065 {
1066         if (dax_range_is_aligned(bdev, offset, size)) {
1067                 sector_t start_sector = sector + (offset >> 9);
1068
1069                 return blkdev_issue_zeroout(bdev, start_sector,
1070                                 size >> 9, GFP_NOFS, 0);
1071         } else {
1072                 pgoff_t pgoff;
1073                 long rc, id;
1074                 void *kaddr;
1075
1076                 rc = bdev_dax_pgoff(bdev, sector, PAGE_SIZE, &pgoff);
1077                 if (rc)
1078                         return rc;
1079
1080                 id = dax_read_lock();
1081                 rc = dax_direct_access(dax_dev, pgoff, 1, &kaddr, NULL);
1082                 if (rc < 0) {
1083                         dax_read_unlock(id);
1084                         return rc;
1085                 }
1086                 memset(kaddr + offset, 0, size);
1087                 dax_flush(dax_dev, kaddr + offset, size);
1088                 dax_read_unlock(id);
1089         }
1090         return 0;
1091 }
1092 EXPORT_SYMBOL_GPL(__dax_zero_page_range);
1093
1094 static loff_t
1095 dax_iomap_actor(struct inode *inode, loff_t pos, loff_t length, void *data,
1096                 struct iomap *iomap)
1097 {
1098         struct block_device *bdev = iomap->bdev;
1099         struct dax_device *dax_dev = iomap->dax_dev;
1100         struct iov_iter *iter = data;
1101         loff_t end = pos + length, done = 0;
1102         ssize_t ret = 0;
1103         size_t xfer;
1104         int id;
1105
1106         if (iov_iter_rw(iter) == READ) {
1107                 end = min(end, i_size_read(inode));
1108                 if (pos >= end)
1109                         return 0;
1110
1111                 if (iomap->type == IOMAP_HOLE || iomap->type == IOMAP_UNWRITTEN)
1112                         return iov_iter_zero(min(length, end - pos), iter);
1113         }
1114
1115         if (WARN_ON_ONCE(iomap->type != IOMAP_MAPPED))
1116                 return -EIO;
1117
1118         /*
1119          * Write can allocate block for an area which has a hole page mapped
1120          * into page tables. We have to tear down these mappings so that data
1121          * written by write(2) is visible in mmap.
1122          */
1123         if (iomap->flags & IOMAP_F_NEW) {
1124                 invalidate_inode_pages2_range(inode->i_mapping,
1125                                               pos >> PAGE_SHIFT,
1126                                               (end - 1) >> PAGE_SHIFT);
1127         }
1128
1129         id = dax_read_lock();
1130         while (pos < end) {
1131                 unsigned offset = pos & (PAGE_SIZE - 1);
1132                 const size_t size = ALIGN(length + offset, PAGE_SIZE);
1133                 const sector_t sector = dax_iomap_sector(iomap, pos);
1134                 ssize_t map_len;
1135                 pgoff_t pgoff;
1136                 void *kaddr;
1137
1138                 if (fatal_signal_pending(current)) {
1139                         ret = -EINTR;
1140                         break;
1141                 }
1142
1143                 ret = bdev_dax_pgoff(bdev, sector, size, &pgoff);
1144                 if (ret)
1145                         break;
1146
1147                 map_len = dax_direct_access(dax_dev, pgoff, PHYS_PFN(size),
1148                                 &kaddr, NULL);
1149                 if (map_len < 0) {
1150                         ret = map_len;
1151                         break;
1152                 }
1153
1154                 map_len = PFN_PHYS(map_len);
1155                 kaddr += offset;
1156                 map_len -= offset;
1157                 if (map_len > end - pos)
1158                         map_len = end - pos;
1159
1160                 /*
1161                  * The userspace address for the memory copy has already been
1162                  * validated via access_ok() in either vfs_read() or
1163                  * vfs_write(), depending on which operation we are doing.
1164                  */
1165                 if (iov_iter_rw(iter) == WRITE)
1166                         xfer = dax_copy_from_iter(dax_dev, pgoff, kaddr,
1167                                         map_len, iter);
1168                 else
1169                         xfer = dax_copy_to_iter(dax_dev, pgoff, kaddr,
1170                                         map_len, iter);
1171
1172                 pos += xfer;
1173                 length -= xfer;
1174                 done += xfer;
1175
1176                 if (xfer == 0)
1177                         ret = -EFAULT;
1178                 if (xfer < map_len)
1179                         break;
1180         }
1181         dax_read_unlock(id);
1182
1183         return done ? done : ret;
1184 }
1185
1186 /**
1187  * dax_iomap_rw - Perform I/O to a DAX file
1188  * @iocb:       The control block for this I/O
1189  * @iter:       The addresses to do I/O from or to
1190  * @ops:        iomap ops passed from the file system
1191  *
1192  * This function performs read and write operations to directly mapped
1193  * persistent memory.  The callers needs to take care of read/write exclusion
1194  * and evicting any page cache pages in the region under I/O.
1195  */
1196 ssize_t
1197 dax_iomap_rw(struct kiocb *iocb, struct iov_iter *iter,
1198                 const struct iomap_ops *ops)
1199 {
1200         struct address_space *mapping = iocb->ki_filp->f_mapping;
1201         struct inode *inode = mapping->host;
1202         loff_t pos = iocb->ki_pos, ret = 0, done = 0;
1203         unsigned flags = 0;
1204
1205         if (iov_iter_rw(iter) == WRITE) {
1206                 lockdep_assert_held_write(&inode->i_rwsem);
1207                 flags |= IOMAP_WRITE;
1208         } else {
1209                 lockdep_assert_held(&inode->i_rwsem);
1210         }
1211
1212         if (iocb->ki_flags & IOCB_NOWAIT)
1213                 flags |= IOMAP_NOWAIT;
1214
1215         while (iov_iter_count(iter)) {
1216                 ret = iomap_apply(inode, pos, iov_iter_count(iter), flags, ops,
1217                                 iter, dax_iomap_actor);
1218                 if (ret <= 0)
1219                         break;
1220                 pos += ret;
1221                 done += ret;
1222         }
1223
1224         iocb->ki_pos += done;
1225         return done ? done : ret;
1226 }
1227 EXPORT_SYMBOL_GPL(dax_iomap_rw);
1228
1229 static vm_fault_t dax_fault_return(int error)
1230 {
1231         if (error == 0)
1232                 return VM_FAULT_NOPAGE;
1233         return vmf_error(error);
1234 }
1235
1236 /*
1237  * MAP_SYNC on a dax mapping guarantees dirty metadata is
1238  * flushed on write-faults (non-cow), but not read-faults.
1239  */
1240 static bool dax_fault_is_synchronous(unsigned long flags,
1241                 struct vm_area_struct *vma, struct iomap *iomap)
1242 {
1243         return (flags & IOMAP_WRITE) && (vma->vm_flags & VM_SYNC)
1244                 && (iomap->flags & IOMAP_F_DIRTY);
1245 }
1246
1247 static vm_fault_t dax_iomap_pte_fault(struct vm_fault *vmf, pfn_t *pfnp,
1248                                int *iomap_errp, const struct iomap_ops *ops)
1249 {
1250         struct vm_area_struct *vma = vmf->vma;
1251         struct address_space *mapping = vma->vm_file->f_mapping;
1252         XA_STATE(xas, &mapping->i_pages, vmf->pgoff);
1253         struct inode *inode = mapping->host;
1254         unsigned long vaddr = vmf->address;
1255         loff_t pos = (loff_t)vmf->pgoff << PAGE_SHIFT;
1256         struct iomap iomap = { 0 };
1257         unsigned flags = IOMAP_FAULT;
1258         int error, major = 0;
1259         bool write = vmf->flags & FAULT_FLAG_WRITE;
1260         bool sync;
1261         vm_fault_t ret = 0;
1262         void *entry;
1263         pfn_t pfn;
1264
1265         trace_dax_pte_fault(inode, vmf, ret);
1266         /*
1267          * Check whether offset isn't beyond end of file now. Caller is supposed
1268          * to hold locks serializing us with truncate / punch hole so this is
1269          * a reliable test.
1270          */
1271         if (pos >= i_size_read(inode)) {
1272                 ret = VM_FAULT_SIGBUS;
1273                 goto out;
1274         }
1275
1276         if (write && !vmf->cow_page)
1277                 flags |= IOMAP_WRITE;
1278
1279         entry = grab_mapping_entry(&xas, mapping, 0);
1280         if (xa_is_internal(entry)) {
1281                 ret = xa_to_internal(entry);
1282                 goto out;
1283         }
1284
1285         /*
1286          * It is possible, particularly with mixed reads & writes to private
1287          * mappings, that we have raced with a PMD fault that overlaps with
1288          * the PTE we need to set up.  If so just return and the fault will be
1289          * retried.
1290          */
1291         if (pmd_trans_huge(*vmf->pmd) || pmd_devmap(*vmf->pmd)) {
1292                 ret = VM_FAULT_NOPAGE;
1293                 goto unlock_entry;
1294         }
1295
1296         /*
1297          * Note that we don't bother to use iomap_apply here: DAX required
1298          * the file system block size to be equal the page size, which means
1299          * that we never have to deal with more than a single extent here.
1300          */
1301         error = ops->iomap_begin(inode, pos, PAGE_SIZE, flags, &iomap);
1302         if (iomap_errp)
1303                 *iomap_errp = error;
1304         if (error) {
1305                 ret = dax_fault_return(error);
1306                 goto unlock_entry;
1307         }
1308         if (WARN_ON_ONCE(iomap.offset + iomap.length < pos + PAGE_SIZE)) {
1309                 error = -EIO;   /* fs corruption? */
1310                 goto error_finish_iomap;
1311         }
1312
1313         if (vmf->cow_page) {
1314                 sector_t sector = dax_iomap_sector(&iomap, pos);
1315
1316                 switch (iomap.type) {
1317                 case IOMAP_HOLE:
1318                 case IOMAP_UNWRITTEN:
1319                         clear_user_highpage(vmf->cow_page, vaddr);
1320                         break;
1321                 case IOMAP_MAPPED:
1322                         error = copy_user_dax(iomap.bdev, iomap.dax_dev,
1323                                         sector, PAGE_SIZE, vmf->cow_page, vaddr);
1324                         break;
1325                 default:
1326                         WARN_ON_ONCE(1);
1327                         error = -EIO;
1328                         break;
1329                 }
1330
1331                 if (error)
1332                         goto error_finish_iomap;
1333
1334                 __SetPageUptodate(vmf->cow_page);
1335                 ret = finish_fault(vmf);
1336                 if (!ret)
1337                         ret = VM_FAULT_DONE_COW;
1338                 goto finish_iomap;
1339         }
1340
1341         sync = dax_fault_is_synchronous(flags, vma, &iomap);
1342
1343         switch (iomap.type) {
1344         case IOMAP_MAPPED:
1345                 if (iomap.flags & IOMAP_F_NEW) {
1346                         count_vm_event(PGMAJFAULT);
1347                         count_memcg_event_mm(vma->vm_mm, PGMAJFAULT);
1348                         major = VM_FAULT_MAJOR;
1349                 }
1350                 error = dax_iomap_pfn(&iomap, pos, PAGE_SIZE, &pfn);
1351                 if (error < 0)
1352                         goto error_finish_iomap;
1353
1354                 entry = dax_insert_entry(&xas, mapping, vmf, entry, pfn,
1355                                                  0, write && !sync);
1356
1357                 /*
1358                  * If we are doing synchronous page fault and inode needs fsync,
1359                  * we can insert PTE into page tables only after that happens.
1360                  * Skip insertion for now and return the pfn so that caller can
1361                  * insert it after fsync is done.
1362                  */
1363                 if (sync) {
1364                         if (WARN_ON_ONCE(!pfnp)) {
1365                                 error = -EIO;
1366                                 goto error_finish_iomap;
1367                         }
1368                         *pfnp = pfn;
1369                         ret = VM_FAULT_NEEDDSYNC | major;
1370                         goto finish_iomap;
1371                 }
1372                 trace_dax_insert_mapping(inode, vmf, entry);
1373                 if (write)
1374                         ret = vmf_insert_mixed_mkwrite(vma, vaddr, pfn);
1375                 else
1376                         ret = vmf_insert_mixed(vma, vaddr, pfn);
1377
1378                 goto finish_iomap;
1379         case IOMAP_UNWRITTEN:
1380         case IOMAP_HOLE:
1381                 if (!write) {
1382                         ret = dax_load_hole(&xas, mapping, &entry, vmf);
1383                         goto finish_iomap;
1384                 }
1385                 /*FALLTHRU*/
1386         default:
1387                 WARN_ON_ONCE(1);
1388                 error = -EIO;
1389                 break;
1390         }
1391
1392  error_finish_iomap:
1393         ret = dax_fault_return(error);
1394  finish_iomap:
1395         if (ops->iomap_end) {
1396                 int copied = PAGE_SIZE;
1397
1398                 if (ret & VM_FAULT_ERROR)
1399                         copied = 0;
1400                 /*
1401                  * The fault is done by now and there's no way back (other
1402                  * thread may be already happily using PTE we have installed).
1403                  * Just ignore error from ->iomap_end since we cannot do much
1404                  * with it.
1405                  */
1406                 ops->iomap_end(inode, pos, PAGE_SIZE, copied, flags, &iomap);
1407         }
1408  unlock_entry:
1409         dax_unlock_entry(&xas, entry);
1410  out:
1411         trace_dax_pte_fault_done(inode, vmf, ret);
1412         return ret | major;
1413 }
1414
1415 #ifdef CONFIG_FS_DAX_PMD
1416 static vm_fault_t dax_pmd_load_hole(struct xa_state *xas, struct vm_fault *vmf,
1417                 struct iomap *iomap, void **entry)
1418 {
1419         struct address_space *mapping = vmf->vma->vm_file->f_mapping;
1420         unsigned long pmd_addr = vmf->address & PMD_MASK;
1421         struct vm_area_struct *vma = vmf->vma;
1422         struct inode *inode = mapping->host;
1423         pgtable_t pgtable = NULL;
1424         struct page *zero_page;
1425         spinlock_t *ptl;
1426         pmd_t pmd_entry;
1427         pfn_t pfn;
1428
1429         zero_page = mm_get_huge_zero_page(vmf->vma->vm_mm);
1430
1431         if (unlikely(!zero_page))
1432                 goto fallback;
1433
1434         pfn = page_to_pfn_t(zero_page);
1435         *entry = dax_insert_entry(xas, mapping, vmf, *entry, pfn,
1436                         DAX_PMD | DAX_ZERO_PAGE, false);
1437
1438         if (arch_needs_pgtable_deposit()) {
1439                 pgtable = pte_alloc_one(vma->vm_mm);
1440                 if (!pgtable)
1441                         return VM_FAULT_OOM;
1442         }
1443
1444         ptl = pmd_lock(vmf->vma->vm_mm, vmf->pmd);
1445         if (!pmd_none(*(vmf->pmd))) {
1446                 spin_unlock(ptl);
1447                 goto fallback;
1448         }
1449
1450         if (pgtable) {
1451                 pgtable_trans_huge_deposit(vma->vm_mm, vmf->pmd, pgtable);
1452                 mm_inc_nr_ptes(vma->vm_mm);
1453         }
1454         pmd_entry = mk_pmd(zero_page, vmf->vma->vm_page_prot);
1455         pmd_entry = pmd_mkhuge(pmd_entry);
1456         set_pmd_at(vmf->vma->vm_mm, pmd_addr, vmf->pmd, pmd_entry);
1457         spin_unlock(ptl);
1458         trace_dax_pmd_load_hole(inode, vmf, zero_page, *entry);
1459         return VM_FAULT_NOPAGE;
1460
1461 fallback:
1462         if (pgtable)
1463                 pte_free(vma->vm_mm, pgtable);
1464         trace_dax_pmd_load_hole_fallback(inode, vmf, zero_page, *entry);
1465         return VM_FAULT_FALLBACK;
1466 }
1467
1468 static vm_fault_t dax_iomap_pmd_fault(struct vm_fault *vmf, pfn_t *pfnp,
1469                                const struct iomap_ops *ops)
1470 {
1471         struct vm_area_struct *vma = vmf->vma;
1472         struct address_space *mapping = vma->vm_file->f_mapping;
1473         XA_STATE_ORDER(xas, &mapping->i_pages, vmf->pgoff, PMD_ORDER);
1474         unsigned long pmd_addr = vmf->address & PMD_MASK;
1475         bool write = vmf->flags & FAULT_FLAG_WRITE;
1476         bool sync;
1477         unsigned int iomap_flags = (write ? IOMAP_WRITE : 0) | IOMAP_FAULT;
1478         struct inode *inode = mapping->host;
1479         vm_fault_t result = VM_FAULT_FALLBACK;
1480         struct iomap iomap = { 0 };
1481         pgoff_t max_pgoff;
1482         void *entry;
1483         loff_t pos;
1484         int error;
1485         pfn_t pfn;
1486
1487         /*
1488          * Check whether offset isn't beyond end of file now. Caller is
1489          * supposed to hold locks serializing us with truncate / punch hole so
1490          * this is a reliable test.
1491          */
1492         max_pgoff = DIV_ROUND_UP(i_size_read(inode), PAGE_SIZE);
1493
1494         trace_dax_pmd_fault(inode, vmf, max_pgoff, 0);
1495
1496         /*
1497          * Make sure that the faulting address's PMD offset (color) matches
1498          * the PMD offset from the start of the file.  This is necessary so
1499          * that a PMD range in the page table overlaps exactly with a PMD
1500          * range in the page cache.
1501          */
1502         if ((vmf->pgoff & PG_PMD_COLOUR) !=
1503             ((vmf->address >> PAGE_SHIFT) & PG_PMD_COLOUR))
1504                 goto fallback;
1505
1506         /* Fall back to PTEs if we're going to COW */
1507         if (write && !(vma->vm_flags & VM_SHARED))
1508                 goto fallback;
1509
1510         /* If the PMD would extend outside the VMA */
1511         if (pmd_addr < vma->vm_start)
1512                 goto fallback;
1513         if ((pmd_addr + PMD_SIZE) > vma->vm_end)
1514                 goto fallback;
1515
1516         if (xas.xa_index >= max_pgoff) {
1517                 result = VM_FAULT_SIGBUS;
1518                 goto out;
1519         }
1520
1521         /* If the PMD would extend beyond the file size */
1522         if ((xas.xa_index | PG_PMD_COLOUR) >= max_pgoff)
1523                 goto fallback;
1524
1525         /*
1526          * grab_mapping_entry() will make sure we get an empty PMD entry,
1527          * a zero PMD entry or a DAX PMD.  If it can't (because a PTE
1528          * entry is already in the array, for instance), it will return
1529          * VM_FAULT_FALLBACK.
1530          */
1531         entry = grab_mapping_entry(&xas, mapping, PMD_ORDER);
1532         if (xa_is_internal(entry)) {
1533                 result = xa_to_internal(entry);
1534                 goto fallback;
1535         }
1536
1537         /*
1538          * It is possible, particularly with mixed reads & writes to private
1539          * mappings, that we have raced with a PTE fault that overlaps with
1540          * the PMD we need to set up.  If so just return and the fault will be
1541          * retried.
1542          */
1543         if (!pmd_none(*vmf->pmd) && !pmd_trans_huge(*vmf->pmd) &&
1544                         !pmd_devmap(*vmf->pmd)) {
1545                 result = 0;
1546                 goto unlock_entry;
1547         }
1548
1549         /*
1550          * Note that we don't use iomap_apply here.  We aren't doing I/O, only
1551          * setting up a mapping, so really we're using iomap_begin() as a way
1552          * to look up our filesystem block.
1553          */
1554         pos = (loff_t)xas.xa_index << PAGE_SHIFT;
1555         error = ops->iomap_begin(inode, pos, PMD_SIZE, iomap_flags, &iomap);
1556         if (error)
1557                 goto unlock_entry;
1558
1559         if (iomap.offset + iomap.length < pos + PMD_SIZE)
1560                 goto finish_iomap;
1561
1562         sync = dax_fault_is_synchronous(iomap_flags, vma, &iomap);
1563
1564         switch (iomap.type) {
1565         case IOMAP_MAPPED:
1566                 error = dax_iomap_pfn(&iomap, pos, PMD_SIZE, &pfn);
1567                 if (error < 0)
1568                         goto finish_iomap;
1569
1570                 entry = dax_insert_entry(&xas, mapping, vmf, entry, pfn,
1571                                                 DAX_PMD, write && !sync);
1572
1573                 /*
1574                  * If we are doing synchronous page fault and inode needs fsync,
1575                  * we can insert PMD into page tables only after that happens.
1576                  * Skip insertion for now and return the pfn so that caller can
1577                  * insert it after fsync is done.
1578                  */
1579                 if (sync) {
1580                         if (WARN_ON_ONCE(!pfnp))
1581                                 goto finish_iomap;
1582                         *pfnp = pfn;
1583                         result = VM_FAULT_NEEDDSYNC;
1584                         goto finish_iomap;
1585                 }
1586
1587                 trace_dax_pmd_insert_mapping(inode, vmf, PMD_SIZE, pfn, entry);
1588                 result = vmf_insert_pfn_pmd(vmf, pfn, write);
1589                 break;
1590         case IOMAP_UNWRITTEN:
1591         case IOMAP_HOLE:
1592                 if (WARN_ON_ONCE(write))
1593                         break;
1594                 result = dax_pmd_load_hole(&xas, vmf, &iomap, &entry);
1595                 break;
1596         default:
1597                 WARN_ON_ONCE(1);
1598                 break;
1599         }
1600
1601  finish_iomap:
1602         if (ops->iomap_end) {
1603                 int copied = PMD_SIZE;
1604
1605                 if (result == VM_FAULT_FALLBACK)
1606                         copied = 0;
1607                 /*
1608                  * The fault is done by now and there's no way back (other
1609                  * thread may be already happily using PMD we have installed).
1610                  * Just ignore error from ->iomap_end since we cannot do much
1611                  * with it.
1612                  */
1613                 ops->iomap_end(inode, pos, PMD_SIZE, copied, iomap_flags,
1614                                 &iomap);
1615         }
1616  unlock_entry:
1617         dax_unlock_entry(&xas, entry);
1618  fallback:
1619         if (result == VM_FAULT_FALLBACK) {
1620                 split_huge_pmd(vma, vmf->pmd, vmf->address);
1621                 count_vm_event(THP_FAULT_FALLBACK);
1622         }
1623 out:
1624         trace_dax_pmd_fault_done(inode, vmf, max_pgoff, result);
1625         return result;
1626 }
1627 #else
1628 static vm_fault_t dax_iomap_pmd_fault(struct vm_fault *vmf, pfn_t *pfnp,
1629                                const struct iomap_ops *ops)
1630 {
1631         return VM_FAULT_FALLBACK;
1632 }
1633 #endif /* CONFIG_FS_DAX_PMD */
1634
1635 /**
1636  * dax_iomap_fault - handle a page fault on a DAX file
1637  * @vmf: The description of the fault
1638  * @pe_size: Size of the page to fault in
1639  * @pfnp: PFN to insert for synchronous faults if fsync is required
1640  * @iomap_errp: Storage for detailed error code in case of error
1641  * @ops: Iomap ops passed from the file system
1642  *
1643  * When a page fault occurs, filesystems may call this helper in
1644  * their fault handler for DAX files. dax_iomap_fault() assumes the caller
1645  * has done all the necessary locking for page fault to proceed
1646  * successfully.
1647  */
1648 vm_fault_t dax_iomap_fault(struct vm_fault *vmf, enum page_entry_size pe_size,
1649                     pfn_t *pfnp, int *iomap_errp, const struct iomap_ops *ops)
1650 {
1651         switch (pe_size) {
1652         case PE_SIZE_PTE:
1653                 return dax_iomap_pte_fault(vmf, pfnp, iomap_errp, ops);
1654         case PE_SIZE_PMD:
1655                 return dax_iomap_pmd_fault(vmf, pfnp, ops);
1656         default:
1657                 return VM_FAULT_FALLBACK;
1658         }
1659 }
1660 EXPORT_SYMBOL_GPL(dax_iomap_fault);
1661
1662 /*
1663  * dax_insert_pfn_mkwrite - insert PTE or PMD entry into page tables
1664  * @vmf: The description of the fault
1665  * @pfn: PFN to insert
1666  * @order: Order of entry to insert.
1667  *
1668  * This function inserts a writeable PTE or PMD entry into the page tables
1669  * for an mmaped DAX file.  It also marks the page cache entry as dirty.
1670  */
1671 static vm_fault_t
1672 dax_insert_pfn_mkwrite(struct vm_fault *vmf, pfn_t pfn, unsigned int order)
1673 {
1674         struct address_space *mapping = vmf->vma->vm_file->f_mapping;
1675         XA_STATE_ORDER(xas, &mapping->i_pages, vmf->pgoff, order);
1676         void *entry;
1677         vm_fault_t ret;
1678
1679         xas_lock_irq(&xas);
1680         entry = get_unlocked_entry(&xas, order);
1681         /* Did we race with someone splitting entry or so? */
1682         if (!entry || dax_is_conflict(entry) ||
1683             (order == 0 && !dax_is_pte_entry(entry))) {
1684                 put_unlocked_entry(&xas, entry);
1685                 xas_unlock_irq(&xas);
1686                 trace_dax_insert_pfn_mkwrite_no_entry(mapping->host, vmf,
1687                                                       VM_FAULT_NOPAGE);
1688                 return VM_FAULT_NOPAGE;
1689         }
1690         xas_set_mark(&xas, PAGECACHE_TAG_DIRTY);
1691         dax_lock_entry(&xas, entry);
1692         xas_unlock_irq(&xas);
1693         if (order == 0)
1694                 ret = vmf_insert_mixed_mkwrite(vmf->vma, vmf->address, pfn);
1695 #ifdef CONFIG_FS_DAX_PMD
1696         else if (order == PMD_ORDER)
1697                 ret = vmf_insert_pfn_pmd(vmf, pfn, FAULT_FLAG_WRITE);
1698 #endif
1699         else
1700                 ret = VM_FAULT_FALLBACK;
1701         dax_unlock_entry(&xas, entry);
1702         trace_dax_insert_pfn_mkwrite(mapping->host, vmf, ret);
1703         return ret;
1704 }
1705
1706 /**
1707  * dax_finish_sync_fault - finish synchronous page fault
1708  * @vmf: The description of the fault
1709  * @pe_size: Size of entry to be inserted
1710  * @pfn: PFN to insert
1711  *
1712  * This function ensures that the file range touched by the page fault is
1713  * stored persistently on the media and handles inserting of appropriate page
1714  * table entry.
1715  */
1716 vm_fault_t dax_finish_sync_fault(struct vm_fault *vmf,
1717                 enum page_entry_size pe_size, pfn_t pfn)
1718 {
1719         int err;
1720         loff_t start = ((loff_t)vmf->pgoff) << PAGE_SHIFT;
1721         unsigned int order = pe_order(pe_size);
1722         size_t len = PAGE_SIZE << order;
1723
1724         err = vfs_fsync_range(vmf->vma->vm_file, start, start + len - 1, 1);
1725         if (err)
1726                 return VM_FAULT_SIGBUS;
1727         return dax_insert_pfn_mkwrite(vmf, pfn, order);
1728 }
1729 EXPORT_SYMBOL_GPL(dax_finish_sync_fault);