GNU Linux-libre 5.4.257-gnu1
[releases.git] / fs / btrfs / zstd.c
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * Copyright (c) 2016-present, Facebook, Inc.
4  * All rights reserved.
5  *
6  */
7
8 #include <linux/bio.h>
9 #include <linux/bitmap.h>
10 #include <linux/err.h>
11 #include <linux/init.h>
12 #include <linux/kernel.h>
13 #include <linux/mm.h>
14 #include <linux/sched/mm.h>
15 #include <linux/pagemap.h>
16 #include <linux/refcount.h>
17 #include <linux/sched.h>
18 #include <linux/slab.h>
19 #include <linux/zstd.h>
20 #include "misc.h"
21 #include "compression.h"
22 #include "ctree.h"
23
24 #define ZSTD_BTRFS_MAX_WINDOWLOG 17
25 #define ZSTD_BTRFS_MAX_INPUT (1 << ZSTD_BTRFS_MAX_WINDOWLOG)
26 #define ZSTD_BTRFS_DEFAULT_LEVEL 3
27 #define ZSTD_BTRFS_MAX_LEVEL 15
28 /* 307s to avoid pathologically clashing with transaction commit */
29 #define ZSTD_BTRFS_RECLAIM_JIFFIES (307 * HZ)
30
31 static ZSTD_parameters zstd_get_btrfs_parameters(unsigned int level,
32                                                  size_t src_len)
33 {
34         ZSTD_parameters params = ZSTD_getParams(level, src_len, 0);
35
36         if (params.cParams.windowLog > ZSTD_BTRFS_MAX_WINDOWLOG)
37                 params.cParams.windowLog = ZSTD_BTRFS_MAX_WINDOWLOG;
38         WARN_ON(src_len > ZSTD_BTRFS_MAX_INPUT);
39         return params;
40 }
41
42 struct workspace {
43         void *mem;
44         size_t size;
45         char *buf;
46         unsigned int level;
47         unsigned int req_level;
48         unsigned long last_used; /* jiffies */
49         struct list_head list;
50         struct list_head lru_list;
51         ZSTD_inBuffer in_buf;
52         ZSTD_outBuffer out_buf;
53 };
54
55 /*
56  * Zstd Workspace Management
57  *
58  * Zstd workspaces have different memory requirements depending on the level.
59  * The zstd workspaces are managed by having individual lists for each level
60  * and a global lru.  Forward progress is maintained by protecting a max level
61  * workspace.
62  *
63  * Getting a workspace is done by using the bitmap to identify the levels that
64  * have available workspaces and scans up.  This lets us recycle higher level
65  * workspaces because of the monotonic memory guarantee.  A workspace's
66  * last_used is only updated if it is being used by the corresponding memory
67  * level.  Putting a workspace involves adding it back to the appropriate places
68  * and adding it back to the lru if necessary.
69  *
70  * A timer is used to reclaim workspaces if they have not been used for
71  * ZSTD_BTRFS_RECLAIM_JIFFIES.  This helps keep only active workspaces around.
72  * The upper bound is provided by the workqueue limit which is 2 (percpu limit).
73  */
74
75 struct zstd_workspace_manager {
76         const struct btrfs_compress_op *ops;
77         spinlock_t lock;
78         struct list_head lru_list;
79         struct list_head idle_ws[ZSTD_BTRFS_MAX_LEVEL];
80         unsigned long active_map;
81         wait_queue_head_t wait;
82         struct timer_list timer;
83 };
84
85 static struct zstd_workspace_manager wsm;
86
87 static size_t zstd_ws_mem_sizes[ZSTD_BTRFS_MAX_LEVEL];
88
89 static inline struct workspace *list_to_workspace(struct list_head *list)
90 {
91         return container_of(list, struct workspace, list);
92 }
93
94 static void zstd_free_workspace(struct list_head *ws);
95 static struct list_head *zstd_alloc_workspace(unsigned int level);
96
97 /*
98  * zstd_reclaim_timer_fn - reclaim timer
99  * @t: timer
100  *
101  * This scans the lru_list and attempts to reclaim any workspace that hasn't
102  * been used for ZSTD_BTRFS_RECLAIM_JIFFIES.
103  */
104 static void zstd_reclaim_timer_fn(struct timer_list *timer)
105 {
106         unsigned long reclaim_threshold = jiffies - ZSTD_BTRFS_RECLAIM_JIFFIES;
107         struct list_head *pos, *next;
108
109         spin_lock_bh(&wsm.lock);
110
111         if (list_empty(&wsm.lru_list)) {
112                 spin_unlock_bh(&wsm.lock);
113                 return;
114         }
115
116         list_for_each_prev_safe(pos, next, &wsm.lru_list) {
117                 struct workspace *victim = container_of(pos, struct workspace,
118                                                         lru_list);
119                 unsigned int level;
120
121                 if (time_after(victim->last_used, reclaim_threshold))
122                         break;
123
124                 /* workspace is in use */
125                 if (victim->req_level)
126                         continue;
127
128                 level = victim->level;
129                 list_del(&victim->lru_list);
130                 list_del(&victim->list);
131                 zstd_free_workspace(&victim->list);
132
133                 if (list_empty(&wsm.idle_ws[level - 1]))
134                         clear_bit(level - 1, &wsm.active_map);
135
136         }
137
138         if (!list_empty(&wsm.lru_list))
139                 mod_timer(&wsm.timer, jiffies + ZSTD_BTRFS_RECLAIM_JIFFIES);
140
141         spin_unlock_bh(&wsm.lock);
142 }
143
144 /*
145  * zstd_calc_ws_mem_sizes - calculate monotonic memory bounds
146  *
147  * It is possible based on the level configurations that a higher level
148  * workspace uses less memory than a lower level workspace.  In order to reuse
149  * workspaces, this must be made a monotonic relationship.  This precomputes
150  * the required memory for each level and enforces the monotonicity between
151  * level and memory required.
152  */
153 static void zstd_calc_ws_mem_sizes(void)
154 {
155         size_t max_size = 0;
156         unsigned int level;
157
158         for (level = 1; level <= ZSTD_BTRFS_MAX_LEVEL; level++) {
159                 ZSTD_parameters params =
160                         zstd_get_btrfs_parameters(level, ZSTD_BTRFS_MAX_INPUT);
161                 size_t level_size =
162                         max_t(size_t,
163                               ZSTD_CStreamWorkspaceBound(params.cParams),
164                               ZSTD_DStreamWorkspaceBound(ZSTD_BTRFS_MAX_INPUT));
165
166                 max_size = max_t(size_t, max_size, level_size);
167                 zstd_ws_mem_sizes[level - 1] = max_size;
168         }
169 }
170
171 static void zstd_init_workspace_manager(void)
172 {
173         struct list_head *ws;
174         int i;
175
176         zstd_calc_ws_mem_sizes();
177
178         wsm.ops = &btrfs_zstd_compress;
179         spin_lock_init(&wsm.lock);
180         init_waitqueue_head(&wsm.wait);
181         timer_setup(&wsm.timer, zstd_reclaim_timer_fn, 0);
182
183         INIT_LIST_HEAD(&wsm.lru_list);
184         for (i = 0; i < ZSTD_BTRFS_MAX_LEVEL; i++)
185                 INIT_LIST_HEAD(&wsm.idle_ws[i]);
186
187         ws = zstd_alloc_workspace(ZSTD_BTRFS_MAX_LEVEL);
188         if (IS_ERR(ws)) {
189                 pr_warn(
190                 "BTRFS: cannot preallocate zstd compression workspace\n");
191         } else {
192                 set_bit(ZSTD_BTRFS_MAX_LEVEL - 1, &wsm.active_map);
193                 list_add(ws, &wsm.idle_ws[ZSTD_BTRFS_MAX_LEVEL - 1]);
194         }
195 }
196
197 static void zstd_cleanup_workspace_manager(void)
198 {
199         struct workspace *workspace;
200         int i;
201
202         spin_lock_bh(&wsm.lock);
203         for (i = 0; i < ZSTD_BTRFS_MAX_LEVEL; i++) {
204                 while (!list_empty(&wsm.idle_ws[i])) {
205                         workspace = container_of(wsm.idle_ws[i].next,
206                                                  struct workspace, list);
207                         list_del(&workspace->list);
208                         list_del(&workspace->lru_list);
209                         zstd_free_workspace(&workspace->list);
210                 }
211         }
212         spin_unlock_bh(&wsm.lock);
213
214         del_timer_sync(&wsm.timer);
215 }
216
217 /*
218  * zstd_find_workspace - find workspace
219  * @level: compression level
220  *
221  * This iterates over the set bits in the active_map beginning at the requested
222  * compression level.  This lets us utilize already allocated workspaces before
223  * allocating a new one.  If the workspace is of a larger size, it is used, but
224  * the place in the lru_list and last_used times are not updated.  This is to
225  * offer the opportunity to reclaim the workspace in favor of allocating an
226  * appropriately sized one in the future.
227  */
228 static struct list_head *zstd_find_workspace(unsigned int level)
229 {
230         struct list_head *ws;
231         struct workspace *workspace;
232         int i = level - 1;
233
234         spin_lock_bh(&wsm.lock);
235         for_each_set_bit_from(i, &wsm.active_map, ZSTD_BTRFS_MAX_LEVEL) {
236                 if (!list_empty(&wsm.idle_ws[i])) {
237                         ws = wsm.idle_ws[i].next;
238                         workspace = list_to_workspace(ws);
239                         list_del_init(ws);
240                         /* keep its place if it's a lower level using this */
241                         workspace->req_level = level;
242                         if (level == workspace->level)
243                                 list_del(&workspace->lru_list);
244                         if (list_empty(&wsm.idle_ws[i]))
245                                 clear_bit(i, &wsm.active_map);
246                         spin_unlock_bh(&wsm.lock);
247                         return ws;
248                 }
249         }
250         spin_unlock_bh(&wsm.lock);
251
252         return NULL;
253 }
254
255 /*
256  * zstd_get_workspace - zstd's get_workspace
257  * @level: compression level
258  *
259  * If @level is 0, then any compression level can be used.  Therefore, we begin
260  * scanning from 1.  We first scan through possible workspaces and then after
261  * attempt to allocate a new workspace.  If we fail to allocate one due to
262  * memory pressure, go to sleep waiting for the max level workspace to free up.
263  */
264 static struct list_head *zstd_get_workspace(unsigned int level)
265 {
266         struct list_head *ws;
267         unsigned int nofs_flag;
268
269         /* level == 0 means we can use any workspace */
270         if (!level)
271                 level = 1;
272
273 again:
274         ws = zstd_find_workspace(level);
275         if (ws)
276                 return ws;
277
278         nofs_flag = memalloc_nofs_save();
279         ws = zstd_alloc_workspace(level);
280         memalloc_nofs_restore(nofs_flag);
281
282         if (IS_ERR(ws)) {
283                 DEFINE_WAIT(wait);
284
285                 prepare_to_wait(&wsm.wait, &wait, TASK_UNINTERRUPTIBLE);
286                 schedule();
287                 finish_wait(&wsm.wait, &wait);
288
289                 goto again;
290         }
291
292         return ws;
293 }
294
295 /*
296  * zstd_put_workspace - zstd put_workspace
297  * @ws: list_head for the workspace
298  *
299  * When putting back a workspace, we only need to update the LRU if we are of
300  * the requested compression level.  Here is where we continue to protect the
301  * max level workspace or update last_used accordingly.  If the reclaim timer
302  * isn't set, it is also set here.  Only the max level workspace tries and wakes
303  * up waiting workspaces.
304  */
305 static void zstd_put_workspace(struct list_head *ws)
306 {
307         struct workspace *workspace = list_to_workspace(ws);
308
309         spin_lock_bh(&wsm.lock);
310
311         /* A node is only taken off the lru if we are the corresponding level */
312         if (workspace->req_level == workspace->level) {
313                 /* Hide a max level workspace from reclaim */
314                 if (list_empty(&wsm.idle_ws[ZSTD_BTRFS_MAX_LEVEL - 1])) {
315                         INIT_LIST_HEAD(&workspace->lru_list);
316                 } else {
317                         workspace->last_used = jiffies;
318                         list_add(&workspace->lru_list, &wsm.lru_list);
319                         if (!timer_pending(&wsm.timer))
320                                 mod_timer(&wsm.timer,
321                                           jiffies + ZSTD_BTRFS_RECLAIM_JIFFIES);
322                 }
323         }
324
325         set_bit(workspace->level - 1, &wsm.active_map);
326         list_add(&workspace->list, &wsm.idle_ws[workspace->level - 1]);
327         workspace->req_level = 0;
328
329         spin_unlock_bh(&wsm.lock);
330
331         if (workspace->level == ZSTD_BTRFS_MAX_LEVEL)
332                 cond_wake_up(&wsm.wait);
333 }
334
335 static void zstd_free_workspace(struct list_head *ws)
336 {
337         struct workspace *workspace = list_entry(ws, struct workspace, list);
338
339         kvfree(workspace->mem);
340         kfree(workspace->buf);
341         kfree(workspace);
342 }
343
344 static struct list_head *zstd_alloc_workspace(unsigned int level)
345 {
346         struct workspace *workspace;
347
348         workspace = kzalloc(sizeof(*workspace), GFP_KERNEL);
349         if (!workspace)
350                 return ERR_PTR(-ENOMEM);
351
352         workspace->size = zstd_ws_mem_sizes[level - 1];
353         workspace->level = level;
354         workspace->req_level = level;
355         workspace->last_used = jiffies;
356         workspace->mem = kvmalloc(workspace->size, GFP_KERNEL);
357         workspace->buf = kmalloc(PAGE_SIZE, GFP_KERNEL);
358         if (!workspace->mem || !workspace->buf)
359                 goto fail;
360
361         INIT_LIST_HEAD(&workspace->list);
362         INIT_LIST_HEAD(&workspace->lru_list);
363
364         return &workspace->list;
365 fail:
366         zstd_free_workspace(&workspace->list);
367         return ERR_PTR(-ENOMEM);
368 }
369
370 static int zstd_compress_pages(struct list_head *ws,
371                 struct address_space *mapping,
372                 u64 start,
373                 struct page **pages,
374                 unsigned long *out_pages,
375                 unsigned long *total_in,
376                 unsigned long *total_out)
377 {
378         struct workspace *workspace = list_entry(ws, struct workspace, list);
379         ZSTD_CStream *stream;
380         int ret = 0;
381         int nr_pages = 0;
382         struct page *in_page = NULL;  /* The current page to read */
383         struct page *out_page = NULL; /* The current page to write to */
384         unsigned long tot_in = 0;
385         unsigned long tot_out = 0;
386         unsigned long len = *total_out;
387         const unsigned long nr_dest_pages = *out_pages;
388         unsigned long max_out = nr_dest_pages * PAGE_SIZE;
389         ZSTD_parameters params = zstd_get_btrfs_parameters(workspace->req_level,
390                                                            len);
391
392         *out_pages = 0;
393         *total_out = 0;
394         *total_in = 0;
395
396         /* Initialize the stream */
397         stream = ZSTD_initCStream(params, len, workspace->mem,
398                         workspace->size);
399         if (!stream) {
400                 pr_warn("BTRFS: ZSTD_initCStream failed\n");
401                 ret = -EIO;
402                 goto out;
403         }
404
405         /* map in the first page of input data */
406         in_page = find_get_page(mapping, start >> PAGE_SHIFT);
407         workspace->in_buf.src = kmap(in_page);
408         workspace->in_buf.pos = 0;
409         workspace->in_buf.size = min_t(size_t, len, PAGE_SIZE);
410
411
412         /* Allocate and map in the output buffer */
413         out_page = alloc_page(GFP_NOFS | __GFP_HIGHMEM);
414         if (out_page == NULL) {
415                 ret = -ENOMEM;
416                 goto out;
417         }
418         pages[nr_pages++] = out_page;
419         workspace->out_buf.dst = kmap(out_page);
420         workspace->out_buf.pos = 0;
421         workspace->out_buf.size = min_t(size_t, max_out, PAGE_SIZE);
422
423         while (1) {
424                 size_t ret2;
425
426                 ret2 = ZSTD_compressStream(stream, &workspace->out_buf,
427                                 &workspace->in_buf);
428                 if (ZSTD_isError(ret2)) {
429                         pr_debug("BTRFS: ZSTD_compressStream returned %d\n",
430                                         ZSTD_getErrorCode(ret2));
431                         ret = -EIO;
432                         goto out;
433                 }
434
435                 /* Check to see if we are making it bigger */
436                 if (tot_in + workspace->in_buf.pos > 8192 &&
437                                 tot_in + workspace->in_buf.pos <
438                                 tot_out + workspace->out_buf.pos) {
439                         ret = -E2BIG;
440                         goto out;
441                 }
442
443                 /* We've reached the end of our output range */
444                 if (workspace->out_buf.pos >= max_out) {
445                         tot_out += workspace->out_buf.pos;
446                         ret = -E2BIG;
447                         goto out;
448                 }
449
450                 /* Check if we need more output space */
451                 if (workspace->out_buf.pos == workspace->out_buf.size) {
452                         tot_out += PAGE_SIZE;
453                         max_out -= PAGE_SIZE;
454                         kunmap(out_page);
455                         if (nr_pages == nr_dest_pages) {
456                                 out_page = NULL;
457                                 ret = -E2BIG;
458                                 goto out;
459                         }
460                         out_page = alloc_page(GFP_NOFS | __GFP_HIGHMEM);
461                         if (out_page == NULL) {
462                                 ret = -ENOMEM;
463                                 goto out;
464                         }
465                         pages[nr_pages++] = out_page;
466                         workspace->out_buf.dst = kmap(out_page);
467                         workspace->out_buf.pos = 0;
468                         workspace->out_buf.size = min_t(size_t, max_out,
469                                                         PAGE_SIZE);
470                 }
471
472                 /* We've reached the end of the input */
473                 if (workspace->in_buf.pos >= len) {
474                         tot_in += workspace->in_buf.pos;
475                         break;
476                 }
477
478                 /* Check if we need more input */
479                 if (workspace->in_buf.pos == workspace->in_buf.size) {
480                         tot_in += PAGE_SIZE;
481                         kunmap(in_page);
482                         put_page(in_page);
483
484                         start += PAGE_SIZE;
485                         len -= PAGE_SIZE;
486                         in_page = find_get_page(mapping, start >> PAGE_SHIFT);
487                         workspace->in_buf.src = kmap(in_page);
488                         workspace->in_buf.pos = 0;
489                         workspace->in_buf.size = min_t(size_t, len, PAGE_SIZE);
490                 }
491         }
492         while (1) {
493                 size_t ret2;
494
495                 ret2 = ZSTD_endStream(stream, &workspace->out_buf);
496                 if (ZSTD_isError(ret2)) {
497                         pr_debug("BTRFS: ZSTD_endStream returned %d\n",
498                                         ZSTD_getErrorCode(ret2));
499                         ret = -EIO;
500                         goto out;
501                 }
502                 if (ret2 == 0) {
503                         tot_out += workspace->out_buf.pos;
504                         break;
505                 }
506                 if (workspace->out_buf.pos >= max_out) {
507                         tot_out += workspace->out_buf.pos;
508                         ret = -E2BIG;
509                         goto out;
510                 }
511
512                 tot_out += PAGE_SIZE;
513                 max_out -= PAGE_SIZE;
514                 kunmap(out_page);
515                 if (nr_pages == nr_dest_pages) {
516                         out_page = NULL;
517                         ret = -E2BIG;
518                         goto out;
519                 }
520                 out_page = alloc_page(GFP_NOFS | __GFP_HIGHMEM);
521                 if (out_page == NULL) {
522                         ret = -ENOMEM;
523                         goto out;
524                 }
525                 pages[nr_pages++] = out_page;
526                 workspace->out_buf.dst = kmap(out_page);
527                 workspace->out_buf.pos = 0;
528                 workspace->out_buf.size = min_t(size_t, max_out, PAGE_SIZE);
529         }
530
531         if (tot_out >= tot_in) {
532                 ret = -E2BIG;
533                 goto out;
534         }
535
536         ret = 0;
537         *total_in = tot_in;
538         *total_out = tot_out;
539 out:
540         *out_pages = nr_pages;
541         /* Cleanup */
542         if (in_page) {
543                 kunmap(in_page);
544                 put_page(in_page);
545         }
546         if (out_page)
547                 kunmap(out_page);
548         return ret;
549 }
550
551 static int zstd_decompress_bio(struct list_head *ws, struct compressed_bio *cb)
552 {
553         struct workspace *workspace = list_entry(ws, struct workspace, list);
554         struct page **pages_in = cb->compressed_pages;
555         u64 disk_start = cb->start;
556         struct bio *orig_bio = cb->orig_bio;
557         size_t srclen = cb->compressed_len;
558         ZSTD_DStream *stream;
559         int ret = 0;
560         unsigned long page_in_index = 0;
561         unsigned long total_pages_in = DIV_ROUND_UP(srclen, PAGE_SIZE);
562         unsigned long buf_start;
563         unsigned long total_out = 0;
564
565         stream = ZSTD_initDStream(
566                         ZSTD_BTRFS_MAX_INPUT, workspace->mem, workspace->size);
567         if (!stream) {
568                 pr_debug("BTRFS: ZSTD_initDStream failed\n");
569                 ret = -EIO;
570                 goto done;
571         }
572
573         workspace->in_buf.src = kmap(pages_in[page_in_index]);
574         workspace->in_buf.pos = 0;
575         workspace->in_buf.size = min_t(size_t, srclen, PAGE_SIZE);
576
577         workspace->out_buf.dst = workspace->buf;
578         workspace->out_buf.pos = 0;
579         workspace->out_buf.size = PAGE_SIZE;
580
581         while (1) {
582                 size_t ret2;
583
584                 ret2 = ZSTD_decompressStream(stream, &workspace->out_buf,
585                                 &workspace->in_buf);
586                 if (ZSTD_isError(ret2)) {
587                         pr_debug("BTRFS: ZSTD_decompressStream returned %d\n",
588                                         ZSTD_getErrorCode(ret2));
589                         ret = -EIO;
590                         goto done;
591                 }
592                 buf_start = total_out;
593                 total_out += workspace->out_buf.pos;
594                 workspace->out_buf.pos = 0;
595
596                 ret = btrfs_decompress_buf2page(workspace->out_buf.dst,
597                                 buf_start, total_out, disk_start, orig_bio);
598                 if (ret == 0)
599                         break;
600
601                 if (workspace->in_buf.pos >= srclen)
602                         break;
603
604                 /* Check if we've hit the end of a frame */
605                 if (ret2 == 0)
606                         break;
607
608                 if (workspace->in_buf.pos == workspace->in_buf.size) {
609                         kunmap(pages_in[page_in_index++]);
610                         if (page_in_index >= total_pages_in) {
611                                 workspace->in_buf.src = NULL;
612                                 ret = -EIO;
613                                 goto done;
614                         }
615                         srclen -= PAGE_SIZE;
616                         workspace->in_buf.src = kmap(pages_in[page_in_index]);
617                         workspace->in_buf.pos = 0;
618                         workspace->in_buf.size = min_t(size_t, srclen, PAGE_SIZE);
619                 }
620         }
621         ret = 0;
622         zero_fill_bio(orig_bio);
623 done:
624         if (workspace->in_buf.src)
625                 kunmap(pages_in[page_in_index]);
626         return ret;
627 }
628
629 static int zstd_decompress(struct list_head *ws, unsigned char *data_in,
630                 struct page *dest_page,
631                 unsigned long start_byte,
632                 size_t srclen, size_t destlen)
633 {
634         struct workspace *workspace = list_entry(ws, struct workspace, list);
635         ZSTD_DStream *stream;
636         int ret = 0;
637         size_t ret2;
638         unsigned long total_out = 0;
639         unsigned long pg_offset = 0;
640         char *kaddr;
641
642         stream = ZSTD_initDStream(
643                         ZSTD_BTRFS_MAX_INPUT, workspace->mem, workspace->size);
644         if (!stream) {
645                 pr_warn("BTRFS: ZSTD_initDStream failed\n");
646                 ret = -EIO;
647                 goto finish;
648         }
649
650         destlen = min_t(size_t, destlen, PAGE_SIZE);
651
652         workspace->in_buf.src = data_in;
653         workspace->in_buf.pos = 0;
654         workspace->in_buf.size = srclen;
655
656         workspace->out_buf.dst = workspace->buf;
657         workspace->out_buf.pos = 0;
658         workspace->out_buf.size = PAGE_SIZE;
659
660         ret2 = 1;
661         while (pg_offset < destlen
662                && workspace->in_buf.pos < workspace->in_buf.size) {
663                 unsigned long buf_start;
664                 unsigned long buf_offset;
665                 unsigned long bytes;
666
667                 /* Check if the frame is over and we still need more input */
668                 if (ret2 == 0) {
669                         pr_debug("BTRFS: ZSTD_decompressStream ended early\n");
670                         ret = -EIO;
671                         goto finish;
672                 }
673                 ret2 = ZSTD_decompressStream(stream, &workspace->out_buf,
674                                 &workspace->in_buf);
675                 if (ZSTD_isError(ret2)) {
676                         pr_debug("BTRFS: ZSTD_decompressStream returned %d\n",
677                                         ZSTD_getErrorCode(ret2));
678                         ret = -EIO;
679                         goto finish;
680                 }
681
682                 buf_start = total_out;
683                 total_out += workspace->out_buf.pos;
684                 workspace->out_buf.pos = 0;
685
686                 if (total_out <= start_byte)
687                         continue;
688
689                 if (total_out > start_byte && buf_start < start_byte)
690                         buf_offset = start_byte - buf_start;
691                 else
692                         buf_offset = 0;
693
694                 bytes = min_t(unsigned long, destlen - pg_offset,
695                                 workspace->out_buf.size - buf_offset);
696
697                 kaddr = kmap_atomic(dest_page);
698                 memcpy(kaddr + pg_offset, workspace->out_buf.dst + buf_offset,
699                                 bytes);
700                 kunmap_atomic(kaddr);
701
702                 pg_offset += bytes;
703         }
704         ret = 0;
705 finish:
706         if (pg_offset < destlen) {
707                 kaddr = kmap_atomic(dest_page);
708                 memset(kaddr + pg_offset, 0, destlen - pg_offset);
709                 kunmap_atomic(kaddr);
710         }
711         return ret;
712 }
713
714 const struct btrfs_compress_op btrfs_zstd_compress = {
715         .init_workspace_manager = zstd_init_workspace_manager,
716         .cleanup_workspace_manager = zstd_cleanup_workspace_manager,
717         .get_workspace = zstd_get_workspace,
718         .put_workspace = zstd_put_workspace,
719         .alloc_workspace = zstd_alloc_workspace,
720         .free_workspace = zstd_free_workspace,
721         .compress_pages = zstd_compress_pages,
722         .decompress_bio = zstd_decompress_bio,
723         .decompress = zstd_decompress,
724         .max_level      = ZSTD_BTRFS_MAX_LEVEL,
725         .default_level  = ZSTD_BTRFS_DEFAULT_LEVEL,
726 };