GNU Linux-libre 5.19-rc6-gnu
[releases.git] / fs / cifs / misc.c
1 // SPDX-License-Identifier: LGPL-2.1
2 /*
3  *
4  *   Copyright (C) International Business Machines  Corp., 2002,2008
5  *   Author(s): Steve French (sfrench@us.ibm.com)
6  *
7  */
8
9 #include <linux/slab.h>
10 #include <linux/ctype.h>
11 #include <linux/mempool.h>
12 #include <linux/vmalloc.h>
13 #include "cifspdu.h"
14 #include "cifsglob.h"
15 #include "cifsproto.h"
16 #include "cifs_debug.h"
17 #include "smberr.h"
18 #include "nterr.h"
19 #include "cifs_unicode.h"
20 #include "smb2pdu.h"
21 #include "cifsfs.h"
22 #ifdef CONFIG_CIFS_DFS_UPCALL
23 #include "dns_resolve.h"
24 #endif
25 #include "fs_context.h"
26
27 extern mempool_t *cifs_sm_req_poolp;
28 extern mempool_t *cifs_req_poolp;
29
30 /* The xid serves as a useful identifier for each incoming vfs request,
31    in a similar way to the mid which is useful to track each sent smb,
32    and CurrentXid can also provide a running counter (although it
33    will eventually wrap past zero) of the total vfs operations handled
34    since the cifs fs was mounted */
35
36 unsigned int
37 _get_xid(void)
38 {
39         unsigned int xid;
40
41         spin_lock(&GlobalMid_Lock);
42         GlobalTotalActiveXid++;
43
44         /* keep high water mark for number of simultaneous ops in filesystem */
45         if (GlobalTotalActiveXid > GlobalMaxActiveXid)
46                 GlobalMaxActiveXid = GlobalTotalActiveXid;
47         if (GlobalTotalActiveXid > 65000)
48                 cifs_dbg(FYI, "warning: more than 65000 requests active\n");
49         xid = GlobalCurrentXid++;
50         spin_unlock(&GlobalMid_Lock);
51         return xid;
52 }
53
54 void
55 _free_xid(unsigned int xid)
56 {
57         spin_lock(&GlobalMid_Lock);
58         /* if (GlobalTotalActiveXid == 0)
59                 BUG(); */
60         GlobalTotalActiveXid--;
61         spin_unlock(&GlobalMid_Lock);
62 }
63
64 struct cifs_ses *
65 sesInfoAlloc(void)
66 {
67         struct cifs_ses *ret_buf;
68
69         ret_buf = kzalloc(sizeof(struct cifs_ses), GFP_KERNEL);
70         if (ret_buf) {
71                 atomic_inc(&sesInfoAllocCount);
72                 ret_buf->ses_status = SES_NEW;
73                 ++ret_buf->ses_count;
74                 INIT_LIST_HEAD(&ret_buf->smb_ses_list);
75                 INIT_LIST_HEAD(&ret_buf->tcon_list);
76                 mutex_init(&ret_buf->session_mutex);
77                 spin_lock_init(&ret_buf->iface_lock);
78                 INIT_LIST_HEAD(&ret_buf->iface_list);
79                 spin_lock_init(&ret_buf->chan_lock);
80         }
81         return ret_buf;
82 }
83
84 void
85 sesInfoFree(struct cifs_ses *buf_to_free)
86 {
87         struct cifs_server_iface *iface = NULL, *niface = NULL;
88
89         if (buf_to_free == NULL) {
90                 cifs_dbg(FYI, "Null buffer passed to sesInfoFree\n");
91                 return;
92         }
93
94         atomic_dec(&sesInfoAllocCount);
95         kfree(buf_to_free->serverOS);
96         kfree(buf_to_free->serverDomain);
97         kfree(buf_to_free->serverNOS);
98         kfree_sensitive(buf_to_free->password);
99         kfree(buf_to_free->user_name);
100         kfree(buf_to_free->domainName);
101         kfree_sensitive(buf_to_free->auth_key.response);
102         spin_lock(&buf_to_free->iface_lock);
103         list_for_each_entry_safe(iface, niface, &buf_to_free->iface_list,
104                                  iface_head)
105                 kref_put(&iface->refcount, release_iface);
106         spin_unlock(&buf_to_free->iface_lock);
107         kfree_sensitive(buf_to_free);
108 }
109
110 struct cifs_tcon *
111 tconInfoAlloc(void)
112 {
113         struct cifs_tcon *ret_buf;
114
115         ret_buf = kzalloc(sizeof(*ret_buf), GFP_KERNEL);
116         if (!ret_buf)
117                 return NULL;
118         ret_buf->crfid.fid = kzalloc(sizeof(*ret_buf->crfid.fid), GFP_KERNEL);
119         if (!ret_buf->crfid.fid) {
120                 kfree(ret_buf);
121                 return NULL;
122         }
123         INIT_LIST_HEAD(&ret_buf->crfid.dirents.entries);
124         mutex_init(&ret_buf->crfid.dirents.de_mutex);
125
126         atomic_inc(&tconInfoAllocCount);
127         ret_buf->status = TID_NEW;
128         ++ret_buf->tc_count;
129         INIT_LIST_HEAD(&ret_buf->openFileList);
130         INIT_LIST_HEAD(&ret_buf->tcon_list);
131         spin_lock_init(&ret_buf->open_file_lock);
132         mutex_init(&ret_buf->crfid.fid_mutex);
133         spin_lock_init(&ret_buf->stat_lock);
134         atomic_set(&ret_buf->num_local_opens, 0);
135         atomic_set(&ret_buf->num_remote_opens, 0);
136
137         return ret_buf;
138 }
139
140 void
141 tconInfoFree(struct cifs_tcon *buf_to_free)
142 {
143         if (buf_to_free == NULL) {
144                 cifs_dbg(FYI, "Null buffer passed to tconInfoFree\n");
145                 return;
146         }
147         atomic_dec(&tconInfoAllocCount);
148         kfree(buf_to_free->nativeFileSystem);
149         kfree_sensitive(buf_to_free->password);
150         kfree(buf_to_free->crfid.fid);
151         kfree(buf_to_free);
152 }
153
154 struct smb_hdr *
155 cifs_buf_get(void)
156 {
157         struct smb_hdr *ret_buf = NULL;
158         /*
159          * SMB2 header is bigger than CIFS one - no problems to clean some
160          * more bytes for CIFS.
161          */
162         size_t buf_size = sizeof(struct smb2_hdr);
163
164         /*
165          * We could use negotiated size instead of max_msgsize -
166          * but it may be more efficient to always alloc same size
167          * albeit slightly larger than necessary and maxbuffersize
168          * defaults to this and can not be bigger.
169          */
170         ret_buf = mempool_alloc(cifs_req_poolp, GFP_NOFS);
171
172         /* clear the first few header bytes */
173         /* for most paths, more is cleared in header_assemble */
174         memset(ret_buf, 0, buf_size + 3);
175         atomic_inc(&bufAllocCount);
176 #ifdef CONFIG_CIFS_STATS2
177         atomic_inc(&totBufAllocCount);
178 #endif /* CONFIG_CIFS_STATS2 */
179
180         return ret_buf;
181 }
182
183 void
184 cifs_buf_release(void *buf_to_free)
185 {
186         if (buf_to_free == NULL) {
187                 /* cifs_dbg(FYI, "Null buffer passed to cifs_buf_release\n");*/
188                 return;
189         }
190         mempool_free(buf_to_free, cifs_req_poolp);
191
192         atomic_dec(&bufAllocCount);
193         return;
194 }
195
196 struct smb_hdr *
197 cifs_small_buf_get(void)
198 {
199         struct smb_hdr *ret_buf = NULL;
200
201 /* We could use negotiated size instead of max_msgsize -
202    but it may be more efficient to always alloc same size
203    albeit slightly larger than necessary and maxbuffersize
204    defaults to this and can not be bigger */
205         ret_buf = mempool_alloc(cifs_sm_req_poolp, GFP_NOFS);
206         /* No need to clear memory here, cleared in header assemble */
207         /*      memset(ret_buf, 0, sizeof(struct smb_hdr) + 27);*/
208         atomic_inc(&smBufAllocCount);
209 #ifdef CONFIG_CIFS_STATS2
210         atomic_inc(&totSmBufAllocCount);
211 #endif /* CONFIG_CIFS_STATS2 */
212
213         return ret_buf;
214 }
215
216 void
217 cifs_small_buf_release(void *buf_to_free)
218 {
219
220         if (buf_to_free == NULL) {
221                 cifs_dbg(FYI, "Null buffer passed to cifs_small_buf_release\n");
222                 return;
223         }
224         mempool_free(buf_to_free, cifs_sm_req_poolp);
225
226         atomic_dec(&smBufAllocCount);
227         return;
228 }
229
230 void
231 free_rsp_buf(int resp_buftype, void *rsp)
232 {
233         if (resp_buftype == CIFS_SMALL_BUFFER)
234                 cifs_small_buf_release(rsp);
235         else if (resp_buftype == CIFS_LARGE_BUFFER)
236                 cifs_buf_release(rsp);
237 }
238
239 /* NB: MID can not be set if treeCon not passed in, in that
240    case it is responsbility of caller to set the mid */
241 void
242 header_assemble(struct smb_hdr *buffer, char smb_command /* command */ ,
243                 const struct cifs_tcon *treeCon, int word_count
244                 /* length of fixed section (word count) in two byte units  */)
245 {
246         char *temp = (char *) buffer;
247
248         memset(temp, 0, 256); /* bigger than MAX_CIFS_HDR_SIZE */
249
250         buffer->smb_buf_length = cpu_to_be32(
251             (2 * word_count) + sizeof(struct smb_hdr) -
252             4 /*  RFC 1001 length field does not count */  +
253             2 /* for bcc field itself */) ;
254
255         buffer->Protocol[0] = 0xFF;
256         buffer->Protocol[1] = 'S';
257         buffer->Protocol[2] = 'M';
258         buffer->Protocol[3] = 'B';
259         buffer->Command = smb_command;
260         buffer->Flags = 0x00;   /* case sensitive */
261         buffer->Flags2 = SMBFLG2_KNOWS_LONG_NAMES;
262         buffer->Pid = cpu_to_le16((__u16)current->tgid);
263         buffer->PidHigh = cpu_to_le16((__u16)(current->tgid >> 16));
264         if (treeCon) {
265                 buffer->Tid = treeCon->tid;
266                 if (treeCon->ses) {
267                         if (treeCon->ses->capabilities & CAP_UNICODE)
268                                 buffer->Flags2 |= SMBFLG2_UNICODE;
269                         if (treeCon->ses->capabilities & CAP_STATUS32)
270                                 buffer->Flags2 |= SMBFLG2_ERR_STATUS;
271
272                         /* Uid is not converted */
273                         buffer->Uid = treeCon->ses->Suid;
274                         if (treeCon->ses->server)
275                                 buffer->Mid = get_next_mid(treeCon->ses->server);
276                 }
277                 if (treeCon->Flags & SMB_SHARE_IS_IN_DFS)
278                         buffer->Flags2 |= SMBFLG2_DFS;
279                 if (treeCon->nocase)
280                         buffer->Flags  |= SMBFLG_CASELESS;
281                 if ((treeCon->ses) && (treeCon->ses->server))
282                         if (treeCon->ses->server->sign)
283                                 buffer->Flags2 |= SMBFLG2_SECURITY_SIGNATURE;
284         }
285
286 /*  endian conversion of flags is now done just before sending */
287         buffer->WordCount = (char) word_count;
288         return;
289 }
290
291 static int
292 check_smb_hdr(struct smb_hdr *smb)
293 {
294         /* does it have the right SMB "signature" ? */
295         if (*(__le32 *) smb->Protocol != cpu_to_le32(0x424d53ff)) {
296                 cifs_dbg(VFS, "Bad protocol string signature header 0x%x\n",
297                          *(unsigned int *)smb->Protocol);
298                 return 1;
299         }
300
301         /* if it's a response then accept */
302         if (smb->Flags & SMBFLG_RESPONSE)
303                 return 0;
304
305         /* only one valid case where server sends us request */
306         if (smb->Command == SMB_COM_LOCKING_ANDX)
307                 return 0;
308
309         cifs_dbg(VFS, "Server sent request, not response. mid=%u\n",
310                  get_mid(smb));
311         return 1;
312 }
313
314 int
315 checkSMB(char *buf, unsigned int total_read, struct TCP_Server_Info *server)
316 {
317         struct smb_hdr *smb = (struct smb_hdr *)buf;
318         __u32 rfclen = be32_to_cpu(smb->smb_buf_length);
319         __u32 clc_len;  /* calculated length */
320         cifs_dbg(FYI, "checkSMB Length: 0x%x, smb_buf_length: 0x%x\n",
321                  total_read, rfclen);
322
323         /* is this frame too small to even get to a BCC? */
324         if (total_read < 2 + sizeof(struct smb_hdr)) {
325                 if ((total_read >= sizeof(struct smb_hdr) - 1)
326                             && (smb->Status.CifsError != 0)) {
327                         /* it's an error return */
328                         smb->WordCount = 0;
329                         /* some error cases do not return wct and bcc */
330                         return 0;
331                 } else if ((total_read == sizeof(struct smb_hdr) + 1) &&
332                                 (smb->WordCount == 0)) {
333                         char *tmp = (char *)smb;
334                         /* Need to work around a bug in two servers here */
335                         /* First, check if the part of bcc they sent was zero */
336                         if (tmp[sizeof(struct smb_hdr)] == 0) {
337                                 /* some servers return only half of bcc
338                                  * on simple responses (wct, bcc both zero)
339                                  * in particular have seen this on
340                                  * ulogoffX and FindClose. This leaves
341                                  * one byte of bcc potentially unitialized
342                                  */
343                                 /* zero rest of bcc */
344                                 tmp[sizeof(struct smb_hdr)+1] = 0;
345                                 return 0;
346                         }
347                         cifs_dbg(VFS, "rcvd invalid byte count (bcc)\n");
348                 } else {
349                         cifs_dbg(VFS, "Length less than smb header size\n");
350                 }
351                 return -EIO;
352         }
353
354         /* otherwise, there is enough to get to the BCC */
355         if (check_smb_hdr(smb))
356                 return -EIO;
357         clc_len = smbCalcSize(smb, server);
358
359         if (4 + rfclen != total_read) {
360                 cifs_dbg(VFS, "Length read does not match RFC1001 length %d\n",
361                          rfclen);
362                 return -EIO;
363         }
364
365         if (4 + rfclen != clc_len) {
366                 __u16 mid = get_mid(smb);
367                 /* check if bcc wrapped around for large read responses */
368                 if ((rfclen > 64 * 1024) && (rfclen > clc_len)) {
369                         /* check if lengths match mod 64K */
370                         if (((4 + rfclen) & 0xFFFF) == (clc_len & 0xFFFF))
371                                 return 0; /* bcc wrapped */
372                 }
373                 cifs_dbg(FYI, "Calculated size %u vs length %u mismatch for mid=%u\n",
374                          clc_len, 4 + rfclen, mid);
375
376                 if (4 + rfclen < clc_len) {
377                         cifs_dbg(VFS, "RFC1001 size %u smaller than SMB for mid=%u\n",
378                                  rfclen, mid);
379                         return -EIO;
380                 } else if (rfclen > clc_len + 512) {
381                         /*
382                          * Some servers (Windows XP in particular) send more
383                          * data than the lengths in the SMB packet would
384                          * indicate on certain calls (byte range locks and
385                          * trans2 find first calls in particular). While the
386                          * client can handle such a frame by ignoring the
387                          * trailing data, we choose limit the amount of extra
388                          * data to 512 bytes.
389                          */
390                         cifs_dbg(VFS, "RFC1001 size %u more than 512 bytes larger than SMB for mid=%u\n",
391                                  rfclen, mid);
392                         return -EIO;
393                 }
394         }
395         return 0;
396 }
397
398 bool
399 is_valid_oplock_break(char *buffer, struct TCP_Server_Info *srv)
400 {
401         struct smb_hdr *buf = (struct smb_hdr *)buffer;
402         struct smb_com_lock_req *pSMB = (struct smb_com_lock_req *)buf;
403         struct list_head *tmp, *tmp1, *tmp2;
404         struct cifs_ses *ses;
405         struct cifs_tcon *tcon;
406         struct cifsInodeInfo *pCifsInode;
407         struct cifsFileInfo *netfile;
408
409         cifs_dbg(FYI, "Checking for oplock break or dnotify response\n");
410         if ((pSMB->hdr.Command == SMB_COM_NT_TRANSACT) &&
411            (pSMB->hdr.Flags & SMBFLG_RESPONSE)) {
412                 struct smb_com_transaction_change_notify_rsp *pSMBr =
413                         (struct smb_com_transaction_change_notify_rsp *)buf;
414                 struct file_notify_information *pnotify;
415                 __u32 data_offset = 0;
416                 size_t len = srv->total_read - sizeof(pSMBr->hdr.smb_buf_length);
417
418                 if (get_bcc(buf) > sizeof(struct file_notify_information)) {
419                         data_offset = le32_to_cpu(pSMBr->DataOffset);
420
421                         if (data_offset >
422                             len - sizeof(struct file_notify_information)) {
423                                 cifs_dbg(FYI, "Invalid data_offset %u\n",
424                                          data_offset);
425                                 return true;
426                         }
427                         pnotify = (struct file_notify_information *)
428                                 ((char *)&pSMBr->hdr.Protocol + data_offset);
429                         cifs_dbg(FYI, "dnotify on %s Action: 0x%x\n",
430                                  pnotify->FileName, pnotify->Action);
431                         /*   cifs_dump_mem("Rcvd notify Data: ",buf,
432                                 sizeof(struct smb_hdr)+60); */
433                         return true;
434                 }
435                 if (pSMBr->hdr.Status.CifsError) {
436                         cifs_dbg(FYI, "notify err 0x%x\n",
437                                  pSMBr->hdr.Status.CifsError);
438                         return true;
439                 }
440                 return false;
441         }
442         if (pSMB->hdr.Command != SMB_COM_LOCKING_ANDX)
443                 return false;
444         if (pSMB->hdr.Flags & SMBFLG_RESPONSE) {
445                 /* no sense logging error on invalid handle on oplock
446                    break - harmless race between close request and oplock
447                    break response is expected from time to time writing out
448                    large dirty files cached on the client */
449                 if ((NT_STATUS_INVALID_HANDLE) ==
450                    le32_to_cpu(pSMB->hdr.Status.CifsError)) {
451                         cifs_dbg(FYI, "Invalid handle on oplock break\n");
452                         return true;
453                 } else if (ERRbadfid ==
454                    le16_to_cpu(pSMB->hdr.Status.DosError.Error)) {
455                         return true;
456                 } else {
457                         return false; /* on valid oplock brk we get "request" */
458                 }
459         }
460         if (pSMB->hdr.WordCount != 8)
461                 return false;
462
463         cifs_dbg(FYI, "oplock type 0x%x level 0x%x\n",
464                  pSMB->LockType, pSMB->OplockLevel);
465         if (!(pSMB->LockType & LOCKING_ANDX_OPLOCK_RELEASE))
466                 return false;
467
468         /* look up tcon based on tid & uid */
469         spin_lock(&cifs_tcp_ses_lock);
470         list_for_each(tmp, &srv->smb_ses_list) {
471                 ses = list_entry(tmp, struct cifs_ses, smb_ses_list);
472                 list_for_each(tmp1, &ses->tcon_list) {
473                         tcon = list_entry(tmp1, struct cifs_tcon, tcon_list);
474                         if (tcon->tid != buf->Tid)
475                                 continue;
476
477                         cifs_stats_inc(&tcon->stats.cifs_stats.num_oplock_brks);
478                         spin_lock(&tcon->open_file_lock);
479                         list_for_each(tmp2, &tcon->openFileList) {
480                                 netfile = list_entry(tmp2, struct cifsFileInfo,
481                                                      tlist);
482                                 if (pSMB->Fid != netfile->fid.netfid)
483                                         continue;
484
485                                 cifs_dbg(FYI, "file id match, oplock break\n");
486                                 pCifsInode = CIFS_I(d_inode(netfile->dentry));
487
488                                 set_bit(CIFS_INODE_PENDING_OPLOCK_BREAK,
489                                         &pCifsInode->flags);
490
491                                 netfile->oplock_epoch = 0;
492                                 netfile->oplock_level = pSMB->OplockLevel;
493                                 netfile->oplock_break_cancelled = false;
494                                 cifs_queue_oplock_break(netfile);
495
496                                 spin_unlock(&tcon->open_file_lock);
497                                 spin_unlock(&cifs_tcp_ses_lock);
498                                 return true;
499                         }
500                         spin_unlock(&tcon->open_file_lock);
501                         spin_unlock(&cifs_tcp_ses_lock);
502                         cifs_dbg(FYI, "No matching file for oplock break\n");
503                         return true;
504                 }
505         }
506         spin_unlock(&cifs_tcp_ses_lock);
507         cifs_dbg(FYI, "Can not process oplock break for non-existent connection\n");
508         return true;
509 }
510
511 void
512 dump_smb(void *buf, int smb_buf_length)
513 {
514         if (traceSMB == 0)
515                 return;
516
517         print_hex_dump(KERN_DEBUG, "", DUMP_PREFIX_NONE, 8, 2, buf,
518                        smb_buf_length, true);
519 }
520
521 void
522 cifs_autodisable_serverino(struct cifs_sb_info *cifs_sb)
523 {
524         if (cifs_sb->mnt_cifs_flags & CIFS_MOUNT_SERVER_INUM) {
525                 struct cifs_tcon *tcon = NULL;
526
527                 if (cifs_sb->master_tlink)
528                         tcon = cifs_sb_master_tcon(cifs_sb);
529
530                 cifs_sb->mnt_cifs_flags &= ~CIFS_MOUNT_SERVER_INUM;
531                 cifs_sb->mnt_cifs_serverino_autodisabled = true;
532                 cifs_dbg(VFS, "Autodisabling the use of server inode numbers on %s\n",
533                          tcon ? tcon->treeName : "new server");
534                 cifs_dbg(VFS, "The server doesn't seem to support them properly or the files might be on different servers (DFS)\n");
535                 cifs_dbg(VFS, "Hardlinks will not be recognized on this mount. Consider mounting with the \"noserverino\" option to silence this message.\n");
536
537         }
538 }
539
540 void cifs_set_oplock_level(struct cifsInodeInfo *cinode, __u32 oplock)
541 {
542         oplock &= 0xF;
543
544         if (oplock == OPLOCK_EXCLUSIVE) {
545                 cinode->oplock = CIFS_CACHE_WRITE_FLG | CIFS_CACHE_READ_FLG;
546                 cifs_dbg(FYI, "Exclusive Oplock granted on inode %p\n",
547                          &cinode->netfs.inode);
548         } else if (oplock == OPLOCK_READ) {
549                 cinode->oplock = CIFS_CACHE_READ_FLG;
550                 cifs_dbg(FYI, "Level II Oplock granted on inode %p\n",
551                          &cinode->netfs.inode);
552         } else
553                 cinode->oplock = 0;
554 }
555
556 /*
557  * We wait for oplock breaks to be processed before we attempt to perform
558  * writes.
559  */
560 int cifs_get_writer(struct cifsInodeInfo *cinode)
561 {
562         int rc;
563
564 start:
565         rc = wait_on_bit(&cinode->flags, CIFS_INODE_PENDING_OPLOCK_BREAK,
566                          TASK_KILLABLE);
567         if (rc)
568                 return rc;
569
570         spin_lock(&cinode->writers_lock);
571         if (!cinode->writers)
572                 set_bit(CIFS_INODE_PENDING_WRITERS, &cinode->flags);
573         cinode->writers++;
574         /* Check to see if we have started servicing an oplock break */
575         if (test_bit(CIFS_INODE_PENDING_OPLOCK_BREAK, &cinode->flags)) {
576                 cinode->writers--;
577                 if (cinode->writers == 0) {
578                         clear_bit(CIFS_INODE_PENDING_WRITERS, &cinode->flags);
579                         wake_up_bit(&cinode->flags, CIFS_INODE_PENDING_WRITERS);
580                 }
581                 spin_unlock(&cinode->writers_lock);
582                 goto start;
583         }
584         spin_unlock(&cinode->writers_lock);
585         return 0;
586 }
587
588 void cifs_put_writer(struct cifsInodeInfo *cinode)
589 {
590         spin_lock(&cinode->writers_lock);
591         cinode->writers--;
592         if (cinode->writers == 0) {
593                 clear_bit(CIFS_INODE_PENDING_WRITERS, &cinode->flags);
594                 wake_up_bit(&cinode->flags, CIFS_INODE_PENDING_WRITERS);
595         }
596         spin_unlock(&cinode->writers_lock);
597 }
598
599 /**
600  * cifs_queue_oplock_break - queue the oplock break handler for cfile
601  * @cfile: The file to break the oplock on
602  *
603  * This function is called from the demultiplex thread when it
604  * receives an oplock break for @cfile.
605  *
606  * Assumes the tcon->open_file_lock is held.
607  * Assumes cfile->file_info_lock is NOT held.
608  */
609 void cifs_queue_oplock_break(struct cifsFileInfo *cfile)
610 {
611         /*
612          * Bump the handle refcount now while we hold the
613          * open_file_lock to enforce the validity of it for the oplock
614          * break handler. The matching put is done at the end of the
615          * handler.
616          */
617         cifsFileInfo_get(cfile);
618
619         queue_work(cifsoplockd_wq, &cfile->oplock_break);
620 }
621
622 void cifs_done_oplock_break(struct cifsInodeInfo *cinode)
623 {
624         clear_bit(CIFS_INODE_PENDING_OPLOCK_BREAK, &cinode->flags);
625         wake_up_bit(&cinode->flags, CIFS_INODE_PENDING_OPLOCK_BREAK);
626 }
627
628 bool
629 backup_cred(struct cifs_sb_info *cifs_sb)
630 {
631         if (cifs_sb->mnt_cifs_flags & CIFS_MOUNT_CIFS_BACKUPUID) {
632                 if (uid_eq(cifs_sb->ctx->backupuid, current_fsuid()))
633                         return true;
634         }
635         if (cifs_sb->mnt_cifs_flags & CIFS_MOUNT_CIFS_BACKUPGID) {
636                 if (in_group_p(cifs_sb->ctx->backupgid))
637                         return true;
638         }
639
640         return false;
641 }
642
643 void
644 cifs_del_pending_open(struct cifs_pending_open *open)
645 {
646         spin_lock(&tlink_tcon(open->tlink)->open_file_lock);
647         list_del(&open->olist);
648         spin_unlock(&tlink_tcon(open->tlink)->open_file_lock);
649 }
650
651 void
652 cifs_add_pending_open_locked(struct cifs_fid *fid, struct tcon_link *tlink,
653                              struct cifs_pending_open *open)
654 {
655         memcpy(open->lease_key, fid->lease_key, SMB2_LEASE_KEY_SIZE);
656         open->oplock = CIFS_OPLOCK_NO_CHANGE;
657         open->tlink = tlink;
658         fid->pending_open = open;
659         list_add_tail(&open->olist, &tlink_tcon(tlink)->pending_opens);
660 }
661
662 void
663 cifs_add_pending_open(struct cifs_fid *fid, struct tcon_link *tlink,
664                       struct cifs_pending_open *open)
665 {
666         spin_lock(&tlink_tcon(tlink)->open_file_lock);
667         cifs_add_pending_open_locked(fid, tlink, open);
668         spin_unlock(&tlink_tcon(open->tlink)->open_file_lock);
669 }
670
671 /*
672  * Critical section which runs after acquiring deferred_lock.
673  * As there is no reference count on cifs_deferred_close, pdclose
674  * should not be used outside deferred_lock.
675  */
676 bool
677 cifs_is_deferred_close(struct cifsFileInfo *cfile, struct cifs_deferred_close **pdclose)
678 {
679         struct cifs_deferred_close *dclose;
680
681         list_for_each_entry(dclose, &CIFS_I(d_inode(cfile->dentry))->deferred_closes, dlist) {
682                 if ((dclose->netfid == cfile->fid.netfid) &&
683                         (dclose->persistent_fid == cfile->fid.persistent_fid) &&
684                         (dclose->volatile_fid == cfile->fid.volatile_fid)) {
685                         *pdclose = dclose;
686                         return true;
687                 }
688         }
689         return false;
690 }
691
692 /*
693  * Critical section which runs after acquiring deferred_lock.
694  */
695 void
696 cifs_add_deferred_close(struct cifsFileInfo *cfile, struct cifs_deferred_close *dclose)
697 {
698         bool is_deferred = false;
699         struct cifs_deferred_close *pdclose;
700
701         is_deferred = cifs_is_deferred_close(cfile, &pdclose);
702         if (is_deferred) {
703                 kfree(dclose);
704                 return;
705         }
706
707         dclose->tlink = cfile->tlink;
708         dclose->netfid = cfile->fid.netfid;
709         dclose->persistent_fid = cfile->fid.persistent_fid;
710         dclose->volatile_fid = cfile->fid.volatile_fid;
711         list_add_tail(&dclose->dlist, &CIFS_I(d_inode(cfile->dentry))->deferred_closes);
712 }
713
714 /*
715  * Critical section which runs after acquiring deferred_lock.
716  */
717 void
718 cifs_del_deferred_close(struct cifsFileInfo *cfile)
719 {
720         bool is_deferred = false;
721         struct cifs_deferred_close *dclose;
722
723         is_deferred = cifs_is_deferred_close(cfile, &dclose);
724         if (!is_deferred)
725                 return;
726         list_del(&dclose->dlist);
727         kfree(dclose);
728 }
729
730 void
731 cifs_close_deferred_file(struct cifsInodeInfo *cifs_inode)
732 {
733         struct cifsFileInfo *cfile = NULL;
734         struct file_list *tmp_list, *tmp_next_list;
735         struct list_head file_head;
736
737         if (cifs_inode == NULL)
738                 return;
739
740         INIT_LIST_HEAD(&file_head);
741         spin_lock(&cifs_inode->open_file_lock);
742         list_for_each_entry(cfile, &cifs_inode->openFileList, flist) {
743                 if (delayed_work_pending(&cfile->deferred)) {
744                         if (cancel_delayed_work(&cfile->deferred)) {
745                                 tmp_list = kmalloc(sizeof(struct file_list), GFP_ATOMIC);
746                                 if (tmp_list == NULL)
747                                         break;
748                                 tmp_list->cfile = cfile;
749                                 list_add_tail(&tmp_list->list, &file_head);
750                         }
751                 }
752         }
753         spin_unlock(&cifs_inode->open_file_lock);
754
755         list_for_each_entry_safe(tmp_list, tmp_next_list, &file_head, list) {
756                 _cifsFileInfo_put(tmp_list->cfile, true, false);
757                 list_del(&tmp_list->list);
758                 kfree(tmp_list);
759         }
760 }
761
762 void
763 cifs_close_all_deferred_files(struct cifs_tcon *tcon)
764 {
765         struct cifsFileInfo *cfile;
766         struct list_head *tmp;
767         struct file_list *tmp_list, *tmp_next_list;
768         struct list_head file_head;
769
770         INIT_LIST_HEAD(&file_head);
771         spin_lock(&tcon->open_file_lock);
772         list_for_each(tmp, &tcon->openFileList) {
773                 cfile = list_entry(tmp, struct cifsFileInfo, tlist);
774                 if (delayed_work_pending(&cfile->deferred)) {
775                         if (cancel_delayed_work(&cfile->deferred)) {
776                                 tmp_list = kmalloc(sizeof(struct file_list), GFP_ATOMIC);
777                                 if (tmp_list == NULL)
778                                         break;
779                                 tmp_list->cfile = cfile;
780                                 list_add_tail(&tmp_list->list, &file_head);
781                         }
782                 }
783         }
784         spin_unlock(&tcon->open_file_lock);
785
786         list_for_each_entry_safe(tmp_list, tmp_next_list, &file_head, list) {
787                 _cifsFileInfo_put(tmp_list->cfile, true, false);
788                 list_del(&tmp_list->list);
789                 kfree(tmp_list);
790         }
791 }
792 void
793 cifs_close_deferred_file_under_dentry(struct cifs_tcon *tcon, const char *path)
794 {
795         struct cifsFileInfo *cfile;
796         struct list_head *tmp;
797         struct file_list *tmp_list, *tmp_next_list;
798         struct list_head file_head;
799         void *page;
800         const char *full_path;
801
802         INIT_LIST_HEAD(&file_head);
803         page = alloc_dentry_path();
804         spin_lock(&tcon->open_file_lock);
805         list_for_each(tmp, &tcon->openFileList) {
806                 cfile = list_entry(tmp, struct cifsFileInfo, tlist);
807                 full_path = build_path_from_dentry(cfile->dentry, page);
808                 if (strstr(full_path, path)) {
809                         if (delayed_work_pending(&cfile->deferred)) {
810                                 if (cancel_delayed_work(&cfile->deferred)) {
811                                         tmp_list = kmalloc(sizeof(struct file_list), GFP_ATOMIC);
812                                         if (tmp_list == NULL)
813                                                 break;
814                                         tmp_list->cfile = cfile;
815                                         list_add_tail(&tmp_list->list, &file_head);
816                                 }
817                         }
818                 }
819         }
820         spin_unlock(&tcon->open_file_lock);
821
822         list_for_each_entry_safe(tmp_list, tmp_next_list, &file_head, list) {
823                 _cifsFileInfo_put(tmp_list->cfile, true, false);
824                 list_del(&tmp_list->list);
825                 kfree(tmp_list);
826         }
827         free_dentry_path(page);
828 }
829
830 /* parses DFS refferal V3 structure
831  * caller is responsible for freeing target_nodes
832  * returns:
833  * - on success - 0
834  * - on failure - errno
835  */
836 int
837 parse_dfs_referrals(struct get_dfs_referral_rsp *rsp, u32 rsp_size,
838                     unsigned int *num_of_nodes,
839                     struct dfs_info3_param **target_nodes,
840                     const struct nls_table *nls_codepage, int remap,
841                     const char *searchName, bool is_unicode)
842 {
843         int i, rc = 0;
844         char *data_end;
845         struct dfs_referral_level_3 *ref;
846
847         *num_of_nodes = le16_to_cpu(rsp->NumberOfReferrals);
848
849         if (*num_of_nodes < 1) {
850                 cifs_dbg(VFS, "num_referrals: must be at least > 0, but we get num_referrals = %d\n",
851                          *num_of_nodes);
852                 rc = -EINVAL;
853                 goto parse_DFS_referrals_exit;
854         }
855
856         ref = (struct dfs_referral_level_3 *) &(rsp->referrals);
857         if (ref->VersionNumber != cpu_to_le16(3)) {
858                 cifs_dbg(VFS, "Referrals of V%d version are not supported, should be V3\n",
859                          le16_to_cpu(ref->VersionNumber));
860                 rc = -EINVAL;
861                 goto parse_DFS_referrals_exit;
862         }
863
864         /* get the upper boundary of the resp buffer */
865         data_end = (char *)rsp + rsp_size;
866
867         cifs_dbg(FYI, "num_referrals: %d dfs flags: 0x%x ...\n",
868                  *num_of_nodes, le32_to_cpu(rsp->DFSFlags));
869
870         *target_nodes = kcalloc(*num_of_nodes, sizeof(struct dfs_info3_param),
871                                 GFP_KERNEL);
872         if (*target_nodes == NULL) {
873                 rc = -ENOMEM;
874                 goto parse_DFS_referrals_exit;
875         }
876
877         /* collect necessary data from referrals */
878         for (i = 0; i < *num_of_nodes; i++) {
879                 char *temp;
880                 int max_len;
881                 struct dfs_info3_param *node = (*target_nodes)+i;
882
883                 node->flags = le32_to_cpu(rsp->DFSFlags);
884                 if (is_unicode) {
885                         __le16 *tmp = kmalloc(strlen(searchName)*2 + 2,
886                                                 GFP_KERNEL);
887                         if (tmp == NULL) {
888                                 rc = -ENOMEM;
889                                 goto parse_DFS_referrals_exit;
890                         }
891                         cifsConvertToUTF16((__le16 *) tmp, searchName,
892                                            PATH_MAX, nls_codepage, remap);
893                         node->path_consumed = cifs_utf16_bytes(tmp,
894                                         le16_to_cpu(rsp->PathConsumed),
895                                         nls_codepage);
896                         kfree(tmp);
897                 } else
898                         node->path_consumed = le16_to_cpu(rsp->PathConsumed);
899
900                 node->server_type = le16_to_cpu(ref->ServerType);
901                 node->ref_flag = le16_to_cpu(ref->ReferralEntryFlags);
902
903                 /* copy DfsPath */
904                 temp = (char *)ref + le16_to_cpu(ref->DfsPathOffset);
905                 max_len = data_end - temp;
906                 node->path_name = cifs_strndup_from_utf16(temp, max_len,
907                                                 is_unicode, nls_codepage);
908                 if (!node->path_name) {
909                         rc = -ENOMEM;
910                         goto parse_DFS_referrals_exit;
911                 }
912
913                 /* copy link target UNC */
914                 temp = (char *)ref + le16_to_cpu(ref->NetworkAddressOffset);
915                 max_len = data_end - temp;
916                 node->node_name = cifs_strndup_from_utf16(temp, max_len,
917                                                 is_unicode, nls_codepage);
918                 if (!node->node_name) {
919                         rc = -ENOMEM;
920                         goto parse_DFS_referrals_exit;
921                 }
922
923                 node->ttl = le32_to_cpu(ref->TimeToLive);
924
925                 ref++;
926         }
927
928 parse_DFS_referrals_exit:
929         if (rc) {
930                 free_dfs_info_array(*target_nodes, *num_of_nodes);
931                 *target_nodes = NULL;
932                 *num_of_nodes = 0;
933         }
934         return rc;
935 }
936
937 struct cifs_aio_ctx *
938 cifs_aio_ctx_alloc(void)
939 {
940         struct cifs_aio_ctx *ctx;
941
942         /*
943          * Must use kzalloc to initialize ctx->bv to NULL and ctx->direct_io
944          * to false so that we know when we have to unreference pages within
945          * cifs_aio_ctx_release()
946          */
947         ctx = kzalloc(sizeof(struct cifs_aio_ctx), GFP_KERNEL);
948         if (!ctx)
949                 return NULL;
950
951         INIT_LIST_HEAD(&ctx->list);
952         mutex_init(&ctx->aio_mutex);
953         init_completion(&ctx->done);
954         kref_init(&ctx->refcount);
955         return ctx;
956 }
957
958 void
959 cifs_aio_ctx_release(struct kref *refcount)
960 {
961         struct cifs_aio_ctx *ctx = container_of(refcount,
962                                         struct cifs_aio_ctx, refcount);
963
964         cifsFileInfo_put(ctx->cfile);
965
966         /*
967          * ctx->bv is only set if setup_aio_ctx_iter() was call successfuly
968          * which means that iov_iter_get_pages() was a success and thus that
969          * we have taken reference on pages.
970          */
971         if (ctx->bv) {
972                 unsigned i;
973
974                 for (i = 0; i < ctx->npages; i++) {
975                         if (ctx->should_dirty)
976                                 set_page_dirty(ctx->bv[i].bv_page);
977                         put_page(ctx->bv[i].bv_page);
978                 }
979                 kvfree(ctx->bv);
980         }
981
982         kfree(ctx);
983 }
984
985 #define CIFS_AIO_KMALLOC_LIMIT (1024 * 1024)
986
987 int
988 setup_aio_ctx_iter(struct cifs_aio_ctx *ctx, struct iov_iter *iter, int rw)
989 {
990         ssize_t rc;
991         unsigned int cur_npages;
992         unsigned int npages = 0;
993         unsigned int i;
994         size_t len;
995         size_t count = iov_iter_count(iter);
996         unsigned int saved_len;
997         size_t start;
998         unsigned int max_pages = iov_iter_npages(iter, INT_MAX);
999         struct page **pages = NULL;
1000         struct bio_vec *bv = NULL;
1001
1002         if (iov_iter_is_kvec(iter)) {
1003                 memcpy(&ctx->iter, iter, sizeof(*iter));
1004                 ctx->len = count;
1005                 iov_iter_advance(iter, count);
1006                 return 0;
1007         }
1008
1009         if (array_size(max_pages, sizeof(*bv)) <= CIFS_AIO_KMALLOC_LIMIT)
1010                 bv = kmalloc_array(max_pages, sizeof(*bv), GFP_KERNEL);
1011
1012         if (!bv) {
1013                 bv = vmalloc(array_size(max_pages, sizeof(*bv)));
1014                 if (!bv)
1015                         return -ENOMEM;
1016         }
1017
1018         if (array_size(max_pages, sizeof(*pages)) <= CIFS_AIO_KMALLOC_LIMIT)
1019                 pages = kmalloc_array(max_pages, sizeof(*pages), GFP_KERNEL);
1020
1021         if (!pages) {
1022                 pages = vmalloc(array_size(max_pages, sizeof(*pages)));
1023                 if (!pages) {
1024                         kvfree(bv);
1025                         return -ENOMEM;
1026                 }
1027         }
1028
1029         saved_len = count;
1030
1031         while (count && npages < max_pages) {
1032                 rc = iov_iter_get_pages(iter, pages, count, max_pages, &start);
1033                 if (rc < 0) {
1034                         cifs_dbg(VFS, "Couldn't get user pages (rc=%zd)\n", rc);
1035                         break;
1036                 }
1037
1038                 if (rc > count) {
1039                         cifs_dbg(VFS, "get pages rc=%zd more than %zu\n", rc,
1040                                  count);
1041                         break;
1042                 }
1043
1044                 iov_iter_advance(iter, rc);
1045                 count -= rc;
1046                 rc += start;
1047                 cur_npages = DIV_ROUND_UP(rc, PAGE_SIZE);
1048
1049                 if (npages + cur_npages > max_pages) {
1050                         cifs_dbg(VFS, "out of vec array capacity (%u vs %u)\n",
1051                                  npages + cur_npages, max_pages);
1052                         break;
1053                 }
1054
1055                 for (i = 0; i < cur_npages; i++) {
1056                         len = rc > PAGE_SIZE ? PAGE_SIZE : rc;
1057                         bv[npages + i].bv_page = pages[i];
1058                         bv[npages + i].bv_offset = start;
1059                         bv[npages + i].bv_len = len - start;
1060                         rc -= len;
1061                         start = 0;
1062                 }
1063
1064                 npages += cur_npages;
1065         }
1066
1067         kvfree(pages);
1068         ctx->bv = bv;
1069         ctx->len = saved_len - count;
1070         ctx->npages = npages;
1071         iov_iter_bvec(&ctx->iter, rw, ctx->bv, npages, ctx->len);
1072         return 0;
1073 }
1074
1075 /**
1076  * cifs_alloc_hash - allocate hash and hash context together
1077  * @name: The name of the crypto hash algo
1078  * @shash: Where to put the pointer to the hash algo
1079  * @sdesc: Where to put the pointer to the hash descriptor
1080  *
1081  * The caller has to make sure @sdesc is initialized to either NULL or
1082  * a valid context. Both can be freed via cifs_free_hash().
1083  */
1084 int
1085 cifs_alloc_hash(const char *name,
1086                 struct crypto_shash **shash, struct sdesc **sdesc)
1087 {
1088         int rc = 0;
1089         size_t size;
1090
1091         if (*sdesc != NULL)
1092                 return 0;
1093
1094         *shash = crypto_alloc_shash(name, 0, 0);
1095         if (IS_ERR(*shash)) {
1096                 cifs_dbg(VFS, "Could not allocate crypto %s\n", name);
1097                 rc = PTR_ERR(*shash);
1098                 *shash = NULL;
1099                 *sdesc = NULL;
1100                 return rc;
1101         }
1102
1103         size = sizeof(struct shash_desc) + crypto_shash_descsize(*shash);
1104         *sdesc = kmalloc(size, GFP_KERNEL);
1105         if (*sdesc == NULL) {
1106                 cifs_dbg(VFS, "no memory left to allocate crypto %s\n", name);
1107                 crypto_free_shash(*shash);
1108                 *shash = NULL;
1109                 return -ENOMEM;
1110         }
1111
1112         (*sdesc)->shash.tfm = *shash;
1113         return 0;
1114 }
1115
1116 /**
1117  * cifs_free_hash - free hash and hash context together
1118  * @shash: Where to find the pointer to the hash algo
1119  * @sdesc: Where to find the pointer to the hash descriptor
1120  *
1121  * Freeing a NULL hash or context is safe.
1122  */
1123 void
1124 cifs_free_hash(struct crypto_shash **shash, struct sdesc **sdesc)
1125 {
1126         kfree(*sdesc);
1127         *sdesc = NULL;
1128         if (*shash)
1129                 crypto_free_shash(*shash);
1130         *shash = NULL;
1131 }
1132
1133 /**
1134  * rqst_page_get_length - obtain the length and offset for a page in smb_rqst
1135  * @rqst: The request descriptor
1136  * @page: The index of the page to query
1137  * @len: Where to store the length for this page:
1138  * @offset: Where to store the offset for this page
1139  */
1140 void rqst_page_get_length(struct smb_rqst *rqst, unsigned int page,
1141                                 unsigned int *len, unsigned int *offset)
1142 {
1143         *len = rqst->rq_pagesz;
1144         *offset = (page == 0) ? rqst->rq_offset : 0;
1145
1146         if (rqst->rq_npages == 1 || page == rqst->rq_npages-1)
1147                 *len = rqst->rq_tailsz;
1148         else if (page == 0)
1149                 *len = rqst->rq_pagesz - rqst->rq_offset;
1150 }
1151
1152 void extract_unc_hostname(const char *unc, const char **h, size_t *len)
1153 {
1154         const char *end;
1155
1156         /* skip initial slashes */
1157         while (*unc && (*unc == '\\' || *unc == '/'))
1158                 unc++;
1159
1160         end = unc;
1161
1162         while (*end && !(*end == '\\' || *end == '/'))
1163                 end++;
1164
1165         *h = unc;
1166         *len = end - unc;
1167 }
1168
1169 /**
1170  * copy_path_name - copy src path to dst, possibly truncating
1171  * @dst: The destination buffer
1172  * @src: The source name
1173  *
1174  * returns number of bytes written (including trailing nul)
1175  */
1176 int copy_path_name(char *dst, const char *src)
1177 {
1178         int name_len;
1179
1180         /*
1181          * PATH_MAX includes nul, so if strlen(src) >= PATH_MAX it
1182          * will truncate and strlen(dst) will be PATH_MAX-1
1183          */
1184         name_len = strscpy(dst, src, PATH_MAX);
1185         if (WARN_ON_ONCE(name_len < 0))
1186                 name_len = PATH_MAX-1;
1187
1188         /* we count the trailing nul */
1189         name_len++;
1190         return name_len;
1191 }
1192
1193 struct super_cb_data {
1194         void *data;
1195         struct super_block *sb;
1196 };
1197
1198 static void tcp_super_cb(struct super_block *sb, void *arg)
1199 {
1200         struct super_cb_data *sd = arg;
1201         struct TCP_Server_Info *server = sd->data;
1202         struct cifs_sb_info *cifs_sb;
1203         struct cifs_tcon *tcon;
1204
1205         if (sd->sb)
1206                 return;
1207
1208         cifs_sb = CIFS_SB(sb);
1209         tcon = cifs_sb_master_tcon(cifs_sb);
1210         if (tcon->ses->server == server)
1211                 sd->sb = sb;
1212 }
1213
1214 static struct super_block *__cifs_get_super(void (*f)(struct super_block *, void *),
1215                                             void *data)
1216 {
1217         struct super_cb_data sd = {
1218                 .data = data,
1219                 .sb = NULL,
1220         };
1221         struct file_system_type **fs_type = (struct file_system_type *[]) {
1222                 &cifs_fs_type, &smb3_fs_type, NULL,
1223         };
1224
1225         for (; *fs_type; fs_type++) {
1226                 iterate_supers_type(*fs_type, f, &sd);
1227                 if (sd.sb) {
1228                         /*
1229                          * Grab an active reference in order to prevent automounts (DFS links)
1230                          * of expiring and then freeing up our cifs superblock pointer while
1231                          * we're doing failover.
1232                          */
1233                         cifs_sb_active(sd.sb);
1234                         return sd.sb;
1235                 }
1236         }
1237         return ERR_PTR(-EINVAL);
1238 }
1239
1240 static void __cifs_put_super(struct super_block *sb)
1241 {
1242         if (!IS_ERR_OR_NULL(sb))
1243                 cifs_sb_deactive(sb);
1244 }
1245
1246 struct super_block *cifs_get_tcp_super(struct TCP_Server_Info *server)
1247 {
1248         return __cifs_get_super(tcp_super_cb, server);
1249 }
1250
1251 void cifs_put_tcp_super(struct super_block *sb)
1252 {
1253         __cifs_put_super(sb);
1254 }
1255
1256 #ifdef CONFIG_CIFS_DFS_UPCALL
1257 int match_target_ip(struct TCP_Server_Info *server,
1258                     const char *share, size_t share_len,
1259                     bool *result)
1260 {
1261         int rc;
1262         char *target, *tip = NULL;
1263         struct sockaddr tipaddr;
1264
1265         *result = false;
1266
1267         target = kzalloc(share_len + 3, GFP_KERNEL);
1268         if (!target) {
1269                 rc = -ENOMEM;
1270                 goto out;
1271         }
1272
1273         scnprintf(target, share_len + 3, "\\\\%.*s", (int)share_len, share);
1274
1275         cifs_dbg(FYI, "%s: target name: %s\n", __func__, target + 2);
1276
1277         rc = dns_resolve_server_name_to_ip(target, &tip, NULL);
1278         if (rc < 0)
1279                 goto out;
1280
1281         cifs_dbg(FYI, "%s: target ip: %s\n", __func__, tip);
1282
1283         if (!cifs_convert_address(&tipaddr, tip, strlen(tip))) {
1284                 cifs_dbg(VFS, "%s: failed to convert target ip address\n",
1285                          __func__);
1286                 rc = -EINVAL;
1287                 goto out;
1288         }
1289
1290         *result = cifs_match_ipaddr((struct sockaddr *)&server->dstaddr,
1291                                     &tipaddr);
1292         cifs_dbg(FYI, "%s: ip addresses match: %u\n", __func__, *result);
1293         rc = 0;
1294
1295 out:
1296         kfree(target);
1297         kfree(tip);
1298
1299         return rc;
1300 }
1301
1302 int cifs_update_super_prepath(struct cifs_sb_info *cifs_sb, char *prefix)
1303 {
1304         kfree(cifs_sb->prepath);
1305
1306         if (prefix && *prefix) {
1307                 cifs_sb->prepath = kstrdup(prefix, GFP_ATOMIC);
1308                 if (!cifs_sb->prepath)
1309                         return -ENOMEM;
1310
1311                 convert_delimiter(cifs_sb->prepath, CIFS_DIR_SEP(cifs_sb));
1312         } else
1313                 cifs_sb->prepath = NULL;
1314
1315         cifs_sb->mnt_cifs_flags |= CIFS_MOUNT_USE_PREFIX_PATH;
1316         return 0;
1317 }
1318
1319 /** cifs_dfs_query_info_nonascii_quirk
1320  * Handle weird Windows SMB server behaviour. It responds with
1321  * STATUS_OBJECT_NAME_INVALID code to SMB2 QUERY_INFO request
1322  * for "\<server>\<dfsname>\<linkpath>" DFS reference,
1323  * where <dfsname> contains non-ASCII unicode symbols.
1324  *
1325  * Check such DFS reference.
1326  */
1327 int cifs_dfs_query_info_nonascii_quirk(const unsigned int xid,
1328                                        struct cifs_tcon *tcon,
1329                                        struct cifs_sb_info *cifs_sb,
1330                                        const char *linkpath)
1331 {
1332         char *treename, *dfspath, sep;
1333         int treenamelen, linkpathlen, rc;
1334
1335         treename = tcon->treeName;
1336         /* MS-DFSC: All paths in REQ_GET_DFS_REFERRAL and RESP_GET_DFS_REFERRAL
1337          * messages MUST be encoded with exactly one leading backslash, not two
1338          * leading backslashes.
1339          */
1340         sep = CIFS_DIR_SEP(cifs_sb);
1341         if (treename[0] == sep && treename[1] == sep)
1342                 treename++;
1343         linkpathlen = strlen(linkpath);
1344         treenamelen = strnlen(treename, MAX_TREE_SIZE + 1);
1345         dfspath = kzalloc(treenamelen + linkpathlen + 1, GFP_KERNEL);
1346         if (!dfspath)
1347                 return -ENOMEM;
1348         if (treenamelen)
1349                 memcpy(dfspath, treename, treenamelen);
1350         memcpy(dfspath + treenamelen, linkpath, linkpathlen);
1351         rc = dfs_cache_find(xid, tcon->ses, cifs_sb->local_nls,
1352                             cifs_remap(cifs_sb), dfspath, NULL, NULL);
1353         if (rc == 0) {
1354                 cifs_dbg(FYI, "DFS ref '%s' is found, emulate -EREMOTE\n",
1355                          dfspath);
1356                 rc = -EREMOTE;
1357         } else {
1358                 cifs_dbg(FYI, "%s: dfs_cache_find returned %d\n", __func__, rc);
1359         }
1360         kfree(dfspath);
1361         return rc;
1362 }
1363 #endif