2 * Copyright (C) 2007 Oracle. All rights reserved.
4 * This program is free software; you can redistribute it and/or
5 * modify it under the terms of the GNU General Public
6 * License v2 as published by the Free Software Foundation.
8 * This program is distributed in the hope that it will be useful,
9 * but WITHOUT ANY WARRANTY; without even the implied warranty of
10 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
11 * General Public License for more details.
13 * You should have received a copy of the GNU General Public
14 * License along with this program; if not, write to the
15 * Free Software Foundation, Inc., 59 Temple Place - Suite 330,
16 * Boston, MA 021110-1307, USA.
18 #include <linux/sched.h>
19 #include <linux/bio.h>
20 #include <linux/slab.h>
21 #include <linux/buffer_head.h>
22 #include <linux/blkdev.h>
23 #include <linux/iocontext.h>
24 #include <linux/capability.h>
25 #include <linux/ratelimit.h>
26 #include <linux/kthread.h>
27 #include <linux/raid/pq.h>
28 #include <linux/semaphore.h>
29 #include <linux/uuid.h>
30 #include <asm/div64.h>
32 #include "extent_map.h"
34 #include "transaction.h"
35 #include "print-tree.h"
38 #include "async-thread.h"
39 #include "check-integrity.h"
40 #include "rcu-string.h"
42 #include "dev-replace.h"
45 const struct btrfs_raid_attr btrfs_raid_array[BTRFS_NR_RAID_TYPES] = {
46 [BTRFS_RAID_RAID10] = {
49 .devs_max = 0, /* 0 == as many as possible */
51 .tolerated_failures = 1,
55 [BTRFS_RAID_RAID1] = {
60 .tolerated_failures = 1,
69 .tolerated_failures = 0,
73 [BTRFS_RAID_RAID0] = {
78 .tolerated_failures = 0,
82 [BTRFS_RAID_SINGLE] = {
87 .tolerated_failures = 0,
91 [BTRFS_RAID_RAID5] = {
96 .tolerated_failures = 1,
100 [BTRFS_RAID_RAID6] = {
105 .tolerated_failures = 2,
111 const u64 btrfs_raid_group[BTRFS_NR_RAID_TYPES] = {
112 [BTRFS_RAID_RAID10] = BTRFS_BLOCK_GROUP_RAID10,
113 [BTRFS_RAID_RAID1] = BTRFS_BLOCK_GROUP_RAID1,
114 [BTRFS_RAID_DUP] = BTRFS_BLOCK_GROUP_DUP,
115 [BTRFS_RAID_RAID0] = BTRFS_BLOCK_GROUP_RAID0,
116 [BTRFS_RAID_SINGLE] = 0,
117 [BTRFS_RAID_RAID5] = BTRFS_BLOCK_GROUP_RAID5,
118 [BTRFS_RAID_RAID6] = BTRFS_BLOCK_GROUP_RAID6,
122 * Table to convert BTRFS_RAID_* to the error code if minimum number of devices
123 * condition is not met. Zero means there's no corresponding
124 * BTRFS_ERROR_DEV_*_NOT_MET value.
126 const int btrfs_raid_mindev_error[BTRFS_NR_RAID_TYPES] = {
127 [BTRFS_RAID_RAID10] = BTRFS_ERROR_DEV_RAID10_MIN_NOT_MET,
128 [BTRFS_RAID_RAID1] = BTRFS_ERROR_DEV_RAID1_MIN_NOT_MET,
129 [BTRFS_RAID_DUP] = 0,
130 [BTRFS_RAID_RAID0] = 0,
131 [BTRFS_RAID_SINGLE] = 0,
132 [BTRFS_RAID_RAID5] = BTRFS_ERROR_DEV_RAID5_MIN_NOT_MET,
133 [BTRFS_RAID_RAID6] = BTRFS_ERROR_DEV_RAID6_MIN_NOT_MET,
136 static int init_first_rw_device(struct btrfs_trans_handle *trans,
137 struct btrfs_root *root,
138 struct btrfs_device *device);
139 static int btrfs_relocate_sys_chunks(struct btrfs_root *root);
140 static void __btrfs_reset_dev_stats(struct btrfs_device *dev);
141 static void btrfs_dev_stat_print_on_error(struct btrfs_device *dev);
142 static void btrfs_dev_stat_print_on_load(struct btrfs_device *device);
144 DEFINE_MUTEX(uuid_mutex);
145 static LIST_HEAD(fs_uuids);
146 struct list_head *btrfs_get_fs_uuids(void)
151 static struct btrfs_fs_devices *__alloc_fs_devices(void)
153 struct btrfs_fs_devices *fs_devs;
155 fs_devs = kzalloc(sizeof(*fs_devs), GFP_KERNEL);
157 return ERR_PTR(-ENOMEM);
159 mutex_init(&fs_devs->device_list_mutex);
161 INIT_LIST_HEAD(&fs_devs->devices);
162 INIT_LIST_HEAD(&fs_devs->resized_devices);
163 INIT_LIST_HEAD(&fs_devs->alloc_list);
164 INIT_LIST_HEAD(&fs_devs->list);
170 * alloc_fs_devices - allocate struct btrfs_fs_devices
171 * @fsid: a pointer to UUID for this FS. If NULL a new UUID is
174 * Return: a pointer to a new &struct btrfs_fs_devices on success;
175 * ERR_PTR() on error. Returned struct is not linked onto any lists and
176 * can be destroyed with kfree() right away.
178 static struct btrfs_fs_devices *alloc_fs_devices(const u8 *fsid)
180 struct btrfs_fs_devices *fs_devs;
182 fs_devs = __alloc_fs_devices();
187 memcpy(fs_devs->fsid, fsid, BTRFS_FSID_SIZE);
189 generate_random_uuid(fs_devs->fsid);
194 static void free_fs_devices(struct btrfs_fs_devices *fs_devices)
196 struct btrfs_device *device;
197 WARN_ON(fs_devices->opened);
198 while (!list_empty(&fs_devices->devices)) {
199 device = list_entry(fs_devices->devices.next,
200 struct btrfs_device, dev_list);
201 list_del(&device->dev_list);
202 rcu_string_free(device->name);
208 static void btrfs_kobject_uevent(struct block_device *bdev,
209 enum kobject_action action)
213 ret = kobject_uevent(&disk_to_dev(bdev->bd_disk)->kobj, action);
215 pr_warn("BTRFS: Sending event '%d' to kobject: '%s' (%p): failed\n",
217 kobject_name(&disk_to_dev(bdev->bd_disk)->kobj),
218 &disk_to_dev(bdev->bd_disk)->kobj);
221 void btrfs_cleanup_fs_uuids(void)
223 struct btrfs_fs_devices *fs_devices;
225 while (!list_empty(&fs_uuids)) {
226 fs_devices = list_entry(fs_uuids.next,
227 struct btrfs_fs_devices, list);
228 list_del(&fs_devices->list);
229 free_fs_devices(fs_devices);
233 static struct btrfs_device *__alloc_device(void)
235 struct btrfs_device *dev;
237 dev = kzalloc(sizeof(*dev), GFP_KERNEL);
239 return ERR_PTR(-ENOMEM);
241 INIT_LIST_HEAD(&dev->dev_list);
242 INIT_LIST_HEAD(&dev->dev_alloc_list);
243 INIT_LIST_HEAD(&dev->resized_list);
245 spin_lock_init(&dev->io_lock);
247 spin_lock_init(&dev->reada_lock);
248 atomic_set(&dev->reada_in_flight, 0);
249 atomic_set(&dev->dev_stats_ccnt, 0);
250 btrfs_device_data_ordered_init(dev);
251 INIT_RADIX_TREE(&dev->reada_zones, GFP_NOFS & ~__GFP_DIRECT_RECLAIM);
252 INIT_RADIX_TREE(&dev->reada_extents, GFP_NOFS & ~__GFP_DIRECT_RECLAIM);
257 static noinline struct btrfs_device *__find_device(struct list_head *head,
260 struct btrfs_device *dev;
262 list_for_each_entry(dev, head, dev_list) {
263 if (dev->devid == devid &&
264 (!uuid || !memcmp(dev->uuid, uuid, BTRFS_UUID_SIZE))) {
271 static noinline struct btrfs_fs_devices *find_fsid(u8 *fsid)
273 struct btrfs_fs_devices *fs_devices;
275 list_for_each_entry(fs_devices, &fs_uuids, list) {
276 if (memcmp(fsid, fs_devices->fsid, BTRFS_FSID_SIZE) == 0)
283 btrfs_get_bdev_and_sb(const char *device_path, fmode_t flags, void *holder,
284 int flush, struct block_device **bdev,
285 struct buffer_head **bh)
289 *bdev = blkdev_get_by_path(device_path, flags, holder);
292 ret = PTR_ERR(*bdev);
297 filemap_write_and_wait((*bdev)->bd_inode->i_mapping);
298 ret = set_blocksize(*bdev, 4096);
300 blkdev_put(*bdev, flags);
303 invalidate_bdev(*bdev);
304 *bh = btrfs_read_dev_super(*bdev);
307 blkdev_put(*bdev, flags);
319 static void requeue_list(struct btrfs_pending_bios *pending_bios,
320 struct bio *head, struct bio *tail)
323 struct bio *old_head;
325 old_head = pending_bios->head;
326 pending_bios->head = head;
327 if (pending_bios->tail)
328 tail->bi_next = old_head;
330 pending_bios->tail = tail;
334 * we try to collect pending bios for a device so we don't get a large
335 * number of procs sending bios down to the same device. This greatly
336 * improves the schedulers ability to collect and merge the bios.
338 * But, it also turns into a long list of bios to process and that is sure
339 * to eventually make the worker thread block. The solution here is to
340 * make some progress and then put this work struct back at the end of
341 * the list if the block device is congested. This way, multiple devices
342 * can make progress from a single worker thread.
344 static noinline void run_scheduled_bios(struct btrfs_device *device)
347 struct backing_dev_info *bdi;
348 struct btrfs_fs_info *fs_info;
349 struct btrfs_pending_bios *pending_bios;
353 unsigned long num_run;
354 unsigned long batch_run = 0;
356 unsigned long last_waited = 0;
358 int sync_pending = 0;
359 struct blk_plug plug;
362 * this function runs all the bios we've collected for
363 * a particular device. We don't want to wander off to
364 * another device without first sending all of these down.
365 * So, setup a plug here and finish it off before we return
367 blk_start_plug(&plug);
369 bdi = blk_get_backing_dev_info(device->bdev);
370 fs_info = device->dev_root->fs_info;
371 limit = btrfs_async_submit_limit(fs_info);
372 limit = limit * 2 / 3;
375 spin_lock(&device->io_lock);
380 /* take all the bios off the list at once and process them
381 * later on (without the lock held). But, remember the
382 * tail and other pointers so the bios can be properly reinserted
383 * into the list if we hit congestion
385 if (!force_reg && device->pending_sync_bios.head) {
386 pending_bios = &device->pending_sync_bios;
389 pending_bios = &device->pending_bios;
393 pending = pending_bios->head;
394 tail = pending_bios->tail;
395 WARN_ON(pending && !tail);
398 * if pending was null this time around, no bios need processing
399 * at all and we can stop. Otherwise it'll loop back up again
400 * and do an additional check so no bios are missed.
402 * device->running_pending is used to synchronize with the
405 if (device->pending_sync_bios.head == NULL &&
406 device->pending_bios.head == NULL) {
408 device->running_pending = 0;
411 device->running_pending = 1;
414 pending_bios->head = NULL;
415 pending_bios->tail = NULL;
417 spin_unlock(&device->io_lock);
422 /* we want to work on both lists, but do more bios on the
423 * sync list than the regular list
426 pending_bios != &device->pending_sync_bios &&
427 device->pending_sync_bios.head) ||
428 (num_run > 64 && pending_bios == &device->pending_sync_bios &&
429 device->pending_bios.head)) {
430 spin_lock(&device->io_lock);
431 requeue_list(pending_bios, pending, tail);
436 pending = pending->bi_next;
440 * atomic_dec_return implies a barrier for waitqueue_active
442 if (atomic_dec_return(&fs_info->nr_async_bios) < limit &&
443 waitqueue_active(&fs_info->async_submit_wait))
444 wake_up(&fs_info->async_submit_wait);
446 BUG_ON(atomic_read(&cur->__bi_cnt) == 0);
449 * if we're doing the sync list, record that our
450 * plug has some sync requests on it
452 * If we're doing the regular list and there are
453 * sync requests sitting around, unplug before
456 if (pending_bios == &device->pending_sync_bios) {
458 } else if (sync_pending) {
459 blk_finish_plug(&plug);
460 blk_start_plug(&plug);
464 btrfsic_submit_bio(cur);
471 * we made progress, there is more work to do and the bdi
472 * is now congested. Back off and let other work structs
475 if (pending && bdi_write_congested(bdi) && batch_run > 8 &&
476 fs_info->fs_devices->open_devices > 1) {
477 struct io_context *ioc;
479 ioc = current->io_context;
482 * the main goal here is that we don't want to
483 * block if we're going to be able to submit
484 * more requests without blocking.
486 * This code does two great things, it pokes into
487 * the elevator code from a filesystem _and_
488 * it makes assumptions about how batching works.
490 if (ioc && ioc->nr_batch_requests > 0 &&
491 time_before(jiffies, ioc->last_waited + HZ/50UL) &&
493 ioc->last_waited == last_waited)) {
495 * we want to go through our batch of
496 * requests and stop. So, we copy out
497 * the ioc->last_waited time and test
498 * against it before looping
500 last_waited = ioc->last_waited;
504 spin_lock(&device->io_lock);
505 requeue_list(pending_bios, pending, tail);
506 device->running_pending = 1;
508 spin_unlock(&device->io_lock);
509 btrfs_queue_work(fs_info->submit_workers,
513 /* unplug every 64 requests just for good measure */
514 if (batch_run % 64 == 0) {
515 blk_finish_plug(&plug);
516 blk_start_plug(&plug);
525 spin_lock(&device->io_lock);
526 if (device->pending_bios.head || device->pending_sync_bios.head)
528 spin_unlock(&device->io_lock);
531 blk_finish_plug(&plug);
534 static void pending_bios_fn(struct btrfs_work *work)
536 struct btrfs_device *device;
538 device = container_of(work, struct btrfs_device, work);
539 run_scheduled_bios(device);
543 void btrfs_free_stale_device(struct btrfs_device *cur_dev)
545 struct btrfs_fs_devices *fs_devs;
546 struct btrfs_device *dev;
551 list_for_each_entry(fs_devs, &fs_uuids, list) {
556 if (fs_devs->seeding)
559 list_for_each_entry(dev, &fs_devs->devices, dev_list) {
567 * Todo: This won't be enough. What if the same device
568 * comes back (with new uuid and) with its mapper path?
569 * But for now, this does help as mostly an admin will
570 * either use mapper or non mapper path throughout.
573 del = strcmp(rcu_str_deref(dev->name),
574 rcu_str_deref(cur_dev->name));
581 /* delete the stale device */
582 if (fs_devs->num_devices == 1) {
583 btrfs_sysfs_remove_fsid(fs_devs);
584 list_del(&fs_devs->list);
585 free_fs_devices(fs_devs);
588 fs_devs->num_devices--;
589 list_del(&dev->dev_list);
590 rcu_string_free(dev->name);
599 * Add new device to list of registered devices
602 * 1 - first time device is seen
603 * 0 - device already known
606 static noinline int device_list_add(const char *path,
607 struct btrfs_super_block *disk_super,
608 u64 devid, struct btrfs_fs_devices **fs_devices_ret)
610 struct btrfs_device *device;
611 struct btrfs_fs_devices *fs_devices;
612 struct rcu_string *name;
614 u64 found_transid = btrfs_super_generation(disk_super);
616 fs_devices = find_fsid(disk_super->fsid);
618 fs_devices = alloc_fs_devices(disk_super->fsid);
619 if (IS_ERR(fs_devices))
620 return PTR_ERR(fs_devices);
622 list_add(&fs_devices->list, &fs_uuids);
626 device = __find_device(&fs_devices->devices, devid,
627 disk_super->dev_item.uuid);
631 if (fs_devices->opened)
634 device = btrfs_alloc_device(NULL, &devid,
635 disk_super->dev_item.uuid);
636 if (IS_ERR(device)) {
637 /* we can safely leave the fs_devices entry around */
638 return PTR_ERR(device);
641 name = rcu_string_strdup(path, GFP_NOFS);
646 rcu_assign_pointer(device->name, name);
648 mutex_lock(&fs_devices->device_list_mutex);
649 list_add_rcu(&device->dev_list, &fs_devices->devices);
650 fs_devices->num_devices++;
651 mutex_unlock(&fs_devices->device_list_mutex);
654 device->fs_devices = fs_devices;
655 } else if (!device->name || strcmp(device->name->str, path)) {
657 * When FS is already mounted.
658 * 1. If you are here and if the device->name is NULL that
659 * means this device was missing at time of FS mount.
660 * 2. If you are here and if the device->name is different
661 * from 'path' that means either
662 * a. The same device disappeared and reappeared with
664 * b. The missing-disk-which-was-replaced, has
667 * We must allow 1 and 2a above. But 2b would be a spurious
670 * Further in case of 1 and 2a above, the disk at 'path'
671 * would have missed some transaction when it was away and
672 * in case of 2a the stale bdev has to be updated as well.
673 * 2b must not be allowed at all time.
677 * For now, we do allow update to btrfs_fs_device through the
678 * btrfs dev scan cli after FS has been mounted. We're still
679 * tracking a problem where systems fail mount by subvolume id
680 * when we reject replacement on a mounted FS.
682 if (!fs_devices->opened && found_transid < device->generation) {
684 * That is if the FS is _not_ mounted and if you
685 * are here, that means there is more than one
686 * disk with same uuid and devid.We keep the one
687 * with larger generation number or the last-in if
688 * generation are equal.
693 name = rcu_string_strdup(path, GFP_NOFS);
696 rcu_string_free(device->name);
697 rcu_assign_pointer(device->name, name);
698 if (device->missing) {
699 fs_devices->missing_devices--;
705 * Unmount does not free the btrfs_device struct but would zero
706 * generation along with most of the other members. So just update
707 * it back. We need it to pick the disk with largest generation
710 if (!fs_devices->opened)
711 device->generation = found_transid;
714 * if there is new btrfs on an already registered device,
715 * then remove the stale device entry.
718 btrfs_free_stale_device(device);
720 *fs_devices_ret = fs_devices;
725 static struct btrfs_fs_devices *clone_fs_devices(struct btrfs_fs_devices *orig)
727 struct btrfs_fs_devices *fs_devices;
728 struct btrfs_device *device;
729 struct btrfs_device *orig_dev;
731 fs_devices = alloc_fs_devices(orig->fsid);
732 if (IS_ERR(fs_devices))
735 mutex_lock(&orig->device_list_mutex);
736 fs_devices->total_devices = orig->total_devices;
738 /* We have held the volume lock, it is safe to get the devices. */
739 list_for_each_entry(orig_dev, &orig->devices, dev_list) {
740 struct rcu_string *name;
742 device = btrfs_alloc_device(NULL, &orig_dev->devid,
748 * This is ok to do without rcu read locked because we hold the
749 * uuid mutex so nothing we touch in here is going to disappear.
751 if (orig_dev->name) {
752 name = rcu_string_strdup(orig_dev->name->str,
758 rcu_assign_pointer(device->name, name);
761 list_add(&device->dev_list, &fs_devices->devices);
762 device->fs_devices = fs_devices;
763 fs_devices->num_devices++;
765 mutex_unlock(&orig->device_list_mutex);
768 mutex_unlock(&orig->device_list_mutex);
769 free_fs_devices(fs_devices);
770 return ERR_PTR(-ENOMEM);
773 void btrfs_close_extra_devices(struct btrfs_fs_devices *fs_devices, int step)
775 struct btrfs_device *device, *next;
776 struct btrfs_device *latest_dev = NULL;
778 mutex_lock(&uuid_mutex);
780 /* This is the initialized path, it is safe to release the devices. */
781 list_for_each_entry_safe(device, next, &fs_devices->devices, dev_list) {
782 if (device->in_fs_metadata) {
783 if (!device->is_tgtdev_for_dev_replace &&
785 device->generation > latest_dev->generation)) {
791 if (device->devid == BTRFS_DEV_REPLACE_DEVID) {
793 * In the first step, keep the device which has
794 * the correct fsid and the devid that is used
795 * for the dev_replace procedure.
796 * In the second step, the dev_replace state is
797 * read from the device tree and it is known
798 * whether the procedure is really active or
799 * not, which means whether this device is
800 * used or whether it should be removed.
802 if (step == 0 || device->is_tgtdev_for_dev_replace) {
807 blkdev_put(device->bdev, device->mode);
809 fs_devices->open_devices--;
811 if (device->writeable) {
812 list_del_init(&device->dev_alloc_list);
813 device->writeable = 0;
814 if (!device->is_tgtdev_for_dev_replace)
815 fs_devices->rw_devices--;
817 list_del_init(&device->dev_list);
818 fs_devices->num_devices--;
819 rcu_string_free(device->name);
823 if (fs_devices->seed) {
824 fs_devices = fs_devices->seed;
828 fs_devices->latest_bdev = latest_dev->bdev;
830 mutex_unlock(&uuid_mutex);
833 static void __free_device(struct work_struct *work)
835 struct btrfs_device *device;
837 device = container_of(work, struct btrfs_device, rcu_work);
838 rcu_string_free(device->name);
842 static void free_device(struct rcu_head *head)
844 struct btrfs_device *device;
846 device = container_of(head, struct btrfs_device, rcu);
848 INIT_WORK(&device->rcu_work, __free_device);
849 schedule_work(&device->rcu_work);
852 static void btrfs_close_bdev(struct btrfs_device *device)
854 if (device->bdev && device->writeable) {
855 sync_blockdev(device->bdev);
856 invalidate_bdev(device->bdev);
860 blkdev_put(device->bdev, device->mode);
863 static void btrfs_prepare_close_one_device(struct btrfs_device *device)
865 struct btrfs_fs_devices *fs_devices = device->fs_devices;
866 struct btrfs_device *new_device;
867 struct rcu_string *name;
870 fs_devices->open_devices--;
872 if (device->writeable &&
873 device->devid != BTRFS_DEV_REPLACE_DEVID) {
874 list_del_init(&device->dev_alloc_list);
875 fs_devices->rw_devices--;
879 fs_devices->missing_devices--;
881 new_device = btrfs_alloc_device(NULL, &device->devid,
883 BUG_ON(IS_ERR(new_device)); /* -ENOMEM */
885 /* Safe because we are under uuid_mutex */
887 name = rcu_string_strdup(device->name->str, GFP_NOFS);
888 BUG_ON(!name); /* -ENOMEM */
889 rcu_assign_pointer(new_device->name, name);
892 list_replace_rcu(&device->dev_list, &new_device->dev_list);
893 new_device->fs_devices = device->fs_devices;
896 static int __btrfs_close_devices(struct btrfs_fs_devices *fs_devices)
898 struct btrfs_device *device, *tmp;
899 struct list_head pending_put;
901 INIT_LIST_HEAD(&pending_put);
903 if (--fs_devices->opened > 0)
906 mutex_lock(&fs_devices->device_list_mutex);
907 list_for_each_entry_safe(device, tmp, &fs_devices->devices, dev_list) {
908 btrfs_prepare_close_one_device(device);
909 list_add(&device->dev_list, &pending_put);
911 mutex_unlock(&fs_devices->device_list_mutex);
914 * btrfs_show_devname() is using the device_list_mutex,
915 * sometimes call to blkdev_put() leads vfs calling
916 * into this func. So do put outside of device_list_mutex,
919 while (!list_empty(&pending_put)) {
920 device = list_first_entry(&pending_put,
921 struct btrfs_device, dev_list);
922 list_del(&device->dev_list);
923 btrfs_close_bdev(device);
924 call_rcu(&device->rcu, free_device);
927 WARN_ON(fs_devices->open_devices);
928 WARN_ON(fs_devices->rw_devices);
929 fs_devices->opened = 0;
930 fs_devices->seeding = 0;
935 int btrfs_close_devices(struct btrfs_fs_devices *fs_devices)
937 struct btrfs_fs_devices *seed_devices = NULL;
940 mutex_lock(&uuid_mutex);
941 ret = __btrfs_close_devices(fs_devices);
942 if (!fs_devices->opened) {
943 seed_devices = fs_devices->seed;
944 fs_devices->seed = NULL;
946 mutex_unlock(&uuid_mutex);
948 while (seed_devices) {
949 fs_devices = seed_devices;
950 seed_devices = fs_devices->seed;
951 __btrfs_close_devices(fs_devices);
952 free_fs_devices(fs_devices);
955 * Wait for rcu kworkers under __btrfs_close_devices
956 * to finish all blkdev_puts so device is really
957 * free when umount is done.
963 static int __btrfs_open_devices(struct btrfs_fs_devices *fs_devices,
964 fmode_t flags, void *holder)
966 struct request_queue *q;
967 struct block_device *bdev;
968 struct list_head *head = &fs_devices->devices;
969 struct btrfs_device *device;
970 struct btrfs_device *latest_dev = NULL;
971 struct buffer_head *bh;
972 struct btrfs_super_block *disk_super;
979 list_for_each_entry(device, head, dev_list) {
985 /* Just open everything we can; ignore failures here */
986 if (btrfs_get_bdev_and_sb(device->name->str, flags, holder, 1,
990 disk_super = (struct btrfs_super_block *)bh->b_data;
991 devid = btrfs_stack_device_id(&disk_super->dev_item);
992 if (devid != device->devid)
995 if (memcmp(device->uuid, disk_super->dev_item.uuid,
999 device->generation = btrfs_super_generation(disk_super);
1001 device->generation > latest_dev->generation)
1002 latest_dev = device;
1004 if (btrfs_super_flags(disk_super) & BTRFS_SUPER_FLAG_SEEDING) {
1005 device->writeable = 0;
1007 device->writeable = !bdev_read_only(bdev);
1011 q = bdev_get_queue(bdev);
1012 if (blk_queue_discard(q))
1013 device->can_discard = 1;
1015 device->bdev = bdev;
1016 device->in_fs_metadata = 0;
1017 device->mode = flags;
1019 if (!blk_queue_nonrot(bdev_get_queue(bdev)))
1020 fs_devices->rotating = 1;
1022 fs_devices->open_devices++;
1023 if (device->writeable &&
1024 device->devid != BTRFS_DEV_REPLACE_DEVID) {
1025 fs_devices->rw_devices++;
1026 list_add(&device->dev_alloc_list,
1027 &fs_devices->alloc_list);
1034 blkdev_put(bdev, flags);
1037 if (fs_devices->open_devices == 0) {
1041 fs_devices->seeding = seeding;
1042 fs_devices->opened = 1;
1043 fs_devices->latest_bdev = latest_dev->bdev;
1044 fs_devices->total_rw_bytes = 0;
1049 int btrfs_open_devices(struct btrfs_fs_devices *fs_devices,
1050 fmode_t flags, void *holder)
1054 mutex_lock(&uuid_mutex);
1055 if (fs_devices->opened) {
1056 fs_devices->opened++;
1059 ret = __btrfs_open_devices(fs_devices, flags, holder);
1061 mutex_unlock(&uuid_mutex);
1065 void btrfs_release_disk_super(struct page *page)
1071 int btrfs_read_disk_super(struct block_device *bdev, u64 bytenr,
1072 struct page **page, struct btrfs_super_block **disk_super)
1077 /* make sure our super fits in the device */
1078 if (bytenr + PAGE_SIZE >= i_size_read(bdev->bd_inode))
1081 /* make sure our super fits in the page */
1082 if (sizeof(**disk_super) > PAGE_SIZE)
1085 /* make sure our super doesn't straddle pages on disk */
1086 index = bytenr >> PAGE_SHIFT;
1087 if ((bytenr + sizeof(**disk_super) - 1) >> PAGE_SHIFT != index)
1090 /* pull in the page with our super */
1091 *page = read_cache_page_gfp(bdev->bd_inode->i_mapping,
1094 if (IS_ERR_OR_NULL(*page))
1099 /* align our pointer to the offset of the super block */
1100 *disk_super = p + (bytenr & ~PAGE_MASK);
1102 if (btrfs_super_bytenr(*disk_super) != bytenr ||
1103 btrfs_super_magic(*disk_super) != BTRFS_MAGIC) {
1104 btrfs_release_disk_super(*page);
1108 if ((*disk_super)->label[0] &&
1109 (*disk_super)->label[BTRFS_LABEL_SIZE - 1])
1110 (*disk_super)->label[BTRFS_LABEL_SIZE - 1] = '\0';
1116 * Look for a btrfs signature on a device. This may be called out of the mount path
1117 * and we are not allowed to call set_blocksize during the scan. The superblock
1118 * is read via pagecache
1120 int btrfs_scan_one_device(const char *path, fmode_t flags, void *holder,
1121 struct btrfs_fs_devices **fs_devices_ret)
1123 struct btrfs_super_block *disk_super;
1124 struct block_device *bdev;
1133 * we would like to check all the supers, but that would make
1134 * a btrfs mount succeed after a mkfs from a different FS.
1135 * So, we need to add a special mount option to scan for
1136 * later supers, using BTRFS_SUPER_MIRROR_MAX instead
1138 bytenr = btrfs_sb_offset(0);
1139 flags |= FMODE_EXCL;
1140 mutex_lock(&uuid_mutex);
1142 bdev = blkdev_get_by_path(path, flags, holder);
1144 ret = PTR_ERR(bdev);
1148 if (btrfs_read_disk_super(bdev, bytenr, &page, &disk_super))
1149 goto error_bdev_put;
1151 devid = btrfs_stack_device_id(&disk_super->dev_item);
1152 transid = btrfs_super_generation(disk_super);
1153 total_devices = btrfs_super_num_devices(disk_super);
1155 ret = device_list_add(path, disk_super, devid, fs_devices_ret);
1157 if (disk_super->label[0]) {
1158 pr_info("BTRFS: device label %s ", disk_super->label);
1160 pr_info("BTRFS: device fsid %pU ", disk_super->fsid);
1163 pr_cont("devid %llu transid %llu %s\n", devid, transid, path);
1166 if (!ret && fs_devices_ret)
1167 (*fs_devices_ret)->total_devices = total_devices;
1169 btrfs_release_disk_super(page);
1172 blkdev_put(bdev, flags);
1174 mutex_unlock(&uuid_mutex);
1178 /* helper to account the used device space in the range */
1179 int btrfs_account_dev_extents_size(struct btrfs_device *device, u64 start,
1180 u64 end, u64 *length)
1182 struct btrfs_key key;
1183 struct btrfs_root *root = device->dev_root;
1184 struct btrfs_dev_extent *dev_extent;
1185 struct btrfs_path *path;
1189 struct extent_buffer *l;
1193 if (start >= device->total_bytes || device->is_tgtdev_for_dev_replace)
1196 path = btrfs_alloc_path();
1199 path->reada = READA_FORWARD;
1201 key.objectid = device->devid;
1203 key.type = BTRFS_DEV_EXTENT_KEY;
1205 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
1209 ret = btrfs_previous_item(root, path, key.objectid, key.type);
1216 slot = path->slots[0];
1217 if (slot >= btrfs_header_nritems(l)) {
1218 ret = btrfs_next_leaf(root, path);
1226 btrfs_item_key_to_cpu(l, &key, slot);
1228 if (key.objectid < device->devid)
1231 if (key.objectid > device->devid)
1234 if (key.type != BTRFS_DEV_EXTENT_KEY)
1237 dev_extent = btrfs_item_ptr(l, slot, struct btrfs_dev_extent);
1238 extent_end = key.offset + btrfs_dev_extent_length(l,
1240 if (key.offset <= start && extent_end > end) {
1241 *length = end - start + 1;
1243 } else if (key.offset <= start && extent_end > start)
1244 *length += extent_end - start;
1245 else if (key.offset > start && extent_end <= end)
1246 *length += extent_end - key.offset;
1247 else if (key.offset > start && key.offset <= end) {
1248 *length += end - key.offset + 1;
1250 } else if (key.offset > end)
1258 btrfs_free_path(path);
1262 static int contains_pending_extent(struct btrfs_transaction *transaction,
1263 struct btrfs_device *device,
1264 u64 *start, u64 len)
1266 struct btrfs_fs_info *fs_info = device->dev_root->fs_info;
1267 struct extent_map *em;
1268 struct list_head *search_list = &fs_info->pinned_chunks;
1270 u64 physical_start = *start;
1273 search_list = &transaction->pending_chunks;
1275 list_for_each_entry(em, search_list, list) {
1276 struct map_lookup *map;
1279 map = em->map_lookup;
1280 for (i = 0; i < map->num_stripes; i++) {
1283 if (map->stripes[i].dev != device)
1285 if (map->stripes[i].physical >= physical_start + len ||
1286 map->stripes[i].physical + em->orig_block_len <=
1290 * Make sure that while processing the pinned list we do
1291 * not override our *start with a lower value, because
1292 * we can have pinned chunks that fall within this
1293 * device hole and that have lower physical addresses
1294 * than the pending chunks we processed before. If we
1295 * do not take this special care we can end up getting
1296 * 2 pending chunks that start at the same physical
1297 * device offsets because the end offset of a pinned
1298 * chunk can be equal to the start offset of some
1301 end = map->stripes[i].physical + em->orig_block_len;
1308 if (search_list != &fs_info->pinned_chunks) {
1309 search_list = &fs_info->pinned_chunks;
1318 * find_free_dev_extent_start - find free space in the specified device
1319 * @device: the device which we search the free space in
1320 * @num_bytes: the size of the free space that we need
1321 * @search_start: the position from which to begin the search
1322 * @start: store the start of the free space.
1323 * @len: the size of the free space. that we find, or the size
1324 * of the max free space if we don't find suitable free space
1326 * this uses a pretty simple search, the expectation is that it is
1327 * called very infrequently and that a given device has a small number
1330 * @start is used to store the start of the free space if we find. But if we
1331 * don't find suitable free space, it will be used to store the start position
1332 * of the max free space.
1334 * @len is used to store the size of the free space that we find.
1335 * But if we don't find suitable free space, it is used to store the size of
1336 * the max free space.
1338 int find_free_dev_extent_start(struct btrfs_transaction *transaction,
1339 struct btrfs_device *device, u64 num_bytes,
1340 u64 search_start, u64 *start, u64 *len)
1342 struct btrfs_key key;
1343 struct btrfs_root *root = device->dev_root;
1344 struct btrfs_dev_extent *dev_extent;
1345 struct btrfs_path *path;
1350 u64 search_end = device->total_bytes;
1353 struct extent_buffer *l;
1354 u64 min_search_start;
1357 * We don't want to overwrite the superblock on the drive nor any area
1358 * used by the boot loader (grub for example), so we make sure to start
1359 * at an offset of at least 1MB.
1361 min_search_start = max(root->fs_info->alloc_start, 1024ull * 1024);
1362 search_start = max(search_start, min_search_start);
1364 path = btrfs_alloc_path();
1368 max_hole_start = search_start;
1372 if (search_start >= search_end || device->is_tgtdev_for_dev_replace) {
1377 path->reada = READA_FORWARD;
1378 path->search_commit_root = 1;
1379 path->skip_locking = 1;
1381 key.objectid = device->devid;
1382 key.offset = search_start;
1383 key.type = BTRFS_DEV_EXTENT_KEY;
1385 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
1389 ret = btrfs_previous_item(root, path, key.objectid, key.type);
1396 slot = path->slots[0];
1397 if (slot >= btrfs_header_nritems(l)) {
1398 ret = btrfs_next_leaf(root, path);
1406 btrfs_item_key_to_cpu(l, &key, slot);
1408 if (key.objectid < device->devid)
1411 if (key.objectid > device->devid)
1414 if (key.type != BTRFS_DEV_EXTENT_KEY)
1417 if (key.offset > search_start) {
1418 hole_size = key.offset - search_start;
1421 * Have to check before we set max_hole_start, otherwise
1422 * we could end up sending back this offset anyway.
1424 if (contains_pending_extent(transaction, device,
1427 if (key.offset >= search_start) {
1428 hole_size = key.offset - search_start;
1435 if (hole_size > max_hole_size) {
1436 max_hole_start = search_start;
1437 max_hole_size = hole_size;
1441 * If this free space is greater than which we need,
1442 * it must be the max free space that we have found
1443 * until now, so max_hole_start must point to the start
1444 * of this free space and the length of this free space
1445 * is stored in max_hole_size. Thus, we return
1446 * max_hole_start and max_hole_size and go back to the
1449 if (hole_size >= num_bytes) {
1455 dev_extent = btrfs_item_ptr(l, slot, struct btrfs_dev_extent);
1456 extent_end = key.offset + btrfs_dev_extent_length(l,
1458 if (extent_end > search_start)
1459 search_start = extent_end;
1466 * At this point, search_start should be the end of
1467 * allocated dev extents, and when shrinking the device,
1468 * search_end may be smaller than search_start.
1470 if (search_end > search_start) {
1471 hole_size = search_end - search_start;
1473 if (contains_pending_extent(transaction, device, &search_start,
1475 btrfs_release_path(path);
1479 if (hole_size > max_hole_size) {
1480 max_hole_start = search_start;
1481 max_hole_size = hole_size;
1486 if (max_hole_size < num_bytes)
1492 btrfs_free_path(path);
1493 *start = max_hole_start;
1495 *len = max_hole_size;
1499 int find_free_dev_extent(struct btrfs_trans_handle *trans,
1500 struct btrfs_device *device, u64 num_bytes,
1501 u64 *start, u64 *len)
1503 /* FIXME use last free of some kind */
1504 return find_free_dev_extent_start(trans->transaction, device,
1505 num_bytes, 0, start, len);
1508 static int btrfs_free_dev_extent(struct btrfs_trans_handle *trans,
1509 struct btrfs_device *device,
1510 u64 start, u64 *dev_extent_len)
1513 struct btrfs_path *path;
1514 struct btrfs_root *root = device->dev_root;
1515 struct btrfs_key key;
1516 struct btrfs_key found_key;
1517 struct extent_buffer *leaf = NULL;
1518 struct btrfs_dev_extent *extent = NULL;
1520 path = btrfs_alloc_path();
1524 key.objectid = device->devid;
1526 key.type = BTRFS_DEV_EXTENT_KEY;
1528 ret = btrfs_search_slot(trans, root, &key, path, -1, 1);
1530 ret = btrfs_previous_item(root, path, key.objectid,
1531 BTRFS_DEV_EXTENT_KEY);
1534 leaf = path->nodes[0];
1535 btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]);
1536 extent = btrfs_item_ptr(leaf, path->slots[0],
1537 struct btrfs_dev_extent);
1538 BUG_ON(found_key.offset > start || found_key.offset +
1539 btrfs_dev_extent_length(leaf, extent) < start);
1541 btrfs_release_path(path);
1543 } else if (ret == 0) {
1544 leaf = path->nodes[0];
1545 extent = btrfs_item_ptr(leaf, path->slots[0],
1546 struct btrfs_dev_extent);
1548 btrfs_handle_fs_error(root->fs_info, ret, "Slot search failed");
1552 *dev_extent_len = btrfs_dev_extent_length(leaf, extent);
1554 ret = btrfs_del_item(trans, root, path);
1556 btrfs_handle_fs_error(root->fs_info, ret,
1557 "Failed to remove dev extent item");
1559 set_bit(BTRFS_TRANS_HAVE_FREE_BGS, &trans->transaction->flags);
1562 btrfs_free_path(path);
1566 static int btrfs_alloc_dev_extent(struct btrfs_trans_handle *trans,
1567 struct btrfs_device *device,
1568 u64 chunk_tree, u64 chunk_objectid,
1569 u64 chunk_offset, u64 start, u64 num_bytes)
1572 struct btrfs_path *path;
1573 struct btrfs_root *root = device->dev_root;
1574 struct btrfs_dev_extent *extent;
1575 struct extent_buffer *leaf;
1576 struct btrfs_key key;
1578 WARN_ON(!device->in_fs_metadata);
1579 WARN_ON(device->is_tgtdev_for_dev_replace);
1580 path = btrfs_alloc_path();
1584 key.objectid = device->devid;
1586 key.type = BTRFS_DEV_EXTENT_KEY;
1587 ret = btrfs_insert_empty_item(trans, root, path, &key,
1592 leaf = path->nodes[0];
1593 extent = btrfs_item_ptr(leaf, path->slots[0],
1594 struct btrfs_dev_extent);
1595 btrfs_set_dev_extent_chunk_tree(leaf, extent, chunk_tree);
1596 btrfs_set_dev_extent_chunk_objectid(leaf, extent, chunk_objectid);
1597 btrfs_set_dev_extent_chunk_offset(leaf, extent, chunk_offset);
1599 write_extent_buffer(leaf, root->fs_info->chunk_tree_uuid,
1600 btrfs_dev_extent_chunk_tree_uuid(extent), BTRFS_UUID_SIZE);
1602 btrfs_set_dev_extent_length(leaf, extent, num_bytes);
1603 btrfs_mark_buffer_dirty(leaf);
1605 btrfs_free_path(path);
1609 static u64 find_next_chunk(struct btrfs_fs_info *fs_info)
1611 struct extent_map_tree *em_tree;
1612 struct extent_map *em;
1616 em_tree = &fs_info->mapping_tree.map_tree;
1617 read_lock(&em_tree->lock);
1618 n = rb_last(&em_tree->map);
1620 em = rb_entry(n, struct extent_map, rb_node);
1621 ret = em->start + em->len;
1623 read_unlock(&em_tree->lock);
1628 static noinline int find_next_devid(struct btrfs_fs_info *fs_info,
1632 struct btrfs_key key;
1633 struct btrfs_key found_key;
1634 struct btrfs_path *path;
1636 path = btrfs_alloc_path();
1640 key.objectid = BTRFS_DEV_ITEMS_OBJECTID;
1641 key.type = BTRFS_DEV_ITEM_KEY;
1642 key.offset = (u64)-1;
1644 ret = btrfs_search_slot(NULL, fs_info->chunk_root, &key, path, 0, 0);
1648 BUG_ON(ret == 0); /* Corruption */
1650 ret = btrfs_previous_item(fs_info->chunk_root, path,
1651 BTRFS_DEV_ITEMS_OBJECTID,
1652 BTRFS_DEV_ITEM_KEY);
1656 btrfs_item_key_to_cpu(path->nodes[0], &found_key,
1658 *devid_ret = found_key.offset + 1;
1662 btrfs_free_path(path);
1667 * the device information is stored in the chunk root
1668 * the btrfs_device struct should be fully filled in
1670 static int btrfs_add_device(struct btrfs_trans_handle *trans,
1671 struct btrfs_root *root,
1672 struct btrfs_device *device)
1675 struct btrfs_path *path;
1676 struct btrfs_dev_item *dev_item;
1677 struct extent_buffer *leaf;
1678 struct btrfs_key key;
1681 root = root->fs_info->chunk_root;
1683 path = btrfs_alloc_path();
1687 key.objectid = BTRFS_DEV_ITEMS_OBJECTID;
1688 key.type = BTRFS_DEV_ITEM_KEY;
1689 key.offset = device->devid;
1691 ret = btrfs_insert_empty_item(trans, root, path, &key,
1696 leaf = path->nodes[0];
1697 dev_item = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_dev_item);
1699 btrfs_set_device_id(leaf, dev_item, device->devid);
1700 btrfs_set_device_generation(leaf, dev_item, 0);
1701 btrfs_set_device_type(leaf, dev_item, device->type);
1702 btrfs_set_device_io_align(leaf, dev_item, device->io_align);
1703 btrfs_set_device_io_width(leaf, dev_item, device->io_width);
1704 btrfs_set_device_sector_size(leaf, dev_item, device->sector_size);
1705 btrfs_set_device_total_bytes(leaf, dev_item,
1706 btrfs_device_get_disk_total_bytes(device));
1707 btrfs_set_device_bytes_used(leaf, dev_item,
1708 btrfs_device_get_bytes_used(device));
1709 btrfs_set_device_group(leaf, dev_item, 0);
1710 btrfs_set_device_seek_speed(leaf, dev_item, 0);
1711 btrfs_set_device_bandwidth(leaf, dev_item, 0);
1712 btrfs_set_device_start_offset(leaf, dev_item, 0);
1714 ptr = btrfs_device_uuid(dev_item);
1715 write_extent_buffer(leaf, device->uuid, ptr, BTRFS_UUID_SIZE);
1716 ptr = btrfs_device_fsid(dev_item);
1717 write_extent_buffer(leaf, root->fs_info->fsid, ptr, BTRFS_UUID_SIZE);
1718 btrfs_mark_buffer_dirty(leaf);
1722 btrfs_free_path(path);
1727 * Function to update ctime/mtime for a given device path.
1728 * Mainly used for ctime/mtime based probe like libblkid.
1730 static void update_dev_time(char *path_name)
1734 filp = filp_open(path_name, O_RDWR, 0);
1737 file_update_time(filp);
1738 filp_close(filp, NULL);
1741 static int btrfs_rm_dev_item(struct btrfs_root *root,
1742 struct btrfs_device *device)
1745 struct btrfs_path *path;
1746 struct btrfs_key key;
1747 struct btrfs_trans_handle *trans;
1749 root = root->fs_info->chunk_root;
1751 path = btrfs_alloc_path();
1755 trans = btrfs_start_transaction(root, 0);
1756 if (IS_ERR(trans)) {
1757 btrfs_free_path(path);
1758 return PTR_ERR(trans);
1760 key.objectid = BTRFS_DEV_ITEMS_OBJECTID;
1761 key.type = BTRFS_DEV_ITEM_KEY;
1762 key.offset = device->devid;
1764 ret = btrfs_search_slot(trans, root, &key, path, -1, 1);
1773 ret = btrfs_del_item(trans, root, path);
1777 btrfs_free_path(path);
1778 btrfs_commit_transaction(trans, root);
1783 * Verify that @num_devices satisfies the RAID profile constraints in the whole
1784 * filesystem. It's up to the caller to adjust that number regarding eg. device
1787 static int btrfs_check_raid_min_devices(struct btrfs_fs_info *fs_info,
1795 seq = read_seqbegin(&fs_info->profiles_lock);
1797 all_avail = fs_info->avail_data_alloc_bits |
1798 fs_info->avail_system_alloc_bits |
1799 fs_info->avail_metadata_alloc_bits;
1800 } while (read_seqretry(&fs_info->profiles_lock, seq));
1802 for (i = 0; i < BTRFS_NR_RAID_TYPES; i++) {
1803 if (!(all_avail & btrfs_raid_group[i]))
1806 if (num_devices < btrfs_raid_array[i].devs_min) {
1807 int ret = btrfs_raid_mindev_error[i];
1817 struct btrfs_device *btrfs_find_next_active_device(struct btrfs_fs_devices *fs_devs,
1818 struct btrfs_device *device)
1820 struct btrfs_device *next_device;
1822 list_for_each_entry(next_device, &fs_devs->devices, dev_list) {
1823 if (next_device != device &&
1824 !next_device->missing && next_device->bdev)
1832 * Helper function to check if the given device is part of s_bdev / latest_bdev
1833 * and replace it with the provided or the next active device, in the context
1834 * where this function called, there should be always be another device (or
1835 * this_dev) which is active.
1837 void btrfs_assign_next_active_device(struct btrfs_fs_info *fs_info,
1838 struct btrfs_device *device, struct btrfs_device *this_dev)
1840 struct btrfs_device *next_device;
1843 next_device = this_dev;
1845 next_device = btrfs_find_next_active_device(fs_info->fs_devices,
1847 ASSERT(next_device);
1849 if (fs_info->sb->s_bdev &&
1850 (fs_info->sb->s_bdev == device->bdev))
1851 fs_info->sb->s_bdev = next_device->bdev;
1853 if (fs_info->fs_devices->latest_bdev == device->bdev)
1854 fs_info->fs_devices->latest_bdev = next_device->bdev;
1857 int btrfs_rm_device(struct btrfs_root *root, char *device_path, u64 devid)
1859 struct btrfs_device *device;
1860 struct btrfs_fs_devices *cur_devices;
1863 bool clear_super = false;
1865 mutex_lock(&uuid_mutex);
1867 num_devices = root->fs_info->fs_devices->num_devices;
1868 btrfs_dev_replace_lock(&root->fs_info->dev_replace, 0);
1869 if (btrfs_dev_replace_is_ongoing(&root->fs_info->dev_replace)) {
1870 WARN_ON(num_devices < 1);
1873 btrfs_dev_replace_unlock(&root->fs_info->dev_replace, 0);
1875 ret = btrfs_check_raid_min_devices(root->fs_info, num_devices - 1);
1879 ret = btrfs_find_device_by_devspec(root, devid, device_path,
1884 if (device->is_tgtdev_for_dev_replace) {
1885 ret = BTRFS_ERROR_DEV_TGT_REPLACE;
1889 if (device->writeable && root->fs_info->fs_devices->rw_devices == 1) {
1890 ret = BTRFS_ERROR_DEV_ONLY_WRITABLE;
1894 if (device->writeable) {
1896 list_del_init(&device->dev_alloc_list);
1897 device->fs_devices->rw_devices--;
1898 unlock_chunks(root);
1902 mutex_unlock(&uuid_mutex);
1903 ret = btrfs_shrink_device(device, 0);
1904 mutex_lock(&uuid_mutex);
1909 * TODO: the superblock still includes this device in its num_devices
1910 * counter although write_all_supers() is not locked out. This
1911 * could give a filesystem state which requires a degraded mount.
1913 ret = btrfs_rm_dev_item(root->fs_info->chunk_root, device);
1917 device->in_fs_metadata = 0;
1918 btrfs_scrub_cancel_dev(root->fs_info, device);
1921 * the device list mutex makes sure that we don't change
1922 * the device list while someone else is writing out all
1923 * the device supers. Whoever is writing all supers, should
1924 * lock the device list mutex before getting the number of
1925 * devices in the super block (super_copy). Conversely,
1926 * whoever updates the number of devices in the super block
1927 * (super_copy) should hold the device list mutex.
1930 cur_devices = device->fs_devices;
1931 mutex_lock(&root->fs_info->fs_devices->device_list_mutex);
1932 list_del_rcu(&device->dev_list);
1934 device->fs_devices->num_devices--;
1935 device->fs_devices->total_devices--;
1937 if (device->missing)
1938 device->fs_devices->missing_devices--;
1940 btrfs_assign_next_active_device(root->fs_info, device, NULL);
1943 device->fs_devices->open_devices--;
1944 /* remove sysfs entry */
1945 btrfs_sysfs_rm_device_link(root->fs_info->fs_devices, device);
1948 num_devices = btrfs_super_num_devices(root->fs_info->super_copy) - 1;
1949 btrfs_set_super_num_devices(root->fs_info->super_copy, num_devices);
1950 mutex_unlock(&root->fs_info->fs_devices->device_list_mutex);
1953 * at this point, the device is zero sized and detached from
1954 * the devices list. All that's left is to zero out the old
1955 * supers and free the device.
1957 if (device->writeable)
1958 btrfs_scratch_superblocks(device->bdev, device->name->str);
1960 btrfs_close_bdev(device);
1961 call_rcu(&device->rcu, free_device);
1963 if (cur_devices->open_devices == 0) {
1964 struct btrfs_fs_devices *fs_devices;
1965 fs_devices = root->fs_info->fs_devices;
1966 while (fs_devices) {
1967 if (fs_devices->seed == cur_devices) {
1968 fs_devices->seed = cur_devices->seed;
1971 fs_devices = fs_devices->seed;
1973 cur_devices->seed = NULL;
1974 __btrfs_close_devices(cur_devices);
1975 free_fs_devices(cur_devices);
1978 root->fs_info->num_tolerated_disk_barrier_failures =
1979 btrfs_calc_num_tolerated_disk_barrier_failures(root->fs_info);
1982 mutex_unlock(&uuid_mutex);
1986 if (device->writeable) {
1988 list_add(&device->dev_alloc_list,
1989 &root->fs_info->fs_devices->alloc_list);
1990 device->fs_devices->rw_devices++;
1991 unlock_chunks(root);
1996 void btrfs_rm_dev_replace_remove_srcdev(struct btrfs_fs_info *fs_info,
1997 struct btrfs_device *srcdev)
1999 struct btrfs_fs_devices *fs_devices;
2001 WARN_ON(!mutex_is_locked(&fs_info->fs_devices->device_list_mutex));
2004 * in case of fs with no seed, srcdev->fs_devices will point
2005 * to fs_devices of fs_info. However when the dev being replaced is
2006 * a seed dev it will point to the seed's local fs_devices. In short
2007 * srcdev will have its correct fs_devices in both the cases.
2009 fs_devices = srcdev->fs_devices;
2011 list_del_rcu(&srcdev->dev_list);
2012 list_del_rcu(&srcdev->dev_alloc_list);
2013 fs_devices->num_devices--;
2014 if (srcdev->missing)
2015 fs_devices->missing_devices--;
2017 if (srcdev->writeable)
2018 fs_devices->rw_devices--;
2021 fs_devices->open_devices--;
2024 void btrfs_rm_dev_replace_free_srcdev(struct btrfs_fs_info *fs_info,
2025 struct btrfs_device *srcdev)
2027 struct btrfs_fs_devices *fs_devices = srcdev->fs_devices;
2029 if (srcdev->writeable) {
2030 /* zero out the old super if it is writable */
2031 btrfs_scratch_superblocks(srcdev->bdev, srcdev->name->str);
2034 btrfs_close_bdev(srcdev);
2036 call_rcu(&srcdev->rcu, free_device);
2039 * unless fs_devices is seed fs, num_devices shouldn't go
2042 BUG_ON(!fs_devices->num_devices && !fs_devices->seeding);
2044 /* if this is no devs we rather delete the fs_devices */
2045 if (!fs_devices->num_devices) {
2046 struct btrfs_fs_devices *tmp_fs_devices;
2048 tmp_fs_devices = fs_info->fs_devices;
2049 while (tmp_fs_devices) {
2050 if (tmp_fs_devices->seed == fs_devices) {
2051 tmp_fs_devices->seed = fs_devices->seed;
2054 tmp_fs_devices = tmp_fs_devices->seed;
2056 fs_devices->seed = NULL;
2057 __btrfs_close_devices(fs_devices);
2058 free_fs_devices(fs_devices);
2062 void btrfs_destroy_dev_replace_tgtdev(struct btrfs_fs_info *fs_info,
2063 struct btrfs_device *tgtdev)
2065 mutex_lock(&uuid_mutex);
2067 mutex_lock(&fs_info->fs_devices->device_list_mutex);
2069 btrfs_sysfs_rm_device_link(fs_info->fs_devices, tgtdev);
2072 fs_info->fs_devices->open_devices--;
2074 fs_info->fs_devices->num_devices--;
2076 btrfs_assign_next_active_device(fs_info, tgtdev, NULL);
2078 list_del_rcu(&tgtdev->dev_list);
2080 mutex_unlock(&fs_info->fs_devices->device_list_mutex);
2081 mutex_unlock(&uuid_mutex);
2084 * The update_dev_time() with in btrfs_scratch_superblocks()
2085 * may lead to a call to btrfs_show_devname() which will try
2086 * to hold device_list_mutex. And here this device
2087 * is already out of device list, so we don't have to hold
2088 * the device_list_mutex lock.
2090 btrfs_scratch_superblocks(tgtdev->bdev, tgtdev->name->str);
2092 btrfs_close_bdev(tgtdev);
2093 call_rcu(&tgtdev->rcu, free_device);
2096 static int btrfs_find_device_by_path(struct btrfs_root *root, char *device_path,
2097 struct btrfs_device **device)
2100 struct btrfs_super_block *disk_super;
2103 struct block_device *bdev;
2104 struct buffer_head *bh;
2107 ret = btrfs_get_bdev_and_sb(device_path, FMODE_READ,
2108 root->fs_info->bdev_holder, 0, &bdev, &bh);
2111 disk_super = (struct btrfs_super_block *)bh->b_data;
2112 devid = btrfs_stack_device_id(&disk_super->dev_item);
2113 dev_uuid = disk_super->dev_item.uuid;
2114 *device = btrfs_find_device(root->fs_info, devid, dev_uuid,
2119 blkdev_put(bdev, FMODE_READ);
2123 int btrfs_find_device_missing_or_by_path(struct btrfs_root *root,
2125 struct btrfs_device **device)
2128 if (strcmp(device_path, "missing") == 0) {
2129 struct list_head *devices;
2130 struct btrfs_device *tmp;
2132 devices = &root->fs_info->fs_devices->devices;
2134 * It is safe to read the devices since the volume_mutex
2135 * is held by the caller.
2137 list_for_each_entry(tmp, devices, dev_list) {
2138 if (tmp->in_fs_metadata && !tmp->bdev) {
2145 return BTRFS_ERROR_DEV_MISSING_NOT_FOUND;
2149 return btrfs_find_device_by_path(root, device_path, device);
2154 * Lookup a device given by device id, or the path if the id is 0.
2156 int btrfs_find_device_by_devspec(struct btrfs_root *root, u64 devid,
2158 struct btrfs_device **device)
2164 *device = btrfs_find_device(root->fs_info, devid, NULL,
2169 if (!devpath || !devpath[0])
2172 ret = btrfs_find_device_missing_or_by_path(root, devpath,
2179 * does all the dirty work required for changing file system's UUID.
2181 static int btrfs_prepare_sprout(struct btrfs_root *root)
2183 struct btrfs_fs_devices *fs_devices = root->fs_info->fs_devices;
2184 struct btrfs_fs_devices *old_devices;
2185 struct btrfs_fs_devices *seed_devices;
2186 struct btrfs_super_block *disk_super = root->fs_info->super_copy;
2187 struct btrfs_device *device;
2190 BUG_ON(!mutex_is_locked(&uuid_mutex));
2191 if (!fs_devices->seeding)
2194 seed_devices = __alloc_fs_devices();
2195 if (IS_ERR(seed_devices))
2196 return PTR_ERR(seed_devices);
2198 old_devices = clone_fs_devices(fs_devices);
2199 if (IS_ERR(old_devices)) {
2200 kfree(seed_devices);
2201 return PTR_ERR(old_devices);
2204 list_add(&old_devices->list, &fs_uuids);
2206 memcpy(seed_devices, fs_devices, sizeof(*seed_devices));
2207 seed_devices->opened = 1;
2208 INIT_LIST_HEAD(&seed_devices->devices);
2209 INIT_LIST_HEAD(&seed_devices->alloc_list);
2210 mutex_init(&seed_devices->device_list_mutex);
2212 mutex_lock(&root->fs_info->fs_devices->device_list_mutex);
2213 list_splice_init_rcu(&fs_devices->devices, &seed_devices->devices,
2215 list_for_each_entry(device, &seed_devices->devices, dev_list)
2216 device->fs_devices = seed_devices;
2219 list_splice_init(&fs_devices->alloc_list, &seed_devices->alloc_list);
2220 unlock_chunks(root);
2222 fs_devices->seeding = 0;
2223 fs_devices->num_devices = 0;
2224 fs_devices->open_devices = 0;
2225 fs_devices->missing_devices = 0;
2226 fs_devices->rotating = 0;
2227 fs_devices->seed = seed_devices;
2229 generate_random_uuid(fs_devices->fsid);
2230 memcpy(root->fs_info->fsid, fs_devices->fsid, BTRFS_FSID_SIZE);
2231 memcpy(disk_super->fsid, fs_devices->fsid, BTRFS_FSID_SIZE);
2232 mutex_unlock(&root->fs_info->fs_devices->device_list_mutex);
2234 super_flags = btrfs_super_flags(disk_super) &
2235 ~BTRFS_SUPER_FLAG_SEEDING;
2236 btrfs_set_super_flags(disk_super, super_flags);
2242 * Store the expected generation for seed devices in device items.
2244 static int btrfs_finish_sprout(struct btrfs_trans_handle *trans,
2245 struct btrfs_root *root)
2247 struct btrfs_path *path;
2248 struct extent_buffer *leaf;
2249 struct btrfs_dev_item *dev_item;
2250 struct btrfs_device *device;
2251 struct btrfs_key key;
2252 u8 fs_uuid[BTRFS_UUID_SIZE];
2253 u8 dev_uuid[BTRFS_UUID_SIZE];
2257 path = btrfs_alloc_path();
2261 root = root->fs_info->chunk_root;
2262 key.objectid = BTRFS_DEV_ITEMS_OBJECTID;
2264 key.type = BTRFS_DEV_ITEM_KEY;
2267 ret = btrfs_search_slot(trans, root, &key, path, 0, 1);
2271 leaf = path->nodes[0];
2273 if (path->slots[0] >= btrfs_header_nritems(leaf)) {
2274 ret = btrfs_next_leaf(root, path);
2279 leaf = path->nodes[0];
2280 btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
2281 btrfs_release_path(path);
2285 btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
2286 if (key.objectid != BTRFS_DEV_ITEMS_OBJECTID ||
2287 key.type != BTRFS_DEV_ITEM_KEY)
2290 dev_item = btrfs_item_ptr(leaf, path->slots[0],
2291 struct btrfs_dev_item);
2292 devid = btrfs_device_id(leaf, dev_item);
2293 read_extent_buffer(leaf, dev_uuid, btrfs_device_uuid(dev_item),
2295 read_extent_buffer(leaf, fs_uuid, btrfs_device_fsid(dev_item),
2297 device = btrfs_find_device(root->fs_info, devid, dev_uuid,
2299 BUG_ON(!device); /* Logic error */
2301 if (device->fs_devices->seeding) {
2302 btrfs_set_device_generation(leaf, dev_item,
2303 device->generation);
2304 btrfs_mark_buffer_dirty(leaf);
2312 btrfs_free_path(path);
2316 int btrfs_init_new_device(struct btrfs_root *root, char *device_path)
2318 struct request_queue *q;
2319 struct btrfs_trans_handle *trans;
2320 struct btrfs_device *device;
2321 struct block_device *bdev;
2322 struct list_head *devices;
2323 struct super_block *sb = root->fs_info->sb;
2324 struct rcu_string *name;
2326 int seeding_dev = 0;
2329 if ((sb->s_flags & MS_RDONLY) && !root->fs_info->fs_devices->seeding)
2332 bdev = blkdev_get_by_path(device_path, FMODE_WRITE | FMODE_EXCL,
2333 root->fs_info->bdev_holder);
2335 return PTR_ERR(bdev);
2337 if (root->fs_info->fs_devices->seeding) {
2339 down_write(&sb->s_umount);
2340 mutex_lock(&uuid_mutex);
2343 filemap_write_and_wait(bdev->bd_inode->i_mapping);
2345 devices = &root->fs_info->fs_devices->devices;
2347 mutex_lock(&root->fs_info->fs_devices->device_list_mutex);
2348 list_for_each_entry(device, devices, dev_list) {
2349 if (device->bdev == bdev) {
2352 &root->fs_info->fs_devices->device_list_mutex);
2356 mutex_unlock(&root->fs_info->fs_devices->device_list_mutex);
2358 device = btrfs_alloc_device(root->fs_info, NULL, NULL);
2359 if (IS_ERR(device)) {
2360 /* we can safely leave the fs_devices entry around */
2361 ret = PTR_ERR(device);
2365 name = rcu_string_strdup(device_path, GFP_KERNEL);
2371 rcu_assign_pointer(device->name, name);
2373 trans = btrfs_start_transaction(root, 0);
2374 if (IS_ERR(trans)) {
2375 rcu_string_free(device->name);
2377 ret = PTR_ERR(trans);
2381 q = bdev_get_queue(bdev);
2382 if (blk_queue_discard(q))
2383 device->can_discard = 1;
2384 device->writeable = 1;
2385 device->generation = trans->transid;
2386 device->io_width = root->sectorsize;
2387 device->io_align = root->sectorsize;
2388 device->sector_size = root->sectorsize;
2389 device->total_bytes = i_size_read(bdev->bd_inode);
2390 device->disk_total_bytes = device->total_bytes;
2391 device->commit_total_bytes = device->total_bytes;
2392 device->dev_root = root->fs_info->dev_root;
2393 device->bdev = bdev;
2394 device->in_fs_metadata = 1;
2395 device->is_tgtdev_for_dev_replace = 0;
2396 device->mode = FMODE_EXCL;
2397 device->dev_stats_valid = 1;
2398 set_blocksize(device->bdev, 4096);
2401 sb->s_flags &= ~MS_RDONLY;
2402 ret = btrfs_prepare_sprout(root);
2403 BUG_ON(ret); /* -ENOMEM */
2406 device->fs_devices = root->fs_info->fs_devices;
2408 mutex_lock(&root->fs_info->fs_devices->device_list_mutex);
2410 list_add_rcu(&device->dev_list, &root->fs_info->fs_devices->devices);
2411 list_add(&device->dev_alloc_list,
2412 &root->fs_info->fs_devices->alloc_list);
2413 root->fs_info->fs_devices->num_devices++;
2414 root->fs_info->fs_devices->open_devices++;
2415 root->fs_info->fs_devices->rw_devices++;
2416 root->fs_info->fs_devices->total_devices++;
2417 root->fs_info->fs_devices->total_rw_bytes += device->total_bytes;
2419 spin_lock(&root->fs_info->free_chunk_lock);
2420 root->fs_info->free_chunk_space += device->total_bytes;
2421 spin_unlock(&root->fs_info->free_chunk_lock);
2423 if (!blk_queue_nonrot(bdev_get_queue(bdev)))
2424 root->fs_info->fs_devices->rotating = 1;
2426 tmp = btrfs_super_total_bytes(root->fs_info->super_copy);
2427 btrfs_set_super_total_bytes(root->fs_info->super_copy,
2428 tmp + device->total_bytes);
2430 tmp = btrfs_super_num_devices(root->fs_info->super_copy);
2431 btrfs_set_super_num_devices(root->fs_info->super_copy,
2435 * we've got more storage, clear any full flags on the space
2438 btrfs_clear_space_info_full(root->fs_info);
2440 unlock_chunks(root);
2442 /* add sysfs device entry */
2443 btrfs_sysfs_add_device_link(root->fs_info->fs_devices, device);
2445 mutex_unlock(&root->fs_info->fs_devices->device_list_mutex);
2449 ret = init_first_rw_device(trans, root, device);
2450 unlock_chunks(root);
2452 btrfs_abort_transaction(trans, ret);
2457 ret = btrfs_add_device(trans, root, device);
2459 btrfs_abort_transaction(trans, ret);
2464 char fsid_buf[BTRFS_UUID_UNPARSED_SIZE];
2466 ret = btrfs_finish_sprout(trans, root);
2468 btrfs_abort_transaction(trans, ret);
2472 /* Sprouting would change fsid of the mounted root,
2473 * so rename the fsid on the sysfs
2475 snprintf(fsid_buf, BTRFS_UUID_UNPARSED_SIZE, "%pU",
2476 root->fs_info->fsid);
2477 if (kobject_rename(&root->fs_info->fs_devices->fsid_kobj,
2479 btrfs_warn(root->fs_info,
2480 "sysfs: failed to create fsid for sprout");
2483 root->fs_info->num_tolerated_disk_barrier_failures =
2484 btrfs_calc_num_tolerated_disk_barrier_failures(root->fs_info);
2485 ret = btrfs_commit_transaction(trans, root);
2488 mutex_unlock(&uuid_mutex);
2489 up_write(&sb->s_umount);
2491 if (ret) /* transaction commit */
2494 ret = btrfs_relocate_sys_chunks(root);
2496 btrfs_handle_fs_error(root->fs_info, ret,
2497 "Failed to relocate sys chunks after device initialization. This can be fixed using the \"btrfs balance\" command.");
2498 trans = btrfs_attach_transaction(root);
2499 if (IS_ERR(trans)) {
2500 if (PTR_ERR(trans) == -ENOENT)
2502 return PTR_ERR(trans);
2504 ret = btrfs_commit_transaction(trans, root);
2507 /* Update ctime/mtime for libblkid */
2508 update_dev_time(device_path);
2512 btrfs_end_transaction(trans, root);
2513 rcu_string_free(device->name);
2514 btrfs_sysfs_rm_device_link(root->fs_info->fs_devices, device);
2517 blkdev_put(bdev, FMODE_EXCL);
2519 mutex_unlock(&uuid_mutex);
2520 up_write(&sb->s_umount);
2525 int btrfs_init_dev_replace_tgtdev(struct btrfs_root *root, char *device_path,
2526 struct btrfs_device *srcdev,
2527 struct btrfs_device **device_out)
2529 struct request_queue *q;
2530 struct btrfs_device *device;
2531 struct block_device *bdev;
2532 struct btrfs_fs_info *fs_info = root->fs_info;
2533 struct list_head *devices;
2534 struct rcu_string *name;
2535 u64 devid = BTRFS_DEV_REPLACE_DEVID;
2539 if (fs_info->fs_devices->seeding) {
2540 btrfs_err(fs_info, "the filesystem is a seed filesystem!");
2544 bdev = blkdev_get_by_path(device_path, FMODE_WRITE | FMODE_EXCL,
2545 fs_info->bdev_holder);
2547 btrfs_err(fs_info, "target device %s is invalid!", device_path);
2548 return PTR_ERR(bdev);
2551 filemap_write_and_wait(bdev->bd_inode->i_mapping);
2553 devices = &fs_info->fs_devices->devices;
2554 list_for_each_entry(device, devices, dev_list) {
2555 if (device->bdev == bdev) {
2557 "target device is in the filesystem!");
2564 if (i_size_read(bdev->bd_inode) <
2565 btrfs_device_get_total_bytes(srcdev)) {
2567 "target device is smaller than source device!");
2573 device = btrfs_alloc_device(NULL, &devid, NULL);
2574 if (IS_ERR(device)) {
2575 ret = PTR_ERR(device);
2579 name = rcu_string_strdup(device_path, GFP_NOFS);
2585 rcu_assign_pointer(device->name, name);
2587 q = bdev_get_queue(bdev);
2588 if (blk_queue_discard(q))
2589 device->can_discard = 1;
2590 mutex_lock(&root->fs_info->fs_devices->device_list_mutex);
2591 device->writeable = 1;
2592 device->generation = 0;
2593 device->io_width = root->sectorsize;
2594 device->io_align = root->sectorsize;
2595 device->sector_size = root->sectorsize;
2596 device->total_bytes = btrfs_device_get_total_bytes(srcdev);
2597 device->disk_total_bytes = btrfs_device_get_disk_total_bytes(srcdev);
2598 device->bytes_used = btrfs_device_get_bytes_used(srcdev);
2599 ASSERT(list_empty(&srcdev->resized_list));
2600 device->commit_total_bytes = srcdev->commit_total_bytes;
2601 device->commit_bytes_used = device->bytes_used;
2602 device->dev_root = fs_info->dev_root;
2603 device->bdev = bdev;
2604 device->in_fs_metadata = 1;
2605 device->is_tgtdev_for_dev_replace = 1;
2606 device->mode = FMODE_EXCL;
2607 device->dev_stats_valid = 1;
2608 set_blocksize(device->bdev, 4096);
2609 device->fs_devices = fs_info->fs_devices;
2610 list_add(&device->dev_list, &fs_info->fs_devices->devices);
2611 fs_info->fs_devices->num_devices++;
2612 fs_info->fs_devices->open_devices++;
2613 mutex_unlock(&root->fs_info->fs_devices->device_list_mutex);
2615 *device_out = device;
2619 blkdev_put(bdev, FMODE_EXCL);
2623 void btrfs_init_dev_replace_tgtdev_for_resume(struct btrfs_fs_info *fs_info,
2624 struct btrfs_device *tgtdev)
2626 WARN_ON(fs_info->fs_devices->rw_devices == 0);
2627 tgtdev->io_width = fs_info->dev_root->sectorsize;
2628 tgtdev->io_align = fs_info->dev_root->sectorsize;
2629 tgtdev->sector_size = fs_info->dev_root->sectorsize;
2630 tgtdev->dev_root = fs_info->dev_root;
2631 tgtdev->in_fs_metadata = 1;
2634 static noinline int btrfs_update_device(struct btrfs_trans_handle *trans,
2635 struct btrfs_device *device)
2638 struct btrfs_path *path;
2639 struct btrfs_root *root;
2640 struct btrfs_dev_item *dev_item;
2641 struct extent_buffer *leaf;
2642 struct btrfs_key key;
2644 root = device->dev_root->fs_info->chunk_root;
2646 path = btrfs_alloc_path();
2650 key.objectid = BTRFS_DEV_ITEMS_OBJECTID;
2651 key.type = BTRFS_DEV_ITEM_KEY;
2652 key.offset = device->devid;
2654 ret = btrfs_search_slot(trans, root, &key, path, 0, 1);
2663 leaf = path->nodes[0];
2664 dev_item = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_dev_item);
2666 btrfs_set_device_id(leaf, dev_item, device->devid);
2667 btrfs_set_device_type(leaf, dev_item, device->type);
2668 btrfs_set_device_io_align(leaf, dev_item, device->io_align);
2669 btrfs_set_device_io_width(leaf, dev_item, device->io_width);
2670 btrfs_set_device_sector_size(leaf, dev_item, device->sector_size);
2671 btrfs_set_device_total_bytes(leaf, dev_item,
2672 btrfs_device_get_disk_total_bytes(device));
2673 btrfs_set_device_bytes_used(leaf, dev_item,
2674 btrfs_device_get_bytes_used(device));
2675 btrfs_mark_buffer_dirty(leaf);
2678 btrfs_free_path(path);
2682 int btrfs_grow_device(struct btrfs_trans_handle *trans,
2683 struct btrfs_device *device, u64 new_size)
2685 struct btrfs_super_block *super_copy =
2686 device->dev_root->fs_info->super_copy;
2687 struct btrfs_fs_devices *fs_devices;
2691 if (!device->writeable)
2694 lock_chunks(device->dev_root);
2695 old_total = btrfs_super_total_bytes(super_copy);
2696 diff = new_size - device->total_bytes;
2698 if (new_size <= device->total_bytes ||
2699 device->is_tgtdev_for_dev_replace) {
2700 unlock_chunks(device->dev_root);
2704 fs_devices = device->dev_root->fs_info->fs_devices;
2706 btrfs_set_super_total_bytes(super_copy, old_total + diff);
2707 device->fs_devices->total_rw_bytes += diff;
2709 btrfs_device_set_total_bytes(device, new_size);
2710 btrfs_device_set_disk_total_bytes(device, new_size);
2711 btrfs_clear_space_info_full(device->dev_root->fs_info);
2712 if (list_empty(&device->resized_list))
2713 list_add_tail(&device->resized_list,
2714 &fs_devices->resized_devices);
2715 unlock_chunks(device->dev_root);
2717 return btrfs_update_device(trans, device);
2720 static int btrfs_free_chunk(struct btrfs_trans_handle *trans,
2721 struct btrfs_root *root, u64 chunk_objectid,
2725 struct btrfs_path *path;
2726 struct btrfs_key key;
2728 root = root->fs_info->chunk_root;
2729 path = btrfs_alloc_path();
2733 key.objectid = chunk_objectid;
2734 key.offset = chunk_offset;
2735 key.type = BTRFS_CHUNK_ITEM_KEY;
2737 ret = btrfs_search_slot(trans, root, &key, path, -1, 1);
2740 else if (ret > 0) { /* Logic error or corruption */
2741 btrfs_handle_fs_error(root->fs_info, -ENOENT,
2742 "Failed lookup while freeing chunk.");
2747 ret = btrfs_del_item(trans, root, path);
2749 btrfs_handle_fs_error(root->fs_info, ret,
2750 "Failed to delete chunk item.");
2752 btrfs_free_path(path);
2756 static int btrfs_del_sys_chunk(struct btrfs_root *root, u64 chunk_objectid, u64
2759 struct btrfs_super_block *super_copy = root->fs_info->super_copy;
2760 struct btrfs_disk_key *disk_key;
2761 struct btrfs_chunk *chunk;
2768 struct btrfs_key key;
2771 array_size = btrfs_super_sys_array_size(super_copy);
2773 ptr = super_copy->sys_chunk_array;
2776 while (cur < array_size) {
2777 disk_key = (struct btrfs_disk_key *)ptr;
2778 btrfs_disk_key_to_cpu(&key, disk_key);
2780 len = sizeof(*disk_key);
2782 if (key.type == BTRFS_CHUNK_ITEM_KEY) {
2783 chunk = (struct btrfs_chunk *)(ptr + len);
2784 num_stripes = btrfs_stack_chunk_num_stripes(chunk);
2785 len += btrfs_chunk_item_size(num_stripes);
2790 if (key.objectid == chunk_objectid &&
2791 key.offset == chunk_offset) {
2792 memmove(ptr, ptr + len, array_size - (cur + len));
2794 btrfs_set_super_sys_array_size(super_copy, array_size);
2800 unlock_chunks(root);
2804 int btrfs_remove_chunk(struct btrfs_trans_handle *trans,
2805 struct btrfs_root *root, u64 chunk_offset)
2807 struct extent_map_tree *em_tree;
2808 struct extent_map *em;
2809 struct btrfs_root *extent_root = root->fs_info->extent_root;
2810 struct map_lookup *map;
2811 u64 dev_extent_len = 0;
2812 u64 chunk_objectid = BTRFS_FIRST_CHUNK_TREE_OBJECTID;
2814 struct btrfs_fs_devices *fs_devices = root->fs_info->fs_devices;
2817 root = root->fs_info->chunk_root;
2818 em_tree = &root->fs_info->mapping_tree.map_tree;
2820 read_lock(&em_tree->lock);
2821 em = lookup_extent_mapping(em_tree, chunk_offset, 1);
2822 read_unlock(&em_tree->lock);
2824 if (!em || em->start > chunk_offset ||
2825 em->start + em->len < chunk_offset) {
2827 * This is a logic error, but we don't want to just rely on the
2828 * user having built with ASSERT enabled, so if ASSERT doesn't
2829 * do anything we still error out.
2833 free_extent_map(em);
2836 map = em->map_lookup;
2837 lock_chunks(root->fs_info->chunk_root);
2838 check_system_chunk(trans, extent_root, map->type);
2839 unlock_chunks(root->fs_info->chunk_root);
2842 * Take the device list mutex to prevent races with the final phase of
2843 * a device replace operation that replaces the device object associated
2844 * with map stripes (dev-replace.c:btrfs_dev_replace_finishing()).
2846 mutex_lock(&fs_devices->device_list_mutex);
2847 for (i = 0; i < map->num_stripes; i++) {
2848 struct btrfs_device *device = map->stripes[i].dev;
2849 ret = btrfs_free_dev_extent(trans, device,
2850 map->stripes[i].physical,
2853 mutex_unlock(&fs_devices->device_list_mutex);
2854 btrfs_abort_transaction(trans, ret);
2858 if (device->bytes_used > 0) {
2860 btrfs_device_set_bytes_used(device,
2861 device->bytes_used - dev_extent_len);
2862 spin_lock(&root->fs_info->free_chunk_lock);
2863 root->fs_info->free_chunk_space += dev_extent_len;
2864 spin_unlock(&root->fs_info->free_chunk_lock);
2865 btrfs_clear_space_info_full(root->fs_info);
2866 unlock_chunks(root);
2869 if (map->stripes[i].dev) {
2870 ret = btrfs_update_device(trans, map->stripes[i].dev);
2872 mutex_unlock(&fs_devices->device_list_mutex);
2873 btrfs_abort_transaction(trans, ret);
2878 mutex_unlock(&fs_devices->device_list_mutex);
2880 ret = btrfs_free_chunk(trans, root, chunk_objectid, chunk_offset);
2882 btrfs_abort_transaction(trans, ret);
2886 trace_btrfs_chunk_free(root, map, chunk_offset, em->len);
2888 if (map->type & BTRFS_BLOCK_GROUP_SYSTEM) {
2889 ret = btrfs_del_sys_chunk(root, chunk_objectid, chunk_offset);
2891 btrfs_abort_transaction(trans, ret);
2896 ret = btrfs_remove_block_group(trans, extent_root, chunk_offset, em);
2898 btrfs_abort_transaction(trans, ret);
2904 free_extent_map(em);
2908 static int btrfs_relocate_chunk(struct btrfs_root *root, u64 chunk_offset)
2910 struct btrfs_root *extent_root;
2911 struct btrfs_trans_handle *trans;
2914 root = root->fs_info->chunk_root;
2915 extent_root = root->fs_info->extent_root;
2918 * Prevent races with automatic removal of unused block groups.
2919 * After we relocate and before we remove the chunk with offset
2920 * chunk_offset, automatic removal of the block group can kick in,
2921 * resulting in a failure when calling btrfs_remove_chunk() below.
2923 * Make sure to acquire this mutex before doing a tree search (dev
2924 * or chunk trees) to find chunks. Otherwise the cleaner kthread might
2925 * call btrfs_remove_chunk() (through btrfs_delete_unused_bgs()) after
2926 * we release the path used to search the chunk/dev tree and before
2927 * the current task acquires this mutex and calls us.
2929 ASSERT(mutex_is_locked(&root->fs_info->delete_unused_bgs_mutex));
2931 ret = btrfs_can_relocate(extent_root, chunk_offset);
2935 /* step one, relocate all the extents inside this chunk */
2936 btrfs_scrub_pause(root);
2937 ret = btrfs_relocate_block_group(extent_root, chunk_offset);
2938 btrfs_scrub_continue(root);
2942 trans = btrfs_start_trans_remove_block_group(root->fs_info,
2944 if (IS_ERR(trans)) {
2945 ret = PTR_ERR(trans);
2946 btrfs_handle_fs_error(root->fs_info, ret, NULL);
2951 * step two, delete the device extents and the
2952 * chunk tree entries
2954 ret = btrfs_remove_chunk(trans, root, chunk_offset);
2955 btrfs_end_transaction(trans, extent_root);
2959 static int btrfs_relocate_sys_chunks(struct btrfs_root *root)
2961 struct btrfs_root *chunk_root = root->fs_info->chunk_root;
2962 struct btrfs_path *path;
2963 struct extent_buffer *leaf;
2964 struct btrfs_chunk *chunk;
2965 struct btrfs_key key;
2966 struct btrfs_key found_key;
2968 bool retried = false;
2972 path = btrfs_alloc_path();
2977 key.objectid = BTRFS_FIRST_CHUNK_TREE_OBJECTID;
2978 key.offset = (u64)-1;
2979 key.type = BTRFS_CHUNK_ITEM_KEY;
2982 mutex_lock(&root->fs_info->delete_unused_bgs_mutex);
2983 ret = btrfs_search_slot(NULL, chunk_root, &key, path, 0, 0);
2985 mutex_unlock(&root->fs_info->delete_unused_bgs_mutex);
2988 BUG_ON(ret == 0); /* Corruption */
2990 ret = btrfs_previous_item(chunk_root, path, key.objectid,
2993 mutex_unlock(&root->fs_info->delete_unused_bgs_mutex);
2999 leaf = path->nodes[0];
3000 btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]);
3002 chunk = btrfs_item_ptr(leaf, path->slots[0],
3003 struct btrfs_chunk);
3004 chunk_type = btrfs_chunk_type(leaf, chunk);
3005 btrfs_release_path(path);
3007 if (chunk_type & BTRFS_BLOCK_GROUP_SYSTEM) {
3008 ret = btrfs_relocate_chunk(chunk_root,
3015 mutex_unlock(&root->fs_info->delete_unused_bgs_mutex);
3017 if (found_key.offset == 0)
3019 key.offset = found_key.offset - 1;
3022 if (failed && !retried) {
3026 } else if (WARN_ON(failed && retried)) {
3030 btrfs_free_path(path);
3034 static int insert_balance_item(struct btrfs_root *root,
3035 struct btrfs_balance_control *bctl)
3037 struct btrfs_trans_handle *trans;
3038 struct btrfs_balance_item *item;
3039 struct btrfs_disk_balance_args disk_bargs;
3040 struct btrfs_path *path;
3041 struct extent_buffer *leaf;
3042 struct btrfs_key key;
3045 path = btrfs_alloc_path();
3049 trans = btrfs_start_transaction(root, 0);
3050 if (IS_ERR(trans)) {
3051 btrfs_free_path(path);
3052 return PTR_ERR(trans);
3055 key.objectid = BTRFS_BALANCE_OBJECTID;
3056 key.type = BTRFS_TEMPORARY_ITEM_KEY;
3059 ret = btrfs_insert_empty_item(trans, root, path, &key,
3064 leaf = path->nodes[0];
3065 item = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_balance_item);
3067 memset_extent_buffer(leaf, 0, (unsigned long)item, sizeof(*item));
3069 btrfs_cpu_balance_args_to_disk(&disk_bargs, &bctl->data);
3070 btrfs_set_balance_data(leaf, item, &disk_bargs);
3071 btrfs_cpu_balance_args_to_disk(&disk_bargs, &bctl->meta);
3072 btrfs_set_balance_meta(leaf, item, &disk_bargs);
3073 btrfs_cpu_balance_args_to_disk(&disk_bargs, &bctl->sys);
3074 btrfs_set_balance_sys(leaf, item, &disk_bargs);
3076 btrfs_set_balance_flags(leaf, item, bctl->flags);
3078 btrfs_mark_buffer_dirty(leaf);
3080 btrfs_free_path(path);
3081 err = btrfs_commit_transaction(trans, root);
3087 static int del_balance_item(struct btrfs_root *root)
3089 struct btrfs_trans_handle *trans;
3090 struct btrfs_path *path;
3091 struct btrfs_key key;
3094 path = btrfs_alloc_path();
3098 trans = btrfs_start_transaction(root, 0);
3099 if (IS_ERR(trans)) {
3100 btrfs_free_path(path);
3101 return PTR_ERR(trans);
3104 key.objectid = BTRFS_BALANCE_OBJECTID;
3105 key.type = BTRFS_TEMPORARY_ITEM_KEY;
3108 ret = btrfs_search_slot(trans, root, &key, path, -1, 1);
3116 ret = btrfs_del_item(trans, root, path);
3118 btrfs_free_path(path);
3119 err = btrfs_commit_transaction(trans, root);
3126 * This is a heuristic used to reduce the number of chunks balanced on
3127 * resume after balance was interrupted.
3129 static void update_balance_args(struct btrfs_balance_control *bctl)
3132 * Turn on soft mode for chunk types that were being converted.
3134 if (bctl->data.flags & BTRFS_BALANCE_ARGS_CONVERT)
3135 bctl->data.flags |= BTRFS_BALANCE_ARGS_SOFT;
3136 if (bctl->sys.flags & BTRFS_BALANCE_ARGS_CONVERT)
3137 bctl->sys.flags |= BTRFS_BALANCE_ARGS_SOFT;
3138 if (bctl->meta.flags & BTRFS_BALANCE_ARGS_CONVERT)
3139 bctl->meta.flags |= BTRFS_BALANCE_ARGS_SOFT;
3142 * Turn on usage filter if is not already used. The idea is
3143 * that chunks that we have already balanced should be
3144 * reasonably full. Don't do it for chunks that are being
3145 * converted - that will keep us from relocating unconverted
3146 * (albeit full) chunks.
3148 if (!(bctl->data.flags & BTRFS_BALANCE_ARGS_USAGE) &&
3149 !(bctl->data.flags & BTRFS_BALANCE_ARGS_USAGE_RANGE) &&
3150 !(bctl->data.flags & BTRFS_BALANCE_ARGS_CONVERT)) {
3151 bctl->data.flags |= BTRFS_BALANCE_ARGS_USAGE;
3152 bctl->data.usage = 90;
3154 if (!(bctl->sys.flags & BTRFS_BALANCE_ARGS_USAGE) &&
3155 !(bctl->sys.flags & BTRFS_BALANCE_ARGS_USAGE_RANGE) &&
3156 !(bctl->sys.flags & BTRFS_BALANCE_ARGS_CONVERT)) {
3157 bctl->sys.flags |= BTRFS_BALANCE_ARGS_USAGE;
3158 bctl->sys.usage = 90;
3160 if (!(bctl->meta.flags & BTRFS_BALANCE_ARGS_USAGE) &&
3161 !(bctl->meta.flags & BTRFS_BALANCE_ARGS_USAGE_RANGE) &&
3162 !(bctl->meta.flags & BTRFS_BALANCE_ARGS_CONVERT)) {
3163 bctl->meta.flags |= BTRFS_BALANCE_ARGS_USAGE;
3164 bctl->meta.usage = 90;
3169 * Should be called with both balance and volume mutexes held to
3170 * serialize other volume operations (add_dev/rm_dev/resize) with
3171 * restriper. Same goes for unset_balance_control.
3173 static void set_balance_control(struct btrfs_balance_control *bctl)
3175 struct btrfs_fs_info *fs_info = bctl->fs_info;
3177 BUG_ON(fs_info->balance_ctl);
3179 spin_lock(&fs_info->balance_lock);
3180 fs_info->balance_ctl = bctl;
3181 spin_unlock(&fs_info->balance_lock);
3184 static void unset_balance_control(struct btrfs_fs_info *fs_info)
3186 struct btrfs_balance_control *bctl = fs_info->balance_ctl;
3188 BUG_ON(!fs_info->balance_ctl);
3190 spin_lock(&fs_info->balance_lock);
3191 fs_info->balance_ctl = NULL;
3192 spin_unlock(&fs_info->balance_lock);
3198 * Balance filters. Return 1 if chunk should be filtered out
3199 * (should not be balanced).
3201 static int chunk_profiles_filter(u64 chunk_type,
3202 struct btrfs_balance_args *bargs)
3204 chunk_type = chunk_to_extended(chunk_type) &
3205 BTRFS_EXTENDED_PROFILE_MASK;
3207 if (bargs->profiles & chunk_type)
3213 static int chunk_usage_range_filter(struct btrfs_fs_info *fs_info, u64 chunk_offset,
3214 struct btrfs_balance_args *bargs)
3216 struct btrfs_block_group_cache *cache;
3218 u64 user_thresh_min;
3219 u64 user_thresh_max;
3222 cache = btrfs_lookup_block_group(fs_info, chunk_offset);
3223 chunk_used = btrfs_block_group_used(&cache->item);
3225 if (bargs->usage_min == 0)
3226 user_thresh_min = 0;
3228 user_thresh_min = div_factor_fine(cache->key.offset,
3231 if (bargs->usage_max == 0)
3232 user_thresh_max = 1;
3233 else if (bargs->usage_max > 100)
3234 user_thresh_max = cache->key.offset;
3236 user_thresh_max = div_factor_fine(cache->key.offset,
3239 if (user_thresh_min <= chunk_used && chunk_used < user_thresh_max)
3242 btrfs_put_block_group(cache);
3246 static int chunk_usage_filter(struct btrfs_fs_info *fs_info,
3247 u64 chunk_offset, struct btrfs_balance_args *bargs)
3249 struct btrfs_block_group_cache *cache;
3250 u64 chunk_used, user_thresh;
3253 cache = btrfs_lookup_block_group(fs_info, chunk_offset);
3254 chunk_used = btrfs_block_group_used(&cache->item);
3256 if (bargs->usage_min == 0)
3258 else if (bargs->usage > 100)
3259 user_thresh = cache->key.offset;
3261 user_thresh = div_factor_fine(cache->key.offset,
3264 if (chunk_used < user_thresh)
3267 btrfs_put_block_group(cache);
3271 static int chunk_devid_filter(struct extent_buffer *leaf,
3272 struct btrfs_chunk *chunk,
3273 struct btrfs_balance_args *bargs)
3275 struct btrfs_stripe *stripe;
3276 int num_stripes = btrfs_chunk_num_stripes(leaf, chunk);
3279 for (i = 0; i < num_stripes; i++) {
3280 stripe = btrfs_stripe_nr(chunk, i);
3281 if (btrfs_stripe_devid(leaf, stripe) == bargs->devid)
3288 /* [pstart, pend) */
3289 static int chunk_drange_filter(struct extent_buffer *leaf,
3290 struct btrfs_chunk *chunk,
3292 struct btrfs_balance_args *bargs)
3294 struct btrfs_stripe *stripe;
3295 int num_stripes = btrfs_chunk_num_stripes(leaf, chunk);
3301 if (!(bargs->flags & BTRFS_BALANCE_ARGS_DEVID))
3304 if (btrfs_chunk_type(leaf, chunk) & (BTRFS_BLOCK_GROUP_DUP |
3305 BTRFS_BLOCK_GROUP_RAID1 | BTRFS_BLOCK_GROUP_RAID10)) {
3306 factor = num_stripes / 2;
3307 } else if (btrfs_chunk_type(leaf, chunk) & BTRFS_BLOCK_GROUP_RAID5) {
3308 factor = num_stripes - 1;
3309 } else if (btrfs_chunk_type(leaf, chunk) & BTRFS_BLOCK_GROUP_RAID6) {
3310 factor = num_stripes - 2;
3312 factor = num_stripes;
3315 for (i = 0; i < num_stripes; i++) {
3316 stripe = btrfs_stripe_nr(chunk, i);
3317 if (btrfs_stripe_devid(leaf, stripe) != bargs->devid)
3320 stripe_offset = btrfs_stripe_offset(leaf, stripe);
3321 stripe_length = btrfs_chunk_length(leaf, chunk);
3322 stripe_length = div_u64(stripe_length, factor);
3324 if (stripe_offset < bargs->pend &&
3325 stripe_offset + stripe_length > bargs->pstart)
3332 /* [vstart, vend) */
3333 static int chunk_vrange_filter(struct extent_buffer *leaf,
3334 struct btrfs_chunk *chunk,
3336 struct btrfs_balance_args *bargs)
3338 if (chunk_offset < bargs->vend &&
3339 chunk_offset + btrfs_chunk_length(leaf, chunk) > bargs->vstart)
3340 /* at least part of the chunk is inside this vrange */
3346 static int chunk_stripes_range_filter(struct extent_buffer *leaf,
3347 struct btrfs_chunk *chunk,
3348 struct btrfs_balance_args *bargs)
3350 int num_stripes = btrfs_chunk_num_stripes(leaf, chunk);
3352 if (bargs->stripes_min <= num_stripes
3353 && num_stripes <= bargs->stripes_max)
3359 static int chunk_soft_convert_filter(u64 chunk_type,
3360 struct btrfs_balance_args *bargs)
3362 if (!(bargs->flags & BTRFS_BALANCE_ARGS_CONVERT))
3365 chunk_type = chunk_to_extended(chunk_type) &
3366 BTRFS_EXTENDED_PROFILE_MASK;
3368 if (bargs->target == chunk_type)
3374 static int should_balance_chunk(struct btrfs_root *root,
3375 struct extent_buffer *leaf,
3376 struct btrfs_chunk *chunk, u64 chunk_offset)
3378 struct btrfs_balance_control *bctl = root->fs_info->balance_ctl;
3379 struct btrfs_balance_args *bargs = NULL;
3380 u64 chunk_type = btrfs_chunk_type(leaf, chunk);
3383 if (!((chunk_type & BTRFS_BLOCK_GROUP_TYPE_MASK) &
3384 (bctl->flags & BTRFS_BALANCE_TYPE_MASK))) {
3388 if (chunk_type & BTRFS_BLOCK_GROUP_DATA)
3389 bargs = &bctl->data;
3390 else if (chunk_type & BTRFS_BLOCK_GROUP_SYSTEM)
3392 else if (chunk_type & BTRFS_BLOCK_GROUP_METADATA)
3393 bargs = &bctl->meta;
3395 /* profiles filter */
3396 if ((bargs->flags & BTRFS_BALANCE_ARGS_PROFILES) &&
3397 chunk_profiles_filter(chunk_type, bargs)) {
3402 if ((bargs->flags & BTRFS_BALANCE_ARGS_USAGE) &&
3403 chunk_usage_filter(bctl->fs_info, chunk_offset, bargs)) {
3405 } else if ((bargs->flags & BTRFS_BALANCE_ARGS_USAGE_RANGE) &&
3406 chunk_usage_range_filter(bctl->fs_info, chunk_offset, bargs)) {
3411 if ((bargs->flags & BTRFS_BALANCE_ARGS_DEVID) &&
3412 chunk_devid_filter(leaf, chunk, bargs)) {
3416 /* drange filter, makes sense only with devid filter */
3417 if ((bargs->flags & BTRFS_BALANCE_ARGS_DRANGE) &&
3418 chunk_drange_filter(leaf, chunk, chunk_offset, bargs)) {
3423 if ((bargs->flags & BTRFS_BALANCE_ARGS_VRANGE) &&
3424 chunk_vrange_filter(leaf, chunk, chunk_offset, bargs)) {
3428 /* stripes filter */
3429 if ((bargs->flags & BTRFS_BALANCE_ARGS_STRIPES_RANGE) &&
3430 chunk_stripes_range_filter(leaf, chunk, bargs)) {
3434 /* soft profile changing mode */
3435 if ((bargs->flags & BTRFS_BALANCE_ARGS_SOFT) &&
3436 chunk_soft_convert_filter(chunk_type, bargs)) {
3441 * limited by count, must be the last filter
3443 if ((bargs->flags & BTRFS_BALANCE_ARGS_LIMIT)) {
3444 if (bargs->limit == 0)
3448 } else if ((bargs->flags & BTRFS_BALANCE_ARGS_LIMIT_RANGE)) {
3450 * Same logic as the 'limit' filter; the minimum cannot be
3451 * determined here because we do not have the global information
3452 * about the count of all chunks that satisfy the filters.
3454 if (bargs->limit_max == 0)
3463 static int __btrfs_balance(struct btrfs_fs_info *fs_info)
3465 struct btrfs_balance_control *bctl = fs_info->balance_ctl;
3466 struct btrfs_root *chunk_root = fs_info->chunk_root;
3467 struct btrfs_root *dev_root = fs_info->dev_root;
3468 struct list_head *devices;
3469 struct btrfs_device *device;
3473 struct btrfs_chunk *chunk;
3474 struct btrfs_path *path = NULL;
3475 struct btrfs_key key;
3476 struct btrfs_key found_key;
3477 struct btrfs_trans_handle *trans;
3478 struct extent_buffer *leaf;
3481 int enospc_errors = 0;
3482 bool counting = true;
3483 /* The single value limit and min/max limits use the same bytes in the */
3484 u64 limit_data = bctl->data.limit;
3485 u64 limit_meta = bctl->meta.limit;
3486 u64 limit_sys = bctl->sys.limit;
3490 int chunk_reserved = 0;
3493 /* step one make some room on all the devices */
3494 devices = &fs_info->fs_devices->devices;
3495 list_for_each_entry(device, devices, dev_list) {
3496 old_size = btrfs_device_get_total_bytes(device);
3497 size_to_free = div_factor(old_size, 1);
3498 size_to_free = min_t(u64, size_to_free, SZ_1M);
3499 if (!device->writeable ||
3500 btrfs_device_get_total_bytes(device) -
3501 btrfs_device_get_bytes_used(device) > size_to_free ||
3502 device->is_tgtdev_for_dev_replace)
3505 ret = btrfs_shrink_device(device, old_size - size_to_free);
3509 /* btrfs_shrink_device never returns ret > 0 */
3514 trans = btrfs_start_transaction(dev_root, 0);
3515 if (IS_ERR(trans)) {
3516 ret = PTR_ERR(trans);
3517 btrfs_info_in_rcu(fs_info,
3518 "resize: unable to start transaction after shrinking device %s (error %d), old size %llu, new size %llu",
3519 rcu_str_deref(device->name), ret,
3520 old_size, old_size - size_to_free);
3524 ret = btrfs_grow_device(trans, device, old_size);
3526 btrfs_end_transaction(trans, dev_root);
3527 /* btrfs_grow_device never returns ret > 0 */
3529 btrfs_info_in_rcu(fs_info,
3530 "resize: unable to grow device after shrinking device %s (error %d), old size %llu, new size %llu",
3531 rcu_str_deref(device->name), ret,
3532 old_size, old_size - size_to_free);
3536 btrfs_end_transaction(trans, dev_root);
3539 /* step two, relocate all the chunks */
3540 path = btrfs_alloc_path();
3546 /* zero out stat counters */
3547 spin_lock(&fs_info->balance_lock);
3548 memset(&bctl->stat, 0, sizeof(bctl->stat));
3549 spin_unlock(&fs_info->balance_lock);
3553 * The single value limit and min/max limits use the same bytes
3556 bctl->data.limit = limit_data;
3557 bctl->meta.limit = limit_meta;
3558 bctl->sys.limit = limit_sys;
3560 key.objectid = BTRFS_FIRST_CHUNK_TREE_OBJECTID;
3561 key.offset = (u64)-1;
3562 key.type = BTRFS_CHUNK_ITEM_KEY;
3565 if ((!counting && atomic_read(&fs_info->balance_pause_req)) ||
3566 atomic_read(&fs_info->balance_cancel_req)) {
3571 mutex_lock(&fs_info->delete_unused_bgs_mutex);
3572 ret = btrfs_search_slot(NULL, chunk_root, &key, path, 0, 0);
3574 mutex_unlock(&fs_info->delete_unused_bgs_mutex);
3579 * this shouldn't happen, it means the last relocate
3583 BUG(); /* FIXME break ? */
3585 ret = btrfs_previous_item(chunk_root, path, 0,
3586 BTRFS_CHUNK_ITEM_KEY);
3588 mutex_unlock(&fs_info->delete_unused_bgs_mutex);
3593 leaf = path->nodes[0];
3594 slot = path->slots[0];
3595 btrfs_item_key_to_cpu(leaf, &found_key, slot);
3597 if (found_key.objectid != key.objectid) {
3598 mutex_unlock(&fs_info->delete_unused_bgs_mutex);
3602 chunk = btrfs_item_ptr(leaf, slot, struct btrfs_chunk);
3603 chunk_type = btrfs_chunk_type(leaf, chunk);
3606 spin_lock(&fs_info->balance_lock);
3607 bctl->stat.considered++;
3608 spin_unlock(&fs_info->balance_lock);
3611 ret = should_balance_chunk(chunk_root, leaf, chunk,
3614 btrfs_release_path(path);
3616 mutex_unlock(&fs_info->delete_unused_bgs_mutex);
3621 mutex_unlock(&fs_info->delete_unused_bgs_mutex);
3622 spin_lock(&fs_info->balance_lock);
3623 bctl->stat.expected++;
3624 spin_unlock(&fs_info->balance_lock);
3626 if (chunk_type & BTRFS_BLOCK_GROUP_DATA)
3628 else if (chunk_type & BTRFS_BLOCK_GROUP_SYSTEM)
3630 else if (chunk_type & BTRFS_BLOCK_GROUP_METADATA)
3637 * Apply limit_min filter, no need to check if the LIMITS
3638 * filter is used, limit_min is 0 by default
3640 if (((chunk_type & BTRFS_BLOCK_GROUP_DATA) &&
3641 count_data < bctl->data.limit_min)
3642 || ((chunk_type & BTRFS_BLOCK_GROUP_METADATA) &&
3643 count_meta < bctl->meta.limit_min)
3644 || ((chunk_type & BTRFS_BLOCK_GROUP_SYSTEM) &&
3645 count_sys < bctl->sys.limit_min)) {
3646 mutex_unlock(&fs_info->delete_unused_bgs_mutex);
3650 ASSERT(fs_info->data_sinfo);
3651 spin_lock(&fs_info->data_sinfo->lock);
3652 bytes_used = fs_info->data_sinfo->bytes_used;
3653 spin_unlock(&fs_info->data_sinfo->lock);
3655 if ((chunk_type & BTRFS_BLOCK_GROUP_DATA) &&
3656 !chunk_reserved && !bytes_used) {
3657 trans = btrfs_start_transaction(chunk_root, 0);
3658 if (IS_ERR(trans)) {
3659 mutex_unlock(&fs_info->delete_unused_bgs_mutex);
3660 ret = PTR_ERR(trans);
3664 ret = btrfs_force_chunk_alloc(trans, chunk_root,
3665 BTRFS_BLOCK_GROUP_DATA);
3666 btrfs_end_transaction(trans, chunk_root);
3668 mutex_unlock(&fs_info->delete_unused_bgs_mutex);
3674 ret = btrfs_relocate_chunk(chunk_root,
3676 mutex_unlock(&fs_info->delete_unused_bgs_mutex);
3677 if (ret && ret != -ENOSPC)
3679 if (ret == -ENOSPC) {
3682 spin_lock(&fs_info->balance_lock);
3683 bctl->stat.completed++;
3684 spin_unlock(&fs_info->balance_lock);
3687 if (found_key.offset == 0)
3689 key.offset = found_key.offset - 1;
3693 btrfs_release_path(path);
3698 btrfs_free_path(path);
3699 if (enospc_errors) {
3700 btrfs_info(fs_info, "%d enospc errors during balance",
3710 * alloc_profile_is_valid - see if a given profile is valid and reduced
3711 * @flags: profile to validate
3712 * @extended: if true @flags is treated as an extended profile
3714 static int alloc_profile_is_valid(u64 flags, int extended)
3716 u64 mask = (extended ? BTRFS_EXTENDED_PROFILE_MASK :
3717 BTRFS_BLOCK_GROUP_PROFILE_MASK);
3719 flags &= ~BTRFS_BLOCK_GROUP_TYPE_MASK;
3721 /* 1) check that all other bits are zeroed */
3725 /* 2) see if profile is reduced */
3727 return !extended; /* "0" is valid for usual profiles */
3729 /* true if exactly one bit set */
3730 return (flags & (flags - 1)) == 0;
3733 static inline int balance_need_close(struct btrfs_fs_info *fs_info)
3735 /* cancel requested || normal exit path */
3736 return atomic_read(&fs_info->balance_cancel_req) ||
3737 (atomic_read(&fs_info->balance_pause_req) == 0 &&
3738 atomic_read(&fs_info->balance_cancel_req) == 0);
3741 static void __cancel_balance(struct btrfs_fs_info *fs_info)
3745 unset_balance_control(fs_info);
3746 ret = del_balance_item(fs_info->tree_root);
3748 btrfs_handle_fs_error(fs_info, ret, NULL);
3750 atomic_set(&fs_info->mutually_exclusive_operation_running, 0);
3753 /* Non-zero return value signifies invalidity */
3754 static inline int validate_convert_profile(struct btrfs_balance_args *bctl_arg,
3757 return ((bctl_arg->flags & BTRFS_BALANCE_ARGS_CONVERT) &&
3758 (!alloc_profile_is_valid(bctl_arg->target, 1) ||
3759 (bctl_arg->target & ~allowed)));
3763 * Should be called with both balance and volume mutexes held
3765 int btrfs_balance(struct btrfs_balance_control *bctl,
3766 struct btrfs_ioctl_balance_args *bargs)
3768 struct btrfs_fs_info *fs_info = bctl->fs_info;
3769 u64 meta_target, data_target;
3776 if (btrfs_fs_closing(fs_info) ||
3777 atomic_read(&fs_info->balance_pause_req) ||
3778 atomic_read(&fs_info->balance_cancel_req)) {
3783 allowed = btrfs_super_incompat_flags(fs_info->super_copy);
3784 if (allowed & BTRFS_FEATURE_INCOMPAT_MIXED_GROUPS)
3788 * In case of mixed groups both data and meta should be picked,
3789 * and identical options should be given for both of them.
3791 allowed = BTRFS_BALANCE_DATA | BTRFS_BALANCE_METADATA;
3792 if (mixed && (bctl->flags & allowed)) {
3793 if (!(bctl->flags & BTRFS_BALANCE_DATA) ||
3794 !(bctl->flags & BTRFS_BALANCE_METADATA) ||
3795 memcmp(&bctl->data, &bctl->meta, sizeof(bctl->data))) {
3797 "with mixed groups data and metadata balance options must be the same");
3803 num_devices = fs_info->fs_devices->num_devices;
3804 btrfs_dev_replace_lock(&fs_info->dev_replace, 0);
3805 if (btrfs_dev_replace_is_ongoing(&fs_info->dev_replace)) {
3806 BUG_ON(num_devices < 1);
3809 btrfs_dev_replace_unlock(&fs_info->dev_replace, 0);
3810 allowed = BTRFS_AVAIL_ALLOC_BIT_SINGLE | BTRFS_BLOCK_GROUP_DUP;
3811 if (num_devices > 1)
3812 allowed |= (BTRFS_BLOCK_GROUP_RAID0 | BTRFS_BLOCK_GROUP_RAID1);
3813 if (num_devices > 2)
3814 allowed |= BTRFS_BLOCK_GROUP_RAID5;
3815 if (num_devices > 3)
3816 allowed |= (BTRFS_BLOCK_GROUP_RAID10 |
3817 BTRFS_BLOCK_GROUP_RAID6);
3818 if (validate_convert_profile(&bctl->data, allowed)) {
3820 "unable to start balance with target data profile %llu",
3825 if (validate_convert_profile(&bctl->meta, allowed)) {
3827 "unable to start balance with target metadata profile %llu",
3832 if (validate_convert_profile(&bctl->sys, allowed)) {
3834 "unable to start balance with target system profile %llu",
3840 /* allow to reduce meta or sys integrity only if force set */
3841 allowed = BTRFS_BLOCK_GROUP_DUP | BTRFS_BLOCK_GROUP_RAID1 |
3842 BTRFS_BLOCK_GROUP_RAID10 |
3843 BTRFS_BLOCK_GROUP_RAID5 |
3844 BTRFS_BLOCK_GROUP_RAID6;
3846 seq = read_seqbegin(&fs_info->profiles_lock);
3848 if (((bctl->sys.flags & BTRFS_BALANCE_ARGS_CONVERT) &&
3849 (fs_info->avail_system_alloc_bits & allowed) &&
3850 !(bctl->sys.target & allowed)) ||
3851 ((bctl->meta.flags & BTRFS_BALANCE_ARGS_CONVERT) &&
3852 (fs_info->avail_metadata_alloc_bits & allowed) &&
3853 !(bctl->meta.target & allowed))) {
3854 if (bctl->flags & BTRFS_BALANCE_FORCE) {
3856 "force reducing metadata integrity");
3859 "balance will reduce metadata integrity, use force if you want this");
3864 } while (read_seqretry(&fs_info->profiles_lock, seq));
3866 /* if we're not converting, the target field is uninitialized */
3867 meta_target = (bctl->meta.flags & BTRFS_BALANCE_ARGS_CONVERT) ?
3868 bctl->meta.target : fs_info->avail_metadata_alloc_bits;
3869 data_target = (bctl->data.flags & BTRFS_BALANCE_ARGS_CONVERT) ?
3870 bctl->data.target : fs_info->avail_data_alloc_bits;
3871 if (btrfs_get_num_tolerated_disk_barrier_failures(meta_target) <
3872 btrfs_get_num_tolerated_disk_barrier_failures(data_target)) {
3874 "metadata profile 0x%llx has lower redundancy than data profile 0x%llx",
3875 meta_target, data_target);
3878 if (bctl->sys.flags & BTRFS_BALANCE_ARGS_CONVERT) {
3879 fs_info->num_tolerated_disk_barrier_failures = min(
3880 btrfs_calc_num_tolerated_disk_barrier_failures(fs_info),
3881 btrfs_get_num_tolerated_disk_barrier_failures(
3885 ret = insert_balance_item(fs_info->tree_root, bctl);
3886 if (ret && ret != -EEXIST)
3889 if (!(bctl->flags & BTRFS_BALANCE_RESUME)) {
3890 BUG_ON(ret == -EEXIST);
3891 set_balance_control(bctl);
3893 BUG_ON(ret != -EEXIST);
3894 spin_lock(&fs_info->balance_lock);
3895 update_balance_args(bctl);
3896 spin_unlock(&fs_info->balance_lock);
3899 atomic_inc(&fs_info->balance_running);
3900 mutex_unlock(&fs_info->balance_mutex);
3902 ret = __btrfs_balance(fs_info);
3904 mutex_lock(&fs_info->balance_mutex);
3905 atomic_dec(&fs_info->balance_running);
3907 if (bctl->sys.flags & BTRFS_BALANCE_ARGS_CONVERT) {
3908 fs_info->num_tolerated_disk_barrier_failures =
3909 btrfs_calc_num_tolerated_disk_barrier_failures(fs_info);
3913 memset(bargs, 0, sizeof(*bargs));
3914 update_ioctl_balance_args(fs_info, 0, bargs);
3917 if ((ret && ret != -ECANCELED && ret != -ENOSPC) ||
3918 balance_need_close(fs_info)) {
3919 __cancel_balance(fs_info);
3922 wake_up(&fs_info->balance_wait_q);
3926 if (bctl->flags & BTRFS_BALANCE_RESUME)
3927 __cancel_balance(fs_info);
3930 atomic_set(&fs_info->mutually_exclusive_operation_running, 0);
3935 static int balance_kthread(void *data)
3937 struct btrfs_fs_info *fs_info = data;
3940 mutex_lock(&fs_info->volume_mutex);
3941 mutex_lock(&fs_info->balance_mutex);
3943 if (fs_info->balance_ctl) {
3944 btrfs_info(fs_info, "continuing balance");
3945 ret = btrfs_balance(fs_info->balance_ctl, NULL);
3948 mutex_unlock(&fs_info->balance_mutex);
3949 mutex_unlock(&fs_info->volume_mutex);
3954 int btrfs_resume_balance_async(struct btrfs_fs_info *fs_info)
3956 struct task_struct *tsk;
3958 spin_lock(&fs_info->balance_lock);
3959 if (!fs_info->balance_ctl) {
3960 spin_unlock(&fs_info->balance_lock);
3963 spin_unlock(&fs_info->balance_lock);
3965 if (btrfs_test_opt(fs_info, SKIP_BALANCE)) {
3966 btrfs_info(fs_info, "force skipping balance");
3971 * A ro->rw remount sequence should continue with the paused balance
3972 * regardless of who pauses it, system or the user as of now, so set
3975 spin_lock(&fs_info->balance_lock);
3976 fs_info->balance_ctl->flags |= BTRFS_BALANCE_RESUME;
3977 spin_unlock(&fs_info->balance_lock);
3979 tsk = kthread_run(balance_kthread, fs_info, "btrfs-balance");
3980 return PTR_ERR_OR_ZERO(tsk);
3983 int btrfs_recover_balance(struct btrfs_fs_info *fs_info)
3985 struct btrfs_balance_control *bctl;
3986 struct btrfs_balance_item *item;
3987 struct btrfs_disk_balance_args disk_bargs;
3988 struct btrfs_path *path;
3989 struct extent_buffer *leaf;
3990 struct btrfs_key key;
3993 path = btrfs_alloc_path();
3997 key.objectid = BTRFS_BALANCE_OBJECTID;
3998 key.type = BTRFS_TEMPORARY_ITEM_KEY;
4001 ret = btrfs_search_slot(NULL, fs_info->tree_root, &key, path, 0, 0);
4004 if (ret > 0) { /* ret = -ENOENT; */
4009 bctl = kzalloc(sizeof(*bctl), GFP_NOFS);
4015 leaf = path->nodes[0];
4016 item = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_balance_item);
4018 bctl->fs_info = fs_info;
4019 bctl->flags = btrfs_balance_flags(leaf, item);
4020 bctl->flags |= BTRFS_BALANCE_RESUME;
4022 btrfs_balance_data(leaf, item, &disk_bargs);
4023 btrfs_disk_balance_args_to_cpu(&bctl->data, &disk_bargs);
4024 btrfs_balance_meta(leaf, item, &disk_bargs);
4025 btrfs_disk_balance_args_to_cpu(&bctl->meta, &disk_bargs);
4026 btrfs_balance_sys(leaf, item, &disk_bargs);
4027 btrfs_disk_balance_args_to_cpu(&bctl->sys, &disk_bargs);
4029 WARN_ON(atomic_xchg(&fs_info->mutually_exclusive_operation_running, 1));
4031 mutex_lock(&fs_info->volume_mutex);
4032 mutex_lock(&fs_info->balance_mutex);
4034 set_balance_control(bctl);
4036 mutex_unlock(&fs_info->balance_mutex);
4037 mutex_unlock(&fs_info->volume_mutex);
4039 btrfs_free_path(path);
4043 int btrfs_pause_balance(struct btrfs_fs_info *fs_info)
4047 mutex_lock(&fs_info->balance_mutex);
4048 if (!fs_info->balance_ctl) {
4049 mutex_unlock(&fs_info->balance_mutex);
4053 if (atomic_read(&fs_info->balance_running)) {
4054 atomic_inc(&fs_info->balance_pause_req);
4055 mutex_unlock(&fs_info->balance_mutex);
4057 wait_event(fs_info->balance_wait_q,
4058 atomic_read(&fs_info->balance_running) == 0);
4060 mutex_lock(&fs_info->balance_mutex);
4061 /* we are good with balance_ctl ripped off from under us */
4062 BUG_ON(atomic_read(&fs_info->balance_running));
4063 atomic_dec(&fs_info->balance_pause_req);
4068 mutex_unlock(&fs_info->balance_mutex);
4072 int btrfs_cancel_balance(struct btrfs_fs_info *fs_info)
4074 if (fs_info->sb->s_flags & MS_RDONLY)
4077 mutex_lock(&fs_info->balance_mutex);
4078 if (!fs_info->balance_ctl) {
4079 mutex_unlock(&fs_info->balance_mutex);
4083 atomic_inc(&fs_info->balance_cancel_req);
4085 * if we are running just wait and return, balance item is
4086 * deleted in btrfs_balance in this case
4088 if (atomic_read(&fs_info->balance_running)) {
4089 mutex_unlock(&fs_info->balance_mutex);
4090 wait_event(fs_info->balance_wait_q,
4091 atomic_read(&fs_info->balance_running) == 0);
4092 mutex_lock(&fs_info->balance_mutex);
4094 /* __cancel_balance needs volume_mutex */
4095 mutex_unlock(&fs_info->balance_mutex);
4096 mutex_lock(&fs_info->volume_mutex);
4097 mutex_lock(&fs_info->balance_mutex);
4099 if (fs_info->balance_ctl)
4100 __cancel_balance(fs_info);
4102 mutex_unlock(&fs_info->volume_mutex);
4105 BUG_ON(fs_info->balance_ctl || atomic_read(&fs_info->balance_running));
4106 atomic_dec(&fs_info->balance_cancel_req);
4107 mutex_unlock(&fs_info->balance_mutex);
4111 static int btrfs_uuid_scan_kthread(void *data)
4113 struct btrfs_fs_info *fs_info = data;
4114 struct btrfs_root *root = fs_info->tree_root;
4115 struct btrfs_key key;
4116 struct btrfs_key max_key;
4117 struct btrfs_path *path = NULL;
4119 struct extent_buffer *eb;
4121 struct btrfs_root_item root_item;
4123 struct btrfs_trans_handle *trans = NULL;
4125 path = btrfs_alloc_path();
4132 key.type = BTRFS_ROOT_ITEM_KEY;
4135 max_key.objectid = (u64)-1;
4136 max_key.type = BTRFS_ROOT_ITEM_KEY;
4137 max_key.offset = (u64)-1;
4140 ret = btrfs_search_forward(root, &key, path, 0);
4147 if (key.type != BTRFS_ROOT_ITEM_KEY ||
4148 (key.objectid < BTRFS_FIRST_FREE_OBJECTID &&
4149 key.objectid != BTRFS_FS_TREE_OBJECTID) ||
4150 key.objectid > BTRFS_LAST_FREE_OBJECTID)
4153 eb = path->nodes[0];
4154 slot = path->slots[0];
4155 item_size = btrfs_item_size_nr(eb, slot);
4156 if (item_size < sizeof(root_item))
4159 read_extent_buffer(eb, &root_item,
4160 btrfs_item_ptr_offset(eb, slot),
4161 (int)sizeof(root_item));
4162 if (btrfs_root_refs(&root_item) == 0)
4165 if (!btrfs_is_empty_uuid(root_item.uuid) ||
4166 !btrfs_is_empty_uuid(root_item.received_uuid)) {
4170 btrfs_release_path(path);
4172 * 1 - subvol uuid item
4173 * 1 - received_subvol uuid item
4175 trans = btrfs_start_transaction(fs_info->uuid_root, 2);
4176 if (IS_ERR(trans)) {
4177 ret = PTR_ERR(trans);
4185 btrfs_release_path(path);
4186 if (!btrfs_is_empty_uuid(root_item.uuid)) {
4187 ret = btrfs_uuid_tree_add(trans, fs_info->uuid_root,
4189 BTRFS_UUID_KEY_SUBVOL,
4192 btrfs_warn(fs_info, "uuid_tree_add failed %d",
4198 if (!btrfs_is_empty_uuid(root_item.received_uuid)) {
4199 ret = btrfs_uuid_tree_add(trans, fs_info->uuid_root,
4200 root_item.received_uuid,
4201 BTRFS_UUID_KEY_RECEIVED_SUBVOL,
4204 btrfs_warn(fs_info, "uuid_tree_add failed %d",
4211 btrfs_release_path(path);
4213 ret = btrfs_end_transaction(trans, fs_info->uuid_root);
4219 if (key.offset < (u64)-1) {
4221 } else if (key.type < BTRFS_ROOT_ITEM_KEY) {
4223 key.type = BTRFS_ROOT_ITEM_KEY;
4224 } else if (key.objectid < (u64)-1) {
4226 key.type = BTRFS_ROOT_ITEM_KEY;
4235 btrfs_free_path(path);
4236 if (trans && !IS_ERR(trans))
4237 btrfs_end_transaction(trans, fs_info->uuid_root);
4239 btrfs_warn(fs_info, "btrfs_uuid_scan_kthread failed %d", ret);
4241 set_bit(BTRFS_FS_UPDATE_UUID_TREE_GEN, &fs_info->flags);
4242 up(&fs_info->uuid_tree_rescan_sem);
4247 * Callback for btrfs_uuid_tree_iterate().
4249 * 0 check succeeded, the entry is not outdated.
4250 * < 0 if an error occurred.
4251 * > 0 if the check failed, which means the caller shall remove the entry.
4253 static int btrfs_check_uuid_tree_entry(struct btrfs_fs_info *fs_info,
4254 u8 *uuid, u8 type, u64 subid)
4256 struct btrfs_key key;
4258 struct btrfs_root *subvol_root;
4260 if (type != BTRFS_UUID_KEY_SUBVOL &&
4261 type != BTRFS_UUID_KEY_RECEIVED_SUBVOL)
4264 key.objectid = subid;
4265 key.type = BTRFS_ROOT_ITEM_KEY;
4266 key.offset = (u64)-1;
4267 subvol_root = btrfs_read_fs_root_no_name(fs_info, &key);
4268 if (IS_ERR(subvol_root)) {
4269 ret = PTR_ERR(subvol_root);
4276 case BTRFS_UUID_KEY_SUBVOL:
4277 if (memcmp(uuid, subvol_root->root_item.uuid, BTRFS_UUID_SIZE))
4280 case BTRFS_UUID_KEY_RECEIVED_SUBVOL:
4281 if (memcmp(uuid, subvol_root->root_item.received_uuid,
4291 static int btrfs_uuid_rescan_kthread(void *data)
4293 struct btrfs_fs_info *fs_info = (struct btrfs_fs_info *)data;
4297 * 1st step is to iterate through the existing UUID tree and
4298 * to delete all entries that contain outdated data.
4299 * 2nd step is to add all missing entries to the UUID tree.
4301 ret = btrfs_uuid_tree_iterate(fs_info, btrfs_check_uuid_tree_entry);
4303 btrfs_warn(fs_info, "iterating uuid_tree failed %d", ret);
4304 up(&fs_info->uuid_tree_rescan_sem);
4307 return btrfs_uuid_scan_kthread(data);
4310 int btrfs_create_uuid_tree(struct btrfs_fs_info *fs_info)
4312 struct btrfs_trans_handle *trans;
4313 struct btrfs_root *tree_root = fs_info->tree_root;
4314 struct btrfs_root *uuid_root;
4315 struct task_struct *task;
4322 trans = btrfs_start_transaction(tree_root, 2);
4324 return PTR_ERR(trans);
4326 uuid_root = btrfs_create_tree(trans, fs_info,
4327 BTRFS_UUID_TREE_OBJECTID);
4328 if (IS_ERR(uuid_root)) {
4329 ret = PTR_ERR(uuid_root);
4330 btrfs_abort_transaction(trans, ret);
4331 btrfs_end_transaction(trans, tree_root);
4335 fs_info->uuid_root = uuid_root;
4337 ret = btrfs_commit_transaction(trans, tree_root);
4341 down(&fs_info->uuid_tree_rescan_sem);
4342 task = kthread_run(btrfs_uuid_scan_kthread, fs_info, "btrfs-uuid");
4344 /* fs_info->update_uuid_tree_gen remains 0 in all error case */
4345 btrfs_warn(fs_info, "failed to start uuid_scan task");
4346 up(&fs_info->uuid_tree_rescan_sem);
4347 return PTR_ERR(task);
4353 int btrfs_check_uuid_tree(struct btrfs_fs_info *fs_info)
4355 struct task_struct *task;
4357 down(&fs_info->uuid_tree_rescan_sem);
4358 task = kthread_run(btrfs_uuid_rescan_kthread, fs_info, "btrfs-uuid");
4360 /* fs_info->update_uuid_tree_gen remains 0 in all error case */
4361 btrfs_warn(fs_info, "failed to start uuid_rescan task");
4362 up(&fs_info->uuid_tree_rescan_sem);
4363 return PTR_ERR(task);
4370 * shrinking a device means finding all of the device extents past
4371 * the new size, and then following the back refs to the chunks.
4372 * The chunk relocation code actually frees the device extent
4374 int btrfs_shrink_device(struct btrfs_device *device, u64 new_size)
4376 struct btrfs_trans_handle *trans;
4377 struct btrfs_root *root = device->dev_root;
4378 struct btrfs_dev_extent *dev_extent = NULL;
4379 struct btrfs_path *path;
4385 bool retried = false;
4386 bool checked_pending_chunks = false;
4387 struct extent_buffer *l;
4388 struct btrfs_key key;
4389 struct btrfs_super_block *super_copy = root->fs_info->super_copy;
4390 u64 old_total = btrfs_super_total_bytes(super_copy);
4391 u64 old_size = btrfs_device_get_total_bytes(device);
4392 u64 diff = old_size - new_size;
4394 if (device->is_tgtdev_for_dev_replace)
4397 path = btrfs_alloc_path();
4401 path->reada = READA_FORWARD;
4405 btrfs_device_set_total_bytes(device, new_size);
4406 if (device->writeable) {
4407 device->fs_devices->total_rw_bytes -= diff;
4408 spin_lock(&root->fs_info->free_chunk_lock);
4409 root->fs_info->free_chunk_space -= diff;
4410 spin_unlock(&root->fs_info->free_chunk_lock);
4412 unlock_chunks(root);
4415 key.objectid = device->devid;
4416 key.offset = (u64)-1;
4417 key.type = BTRFS_DEV_EXTENT_KEY;
4420 mutex_lock(&root->fs_info->delete_unused_bgs_mutex);
4421 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
4423 mutex_unlock(&root->fs_info->delete_unused_bgs_mutex);
4427 ret = btrfs_previous_item(root, path, 0, key.type);
4429 mutex_unlock(&root->fs_info->delete_unused_bgs_mutex);
4434 btrfs_release_path(path);
4439 slot = path->slots[0];
4440 btrfs_item_key_to_cpu(l, &key, path->slots[0]);
4442 if (key.objectid != device->devid) {
4443 mutex_unlock(&root->fs_info->delete_unused_bgs_mutex);
4444 btrfs_release_path(path);
4448 dev_extent = btrfs_item_ptr(l, slot, struct btrfs_dev_extent);
4449 length = btrfs_dev_extent_length(l, dev_extent);
4451 if (key.offset + length <= new_size) {
4452 mutex_unlock(&root->fs_info->delete_unused_bgs_mutex);
4453 btrfs_release_path(path);
4457 chunk_offset = btrfs_dev_extent_chunk_offset(l, dev_extent);
4458 btrfs_release_path(path);
4460 ret = btrfs_relocate_chunk(root, chunk_offset);
4461 mutex_unlock(&root->fs_info->delete_unused_bgs_mutex);
4462 if (ret && ret != -ENOSPC)
4466 } while (key.offset-- > 0);
4468 if (failed && !retried) {
4472 } else if (failed && retried) {
4477 /* Shrinking succeeded, else we would be at "done". */
4478 trans = btrfs_start_transaction(root, 0);
4479 if (IS_ERR(trans)) {
4480 ret = PTR_ERR(trans);
4487 * We checked in the above loop all device extents that were already in
4488 * the device tree. However before we have updated the device's
4489 * total_bytes to the new size, we might have had chunk allocations that
4490 * have not complete yet (new block groups attached to transaction
4491 * handles), and therefore their device extents were not yet in the
4492 * device tree and we missed them in the loop above. So if we have any
4493 * pending chunk using a device extent that overlaps the device range
4494 * that we can not use anymore, commit the current transaction and
4495 * repeat the search on the device tree - this way we guarantee we will
4496 * not have chunks using device extents that end beyond 'new_size'.
4498 if (!checked_pending_chunks) {
4499 u64 start = new_size;
4500 u64 len = old_size - new_size;
4502 if (contains_pending_extent(trans->transaction, device,
4504 unlock_chunks(root);
4505 checked_pending_chunks = true;
4508 ret = btrfs_commit_transaction(trans, root);
4515 btrfs_device_set_disk_total_bytes(device, new_size);
4516 if (list_empty(&device->resized_list))
4517 list_add_tail(&device->resized_list,
4518 &root->fs_info->fs_devices->resized_devices);
4520 WARN_ON(diff > old_total);
4521 btrfs_set_super_total_bytes(super_copy, old_total - diff);
4522 unlock_chunks(root);
4524 /* Now btrfs_update_device() will change the on-disk size. */
4525 ret = btrfs_update_device(trans, device);
4526 btrfs_end_transaction(trans, root);
4528 btrfs_free_path(path);
4531 btrfs_device_set_total_bytes(device, old_size);
4532 if (device->writeable)
4533 device->fs_devices->total_rw_bytes += diff;
4534 spin_lock(&root->fs_info->free_chunk_lock);
4535 root->fs_info->free_chunk_space += diff;
4536 spin_unlock(&root->fs_info->free_chunk_lock);
4537 unlock_chunks(root);
4542 static int btrfs_add_system_chunk(struct btrfs_root *root,
4543 struct btrfs_key *key,
4544 struct btrfs_chunk *chunk, int item_size)
4546 struct btrfs_super_block *super_copy = root->fs_info->super_copy;
4547 struct btrfs_disk_key disk_key;
4552 array_size = btrfs_super_sys_array_size(super_copy);
4553 if (array_size + item_size + sizeof(disk_key)
4554 > BTRFS_SYSTEM_CHUNK_ARRAY_SIZE) {
4555 unlock_chunks(root);
4559 ptr = super_copy->sys_chunk_array + array_size;
4560 btrfs_cpu_key_to_disk(&disk_key, key);
4561 memcpy(ptr, &disk_key, sizeof(disk_key));
4562 ptr += sizeof(disk_key);
4563 memcpy(ptr, chunk, item_size);
4564 item_size += sizeof(disk_key);
4565 btrfs_set_super_sys_array_size(super_copy, array_size + item_size);
4566 unlock_chunks(root);
4572 * sort the devices in descending order by max_avail, total_avail
4574 static int btrfs_cmp_device_info(const void *a, const void *b)
4576 const struct btrfs_device_info *di_a = a;
4577 const struct btrfs_device_info *di_b = b;
4579 if (di_a->max_avail > di_b->max_avail)
4581 if (di_a->max_avail < di_b->max_avail)
4583 if (di_a->total_avail > di_b->total_avail)
4585 if (di_a->total_avail < di_b->total_avail)
4590 static u32 find_raid56_stripe_len(u32 data_devices, u32 dev_stripe_target)
4592 /* TODO allow them to set a preferred stripe size */
4596 static void check_raid56_incompat_flag(struct btrfs_fs_info *info, u64 type)
4598 if (!(type & BTRFS_BLOCK_GROUP_RAID56_MASK))
4601 btrfs_set_fs_incompat(info, RAID56);
4604 #define BTRFS_MAX_DEVS(r) ((BTRFS_MAX_ITEM_SIZE(r) \
4605 - sizeof(struct btrfs_chunk)) \
4606 / sizeof(struct btrfs_stripe) + 1)
4608 #define BTRFS_MAX_DEVS_SYS_CHUNK ((BTRFS_SYSTEM_CHUNK_ARRAY_SIZE \
4609 - 2 * sizeof(struct btrfs_disk_key) \
4610 - 2 * sizeof(struct btrfs_chunk)) \
4611 / sizeof(struct btrfs_stripe) + 1)
4613 static int __btrfs_alloc_chunk(struct btrfs_trans_handle *trans,
4614 struct btrfs_root *extent_root, u64 start,
4617 struct btrfs_fs_info *info = extent_root->fs_info;
4618 struct btrfs_fs_devices *fs_devices = info->fs_devices;
4619 struct list_head *cur;
4620 struct map_lookup *map = NULL;
4621 struct extent_map_tree *em_tree;
4622 struct extent_map *em;
4623 struct btrfs_device_info *devices_info = NULL;
4625 int num_stripes; /* total number of stripes to allocate */
4626 int data_stripes; /* number of stripes that count for
4628 int sub_stripes; /* sub_stripes info for map */
4629 int dev_stripes; /* stripes per dev */
4630 int devs_max; /* max devs to use */
4631 int devs_min; /* min devs needed */
4632 int devs_increment; /* ndevs has to be a multiple of this */
4633 int ncopies; /* how many copies to data has */
4635 u64 max_stripe_size;
4639 u64 raid_stripe_len = BTRFS_STRIPE_LEN;
4645 BUG_ON(!alloc_profile_is_valid(type, 0));
4647 if (list_empty(&fs_devices->alloc_list))
4650 index = __get_raid_index(type);
4652 sub_stripes = btrfs_raid_array[index].sub_stripes;
4653 dev_stripes = btrfs_raid_array[index].dev_stripes;
4654 devs_max = btrfs_raid_array[index].devs_max;
4655 devs_min = btrfs_raid_array[index].devs_min;
4656 devs_increment = btrfs_raid_array[index].devs_increment;
4657 ncopies = btrfs_raid_array[index].ncopies;
4659 if (type & BTRFS_BLOCK_GROUP_DATA) {
4660 max_stripe_size = SZ_1G;
4661 max_chunk_size = BTRFS_MAX_DATA_CHUNK_SIZE;
4663 devs_max = BTRFS_MAX_DEVS(info->chunk_root);
4664 } else if (type & BTRFS_BLOCK_GROUP_METADATA) {
4665 /* for larger filesystems, use larger metadata chunks */
4666 if (fs_devices->total_rw_bytes > 50ULL * SZ_1G)
4667 max_stripe_size = SZ_1G;
4669 max_stripe_size = SZ_256M;
4670 max_chunk_size = max_stripe_size;
4672 devs_max = BTRFS_MAX_DEVS(info->chunk_root);
4673 } else if (type & BTRFS_BLOCK_GROUP_SYSTEM) {
4674 max_stripe_size = SZ_32M;
4675 max_chunk_size = 2 * max_stripe_size;
4677 devs_max = BTRFS_MAX_DEVS_SYS_CHUNK;
4679 btrfs_err(info, "invalid chunk type 0x%llx requested",
4684 /* we don't want a chunk larger than 10% of writeable space */
4685 max_chunk_size = min(div_factor(fs_devices->total_rw_bytes, 1),
4688 devices_info = kcalloc(fs_devices->rw_devices, sizeof(*devices_info),
4693 cur = fs_devices->alloc_list.next;
4696 * in the first pass through the devices list, we gather information
4697 * about the available holes on each device.
4700 while (cur != &fs_devices->alloc_list) {
4701 struct btrfs_device *device;
4705 device = list_entry(cur, struct btrfs_device, dev_alloc_list);
4709 if (!device->writeable) {
4711 "BTRFS: read-only device in alloc_list\n");
4715 if (!device->in_fs_metadata ||
4716 device->is_tgtdev_for_dev_replace)
4719 if (device->total_bytes > device->bytes_used)
4720 total_avail = device->total_bytes - device->bytes_used;
4724 /* If there is no space on this device, skip it. */
4725 if (total_avail == 0)
4728 ret = find_free_dev_extent(trans, device,
4729 max_stripe_size * dev_stripes,
4730 &dev_offset, &max_avail);
4731 if (ret && ret != -ENOSPC)
4735 max_avail = max_stripe_size * dev_stripes;
4737 if (max_avail < BTRFS_STRIPE_LEN * dev_stripes)
4740 if (ndevs == fs_devices->rw_devices) {
4741 WARN(1, "%s: found more than %llu devices\n",
4742 __func__, fs_devices->rw_devices);
4745 devices_info[ndevs].dev_offset = dev_offset;
4746 devices_info[ndevs].max_avail = max_avail;
4747 devices_info[ndevs].total_avail = total_avail;
4748 devices_info[ndevs].dev = device;
4753 * now sort the devices by hole size / available space
4755 sort(devices_info, ndevs, sizeof(struct btrfs_device_info),
4756 btrfs_cmp_device_info, NULL);
4758 /* round down to number of usable stripes */
4759 ndevs -= ndevs % devs_increment;
4761 if (ndevs < devs_increment * sub_stripes || ndevs < devs_min) {
4766 if (devs_max && ndevs > devs_max)
4769 * The primary goal is to maximize the number of stripes, so use as
4770 * many devices as possible, even if the stripes are not maximum sized.
4772 * The DUP profile stores more than one stripe per device, the
4773 * max_avail is the total size so we have to adjust.
4775 stripe_size = div_u64(devices_info[ndevs - 1].max_avail, dev_stripes);
4776 num_stripes = ndevs * dev_stripes;
4779 * this will have to be fixed for RAID1 and RAID10 over
4782 data_stripes = num_stripes / ncopies;
4784 if (type & BTRFS_BLOCK_GROUP_RAID5) {
4785 raid_stripe_len = find_raid56_stripe_len(ndevs - 1,
4786 extent_root->stripesize);
4787 data_stripes = num_stripes - 1;
4789 if (type & BTRFS_BLOCK_GROUP_RAID6) {
4790 raid_stripe_len = find_raid56_stripe_len(ndevs - 2,
4791 extent_root->stripesize);
4792 data_stripes = num_stripes - 2;
4796 * Use the number of data stripes to figure out how big this chunk
4797 * is really going to be in terms of logical address space,
4798 * and compare that answer with the max chunk size
4800 if (stripe_size * data_stripes > max_chunk_size) {
4801 u64 mask = (1ULL << 24) - 1;
4803 stripe_size = div_u64(max_chunk_size, data_stripes);
4805 /* bump the answer up to a 16MB boundary */
4806 stripe_size = (stripe_size + mask) & ~mask;
4808 /* but don't go higher than the limits we found
4809 * while searching for free extents
4811 if (stripe_size > devices_info[ndevs-1].max_avail)
4812 stripe_size = devices_info[ndevs-1].max_avail;
4815 /* align to BTRFS_STRIPE_LEN */
4816 stripe_size = div_u64(stripe_size, raid_stripe_len);
4817 stripe_size *= raid_stripe_len;
4819 map = kmalloc(map_lookup_size(num_stripes), GFP_NOFS);
4824 map->num_stripes = num_stripes;
4826 for (i = 0; i < ndevs; ++i) {
4827 for (j = 0; j < dev_stripes; ++j) {
4828 int s = i * dev_stripes + j;
4829 map->stripes[s].dev = devices_info[i].dev;
4830 map->stripes[s].physical = devices_info[i].dev_offset +
4834 map->sector_size = extent_root->sectorsize;
4835 map->stripe_len = raid_stripe_len;
4836 map->io_align = raid_stripe_len;
4837 map->io_width = raid_stripe_len;
4839 map->sub_stripes = sub_stripes;
4841 num_bytes = stripe_size * data_stripes;
4843 trace_btrfs_chunk_alloc(info->chunk_root, map, start, num_bytes);
4845 em = alloc_extent_map();
4851 set_bit(EXTENT_FLAG_FS_MAPPING, &em->flags);
4852 em->map_lookup = map;
4854 em->len = num_bytes;
4855 em->block_start = 0;
4856 em->block_len = em->len;
4857 em->orig_block_len = stripe_size;
4859 em_tree = &extent_root->fs_info->mapping_tree.map_tree;
4860 write_lock(&em_tree->lock);
4861 ret = add_extent_mapping(em_tree, em, 0);
4863 list_add_tail(&em->list, &trans->transaction->pending_chunks);
4864 atomic_inc(&em->refs);
4866 write_unlock(&em_tree->lock);
4868 free_extent_map(em);
4872 ret = btrfs_make_block_group(trans, extent_root, 0, type,
4873 BTRFS_FIRST_CHUNK_TREE_OBJECTID,
4876 goto error_del_extent;
4878 for (i = 0; i < map->num_stripes; i++) {
4879 num_bytes = map->stripes[i].dev->bytes_used + stripe_size;
4880 btrfs_device_set_bytes_used(map->stripes[i].dev, num_bytes);
4881 map->stripes[i].dev->has_pending_chunks = true;
4884 spin_lock(&extent_root->fs_info->free_chunk_lock);
4885 extent_root->fs_info->free_chunk_space -= (stripe_size *
4887 spin_unlock(&extent_root->fs_info->free_chunk_lock);
4889 free_extent_map(em);
4890 check_raid56_incompat_flag(extent_root->fs_info, type);
4892 kfree(devices_info);
4896 write_lock(&em_tree->lock);
4897 remove_extent_mapping(em_tree, em);
4898 write_unlock(&em_tree->lock);
4900 /* One for our allocation */
4901 free_extent_map(em);
4902 /* One for the tree reference */
4903 free_extent_map(em);
4904 /* One for the pending_chunks list reference */
4905 free_extent_map(em);
4907 kfree(devices_info);
4911 int btrfs_finish_chunk_alloc(struct btrfs_trans_handle *trans,
4912 struct btrfs_root *extent_root,
4913 u64 chunk_offset, u64 chunk_size)
4915 struct btrfs_key key;
4916 struct btrfs_root *chunk_root = extent_root->fs_info->chunk_root;
4917 struct btrfs_device *device;
4918 struct btrfs_chunk *chunk;
4919 struct btrfs_stripe *stripe;
4920 struct extent_map_tree *em_tree;
4921 struct extent_map *em;
4922 struct map_lookup *map;
4929 em_tree = &extent_root->fs_info->mapping_tree.map_tree;
4930 read_lock(&em_tree->lock);
4931 em = lookup_extent_mapping(em_tree, chunk_offset, chunk_size);
4932 read_unlock(&em_tree->lock);
4935 btrfs_crit(extent_root->fs_info,
4936 "unable to find logical %Lu len %Lu",
4937 chunk_offset, chunk_size);
4941 if (em->start != chunk_offset || em->len != chunk_size) {
4942 btrfs_crit(extent_root->fs_info,
4943 "found a bad mapping, wanted %Lu-%Lu, found %Lu-%Lu",
4944 chunk_offset, chunk_size, em->start, em->len);
4945 free_extent_map(em);
4949 map = em->map_lookup;
4950 item_size = btrfs_chunk_item_size(map->num_stripes);
4951 stripe_size = em->orig_block_len;
4953 chunk = kzalloc(item_size, GFP_NOFS);
4960 * Take the device list mutex to prevent races with the final phase of
4961 * a device replace operation that replaces the device object associated
4962 * with the map's stripes, because the device object's id can change
4963 * at any time during that final phase of the device replace operation
4964 * (dev-replace.c:btrfs_dev_replace_finishing()).
4966 mutex_lock(&chunk_root->fs_info->fs_devices->device_list_mutex);
4967 for (i = 0; i < map->num_stripes; i++) {
4968 device = map->stripes[i].dev;
4969 dev_offset = map->stripes[i].physical;
4971 ret = btrfs_update_device(trans, device);
4974 ret = btrfs_alloc_dev_extent(trans, device,
4975 chunk_root->root_key.objectid,
4976 BTRFS_FIRST_CHUNK_TREE_OBJECTID,
4977 chunk_offset, dev_offset,
4983 mutex_unlock(&chunk_root->fs_info->fs_devices->device_list_mutex);
4987 stripe = &chunk->stripe;
4988 for (i = 0; i < map->num_stripes; i++) {
4989 device = map->stripes[i].dev;
4990 dev_offset = map->stripes[i].physical;
4992 btrfs_set_stack_stripe_devid(stripe, device->devid);
4993 btrfs_set_stack_stripe_offset(stripe, dev_offset);
4994 memcpy(stripe->dev_uuid, device->uuid, BTRFS_UUID_SIZE);
4997 mutex_unlock(&chunk_root->fs_info->fs_devices->device_list_mutex);
4999 btrfs_set_stack_chunk_length(chunk, chunk_size);
5000 btrfs_set_stack_chunk_owner(chunk, extent_root->root_key.objectid);
5001 btrfs_set_stack_chunk_stripe_len(chunk, map->stripe_len);
5002 btrfs_set_stack_chunk_type(chunk, map->type);
5003 btrfs_set_stack_chunk_num_stripes(chunk, map->num_stripes);
5004 btrfs_set_stack_chunk_io_align(chunk, map->stripe_len);
5005 btrfs_set_stack_chunk_io_width(chunk, map->stripe_len);
5006 btrfs_set_stack_chunk_sector_size(chunk, extent_root->sectorsize);
5007 btrfs_set_stack_chunk_sub_stripes(chunk, map->sub_stripes);
5009 key.objectid = BTRFS_FIRST_CHUNK_TREE_OBJECTID;
5010 key.type = BTRFS_CHUNK_ITEM_KEY;
5011 key.offset = chunk_offset;
5013 ret = btrfs_insert_item(trans, chunk_root, &key, chunk, item_size);
5014 if (ret == 0 && map->type & BTRFS_BLOCK_GROUP_SYSTEM) {
5016 * TODO: Cleanup of inserted chunk root in case of
5019 ret = btrfs_add_system_chunk(chunk_root, &key, chunk,
5025 free_extent_map(em);
5030 * Chunk allocation falls into two parts. The first part does works
5031 * that make the new allocated chunk useable, but not do any operation
5032 * that modifies the chunk tree. The second part does the works that
5033 * require modifying the chunk tree. This division is important for the
5034 * bootstrap process of adding storage to a seed btrfs.
5036 int btrfs_alloc_chunk(struct btrfs_trans_handle *trans,
5037 struct btrfs_root *extent_root, u64 type)
5041 ASSERT(mutex_is_locked(&extent_root->fs_info->chunk_mutex));
5042 chunk_offset = find_next_chunk(extent_root->fs_info);
5043 return __btrfs_alloc_chunk(trans, extent_root, chunk_offset, type);
5046 static noinline int init_first_rw_device(struct btrfs_trans_handle *trans,
5047 struct btrfs_root *root,
5048 struct btrfs_device *device)
5051 u64 sys_chunk_offset;
5053 struct btrfs_fs_info *fs_info = root->fs_info;
5054 struct btrfs_root *extent_root = fs_info->extent_root;
5057 chunk_offset = find_next_chunk(fs_info);
5058 alloc_profile = btrfs_get_alloc_profile(extent_root, 0);
5059 ret = __btrfs_alloc_chunk(trans, extent_root, chunk_offset,
5064 sys_chunk_offset = find_next_chunk(root->fs_info);
5065 alloc_profile = btrfs_get_alloc_profile(fs_info->chunk_root, 0);
5066 ret = __btrfs_alloc_chunk(trans, extent_root, sys_chunk_offset,
5071 static inline int btrfs_chunk_max_errors(struct map_lookup *map)
5075 if (map->type & (BTRFS_BLOCK_GROUP_RAID1 |
5076 BTRFS_BLOCK_GROUP_RAID10 |
5077 BTRFS_BLOCK_GROUP_RAID5)) {
5079 } else if (map->type & BTRFS_BLOCK_GROUP_RAID6) {
5088 int btrfs_chunk_readonly(struct btrfs_root *root, u64 chunk_offset)
5090 struct extent_map *em;
5091 struct map_lookup *map;
5092 struct btrfs_mapping_tree *map_tree = &root->fs_info->mapping_tree;
5097 read_lock(&map_tree->map_tree.lock);
5098 em = lookup_extent_mapping(&map_tree->map_tree, chunk_offset, 1);
5099 read_unlock(&map_tree->map_tree.lock);
5103 map = em->map_lookup;
5104 for (i = 0; i < map->num_stripes; i++) {
5105 if (map->stripes[i].dev->missing) {
5110 if (!map->stripes[i].dev->writeable) {
5117 * If the number of missing devices is larger than max errors,
5118 * we can not write the data into that chunk successfully, so
5121 if (miss_ndevs > btrfs_chunk_max_errors(map))
5124 free_extent_map(em);
5128 void btrfs_mapping_init(struct btrfs_mapping_tree *tree)
5130 extent_map_tree_init(&tree->map_tree);
5133 void btrfs_mapping_tree_free(struct btrfs_mapping_tree *tree)
5135 struct extent_map *em;
5138 write_lock(&tree->map_tree.lock);
5139 em = lookup_extent_mapping(&tree->map_tree, 0, (u64)-1);
5141 remove_extent_mapping(&tree->map_tree, em);
5142 write_unlock(&tree->map_tree.lock);
5146 free_extent_map(em);
5147 /* once for the tree */
5148 free_extent_map(em);
5152 int btrfs_num_copies(struct btrfs_fs_info *fs_info, u64 logical, u64 len)
5154 struct btrfs_mapping_tree *map_tree = &fs_info->mapping_tree;
5155 struct extent_map *em;
5156 struct map_lookup *map;
5157 struct extent_map_tree *em_tree = &map_tree->map_tree;
5160 read_lock(&em_tree->lock);
5161 em = lookup_extent_mapping(em_tree, logical, len);
5162 read_unlock(&em_tree->lock);
5165 * We could return errors for these cases, but that could get ugly and
5166 * we'd probably do the same thing which is just not do anything else
5167 * and exit, so return 1 so the callers don't try to use other copies.
5170 btrfs_crit(fs_info, "No mapping for %Lu-%Lu", logical,
5175 if (em->start > logical || em->start + em->len < logical) {
5176 btrfs_crit(fs_info, "Invalid mapping for %Lu-%Lu, got %Lu-%Lu",
5177 logical, logical+len, em->start,
5178 em->start + em->len);
5179 free_extent_map(em);
5183 map = em->map_lookup;
5184 if (map->type & (BTRFS_BLOCK_GROUP_DUP | BTRFS_BLOCK_GROUP_RAID1))
5185 ret = map->num_stripes;
5186 else if (map->type & BTRFS_BLOCK_GROUP_RAID10)
5187 ret = map->sub_stripes;
5188 else if (map->type & BTRFS_BLOCK_GROUP_RAID5)
5190 else if (map->type & BTRFS_BLOCK_GROUP_RAID6)
5192 * There could be two corrupted data stripes, we need
5193 * to loop retry in order to rebuild the correct data.
5195 * Fail a stripe at a time on every retry except the
5196 * stripe under reconstruction.
5198 ret = map->num_stripes;
5201 free_extent_map(em);
5203 btrfs_dev_replace_lock(&fs_info->dev_replace, 0);
5204 if (btrfs_dev_replace_is_ongoing(&fs_info->dev_replace))
5206 btrfs_dev_replace_unlock(&fs_info->dev_replace, 0);
5211 unsigned long btrfs_full_stripe_len(struct btrfs_root *root,
5212 struct btrfs_mapping_tree *map_tree,
5215 struct extent_map *em;
5216 struct map_lookup *map;
5217 struct extent_map_tree *em_tree = &map_tree->map_tree;
5218 unsigned long len = root->sectorsize;
5220 read_lock(&em_tree->lock);
5221 em = lookup_extent_mapping(em_tree, logical, len);
5222 read_unlock(&em_tree->lock);
5225 BUG_ON(em->start > logical || em->start + em->len < logical);
5226 map = em->map_lookup;
5227 if (map->type & BTRFS_BLOCK_GROUP_RAID56_MASK)
5228 len = map->stripe_len * nr_data_stripes(map);
5229 free_extent_map(em);
5233 int btrfs_is_parity_mirror(struct btrfs_mapping_tree *map_tree,
5234 u64 logical, u64 len, int mirror_num)
5236 struct extent_map *em;
5237 struct map_lookup *map;
5238 struct extent_map_tree *em_tree = &map_tree->map_tree;
5241 read_lock(&em_tree->lock);
5242 em = lookup_extent_mapping(em_tree, logical, len);
5243 read_unlock(&em_tree->lock);
5246 BUG_ON(em->start > logical || em->start + em->len < logical);
5247 map = em->map_lookup;
5248 if (map->type & BTRFS_BLOCK_GROUP_RAID56_MASK)
5250 free_extent_map(em);
5254 static int find_live_mirror(struct btrfs_fs_info *fs_info,
5255 struct map_lookup *map, int first, int num,
5256 int optimal, int dev_replace_is_ongoing)
5260 struct btrfs_device *srcdev;
5262 if (dev_replace_is_ongoing &&
5263 fs_info->dev_replace.cont_reading_from_srcdev_mode ==
5264 BTRFS_DEV_REPLACE_ITEM_CONT_READING_FROM_SRCDEV_MODE_AVOID)
5265 srcdev = fs_info->dev_replace.srcdev;
5270 * try to avoid the drive that is the source drive for a
5271 * dev-replace procedure, only choose it if no other non-missing
5272 * mirror is available
5274 for (tolerance = 0; tolerance < 2; tolerance++) {
5275 if (map->stripes[optimal].dev->bdev &&
5276 (tolerance || map->stripes[optimal].dev != srcdev))
5278 for (i = first; i < first + num; i++) {
5279 if (map->stripes[i].dev->bdev &&
5280 (tolerance || map->stripes[i].dev != srcdev))
5285 /* we couldn't find one that doesn't fail. Just return something
5286 * and the io error handling code will clean up eventually
5291 static inline int parity_smaller(u64 a, u64 b)
5296 /* Bubble-sort the stripe set to put the parity/syndrome stripes last */
5297 static void sort_parity_stripes(struct btrfs_bio *bbio, int num_stripes)
5299 struct btrfs_bio_stripe s;
5306 for (i = 0; i < num_stripes - 1; i++) {
5307 if (parity_smaller(bbio->raid_map[i],
5308 bbio->raid_map[i+1])) {
5309 s = bbio->stripes[i];
5310 l = bbio->raid_map[i];
5311 bbio->stripes[i] = bbio->stripes[i+1];
5312 bbio->raid_map[i] = bbio->raid_map[i+1];
5313 bbio->stripes[i+1] = s;
5314 bbio->raid_map[i+1] = l;
5322 static struct btrfs_bio *alloc_btrfs_bio(int total_stripes, int real_stripes)
5324 struct btrfs_bio *bbio = kzalloc(
5325 /* the size of the btrfs_bio */
5326 sizeof(struct btrfs_bio) +
5327 /* plus the variable array for the stripes */
5328 sizeof(struct btrfs_bio_stripe) * (total_stripes) +
5329 /* plus the variable array for the tgt dev */
5330 sizeof(int) * (real_stripes) +
5332 * plus the raid_map, which includes both the tgt dev
5335 sizeof(u64) * (total_stripes),
5336 GFP_NOFS|__GFP_NOFAIL);
5338 atomic_set(&bbio->error, 0);
5339 atomic_set(&bbio->refs, 1);
5344 void btrfs_get_bbio(struct btrfs_bio *bbio)
5346 WARN_ON(!atomic_read(&bbio->refs));
5347 atomic_inc(&bbio->refs);
5350 void btrfs_put_bbio(struct btrfs_bio *bbio)
5354 if (atomic_dec_and_test(&bbio->refs))
5358 static int __btrfs_map_block(struct btrfs_fs_info *fs_info, int op,
5359 u64 logical, u64 *length,
5360 struct btrfs_bio **bbio_ret,
5361 int mirror_num, int need_raid_map)
5363 struct extent_map *em;
5364 struct map_lookup *map;
5365 struct btrfs_mapping_tree *map_tree = &fs_info->mapping_tree;
5366 struct extent_map_tree *em_tree = &map_tree->map_tree;
5369 u64 stripe_end_offset;
5379 int tgtdev_indexes = 0;
5380 struct btrfs_bio *bbio = NULL;
5381 struct btrfs_dev_replace *dev_replace = &fs_info->dev_replace;
5382 int dev_replace_is_ongoing = 0;
5383 int num_alloc_stripes;
5384 int patch_the_first_stripe_for_dev_replace = 0;
5385 u64 physical_to_patch_in_first_stripe = 0;
5386 u64 raid56_full_stripe_start = (u64)-1;
5388 read_lock(&em_tree->lock);
5389 em = lookup_extent_mapping(em_tree, logical, *length);
5390 read_unlock(&em_tree->lock);
5393 btrfs_crit(fs_info, "unable to find logical %llu len %llu",
5398 if (em->start > logical || em->start + em->len < logical) {
5400 "found a bad mapping, wanted %Lu, found %Lu-%Lu",
5401 logical, em->start, em->start + em->len);
5402 free_extent_map(em);
5406 map = em->map_lookup;
5407 offset = logical - em->start;
5409 stripe_len = map->stripe_len;
5412 * stripe_nr counts the total number of stripes we have to stride
5413 * to get to this block
5415 stripe_nr = div64_u64(stripe_nr, stripe_len);
5417 stripe_offset = stripe_nr * stripe_len;
5418 if (offset < stripe_offset) {
5420 "stripe math has gone wrong, stripe_offset=%llu, offset=%llu, start=%llu, logical=%llu, stripe_len=%llu",
5421 stripe_offset, offset, em->start, logical,
5423 free_extent_map(em);
5427 /* stripe_offset is the offset of this block in its stripe*/
5428 stripe_offset = offset - stripe_offset;
5430 /* if we're here for raid56, we need to know the stripe aligned start */
5431 if (map->type & BTRFS_BLOCK_GROUP_RAID56_MASK) {
5432 unsigned long full_stripe_len = stripe_len * nr_data_stripes(map);
5433 raid56_full_stripe_start = offset;
5435 /* allow a write of a full stripe, but make sure we don't
5436 * allow straddling of stripes
5438 raid56_full_stripe_start = div64_u64(raid56_full_stripe_start,
5440 raid56_full_stripe_start *= full_stripe_len;
5443 if (op == REQ_OP_DISCARD) {
5444 /* we don't discard raid56 yet */
5445 if (map->type & BTRFS_BLOCK_GROUP_RAID56_MASK) {
5449 *length = min_t(u64, em->len - offset, *length);
5450 } else if (map->type & BTRFS_BLOCK_GROUP_PROFILE_MASK) {
5452 /* For writes to RAID[56], allow a full stripeset across all disks.
5453 For other RAID types and for RAID[56] reads, just allow a single
5454 stripe (on a single disk). */
5455 if ((map->type & BTRFS_BLOCK_GROUP_RAID56_MASK) &&
5456 (op == REQ_OP_WRITE)) {
5457 max_len = stripe_len * nr_data_stripes(map) -
5458 (offset - raid56_full_stripe_start);
5460 /* we limit the length of each bio to what fits in a stripe */
5461 max_len = stripe_len - stripe_offset;
5463 *length = min_t(u64, em->len - offset, max_len);
5465 *length = em->len - offset;
5468 /* This is for when we're called from btrfs_merge_bio_hook() and all
5469 it cares about is the length */
5473 btrfs_dev_replace_lock(dev_replace, 0);
5474 dev_replace_is_ongoing = btrfs_dev_replace_is_ongoing(dev_replace);
5475 if (!dev_replace_is_ongoing)
5476 btrfs_dev_replace_unlock(dev_replace, 0);
5478 btrfs_dev_replace_set_lock_blocking(dev_replace);
5480 if (dev_replace_is_ongoing && mirror_num == map->num_stripes + 1 &&
5481 op != REQ_OP_WRITE && op != REQ_OP_DISCARD &&
5482 op != REQ_GET_READ_MIRRORS && dev_replace->tgtdev != NULL) {
5484 * in dev-replace case, for repair case (that's the only
5485 * case where the mirror is selected explicitly when
5486 * calling btrfs_map_block), blocks left of the left cursor
5487 * can also be read from the target drive.
5488 * For REQ_GET_READ_MIRRORS, the target drive is added as
5489 * the last one to the array of stripes. For READ, it also
5490 * needs to be supported using the same mirror number.
5491 * If the requested block is not left of the left cursor,
5492 * EIO is returned. This can happen because btrfs_num_copies()
5493 * returns one more in the dev-replace case.
5495 u64 tmp_length = *length;
5496 struct btrfs_bio *tmp_bbio = NULL;
5497 int tmp_num_stripes;
5498 u64 srcdev_devid = dev_replace->srcdev->devid;
5499 int index_srcdev = 0;
5501 u64 physical_of_found = 0;
5503 ret = __btrfs_map_block(fs_info, REQ_GET_READ_MIRRORS,
5504 logical, &tmp_length, &tmp_bbio, 0, 0);
5506 WARN_ON(tmp_bbio != NULL);
5510 tmp_num_stripes = tmp_bbio->num_stripes;
5511 if (mirror_num > tmp_num_stripes) {
5513 * REQ_GET_READ_MIRRORS does not contain this
5514 * mirror, that means that the requested area
5515 * is not left of the left cursor
5518 btrfs_put_bbio(tmp_bbio);
5523 * process the rest of the function using the mirror_num
5524 * of the source drive. Therefore look it up first.
5525 * At the end, patch the device pointer to the one of the
5528 for (i = 0; i < tmp_num_stripes; i++) {
5529 if (tmp_bbio->stripes[i].dev->devid != srcdev_devid)
5533 * In case of DUP, in order to keep it simple, only add
5534 * the mirror with the lowest physical address
5537 physical_of_found <= tmp_bbio->stripes[i].physical)
5542 physical_of_found = tmp_bbio->stripes[i].physical;
5545 btrfs_put_bbio(tmp_bbio);
5553 mirror_num = index_srcdev + 1;
5554 patch_the_first_stripe_for_dev_replace = 1;
5555 physical_to_patch_in_first_stripe = physical_of_found;
5556 } else if (mirror_num > map->num_stripes) {
5562 stripe_nr_orig = stripe_nr;
5563 stripe_nr_end = ALIGN(offset + *length, map->stripe_len);
5564 stripe_nr_end = div_u64(stripe_nr_end, map->stripe_len);
5565 stripe_end_offset = stripe_nr_end * map->stripe_len -
5568 if (map->type & BTRFS_BLOCK_GROUP_RAID0) {
5569 if (op == REQ_OP_DISCARD)
5570 num_stripes = min_t(u64, map->num_stripes,
5571 stripe_nr_end - stripe_nr_orig);
5572 stripe_nr = div_u64_rem(stripe_nr, map->num_stripes,
5574 if (op != REQ_OP_WRITE && op != REQ_OP_DISCARD &&
5575 op != REQ_GET_READ_MIRRORS)
5577 } else if (map->type & BTRFS_BLOCK_GROUP_RAID1) {
5578 if (op == REQ_OP_WRITE || op == REQ_OP_DISCARD ||
5579 op == REQ_GET_READ_MIRRORS)
5580 num_stripes = map->num_stripes;
5581 else if (mirror_num)
5582 stripe_index = mirror_num - 1;
5584 stripe_index = find_live_mirror(fs_info, map, 0,
5586 current->pid % map->num_stripes,
5587 dev_replace_is_ongoing);
5588 mirror_num = stripe_index + 1;
5591 } else if (map->type & BTRFS_BLOCK_GROUP_DUP) {
5592 if (op == REQ_OP_WRITE || op == REQ_OP_DISCARD ||
5593 op == REQ_GET_READ_MIRRORS) {
5594 num_stripes = map->num_stripes;
5595 } else if (mirror_num) {
5596 stripe_index = mirror_num - 1;
5601 } else if (map->type & BTRFS_BLOCK_GROUP_RAID10) {
5602 u32 factor = map->num_stripes / map->sub_stripes;
5604 stripe_nr = div_u64_rem(stripe_nr, factor, &stripe_index);
5605 stripe_index *= map->sub_stripes;
5607 if (op == REQ_OP_WRITE || op == REQ_GET_READ_MIRRORS)
5608 num_stripes = map->sub_stripes;
5609 else if (op == REQ_OP_DISCARD)
5610 num_stripes = min_t(u64, map->sub_stripes *
5611 (stripe_nr_end - stripe_nr_orig),
5613 else if (mirror_num)
5614 stripe_index += mirror_num - 1;
5616 int old_stripe_index = stripe_index;
5617 stripe_index = find_live_mirror(fs_info, map,
5619 map->sub_stripes, stripe_index +
5620 current->pid % map->sub_stripes,
5621 dev_replace_is_ongoing);
5622 mirror_num = stripe_index - old_stripe_index + 1;
5625 } else if (map->type & BTRFS_BLOCK_GROUP_RAID56_MASK) {
5626 if (need_raid_map &&
5627 (op == REQ_OP_WRITE || op == REQ_GET_READ_MIRRORS ||
5629 /* push stripe_nr back to the start of the full stripe */
5630 stripe_nr = div_u64(raid56_full_stripe_start,
5631 stripe_len * nr_data_stripes(map));
5633 /* RAID[56] write or recovery. Return all stripes */
5634 num_stripes = map->num_stripes;
5635 max_errors = nr_parity_stripes(map);
5637 *length = map->stripe_len;
5642 * Mirror #0 or #1 means the original data block.
5643 * Mirror #2 is RAID5 parity block.
5644 * Mirror #3 is RAID6 Q block.
5646 stripe_nr = div_u64_rem(stripe_nr,
5647 nr_data_stripes(map), &stripe_index);
5649 stripe_index = nr_data_stripes(map) +
5652 /* We distribute the parity blocks across stripes */
5653 div_u64_rem(stripe_nr + stripe_index, map->num_stripes,
5655 if ((op != REQ_OP_WRITE && op != REQ_OP_DISCARD &&
5656 op != REQ_GET_READ_MIRRORS) && mirror_num <= 1)
5661 * after this, stripe_nr is the number of stripes on this
5662 * device we have to walk to find the data, and stripe_index is
5663 * the number of our device in the stripe array
5665 stripe_nr = div_u64_rem(stripe_nr, map->num_stripes,
5667 mirror_num = stripe_index + 1;
5669 if (stripe_index >= map->num_stripes) {
5671 "stripe index math went horribly wrong, got stripe_index=%u, num_stripes=%u",
5672 stripe_index, map->num_stripes);
5677 num_alloc_stripes = num_stripes;
5678 if (dev_replace_is_ongoing) {
5679 if (op == REQ_OP_WRITE || op == REQ_OP_DISCARD)
5680 num_alloc_stripes <<= 1;
5681 if (op == REQ_GET_READ_MIRRORS)
5682 num_alloc_stripes++;
5683 tgtdev_indexes = num_stripes;
5686 bbio = alloc_btrfs_bio(num_alloc_stripes, tgtdev_indexes);
5691 if (dev_replace_is_ongoing)
5692 bbio->tgtdev_map = (int *)(bbio->stripes + num_alloc_stripes);
5694 /* build raid_map */
5695 if (map->type & BTRFS_BLOCK_GROUP_RAID56_MASK &&
5697 ((op == REQ_OP_WRITE || op == REQ_GET_READ_MIRRORS) ||
5702 bbio->raid_map = (u64 *)((void *)bbio->stripes +
5703 sizeof(struct btrfs_bio_stripe) *
5705 sizeof(int) * tgtdev_indexes);
5707 /* Work out the disk rotation on this stripe-set */
5708 div_u64_rem(stripe_nr, num_stripes, &rot);
5710 /* Fill in the logical address of each stripe */
5711 tmp = stripe_nr * nr_data_stripes(map);
5712 for (i = 0; i < nr_data_stripes(map); i++)
5713 bbio->raid_map[(i+rot) % num_stripes] =
5714 em->start + (tmp + i) * map->stripe_len;
5716 bbio->raid_map[(i+rot) % map->num_stripes] = RAID5_P_STRIPE;
5717 if (map->type & BTRFS_BLOCK_GROUP_RAID6)
5718 bbio->raid_map[(i+rot+1) % num_stripes] =
5722 if (op == REQ_OP_DISCARD) {
5724 u32 sub_stripes = 0;
5725 u64 stripes_per_dev = 0;
5726 u32 remaining_stripes = 0;
5727 u32 last_stripe = 0;
5730 (BTRFS_BLOCK_GROUP_RAID0 | BTRFS_BLOCK_GROUP_RAID10)) {
5731 if (map->type & BTRFS_BLOCK_GROUP_RAID0)
5734 sub_stripes = map->sub_stripes;
5736 factor = map->num_stripes / sub_stripes;
5737 stripes_per_dev = div_u64_rem(stripe_nr_end -
5740 &remaining_stripes);
5741 div_u64_rem(stripe_nr_end - 1, factor, &last_stripe);
5742 last_stripe *= sub_stripes;
5745 for (i = 0; i < num_stripes; i++) {
5746 bbio->stripes[i].physical =
5747 map->stripes[stripe_index].physical +
5748 stripe_offset + stripe_nr * map->stripe_len;
5749 bbio->stripes[i].dev = map->stripes[stripe_index].dev;
5751 if (map->type & (BTRFS_BLOCK_GROUP_RAID0 |
5752 BTRFS_BLOCK_GROUP_RAID10)) {
5753 bbio->stripes[i].length = stripes_per_dev *
5756 if (i / sub_stripes < remaining_stripes)
5757 bbio->stripes[i].length +=
5761 * Special for the first stripe and
5764 * |-------|...|-------|
5768 if (i < sub_stripes)
5769 bbio->stripes[i].length -=
5772 if (stripe_index >= last_stripe &&
5773 stripe_index <= (last_stripe +
5775 bbio->stripes[i].length -=
5778 if (i == sub_stripes - 1)
5781 bbio->stripes[i].length = *length;
5784 if (stripe_index == map->num_stripes) {
5785 /* This could only happen for RAID0/10 */
5791 for (i = 0; i < num_stripes; i++) {
5792 bbio->stripes[i].physical =
5793 map->stripes[stripe_index].physical +
5795 stripe_nr * map->stripe_len;
5796 bbio->stripes[i].dev =
5797 map->stripes[stripe_index].dev;
5802 if (op == REQ_OP_WRITE || op == REQ_GET_READ_MIRRORS)
5803 max_errors = btrfs_chunk_max_errors(map);
5806 sort_parity_stripes(bbio, num_stripes);
5809 if (dev_replace_is_ongoing &&
5810 (op == REQ_OP_WRITE || op == REQ_OP_DISCARD) &&
5811 dev_replace->tgtdev != NULL) {
5812 int index_where_to_add;
5813 u64 srcdev_devid = dev_replace->srcdev->devid;
5816 * duplicate the write operations while the dev replace
5817 * procedure is running. Since the copying of the old disk
5818 * to the new disk takes place at run time while the
5819 * filesystem is mounted writable, the regular write
5820 * operations to the old disk have to be duplicated to go
5821 * to the new disk as well.
5822 * Note that device->missing is handled by the caller, and
5823 * that the write to the old disk is already set up in the
5826 index_where_to_add = num_stripes;
5827 for (i = 0; i < num_stripes; i++) {
5828 if (bbio->stripes[i].dev->devid == srcdev_devid) {
5829 /* write to new disk, too */
5830 struct btrfs_bio_stripe *new =
5831 bbio->stripes + index_where_to_add;
5832 struct btrfs_bio_stripe *old =
5835 new->physical = old->physical;
5836 new->length = old->length;
5837 new->dev = dev_replace->tgtdev;
5838 bbio->tgtdev_map[i] = index_where_to_add;
5839 index_where_to_add++;
5844 num_stripes = index_where_to_add;
5845 } else if (dev_replace_is_ongoing && (op == REQ_GET_READ_MIRRORS) &&
5846 dev_replace->tgtdev != NULL) {
5847 u64 srcdev_devid = dev_replace->srcdev->devid;
5848 int index_srcdev = 0;
5850 u64 physical_of_found = 0;
5853 * During the dev-replace procedure, the target drive can
5854 * also be used to read data in case it is needed to repair
5855 * a corrupt block elsewhere. This is possible if the
5856 * requested area is left of the left cursor. In this area,
5857 * the target drive is a full copy of the source drive.
5859 for (i = 0; i < num_stripes; i++) {
5860 if (bbio->stripes[i].dev->devid == srcdev_devid) {
5862 * In case of DUP, in order to keep it
5863 * simple, only add the mirror with the
5864 * lowest physical address
5867 physical_of_found <=
5868 bbio->stripes[i].physical)
5872 physical_of_found = bbio->stripes[i].physical;
5876 struct btrfs_bio_stripe *tgtdev_stripe =
5877 bbio->stripes + num_stripes;
5879 tgtdev_stripe->physical = physical_of_found;
5880 tgtdev_stripe->length =
5881 bbio->stripes[index_srcdev].length;
5882 tgtdev_stripe->dev = dev_replace->tgtdev;
5883 bbio->tgtdev_map[index_srcdev] = num_stripes;
5891 bbio->map_type = map->type;
5892 bbio->num_stripes = num_stripes;
5893 bbio->max_errors = max_errors;
5894 bbio->mirror_num = mirror_num;
5895 bbio->num_tgtdevs = tgtdev_indexes;
5898 * this is the case that REQ_READ && dev_replace_is_ongoing &&
5899 * mirror_num == num_stripes + 1 && dev_replace target drive is
5900 * available as a mirror
5902 if (patch_the_first_stripe_for_dev_replace && num_stripes > 0) {
5903 WARN_ON(num_stripes > 1);
5904 bbio->stripes[0].dev = dev_replace->tgtdev;
5905 bbio->stripes[0].physical = physical_to_patch_in_first_stripe;
5906 bbio->mirror_num = map->num_stripes + 1;
5909 if (dev_replace_is_ongoing) {
5910 btrfs_dev_replace_clear_lock_blocking(dev_replace);
5911 btrfs_dev_replace_unlock(dev_replace, 0);
5913 free_extent_map(em);
5917 int btrfs_map_block(struct btrfs_fs_info *fs_info, int op,
5918 u64 logical, u64 *length,
5919 struct btrfs_bio **bbio_ret, int mirror_num)
5921 return __btrfs_map_block(fs_info, op, logical, length, bbio_ret,
5925 /* For Scrub/replace */
5926 int btrfs_map_sblock(struct btrfs_fs_info *fs_info, int op,
5927 u64 logical, u64 *length,
5928 struct btrfs_bio **bbio_ret, int mirror_num,
5931 return __btrfs_map_block(fs_info, op, logical, length, bbio_ret,
5932 mirror_num, need_raid_map);
5935 int btrfs_rmap_block(struct btrfs_fs_info *fs_info,
5936 u64 chunk_start, u64 physical, u64 devid,
5937 u64 **logical, int *naddrs, int *stripe_len)
5939 struct btrfs_mapping_tree *map_tree = &fs_info->mapping_tree;
5940 struct extent_map_tree *em_tree = &map_tree->map_tree;
5941 struct extent_map *em;
5942 struct map_lookup *map;
5950 read_lock(&em_tree->lock);
5951 em = lookup_extent_mapping(em_tree, chunk_start, 1);
5952 read_unlock(&em_tree->lock);
5955 btrfs_err(fs_info, "couldn't find em for chunk %Lu",
5960 if (em->start != chunk_start) {
5961 btrfs_err(fs_info, "bad chunk start, em=%Lu, wanted=%Lu",
5962 em->start, chunk_start);
5963 free_extent_map(em);
5966 map = em->map_lookup;
5969 rmap_len = map->stripe_len;
5971 if (map->type & BTRFS_BLOCK_GROUP_RAID10)
5972 length = div_u64(length, map->num_stripes / map->sub_stripes);
5973 else if (map->type & BTRFS_BLOCK_GROUP_RAID0)
5974 length = div_u64(length, map->num_stripes);
5975 else if (map->type & BTRFS_BLOCK_GROUP_RAID56_MASK) {
5976 length = div_u64(length, nr_data_stripes(map));
5977 rmap_len = map->stripe_len * nr_data_stripes(map);
5980 buf = kcalloc(map->num_stripes, sizeof(u64), GFP_NOFS);
5981 BUG_ON(!buf); /* -ENOMEM */
5983 for (i = 0; i < map->num_stripes; i++) {
5984 if (devid && map->stripes[i].dev->devid != devid)
5986 if (map->stripes[i].physical > physical ||
5987 map->stripes[i].physical + length <= physical)
5990 stripe_nr = physical - map->stripes[i].physical;
5991 stripe_nr = div_u64(stripe_nr, map->stripe_len);
5993 if (map->type & BTRFS_BLOCK_GROUP_RAID10) {
5994 stripe_nr = stripe_nr * map->num_stripes + i;
5995 stripe_nr = div_u64(stripe_nr, map->sub_stripes);
5996 } else if (map->type & BTRFS_BLOCK_GROUP_RAID0) {
5997 stripe_nr = stripe_nr * map->num_stripes + i;
5998 } /* else if RAID[56], multiply by nr_data_stripes().
5999 * Alternatively, just use rmap_len below instead of
6000 * map->stripe_len */
6002 bytenr = chunk_start + stripe_nr * rmap_len;
6003 WARN_ON(nr >= map->num_stripes);
6004 for (j = 0; j < nr; j++) {
6005 if (buf[j] == bytenr)
6009 WARN_ON(nr >= map->num_stripes);
6016 *stripe_len = rmap_len;
6018 free_extent_map(em);
6022 static inline void btrfs_end_bbio(struct btrfs_bio *bbio, struct bio *bio)
6024 bio->bi_private = bbio->private;
6025 bio->bi_end_io = bbio->end_io;
6028 btrfs_put_bbio(bbio);
6031 static void btrfs_end_bio(struct bio *bio)
6033 struct btrfs_bio *bbio = bio->bi_private;
6034 int is_orig_bio = 0;
6036 if (bio->bi_error) {
6037 atomic_inc(&bbio->error);
6038 if (bio->bi_error == -EIO || bio->bi_error == -EREMOTEIO) {
6039 unsigned int stripe_index =
6040 btrfs_io_bio(bio)->stripe_index;
6041 struct btrfs_device *dev;
6043 BUG_ON(stripe_index >= bbio->num_stripes);
6044 dev = bbio->stripes[stripe_index].dev;
6046 if (bio_op(bio) == REQ_OP_WRITE)
6047 btrfs_dev_stat_inc(dev,
6048 BTRFS_DEV_STAT_WRITE_ERRS);
6050 btrfs_dev_stat_inc(dev,
6051 BTRFS_DEV_STAT_READ_ERRS);
6052 if ((bio->bi_opf & WRITE_FLUSH) == WRITE_FLUSH)
6053 btrfs_dev_stat_inc(dev,
6054 BTRFS_DEV_STAT_FLUSH_ERRS);
6055 btrfs_dev_stat_print_on_error(dev);
6060 if (bio == bbio->orig_bio)
6063 btrfs_bio_counter_dec(bbio->fs_info);
6065 if (atomic_dec_and_test(&bbio->stripes_pending)) {
6068 bio = bbio->orig_bio;
6071 btrfs_io_bio(bio)->mirror_num = bbio->mirror_num;
6072 /* only send an error to the higher layers if it is
6073 * beyond the tolerance of the btrfs bio
6075 if (atomic_read(&bbio->error) > bbio->max_errors) {
6076 bio->bi_error = -EIO;
6079 * this bio is actually up to date, we didn't
6080 * go over the max number of errors
6085 btrfs_end_bbio(bbio, bio);
6086 } else if (!is_orig_bio) {
6092 * see run_scheduled_bios for a description of why bios are collected for
6095 * This will add one bio to the pending list for a device and make sure
6096 * the work struct is scheduled.
6098 static noinline void btrfs_schedule_bio(struct btrfs_root *root,
6099 struct btrfs_device *device,
6102 int should_queue = 1;
6103 struct btrfs_pending_bios *pending_bios;
6105 if (device->missing || !device->bdev) {
6110 /* don't bother with additional async steps for reads, right now */
6111 if (bio_op(bio) == REQ_OP_READ) {
6113 btrfsic_submit_bio(bio);
6119 * nr_async_bios allows us to reliably return congestion to the
6120 * higher layers. Otherwise, the async bio makes it appear we have
6121 * made progress against dirty pages when we've really just put it
6122 * on a queue for later
6124 atomic_inc(&root->fs_info->nr_async_bios);
6125 WARN_ON(bio->bi_next);
6126 bio->bi_next = NULL;
6128 spin_lock(&device->io_lock);
6129 if (bio->bi_opf & REQ_SYNC)
6130 pending_bios = &device->pending_sync_bios;
6132 pending_bios = &device->pending_bios;
6134 if (pending_bios->tail)
6135 pending_bios->tail->bi_next = bio;
6137 pending_bios->tail = bio;
6138 if (!pending_bios->head)
6139 pending_bios->head = bio;
6140 if (device->running_pending)
6143 spin_unlock(&device->io_lock);
6146 btrfs_queue_work(root->fs_info->submit_workers,
6150 static void submit_stripe_bio(struct btrfs_root *root, struct btrfs_bio *bbio,
6151 struct bio *bio, u64 physical, int dev_nr,
6154 struct btrfs_device *dev = bbio->stripes[dev_nr].dev;
6156 bio->bi_private = bbio;
6157 btrfs_io_bio(bio)->stripe_index = dev_nr;
6158 bio->bi_end_io = btrfs_end_bio;
6159 bio->bi_iter.bi_sector = physical >> 9;
6162 struct rcu_string *name;
6165 name = rcu_dereference(dev->name);
6166 btrfs_debug(fs_info,
6167 "btrfs_map_bio: rw %d 0x%x, sector=%llu, dev=%lu (%s id %llu), size=%u",
6168 bio_op(bio), bio->bi_opf,
6169 (u64)bio->bi_iter.bi_sector,
6170 (u_long)dev->bdev->bd_dev, name->str, dev->devid,
6171 bio->bi_iter.bi_size);
6175 bio->bi_bdev = dev->bdev;
6177 btrfs_bio_counter_inc_noblocked(root->fs_info);
6180 btrfs_schedule_bio(root, dev, bio);
6182 btrfsic_submit_bio(bio);
6185 static void bbio_error(struct btrfs_bio *bbio, struct bio *bio, u64 logical)
6187 atomic_inc(&bbio->error);
6188 if (atomic_dec_and_test(&bbio->stripes_pending)) {
6189 /* Should be the original bio. */
6190 WARN_ON(bio != bbio->orig_bio);
6192 btrfs_io_bio(bio)->mirror_num = bbio->mirror_num;
6193 bio->bi_iter.bi_sector = logical >> 9;
6194 bio->bi_error = -EIO;
6195 btrfs_end_bbio(bbio, bio);
6199 int btrfs_map_bio(struct btrfs_root *root, struct bio *bio,
6200 int mirror_num, int async_submit)
6202 struct btrfs_device *dev;
6203 struct bio *first_bio = bio;
6204 u64 logical = (u64)bio->bi_iter.bi_sector << 9;
6210 struct btrfs_bio *bbio = NULL;
6212 length = bio->bi_iter.bi_size;
6213 map_length = length;
6215 btrfs_bio_counter_inc_blocked(root->fs_info);
6216 ret = __btrfs_map_block(root->fs_info, bio_op(bio), logical,
6217 &map_length, &bbio, mirror_num, 1);
6219 btrfs_bio_counter_dec(root->fs_info);
6223 total_devs = bbio->num_stripes;
6224 bbio->orig_bio = first_bio;
6225 bbio->private = first_bio->bi_private;
6226 bbio->end_io = first_bio->bi_end_io;
6227 bbio->fs_info = root->fs_info;
6228 atomic_set(&bbio->stripes_pending, bbio->num_stripes);
6230 if ((bbio->map_type & BTRFS_BLOCK_GROUP_RAID56_MASK) &&
6231 ((bio_op(bio) == REQ_OP_WRITE) || (mirror_num > 1))) {
6232 /* In this case, map_length has been set to the length of
6233 a single stripe; not the whole write */
6234 if (bio_op(bio) == REQ_OP_WRITE) {
6235 ret = raid56_parity_write(root, bio, bbio, map_length);
6237 ret = raid56_parity_recover(root, bio, bbio, map_length,
6241 btrfs_bio_counter_dec(root->fs_info);
6245 if (map_length < length) {
6246 btrfs_crit(root->fs_info,
6247 "mapping failed logical %llu bio len %llu len %llu",
6248 logical, length, map_length);
6252 for (dev_nr = 0; dev_nr < total_devs; dev_nr++) {
6253 dev = bbio->stripes[dev_nr].dev;
6254 if (!dev || !dev->bdev ||
6255 (bio_op(first_bio) == REQ_OP_WRITE && !dev->writeable)) {
6256 bbio_error(bbio, first_bio, logical);
6260 if (dev_nr < total_devs - 1) {
6261 bio = btrfs_bio_clone(first_bio, GFP_NOFS);
6262 BUG_ON(!bio); /* -ENOMEM */
6266 submit_stripe_bio(root, bbio, bio,
6267 bbio->stripes[dev_nr].physical, dev_nr,
6270 btrfs_bio_counter_dec(root->fs_info);
6274 struct btrfs_device *btrfs_find_device(struct btrfs_fs_info *fs_info, u64 devid,
6277 struct btrfs_device *device;
6278 struct btrfs_fs_devices *cur_devices;
6280 cur_devices = fs_info->fs_devices;
6281 while (cur_devices) {
6283 !memcmp(cur_devices->fsid, fsid, BTRFS_UUID_SIZE)) {
6284 device = __find_device(&cur_devices->devices,
6289 cur_devices = cur_devices->seed;
6294 static struct btrfs_device *add_missing_dev(struct btrfs_root *root,
6295 struct btrfs_fs_devices *fs_devices,
6296 u64 devid, u8 *dev_uuid)
6298 struct btrfs_device *device;
6300 device = btrfs_alloc_device(NULL, &devid, dev_uuid);
6304 list_add(&device->dev_list, &fs_devices->devices);
6305 device->fs_devices = fs_devices;
6306 fs_devices->num_devices++;
6308 device->missing = 1;
6309 fs_devices->missing_devices++;
6315 * btrfs_alloc_device - allocate struct btrfs_device
6316 * @fs_info: used only for generating a new devid, can be NULL if
6317 * devid is provided (i.e. @devid != NULL).
6318 * @devid: a pointer to devid for this device. If NULL a new devid
6320 * @uuid: a pointer to UUID for this device. If NULL a new UUID
6323 * Return: a pointer to a new &struct btrfs_device on success; ERR_PTR()
6324 * on error. Returned struct is not linked onto any lists and can be
6325 * destroyed with kfree() right away.
6327 struct btrfs_device *btrfs_alloc_device(struct btrfs_fs_info *fs_info,
6331 struct btrfs_device *dev;
6334 if (WARN_ON(!devid && !fs_info))
6335 return ERR_PTR(-EINVAL);
6337 dev = __alloc_device();
6346 ret = find_next_devid(fs_info, &tmp);
6349 return ERR_PTR(ret);
6355 memcpy(dev->uuid, uuid, BTRFS_UUID_SIZE);
6357 generate_random_uuid(dev->uuid);
6359 btrfs_init_work(&dev->work, btrfs_submit_helper,
6360 pending_bios_fn, NULL, NULL);
6365 /* Return -EIO if any error, otherwise return 0. */
6366 static int btrfs_check_chunk_valid(struct btrfs_root *root,
6367 struct extent_buffer *leaf,
6368 struct btrfs_chunk *chunk, u64 logical)
6378 length = btrfs_chunk_length(leaf, chunk);
6379 stripe_len = btrfs_chunk_stripe_len(leaf, chunk);
6380 num_stripes = btrfs_chunk_num_stripes(leaf, chunk);
6381 sub_stripes = btrfs_chunk_sub_stripes(leaf, chunk);
6382 type = btrfs_chunk_type(leaf, chunk);
6385 btrfs_err(root->fs_info, "invalid chunk num_stripes: %u",
6389 if (!IS_ALIGNED(logical, root->sectorsize)) {
6390 btrfs_err(root->fs_info,
6391 "invalid chunk logical %llu", logical);
6394 if (btrfs_chunk_sector_size(leaf, chunk) != root->sectorsize) {
6395 btrfs_err(root->fs_info, "invalid chunk sectorsize %u",
6396 btrfs_chunk_sector_size(leaf, chunk));
6399 if (!length || !IS_ALIGNED(length, root->sectorsize)) {
6400 btrfs_err(root->fs_info,
6401 "invalid chunk length %llu", length);
6404 if (!is_power_of_2(stripe_len) || stripe_len != BTRFS_STRIPE_LEN) {
6405 btrfs_err(root->fs_info, "invalid chunk stripe length: %llu",
6409 if (~(BTRFS_BLOCK_GROUP_TYPE_MASK | BTRFS_BLOCK_GROUP_PROFILE_MASK) &
6411 btrfs_err(root->fs_info, "unrecognized chunk type: %llu",
6412 ~(BTRFS_BLOCK_GROUP_TYPE_MASK |
6413 BTRFS_BLOCK_GROUP_PROFILE_MASK) &
6414 btrfs_chunk_type(leaf, chunk));
6418 if (!is_power_of_2(type & BTRFS_BLOCK_GROUP_PROFILE_MASK) &&
6419 (type & BTRFS_BLOCK_GROUP_PROFILE_MASK) != 0) {
6420 btrfs_err(root->fs_info,
6421 "invalid chunk profile flag: 0x%llx, expect 0 or 1 bit set",
6422 type & BTRFS_BLOCK_GROUP_PROFILE_MASK);
6425 if ((type & BTRFS_BLOCK_GROUP_TYPE_MASK) == 0) {
6426 btrfs_err(root->fs_info, "missing chunk type flag: 0x%llx", type);
6430 if ((type & BTRFS_BLOCK_GROUP_SYSTEM) &&
6431 (type & (BTRFS_BLOCK_GROUP_METADATA | BTRFS_BLOCK_GROUP_DATA))) {
6432 btrfs_err(root->fs_info,
6433 "system chunk with data or metadata type: 0x%llx", type);
6437 features = btrfs_super_incompat_flags(root->fs_info->super_copy);
6438 if (features & BTRFS_FEATURE_INCOMPAT_MIXED_GROUPS)
6442 if ((type & BTRFS_BLOCK_GROUP_METADATA) &&
6443 (type & BTRFS_BLOCK_GROUP_DATA)) {
6444 btrfs_err(root->fs_info,
6445 "mixed chunk type in non-mixed mode: 0x%llx", type);
6450 if ((type & BTRFS_BLOCK_GROUP_RAID10 && sub_stripes != 2) ||
6451 (type & BTRFS_BLOCK_GROUP_RAID1 && num_stripes != 2) ||
6452 (type & BTRFS_BLOCK_GROUP_RAID5 && num_stripes < 2) ||
6453 (type & BTRFS_BLOCK_GROUP_RAID6 && num_stripes < 3) ||
6454 (type & BTRFS_BLOCK_GROUP_DUP && num_stripes != 2) ||
6455 ((type & BTRFS_BLOCK_GROUP_PROFILE_MASK) == 0 &&
6456 num_stripes != 1)) {
6457 btrfs_err(root->fs_info,
6458 "invalid num_stripes:sub_stripes %u:%u for profile %llu",
6459 num_stripes, sub_stripes,
6460 type & BTRFS_BLOCK_GROUP_PROFILE_MASK);
6467 static int read_one_chunk(struct btrfs_root *root, struct btrfs_key *key,
6468 struct extent_buffer *leaf,
6469 struct btrfs_chunk *chunk)
6471 struct btrfs_mapping_tree *map_tree = &root->fs_info->mapping_tree;
6472 struct map_lookup *map;
6473 struct extent_map *em;
6478 u8 uuid[BTRFS_UUID_SIZE];
6483 logical = key->offset;
6484 length = btrfs_chunk_length(leaf, chunk);
6485 stripe_len = btrfs_chunk_stripe_len(leaf, chunk);
6486 num_stripes = btrfs_chunk_num_stripes(leaf, chunk);
6488 ret = btrfs_check_chunk_valid(root, leaf, chunk, logical);
6492 read_lock(&map_tree->map_tree.lock);
6493 em = lookup_extent_mapping(&map_tree->map_tree, logical, 1);
6494 read_unlock(&map_tree->map_tree.lock);
6496 /* already mapped? */
6497 if (em && em->start <= logical && em->start + em->len > logical) {
6498 free_extent_map(em);
6501 free_extent_map(em);
6504 em = alloc_extent_map();
6507 map = kmalloc(map_lookup_size(num_stripes), GFP_NOFS);
6509 free_extent_map(em);
6513 set_bit(EXTENT_FLAG_FS_MAPPING, &em->flags);
6514 em->map_lookup = map;
6515 em->start = logical;
6518 em->block_start = 0;
6519 em->block_len = em->len;
6521 map->num_stripes = num_stripes;
6522 map->io_width = btrfs_chunk_io_width(leaf, chunk);
6523 map->io_align = btrfs_chunk_io_align(leaf, chunk);
6524 map->sector_size = btrfs_chunk_sector_size(leaf, chunk);
6525 map->stripe_len = btrfs_chunk_stripe_len(leaf, chunk);
6526 map->type = btrfs_chunk_type(leaf, chunk);
6527 map->sub_stripes = btrfs_chunk_sub_stripes(leaf, chunk);
6528 for (i = 0; i < num_stripes; i++) {
6529 map->stripes[i].physical =
6530 btrfs_stripe_offset_nr(leaf, chunk, i);
6531 devid = btrfs_stripe_devid_nr(leaf, chunk, i);
6532 read_extent_buffer(leaf, uuid, (unsigned long)
6533 btrfs_stripe_dev_uuid_nr(chunk, i),
6535 map->stripes[i].dev = btrfs_find_device(root->fs_info, devid,
6537 if (!map->stripes[i].dev &&
6538 !btrfs_test_opt(root->fs_info, DEGRADED)) {
6539 free_extent_map(em);
6542 if (!map->stripes[i].dev) {
6543 map->stripes[i].dev =
6544 add_missing_dev(root, root->fs_info->fs_devices,
6546 if (!map->stripes[i].dev) {
6547 free_extent_map(em);
6550 btrfs_warn(root->fs_info,
6551 "devid %llu uuid %pU is missing",
6554 map->stripes[i].dev->in_fs_metadata = 1;
6557 write_lock(&map_tree->map_tree.lock);
6558 ret = add_extent_mapping(&map_tree->map_tree, em, 0);
6559 write_unlock(&map_tree->map_tree.lock);
6560 BUG_ON(ret); /* Tree corruption */
6561 free_extent_map(em);
6566 static void fill_device_from_item(struct extent_buffer *leaf,
6567 struct btrfs_dev_item *dev_item,
6568 struct btrfs_device *device)
6572 device->devid = btrfs_device_id(leaf, dev_item);
6573 device->disk_total_bytes = btrfs_device_total_bytes(leaf, dev_item);
6574 device->total_bytes = device->disk_total_bytes;
6575 device->commit_total_bytes = device->disk_total_bytes;
6576 device->bytes_used = btrfs_device_bytes_used(leaf, dev_item);
6577 device->commit_bytes_used = device->bytes_used;
6578 device->type = btrfs_device_type(leaf, dev_item);
6579 device->io_align = btrfs_device_io_align(leaf, dev_item);
6580 device->io_width = btrfs_device_io_width(leaf, dev_item);
6581 device->sector_size = btrfs_device_sector_size(leaf, dev_item);
6582 WARN_ON(device->devid == BTRFS_DEV_REPLACE_DEVID);
6583 device->is_tgtdev_for_dev_replace = 0;
6585 ptr = btrfs_device_uuid(dev_item);
6586 read_extent_buffer(leaf, device->uuid, ptr, BTRFS_UUID_SIZE);
6589 static struct btrfs_fs_devices *open_seed_devices(struct btrfs_root *root,
6592 struct btrfs_fs_devices *fs_devices;
6595 BUG_ON(!mutex_is_locked(&uuid_mutex));
6597 fs_devices = root->fs_info->fs_devices->seed;
6598 while (fs_devices) {
6599 if (!memcmp(fs_devices->fsid, fsid, BTRFS_UUID_SIZE))
6602 fs_devices = fs_devices->seed;
6605 fs_devices = find_fsid(fsid);
6607 if (!btrfs_test_opt(root->fs_info, DEGRADED))
6608 return ERR_PTR(-ENOENT);
6610 fs_devices = alloc_fs_devices(fsid);
6611 if (IS_ERR(fs_devices))
6614 fs_devices->seeding = 1;
6615 fs_devices->opened = 1;
6619 fs_devices = clone_fs_devices(fs_devices);
6620 if (IS_ERR(fs_devices))
6623 ret = __btrfs_open_devices(fs_devices, FMODE_READ,
6624 root->fs_info->bdev_holder);
6626 free_fs_devices(fs_devices);
6627 fs_devices = ERR_PTR(ret);
6631 if (!fs_devices->seeding) {
6632 __btrfs_close_devices(fs_devices);
6633 free_fs_devices(fs_devices);
6634 fs_devices = ERR_PTR(-EINVAL);
6638 fs_devices->seed = root->fs_info->fs_devices->seed;
6639 root->fs_info->fs_devices->seed = fs_devices;
6644 static int read_one_dev(struct btrfs_root *root,
6645 struct extent_buffer *leaf,
6646 struct btrfs_dev_item *dev_item)
6648 struct btrfs_fs_devices *fs_devices = root->fs_info->fs_devices;
6649 struct btrfs_device *device;
6652 u8 fs_uuid[BTRFS_UUID_SIZE];
6653 u8 dev_uuid[BTRFS_UUID_SIZE];
6655 devid = btrfs_device_id(leaf, dev_item);
6656 read_extent_buffer(leaf, dev_uuid, btrfs_device_uuid(dev_item),
6658 read_extent_buffer(leaf, fs_uuid, btrfs_device_fsid(dev_item),
6661 if (memcmp(fs_uuid, root->fs_info->fsid, BTRFS_UUID_SIZE)) {
6662 fs_devices = open_seed_devices(root, fs_uuid);
6663 if (IS_ERR(fs_devices))
6664 return PTR_ERR(fs_devices);
6667 device = btrfs_find_device(root->fs_info, devid, dev_uuid, fs_uuid);
6669 if (!btrfs_test_opt(root->fs_info, DEGRADED))
6672 device = add_missing_dev(root, fs_devices, devid, dev_uuid);
6675 btrfs_warn(root->fs_info, "devid %llu uuid %pU missing",
6678 if (!device->bdev && !btrfs_test_opt(root->fs_info, DEGRADED))
6681 if(!device->bdev && !device->missing) {
6683 * this happens when a device that was properly setup
6684 * in the device info lists suddenly goes bad.
6685 * device->bdev is NULL, and so we have to set
6686 * device->missing to one here
6688 device->fs_devices->missing_devices++;
6689 device->missing = 1;
6692 /* Move the device to its own fs_devices */
6693 if (device->fs_devices != fs_devices) {
6694 ASSERT(device->missing);
6696 list_move(&device->dev_list, &fs_devices->devices);
6697 device->fs_devices->num_devices--;
6698 fs_devices->num_devices++;
6700 device->fs_devices->missing_devices--;
6701 fs_devices->missing_devices++;
6703 device->fs_devices = fs_devices;
6707 if (device->fs_devices != root->fs_info->fs_devices) {
6708 BUG_ON(device->writeable);
6709 if (device->generation !=
6710 btrfs_device_generation(leaf, dev_item))
6714 fill_device_from_item(leaf, dev_item, device);
6715 device->in_fs_metadata = 1;
6716 if (device->writeable && !device->is_tgtdev_for_dev_replace) {
6717 device->fs_devices->total_rw_bytes += device->total_bytes;
6718 spin_lock(&root->fs_info->free_chunk_lock);
6719 root->fs_info->free_chunk_space += device->total_bytes -
6721 spin_unlock(&root->fs_info->free_chunk_lock);
6727 int btrfs_read_sys_array(struct btrfs_root *root)
6729 struct btrfs_fs_info *fs_info = root->fs_info;
6730 struct btrfs_super_block *super_copy = fs_info->super_copy;
6731 struct extent_buffer *sb;
6732 struct btrfs_disk_key *disk_key;
6733 struct btrfs_chunk *chunk;
6735 unsigned long sb_array_offset;
6742 struct btrfs_key key;
6744 ASSERT(BTRFS_SUPER_INFO_SIZE <= root->nodesize);
6746 * This will create extent buffer of nodesize, superblock size is
6747 * fixed to BTRFS_SUPER_INFO_SIZE. If nodesize > sb size, this will
6748 * overallocate but we can keep it as-is, only the first page is used.
6750 sb = btrfs_find_create_tree_block(root, BTRFS_SUPER_INFO_OFFSET);
6753 set_extent_buffer_uptodate(sb);
6754 btrfs_set_buffer_lockdep_class(root->root_key.objectid, sb, 0);
6756 * The sb extent buffer is artificial and just used to read the system array.
6757 * set_extent_buffer_uptodate() call does not properly mark all it's
6758 * pages up-to-date when the page is larger: extent does not cover the
6759 * whole page and consequently check_page_uptodate does not find all
6760 * the page's extents up-to-date (the hole beyond sb),
6761 * write_extent_buffer then triggers a WARN_ON.
6763 * Regular short extents go through mark_extent_buffer_dirty/writeback cycle,
6764 * but sb spans only this function. Add an explicit SetPageUptodate call
6765 * to silence the warning eg. on PowerPC 64.
6767 if (PAGE_SIZE > BTRFS_SUPER_INFO_SIZE)
6768 SetPageUptodate(sb->pages[0]);
6770 write_extent_buffer(sb, super_copy, 0, BTRFS_SUPER_INFO_SIZE);
6771 array_size = btrfs_super_sys_array_size(super_copy);
6773 array_ptr = super_copy->sys_chunk_array;
6774 sb_array_offset = offsetof(struct btrfs_super_block, sys_chunk_array);
6777 while (cur_offset < array_size) {
6778 disk_key = (struct btrfs_disk_key *)array_ptr;
6779 len = sizeof(*disk_key);
6780 if (cur_offset + len > array_size)
6781 goto out_short_read;
6783 btrfs_disk_key_to_cpu(&key, disk_key);
6786 sb_array_offset += len;
6789 if (key.type == BTRFS_CHUNK_ITEM_KEY) {
6790 chunk = (struct btrfs_chunk *)sb_array_offset;
6792 * At least one btrfs_chunk with one stripe must be
6793 * present, exact stripe count check comes afterwards
6795 len = btrfs_chunk_item_size(1);
6796 if (cur_offset + len > array_size)
6797 goto out_short_read;
6799 num_stripes = btrfs_chunk_num_stripes(sb, chunk);
6802 "invalid number of stripes %u in sys_array at offset %u",
6803 num_stripes, cur_offset);
6808 type = btrfs_chunk_type(sb, chunk);
6809 if ((type & BTRFS_BLOCK_GROUP_SYSTEM) == 0) {
6811 "invalid chunk type %llu in sys_array at offset %u",
6817 len = btrfs_chunk_item_size(num_stripes);
6818 if (cur_offset + len > array_size)
6819 goto out_short_read;
6821 ret = read_one_chunk(root, &key, sb, chunk);
6826 "unexpected item type %u in sys_array at offset %u",
6827 (u32)key.type, cur_offset);
6832 sb_array_offset += len;
6835 clear_extent_buffer_uptodate(sb);
6836 free_extent_buffer_stale(sb);
6840 btrfs_err(fs_info, "sys_array too short to read %u bytes at offset %u",
6842 clear_extent_buffer_uptodate(sb);
6843 free_extent_buffer_stale(sb);
6847 int btrfs_read_chunk_tree(struct btrfs_root *root)
6849 struct btrfs_path *path;
6850 struct extent_buffer *leaf;
6851 struct btrfs_key key;
6852 struct btrfs_key found_key;
6857 root = root->fs_info->chunk_root;
6859 path = btrfs_alloc_path();
6863 mutex_lock(&uuid_mutex);
6867 * It is possible for mount and umount to race in such a way that
6868 * we execute this code path, but open_fs_devices failed to clear
6869 * total_rw_bytes. We certainly want it cleared before reading the
6870 * device items, so clear it here.
6872 root->fs_info->fs_devices->total_rw_bytes = 0;
6875 * Read all device items, and then all the chunk items. All
6876 * device items are found before any chunk item (their object id
6877 * is smaller than the lowest possible object id for a chunk
6878 * item - BTRFS_FIRST_CHUNK_TREE_OBJECTID).
6880 key.objectid = BTRFS_DEV_ITEMS_OBJECTID;
6883 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
6887 leaf = path->nodes[0];
6888 slot = path->slots[0];
6889 if (slot >= btrfs_header_nritems(leaf)) {
6890 ret = btrfs_next_leaf(root, path);
6897 btrfs_item_key_to_cpu(leaf, &found_key, slot);
6898 if (found_key.type == BTRFS_DEV_ITEM_KEY) {
6899 struct btrfs_dev_item *dev_item;
6900 dev_item = btrfs_item_ptr(leaf, slot,
6901 struct btrfs_dev_item);
6902 ret = read_one_dev(root, leaf, dev_item);
6906 } else if (found_key.type == BTRFS_CHUNK_ITEM_KEY) {
6907 struct btrfs_chunk *chunk;
6908 chunk = btrfs_item_ptr(leaf, slot, struct btrfs_chunk);
6909 ret = read_one_chunk(root, &found_key, leaf, chunk);
6917 * After loading chunk tree, we've got all device information,
6918 * do another round of validation checks.
6920 if (total_dev != root->fs_info->fs_devices->total_devices) {
6921 btrfs_err(root->fs_info,
6922 "super_num_devices %llu mismatch with num_devices %llu found here",
6923 btrfs_super_num_devices(root->fs_info->super_copy),
6928 if (btrfs_super_total_bytes(root->fs_info->super_copy) <
6929 root->fs_info->fs_devices->total_rw_bytes) {
6930 btrfs_err(root->fs_info,
6931 "super_total_bytes %llu mismatch with fs_devices total_rw_bytes %llu",
6932 btrfs_super_total_bytes(root->fs_info->super_copy),
6933 root->fs_info->fs_devices->total_rw_bytes);
6939 unlock_chunks(root);
6940 mutex_unlock(&uuid_mutex);
6942 btrfs_free_path(path);
6946 void btrfs_init_devices_late(struct btrfs_fs_info *fs_info)
6948 struct btrfs_fs_devices *fs_devices = fs_info->fs_devices;
6949 struct btrfs_device *device;
6951 while (fs_devices) {
6952 mutex_lock(&fs_devices->device_list_mutex);
6953 list_for_each_entry(device, &fs_devices->devices, dev_list)
6954 device->dev_root = fs_info->dev_root;
6955 mutex_unlock(&fs_devices->device_list_mutex);
6957 fs_devices = fs_devices->seed;
6961 static void __btrfs_reset_dev_stats(struct btrfs_device *dev)
6965 for (i = 0; i < BTRFS_DEV_STAT_VALUES_MAX; i++)
6966 btrfs_dev_stat_reset(dev, i);
6969 int btrfs_init_dev_stats(struct btrfs_fs_info *fs_info)
6971 struct btrfs_key key;
6972 struct btrfs_key found_key;
6973 struct btrfs_root *dev_root = fs_info->dev_root;
6974 struct btrfs_fs_devices *fs_devices = fs_info->fs_devices;
6975 struct extent_buffer *eb;
6978 struct btrfs_device *device;
6979 struct btrfs_path *path = NULL;
6982 path = btrfs_alloc_path();
6988 mutex_lock(&fs_devices->device_list_mutex);
6989 list_for_each_entry(device, &fs_devices->devices, dev_list) {
6991 struct btrfs_dev_stats_item *ptr;
6993 key.objectid = BTRFS_DEV_STATS_OBJECTID;
6994 key.type = BTRFS_PERSISTENT_ITEM_KEY;
6995 key.offset = device->devid;
6996 ret = btrfs_search_slot(NULL, dev_root, &key, path, 0, 0);
6998 __btrfs_reset_dev_stats(device);
6999 device->dev_stats_valid = 1;
7000 btrfs_release_path(path);
7003 slot = path->slots[0];
7004 eb = path->nodes[0];
7005 btrfs_item_key_to_cpu(eb, &found_key, slot);
7006 item_size = btrfs_item_size_nr(eb, slot);
7008 ptr = btrfs_item_ptr(eb, slot,
7009 struct btrfs_dev_stats_item);
7011 for (i = 0; i < BTRFS_DEV_STAT_VALUES_MAX; i++) {
7012 if (item_size >= (1 + i) * sizeof(__le64))
7013 btrfs_dev_stat_set(device, i,
7014 btrfs_dev_stats_value(eb, ptr, i));
7016 btrfs_dev_stat_reset(device, i);
7019 device->dev_stats_valid = 1;
7020 btrfs_dev_stat_print_on_load(device);
7021 btrfs_release_path(path);
7023 mutex_unlock(&fs_devices->device_list_mutex);
7026 btrfs_free_path(path);
7027 return ret < 0 ? ret : 0;
7030 static int update_dev_stat_item(struct btrfs_trans_handle *trans,
7031 struct btrfs_root *dev_root,
7032 struct btrfs_device *device)
7034 struct btrfs_path *path;
7035 struct btrfs_key key;
7036 struct extent_buffer *eb;
7037 struct btrfs_dev_stats_item *ptr;
7041 key.objectid = BTRFS_DEV_STATS_OBJECTID;
7042 key.type = BTRFS_PERSISTENT_ITEM_KEY;
7043 key.offset = device->devid;
7045 path = btrfs_alloc_path();
7047 ret = btrfs_search_slot(trans, dev_root, &key, path, -1, 1);
7049 btrfs_warn_in_rcu(dev_root->fs_info,
7050 "error %d while searching for dev_stats item for device %s",
7051 ret, rcu_str_deref(device->name));
7056 btrfs_item_size_nr(path->nodes[0], path->slots[0]) < sizeof(*ptr)) {
7057 /* need to delete old one and insert a new one */
7058 ret = btrfs_del_item(trans, dev_root, path);
7060 btrfs_warn_in_rcu(dev_root->fs_info,
7061 "delete too small dev_stats item for device %s failed %d",
7062 rcu_str_deref(device->name), ret);
7069 /* need to insert a new item */
7070 btrfs_release_path(path);
7071 ret = btrfs_insert_empty_item(trans, dev_root, path,
7072 &key, sizeof(*ptr));
7074 btrfs_warn_in_rcu(dev_root->fs_info,
7075 "insert dev_stats item for device %s failed %d",
7076 rcu_str_deref(device->name), ret);
7081 eb = path->nodes[0];
7082 ptr = btrfs_item_ptr(eb, path->slots[0], struct btrfs_dev_stats_item);
7083 for (i = 0; i < BTRFS_DEV_STAT_VALUES_MAX; i++)
7084 btrfs_set_dev_stats_value(eb, ptr, i,
7085 btrfs_dev_stat_read(device, i));
7086 btrfs_mark_buffer_dirty(eb);
7089 btrfs_free_path(path);
7094 * called from commit_transaction. Writes all changed device stats to disk.
7096 int btrfs_run_dev_stats(struct btrfs_trans_handle *trans,
7097 struct btrfs_fs_info *fs_info)
7099 struct btrfs_root *dev_root = fs_info->dev_root;
7100 struct btrfs_fs_devices *fs_devices = fs_info->fs_devices;
7101 struct btrfs_device *device;
7105 mutex_lock(&fs_devices->device_list_mutex);
7106 list_for_each_entry(device, &fs_devices->devices, dev_list) {
7107 if (!device->dev_stats_valid || !btrfs_dev_stats_dirty(device))
7110 stats_cnt = atomic_read(&device->dev_stats_ccnt);
7111 ret = update_dev_stat_item(trans, dev_root, device);
7113 atomic_sub(stats_cnt, &device->dev_stats_ccnt);
7115 mutex_unlock(&fs_devices->device_list_mutex);
7120 void btrfs_dev_stat_inc_and_print(struct btrfs_device *dev, int index)
7122 btrfs_dev_stat_inc(dev, index);
7123 btrfs_dev_stat_print_on_error(dev);
7126 static void btrfs_dev_stat_print_on_error(struct btrfs_device *dev)
7128 if (!dev->dev_stats_valid)
7130 btrfs_err_rl_in_rcu(dev->dev_root->fs_info,
7131 "bdev %s errs: wr %u, rd %u, flush %u, corrupt %u, gen %u",
7132 rcu_str_deref(dev->name),
7133 btrfs_dev_stat_read(dev, BTRFS_DEV_STAT_WRITE_ERRS),
7134 btrfs_dev_stat_read(dev, BTRFS_DEV_STAT_READ_ERRS),
7135 btrfs_dev_stat_read(dev, BTRFS_DEV_STAT_FLUSH_ERRS),
7136 btrfs_dev_stat_read(dev, BTRFS_DEV_STAT_CORRUPTION_ERRS),
7137 btrfs_dev_stat_read(dev, BTRFS_DEV_STAT_GENERATION_ERRS));
7140 static void btrfs_dev_stat_print_on_load(struct btrfs_device *dev)
7144 for (i = 0; i < BTRFS_DEV_STAT_VALUES_MAX; i++)
7145 if (btrfs_dev_stat_read(dev, i) != 0)
7147 if (i == BTRFS_DEV_STAT_VALUES_MAX)
7148 return; /* all values == 0, suppress message */
7150 btrfs_info_in_rcu(dev->dev_root->fs_info,
7151 "bdev %s errs: wr %u, rd %u, flush %u, corrupt %u, gen %u",
7152 rcu_str_deref(dev->name),
7153 btrfs_dev_stat_read(dev, BTRFS_DEV_STAT_WRITE_ERRS),
7154 btrfs_dev_stat_read(dev, BTRFS_DEV_STAT_READ_ERRS),
7155 btrfs_dev_stat_read(dev, BTRFS_DEV_STAT_FLUSH_ERRS),
7156 btrfs_dev_stat_read(dev, BTRFS_DEV_STAT_CORRUPTION_ERRS),
7157 btrfs_dev_stat_read(dev, BTRFS_DEV_STAT_GENERATION_ERRS));
7160 int btrfs_get_dev_stats(struct btrfs_root *root,
7161 struct btrfs_ioctl_get_dev_stats *stats)
7163 struct btrfs_device *dev;
7164 struct btrfs_fs_devices *fs_devices = root->fs_info->fs_devices;
7167 mutex_lock(&fs_devices->device_list_mutex);
7168 dev = btrfs_find_device(root->fs_info, stats->devid, NULL, NULL);
7169 mutex_unlock(&fs_devices->device_list_mutex);
7172 btrfs_warn(root->fs_info,
7173 "get dev_stats failed, device not found");
7175 } else if (!dev->dev_stats_valid) {
7176 btrfs_warn(root->fs_info,
7177 "get dev_stats failed, not yet valid");
7179 } else if (stats->flags & BTRFS_DEV_STATS_RESET) {
7180 for (i = 0; i < BTRFS_DEV_STAT_VALUES_MAX; i++) {
7181 if (stats->nr_items > i)
7183 btrfs_dev_stat_read_and_reset(dev, i);
7185 btrfs_dev_stat_reset(dev, i);
7188 for (i = 0; i < BTRFS_DEV_STAT_VALUES_MAX; i++)
7189 if (stats->nr_items > i)
7190 stats->values[i] = btrfs_dev_stat_read(dev, i);
7192 if (stats->nr_items > BTRFS_DEV_STAT_VALUES_MAX)
7193 stats->nr_items = BTRFS_DEV_STAT_VALUES_MAX;
7197 void btrfs_scratch_superblocks(struct block_device *bdev, char *device_path)
7199 struct buffer_head *bh;
7200 struct btrfs_super_block *disk_super;
7206 for (copy_num = 0; copy_num < BTRFS_SUPER_MIRROR_MAX;
7209 if (btrfs_read_dev_one_super(bdev, copy_num, &bh))
7212 disk_super = (struct btrfs_super_block *)bh->b_data;
7214 memset(&disk_super->magic, 0, sizeof(disk_super->magic));
7215 set_buffer_dirty(bh);
7216 sync_dirty_buffer(bh);
7220 /* Notify udev that device has changed */
7221 btrfs_kobject_uevent(bdev, KOBJ_CHANGE);
7223 /* Update ctime/mtime for device path for libblkid */
7224 update_dev_time(device_path);
7228 * Update the size of all devices, which is used for writing out the
7231 void btrfs_update_commit_device_size(struct btrfs_fs_info *fs_info)
7233 struct btrfs_fs_devices *fs_devices = fs_info->fs_devices;
7234 struct btrfs_device *curr, *next;
7236 if (list_empty(&fs_devices->resized_devices))
7239 mutex_lock(&fs_devices->device_list_mutex);
7240 lock_chunks(fs_info->dev_root);
7241 list_for_each_entry_safe(curr, next, &fs_devices->resized_devices,
7243 list_del_init(&curr->resized_list);
7244 curr->commit_total_bytes = curr->disk_total_bytes;
7246 unlock_chunks(fs_info->dev_root);
7247 mutex_unlock(&fs_devices->device_list_mutex);
7250 /* Must be invoked during the transaction commit */
7251 void btrfs_update_commit_device_bytes_used(struct btrfs_root *root,
7252 struct btrfs_transaction *transaction)
7254 struct extent_map *em;
7255 struct map_lookup *map;
7256 struct btrfs_device *dev;
7259 if (list_empty(&transaction->pending_chunks))
7262 /* In order to kick the device replace finish process */
7264 list_for_each_entry(em, &transaction->pending_chunks, list) {
7265 map = em->map_lookup;
7267 for (i = 0; i < map->num_stripes; i++) {
7268 dev = map->stripes[i].dev;
7269 dev->commit_bytes_used = dev->bytes_used;
7270 dev->has_pending_chunks = false;
7273 unlock_chunks(root);
7276 void btrfs_set_fs_info_ptr(struct btrfs_fs_info *fs_info)
7278 struct btrfs_fs_devices *fs_devices = fs_info->fs_devices;
7279 while (fs_devices) {
7280 fs_devices->fs_info = fs_info;
7281 fs_devices = fs_devices->seed;
7285 void btrfs_reset_fs_info_ptr(struct btrfs_fs_info *fs_info)
7287 struct btrfs_fs_devices *fs_devices = fs_info->fs_devices;
7288 while (fs_devices) {
7289 fs_devices->fs_info = NULL;
7290 fs_devices = fs_devices->seed;