1 /* SPDX-License-Identifier: GPL-2.0 */
3 * Copyright (C) 2007 Oracle. All rights reserved.
6 #ifndef BTRFS_VOLUMES_H
7 #define BTRFS_VOLUMES_H
10 #include <linux/sort.h>
11 #include <linux/btrfs.h>
12 #include "async-thread.h"
14 #define BTRFS_MAX_DATA_CHUNK_SIZE (10ULL * SZ_1G)
16 extern struct mutex uuid_mutex;
18 #define BTRFS_STRIPE_LEN SZ_64K
21 struct btrfs_pending_bios {
27 * Use sequence counter to get consistent device stat data on
30 #if BITS_PER_LONG==32 && defined(CONFIG_SMP)
31 #include <linux/seqlock.h>
32 #define __BTRFS_NEED_DEVICE_DATA_ORDERED
33 #define btrfs_device_data_ordered_init(device) \
34 seqcount_init(&device->data_seqcount)
36 #define btrfs_device_data_ordered_init(device) do { } while (0)
39 #define BTRFS_DEV_STATE_WRITEABLE (0)
40 #define BTRFS_DEV_STATE_IN_FS_METADATA (1)
41 #define BTRFS_DEV_STATE_MISSING (2)
42 #define BTRFS_DEV_STATE_REPLACE_TGT (3)
43 #define BTRFS_DEV_STATE_FLUSH_SENT (4)
46 struct list_head dev_list;
47 struct list_head dev_alloc_list;
48 struct btrfs_fs_devices *fs_devices;
49 struct btrfs_fs_info *fs_info;
51 struct rcu_string *name;
55 spinlock_t io_lock ____cacheline_aligned;
57 /* When true means this device has pending chunk alloc in
58 * current transaction. Protected by chunk_mutex.
60 bool has_pending_chunks;
62 /* regular prio bios */
63 struct btrfs_pending_bios pending_bios;
65 struct btrfs_pending_bios pending_sync_bios;
67 struct block_device *bdev;
69 /* the mode sent to blkdev_get */
72 unsigned long dev_state;
73 blk_status_t last_flush_error;
76 #ifdef __BTRFS_NEED_DEVICE_DATA_ORDERED
77 seqcount_t data_seqcount;
80 /* the internal btrfs device id */
83 /* size of the device in memory */
86 /* size of the device on disk */
92 /* optimal io alignment for this device */
95 /* optimal io width for this device */
97 /* type and info about this device */
100 /* minimal io size for this device */
103 /* physical drive uuid (or lvm uuid) */
104 u8 uuid[BTRFS_UUID_SIZE];
107 * size of the device on the current transaction
109 * This variant is update when committing the transaction,
110 * and protected by device_list_mutex
112 u64 commit_total_bytes;
114 /* bytes used on the current transaction */
115 u64 commit_bytes_used;
117 * used to manage the device which is resized
119 * It is protected by chunk_lock.
121 struct list_head resized_list;
123 /* for sending down flush barriers */
124 struct bio *flush_bio;
125 struct completion flush_wait;
127 /* per-device scrub information */
128 struct scrub_ctx *scrub_ctx;
130 struct btrfs_work work;
133 /* readahead state */
134 atomic_t reada_in_flight;
136 struct reada_zone *reada_curr_zone;
137 struct radix_tree_root reada_zones;
138 struct radix_tree_root reada_extents;
140 /* disk I/O failure stats. For detailed description refer to
141 * enum btrfs_dev_stat_values in ioctl.h */
144 /* Counter to record the change of device stats */
145 atomic_t dev_stats_ccnt;
146 atomic_t dev_stat_values[BTRFS_DEV_STAT_VALUES_MAX];
150 * If we read those variants at the context of their own lock, we needn't
151 * use the following helpers, reading them directly is safe.
153 #if BITS_PER_LONG==32 && defined(CONFIG_SMP)
154 #define BTRFS_DEVICE_GETSET_FUNCS(name) \
156 btrfs_device_get_##name(const struct btrfs_device *dev) \
162 seq = read_seqcount_begin(&dev->data_seqcount); \
164 } while (read_seqcount_retry(&dev->data_seqcount, seq)); \
169 btrfs_device_set_##name(struct btrfs_device *dev, u64 size) \
172 write_seqcount_begin(&dev->data_seqcount); \
174 write_seqcount_end(&dev->data_seqcount); \
177 #elif BITS_PER_LONG==32 && defined(CONFIG_PREEMPT)
178 #define BTRFS_DEVICE_GETSET_FUNCS(name) \
180 btrfs_device_get_##name(const struct btrfs_device *dev) \
191 btrfs_device_set_##name(struct btrfs_device *dev, u64 size) \
198 #define BTRFS_DEVICE_GETSET_FUNCS(name) \
200 btrfs_device_get_##name(const struct btrfs_device *dev) \
206 btrfs_device_set_##name(struct btrfs_device *dev, u64 size) \
212 BTRFS_DEVICE_GETSET_FUNCS(total_bytes);
213 BTRFS_DEVICE_GETSET_FUNCS(disk_total_bytes);
214 BTRFS_DEVICE_GETSET_FUNCS(bytes_used);
216 struct btrfs_fs_devices {
217 u8 fsid[BTRFS_FSID_SIZE]; /* FS specific uuid */
218 struct list_head fs_list;
226 struct block_device *latest_bdev;
228 /* all of the devices in the FS, protected by a mutex
229 * so we can safely walk it to write out the supers without
230 * worrying about add/remove by the multi-device code.
231 * Scrubbing super can kick off supers writing by holding
234 struct mutex device_list_mutex;
235 struct list_head devices;
237 struct list_head resized_devices;
238 /* devices not currently being allocated */
239 struct list_head alloc_list;
241 struct btrfs_fs_devices *seed;
246 /* set when we find or add a device that doesn't have the
251 struct btrfs_fs_info *fs_info;
253 struct kobject fsid_kobj;
254 struct kobject *device_dir_kobj;
255 struct completion kobj_unregister;
258 #define BTRFS_BIO_INLINE_CSUM_SIZE 64
260 #define BTRFS_MAX_DEVS(info) ((BTRFS_MAX_ITEM_SIZE(info) \
261 - sizeof(struct btrfs_chunk)) \
262 / sizeof(struct btrfs_stripe) + 1)
264 #define BTRFS_MAX_DEVS_SYS_CHUNK ((BTRFS_SYSTEM_CHUNK_ARRAY_SIZE \
265 - 2 * sizeof(struct btrfs_disk_key) \
266 - 2 * sizeof(struct btrfs_chunk)) \
267 / sizeof(struct btrfs_stripe) + 1)
270 * we need the mirror number and stripe index to be passed around
271 * the call chain while we are processing end_io (especially errors).
272 * Really, what we need is a btrfs_bio structure that has this info
273 * and is properly sized with its stripe array, but we're not there
274 * quite yet. We have our own btrfs bioset, and all of the bios
275 * we allocate are actually btrfs_io_bios. We'll cram as much of
276 * struct btrfs_bio as we can into this over time.
278 typedef void (btrfs_io_bio_end_io_t) (struct btrfs_io_bio *bio, int err);
279 struct btrfs_io_bio {
280 unsigned int mirror_num;
281 unsigned int stripe_index;
284 u8 csum_inline[BTRFS_BIO_INLINE_CSUM_SIZE];
286 btrfs_io_bio_end_io_t *end_io;
287 struct bvec_iter iter;
289 * This member must come last, bio_alloc_bioset will allocate enough
290 * bytes for entire btrfs_io_bio but relies on bio being last.
295 static inline struct btrfs_io_bio *btrfs_io_bio(struct bio *bio)
297 return container_of(bio, struct btrfs_io_bio, bio);
300 struct btrfs_bio_stripe {
301 struct btrfs_device *dev;
303 u64 length; /* only used for discard mappings */
307 typedef void (btrfs_bio_end_io_t) (struct btrfs_bio *bio, int err);
311 atomic_t stripes_pending;
312 struct btrfs_fs_info *fs_info;
313 u64 map_type; /* get from map_lookup->type */
314 bio_end_io_t *end_io;
315 struct bio *orig_bio;
324 * logical block numbers for the start of each stripe
325 * The last one or two are p/q. These are sorted,
326 * so raid_map[0] is the start of our full stripe
329 struct btrfs_bio_stripe stripes[];
332 struct btrfs_device_info {
333 struct btrfs_device *dev;
339 struct btrfs_raid_attr {
340 int sub_stripes; /* sub_stripes info for map */
341 int dev_stripes; /* stripes per dev */
342 int devs_max; /* max devs to use */
343 int devs_min; /* min devs needed */
344 int tolerated_failures; /* max tolerated fail devs */
345 int devs_increment; /* ndevs has to be a multiple of this */
346 int ncopies; /* how many copies to data has */
347 int mindev_error; /* error code if min devs requisite is unmet */
348 const char raid_name[8]; /* name of the raid */
349 u64 bg_flag; /* block group flag of the raid */
352 extern const struct btrfs_raid_attr btrfs_raid_array[BTRFS_NR_RAID_TYPES];
361 int verified_stripes; /* For mount time dev extent verification */
362 struct btrfs_bio_stripe stripes[];
365 #define map_lookup_size(n) (sizeof(struct map_lookup) + \
366 (sizeof(struct btrfs_bio_stripe) * (n)))
368 struct btrfs_balance_args;
369 struct btrfs_balance_progress;
370 struct btrfs_balance_control {
371 struct btrfs_balance_args data;
372 struct btrfs_balance_args meta;
373 struct btrfs_balance_args sys;
377 struct btrfs_balance_progress stat;
384 BTRFS_MAP_GET_READ_MIRRORS,
387 static inline enum btrfs_map_op btrfs_op(struct bio *bio)
389 switch (bio_op(bio)) {
391 return BTRFS_MAP_DISCARD;
393 return BTRFS_MAP_WRITE;
397 return BTRFS_MAP_READ;
401 void btrfs_get_bbio(struct btrfs_bio *bbio);
402 void btrfs_put_bbio(struct btrfs_bio *bbio);
403 int btrfs_map_block(struct btrfs_fs_info *fs_info, enum btrfs_map_op op,
404 u64 logical, u64 *length,
405 struct btrfs_bio **bbio_ret, int mirror_num);
406 int btrfs_map_sblock(struct btrfs_fs_info *fs_info, enum btrfs_map_op op,
407 u64 logical, u64 *length,
408 struct btrfs_bio **bbio_ret);
409 int btrfs_rmap_block(struct btrfs_fs_info *fs_info, u64 chunk_start,
410 u64 physical, u64 **logical, int *naddrs, int *stripe_len);
411 int btrfs_read_sys_array(struct btrfs_fs_info *fs_info);
412 int btrfs_read_chunk_tree(struct btrfs_fs_info *fs_info);
413 int btrfs_alloc_chunk(struct btrfs_trans_handle *trans, u64 type);
414 void btrfs_mapping_init(struct btrfs_mapping_tree *tree);
415 void btrfs_mapping_tree_free(struct btrfs_mapping_tree *tree);
416 blk_status_t btrfs_map_bio(struct btrfs_fs_info *fs_info, struct bio *bio,
417 int mirror_num, int async_submit);
418 int btrfs_open_devices(struct btrfs_fs_devices *fs_devices,
419 fmode_t flags, void *holder);
420 struct btrfs_device *btrfs_scan_one_device(const char *path,
421 fmode_t flags, void *holder);
422 int btrfs_close_devices(struct btrfs_fs_devices *fs_devices);
423 void btrfs_free_extra_devids(struct btrfs_fs_devices *fs_devices, int step);
424 void btrfs_assign_next_active_device(struct btrfs_device *device,
425 struct btrfs_device *this_dev);
426 int btrfs_find_device_missing_or_by_path(struct btrfs_fs_info *fs_info,
427 const char *device_path,
428 struct btrfs_device **device);
429 int btrfs_find_device_by_devspec(struct btrfs_fs_info *fs_info, u64 devid,
431 struct btrfs_device **device);
432 struct btrfs_device *btrfs_alloc_device(struct btrfs_fs_info *fs_info,
435 void btrfs_free_device(struct btrfs_device *device);
436 int btrfs_rm_device(struct btrfs_fs_info *fs_info,
437 const char *device_path, u64 devid);
438 void __exit btrfs_cleanup_fs_uuids(void);
439 int btrfs_num_copies(struct btrfs_fs_info *fs_info, u64 logical, u64 len);
440 int btrfs_grow_device(struct btrfs_trans_handle *trans,
441 struct btrfs_device *device, u64 new_size);
442 struct btrfs_device *btrfs_find_device(struct btrfs_fs_devices *fs_devices,
443 u64 devid, u8 *uuid, u8 *fsid, bool seed);
444 int btrfs_shrink_device(struct btrfs_device *device, u64 new_size);
445 int btrfs_init_new_device(struct btrfs_fs_info *fs_info, const char *path);
446 int btrfs_balance(struct btrfs_fs_info *fs_info,
447 struct btrfs_balance_control *bctl,
448 struct btrfs_ioctl_balance_args *bargs);
449 int btrfs_resume_balance_async(struct btrfs_fs_info *fs_info);
450 int btrfs_recover_balance(struct btrfs_fs_info *fs_info);
451 int btrfs_pause_balance(struct btrfs_fs_info *fs_info);
452 int btrfs_cancel_balance(struct btrfs_fs_info *fs_info);
453 int btrfs_create_uuid_tree(struct btrfs_fs_info *fs_info);
454 int btrfs_check_uuid_tree(struct btrfs_fs_info *fs_info);
455 int btrfs_chunk_readonly(struct btrfs_fs_info *fs_info, u64 chunk_offset);
456 int find_free_dev_extent_start(struct btrfs_transaction *transaction,
457 struct btrfs_device *device, u64 num_bytes,
458 u64 search_start, u64 *start, u64 *max_avail);
459 int find_free_dev_extent(struct btrfs_trans_handle *trans,
460 struct btrfs_device *device, u64 num_bytes,
461 u64 *start, u64 *max_avail);
462 void btrfs_dev_stat_inc_and_print(struct btrfs_device *dev, int index);
463 int btrfs_get_dev_stats(struct btrfs_fs_info *fs_info,
464 struct btrfs_ioctl_get_dev_stats *stats);
465 void btrfs_init_devices_late(struct btrfs_fs_info *fs_info);
466 int btrfs_init_dev_stats(struct btrfs_fs_info *fs_info);
467 int btrfs_run_dev_stats(struct btrfs_trans_handle *trans,
468 struct btrfs_fs_info *fs_info);
469 void btrfs_rm_dev_replace_remove_srcdev(struct btrfs_device *srcdev);
470 void btrfs_rm_dev_replace_free_srcdev(struct btrfs_fs_info *fs_info,
471 struct btrfs_device *srcdev);
472 void btrfs_destroy_dev_replace_tgtdev(struct btrfs_device *tgtdev);
473 void btrfs_scratch_superblocks(struct block_device *bdev, const char *device_path);
474 int btrfs_is_parity_mirror(struct btrfs_fs_info *fs_info,
475 u64 logical, u64 len);
476 unsigned long btrfs_full_stripe_len(struct btrfs_fs_info *fs_info,
478 int btrfs_finish_chunk_alloc(struct btrfs_trans_handle *trans,
479 u64 chunk_offset, u64 chunk_size);
480 int btrfs_remove_chunk(struct btrfs_trans_handle *trans, u64 chunk_offset);
482 static inline void btrfs_dev_stat_inc(struct btrfs_device *dev,
485 atomic_inc(dev->dev_stat_values + index);
487 * This memory barrier orders stores updating statistics before stores
488 * updating dev_stats_ccnt.
490 * It pairs with smp_rmb() in btrfs_run_dev_stats().
492 smp_mb__before_atomic();
493 atomic_inc(&dev->dev_stats_ccnt);
496 static inline int btrfs_dev_stat_read(struct btrfs_device *dev,
499 return atomic_read(dev->dev_stat_values + index);
502 static inline int btrfs_dev_stat_read_and_reset(struct btrfs_device *dev,
507 ret = atomic_xchg(dev->dev_stat_values + index, 0);
509 * atomic_xchg implies a full memory barriers as per atomic_t.txt:
510 * - RMW operations that have a return value are fully ordered;
512 * This implicit memory barriers is paired with the smp_rmb in
513 * btrfs_run_dev_stats
515 atomic_inc(&dev->dev_stats_ccnt);
519 static inline void btrfs_dev_stat_set(struct btrfs_device *dev,
520 int index, unsigned long val)
522 atomic_set(dev->dev_stat_values + index, val);
524 * This memory barrier orders stores updating statistics before stores
525 * updating dev_stats_ccnt.
527 * It pairs with smp_rmb() in btrfs_run_dev_stats().
529 smp_mb__before_atomic();
530 atomic_inc(&dev->dev_stats_ccnt);
533 static inline void btrfs_dev_stat_reset(struct btrfs_device *dev,
536 btrfs_dev_stat_set(dev, index, 0);
540 * Convert block group flags (BTRFS_BLOCK_GROUP_*) to btrfs_raid_types, which
541 * can be used as index to access btrfs_raid_array[].
543 static inline enum btrfs_raid_types btrfs_bg_flags_to_raid_index(u64 flags)
545 if (flags & BTRFS_BLOCK_GROUP_RAID10)
546 return BTRFS_RAID_RAID10;
547 else if (flags & BTRFS_BLOCK_GROUP_RAID1)
548 return BTRFS_RAID_RAID1;
549 else if (flags & BTRFS_BLOCK_GROUP_DUP)
550 return BTRFS_RAID_DUP;
551 else if (flags & BTRFS_BLOCK_GROUP_RAID0)
552 return BTRFS_RAID_RAID0;
553 else if (flags & BTRFS_BLOCK_GROUP_RAID5)
554 return BTRFS_RAID_RAID5;
555 else if (flags & BTRFS_BLOCK_GROUP_RAID6)
556 return BTRFS_RAID_RAID6;
558 return BTRFS_RAID_SINGLE; /* BTRFS_BLOCK_GROUP_SINGLE */
561 const char *get_raid_name(enum btrfs_raid_types type);
563 void btrfs_update_commit_device_size(struct btrfs_fs_info *fs_info);
564 void btrfs_update_commit_device_bytes_used(struct btrfs_transaction *trans);
566 struct list_head *btrfs_get_fs_uuids(void);
567 void btrfs_set_fs_info_ptr(struct btrfs_fs_info *fs_info);
568 void btrfs_reset_fs_info_ptr(struct btrfs_fs_info *fs_info);
569 bool btrfs_check_rw_degradable(struct btrfs_fs_info *fs_info,
570 struct btrfs_device *failing_dev);
572 int btrfs_bg_type_to_factor(u64 flags);
573 int btrfs_verify_dev_extents(struct btrfs_fs_info *fs_info);