GNU Linux-libre 6.0.2-gnu
[releases.git] / fs / btrfs / zoned.c
1 // SPDX-License-Identifier: GPL-2.0
2
3 #include <linux/bitops.h>
4 #include <linux/slab.h>
5 #include <linux/blkdev.h>
6 #include <linux/sched/mm.h>
7 #include <linux/atomic.h>
8 #include <linux/vmalloc.h>
9 #include "ctree.h"
10 #include "volumes.h"
11 #include "zoned.h"
12 #include "rcu-string.h"
13 #include "disk-io.h"
14 #include "block-group.h"
15 #include "transaction.h"
16 #include "dev-replace.h"
17 #include "space-info.h"
18
19 /* Maximum number of zones to report per blkdev_report_zones() call */
20 #define BTRFS_REPORT_NR_ZONES   4096
21 /* Invalid allocation pointer value for missing devices */
22 #define WP_MISSING_DEV ((u64)-1)
23 /* Pseudo write pointer value for conventional zone */
24 #define WP_CONVENTIONAL ((u64)-2)
25
26 /*
27  * Location of the first zone of superblock logging zone pairs.
28  *
29  * - primary superblock:    0B (zone 0)
30  * - first copy:          512G (zone starting at that offset)
31  * - second copy:           4T (zone starting at that offset)
32  */
33 #define BTRFS_SB_LOG_PRIMARY_OFFSET     (0ULL)
34 #define BTRFS_SB_LOG_FIRST_OFFSET       (512ULL * SZ_1G)
35 #define BTRFS_SB_LOG_SECOND_OFFSET      (4096ULL * SZ_1G)
36
37 #define BTRFS_SB_LOG_FIRST_SHIFT        const_ilog2(BTRFS_SB_LOG_FIRST_OFFSET)
38 #define BTRFS_SB_LOG_SECOND_SHIFT       const_ilog2(BTRFS_SB_LOG_SECOND_OFFSET)
39
40 /* Number of superblock log zones */
41 #define BTRFS_NR_SB_LOG_ZONES 2
42
43 /*
44  * Minimum of active zones we need:
45  *
46  * - BTRFS_SUPER_MIRROR_MAX zones for superblock mirrors
47  * - 3 zones to ensure at least one zone per SYSTEM, META and DATA block group
48  * - 1 zone for tree-log dedicated block group
49  * - 1 zone for relocation
50  */
51 #define BTRFS_MIN_ACTIVE_ZONES          (BTRFS_SUPER_MIRROR_MAX + 5)
52
53 /*
54  * Minimum / maximum supported zone size. Currently, SMR disks have a zone
55  * size of 256MiB, and we are expecting ZNS drives to be in the 1-4GiB range.
56  * We do not expect the zone size to become larger than 8GiB or smaller than
57  * 4MiB in the near future.
58  */
59 #define BTRFS_MAX_ZONE_SIZE             SZ_8G
60 #define BTRFS_MIN_ZONE_SIZE             SZ_4M
61
62 #define SUPER_INFO_SECTORS      ((u64)BTRFS_SUPER_INFO_SIZE >> SECTOR_SHIFT)
63
64 static inline bool sb_zone_is_full(const struct blk_zone *zone)
65 {
66         return (zone->cond == BLK_ZONE_COND_FULL) ||
67                 (zone->wp + SUPER_INFO_SECTORS > zone->start + zone->capacity);
68 }
69
70 static int copy_zone_info_cb(struct blk_zone *zone, unsigned int idx, void *data)
71 {
72         struct blk_zone *zones = data;
73
74         memcpy(&zones[idx], zone, sizeof(*zone));
75
76         return 0;
77 }
78
79 static int sb_write_pointer(struct block_device *bdev, struct blk_zone *zones,
80                             u64 *wp_ret)
81 {
82         bool empty[BTRFS_NR_SB_LOG_ZONES];
83         bool full[BTRFS_NR_SB_LOG_ZONES];
84         sector_t sector;
85         int i;
86
87         for (i = 0; i < BTRFS_NR_SB_LOG_ZONES; i++) {
88                 ASSERT(zones[i].type != BLK_ZONE_TYPE_CONVENTIONAL);
89                 empty[i] = (zones[i].cond == BLK_ZONE_COND_EMPTY);
90                 full[i] = sb_zone_is_full(&zones[i]);
91         }
92
93         /*
94          * Possible states of log buffer zones
95          *
96          *           Empty[0]  In use[0]  Full[0]
97          * Empty[1]         *          0        1
98          * In use[1]        x          x        1
99          * Full[1]          0          0        C
100          *
101          * Log position:
102          *   *: Special case, no superblock is written
103          *   0: Use write pointer of zones[0]
104          *   1: Use write pointer of zones[1]
105          *   C: Compare super blocks from zones[0] and zones[1], use the latest
106          *      one determined by generation
107          *   x: Invalid state
108          */
109
110         if (empty[0] && empty[1]) {
111                 /* Special case to distinguish no superblock to read */
112                 *wp_ret = zones[0].start << SECTOR_SHIFT;
113                 return -ENOENT;
114         } else if (full[0] && full[1]) {
115                 /* Compare two super blocks */
116                 struct address_space *mapping = bdev->bd_inode->i_mapping;
117                 struct page *page[BTRFS_NR_SB_LOG_ZONES];
118                 struct btrfs_super_block *super[BTRFS_NR_SB_LOG_ZONES];
119                 int i;
120
121                 for (i = 0; i < BTRFS_NR_SB_LOG_ZONES; i++) {
122                         u64 bytenr;
123
124                         bytenr = ((zones[i].start + zones[i].len)
125                                    << SECTOR_SHIFT) - BTRFS_SUPER_INFO_SIZE;
126
127                         page[i] = read_cache_page_gfp(mapping,
128                                         bytenr >> PAGE_SHIFT, GFP_NOFS);
129                         if (IS_ERR(page[i])) {
130                                 if (i == 1)
131                                         btrfs_release_disk_super(super[0]);
132                                 return PTR_ERR(page[i]);
133                         }
134                         super[i] = page_address(page[i]);
135                 }
136
137                 if (super[0]->generation > super[1]->generation)
138                         sector = zones[1].start;
139                 else
140                         sector = zones[0].start;
141
142                 for (i = 0; i < BTRFS_NR_SB_LOG_ZONES; i++)
143                         btrfs_release_disk_super(super[i]);
144         } else if (!full[0] && (empty[1] || full[1])) {
145                 sector = zones[0].wp;
146         } else if (full[0]) {
147                 sector = zones[1].wp;
148         } else {
149                 return -EUCLEAN;
150         }
151         *wp_ret = sector << SECTOR_SHIFT;
152         return 0;
153 }
154
155 /*
156  * Get the first zone number of the superblock mirror
157  */
158 static inline u32 sb_zone_number(int shift, int mirror)
159 {
160         u64 zone;
161
162         ASSERT(mirror < BTRFS_SUPER_MIRROR_MAX);
163         switch (mirror) {
164         case 0: zone = 0; break;
165         case 1: zone = 1ULL << (BTRFS_SB_LOG_FIRST_SHIFT - shift); break;
166         case 2: zone = 1ULL << (BTRFS_SB_LOG_SECOND_SHIFT - shift); break;
167         }
168
169         ASSERT(zone <= U32_MAX);
170
171         return (u32)zone;
172 }
173
174 static inline sector_t zone_start_sector(u32 zone_number,
175                                          struct block_device *bdev)
176 {
177         return (sector_t)zone_number << ilog2(bdev_zone_sectors(bdev));
178 }
179
180 static inline u64 zone_start_physical(u32 zone_number,
181                                       struct btrfs_zoned_device_info *zone_info)
182 {
183         return (u64)zone_number << zone_info->zone_size_shift;
184 }
185
186 /*
187  * Emulate blkdev_report_zones() for a non-zoned device. It slices up the block
188  * device into static sized chunks and fake a conventional zone on each of
189  * them.
190  */
191 static int emulate_report_zones(struct btrfs_device *device, u64 pos,
192                                 struct blk_zone *zones, unsigned int nr_zones)
193 {
194         const sector_t zone_sectors = device->fs_info->zone_size >> SECTOR_SHIFT;
195         sector_t bdev_size = bdev_nr_sectors(device->bdev);
196         unsigned int i;
197
198         pos >>= SECTOR_SHIFT;
199         for (i = 0; i < nr_zones; i++) {
200                 zones[i].start = i * zone_sectors + pos;
201                 zones[i].len = zone_sectors;
202                 zones[i].capacity = zone_sectors;
203                 zones[i].wp = zones[i].start + zone_sectors;
204                 zones[i].type = BLK_ZONE_TYPE_CONVENTIONAL;
205                 zones[i].cond = BLK_ZONE_COND_NOT_WP;
206
207                 if (zones[i].wp >= bdev_size) {
208                         i++;
209                         break;
210                 }
211         }
212
213         return i;
214 }
215
216 static int btrfs_get_dev_zones(struct btrfs_device *device, u64 pos,
217                                struct blk_zone *zones, unsigned int *nr_zones)
218 {
219         struct btrfs_zoned_device_info *zinfo = device->zone_info;
220         u32 zno;
221         int ret;
222
223         if (!*nr_zones)
224                 return 0;
225
226         if (!bdev_is_zoned(device->bdev)) {
227                 ret = emulate_report_zones(device, pos, zones, *nr_zones);
228                 *nr_zones = ret;
229                 return 0;
230         }
231
232         /* Check cache */
233         if (zinfo->zone_cache) {
234                 unsigned int i;
235
236                 ASSERT(IS_ALIGNED(pos, zinfo->zone_size));
237                 zno = pos >> zinfo->zone_size_shift;
238                 /*
239                  * We cannot report zones beyond the zone end. So, it is OK to
240                  * cap *nr_zones to at the end.
241                  */
242                 *nr_zones = min_t(u32, *nr_zones, zinfo->nr_zones - zno);
243
244                 for (i = 0; i < *nr_zones; i++) {
245                         struct blk_zone *zone_info;
246
247                         zone_info = &zinfo->zone_cache[zno + i];
248                         if (!zone_info->len)
249                                 break;
250                 }
251
252                 if (i == *nr_zones) {
253                         /* Cache hit on all the zones */
254                         memcpy(zones, zinfo->zone_cache + zno,
255                                sizeof(*zinfo->zone_cache) * *nr_zones);
256                         return 0;
257                 }
258         }
259
260         ret = blkdev_report_zones(device->bdev, pos >> SECTOR_SHIFT, *nr_zones,
261                                   copy_zone_info_cb, zones);
262         if (ret < 0) {
263                 btrfs_err_in_rcu(device->fs_info,
264                                  "zoned: failed to read zone %llu on %s (devid %llu)",
265                                  pos, rcu_str_deref(device->name),
266                                  device->devid);
267                 return ret;
268         }
269         *nr_zones = ret;
270         if (!ret)
271                 return -EIO;
272
273         /* Populate cache */
274         if (zinfo->zone_cache)
275                 memcpy(zinfo->zone_cache + zno, zones,
276                        sizeof(*zinfo->zone_cache) * *nr_zones);
277
278         return 0;
279 }
280
281 /* The emulated zone size is determined from the size of device extent */
282 static int calculate_emulated_zone_size(struct btrfs_fs_info *fs_info)
283 {
284         struct btrfs_path *path;
285         struct btrfs_root *root = fs_info->dev_root;
286         struct btrfs_key key;
287         struct extent_buffer *leaf;
288         struct btrfs_dev_extent *dext;
289         int ret = 0;
290
291         key.objectid = 1;
292         key.type = BTRFS_DEV_EXTENT_KEY;
293         key.offset = 0;
294
295         path = btrfs_alloc_path();
296         if (!path)
297                 return -ENOMEM;
298
299         ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
300         if (ret < 0)
301                 goto out;
302
303         if (path->slots[0] >= btrfs_header_nritems(path->nodes[0])) {
304                 ret = btrfs_next_leaf(root, path);
305                 if (ret < 0)
306                         goto out;
307                 /* No dev extents at all? Not good */
308                 if (ret > 0) {
309                         ret = -EUCLEAN;
310                         goto out;
311                 }
312         }
313
314         leaf = path->nodes[0];
315         dext = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_dev_extent);
316         fs_info->zone_size = btrfs_dev_extent_length(leaf, dext);
317         ret = 0;
318
319 out:
320         btrfs_free_path(path);
321
322         return ret;
323 }
324
325 int btrfs_get_dev_zone_info_all_devices(struct btrfs_fs_info *fs_info)
326 {
327         struct btrfs_fs_devices *fs_devices = fs_info->fs_devices;
328         struct btrfs_device *device;
329         int ret = 0;
330
331         /* fs_info->zone_size might not set yet. Use the incomapt flag here. */
332         if (!btrfs_fs_incompat(fs_info, ZONED))
333                 return 0;
334
335         mutex_lock(&fs_devices->device_list_mutex);
336         list_for_each_entry(device, &fs_devices->devices, dev_list) {
337                 /* We can skip reading of zone info for missing devices */
338                 if (!device->bdev)
339                         continue;
340
341                 ret = btrfs_get_dev_zone_info(device, true);
342                 if (ret)
343                         break;
344         }
345         mutex_unlock(&fs_devices->device_list_mutex);
346
347         return ret;
348 }
349
350 int btrfs_get_dev_zone_info(struct btrfs_device *device, bool populate_cache)
351 {
352         struct btrfs_fs_info *fs_info = device->fs_info;
353         struct btrfs_zoned_device_info *zone_info = NULL;
354         struct block_device *bdev = device->bdev;
355         unsigned int max_active_zones;
356         unsigned int nactive;
357         sector_t nr_sectors;
358         sector_t sector = 0;
359         struct blk_zone *zones = NULL;
360         unsigned int i, nreported = 0, nr_zones;
361         sector_t zone_sectors;
362         char *model, *emulated;
363         int ret;
364
365         /*
366          * Cannot use btrfs_is_zoned here, since fs_info::zone_size might not
367          * yet be set.
368          */
369         if (!btrfs_fs_incompat(fs_info, ZONED))
370                 return 0;
371
372         if (device->zone_info)
373                 return 0;
374
375         zone_info = kzalloc(sizeof(*zone_info), GFP_KERNEL);
376         if (!zone_info)
377                 return -ENOMEM;
378
379         device->zone_info = zone_info;
380
381         if (!bdev_is_zoned(bdev)) {
382                 if (!fs_info->zone_size) {
383                         ret = calculate_emulated_zone_size(fs_info);
384                         if (ret)
385                                 goto out;
386                 }
387
388                 ASSERT(fs_info->zone_size);
389                 zone_sectors = fs_info->zone_size >> SECTOR_SHIFT;
390         } else {
391                 zone_sectors = bdev_zone_sectors(bdev);
392         }
393
394         /* Check if it's power of 2 (see is_power_of_2) */
395         ASSERT(zone_sectors != 0 && (zone_sectors & (zone_sectors - 1)) == 0);
396         zone_info->zone_size = zone_sectors << SECTOR_SHIFT;
397
398         /* We reject devices with a zone size larger than 8GB */
399         if (zone_info->zone_size > BTRFS_MAX_ZONE_SIZE) {
400                 btrfs_err_in_rcu(fs_info,
401                 "zoned: %s: zone size %llu larger than supported maximum %llu",
402                                  rcu_str_deref(device->name),
403                                  zone_info->zone_size, BTRFS_MAX_ZONE_SIZE);
404                 ret = -EINVAL;
405                 goto out;
406         } else if (zone_info->zone_size < BTRFS_MIN_ZONE_SIZE) {
407                 btrfs_err_in_rcu(fs_info,
408                 "zoned: %s: zone size %llu smaller than supported minimum %u",
409                                  rcu_str_deref(device->name),
410                                  zone_info->zone_size, BTRFS_MIN_ZONE_SIZE);
411                 ret = -EINVAL;
412                 goto out;
413         }
414
415         nr_sectors = bdev_nr_sectors(bdev);
416         zone_info->zone_size_shift = ilog2(zone_info->zone_size);
417         zone_info->nr_zones = nr_sectors >> ilog2(zone_sectors);
418         /*
419          * We limit max_zone_append_size also by max_segments *
420          * PAGE_SIZE. Technically, we can have multiple pages per segment. But,
421          * since btrfs adds the pages one by one to a bio, and btrfs cannot
422          * increase the metadata reservation even if it increases the number of
423          * extents, it is safe to stick with the limit.
424          *
425          * With the zoned emulation, we can have non-zoned device on the zoned
426          * mode. In this case, we don't have a valid max zone append size. So,
427          * use max_segments * PAGE_SIZE as the pseudo max_zone_append_size.
428          */
429         if (bdev_is_zoned(bdev)) {
430                 zone_info->max_zone_append_size = min_t(u64,
431                         (u64)bdev_max_zone_append_sectors(bdev) << SECTOR_SHIFT,
432                         (u64)bdev_max_segments(bdev) << PAGE_SHIFT);
433         } else {
434                 zone_info->max_zone_append_size =
435                         (u64)bdev_max_segments(bdev) << PAGE_SHIFT;
436         }
437         if (!IS_ALIGNED(nr_sectors, zone_sectors))
438                 zone_info->nr_zones++;
439
440         max_active_zones = bdev_max_active_zones(bdev);
441         if (max_active_zones && max_active_zones < BTRFS_MIN_ACTIVE_ZONES) {
442                 btrfs_err_in_rcu(fs_info,
443 "zoned: %s: max active zones %u is too small, need at least %u active zones",
444                                  rcu_str_deref(device->name), max_active_zones,
445                                  BTRFS_MIN_ACTIVE_ZONES);
446                 ret = -EINVAL;
447                 goto out;
448         }
449         zone_info->max_active_zones = max_active_zones;
450
451         zone_info->seq_zones = bitmap_zalloc(zone_info->nr_zones, GFP_KERNEL);
452         if (!zone_info->seq_zones) {
453                 ret = -ENOMEM;
454                 goto out;
455         }
456
457         zone_info->empty_zones = bitmap_zalloc(zone_info->nr_zones, GFP_KERNEL);
458         if (!zone_info->empty_zones) {
459                 ret = -ENOMEM;
460                 goto out;
461         }
462
463         zone_info->active_zones = bitmap_zalloc(zone_info->nr_zones, GFP_KERNEL);
464         if (!zone_info->active_zones) {
465                 ret = -ENOMEM;
466                 goto out;
467         }
468
469         zones = kcalloc(BTRFS_REPORT_NR_ZONES, sizeof(struct blk_zone), GFP_KERNEL);
470         if (!zones) {
471                 ret = -ENOMEM;
472                 goto out;
473         }
474
475         /*
476          * Enable zone cache only for a zoned device. On a non-zoned device, we
477          * fill the zone info with emulated CONVENTIONAL zones, so no need to
478          * use the cache.
479          */
480         if (populate_cache && bdev_is_zoned(device->bdev)) {
481                 zone_info->zone_cache = vzalloc(sizeof(struct blk_zone) *
482                                                 zone_info->nr_zones);
483                 if (!zone_info->zone_cache) {
484                         btrfs_err_in_rcu(device->fs_info,
485                                 "zoned: failed to allocate zone cache for %s",
486                                 rcu_str_deref(device->name));
487                         ret = -ENOMEM;
488                         goto out;
489                 }
490         }
491
492         /* Get zones type */
493         nactive = 0;
494         while (sector < nr_sectors) {
495                 nr_zones = BTRFS_REPORT_NR_ZONES;
496                 ret = btrfs_get_dev_zones(device, sector << SECTOR_SHIFT, zones,
497                                           &nr_zones);
498                 if (ret)
499                         goto out;
500
501                 for (i = 0; i < nr_zones; i++) {
502                         if (zones[i].type == BLK_ZONE_TYPE_SEQWRITE_REQ)
503                                 __set_bit(nreported, zone_info->seq_zones);
504                         switch (zones[i].cond) {
505                         case BLK_ZONE_COND_EMPTY:
506                                 __set_bit(nreported, zone_info->empty_zones);
507                                 break;
508                         case BLK_ZONE_COND_IMP_OPEN:
509                         case BLK_ZONE_COND_EXP_OPEN:
510                         case BLK_ZONE_COND_CLOSED:
511                                 __set_bit(nreported, zone_info->active_zones);
512                                 nactive++;
513                                 break;
514                         }
515                         nreported++;
516                 }
517                 sector = zones[nr_zones - 1].start + zones[nr_zones - 1].len;
518         }
519
520         if (nreported != zone_info->nr_zones) {
521                 btrfs_err_in_rcu(device->fs_info,
522                                  "inconsistent number of zones on %s (%u/%u)",
523                                  rcu_str_deref(device->name), nreported,
524                                  zone_info->nr_zones);
525                 ret = -EIO;
526                 goto out;
527         }
528
529         if (max_active_zones) {
530                 if (nactive > max_active_zones) {
531                         btrfs_err_in_rcu(device->fs_info,
532                         "zoned: %u active zones on %s exceeds max_active_zones %u",
533                                          nactive, rcu_str_deref(device->name),
534                                          max_active_zones);
535                         ret = -EIO;
536                         goto out;
537                 }
538                 atomic_set(&zone_info->active_zones_left,
539                            max_active_zones - nactive);
540         }
541
542         /* Validate superblock log */
543         nr_zones = BTRFS_NR_SB_LOG_ZONES;
544         for (i = 0; i < BTRFS_SUPER_MIRROR_MAX; i++) {
545                 u32 sb_zone;
546                 u64 sb_wp;
547                 int sb_pos = BTRFS_NR_SB_LOG_ZONES * i;
548
549                 sb_zone = sb_zone_number(zone_info->zone_size_shift, i);
550                 if (sb_zone + 1 >= zone_info->nr_zones)
551                         continue;
552
553                 ret = btrfs_get_dev_zones(device,
554                                           zone_start_physical(sb_zone, zone_info),
555                                           &zone_info->sb_zones[sb_pos],
556                                           &nr_zones);
557                 if (ret)
558                         goto out;
559
560                 if (nr_zones != BTRFS_NR_SB_LOG_ZONES) {
561                         btrfs_err_in_rcu(device->fs_info,
562         "zoned: failed to read super block log zone info at devid %llu zone %u",
563                                          device->devid, sb_zone);
564                         ret = -EUCLEAN;
565                         goto out;
566                 }
567
568                 /*
569                  * If zones[0] is conventional, always use the beginning of the
570                  * zone to record superblock. No need to validate in that case.
571                  */
572                 if (zone_info->sb_zones[BTRFS_NR_SB_LOG_ZONES * i].type ==
573                     BLK_ZONE_TYPE_CONVENTIONAL)
574                         continue;
575
576                 ret = sb_write_pointer(device->bdev,
577                                        &zone_info->sb_zones[sb_pos], &sb_wp);
578                 if (ret != -ENOENT && ret) {
579                         btrfs_err_in_rcu(device->fs_info,
580                         "zoned: super block log zone corrupted devid %llu zone %u",
581                                          device->devid, sb_zone);
582                         ret = -EUCLEAN;
583                         goto out;
584                 }
585         }
586
587
588         kfree(zones);
589
590         switch (bdev_zoned_model(bdev)) {
591         case BLK_ZONED_HM:
592                 model = "host-managed zoned";
593                 emulated = "";
594                 break;
595         case BLK_ZONED_HA:
596                 model = "host-aware zoned";
597                 emulated = "";
598                 break;
599         case BLK_ZONED_NONE:
600                 model = "regular";
601                 emulated = "emulated ";
602                 break;
603         default:
604                 /* Just in case */
605                 btrfs_err_in_rcu(fs_info, "zoned: unsupported model %d on %s",
606                                  bdev_zoned_model(bdev),
607                                  rcu_str_deref(device->name));
608                 ret = -EOPNOTSUPP;
609                 goto out_free_zone_info;
610         }
611
612         btrfs_info_in_rcu(fs_info,
613                 "%s block device %s, %u %szones of %llu bytes",
614                 model, rcu_str_deref(device->name), zone_info->nr_zones,
615                 emulated, zone_info->zone_size);
616
617         return 0;
618
619 out:
620         kfree(zones);
621 out_free_zone_info:
622         btrfs_destroy_dev_zone_info(device);
623
624         return ret;
625 }
626
627 void btrfs_destroy_dev_zone_info(struct btrfs_device *device)
628 {
629         struct btrfs_zoned_device_info *zone_info = device->zone_info;
630
631         if (!zone_info)
632                 return;
633
634         bitmap_free(zone_info->active_zones);
635         bitmap_free(zone_info->seq_zones);
636         bitmap_free(zone_info->empty_zones);
637         vfree(zone_info->zone_cache);
638         kfree(zone_info);
639         device->zone_info = NULL;
640 }
641
642 int btrfs_get_dev_zone(struct btrfs_device *device, u64 pos,
643                        struct blk_zone *zone)
644 {
645         unsigned int nr_zones = 1;
646         int ret;
647
648         ret = btrfs_get_dev_zones(device, pos, zone, &nr_zones);
649         if (ret != 0 || !nr_zones)
650                 return ret ? ret : -EIO;
651
652         return 0;
653 }
654
655 int btrfs_check_zoned_mode(struct btrfs_fs_info *fs_info)
656 {
657         struct btrfs_fs_devices *fs_devices = fs_info->fs_devices;
658         struct btrfs_device *device;
659         u64 zoned_devices = 0;
660         u64 nr_devices = 0;
661         u64 zone_size = 0;
662         u64 max_zone_append_size = 0;
663         const bool incompat_zoned = btrfs_fs_incompat(fs_info, ZONED);
664         int ret = 0;
665
666         /* Count zoned devices */
667         list_for_each_entry(device, &fs_devices->devices, dev_list) {
668                 enum blk_zoned_model model;
669
670                 if (!device->bdev)
671                         continue;
672
673                 model = bdev_zoned_model(device->bdev);
674                 /*
675                  * A Host-Managed zoned device must be used as a zoned device.
676                  * A Host-Aware zoned device and a non-zoned devices can be
677                  * treated as a zoned device, if ZONED flag is enabled in the
678                  * superblock.
679                  */
680                 if (model == BLK_ZONED_HM ||
681                     (model == BLK_ZONED_HA && incompat_zoned) ||
682                     (model == BLK_ZONED_NONE && incompat_zoned)) {
683                         struct btrfs_zoned_device_info *zone_info;
684
685                         zone_info = device->zone_info;
686                         zoned_devices++;
687                         if (!zone_size) {
688                                 zone_size = zone_info->zone_size;
689                         } else if (zone_info->zone_size != zone_size) {
690                                 btrfs_err(fs_info,
691                 "zoned: unequal block device zone sizes: have %llu found %llu",
692                                           device->zone_info->zone_size,
693                                           zone_size);
694                                 ret = -EINVAL;
695                                 goto out;
696                         }
697                         if (!max_zone_append_size ||
698                             (zone_info->max_zone_append_size &&
699                              zone_info->max_zone_append_size < max_zone_append_size))
700                                 max_zone_append_size =
701                                         zone_info->max_zone_append_size;
702                 }
703                 nr_devices++;
704         }
705
706         if (!zoned_devices && !incompat_zoned)
707                 goto out;
708
709         if (!zoned_devices && incompat_zoned) {
710                 /* No zoned block device found on ZONED filesystem */
711                 btrfs_err(fs_info,
712                           "zoned: no zoned devices found on a zoned filesystem");
713                 ret = -EINVAL;
714                 goto out;
715         }
716
717         if (zoned_devices && !incompat_zoned) {
718                 btrfs_err(fs_info,
719                           "zoned: mode not enabled but zoned device found");
720                 ret = -EINVAL;
721                 goto out;
722         }
723
724         if (zoned_devices != nr_devices) {
725                 btrfs_err(fs_info,
726                           "zoned: cannot mix zoned and regular devices");
727                 ret = -EINVAL;
728                 goto out;
729         }
730
731         /*
732          * stripe_size is always aligned to BTRFS_STRIPE_LEN in
733          * btrfs_create_chunk(). Since we want stripe_len == zone_size,
734          * check the alignment here.
735          */
736         if (!IS_ALIGNED(zone_size, BTRFS_STRIPE_LEN)) {
737                 btrfs_err(fs_info,
738                           "zoned: zone size %llu not aligned to stripe %u",
739                           zone_size, BTRFS_STRIPE_LEN);
740                 ret = -EINVAL;
741                 goto out;
742         }
743
744         if (btrfs_fs_incompat(fs_info, MIXED_GROUPS)) {
745                 btrfs_err(fs_info, "zoned: mixed block groups not supported");
746                 ret = -EINVAL;
747                 goto out;
748         }
749
750         fs_info->zone_size = zone_size;
751         fs_info->max_zone_append_size = ALIGN_DOWN(max_zone_append_size,
752                                                    fs_info->sectorsize);
753         fs_info->fs_devices->chunk_alloc_policy = BTRFS_CHUNK_ALLOC_ZONED;
754         if (fs_info->max_zone_append_size < fs_info->max_extent_size)
755                 fs_info->max_extent_size = fs_info->max_zone_append_size;
756
757         /*
758          * Check mount options here, because we might change fs_info->zoned
759          * from fs_info->zone_size.
760          */
761         ret = btrfs_check_mountopts_zoned(fs_info);
762         if (ret)
763                 goto out;
764
765         btrfs_info(fs_info, "zoned mode enabled with zone size %llu", zone_size);
766 out:
767         return ret;
768 }
769
770 int btrfs_check_mountopts_zoned(struct btrfs_fs_info *info)
771 {
772         if (!btrfs_is_zoned(info))
773                 return 0;
774
775         /*
776          * Space cache writing is not COWed. Disable that to avoid write errors
777          * in sequential zones.
778          */
779         if (btrfs_test_opt(info, SPACE_CACHE)) {
780                 btrfs_err(info, "zoned: space cache v1 is not supported");
781                 return -EINVAL;
782         }
783
784         if (btrfs_test_opt(info, NODATACOW)) {
785                 btrfs_err(info, "zoned: NODATACOW not supported");
786                 return -EINVAL;
787         }
788
789         return 0;
790 }
791
792 static int sb_log_location(struct block_device *bdev, struct blk_zone *zones,
793                            int rw, u64 *bytenr_ret)
794 {
795         u64 wp;
796         int ret;
797
798         if (zones[0].type == BLK_ZONE_TYPE_CONVENTIONAL) {
799                 *bytenr_ret = zones[0].start << SECTOR_SHIFT;
800                 return 0;
801         }
802
803         ret = sb_write_pointer(bdev, zones, &wp);
804         if (ret != -ENOENT && ret < 0)
805                 return ret;
806
807         if (rw == WRITE) {
808                 struct blk_zone *reset = NULL;
809
810                 if (wp == zones[0].start << SECTOR_SHIFT)
811                         reset = &zones[0];
812                 else if (wp == zones[1].start << SECTOR_SHIFT)
813                         reset = &zones[1];
814
815                 if (reset && reset->cond != BLK_ZONE_COND_EMPTY) {
816                         ASSERT(sb_zone_is_full(reset));
817
818                         ret = blkdev_zone_mgmt(bdev, REQ_OP_ZONE_RESET,
819                                                reset->start, reset->len,
820                                                GFP_NOFS);
821                         if (ret)
822                                 return ret;
823
824                         reset->cond = BLK_ZONE_COND_EMPTY;
825                         reset->wp = reset->start;
826                 }
827         } else if (ret != -ENOENT) {
828                 /*
829                  * For READ, we want the previous one. Move write pointer to
830                  * the end of a zone, if it is at the head of a zone.
831                  */
832                 u64 zone_end = 0;
833
834                 if (wp == zones[0].start << SECTOR_SHIFT)
835                         zone_end = zones[1].start + zones[1].capacity;
836                 else if (wp == zones[1].start << SECTOR_SHIFT)
837                         zone_end = zones[0].start + zones[0].capacity;
838                 if (zone_end)
839                         wp = ALIGN_DOWN(zone_end << SECTOR_SHIFT,
840                                         BTRFS_SUPER_INFO_SIZE);
841
842                 wp -= BTRFS_SUPER_INFO_SIZE;
843         }
844
845         *bytenr_ret = wp;
846         return 0;
847
848 }
849
850 int btrfs_sb_log_location_bdev(struct block_device *bdev, int mirror, int rw,
851                                u64 *bytenr_ret)
852 {
853         struct blk_zone zones[BTRFS_NR_SB_LOG_ZONES];
854         sector_t zone_sectors;
855         u32 sb_zone;
856         int ret;
857         u8 zone_sectors_shift;
858         sector_t nr_sectors;
859         u32 nr_zones;
860
861         if (!bdev_is_zoned(bdev)) {
862                 *bytenr_ret = btrfs_sb_offset(mirror);
863                 return 0;
864         }
865
866         ASSERT(rw == READ || rw == WRITE);
867
868         zone_sectors = bdev_zone_sectors(bdev);
869         if (!is_power_of_2(zone_sectors))
870                 return -EINVAL;
871         zone_sectors_shift = ilog2(zone_sectors);
872         nr_sectors = bdev_nr_sectors(bdev);
873         nr_zones = nr_sectors >> zone_sectors_shift;
874
875         sb_zone = sb_zone_number(zone_sectors_shift + SECTOR_SHIFT, mirror);
876         if (sb_zone + 1 >= nr_zones)
877                 return -ENOENT;
878
879         ret = blkdev_report_zones(bdev, zone_start_sector(sb_zone, bdev),
880                                   BTRFS_NR_SB_LOG_ZONES, copy_zone_info_cb,
881                                   zones);
882         if (ret < 0)
883                 return ret;
884         if (ret != BTRFS_NR_SB_LOG_ZONES)
885                 return -EIO;
886
887         return sb_log_location(bdev, zones, rw, bytenr_ret);
888 }
889
890 int btrfs_sb_log_location(struct btrfs_device *device, int mirror, int rw,
891                           u64 *bytenr_ret)
892 {
893         struct btrfs_zoned_device_info *zinfo = device->zone_info;
894         u32 zone_num;
895
896         /*
897          * For a zoned filesystem on a non-zoned block device, use the same
898          * super block locations as regular filesystem. Doing so, the super
899          * block can always be retrieved and the zoned flag of the volume
900          * detected from the super block information.
901          */
902         if (!bdev_is_zoned(device->bdev)) {
903                 *bytenr_ret = btrfs_sb_offset(mirror);
904                 return 0;
905         }
906
907         zone_num = sb_zone_number(zinfo->zone_size_shift, mirror);
908         if (zone_num + 1 >= zinfo->nr_zones)
909                 return -ENOENT;
910
911         return sb_log_location(device->bdev,
912                                &zinfo->sb_zones[BTRFS_NR_SB_LOG_ZONES * mirror],
913                                rw, bytenr_ret);
914 }
915
916 static inline bool is_sb_log_zone(struct btrfs_zoned_device_info *zinfo,
917                                   int mirror)
918 {
919         u32 zone_num;
920
921         if (!zinfo)
922                 return false;
923
924         zone_num = sb_zone_number(zinfo->zone_size_shift, mirror);
925         if (zone_num + 1 >= zinfo->nr_zones)
926                 return false;
927
928         if (!test_bit(zone_num, zinfo->seq_zones))
929                 return false;
930
931         return true;
932 }
933
934 int btrfs_advance_sb_log(struct btrfs_device *device, int mirror)
935 {
936         struct btrfs_zoned_device_info *zinfo = device->zone_info;
937         struct blk_zone *zone;
938         int i;
939
940         if (!is_sb_log_zone(zinfo, mirror))
941                 return 0;
942
943         zone = &zinfo->sb_zones[BTRFS_NR_SB_LOG_ZONES * mirror];
944         for (i = 0; i < BTRFS_NR_SB_LOG_ZONES; i++) {
945                 /* Advance the next zone */
946                 if (zone->cond == BLK_ZONE_COND_FULL) {
947                         zone++;
948                         continue;
949                 }
950
951                 if (zone->cond == BLK_ZONE_COND_EMPTY)
952                         zone->cond = BLK_ZONE_COND_IMP_OPEN;
953
954                 zone->wp += SUPER_INFO_SECTORS;
955
956                 if (sb_zone_is_full(zone)) {
957                         /*
958                          * No room left to write new superblock. Since
959                          * superblock is written with REQ_SYNC, it is safe to
960                          * finish the zone now.
961                          *
962                          * If the write pointer is exactly at the capacity,
963                          * explicit ZONE_FINISH is not necessary.
964                          */
965                         if (zone->wp != zone->start + zone->capacity) {
966                                 int ret;
967
968                                 ret = blkdev_zone_mgmt(device->bdev,
969                                                 REQ_OP_ZONE_FINISH, zone->start,
970                                                 zone->len, GFP_NOFS);
971                                 if (ret)
972                                         return ret;
973                         }
974
975                         zone->wp = zone->start + zone->len;
976                         zone->cond = BLK_ZONE_COND_FULL;
977                 }
978                 return 0;
979         }
980
981         /* All the zones are FULL. Should not reach here. */
982         ASSERT(0);
983         return -EIO;
984 }
985
986 int btrfs_reset_sb_log_zones(struct block_device *bdev, int mirror)
987 {
988         sector_t zone_sectors;
989         sector_t nr_sectors;
990         u8 zone_sectors_shift;
991         u32 sb_zone;
992         u32 nr_zones;
993
994         zone_sectors = bdev_zone_sectors(bdev);
995         zone_sectors_shift = ilog2(zone_sectors);
996         nr_sectors = bdev_nr_sectors(bdev);
997         nr_zones = nr_sectors >> zone_sectors_shift;
998
999         sb_zone = sb_zone_number(zone_sectors_shift + SECTOR_SHIFT, mirror);
1000         if (sb_zone + 1 >= nr_zones)
1001                 return -ENOENT;
1002
1003         return blkdev_zone_mgmt(bdev, REQ_OP_ZONE_RESET,
1004                                 zone_start_sector(sb_zone, bdev),
1005                                 zone_sectors * BTRFS_NR_SB_LOG_ZONES, GFP_NOFS);
1006 }
1007
1008 /**
1009  * btrfs_find_allocatable_zones - find allocatable zones within a given region
1010  *
1011  * @device:     the device to allocate a region on
1012  * @hole_start: the position of the hole to allocate the region
1013  * @num_bytes:  size of wanted region
1014  * @hole_end:   the end of the hole
1015  * @return:     position of allocatable zones
1016  *
1017  * Allocatable region should not contain any superblock locations.
1018  */
1019 u64 btrfs_find_allocatable_zones(struct btrfs_device *device, u64 hole_start,
1020                                  u64 hole_end, u64 num_bytes)
1021 {
1022         struct btrfs_zoned_device_info *zinfo = device->zone_info;
1023         const u8 shift = zinfo->zone_size_shift;
1024         u64 nzones = num_bytes >> shift;
1025         u64 pos = hole_start;
1026         u64 begin, end;
1027         bool have_sb;
1028         int i;
1029
1030         ASSERT(IS_ALIGNED(hole_start, zinfo->zone_size));
1031         ASSERT(IS_ALIGNED(num_bytes, zinfo->zone_size));
1032
1033         while (pos < hole_end) {
1034                 begin = pos >> shift;
1035                 end = begin + nzones;
1036
1037                 if (end > zinfo->nr_zones)
1038                         return hole_end;
1039
1040                 /* Check if zones in the region are all empty */
1041                 if (btrfs_dev_is_sequential(device, pos) &&
1042                     find_next_zero_bit(zinfo->empty_zones, end, begin) != end) {
1043                         pos += zinfo->zone_size;
1044                         continue;
1045                 }
1046
1047                 have_sb = false;
1048                 for (i = 0; i < BTRFS_SUPER_MIRROR_MAX; i++) {
1049                         u32 sb_zone;
1050                         u64 sb_pos;
1051
1052                         sb_zone = sb_zone_number(shift, i);
1053                         if (!(end <= sb_zone ||
1054                               sb_zone + BTRFS_NR_SB_LOG_ZONES <= begin)) {
1055                                 have_sb = true;
1056                                 pos = zone_start_physical(
1057                                         sb_zone + BTRFS_NR_SB_LOG_ZONES, zinfo);
1058                                 break;
1059                         }
1060
1061                         /* We also need to exclude regular superblock positions */
1062                         sb_pos = btrfs_sb_offset(i);
1063                         if (!(pos + num_bytes <= sb_pos ||
1064                               sb_pos + BTRFS_SUPER_INFO_SIZE <= pos)) {
1065                                 have_sb = true;
1066                                 pos = ALIGN(sb_pos + BTRFS_SUPER_INFO_SIZE,
1067                                             zinfo->zone_size);
1068                                 break;
1069                         }
1070                 }
1071                 if (!have_sb)
1072                         break;
1073         }
1074
1075         return pos;
1076 }
1077
1078 static bool btrfs_dev_set_active_zone(struct btrfs_device *device, u64 pos)
1079 {
1080         struct btrfs_zoned_device_info *zone_info = device->zone_info;
1081         unsigned int zno = (pos >> zone_info->zone_size_shift);
1082
1083         /* We can use any number of zones */
1084         if (zone_info->max_active_zones == 0)
1085                 return true;
1086
1087         if (!test_bit(zno, zone_info->active_zones)) {
1088                 /* Active zone left? */
1089                 if (atomic_dec_if_positive(&zone_info->active_zones_left) < 0)
1090                         return false;
1091                 if (test_and_set_bit(zno, zone_info->active_zones)) {
1092                         /* Someone already set the bit */
1093                         atomic_inc(&zone_info->active_zones_left);
1094                 }
1095         }
1096
1097         return true;
1098 }
1099
1100 static void btrfs_dev_clear_active_zone(struct btrfs_device *device, u64 pos)
1101 {
1102         struct btrfs_zoned_device_info *zone_info = device->zone_info;
1103         unsigned int zno = (pos >> zone_info->zone_size_shift);
1104
1105         /* We can use any number of zones */
1106         if (zone_info->max_active_zones == 0)
1107                 return;
1108
1109         if (test_and_clear_bit(zno, zone_info->active_zones))
1110                 atomic_inc(&zone_info->active_zones_left);
1111 }
1112
1113 int btrfs_reset_device_zone(struct btrfs_device *device, u64 physical,
1114                             u64 length, u64 *bytes)
1115 {
1116         int ret;
1117
1118         *bytes = 0;
1119         ret = blkdev_zone_mgmt(device->bdev, REQ_OP_ZONE_RESET,
1120                                physical >> SECTOR_SHIFT, length >> SECTOR_SHIFT,
1121                                GFP_NOFS);
1122         if (ret)
1123                 return ret;
1124
1125         *bytes = length;
1126         while (length) {
1127                 btrfs_dev_set_zone_empty(device, physical);
1128                 btrfs_dev_clear_active_zone(device, physical);
1129                 physical += device->zone_info->zone_size;
1130                 length -= device->zone_info->zone_size;
1131         }
1132
1133         return 0;
1134 }
1135
1136 int btrfs_ensure_empty_zones(struct btrfs_device *device, u64 start, u64 size)
1137 {
1138         struct btrfs_zoned_device_info *zinfo = device->zone_info;
1139         const u8 shift = zinfo->zone_size_shift;
1140         unsigned long begin = start >> shift;
1141         unsigned long end = (start + size) >> shift;
1142         u64 pos;
1143         int ret;
1144
1145         ASSERT(IS_ALIGNED(start, zinfo->zone_size));
1146         ASSERT(IS_ALIGNED(size, zinfo->zone_size));
1147
1148         if (end > zinfo->nr_zones)
1149                 return -ERANGE;
1150
1151         /* All the zones are conventional */
1152         if (find_next_bit(zinfo->seq_zones, begin, end) == end)
1153                 return 0;
1154
1155         /* All the zones are sequential and empty */
1156         if (find_next_zero_bit(zinfo->seq_zones, begin, end) == end &&
1157             find_next_zero_bit(zinfo->empty_zones, begin, end) == end)
1158                 return 0;
1159
1160         for (pos = start; pos < start + size; pos += zinfo->zone_size) {
1161                 u64 reset_bytes;
1162
1163                 if (!btrfs_dev_is_sequential(device, pos) ||
1164                     btrfs_dev_is_empty_zone(device, pos))
1165                         continue;
1166
1167                 /* Free regions should be empty */
1168                 btrfs_warn_in_rcu(
1169                         device->fs_info,
1170                 "zoned: resetting device %s (devid %llu) zone %llu for allocation",
1171                         rcu_str_deref(device->name), device->devid, pos >> shift);
1172                 WARN_ON_ONCE(1);
1173
1174                 ret = btrfs_reset_device_zone(device, pos, zinfo->zone_size,
1175                                               &reset_bytes);
1176                 if (ret)
1177                         return ret;
1178         }
1179
1180         return 0;
1181 }
1182
1183 /*
1184  * Calculate an allocation pointer from the extent allocation information
1185  * for a block group consist of conventional zones. It is pointed to the
1186  * end of the highest addressed extent in the block group as an allocation
1187  * offset.
1188  */
1189 static int calculate_alloc_pointer(struct btrfs_block_group *cache,
1190                                    u64 *offset_ret, bool new)
1191 {
1192         struct btrfs_fs_info *fs_info = cache->fs_info;
1193         struct btrfs_root *root;
1194         struct btrfs_path *path;
1195         struct btrfs_key key;
1196         struct btrfs_key found_key;
1197         int ret;
1198         u64 length;
1199
1200         /*
1201          * Avoid  tree lookups for a new block group, there's no use for it.
1202          * It must always be 0.
1203          *
1204          * Also, we have a lock chain of extent buffer lock -> chunk mutex.
1205          * For new a block group, this function is called from
1206          * btrfs_make_block_group() which is already taking the chunk mutex.
1207          * Thus, we cannot call calculate_alloc_pointer() which takes extent
1208          * buffer locks to avoid deadlock.
1209          */
1210         if (new) {
1211                 *offset_ret = 0;
1212                 return 0;
1213         }
1214
1215         path = btrfs_alloc_path();
1216         if (!path)
1217                 return -ENOMEM;
1218
1219         key.objectid = cache->start + cache->length;
1220         key.type = 0;
1221         key.offset = 0;
1222
1223         root = btrfs_extent_root(fs_info, key.objectid);
1224         ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
1225         /* We should not find the exact match */
1226         if (!ret)
1227                 ret = -EUCLEAN;
1228         if (ret < 0)
1229                 goto out;
1230
1231         ret = btrfs_previous_extent_item(root, path, cache->start);
1232         if (ret) {
1233                 if (ret == 1) {
1234                         ret = 0;
1235                         *offset_ret = 0;
1236                 }
1237                 goto out;
1238         }
1239
1240         btrfs_item_key_to_cpu(path->nodes[0], &found_key, path->slots[0]);
1241
1242         if (found_key.type == BTRFS_EXTENT_ITEM_KEY)
1243                 length = found_key.offset;
1244         else
1245                 length = fs_info->nodesize;
1246
1247         if (!(found_key.objectid >= cache->start &&
1248                found_key.objectid + length <= cache->start + cache->length)) {
1249                 ret = -EUCLEAN;
1250                 goto out;
1251         }
1252         *offset_ret = found_key.objectid + length - cache->start;
1253         ret = 0;
1254
1255 out:
1256         btrfs_free_path(path);
1257         return ret;
1258 }
1259
1260 int btrfs_load_block_group_zone_info(struct btrfs_block_group *cache, bool new)
1261 {
1262         struct btrfs_fs_info *fs_info = cache->fs_info;
1263         struct extent_map_tree *em_tree = &fs_info->mapping_tree;
1264         struct extent_map *em;
1265         struct map_lookup *map;
1266         struct btrfs_device *device;
1267         u64 logical = cache->start;
1268         u64 length = cache->length;
1269         int ret;
1270         int i;
1271         unsigned int nofs_flag;
1272         u64 *alloc_offsets = NULL;
1273         u64 *caps = NULL;
1274         u64 *physical = NULL;
1275         unsigned long *active = NULL;
1276         u64 last_alloc = 0;
1277         u32 num_sequential = 0, num_conventional = 0;
1278
1279         if (!btrfs_is_zoned(fs_info))
1280                 return 0;
1281
1282         /* Sanity check */
1283         if (!IS_ALIGNED(length, fs_info->zone_size)) {
1284                 btrfs_err(fs_info,
1285                 "zoned: block group %llu len %llu unaligned to zone size %llu",
1286                           logical, length, fs_info->zone_size);
1287                 return -EIO;
1288         }
1289
1290         /* Get the chunk mapping */
1291         read_lock(&em_tree->lock);
1292         em = lookup_extent_mapping(em_tree, logical, length);
1293         read_unlock(&em_tree->lock);
1294
1295         if (!em)
1296                 return -EINVAL;
1297
1298         map = em->map_lookup;
1299
1300         cache->physical_map = kmemdup(map, map_lookup_size(map->num_stripes), GFP_NOFS);
1301         if (!cache->physical_map) {
1302                 ret = -ENOMEM;
1303                 goto out;
1304         }
1305
1306         alloc_offsets = kcalloc(map->num_stripes, sizeof(*alloc_offsets), GFP_NOFS);
1307         if (!alloc_offsets) {
1308                 ret = -ENOMEM;
1309                 goto out;
1310         }
1311
1312         caps = kcalloc(map->num_stripes, sizeof(*caps), GFP_NOFS);
1313         if (!caps) {
1314                 ret = -ENOMEM;
1315                 goto out;
1316         }
1317
1318         physical = kcalloc(map->num_stripes, sizeof(*physical), GFP_NOFS);
1319         if (!physical) {
1320                 ret = -ENOMEM;
1321                 goto out;
1322         }
1323
1324         active = bitmap_zalloc(map->num_stripes, GFP_NOFS);
1325         if (!active) {
1326                 ret = -ENOMEM;
1327                 goto out;
1328         }
1329
1330         for (i = 0; i < map->num_stripes; i++) {
1331                 bool is_sequential;
1332                 struct blk_zone zone;
1333                 struct btrfs_dev_replace *dev_replace = &fs_info->dev_replace;
1334                 int dev_replace_is_ongoing = 0;
1335
1336                 device = map->stripes[i].dev;
1337                 physical[i] = map->stripes[i].physical;
1338
1339                 if (device->bdev == NULL) {
1340                         alloc_offsets[i] = WP_MISSING_DEV;
1341                         continue;
1342                 }
1343
1344                 is_sequential = btrfs_dev_is_sequential(device, physical[i]);
1345                 if (is_sequential)
1346                         num_sequential++;
1347                 else
1348                         num_conventional++;
1349
1350                 /*
1351                  * Consider a zone as active if we can allow any number of
1352                  * active zones.
1353                  */
1354                 if (!device->zone_info->max_active_zones)
1355                         __set_bit(i, active);
1356
1357                 if (!is_sequential) {
1358                         alloc_offsets[i] = WP_CONVENTIONAL;
1359                         continue;
1360                 }
1361
1362                 /*
1363                  * This zone will be used for allocation, so mark this zone
1364                  * non-empty.
1365                  */
1366                 btrfs_dev_clear_zone_empty(device, physical[i]);
1367
1368                 down_read(&dev_replace->rwsem);
1369                 dev_replace_is_ongoing = btrfs_dev_replace_is_ongoing(dev_replace);
1370                 if (dev_replace_is_ongoing && dev_replace->tgtdev != NULL)
1371                         btrfs_dev_clear_zone_empty(dev_replace->tgtdev, physical[i]);
1372                 up_read(&dev_replace->rwsem);
1373
1374                 /*
1375                  * The group is mapped to a sequential zone. Get the zone write
1376                  * pointer to determine the allocation offset within the zone.
1377                  */
1378                 WARN_ON(!IS_ALIGNED(physical[i], fs_info->zone_size));
1379                 nofs_flag = memalloc_nofs_save();
1380                 ret = btrfs_get_dev_zone(device, physical[i], &zone);
1381                 memalloc_nofs_restore(nofs_flag);
1382                 if (ret == -EIO || ret == -EOPNOTSUPP) {
1383                         ret = 0;
1384                         alloc_offsets[i] = WP_MISSING_DEV;
1385                         continue;
1386                 } else if (ret) {
1387                         goto out;
1388                 }
1389
1390                 if (zone.type == BLK_ZONE_TYPE_CONVENTIONAL) {
1391                         btrfs_err_in_rcu(fs_info,
1392         "zoned: unexpected conventional zone %llu on device %s (devid %llu)",
1393                                 zone.start << SECTOR_SHIFT,
1394                                 rcu_str_deref(device->name), device->devid);
1395                         ret = -EIO;
1396                         goto out;
1397                 }
1398
1399                 caps[i] = (zone.capacity << SECTOR_SHIFT);
1400
1401                 switch (zone.cond) {
1402                 case BLK_ZONE_COND_OFFLINE:
1403                 case BLK_ZONE_COND_READONLY:
1404                         btrfs_err(fs_info,
1405                 "zoned: offline/readonly zone %llu on device %s (devid %llu)",
1406                                   physical[i] >> device->zone_info->zone_size_shift,
1407                                   rcu_str_deref(device->name), device->devid);
1408                         alloc_offsets[i] = WP_MISSING_DEV;
1409                         break;
1410                 case BLK_ZONE_COND_EMPTY:
1411                         alloc_offsets[i] = 0;
1412                         break;
1413                 case BLK_ZONE_COND_FULL:
1414                         alloc_offsets[i] = caps[i];
1415                         break;
1416                 default:
1417                         /* Partially used zone */
1418                         alloc_offsets[i] =
1419                                         ((zone.wp - zone.start) << SECTOR_SHIFT);
1420                         __set_bit(i, active);
1421                         break;
1422                 }
1423         }
1424
1425         if (num_sequential > 0)
1426                 cache->seq_zone = true;
1427
1428         if (num_conventional > 0) {
1429                 /* Zone capacity is always zone size in emulation */
1430                 cache->zone_capacity = cache->length;
1431                 ret = calculate_alloc_pointer(cache, &last_alloc, new);
1432                 if (ret) {
1433                         btrfs_err(fs_info,
1434                         "zoned: failed to determine allocation offset of bg %llu",
1435                                   cache->start);
1436                         goto out;
1437                 } else if (map->num_stripes == num_conventional) {
1438                         cache->alloc_offset = last_alloc;
1439                         cache->zone_is_active = 1;
1440                         goto out;
1441                 }
1442         }
1443
1444         switch (map->type & BTRFS_BLOCK_GROUP_PROFILE_MASK) {
1445         case 0: /* single */
1446                 if (alloc_offsets[0] == WP_MISSING_DEV) {
1447                         btrfs_err(fs_info,
1448                         "zoned: cannot recover write pointer for zone %llu",
1449                                 physical[0]);
1450                         ret = -EIO;
1451                         goto out;
1452                 }
1453                 cache->alloc_offset = alloc_offsets[0];
1454                 cache->zone_capacity = caps[0];
1455                 cache->zone_is_active = test_bit(0, active);
1456                 break;
1457         case BTRFS_BLOCK_GROUP_DUP:
1458                 if (map->type & BTRFS_BLOCK_GROUP_DATA) {
1459                         btrfs_err(fs_info, "zoned: profile DUP not yet supported on data bg");
1460                         ret = -EINVAL;
1461                         goto out;
1462                 }
1463                 if (alloc_offsets[0] == WP_MISSING_DEV) {
1464                         btrfs_err(fs_info,
1465                         "zoned: cannot recover write pointer for zone %llu",
1466                                 physical[0]);
1467                         ret = -EIO;
1468                         goto out;
1469                 }
1470                 if (alloc_offsets[1] == WP_MISSING_DEV) {
1471                         btrfs_err(fs_info,
1472                         "zoned: cannot recover write pointer for zone %llu",
1473                                 physical[1]);
1474                         ret = -EIO;
1475                         goto out;
1476                 }
1477                 if (alloc_offsets[0] != alloc_offsets[1]) {
1478                         btrfs_err(fs_info,
1479                         "zoned: write pointer offset mismatch of zones in DUP profile");
1480                         ret = -EIO;
1481                         goto out;
1482                 }
1483                 if (test_bit(0, active) != test_bit(1, active)) {
1484                         if (!btrfs_zone_activate(cache)) {
1485                                 ret = -EIO;
1486                                 goto out;
1487                         }
1488                 } else {
1489                         cache->zone_is_active = test_bit(0, active);
1490                 }
1491                 cache->alloc_offset = alloc_offsets[0];
1492                 cache->zone_capacity = min(caps[0], caps[1]);
1493                 break;
1494         case BTRFS_BLOCK_GROUP_RAID1:
1495         case BTRFS_BLOCK_GROUP_RAID0:
1496         case BTRFS_BLOCK_GROUP_RAID10:
1497         case BTRFS_BLOCK_GROUP_RAID5:
1498         case BTRFS_BLOCK_GROUP_RAID6:
1499                 /* non-single profiles are not supported yet */
1500         default:
1501                 btrfs_err(fs_info, "zoned: profile %s not yet supported",
1502                           btrfs_bg_type_to_raid_name(map->type));
1503                 ret = -EINVAL;
1504                 goto out;
1505         }
1506
1507 out:
1508         if (cache->alloc_offset > fs_info->zone_size) {
1509                 btrfs_err(fs_info,
1510                         "zoned: invalid write pointer %llu in block group %llu",
1511                         cache->alloc_offset, cache->start);
1512                 ret = -EIO;
1513         }
1514
1515         if (cache->alloc_offset > cache->zone_capacity) {
1516                 btrfs_err(fs_info,
1517 "zoned: invalid write pointer %llu (larger than zone capacity %llu) in block group %llu",
1518                           cache->alloc_offset, cache->zone_capacity,
1519                           cache->start);
1520                 ret = -EIO;
1521         }
1522
1523         /* An extent is allocated after the write pointer */
1524         if (!ret && num_conventional && last_alloc > cache->alloc_offset) {
1525                 btrfs_err(fs_info,
1526                           "zoned: got wrong write pointer in BG %llu: %llu > %llu",
1527                           logical, last_alloc, cache->alloc_offset);
1528                 ret = -EIO;
1529         }
1530
1531         if (!ret) {
1532                 cache->meta_write_pointer = cache->alloc_offset + cache->start;
1533                 if (cache->zone_is_active) {
1534                         btrfs_get_block_group(cache);
1535                         spin_lock(&fs_info->zone_active_bgs_lock);
1536                         list_add_tail(&cache->active_bg_list,
1537                                       &fs_info->zone_active_bgs);
1538                         spin_unlock(&fs_info->zone_active_bgs_lock);
1539                 }
1540         } else {
1541                 kfree(cache->physical_map);
1542                 cache->physical_map = NULL;
1543         }
1544         bitmap_free(active);
1545         kfree(physical);
1546         kfree(caps);
1547         kfree(alloc_offsets);
1548         free_extent_map(em);
1549
1550         return ret;
1551 }
1552
1553 void btrfs_calc_zone_unusable(struct btrfs_block_group *cache)
1554 {
1555         u64 unusable, free;
1556
1557         if (!btrfs_is_zoned(cache->fs_info))
1558                 return;
1559
1560         WARN_ON(cache->bytes_super != 0);
1561         unusable = (cache->alloc_offset - cache->used) +
1562                    (cache->length - cache->zone_capacity);
1563         free = cache->zone_capacity - cache->alloc_offset;
1564
1565         /* We only need ->free_space in ALLOC_SEQ block groups */
1566         cache->last_byte_to_unpin = (u64)-1;
1567         cache->cached = BTRFS_CACHE_FINISHED;
1568         cache->free_space_ctl->free_space = free;
1569         cache->zone_unusable = unusable;
1570 }
1571
1572 void btrfs_redirty_list_add(struct btrfs_transaction *trans,
1573                             struct extent_buffer *eb)
1574 {
1575         struct btrfs_fs_info *fs_info = eb->fs_info;
1576
1577         if (!btrfs_is_zoned(fs_info) ||
1578             btrfs_header_flag(eb, BTRFS_HEADER_FLAG_WRITTEN) ||
1579             !list_empty(&eb->release_list))
1580                 return;
1581
1582         set_extent_buffer_dirty(eb);
1583         set_extent_bits_nowait(&trans->dirty_pages, eb->start,
1584                                eb->start + eb->len - 1, EXTENT_DIRTY);
1585         memzero_extent_buffer(eb, 0, eb->len);
1586         set_bit(EXTENT_BUFFER_NO_CHECK, &eb->bflags);
1587
1588         spin_lock(&trans->releasing_ebs_lock);
1589         list_add_tail(&eb->release_list, &trans->releasing_ebs);
1590         spin_unlock(&trans->releasing_ebs_lock);
1591         atomic_inc(&eb->refs);
1592 }
1593
1594 void btrfs_free_redirty_list(struct btrfs_transaction *trans)
1595 {
1596         spin_lock(&trans->releasing_ebs_lock);
1597         while (!list_empty(&trans->releasing_ebs)) {
1598                 struct extent_buffer *eb;
1599
1600                 eb = list_first_entry(&trans->releasing_ebs,
1601                                       struct extent_buffer, release_list);
1602                 list_del_init(&eb->release_list);
1603                 free_extent_buffer(eb);
1604         }
1605         spin_unlock(&trans->releasing_ebs_lock);
1606 }
1607
1608 bool btrfs_use_zone_append(struct btrfs_inode *inode, u64 start)
1609 {
1610         struct btrfs_fs_info *fs_info = inode->root->fs_info;
1611         struct btrfs_block_group *cache;
1612         bool ret = false;
1613
1614         if (!btrfs_is_zoned(fs_info))
1615                 return false;
1616
1617         if (!is_data_inode(&inode->vfs_inode))
1618                 return false;
1619
1620         /*
1621          * Using REQ_OP_ZONE_APPNED for relocation can break assumptions on the
1622          * extent layout the relocation code has.
1623          * Furthermore we have set aside own block-group from which only the
1624          * relocation "process" can allocate and make sure only one process at a
1625          * time can add pages to an extent that gets relocated, so it's safe to
1626          * use regular REQ_OP_WRITE for this special case.
1627          */
1628         if (btrfs_is_data_reloc_root(inode->root))
1629                 return false;
1630
1631         cache = btrfs_lookup_block_group(fs_info, start);
1632         ASSERT(cache);
1633         if (!cache)
1634                 return false;
1635
1636         ret = cache->seq_zone;
1637         btrfs_put_block_group(cache);
1638
1639         return ret;
1640 }
1641
1642 void btrfs_record_physical_zoned(struct inode *inode, u64 file_offset,
1643                                  struct bio *bio)
1644 {
1645         struct btrfs_ordered_extent *ordered;
1646         const u64 physical = bio->bi_iter.bi_sector << SECTOR_SHIFT;
1647
1648         if (bio_op(bio) != REQ_OP_ZONE_APPEND)
1649                 return;
1650
1651         ordered = btrfs_lookup_ordered_extent(BTRFS_I(inode), file_offset);
1652         if (WARN_ON(!ordered))
1653                 return;
1654
1655         ordered->physical = physical;
1656         ordered->bdev = bio->bi_bdev;
1657
1658         btrfs_put_ordered_extent(ordered);
1659 }
1660
1661 void btrfs_rewrite_logical_zoned(struct btrfs_ordered_extent *ordered)
1662 {
1663         struct btrfs_inode *inode = BTRFS_I(ordered->inode);
1664         struct btrfs_fs_info *fs_info = inode->root->fs_info;
1665         struct extent_map_tree *em_tree;
1666         struct extent_map *em;
1667         struct btrfs_ordered_sum *sum;
1668         u64 orig_logical = ordered->disk_bytenr;
1669         u64 *logical = NULL;
1670         int nr, stripe_len;
1671
1672         /* Zoned devices should not have partitions. So, we can assume it is 0 */
1673         ASSERT(!bdev_is_partition(ordered->bdev));
1674         if (WARN_ON(!ordered->bdev))
1675                 return;
1676
1677         if (WARN_ON(btrfs_rmap_block(fs_info, orig_logical, ordered->bdev,
1678                                      ordered->physical, &logical, &nr,
1679                                      &stripe_len)))
1680                 goto out;
1681
1682         WARN_ON(nr != 1);
1683
1684         if (orig_logical == *logical)
1685                 goto out;
1686
1687         ordered->disk_bytenr = *logical;
1688
1689         em_tree = &inode->extent_tree;
1690         write_lock(&em_tree->lock);
1691         em = search_extent_mapping(em_tree, ordered->file_offset,
1692                                    ordered->num_bytes);
1693         em->block_start = *logical;
1694         free_extent_map(em);
1695         write_unlock(&em_tree->lock);
1696
1697         list_for_each_entry(sum, &ordered->list, list) {
1698                 if (*logical < orig_logical)
1699                         sum->bytenr -= orig_logical - *logical;
1700                 else
1701                         sum->bytenr += *logical - orig_logical;
1702         }
1703
1704 out:
1705         kfree(logical);
1706 }
1707
1708 bool btrfs_check_meta_write_pointer(struct btrfs_fs_info *fs_info,
1709                                     struct extent_buffer *eb,
1710                                     struct btrfs_block_group **cache_ret)
1711 {
1712         struct btrfs_block_group *cache;
1713         bool ret = true;
1714
1715         if (!btrfs_is_zoned(fs_info))
1716                 return true;
1717
1718         cache = btrfs_lookup_block_group(fs_info, eb->start);
1719         if (!cache)
1720                 return true;
1721
1722         if (cache->meta_write_pointer != eb->start) {
1723                 btrfs_put_block_group(cache);
1724                 cache = NULL;
1725                 ret = false;
1726         } else {
1727                 cache->meta_write_pointer = eb->start + eb->len;
1728         }
1729
1730         *cache_ret = cache;
1731
1732         return ret;
1733 }
1734
1735 void btrfs_revert_meta_write_pointer(struct btrfs_block_group *cache,
1736                                      struct extent_buffer *eb)
1737 {
1738         if (!btrfs_is_zoned(eb->fs_info) || !cache)
1739                 return;
1740
1741         ASSERT(cache->meta_write_pointer == eb->start + eb->len);
1742         cache->meta_write_pointer = eb->start;
1743 }
1744
1745 int btrfs_zoned_issue_zeroout(struct btrfs_device *device, u64 physical, u64 length)
1746 {
1747         if (!btrfs_dev_is_sequential(device, physical))
1748                 return -EOPNOTSUPP;
1749
1750         return blkdev_issue_zeroout(device->bdev, physical >> SECTOR_SHIFT,
1751                                     length >> SECTOR_SHIFT, GFP_NOFS, 0);
1752 }
1753
1754 static int read_zone_info(struct btrfs_fs_info *fs_info, u64 logical,
1755                           struct blk_zone *zone)
1756 {
1757         struct btrfs_io_context *bioc = NULL;
1758         u64 mapped_length = PAGE_SIZE;
1759         unsigned int nofs_flag;
1760         int nmirrors;
1761         int i, ret;
1762
1763         ret = btrfs_map_sblock(fs_info, BTRFS_MAP_GET_READ_MIRRORS, logical,
1764                                &mapped_length, &bioc);
1765         if (ret || !bioc || mapped_length < PAGE_SIZE) {
1766                 ret = -EIO;
1767                 goto out_put_bioc;
1768         }
1769
1770         if (bioc->map_type & BTRFS_BLOCK_GROUP_RAID56_MASK) {
1771                 ret = -EINVAL;
1772                 goto out_put_bioc;
1773         }
1774
1775         nofs_flag = memalloc_nofs_save();
1776         nmirrors = (int)bioc->num_stripes;
1777         for (i = 0; i < nmirrors; i++) {
1778                 u64 physical = bioc->stripes[i].physical;
1779                 struct btrfs_device *dev = bioc->stripes[i].dev;
1780
1781                 /* Missing device */
1782                 if (!dev->bdev)
1783                         continue;
1784
1785                 ret = btrfs_get_dev_zone(dev, physical, zone);
1786                 /* Failing device */
1787                 if (ret == -EIO || ret == -EOPNOTSUPP)
1788                         continue;
1789                 break;
1790         }
1791         memalloc_nofs_restore(nofs_flag);
1792 out_put_bioc:
1793         btrfs_put_bioc(bioc);
1794         return ret;
1795 }
1796
1797 /*
1798  * Synchronize write pointer in a zone at @physical_start on @tgt_dev, by
1799  * filling zeros between @physical_pos to a write pointer of dev-replace
1800  * source device.
1801  */
1802 int btrfs_sync_zone_write_pointer(struct btrfs_device *tgt_dev, u64 logical,
1803                                     u64 physical_start, u64 physical_pos)
1804 {
1805         struct btrfs_fs_info *fs_info = tgt_dev->fs_info;
1806         struct blk_zone zone;
1807         u64 length;
1808         u64 wp;
1809         int ret;
1810
1811         if (!btrfs_dev_is_sequential(tgt_dev, physical_pos))
1812                 return 0;
1813
1814         ret = read_zone_info(fs_info, logical, &zone);
1815         if (ret)
1816                 return ret;
1817
1818         wp = physical_start + ((zone.wp - zone.start) << SECTOR_SHIFT);
1819
1820         if (physical_pos == wp)
1821                 return 0;
1822
1823         if (physical_pos > wp)
1824                 return -EUCLEAN;
1825
1826         length = wp - physical_pos;
1827         return btrfs_zoned_issue_zeroout(tgt_dev, physical_pos, length);
1828 }
1829
1830 struct btrfs_device *btrfs_zoned_get_device(struct btrfs_fs_info *fs_info,
1831                                             u64 logical, u64 length)
1832 {
1833         struct btrfs_device *device;
1834         struct extent_map *em;
1835         struct map_lookup *map;
1836
1837         em = btrfs_get_chunk_map(fs_info, logical, length);
1838         if (IS_ERR(em))
1839                 return ERR_CAST(em);
1840
1841         map = em->map_lookup;
1842         /* We only support single profile for now */
1843         device = map->stripes[0].dev;
1844
1845         free_extent_map(em);
1846
1847         return device;
1848 }
1849
1850 /**
1851  * Activate block group and underlying device zones
1852  *
1853  * @block_group: the block group to activate
1854  *
1855  * Return: true on success, false otherwise
1856  */
1857 bool btrfs_zone_activate(struct btrfs_block_group *block_group)
1858 {
1859         struct btrfs_fs_info *fs_info = block_group->fs_info;
1860         struct btrfs_space_info *space_info = block_group->space_info;
1861         struct map_lookup *map;
1862         struct btrfs_device *device;
1863         u64 physical;
1864         bool ret;
1865         int i;
1866
1867         if (!btrfs_is_zoned(block_group->fs_info))
1868                 return true;
1869
1870         map = block_group->physical_map;
1871
1872         spin_lock(&space_info->lock);
1873         spin_lock(&block_group->lock);
1874         if (block_group->zone_is_active) {
1875                 ret = true;
1876                 goto out_unlock;
1877         }
1878
1879         /* No space left */
1880         if (btrfs_zoned_bg_is_full(block_group)) {
1881                 ret = false;
1882                 goto out_unlock;
1883         }
1884
1885         for (i = 0; i < map->num_stripes; i++) {
1886                 device = map->stripes[i].dev;
1887                 physical = map->stripes[i].physical;
1888
1889                 if (device->zone_info->max_active_zones == 0)
1890                         continue;
1891
1892                 if (!btrfs_dev_set_active_zone(device, physical)) {
1893                         /* Cannot activate the zone */
1894                         ret = false;
1895                         goto out_unlock;
1896                 }
1897         }
1898
1899         /* Successfully activated all the zones */
1900         block_group->zone_is_active = 1;
1901         space_info->active_total_bytes += block_group->length;
1902         spin_unlock(&block_group->lock);
1903         btrfs_try_granting_tickets(fs_info, space_info);
1904         spin_unlock(&space_info->lock);
1905
1906         /* For the active block group list */
1907         btrfs_get_block_group(block_group);
1908
1909         spin_lock(&fs_info->zone_active_bgs_lock);
1910         list_add_tail(&block_group->active_bg_list, &fs_info->zone_active_bgs);
1911         spin_unlock(&fs_info->zone_active_bgs_lock);
1912
1913         return true;
1914
1915 out_unlock:
1916         spin_unlock(&block_group->lock);
1917         spin_unlock(&space_info->lock);
1918         return ret;
1919 }
1920
1921 static void wait_eb_writebacks(struct btrfs_block_group *block_group)
1922 {
1923         struct btrfs_fs_info *fs_info = block_group->fs_info;
1924         const u64 end = block_group->start + block_group->length;
1925         struct radix_tree_iter iter;
1926         struct extent_buffer *eb;
1927         void __rcu **slot;
1928
1929         rcu_read_lock();
1930         radix_tree_for_each_slot(slot, &fs_info->buffer_radix, &iter,
1931                                  block_group->start >> fs_info->sectorsize_bits) {
1932                 eb = radix_tree_deref_slot(slot);
1933                 if (!eb)
1934                         continue;
1935                 if (radix_tree_deref_retry(eb)) {
1936                         slot = radix_tree_iter_retry(&iter);
1937                         continue;
1938                 }
1939
1940                 if (eb->start < block_group->start)
1941                         continue;
1942                 if (eb->start >= end)
1943                         break;
1944
1945                 slot = radix_tree_iter_resume(slot, &iter);
1946                 rcu_read_unlock();
1947                 wait_on_extent_buffer_writeback(eb);
1948                 rcu_read_lock();
1949         }
1950         rcu_read_unlock();
1951 }
1952
1953 static int do_zone_finish(struct btrfs_block_group *block_group, bool fully_written)
1954 {
1955         struct btrfs_fs_info *fs_info = block_group->fs_info;
1956         struct map_lookup *map;
1957         const bool is_metadata = (block_group->flags &
1958                         (BTRFS_BLOCK_GROUP_METADATA | BTRFS_BLOCK_GROUP_SYSTEM));
1959         int ret = 0;
1960         int i;
1961
1962         spin_lock(&block_group->lock);
1963         if (!block_group->zone_is_active) {
1964                 spin_unlock(&block_group->lock);
1965                 return 0;
1966         }
1967
1968         /* Check if we have unwritten allocated space */
1969         if (is_metadata &&
1970             block_group->start + block_group->alloc_offset > block_group->meta_write_pointer) {
1971                 spin_unlock(&block_group->lock);
1972                 return -EAGAIN;
1973         }
1974
1975         /*
1976          * If we are sure that the block group is full (= no more room left for
1977          * new allocation) and the IO for the last usable block is completed, we
1978          * don't need to wait for the other IOs. This holds because we ensure
1979          * the sequential IO submissions using the ZONE_APPEND command for data
1980          * and block_group->meta_write_pointer for metadata.
1981          */
1982         if (!fully_written) {
1983                 spin_unlock(&block_group->lock);
1984
1985                 ret = btrfs_inc_block_group_ro(block_group, false);
1986                 if (ret)
1987                         return ret;
1988
1989                 /* Ensure all writes in this block group finish */
1990                 btrfs_wait_block_group_reservations(block_group);
1991                 /* No need to wait for NOCOW writers. Zoned mode does not allow that */
1992                 btrfs_wait_ordered_roots(fs_info, U64_MAX, block_group->start,
1993                                          block_group->length);
1994                 /* Wait for extent buffers to be written. */
1995                 if (is_metadata)
1996                         wait_eb_writebacks(block_group);
1997
1998                 spin_lock(&block_group->lock);
1999
2000                 /*
2001                  * Bail out if someone already deactivated the block group, or
2002                  * allocated space is left in the block group.
2003                  */
2004                 if (!block_group->zone_is_active) {
2005                         spin_unlock(&block_group->lock);
2006                         btrfs_dec_block_group_ro(block_group);
2007                         return 0;
2008                 }
2009
2010                 if (block_group->reserved) {
2011                         spin_unlock(&block_group->lock);
2012                         btrfs_dec_block_group_ro(block_group);
2013                         return -EAGAIN;
2014                 }
2015         }
2016
2017         block_group->zone_is_active = 0;
2018         block_group->alloc_offset = block_group->zone_capacity;
2019         block_group->free_space_ctl->free_space = 0;
2020         btrfs_clear_treelog_bg(block_group);
2021         btrfs_clear_data_reloc_bg(block_group);
2022         spin_unlock(&block_group->lock);
2023
2024         map = block_group->physical_map;
2025         for (i = 0; i < map->num_stripes; i++) {
2026                 struct btrfs_device *device = map->stripes[i].dev;
2027                 const u64 physical = map->stripes[i].physical;
2028
2029                 if (device->zone_info->max_active_zones == 0)
2030                         continue;
2031
2032                 ret = blkdev_zone_mgmt(device->bdev, REQ_OP_ZONE_FINISH,
2033                                        physical >> SECTOR_SHIFT,
2034                                        device->zone_info->zone_size >> SECTOR_SHIFT,
2035                                        GFP_NOFS);
2036
2037                 if (ret)
2038                         return ret;
2039
2040                 btrfs_dev_clear_active_zone(device, physical);
2041         }
2042
2043         if (!fully_written)
2044                 btrfs_dec_block_group_ro(block_group);
2045
2046         spin_lock(&fs_info->zone_active_bgs_lock);
2047         ASSERT(!list_empty(&block_group->active_bg_list));
2048         list_del_init(&block_group->active_bg_list);
2049         spin_unlock(&fs_info->zone_active_bgs_lock);
2050
2051         /* For active_bg_list */
2052         btrfs_put_block_group(block_group);
2053
2054         clear_and_wake_up_bit(BTRFS_FS_NEED_ZONE_FINISH, &fs_info->flags);
2055
2056         return 0;
2057 }
2058
2059 int btrfs_zone_finish(struct btrfs_block_group *block_group)
2060 {
2061         if (!btrfs_is_zoned(block_group->fs_info))
2062                 return 0;
2063
2064         return do_zone_finish(block_group, false);
2065 }
2066
2067 bool btrfs_can_activate_zone(struct btrfs_fs_devices *fs_devices, u64 flags)
2068 {
2069         struct btrfs_fs_info *fs_info = fs_devices->fs_info;
2070         struct btrfs_device *device;
2071         bool ret = false;
2072
2073         if (!btrfs_is_zoned(fs_info))
2074                 return true;
2075
2076         /* Check if there is a device with active zones left */
2077         mutex_lock(&fs_info->chunk_mutex);
2078         list_for_each_entry(device, &fs_devices->alloc_list, dev_alloc_list) {
2079                 struct btrfs_zoned_device_info *zinfo = device->zone_info;
2080
2081                 if (!device->bdev)
2082                         continue;
2083
2084                 if (!zinfo->max_active_zones ||
2085                     atomic_read(&zinfo->active_zones_left)) {
2086                         ret = true;
2087                         break;
2088                 }
2089         }
2090         mutex_unlock(&fs_info->chunk_mutex);
2091
2092         if (!ret)
2093                 set_bit(BTRFS_FS_NEED_ZONE_FINISH, &fs_info->flags);
2094
2095         return ret;
2096 }
2097
2098 void btrfs_zone_finish_endio(struct btrfs_fs_info *fs_info, u64 logical, u64 length)
2099 {
2100         struct btrfs_block_group *block_group;
2101         u64 min_alloc_bytes;
2102
2103         if (!btrfs_is_zoned(fs_info))
2104                 return;
2105
2106         block_group = btrfs_lookup_block_group(fs_info, logical);
2107         ASSERT(block_group);
2108
2109         /* No MIXED_BG on zoned btrfs. */
2110         if (block_group->flags & BTRFS_BLOCK_GROUP_DATA)
2111                 min_alloc_bytes = fs_info->sectorsize;
2112         else
2113                 min_alloc_bytes = fs_info->nodesize;
2114
2115         /* Bail out if we can allocate more data from this block group. */
2116         if (logical + length + min_alloc_bytes <=
2117             block_group->start + block_group->zone_capacity)
2118                 goto out;
2119
2120         do_zone_finish(block_group, true);
2121
2122 out:
2123         btrfs_put_block_group(block_group);
2124 }
2125
2126 static void btrfs_zone_finish_endio_workfn(struct work_struct *work)
2127 {
2128         struct btrfs_block_group *bg =
2129                 container_of(work, struct btrfs_block_group, zone_finish_work);
2130
2131         wait_on_extent_buffer_writeback(bg->last_eb);
2132         free_extent_buffer(bg->last_eb);
2133         btrfs_zone_finish_endio(bg->fs_info, bg->start, bg->length);
2134         btrfs_put_block_group(bg);
2135 }
2136
2137 void btrfs_schedule_zone_finish_bg(struct btrfs_block_group *bg,
2138                                    struct extent_buffer *eb)
2139 {
2140         if (!bg->seq_zone || eb->start + eb->len * 2 <= bg->start + bg->zone_capacity)
2141                 return;
2142
2143         if (WARN_ON(bg->zone_finish_work.func == btrfs_zone_finish_endio_workfn)) {
2144                 btrfs_err(bg->fs_info, "double scheduling of bg %llu zone finishing",
2145                           bg->start);
2146                 return;
2147         }
2148
2149         /* For the work */
2150         btrfs_get_block_group(bg);
2151         atomic_inc(&eb->refs);
2152         bg->last_eb = eb;
2153         INIT_WORK(&bg->zone_finish_work, btrfs_zone_finish_endio_workfn);
2154         queue_work(system_unbound_wq, &bg->zone_finish_work);
2155 }
2156
2157 void btrfs_clear_data_reloc_bg(struct btrfs_block_group *bg)
2158 {
2159         struct btrfs_fs_info *fs_info = bg->fs_info;
2160
2161         spin_lock(&fs_info->relocation_bg_lock);
2162         if (fs_info->data_reloc_bg == bg->start)
2163                 fs_info->data_reloc_bg = 0;
2164         spin_unlock(&fs_info->relocation_bg_lock);
2165 }
2166
2167 void btrfs_free_zone_cache(struct btrfs_fs_info *fs_info)
2168 {
2169         struct btrfs_fs_devices *fs_devices = fs_info->fs_devices;
2170         struct btrfs_device *device;
2171
2172         if (!btrfs_is_zoned(fs_info))
2173                 return;
2174
2175         mutex_lock(&fs_devices->device_list_mutex);
2176         list_for_each_entry(device, &fs_devices->devices, dev_list) {
2177                 if (device->zone_info) {
2178                         vfree(device->zone_info->zone_cache);
2179                         device->zone_info->zone_cache = NULL;
2180                 }
2181         }
2182         mutex_unlock(&fs_devices->device_list_mutex);
2183 }
2184
2185 bool btrfs_zoned_should_reclaim(struct btrfs_fs_info *fs_info)
2186 {
2187         struct btrfs_fs_devices *fs_devices = fs_info->fs_devices;
2188         struct btrfs_device *device;
2189         u64 used = 0;
2190         u64 total = 0;
2191         u64 factor;
2192
2193         ASSERT(btrfs_is_zoned(fs_info));
2194
2195         if (fs_info->bg_reclaim_threshold == 0)
2196                 return false;
2197
2198         mutex_lock(&fs_devices->device_list_mutex);
2199         list_for_each_entry(device, &fs_devices->devices, dev_list) {
2200                 if (!device->bdev)
2201                         continue;
2202
2203                 total += device->disk_total_bytes;
2204                 used += device->bytes_used;
2205         }
2206         mutex_unlock(&fs_devices->device_list_mutex);
2207
2208         factor = div64_u64(used * 100, total);
2209         return factor >= fs_info->bg_reclaim_threshold;
2210 }
2211
2212 void btrfs_zoned_release_data_reloc_bg(struct btrfs_fs_info *fs_info, u64 logical,
2213                                        u64 length)
2214 {
2215         struct btrfs_block_group *block_group;
2216
2217         if (!btrfs_is_zoned(fs_info))
2218                 return;
2219
2220         block_group = btrfs_lookup_block_group(fs_info, logical);
2221         /* It should be called on a previous data relocation block group. */
2222         ASSERT(block_group && (block_group->flags & BTRFS_BLOCK_GROUP_DATA));
2223
2224         spin_lock(&block_group->lock);
2225         if (!block_group->zoned_data_reloc_ongoing)
2226                 goto out;
2227
2228         /* All relocation extents are written. */
2229         if (block_group->start + block_group->alloc_offset == logical + length) {
2230                 /* Now, release this block group for further allocations. */
2231                 block_group->zoned_data_reloc_ongoing = 0;
2232         }
2233
2234 out:
2235         spin_unlock(&block_group->lock);
2236         btrfs_put_block_group(block_group);
2237 }
2238
2239 int btrfs_zone_finish_one_bg(struct btrfs_fs_info *fs_info)
2240 {
2241         struct btrfs_block_group *block_group;
2242         struct btrfs_block_group *min_bg = NULL;
2243         u64 min_avail = U64_MAX;
2244         int ret;
2245
2246         spin_lock(&fs_info->zone_active_bgs_lock);
2247         list_for_each_entry(block_group, &fs_info->zone_active_bgs,
2248                             active_bg_list) {
2249                 u64 avail;
2250
2251                 spin_lock(&block_group->lock);
2252                 if (block_group->reserved ||
2253                     (block_group->flags & BTRFS_BLOCK_GROUP_SYSTEM)) {
2254                         spin_unlock(&block_group->lock);
2255                         continue;
2256                 }
2257
2258                 avail = block_group->zone_capacity - block_group->alloc_offset;
2259                 if (min_avail > avail) {
2260                         if (min_bg)
2261                                 btrfs_put_block_group(min_bg);
2262                         min_bg = block_group;
2263                         min_avail = avail;
2264                         btrfs_get_block_group(min_bg);
2265                 }
2266                 spin_unlock(&block_group->lock);
2267         }
2268         spin_unlock(&fs_info->zone_active_bgs_lock);
2269
2270         if (!min_bg)
2271                 return 0;
2272
2273         ret = btrfs_zone_finish(min_bg);
2274         btrfs_put_block_group(min_bg);
2275
2276         return ret < 0 ? ret : 1;
2277 }
2278
2279 int btrfs_zoned_activate_one_bg(struct btrfs_fs_info *fs_info,
2280                                 struct btrfs_space_info *space_info,
2281                                 bool do_finish)
2282 {
2283         struct btrfs_block_group *bg;
2284         int index;
2285
2286         if (!btrfs_is_zoned(fs_info) || (space_info->flags & BTRFS_BLOCK_GROUP_DATA))
2287                 return 0;
2288
2289         /* No more block groups to activate */
2290         if (space_info->active_total_bytes == space_info->total_bytes)
2291                 return 0;
2292
2293         for (;;) {
2294                 int ret;
2295                 bool need_finish = false;
2296
2297                 down_read(&space_info->groups_sem);
2298                 for (index = 0; index < BTRFS_NR_RAID_TYPES; index++) {
2299                         list_for_each_entry(bg, &space_info->block_groups[index],
2300                                             list) {
2301                                 if (!spin_trylock(&bg->lock))
2302                                         continue;
2303                                 if (btrfs_zoned_bg_is_full(bg) || bg->zone_is_active) {
2304                                         spin_unlock(&bg->lock);
2305                                         continue;
2306                                 }
2307                                 spin_unlock(&bg->lock);
2308
2309                                 if (btrfs_zone_activate(bg)) {
2310                                         up_read(&space_info->groups_sem);
2311                                         return 1;
2312                                 }
2313
2314                                 need_finish = true;
2315                         }
2316                 }
2317                 up_read(&space_info->groups_sem);
2318
2319                 if (!do_finish || !need_finish)
2320                         break;
2321
2322                 ret = btrfs_zone_finish_one_bg(fs_info);
2323                 if (ret == 0)
2324                         break;
2325                 if (ret < 0)
2326                         return ret;
2327         }
2328
2329         return 0;
2330 }