GNU Linux-libre 4.4.297-gnu1
[releases.git] / fs / btrfs / transaction.c
1 /*
2  * Copyright (C) 2007 Oracle.  All rights reserved.
3  *
4  * This program is free software; you can redistribute it and/or
5  * modify it under the terms of the GNU General Public
6  * License v2 as published by the Free Software Foundation.
7  *
8  * This program is distributed in the hope that it will be useful,
9  * but WITHOUT ANY WARRANTY; without even the implied warranty of
10  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
11  * General Public License for more details.
12  *
13  * You should have received a copy of the GNU General Public
14  * License along with this program; if not, write to the
15  * Free Software Foundation, Inc., 59 Temple Place - Suite 330,
16  * Boston, MA 021110-1307, USA.
17  */
18
19 #include <linux/fs.h>
20 #include <linux/slab.h>
21 #include <linux/sched.h>
22 #include <linux/writeback.h>
23 #include <linux/pagemap.h>
24 #include <linux/blkdev.h>
25 #include <linux/uuid.h>
26 #include "ctree.h"
27 #include "disk-io.h"
28 #include "transaction.h"
29 #include "locking.h"
30 #include "tree-log.h"
31 #include "inode-map.h"
32 #include "volumes.h"
33 #include "dev-replace.h"
34 #include "qgroup.h"
35
36 #define BTRFS_ROOT_TRANS_TAG 0
37
38 static const unsigned int btrfs_blocked_trans_types[TRANS_STATE_MAX] = {
39         [TRANS_STATE_RUNNING]           = 0U,
40         [TRANS_STATE_BLOCKED]           = (__TRANS_USERSPACE |
41                                            __TRANS_START),
42         [TRANS_STATE_COMMIT_START]      = (__TRANS_USERSPACE |
43                                            __TRANS_START |
44                                            __TRANS_ATTACH),
45         [TRANS_STATE_COMMIT_DOING]      = (__TRANS_USERSPACE |
46                                            __TRANS_START |
47                                            __TRANS_ATTACH |
48                                            __TRANS_JOIN),
49         [TRANS_STATE_UNBLOCKED]         = (__TRANS_USERSPACE |
50                                            __TRANS_START |
51                                            __TRANS_ATTACH |
52                                            __TRANS_JOIN |
53                                            __TRANS_JOIN_NOLOCK),
54         [TRANS_STATE_COMPLETED]         = (__TRANS_USERSPACE |
55                                            __TRANS_START |
56                                            __TRANS_ATTACH |
57                                            __TRANS_JOIN |
58                                            __TRANS_JOIN_NOLOCK),
59 };
60
61 void btrfs_put_transaction(struct btrfs_transaction *transaction)
62 {
63         WARN_ON(atomic_read(&transaction->use_count) == 0);
64         if (atomic_dec_and_test(&transaction->use_count)) {
65                 BUG_ON(!list_empty(&transaction->list));
66                 WARN_ON(!RB_EMPTY_ROOT(&transaction->delayed_refs.href_root));
67                 if (transaction->delayed_refs.pending_csums)
68                         printk(KERN_ERR "pending csums is %llu\n",
69                                transaction->delayed_refs.pending_csums);
70                 while (!list_empty(&transaction->pending_chunks)) {
71                         struct extent_map *em;
72
73                         em = list_first_entry(&transaction->pending_chunks,
74                                               struct extent_map, list);
75                         list_del_init(&em->list);
76                         free_extent_map(em);
77                 }
78                 kmem_cache_free(btrfs_transaction_cachep, transaction);
79         }
80 }
81
82 static void clear_btree_io_tree(struct extent_io_tree *tree)
83 {
84         spin_lock(&tree->lock);
85         /*
86          * Do a single barrier for the waitqueue_active check here, the state
87          * of the waitqueue should not change once clear_btree_io_tree is
88          * called.
89          */
90         smp_mb();
91         while (!RB_EMPTY_ROOT(&tree->state)) {
92                 struct rb_node *node;
93                 struct extent_state *state;
94
95                 node = rb_first(&tree->state);
96                 state = rb_entry(node, struct extent_state, rb_node);
97                 rb_erase(&state->rb_node, &tree->state);
98                 RB_CLEAR_NODE(&state->rb_node);
99                 /*
100                  * btree io trees aren't supposed to have tasks waiting for
101                  * changes in the flags of extent states ever.
102                  */
103                 ASSERT(!waitqueue_active(&state->wq));
104                 free_extent_state(state);
105
106                 cond_resched_lock(&tree->lock);
107         }
108         spin_unlock(&tree->lock);
109 }
110
111 static noinline void switch_commit_roots(struct btrfs_transaction *trans,
112                                          struct btrfs_fs_info *fs_info)
113 {
114         struct btrfs_root *root, *tmp;
115
116         down_write(&fs_info->commit_root_sem);
117         list_for_each_entry_safe(root, tmp, &trans->switch_commits,
118                                  dirty_list) {
119                 list_del_init(&root->dirty_list);
120                 free_extent_buffer(root->commit_root);
121                 root->commit_root = btrfs_root_node(root);
122                 if (is_fstree(root->objectid))
123                         btrfs_unpin_free_ino(root);
124                 clear_btree_io_tree(&root->dirty_log_pages);
125         }
126
127         /* We can free old roots now. */
128         spin_lock(&trans->dropped_roots_lock);
129         while (!list_empty(&trans->dropped_roots)) {
130                 root = list_first_entry(&trans->dropped_roots,
131                                         struct btrfs_root, root_list);
132                 list_del_init(&root->root_list);
133                 spin_unlock(&trans->dropped_roots_lock);
134                 btrfs_drop_and_free_fs_root(fs_info, root);
135                 spin_lock(&trans->dropped_roots_lock);
136         }
137         spin_unlock(&trans->dropped_roots_lock);
138         up_write(&fs_info->commit_root_sem);
139 }
140
141 static inline void extwriter_counter_inc(struct btrfs_transaction *trans,
142                                          unsigned int type)
143 {
144         if (type & TRANS_EXTWRITERS)
145                 atomic_inc(&trans->num_extwriters);
146 }
147
148 static inline void extwriter_counter_dec(struct btrfs_transaction *trans,
149                                          unsigned int type)
150 {
151         if (type & TRANS_EXTWRITERS)
152                 atomic_dec(&trans->num_extwriters);
153 }
154
155 static inline void extwriter_counter_init(struct btrfs_transaction *trans,
156                                           unsigned int type)
157 {
158         atomic_set(&trans->num_extwriters, ((type & TRANS_EXTWRITERS) ? 1 : 0));
159 }
160
161 static inline int extwriter_counter_read(struct btrfs_transaction *trans)
162 {
163         return atomic_read(&trans->num_extwriters);
164 }
165
166 /*
167  * either allocate a new transaction or hop into the existing one
168  */
169 static noinline int join_transaction(struct btrfs_root *root, unsigned int type)
170 {
171         struct btrfs_transaction *cur_trans;
172         struct btrfs_fs_info *fs_info = root->fs_info;
173
174         spin_lock(&fs_info->trans_lock);
175 loop:
176         /* The file system has been taken offline. No new transactions. */
177         if (test_bit(BTRFS_FS_STATE_ERROR, &fs_info->fs_state)) {
178                 spin_unlock(&fs_info->trans_lock);
179                 return -EROFS;
180         }
181
182         cur_trans = fs_info->running_transaction;
183         if (cur_trans) {
184                 if (cur_trans->aborted) {
185                         spin_unlock(&fs_info->trans_lock);
186                         return cur_trans->aborted;
187                 }
188                 if (btrfs_blocked_trans_types[cur_trans->state] & type) {
189                         spin_unlock(&fs_info->trans_lock);
190                         return -EBUSY;
191                 }
192                 atomic_inc(&cur_trans->use_count);
193                 atomic_inc(&cur_trans->num_writers);
194                 extwriter_counter_inc(cur_trans, type);
195                 spin_unlock(&fs_info->trans_lock);
196                 return 0;
197         }
198         spin_unlock(&fs_info->trans_lock);
199
200         /*
201          * If we are ATTACH, we just want to catch the current transaction,
202          * and commit it. If there is no transaction, just return ENOENT.
203          */
204         if (type == TRANS_ATTACH)
205                 return -ENOENT;
206
207         /*
208          * JOIN_NOLOCK only happens during the transaction commit, so
209          * it is impossible that ->running_transaction is NULL
210          */
211         BUG_ON(type == TRANS_JOIN_NOLOCK);
212
213         cur_trans = kmem_cache_alloc(btrfs_transaction_cachep, GFP_NOFS);
214         if (!cur_trans)
215                 return -ENOMEM;
216
217         spin_lock(&fs_info->trans_lock);
218         if (fs_info->running_transaction) {
219                 /*
220                  * someone started a transaction after we unlocked.  Make sure
221                  * to redo the checks above
222                  */
223                 kmem_cache_free(btrfs_transaction_cachep, cur_trans);
224                 goto loop;
225         } else if (test_bit(BTRFS_FS_STATE_ERROR, &fs_info->fs_state)) {
226                 spin_unlock(&fs_info->trans_lock);
227                 kmem_cache_free(btrfs_transaction_cachep, cur_trans);
228                 return -EROFS;
229         }
230
231         atomic_set(&cur_trans->num_writers, 1);
232         extwriter_counter_init(cur_trans, type);
233         init_waitqueue_head(&cur_trans->writer_wait);
234         init_waitqueue_head(&cur_trans->commit_wait);
235         init_waitqueue_head(&cur_trans->pending_wait);
236         cur_trans->state = TRANS_STATE_RUNNING;
237         /*
238          * One for this trans handle, one so it will live on until we
239          * commit the transaction.
240          */
241         atomic_set(&cur_trans->use_count, 2);
242         atomic_set(&cur_trans->pending_ordered, 0);
243         cur_trans->flags = 0;
244         cur_trans->start_time = get_seconds();
245
246         memset(&cur_trans->delayed_refs, 0, sizeof(cur_trans->delayed_refs));
247
248         cur_trans->delayed_refs.href_root = RB_ROOT;
249         cur_trans->delayed_refs.dirty_extent_root = RB_ROOT;
250         atomic_set(&cur_trans->delayed_refs.num_entries, 0);
251
252         /*
253          * although the tree mod log is per file system and not per transaction,
254          * the log must never go across transaction boundaries.
255          */
256         smp_mb();
257         if (!list_empty(&fs_info->tree_mod_seq_list))
258                 WARN(1, KERN_ERR "BTRFS: tree_mod_seq_list not empty when "
259                         "creating a fresh transaction\n");
260         if (!RB_EMPTY_ROOT(&fs_info->tree_mod_log))
261                 WARN(1, KERN_ERR "BTRFS: tree_mod_log rb tree not empty when "
262                         "creating a fresh transaction\n");
263         atomic64_set(&fs_info->tree_mod_seq, 0);
264
265         spin_lock_init(&cur_trans->delayed_refs.lock);
266
267         INIT_LIST_HEAD(&cur_trans->pending_snapshots);
268         INIT_LIST_HEAD(&cur_trans->pending_chunks);
269         INIT_LIST_HEAD(&cur_trans->switch_commits);
270         INIT_LIST_HEAD(&cur_trans->dirty_bgs);
271         INIT_LIST_HEAD(&cur_trans->io_bgs);
272         INIT_LIST_HEAD(&cur_trans->dropped_roots);
273         mutex_init(&cur_trans->cache_write_mutex);
274         cur_trans->num_dirty_bgs = 0;
275         spin_lock_init(&cur_trans->dirty_bgs_lock);
276         INIT_LIST_HEAD(&cur_trans->deleted_bgs);
277         spin_lock_init(&cur_trans->dropped_roots_lock);
278         list_add_tail(&cur_trans->list, &fs_info->trans_list);
279         extent_io_tree_init(&cur_trans->dirty_pages,
280                              fs_info->btree_inode->i_mapping);
281         fs_info->generation++;
282         cur_trans->transid = fs_info->generation;
283         fs_info->running_transaction = cur_trans;
284         cur_trans->aborted = 0;
285         spin_unlock(&fs_info->trans_lock);
286
287         return 0;
288 }
289
290 /*
291  * this does all the record keeping required to make sure that a reference
292  * counted root is properly recorded in a given transaction.  This is required
293  * to make sure the old root from before we joined the transaction is deleted
294  * when the transaction commits
295  */
296 static int record_root_in_trans(struct btrfs_trans_handle *trans,
297                                struct btrfs_root *root)
298 {
299         if (test_bit(BTRFS_ROOT_REF_COWS, &root->state) &&
300             root->last_trans < trans->transid) {
301                 WARN_ON(root == root->fs_info->extent_root);
302                 WARN_ON(root->commit_root != root->node);
303
304                 /*
305                  * see below for IN_TRANS_SETUP usage rules
306                  * we have the reloc mutex held now, so there
307                  * is only one writer in this function
308                  */
309                 set_bit(BTRFS_ROOT_IN_TRANS_SETUP, &root->state);
310
311                 /* make sure readers find IN_TRANS_SETUP before
312                  * they find our root->last_trans update
313                  */
314                 smp_wmb();
315
316                 spin_lock(&root->fs_info->fs_roots_radix_lock);
317                 if (root->last_trans == trans->transid) {
318                         spin_unlock(&root->fs_info->fs_roots_radix_lock);
319                         return 0;
320                 }
321                 radix_tree_tag_set(&root->fs_info->fs_roots_radix,
322                            (unsigned long)root->root_key.objectid,
323                            BTRFS_ROOT_TRANS_TAG);
324                 spin_unlock(&root->fs_info->fs_roots_radix_lock);
325                 root->last_trans = trans->transid;
326
327                 /* this is pretty tricky.  We don't want to
328                  * take the relocation lock in btrfs_record_root_in_trans
329                  * unless we're really doing the first setup for this root in
330                  * this transaction.
331                  *
332                  * Normally we'd use root->last_trans as a flag to decide
333                  * if we want to take the expensive mutex.
334                  *
335                  * But, we have to set root->last_trans before we
336                  * init the relocation root, otherwise, we trip over warnings
337                  * in ctree.c.  The solution used here is to flag ourselves
338                  * with root IN_TRANS_SETUP.  When this is 1, we're still
339                  * fixing up the reloc trees and everyone must wait.
340                  *
341                  * When this is zero, they can trust root->last_trans and fly
342                  * through btrfs_record_root_in_trans without having to take the
343                  * lock.  smp_wmb() makes sure that all the writes above are
344                  * done before we pop in the zero below
345                  */
346                 btrfs_init_reloc_root(trans, root);
347                 smp_mb__before_atomic();
348                 clear_bit(BTRFS_ROOT_IN_TRANS_SETUP, &root->state);
349         }
350         return 0;
351 }
352
353
354 void btrfs_add_dropped_root(struct btrfs_trans_handle *trans,
355                             struct btrfs_root *root)
356 {
357         struct btrfs_transaction *cur_trans = trans->transaction;
358
359         /* Add ourselves to the transaction dropped list */
360         spin_lock(&cur_trans->dropped_roots_lock);
361         list_add_tail(&root->root_list, &cur_trans->dropped_roots);
362         spin_unlock(&cur_trans->dropped_roots_lock);
363
364         /* Make sure we don't try to update the root at commit time */
365         spin_lock(&root->fs_info->fs_roots_radix_lock);
366         radix_tree_tag_clear(&root->fs_info->fs_roots_radix,
367                              (unsigned long)root->root_key.objectid,
368                              BTRFS_ROOT_TRANS_TAG);
369         spin_unlock(&root->fs_info->fs_roots_radix_lock);
370 }
371
372 int btrfs_record_root_in_trans(struct btrfs_trans_handle *trans,
373                                struct btrfs_root *root)
374 {
375         if (!test_bit(BTRFS_ROOT_REF_COWS, &root->state))
376                 return 0;
377
378         /*
379          * see record_root_in_trans for comments about IN_TRANS_SETUP usage
380          * and barriers
381          */
382         smp_rmb();
383         if (root->last_trans == trans->transid &&
384             !test_bit(BTRFS_ROOT_IN_TRANS_SETUP, &root->state))
385                 return 0;
386
387         mutex_lock(&root->fs_info->reloc_mutex);
388         record_root_in_trans(trans, root);
389         mutex_unlock(&root->fs_info->reloc_mutex);
390
391         return 0;
392 }
393
394 static inline int is_transaction_blocked(struct btrfs_transaction *trans)
395 {
396         return (trans->state >= TRANS_STATE_BLOCKED &&
397                 trans->state < TRANS_STATE_UNBLOCKED &&
398                 !trans->aborted);
399 }
400
401 /* wait for commit against the current transaction to become unblocked
402  * when this is done, it is safe to start a new transaction, but the current
403  * transaction might not be fully on disk.
404  */
405 static void wait_current_trans(struct btrfs_root *root)
406 {
407         struct btrfs_transaction *cur_trans;
408
409         spin_lock(&root->fs_info->trans_lock);
410         cur_trans = root->fs_info->running_transaction;
411         if (cur_trans && is_transaction_blocked(cur_trans)) {
412                 atomic_inc(&cur_trans->use_count);
413                 spin_unlock(&root->fs_info->trans_lock);
414
415                 wait_event(root->fs_info->transaction_wait,
416                            cur_trans->state >= TRANS_STATE_UNBLOCKED ||
417                            cur_trans->aborted);
418                 btrfs_put_transaction(cur_trans);
419         } else {
420                 spin_unlock(&root->fs_info->trans_lock);
421         }
422 }
423
424 static int may_wait_transaction(struct btrfs_root *root, int type)
425 {
426         if (root->fs_info->log_root_recovering)
427                 return 0;
428
429         if (type == TRANS_USERSPACE)
430                 return 1;
431
432         if (type == TRANS_START &&
433             !atomic_read(&root->fs_info->open_ioctl_trans))
434                 return 1;
435
436         return 0;
437 }
438
439 static inline bool need_reserve_reloc_root(struct btrfs_root *root)
440 {
441         if (!root->fs_info->reloc_ctl ||
442             !test_bit(BTRFS_ROOT_REF_COWS, &root->state) ||
443             root->root_key.objectid == BTRFS_TREE_RELOC_OBJECTID ||
444             root->reloc_root)
445                 return false;
446
447         return true;
448 }
449
450 static struct btrfs_trans_handle *
451 start_transaction(struct btrfs_root *root, unsigned int num_items,
452                   unsigned int type, enum btrfs_reserve_flush_enum flush)
453 {
454         struct btrfs_trans_handle *h;
455         struct btrfs_transaction *cur_trans;
456         u64 num_bytes = 0;
457         u64 qgroup_reserved = 0;
458         bool reloc_reserved = false;
459         int ret;
460
461         /* Send isn't supposed to start transactions. */
462         ASSERT(current->journal_info != BTRFS_SEND_TRANS_STUB);
463
464         if (test_bit(BTRFS_FS_STATE_ERROR, &root->fs_info->fs_state))
465                 return ERR_PTR(-EROFS);
466
467         if (current->journal_info) {
468                 WARN_ON(type & TRANS_EXTWRITERS);
469                 h = current->journal_info;
470                 h->use_count++;
471                 WARN_ON(h->use_count > 2);
472                 h->orig_rsv = h->block_rsv;
473                 h->block_rsv = NULL;
474                 goto got_it;
475         }
476
477         /*
478          * Do the reservation before we join the transaction so we can do all
479          * the appropriate flushing if need be.
480          */
481         if (num_items > 0 && root != root->fs_info->chunk_root) {
482                 qgroup_reserved = num_items * root->nodesize;
483                 ret = btrfs_qgroup_reserve_meta(root, qgroup_reserved);
484                 if (ret)
485                         return ERR_PTR(ret);
486
487                 num_bytes = btrfs_calc_trans_metadata_size(root, num_items);
488                 /*
489                  * Do the reservation for the relocation root creation
490                  */
491                 if (need_reserve_reloc_root(root)) {
492                         num_bytes += root->nodesize;
493                         reloc_reserved = true;
494                 }
495
496                 ret = btrfs_block_rsv_add(root,
497                                           &root->fs_info->trans_block_rsv,
498                                           num_bytes, flush);
499                 if (ret)
500                         goto reserve_fail;
501         }
502 again:
503         h = kmem_cache_zalloc(btrfs_trans_handle_cachep, GFP_NOFS);
504         if (!h) {
505                 ret = -ENOMEM;
506                 goto alloc_fail;
507         }
508
509         /*
510          * If we are JOIN_NOLOCK we're already committing a transaction and
511          * waiting on this guy, so we don't need to do the sb_start_intwrite
512          * because we're already holding a ref.  We need this because we could
513          * have raced in and did an fsync() on a file which can kick a commit
514          * and then we deadlock with somebody doing a freeze.
515          *
516          * If we are ATTACH, it means we just want to catch the current
517          * transaction and commit it, so we needn't do sb_start_intwrite(). 
518          */
519         if (type & __TRANS_FREEZABLE)
520                 sb_start_intwrite(root->fs_info->sb);
521
522         if (may_wait_transaction(root, type))
523                 wait_current_trans(root);
524
525         do {
526                 ret = join_transaction(root, type);
527                 if (ret == -EBUSY) {
528                         wait_current_trans(root);
529                         if (unlikely(type == TRANS_ATTACH))
530                                 ret = -ENOENT;
531                 }
532         } while (ret == -EBUSY);
533
534         if (ret < 0) {
535                 /* We must get the transaction if we are JOIN_NOLOCK. */
536                 BUG_ON(type == TRANS_JOIN_NOLOCK);
537                 goto join_fail;
538         }
539
540         cur_trans = root->fs_info->running_transaction;
541
542         h->transid = cur_trans->transid;
543         h->transaction = cur_trans;
544         h->root = root;
545         h->use_count = 1;
546
547         h->type = type;
548         h->can_flush_pending_bgs = true;
549         INIT_LIST_HEAD(&h->qgroup_ref_list);
550         INIT_LIST_HEAD(&h->new_bgs);
551
552         smp_mb();
553         if (cur_trans->state >= TRANS_STATE_BLOCKED &&
554             may_wait_transaction(root, type)) {
555                 current->journal_info = h;
556                 btrfs_commit_transaction(h, root);
557                 goto again;
558         }
559
560         if (num_bytes) {
561                 trace_btrfs_space_reservation(root->fs_info, "transaction",
562                                               h->transid, num_bytes, 1);
563                 h->block_rsv = &root->fs_info->trans_block_rsv;
564                 h->bytes_reserved = num_bytes;
565                 h->reloc_reserved = reloc_reserved;
566         }
567
568 got_it:
569         btrfs_record_root_in_trans(h, root);
570
571         if (!current->journal_info && type != TRANS_USERSPACE)
572                 current->journal_info = h;
573         return h;
574
575 join_fail:
576         if (type & __TRANS_FREEZABLE)
577                 sb_end_intwrite(root->fs_info->sb);
578         kmem_cache_free(btrfs_trans_handle_cachep, h);
579 alloc_fail:
580         if (num_bytes)
581                 btrfs_block_rsv_release(root, &root->fs_info->trans_block_rsv,
582                                         num_bytes);
583 reserve_fail:
584         btrfs_qgroup_free_meta(root, qgroup_reserved);
585         return ERR_PTR(ret);
586 }
587
588 struct btrfs_trans_handle *btrfs_start_transaction(struct btrfs_root *root,
589                                                    unsigned int num_items)
590 {
591         return start_transaction(root, num_items, TRANS_START,
592                                  BTRFS_RESERVE_FLUSH_ALL);
593 }
594 struct btrfs_trans_handle *btrfs_start_transaction_fallback_global_rsv(
595                                         struct btrfs_root *root,
596                                         unsigned int num_items,
597                                         int min_factor)
598 {
599         struct btrfs_trans_handle *trans;
600         u64 num_bytes;
601         int ret;
602
603         trans = btrfs_start_transaction(root, num_items);
604         if (!IS_ERR(trans) || PTR_ERR(trans) != -ENOSPC)
605                 return trans;
606
607         trans = btrfs_start_transaction(root, 0);
608         if (IS_ERR(trans))
609                 return trans;
610
611         num_bytes = btrfs_calc_trans_metadata_size(root, num_items);
612         ret = btrfs_cond_migrate_bytes(root->fs_info,
613                                        &root->fs_info->trans_block_rsv,
614                                        num_bytes,
615                                        min_factor);
616         if (ret) {
617                 btrfs_end_transaction(trans, root);
618                 return ERR_PTR(ret);
619         }
620
621         trans->block_rsv = &root->fs_info->trans_block_rsv;
622         trans->bytes_reserved = num_bytes;
623
624         return trans;
625 }
626
627 struct btrfs_trans_handle *btrfs_start_transaction_lflush(
628                                         struct btrfs_root *root,
629                                         unsigned int num_items)
630 {
631         return start_transaction(root, num_items, TRANS_START,
632                                  BTRFS_RESERVE_FLUSH_LIMIT);
633 }
634
635 struct btrfs_trans_handle *btrfs_join_transaction(struct btrfs_root *root)
636 {
637         return start_transaction(root, 0, TRANS_JOIN, 0);
638 }
639
640 struct btrfs_trans_handle *btrfs_join_transaction_nolock(struct btrfs_root *root)
641 {
642         return start_transaction(root, 0, TRANS_JOIN_NOLOCK, 0);
643 }
644
645 struct btrfs_trans_handle *btrfs_start_ioctl_transaction(struct btrfs_root *root)
646 {
647         return start_transaction(root, 0, TRANS_USERSPACE, 0);
648 }
649
650 /*
651  * btrfs_attach_transaction() - catch the running transaction
652  *
653  * It is used when we want to commit the current the transaction, but
654  * don't want to start a new one.
655  *
656  * Note: If this function return -ENOENT, it just means there is no
657  * running transaction. But it is possible that the inactive transaction
658  * is still in the memory, not fully on disk. If you hope there is no
659  * inactive transaction in the fs when -ENOENT is returned, you should
660  * invoke
661  *     btrfs_attach_transaction_barrier()
662  */
663 struct btrfs_trans_handle *btrfs_attach_transaction(struct btrfs_root *root)
664 {
665         return start_transaction(root, 0, TRANS_ATTACH, 0);
666 }
667
668 /*
669  * btrfs_attach_transaction_barrier() - catch the running transaction
670  *
671  * It is similar to the above function, the differentia is this one
672  * will wait for all the inactive transactions until they fully
673  * complete.
674  */
675 struct btrfs_trans_handle *
676 btrfs_attach_transaction_barrier(struct btrfs_root *root)
677 {
678         struct btrfs_trans_handle *trans;
679
680         trans = start_transaction(root, 0, TRANS_ATTACH, 0);
681         if (IS_ERR(trans) && PTR_ERR(trans) == -ENOENT)
682                 btrfs_wait_for_commit(root, 0);
683
684         return trans;
685 }
686
687 /* wait for a transaction commit to be fully complete */
688 static noinline void wait_for_commit(struct btrfs_root *root,
689                                     struct btrfs_transaction *commit)
690 {
691         wait_event(commit->commit_wait, commit->state == TRANS_STATE_COMPLETED);
692 }
693
694 int btrfs_wait_for_commit(struct btrfs_root *root, u64 transid)
695 {
696         struct btrfs_transaction *cur_trans = NULL, *t;
697         int ret = 0;
698
699         if (transid) {
700                 if (transid <= root->fs_info->last_trans_committed)
701                         goto out;
702
703                 /* find specified transaction */
704                 spin_lock(&root->fs_info->trans_lock);
705                 list_for_each_entry(t, &root->fs_info->trans_list, list) {
706                         if (t->transid == transid) {
707                                 cur_trans = t;
708                                 atomic_inc(&cur_trans->use_count);
709                                 ret = 0;
710                                 break;
711                         }
712                         if (t->transid > transid) {
713                                 ret = 0;
714                                 break;
715                         }
716                 }
717                 spin_unlock(&root->fs_info->trans_lock);
718
719                 /*
720                  * The specified transaction doesn't exist, or we
721                  * raced with btrfs_commit_transaction
722                  */
723                 if (!cur_trans) {
724                         if (transid > root->fs_info->last_trans_committed)
725                                 ret = -EINVAL;
726                         goto out;
727                 }
728         } else {
729                 /* find newest transaction that is committing | committed */
730                 spin_lock(&root->fs_info->trans_lock);
731                 list_for_each_entry_reverse(t, &root->fs_info->trans_list,
732                                             list) {
733                         if (t->state >= TRANS_STATE_COMMIT_START) {
734                                 if (t->state == TRANS_STATE_COMPLETED)
735                                         break;
736                                 cur_trans = t;
737                                 atomic_inc(&cur_trans->use_count);
738                                 break;
739                         }
740                 }
741                 spin_unlock(&root->fs_info->trans_lock);
742                 if (!cur_trans)
743                         goto out;  /* nothing committing|committed */
744         }
745
746         wait_for_commit(root, cur_trans);
747         btrfs_put_transaction(cur_trans);
748 out:
749         return ret;
750 }
751
752 void btrfs_throttle(struct btrfs_root *root)
753 {
754         if (!atomic_read(&root->fs_info->open_ioctl_trans))
755                 wait_current_trans(root);
756 }
757
758 static int should_end_transaction(struct btrfs_trans_handle *trans,
759                                   struct btrfs_root *root)
760 {
761         if (root->fs_info->global_block_rsv.space_info->full &&
762             btrfs_check_space_for_delayed_refs(trans, root))
763                 return 1;
764
765         return !!btrfs_block_rsv_check(root, &root->fs_info->global_block_rsv, 5);
766 }
767
768 int btrfs_should_end_transaction(struct btrfs_trans_handle *trans,
769                                  struct btrfs_root *root)
770 {
771         struct btrfs_transaction *cur_trans = trans->transaction;
772         int updates;
773         int err;
774
775         smp_mb();
776         if (cur_trans->state >= TRANS_STATE_BLOCKED ||
777             cur_trans->delayed_refs.flushing)
778                 return 1;
779
780         updates = trans->delayed_ref_updates;
781         trans->delayed_ref_updates = 0;
782         if (updates) {
783                 err = btrfs_run_delayed_refs(trans, root, updates * 2);
784                 if (err) /* Error code will also eval true */
785                         return err;
786         }
787
788         return should_end_transaction(trans, root);
789 }
790
791 static int __btrfs_end_transaction(struct btrfs_trans_handle *trans,
792                           struct btrfs_root *root, int throttle)
793 {
794         struct btrfs_transaction *cur_trans = trans->transaction;
795         struct btrfs_fs_info *info = root->fs_info;
796         unsigned long cur = trans->delayed_ref_updates;
797         int lock = (trans->type != TRANS_JOIN_NOLOCK);
798         int err = 0;
799         int must_run_delayed_refs = 0;
800
801         if (trans->use_count > 1) {
802                 trans->use_count--;
803                 trans->block_rsv = trans->orig_rsv;
804                 return 0;
805         }
806
807         btrfs_trans_release_metadata(trans, root);
808         trans->block_rsv = NULL;
809
810         if (!list_empty(&trans->new_bgs))
811                 btrfs_create_pending_block_groups(trans, root);
812
813         trans->delayed_ref_updates = 0;
814         if (!trans->sync) {
815                 must_run_delayed_refs =
816                         btrfs_should_throttle_delayed_refs(trans, root);
817                 cur = max_t(unsigned long, cur, 32);
818
819                 /*
820                  * don't make the caller wait if they are from a NOLOCK
821                  * or ATTACH transaction, it will deadlock with commit
822                  */
823                 if (must_run_delayed_refs == 1 &&
824                     (trans->type & (__TRANS_JOIN_NOLOCK | __TRANS_ATTACH)))
825                         must_run_delayed_refs = 2;
826         }
827
828         btrfs_trans_release_metadata(trans, root);
829         trans->block_rsv = NULL;
830
831         if (!list_empty(&trans->new_bgs))
832                 btrfs_create_pending_block_groups(trans, root);
833
834         btrfs_trans_release_chunk_metadata(trans);
835
836         if (lock && !atomic_read(&root->fs_info->open_ioctl_trans) &&
837             should_end_transaction(trans, root) &&
838             ACCESS_ONCE(cur_trans->state) == TRANS_STATE_RUNNING) {
839                 spin_lock(&info->trans_lock);
840                 if (cur_trans->state == TRANS_STATE_RUNNING)
841                         cur_trans->state = TRANS_STATE_BLOCKED;
842                 spin_unlock(&info->trans_lock);
843         }
844
845         if (lock && ACCESS_ONCE(cur_trans->state) == TRANS_STATE_BLOCKED) {
846                 if (throttle)
847                         return btrfs_commit_transaction(trans, root);
848                 else
849                         wake_up_process(info->transaction_kthread);
850         }
851
852         if (trans->type & __TRANS_FREEZABLE)
853                 sb_end_intwrite(root->fs_info->sb);
854
855         WARN_ON(cur_trans != info->running_transaction);
856         WARN_ON(atomic_read(&cur_trans->num_writers) < 1);
857         atomic_dec(&cur_trans->num_writers);
858         extwriter_counter_dec(cur_trans, trans->type);
859
860         /*
861          * Make sure counter is updated before we wake up waiters.
862          */
863         smp_mb();
864         if (waitqueue_active(&cur_trans->writer_wait))
865                 wake_up(&cur_trans->writer_wait);
866         btrfs_put_transaction(cur_trans);
867
868         if (current->journal_info == trans)
869                 current->journal_info = NULL;
870
871         if (throttle)
872                 btrfs_run_delayed_iputs(root);
873
874         if (trans->aborted ||
875             test_bit(BTRFS_FS_STATE_ERROR, &root->fs_info->fs_state)) {
876                 wake_up_process(info->transaction_kthread);
877                 err = -EIO;
878         }
879         assert_qgroups_uptodate(trans);
880
881         kmem_cache_free(btrfs_trans_handle_cachep, trans);
882         if (must_run_delayed_refs) {
883                 btrfs_async_run_delayed_refs(root, cur,
884                                              must_run_delayed_refs == 1);
885         }
886         return err;
887 }
888
889 int btrfs_end_transaction(struct btrfs_trans_handle *trans,
890                           struct btrfs_root *root)
891 {
892         return __btrfs_end_transaction(trans, root, 0);
893 }
894
895 int btrfs_end_transaction_throttle(struct btrfs_trans_handle *trans,
896                                    struct btrfs_root *root)
897 {
898         return __btrfs_end_transaction(trans, root, 1);
899 }
900
901 /*
902  * when btree blocks are allocated, they have some corresponding bits set for
903  * them in one of two extent_io trees.  This is used to make sure all of
904  * those extents are sent to disk but does not wait on them
905  */
906 int btrfs_write_marked_extents(struct btrfs_root *root,
907                                struct extent_io_tree *dirty_pages, int mark)
908 {
909         int err = 0;
910         int werr = 0;
911         struct address_space *mapping = root->fs_info->btree_inode->i_mapping;
912         struct extent_state *cached_state = NULL;
913         u64 start = 0;
914         u64 end;
915
916         while (!find_first_extent_bit(dirty_pages, start, &start, &end,
917                                       mark, &cached_state)) {
918                 bool wait_writeback = false;
919
920                 err = convert_extent_bit(dirty_pages, start, end,
921                                          EXTENT_NEED_WAIT,
922                                          mark, &cached_state, GFP_NOFS);
923                 /*
924                  * convert_extent_bit can return -ENOMEM, which is most of the
925                  * time a temporary error. So when it happens, ignore the error
926                  * and wait for writeback of this range to finish - because we
927                  * failed to set the bit EXTENT_NEED_WAIT for the range, a call
928                  * to btrfs_wait_marked_extents() would not know that writeback
929                  * for this range started and therefore wouldn't wait for it to
930                  * finish - we don't want to commit a superblock that points to
931                  * btree nodes/leafs for which writeback hasn't finished yet
932                  * (and without errors).
933                  * We cleanup any entries left in the io tree when committing
934                  * the transaction (through clear_btree_io_tree()).
935                  */
936                 if (err == -ENOMEM) {
937                         err = 0;
938                         wait_writeback = true;
939                 }
940                 if (!err)
941                         err = filemap_fdatawrite_range(mapping, start, end);
942                 if (err)
943                         werr = err;
944                 else if (wait_writeback)
945                         werr = filemap_fdatawait_range(mapping, start, end);
946                 free_extent_state(cached_state);
947                 cached_state = NULL;
948                 cond_resched();
949                 start = end + 1;
950         }
951         return werr;
952 }
953
954 /*
955  * when btree blocks are allocated, they have some corresponding bits set for
956  * them in one of two extent_io trees.  This is used to make sure all of
957  * those extents are on disk for transaction or log commit.  We wait
958  * on all the pages and clear them from the dirty pages state tree
959  */
960 int btrfs_wait_marked_extents(struct btrfs_root *root,
961                               struct extent_io_tree *dirty_pages, int mark)
962 {
963         int err = 0;
964         int werr = 0;
965         struct address_space *mapping = root->fs_info->btree_inode->i_mapping;
966         struct extent_state *cached_state = NULL;
967         u64 start = 0;
968         u64 end;
969         struct btrfs_inode *btree_ino = BTRFS_I(root->fs_info->btree_inode);
970         bool errors = false;
971
972         while (!find_first_extent_bit(dirty_pages, start, &start, &end,
973                                       EXTENT_NEED_WAIT, &cached_state)) {
974                 /*
975                  * Ignore -ENOMEM errors returned by clear_extent_bit().
976                  * When committing the transaction, we'll remove any entries
977                  * left in the io tree. For a log commit, we don't remove them
978                  * after committing the log because the tree can be accessed
979                  * concurrently - we do it only at transaction commit time when
980                  * it's safe to do it (through clear_btree_io_tree()).
981                  */
982                 err = clear_extent_bit(dirty_pages, start, end,
983                                        EXTENT_NEED_WAIT,
984                                        0, 0, &cached_state, GFP_NOFS);
985                 if (err == -ENOMEM)
986                         err = 0;
987                 if (!err)
988                         err = filemap_fdatawait_range(mapping, start, end);
989                 if (err)
990                         werr = err;
991                 free_extent_state(cached_state);
992                 cached_state = NULL;
993                 cond_resched();
994                 start = end + 1;
995         }
996         if (err)
997                 werr = err;
998
999         if (root->root_key.objectid == BTRFS_TREE_LOG_OBJECTID) {
1000                 if ((mark & EXTENT_DIRTY) &&
1001                     test_and_clear_bit(BTRFS_INODE_BTREE_LOG1_ERR,
1002                                        &btree_ino->runtime_flags))
1003                         errors = true;
1004
1005                 if ((mark & EXTENT_NEW) &&
1006                     test_and_clear_bit(BTRFS_INODE_BTREE_LOG2_ERR,
1007                                        &btree_ino->runtime_flags))
1008                         errors = true;
1009         } else {
1010                 if (test_and_clear_bit(BTRFS_INODE_BTREE_ERR,
1011                                        &btree_ino->runtime_flags))
1012                         errors = true;
1013         }
1014
1015         if (errors && !werr)
1016                 werr = -EIO;
1017
1018         return werr;
1019 }
1020
1021 /*
1022  * when btree blocks are allocated, they have some corresponding bits set for
1023  * them in one of two extent_io trees.  This is used to make sure all of
1024  * those extents are on disk for transaction or log commit
1025  */
1026 static int btrfs_write_and_wait_marked_extents(struct btrfs_root *root,
1027                                 struct extent_io_tree *dirty_pages, int mark)
1028 {
1029         int ret;
1030         int ret2;
1031         struct blk_plug plug;
1032
1033         blk_start_plug(&plug);
1034         ret = btrfs_write_marked_extents(root, dirty_pages, mark);
1035         blk_finish_plug(&plug);
1036         ret2 = btrfs_wait_marked_extents(root, dirty_pages, mark);
1037
1038         if (ret)
1039                 return ret;
1040         if (ret2)
1041                 return ret2;
1042         return 0;
1043 }
1044
1045 static int btrfs_write_and_wait_transaction(struct btrfs_trans_handle *trans,
1046                                      struct btrfs_root *root)
1047 {
1048         int ret;
1049
1050         ret = btrfs_write_and_wait_marked_extents(root,
1051                                            &trans->transaction->dirty_pages,
1052                                            EXTENT_DIRTY);
1053         clear_btree_io_tree(&trans->transaction->dirty_pages);
1054
1055         return ret;
1056 }
1057
1058 /*
1059  * this is used to update the root pointer in the tree of tree roots.
1060  *
1061  * But, in the case of the extent allocation tree, updating the root
1062  * pointer may allocate blocks which may change the root of the extent
1063  * allocation tree.
1064  *
1065  * So, this loops and repeats and makes sure the cowonly root didn't
1066  * change while the root pointer was being updated in the metadata.
1067  */
1068 static int update_cowonly_root(struct btrfs_trans_handle *trans,
1069                                struct btrfs_root *root)
1070 {
1071         int ret;
1072         u64 old_root_bytenr;
1073         u64 old_root_used;
1074         struct btrfs_root *tree_root = root->fs_info->tree_root;
1075
1076         old_root_used = btrfs_root_used(&root->root_item);
1077
1078         while (1) {
1079                 old_root_bytenr = btrfs_root_bytenr(&root->root_item);
1080                 if (old_root_bytenr == root->node->start &&
1081                     old_root_used == btrfs_root_used(&root->root_item))
1082                         break;
1083
1084                 btrfs_set_root_node(&root->root_item, root->node);
1085                 ret = btrfs_update_root(trans, tree_root,
1086                                         &root->root_key,
1087                                         &root->root_item);
1088                 if (ret)
1089                         return ret;
1090
1091                 old_root_used = btrfs_root_used(&root->root_item);
1092         }
1093
1094         return 0;
1095 }
1096
1097 /*
1098  * update all the cowonly tree roots on disk
1099  *
1100  * The error handling in this function may not be obvious. Any of the
1101  * failures will cause the file system to go offline. We still need
1102  * to clean up the delayed refs.
1103  */
1104 static noinline int commit_cowonly_roots(struct btrfs_trans_handle *trans,
1105                                          struct btrfs_root *root)
1106 {
1107         struct btrfs_fs_info *fs_info = root->fs_info;
1108         struct list_head *dirty_bgs = &trans->transaction->dirty_bgs;
1109         struct list_head *io_bgs = &trans->transaction->io_bgs;
1110         struct list_head *next;
1111         struct extent_buffer *eb;
1112         int ret;
1113
1114         eb = btrfs_lock_root_node(fs_info->tree_root);
1115         ret = btrfs_cow_block(trans, fs_info->tree_root, eb, NULL,
1116                               0, &eb);
1117         btrfs_tree_unlock(eb);
1118         free_extent_buffer(eb);
1119
1120         if (ret)
1121                 return ret;
1122
1123         ret = btrfs_run_delayed_refs(trans, root, (unsigned long)-1);
1124         if (ret)
1125                 return ret;
1126
1127         ret = btrfs_run_dev_stats(trans, root->fs_info);
1128         if (ret)
1129                 return ret;
1130         ret = btrfs_run_dev_replace(trans, root->fs_info);
1131         if (ret)
1132                 return ret;
1133         ret = btrfs_run_qgroups(trans, root->fs_info);
1134         if (ret)
1135                 return ret;
1136
1137         ret = btrfs_setup_space_cache(trans, root);
1138         if (ret)
1139                 return ret;
1140
1141         /* run_qgroups might have added some more refs */
1142         ret = btrfs_run_delayed_refs(trans, root, (unsigned long)-1);
1143         if (ret)
1144                 return ret;
1145 again:
1146         while (!list_empty(&fs_info->dirty_cowonly_roots)) {
1147                 next = fs_info->dirty_cowonly_roots.next;
1148                 list_del_init(next);
1149                 root = list_entry(next, struct btrfs_root, dirty_list);
1150                 clear_bit(BTRFS_ROOT_DIRTY, &root->state);
1151
1152                 if (root != fs_info->extent_root)
1153                         list_add_tail(&root->dirty_list,
1154                                       &trans->transaction->switch_commits);
1155                 ret = update_cowonly_root(trans, root);
1156                 if (ret)
1157                         return ret;
1158                 ret = btrfs_run_delayed_refs(trans, root, (unsigned long)-1);
1159                 if (ret)
1160                         return ret;
1161         }
1162
1163         while (!list_empty(dirty_bgs) || !list_empty(io_bgs)) {
1164                 ret = btrfs_write_dirty_block_groups(trans, root);
1165                 if (ret)
1166                         return ret;
1167                 ret = btrfs_run_delayed_refs(trans, root, (unsigned long)-1);
1168                 if (ret)
1169                         return ret;
1170         }
1171
1172         if (!list_empty(&fs_info->dirty_cowonly_roots))
1173                 goto again;
1174
1175         list_add_tail(&fs_info->extent_root->dirty_list,
1176                       &trans->transaction->switch_commits);
1177         btrfs_after_dev_replace_commit(fs_info);
1178
1179         return 0;
1180 }
1181
1182 /*
1183  * dead roots are old snapshots that need to be deleted.  This allocates
1184  * a dirty root struct and adds it into the list of dead roots that need to
1185  * be deleted
1186  */
1187 void btrfs_add_dead_root(struct btrfs_root *root)
1188 {
1189         spin_lock(&root->fs_info->trans_lock);
1190         if (list_empty(&root->root_list))
1191                 list_add_tail(&root->root_list, &root->fs_info->dead_roots);
1192         spin_unlock(&root->fs_info->trans_lock);
1193 }
1194
1195 /*
1196  * update all the cowonly tree roots on disk
1197  */
1198 static noinline int commit_fs_roots(struct btrfs_trans_handle *trans,
1199                                     struct btrfs_root *root)
1200 {
1201         struct btrfs_root *gang[8];
1202         struct btrfs_fs_info *fs_info = root->fs_info;
1203         int i;
1204         int ret;
1205         int err = 0;
1206
1207         spin_lock(&fs_info->fs_roots_radix_lock);
1208         while (1) {
1209                 ret = radix_tree_gang_lookup_tag(&fs_info->fs_roots_radix,
1210                                                  (void **)gang, 0,
1211                                                  ARRAY_SIZE(gang),
1212                                                  BTRFS_ROOT_TRANS_TAG);
1213                 if (ret == 0)
1214                         break;
1215                 for (i = 0; i < ret; i++) {
1216                         root = gang[i];
1217                         radix_tree_tag_clear(&fs_info->fs_roots_radix,
1218                                         (unsigned long)root->root_key.objectid,
1219                                         BTRFS_ROOT_TRANS_TAG);
1220                         spin_unlock(&fs_info->fs_roots_radix_lock);
1221
1222                         btrfs_free_log(trans, root);
1223                         btrfs_update_reloc_root(trans, root);
1224                         btrfs_orphan_commit_root(trans, root);
1225
1226                         btrfs_save_ino_cache(root, trans);
1227
1228                         /* see comments in should_cow_block() */
1229                         clear_bit(BTRFS_ROOT_FORCE_COW, &root->state);
1230                         smp_mb__after_atomic();
1231
1232                         if (root->commit_root != root->node) {
1233                                 list_add_tail(&root->dirty_list,
1234                                         &trans->transaction->switch_commits);
1235                                 btrfs_set_root_node(&root->root_item,
1236                                                     root->node);
1237                         }
1238
1239                         err = btrfs_update_root(trans, fs_info->tree_root,
1240                                                 &root->root_key,
1241                                                 &root->root_item);
1242                         spin_lock(&fs_info->fs_roots_radix_lock);
1243                         if (err)
1244                                 break;
1245                         btrfs_qgroup_free_meta_all(root);
1246                 }
1247         }
1248         spin_unlock(&fs_info->fs_roots_radix_lock);
1249         return err;
1250 }
1251
1252 /*
1253  * defrag a given btree.
1254  * Every leaf in the btree is read and defragged.
1255  */
1256 int btrfs_defrag_root(struct btrfs_root *root)
1257 {
1258         struct btrfs_fs_info *info = root->fs_info;
1259         struct btrfs_trans_handle *trans;
1260         int ret;
1261
1262         if (test_and_set_bit(BTRFS_ROOT_DEFRAG_RUNNING, &root->state))
1263                 return 0;
1264
1265         while (1) {
1266                 trans = btrfs_start_transaction(root, 0);
1267                 if (IS_ERR(trans)) {
1268                         ret = PTR_ERR(trans);
1269                         break;
1270                 }
1271
1272                 ret = btrfs_defrag_leaves(trans, root);
1273
1274                 btrfs_end_transaction(trans, root);
1275                 btrfs_btree_balance_dirty(info->tree_root);
1276                 cond_resched();
1277
1278                 if (btrfs_fs_closing(root->fs_info) || ret != -EAGAIN)
1279                         break;
1280
1281                 if (btrfs_defrag_cancelled(root->fs_info)) {
1282                         pr_debug("BTRFS: defrag_root cancelled\n");
1283                         ret = -EAGAIN;
1284                         break;
1285                 }
1286         }
1287         clear_bit(BTRFS_ROOT_DEFRAG_RUNNING, &root->state);
1288         return ret;
1289 }
1290
1291 /*
1292  * new snapshots need to be created at a very specific time in the
1293  * transaction commit.  This does the actual creation.
1294  *
1295  * Note:
1296  * If the error which may affect the commitment of the current transaction
1297  * happens, we should return the error number. If the error which just affect
1298  * the creation of the pending snapshots, just return 0.
1299  */
1300 static noinline int create_pending_snapshot(struct btrfs_trans_handle *trans,
1301                                    struct btrfs_fs_info *fs_info,
1302                                    struct btrfs_pending_snapshot *pending)
1303 {
1304         struct btrfs_key key;
1305         struct btrfs_root_item *new_root_item;
1306         struct btrfs_root *tree_root = fs_info->tree_root;
1307         struct btrfs_root *root = pending->root;
1308         struct btrfs_root *parent_root;
1309         struct btrfs_block_rsv *rsv;
1310         struct inode *parent_inode;
1311         struct btrfs_path *path;
1312         struct btrfs_dir_item *dir_item;
1313         struct dentry *dentry;
1314         struct extent_buffer *tmp;
1315         struct extent_buffer *old;
1316         struct timespec cur_time = CURRENT_TIME;
1317         int ret = 0;
1318         u64 to_reserve = 0;
1319         u64 index = 0;
1320         u64 objectid;
1321         u64 root_flags;
1322         uuid_le new_uuid;
1323
1324         path = btrfs_alloc_path();
1325         if (!path) {
1326                 pending->error = -ENOMEM;
1327                 return 0;
1328         }
1329
1330         new_root_item = kmalloc(sizeof(*new_root_item), GFP_NOFS);
1331         if (!new_root_item) {
1332                 pending->error = -ENOMEM;
1333                 goto root_item_alloc_fail;
1334         }
1335
1336         pending->error = btrfs_find_free_objectid(tree_root, &objectid);
1337         if (pending->error)
1338                 goto no_free_objectid;
1339
1340         /*
1341          * Make qgroup to skip current new snapshot's qgroupid, as it is
1342          * accounted by later btrfs_qgroup_inherit().
1343          */
1344         btrfs_set_skip_qgroup(trans, objectid);
1345
1346         btrfs_reloc_pre_snapshot(pending, &to_reserve);
1347
1348         if (to_reserve > 0) {
1349                 pending->error = btrfs_block_rsv_add(root,
1350                                                      &pending->block_rsv,
1351                                                      to_reserve,
1352                                                      BTRFS_RESERVE_NO_FLUSH);
1353                 if (pending->error)
1354                         goto clear_skip_qgroup;
1355         }
1356
1357         key.objectid = objectid;
1358         key.offset = (u64)-1;
1359         key.type = BTRFS_ROOT_ITEM_KEY;
1360
1361         rsv = trans->block_rsv;
1362         trans->block_rsv = &pending->block_rsv;
1363         trans->bytes_reserved = trans->block_rsv->reserved;
1364
1365         dentry = pending->dentry;
1366         parent_inode = pending->dir;
1367         parent_root = BTRFS_I(parent_inode)->root;
1368         record_root_in_trans(trans, parent_root);
1369
1370         /*
1371          * insert the directory item
1372          */
1373         ret = btrfs_set_inode_index(parent_inode, &index);
1374         BUG_ON(ret); /* -ENOMEM */
1375
1376         /* check if there is a file/dir which has the same name. */
1377         dir_item = btrfs_lookup_dir_item(NULL, parent_root, path,
1378                                          btrfs_ino(parent_inode),
1379                                          dentry->d_name.name,
1380                                          dentry->d_name.len, 0);
1381         if (dir_item != NULL && !IS_ERR(dir_item)) {
1382                 pending->error = -EEXIST;
1383                 goto dir_item_existed;
1384         } else if (IS_ERR(dir_item)) {
1385                 ret = PTR_ERR(dir_item);
1386                 btrfs_abort_transaction(trans, root, ret);
1387                 goto fail;
1388         }
1389         btrfs_release_path(path);
1390
1391         /*
1392          * pull in the delayed directory update
1393          * and the delayed inode item
1394          * otherwise we corrupt the FS during
1395          * snapshot
1396          */
1397         ret = btrfs_run_delayed_items(trans, root);
1398         if (ret) {      /* Transaction aborted */
1399                 btrfs_abort_transaction(trans, root, ret);
1400                 goto fail;
1401         }
1402
1403         record_root_in_trans(trans, root);
1404         btrfs_set_root_last_snapshot(&root->root_item, trans->transid);
1405         memcpy(new_root_item, &root->root_item, sizeof(*new_root_item));
1406         btrfs_check_and_init_root_item(new_root_item);
1407
1408         root_flags = btrfs_root_flags(new_root_item);
1409         if (pending->readonly)
1410                 root_flags |= BTRFS_ROOT_SUBVOL_RDONLY;
1411         else
1412                 root_flags &= ~BTRFS_ROOT_SUBVOL_RDONLY;
1413         btrfs_set_root_flags(new_root_item, root_flags);
1414
1415         btrfs_set_root_generation_v2(new_root_item,
1416                         trans->transid);
1417         uuid_le_gen(&new_uuid);
1418         memcpy(new_root_item->uuid, new_uuid.b, BTRFS_UUID_SIZE);
1419         memcpy(new_root_item->parent_uuid, root->root_item.uuid,
1420                         BTRFS_UUID_SIZE);
1421         if (!(root_flags & BTRFS_ROOT_SUBVOL_RDONLY)) {
1422                 memset(new_root_item->received_uuid, 0,
1423                        sizeof(new_root_item->received_uuid));
1424                 memset(&new_root_item->stime, 0, sizeof(new_root_item->stime));
1425                 memset(&new_root_item->rtime, 0, sizeof(new_root_item->rtime));
1426                 btrfs_set_root_stransid(new_root_item, 0);
1427                 btrfs_set_root_rtransid(new_root_item, 0);
1428         }
1429         btrfs_set_stack_timespec_sec(&new_root_item->otime, cur_time.tv_sec);
1430         btrfs_set_stack_timespec_nsec(&new_root_item->otime, cur_time.tv_nsec);
1431         btrfs_set_root_otransid(new_root_item, trans->transid);
1432
1433         old = btrfs_lock_root_node(root);
1434         ret = btrfs_cow_block(trans, root, old, NULL, 0, &old);
1435         if (ret) {
1436                 btrfs_tree_unlock(old);
1437                 free_extent_buffer(old);
1438                 btrfs_abort_transaction(trans, root, ret);
1439                 goto fail;
1440         }
1441
1442         btrfs_set_lock_blocking(old);
1443
1444         ret = btrfs_copy_root(trans, root, old, &tmp, objectid);
1445         /* clean up in any case */
1446         btrfs_tree_unlock(old);
1447         free_extent_buffer(old);
1448         if (ret) {
1449                 btrfs_abort_transaction(trans, root, ret);
1450                 goto fail;
1451         }
1452         /* see comments in should_cow_block() */
1453         set_bit(BTRFS_ROOT_FORCE_COW, &root->state);
1454         smp_wmb();
1455
1456         btrfs_set_root_node(new_root_item, tmp);
1457         /* record when the snapshot was created in key.offset */
1458         key.offset = trans->transid;
1459         ret = btrfs_insert_root(trans, tree_root, &key, new_root_item);
1460         btrfs_tree_unlock(tmp);
1461         free_extent_buffer(tmp);
1462         if (ret) {
1463                 btrfs_abort_transaction(trans, root, ret);
1464                 goto fail;
1465         }
1466
1467         /*
1468          * insert root back/forward references
1469          */
1470         ret = btrfs_add_root_ref(trans, tree_root, objectid,
1471                                  parent_root->root_key.objectid,
1472                                  btrfs_ino(parent_inode), index,
1473                                  dentry->d_name.name, dentry->d_name.len);
1474         if (ret) {
1475                 btrfs_abort_transaction(trans, root, ret);
1476                 goto fail;
1477         }
1478
1479         key.offset = (u64)-1;
1480         pending->snap = btrfs_read_fs_root_no_name(root->fs_info, &key);
1481         if (IS_ERR(pending->snap)) {
1482                 ret = PTR_ERR(pending->snap);
1483                 btrfs_abort_transaction(trans, root, ret);
1484                 goto fail;
1485         }
1486
1487         ret = btrfs_reloc_post_snapshot(trans, pending);
1488         if (ret) {
1489                 btrfs_abort_transaction(trans, root, ret);
1490                 goto fail;
1491         }
1492
1493         ret = btrfs_run_delayed_refs(trans, root, (unsigned long)-1);
1494         if (ret) {
1495                 btrfs_abort_transaction(trans, root, ret);
1496                 goto fail;
1497         }
1498
1499         ret = btrfs_insert_dir_item(trans, parent_root,
1500                                     dentry->d_name.name, dentry->d_name.len,
1501                                     parent_inode, &key,
1502                                     BTRFS_FT_DIR, index);
1503         /* We have check then name at the beginning, so it is impossible. */
1504         BUG_ON(ret == -EEXIST || ret == -EOVERFLOW);
1505         if (ret) {
1506                 btrfs_abort_transaction(trans, root, ret);
1507                 goto fail;
1508         }
1509
1510         btrfs_i_size_write(parent_inode, parent_inode->i_size +
1511                                          dentry->d_name.len * 2);
1512         parent_inode->i_mtime = parent_inode->i_ctime = CURRENT_TIME;
1513         ret = btrfs_update_inode_fallback(trans, parent_root, parent_inode);
1514         if (ret) {
1515                 btrfs_abort_transaction(trans, root, ret);
1516                 goto fail;
1517         }
1518         ret = btrfs_uuid_tree_add(trans, fs_info->uuid_root, new_uuid.b,
1519                                   BTRFS_UUID_KEY_SUBVOL, objectid);
1520         if (ret) {
1521                 btrfs_abort_transaction(trans, root, ret);
1522                 goto fail;
1523         }
1524         if (!btrfs_is_empty_uuid(new_root_item->received_uuid)) {
1525                 ret = btrfs_uuid_tree_add(trans, fs_info->uuid_root,
1526                                           new_root_item->received_uuid,
1527                                           BTRFS_UUID_KEY_RECEIVED_SUBVOL,
1528                                           objectid);
1529                 if (ret && ret != -EEXIST) {
1530                         btrfs_abort_transaction(trans, root, ret);
1531                         goto fail;
1532                 }
1533         }
1534
1535         ret = btrfs_run_delayed_refs(trans, root, (unsigned long)-1);
1536         if (ret) {
1537                 btrfs_abort_transaction(trans, root, ret);
1538                 goto fail;
1539         }
1540
1541         /*
1542          * account qgroup counters before qgroup_inherit()
1543          */
1544         ret = btrfs_qgroup_prepare_account_extents(trans, fs_info);
1545         if (ret)
1546                 goto fail;
1547         ret = btrfs_qgroup_account_extents(trans, fs_info);
1548         if (ret)
1549                 goto fail;
1550         ret = btrfs_qgroup_inherit(trans, fs_info,
1551                                    root->root_key.objectid,
1552                                    objectid, pending->inherit);
1553         if (ret) {
1554                 btrfs_abort_transaction(trans, root, ret);
1555                 goto fail;
1556         }
1557
1558 fail:
1559         pending->error = ret;
1560 dir_item_existed:
1561         trans->block_rsv = rsv;
1562         trans->bytes_reserved = 0;
1563 clear_skip_qgroup:
1564         btrfs_clear_skip_qgroup(trans);
1565 no_free_objectid:
1566         kfree(new_root_item);
1567 root_item_alloc_fail:
1568         btrfs_free_path(path);
1569         return ret;
1570 }
1571
1572 /*
1573  * create all the snapshots we've scheduled for creation
1574  */
1575 static noinline int create_pending_snapshots(struct btrfs_trans_handle *trans,
1576                                              struct btrfs_fs_info *fs_info)
1577 {
1578         struct btrfs_pending_snapshot *pending, *next;
1579         struct list_head *head = &trans->transaction->pending_snapshots;
1580         int ret = 0;
1581
1582         list_for_each_entry_safe(pending, next, head, list) {
1583                 list_del(&pending->list);
1584                 ret = create_pending_snapshot(trans, fs_info, pending);
1585                 if (ret)
1586                         break;
1587         }
1588         return ret;
1589 }
1590
1591 static void update_super_roots(struct btrfs_root *root)
1592 {
1593         struct btrfs_root_item *root_item;
1594         struct btrfs_super_block *super;
1595
1596         super = root->fs_info->super_copy;
1597
1598         root_item = &root->fs_info->chunk_root->root_item;
1599         super->chunk_root = root_item->bytenr;
1600         super->chunk_root_generation = root_item->generation;
1601         super->chunk_root_level = root_item->level;
1602
1603         root_item = &root->fs_info->tree_root->root_item;
1604         super->root = root_item->bytenr;
1605         super->generation = root_item->generation;
1606         super->root_level = root_item->level;
1607         if (btrfs_test_opt(root, SPACE_CACHE))
1608                 super->cache_generation = root_item->generation;
1609         if (root->fs_info->update_uuid_tree_gen)
1610                 super->uuid_tree_generation = root_item->generation;
1611 }
1612
1613 int btrfs_transaction_in_commit(struct btrfs_fs_info *info)
1614 {
1615         struct btrfs_transaction *trans;
1616         int ret = 0;
1617
1618         spin_lock(&info->trans_lock);
1619         trans = info->running_transaction;
1620         if (trans)
1621                 ret = (trans->state >= TRANS_STATE_COMMIT_START);
1622         spin_unlock(&info->trans_lock);
1623         return ret;
1624 }
1625
1626 int btrfs_transaction_blocked(struct btrfs_fs_info *info)
1627 {
1628         struct btrfs_transaction *trans;
1629         int ret = 0;
1630
1631         spin_lock(&info->trans_lock);
1632         trans = info->running_transaction;
1633         if (trans)
1634                 ret = is_transaction_blocked(trans);
1635         spin_unlock(&info->trans_lock);
1636         return ret;
1637 }
1638
1639 /*
1640  * wait for the current transaction commit to start and block subsequent
1641  * transaction joins
1642  */
1643 static void wait_current_trans_commit_start(struct btrfs_root *root,
1644                                             struct btrfs_transaction *trans)
1645 {
1646         wait_event(root->fs_info->transaction_blocked_wait,
1647                    trans->state >= TRANS_STATE_COMMIT_START ||
1648                    trans->aborted);
1649 }
1650
1651 /*
1652  * wait for the current transaction to start and then become unblocked.
1653  * caller holds ref.
1654  */
1655 static void wait_current_trans_commit_start_and_unblock(struct btrfs_root *root,
1656                                          struct btrfs_transaction *trans)
1657 {
1658         wait_event(root->fs_info->transaction_wait,
1659                    trans->state >= TRANS_STATE_UNBLOCKED ||
1660                    trans->aborted);
1661 }
1662
1663 /*
1664  * commit transactions asynchronously. once btrfs_commit_transaction_async
1665  * returns, any subsequent transaction will not be allowed to join.
1666  */
1667 struct btrfs_async_commit {
1668         struct btrfs_trans_handle *newtrans;
1669         struct btrfs_root *root;
1670         struct work_struct work;
1671 };
1672
1673 static void do_async_commit(struct work_struct *work)
1674 {
1675         struct btrfs_async_commit *ac =
1676                 container_of(work, struct btrfs_async_commit, work);
1677
1678         /*
1679          * We've got freeze protection passed with the transaction.
1680          * Tell lockdep about it.
1681          */
1682         if (ac->newtrans->type & __TRANS_FREEZABLE)
1683                 __sb_writers_acquired(ac->root->fs_info->sb, SB_FREEZE_FS);
1684
1685         current->journal_info = ac->newtrans;
1686
1687         btrfs_commit_transaction(ac->newtrans, ac->root);
1688         kfree(ac);
1689 }
1690
1691 int btrfs_commit_transaction_async(struct btrfs_trans_handle *trans,
1692                                    struct btrfs_root *root,
1693                                    int wait_for_unblock)
1694 {
1695         struct btrfs_async_commit *ac;
1696         struct btrfs_transaction *cur_trans;
1697
1698         ac = kmalloc(sizeof(*ac), GFP_NOFS);
1699         if (!ac)
1700                 return -ENOMEM;
1701
1702         INIT_WORK(&ac->work, do_async_commit);
1703         ac->root = root;
1704         ac->newtrans = btrfs_join_transaction(root);
1705         if (IS_ERR(ac->newtrans)) {
1706                 int err = PTR_ERR(ac->newtrans);
1707                 kfree(ac);
1708                 return err;
1709         }
1710
1711         /* take transaction reference */
1712         cur_trans = trans->transaction;
1713         atomic_inc(&cur_trans->use_count);
1714
1715         btrfs_end_transaction(trans, root);
1716
1717         /*
1718          * Tell lockdep we've released the freeze rwsem, since the
1719          * async commit thread will be the one to unlock it.
1720          */
1721         if (ac->newtrans->type & __TRANS_FREEZABLE)
1722                 __sb_writers_release(root->fs_info->sb, SB_FREEZE_FS);
1723
1724         schedule_work(&ac->work);
1725
1726         /* wait for transaction to start and unblock */
1727         if (wait_for_unblock)
1728                 wait_current_trans_commit_start_and_unblock(root, cur_trans);
1729         else
1730                 wait_current_trans_commit_start(root, cur_trans);
1731
1732         if (current->journal_info == trans)
1733                 current->journal_info = NULL;
1734
1735         btrfs_put_transaction(cur_trans);
1736         return 0;
1737 }
1738
1739
1740 static void cleanup_transaction(struct btrfs_trans_handle *trans,
1741                                 struct btrfs_root *root, int err)
1742 {
1743         struct btrfs_transaction *cur_trans = trans->transaction;
1744         DEFINE_WAIT(wait);
1745
1746         WARN_ON(trans->use_count > 1);
1747
1748         btrfs_abort_transaction(trans, root, err);
1749
1750         spin_lock(&root->fs_info->trans_lock);
1751
1752         /*
1753          * If the transaction is removed from the list, it means this
1754          * transaction has been committed successfully, so it is impossible
1755          * to call the cleanup function.
1756          */
1757         BUG_ON(list_empty(&cur_trans->list));
1758
1759         list_del_init(&cur_trans->list);
1760         if (cur_trans == root->fs_info->running_transaction) {
1761                 cur_trans->state = TRANS_STATE_COMMIT_DOING;
1762                 spin_unlock(&root->fs_info->trans_lock);
1763                 wait_event(cur_trans->writer_wait,
1764                            atomic_read(&cur_trans->num_writers) == 1);
1765
1766                 spin_lock(&root->fs_info->trans_lock);
1767         }
1768         spin_unlock(&root->fs_info->trans_lock);
1769
1770         btrfs_cleanup_one_transaction(trans->transaction, root);
1771
1772         spin_lock(&root->fs_info->trans_lock);
1773         if (cur_trans == root->fs_info->running_transaction)
1774                 root->fs_info->running_transaction = NULL;
1775         spin_unlock(&root->fs_info->trans_lock);
1776
1777         if (trans->type & __TRANS_FREEZABLE)
1778                 sb_end_intwrite(root->fs_info->sb);
1779         btrfs_put_transaction(cur_trans);
1780         btrfs_put_transaction(cur_trans);
1781
1782         trace_btrfs_transaction_commit(root);
1783
1784         if (current->journal_info == trans)
1785                 current->journal_info = NULL;
1786         btrfs_scrub_cancel(root->fs_info);
1787
1788         kmem_cache_free(btrfs_trans_handle_cachep, trans);
1789 }
1790
1791 static inline int btrfs_start_delalloc_flush(struct btrfs_fs_info *fs_info)
1792 {
1793         if (btrfs_test_opt(fs_info->tree_root, FLUSHONCOMMIT))
1794                 return btrfs_start_delalloc_roots(fs_info, 1, -1);
1795         return 0;
1796 }
1797
1798 static inline void btrfs_wait_delalloc_flush(struct btrfs_fs_info *fs_info)
1799 {
1800         if (btrfs_test_opt(fs_info->tree_root, FLUSHONCOMMIT))
1801                 btrfs_wait_ordered_roots(fs_info, -1);
1802 }
1803
1804 static inline void
1805 btrfs_wait_pending_ordered(struct btrfs_transaction *cur_trans)
1806 {
1807         wait_event(cur_trans->pending_wait,
1808                    atomic_read(&cur_trans->pending_ordered) == 0);
1809 }
1810
1811 int btrfs_commit_transaction(struct btrfs_trans_handle *trans,
1812                              struct btrfs_root *root)
1813 {
1814         struct btrfs_transaction *cur_trans = trans->transaction;
1815         struct btrfs_transaction *prev_trans = NULL;
1816         struct btrfs_inode *btree_ino = BTRFS_I(root->fs_info->btree_inode);
1817         int ret;
1818
1819         /*
1820          * Some places just start a transaction to commit it.  We need to make
1821          * sure that if this commit fails that the abort code actually marks the
1822          * transaction as failed, so set trans->dirty to make the abort code do
1823          * the right thing.
1824          */
1825         trans->dirty = true;
1826
1827         /* Stop the commit early if ->aborted is set */
1828         if (unlikely(ACCESS_ONCE(cur_trans->aborted))) {
1829                 ret = cur_trans->aborted;
1830                 btrfs_end_transaction(trans, root);
1831                 return ret;
1832         }
1833
1834         btrfs_trans_release_metadata(trans, root);
1835         trans->block_rsv = NULL;
1836
1837         /* make a pass through all the delayed refs we have so far
1838          * any runnings procs may add more while we are here
1839          */
1840         ret = btrfs_run_delayed_refs(trans, root, 0);
1841         if (ret) {
1842                 btrfs_end_transaction(trans, root);
1843                 return ret;
1844         }
1845
1846         cur_trans = trans->transaction;
1847
1848         /*
1849          * set the flushing flag so procs in this transaction have to
1850          * start sending their work down.
1851          */
1852         cur_trans->delayed_refs.flushing = 1;
1853         smp_wmb();
1854
1855         if (!list_empty(&trans->new_bgs))
1856                 btrfs_create_pending_block_groups(trans, root);
1857
1858         ret = btrfs_run_delayed_refs(trans, root, 0);
1859         if (ret) {
1860                 btrfs_end_transaction(trans, root);
1861                 return ret;
1862         }
1863
1864         if (!test_bit(BTRFS_TRANS_DIRTY_BG_RUN, &cur_trans->flags)) {
1865                 int run_it = 0;
1866
1867                 /* this mutex is also taken before trying to set
1868                  * block groups readonly.  We need to make sure
1869                  * that nobody has set a block group readonly
1870                  * after a extents from that block group have been
1871                  * allocated for cache files.  btrfs_set_block_group_ro
1872                  * will wait for the transaction to commit if it
1873                  * finds BTRFS_TRANS_DIRTY_BG_RUN set.
1874                  *
1875                  * The BTRFS_TRANS_DIRTY_BG_RUN flag is also used to make sure
1876                  * only one process starts all the block group IO.  It wouldn't
1877                  * hurt to have more than one go through, but there's no
1878                  * real advantage to it either.
1879                  */
1880                 mutex_lock(&root->fs_info->ro_block_group_mutex);
1881                 if (!test_and_set_bit(BTRFS_TRANS_DIRTY_BG_RUN,
1882                                       &cur_trans->flags))
1883                         run_it = 1;
1884                 mutex_unlock(&root->fs_info->ro_block_group_mutex);
1885
1886                 if (run_it)
1887                         ret = btrfs_start_dirty_block_groups(trans, root);
1888         }
1889         if (ret) {
1890                 btrfs_end_transaction(trans, root);
1891                 return ret;
1892         }
1893
1894         spin_lock(&root->fs_info->trans_lock);
1895         if (cur_trans->state >= TRANS_STATE_COMMIT_START) {
1896                 spin_unlock(&root->fs_info->trans_lock);
1897                 atomic_inc(&cur_trans->use_count);
1898                 ret = btrfs_end_transaction(trans, root);
1899
1900                 wait_for_commit(root, cur_trans);
1901
1902                 if (unlikely(cur_trans->aborted))
1903                         ret = cur_trans->aborted;
1904
1905                 btrfs_put_transaction(cur_trans);
1906
1907                 return ret;
1908         }
1909
1910         cur_trans->state = TRANS_STATE_COMMIT_START;
1911         wake_up(&root->fs_info->transaction_blocked_wait);
1912
1913         if (cur_trans->list.prev != &root->fs_info->trans_list) {
1914                 prev_trans = list_entry(cur_trans->list.prev,
1915                                         struct btrfs_transaction, list);
1916                 if (prev_trans->state != TRANS_STATE_COMPLETED) {
1917                         atomic_inc(&prev_trans->use_count);
1918                         spin_unlock(&root->fs_info->trans_lock);
1919
1920                         wait_for_commit(root, prev_trans);
1921                         ret = prev_trans->aborted;
1922
1923                         btrfs_put_transaction(prev_trans);
1924                         if (ret)
1925                                 goto cleanup_transaction;
1926                 } else {
1927                         spin_unlock(&root->fs_info->trans_lock);
1928                 }
1929         } else {
1930                 spin_unlock(&root->fs_info->trans_lock);
1931         }
1932
1933         extwriter_counter_dec(cur_trans, trans->type);
1934
1935         ret = btrfs_start_delalloc_flush(root->fs_info);
1936         if (ret)
1937                 goto cleanup_transaction;
1938
1939         ret = btrfs_run_delayed_items(trans, root);
1940         if (ret)
1941                 goto cleanup_transaction;
1942
1943         wait_event(cur_trans->writer_wait,
1944                    extwriter_counter_read(cur_trans) == 0);
1945
1946         /* some pending stuffs might be added after the previous flush. */
1947         ret = btrfs_run_delayed_items(trans, root);
1948         if (ret)
1949                 goto cleanup_transaction;
1950
1951         btrfs_wait_delalloc_flush(root->fs_info);
1952
1953         btrfs_wait_pending_ordered(cur_trans);
1954
1955         btrfs_scrub_pause(root);
1956         /*
1957          * Ok now we need to make sure to block out any other joins while we
1958          * commit the transaction.  We could have started a join before setting
1959          * COMMIT_DOING so make sure to wait for num_writers to == 1 again.
1960          */
1961         spin_lock(&root->fs_info->trans_lock);
1962         cur_trans->state = TRANS_STATE_COMMIT_DOING;
1963         spin_unlock(&root->fs_info->trans_lock);
1964         wait_event(cur_trans->writer_wait,
1965                    atomic_read(&cur_trans->num_writers) == 1);
1966
1967         /* ->aborted might be set after the previous check, so check it */
1968         if (unlikely(ACCESS_ONCE(cur_trans->aborted))) {
1969                 ret = cur_trans->aborted;
1970                 goto scrub_continue;
1971         }
1972         /*
1973          * the reloc mutex makes sure that we stop
1974          * the balancing code from coming in and moving
1975          * extents around in the middle of the commit
1976          */
1977         mutex_lock(&root->fs_info->reloc_mutex);
1978
1979         /*
1980          * We needn't worry about the delayed items because we will
1981          * deal with them in create_pending_snapshot(), which is the
1982          * core function of the snapshot creation.
1983          */
1984         ret = create_pending_snapshots(trans, root->fs_info);
1985         if (ret) {
1986                 mutex_unlock(&root->fs_info->reloc_mutex);
1987                 goto scrub_continue;
1988         }
1989
1990         /*
1991          * We insert the dir indexes of the snapshots and update the inode
1992          * of the snapshots' parents after the snapshot creation, so there
1993          * are some delayed items which are not dealt with. Now deal with
1994          * them.
1995          *
1996          * We needn't worry that this operation will corrupt the snapshots,
1997          * because all the tree which are snapshoted will be forced to COW
1998          * the nodes and leaves.
1999          */
2000         ret = btrfs_run_delayed_items(trans, root);
2001         if (ret) {
2002                 mutex_unlock(&root->fs_info->reloc_mutex);
2003                 goto scrub_continue;
2004         }
2005
2006         ret = btrfs_run_delayed_refs(trans, root, (unsigned long)-1);
2007         if (ret) {
2008                 mutex_unlock(&root->fs_info->reloc_mutex);
2009                 goto scrub_continue;
2010         }
2011
2012         /* Reocrd old roots for later qgroup accounting */
2013         ret = btrfs_qgroup_prepare_account_extents(trans, root->fs_info);
2014         if (ret) {
2015                 mutex_unlock(&root->fs_info->reloc_mutex);
2016                 goto scrub_continue;
2017         }
2018
2019         /*
2020          * make sure none of the code above managed to slip in a
2021          * delayed item
2022          */
2023         btrfs_assert_delayed_root_empty(root);
2024
2025         WARN_ON(cur_trans != trans->transaction);
2026
2027         /* btrfs_commit_tree_roots is responsible for getting the
2028          * various roots consistent with each other.  Every pointer
2029          * in the tree of tree roots has to point to the most up to date
2030          * root for every subvolume and other tree.  So, we have to keep
2031          * the tree logging code from jumping in and changing any
2032          * of the trees.
2033          *
2034          * At this point in the commit, there can't be any tree-log
2035          * writers, but a little lower down we drop the trans mutex
2036          * and let new people in.  By holding the tree_log_mutex
2037          * from now until after the super is written, we avoid races
2038          * with the tree-log code.
2039          */
2040         mutex_lock(&root->fs_info->tree_log_mutex);
2041
2042         ret = commit_fs_roots(trans, root);
2043         if (ret) {
2044                 mutex_unlock(&root->fs_info->tree_log_mutex);
2045                 mutex_unlock(&root->fs_info->reloc_mutex);
2046                 goto scrub_continue;
2047         }
2048
2049         /*
2050          * Since the transaction is done, we can apply the pending changes
2051          * before the next transaction.
2052          */
2053         btrfs_apply_pending_changes(root->fs_info);
2054
2055         /* commit_fs_roots gets rid of all the tree log roots, it is now
2056          * safe to free the root of tree log roots
2057          */
2058         btrfs_free_log_root_tree(trans, root->fs_info);
2059
2060         /*
2061          * Since fs roots are all committed, we can get a quite accurate
2062          * new_roots. So let's do quota accounting.
2063          */
2064         ret = btrfs_qgroup_account_extents(trans, root->fs_info);
2065         if (ret < 0) {
2066                 mutex_unlock(&root->fs_info->tree_log_mutex);
2067                 mutex_unlock(&root->fs_info->reloc_mutex);
2068                 goto scrub_continue;
2069         }
2070
2071         ret = commit_cowonly_roots(trans, root);
2072         if (ret) {
2073                 mutex_unlock(&root->fs_info->tree_log_mutex);
2074                 mutex_unlock(&root->fs_info->reloc_mutex);
2075                 goto scrub_continue;
2076         }
2077
2078         /*
2079          * The tasks which save the space cache and inode cache may also
2080          * update ->aborted, check it.
2081          */
2082         if (unlikely(ACCESS_ONCE(cur_trans->aborted))) {
2083                 ret = cur_trans->aborted;
2084                 mutex_unlock(&root->fs_info->tree_log_mutex);
2085                 mutex_unlock(&root->fs_info->reloc_mutex);
2086                 goto scrub_continue;
2087         }
2088
2089         btrfs_prepare_extent_commit(trans, root);
2090
2091         cur_trans = root->fs_info->running_transaction;
2092
2093         btrfs_set_root_node(&root->fs_info->tree_root->root_item,
2094                             root->fs_info->tree_root->node);
2095         list_add_tail(&root->fs_info->tree_root->dirty_list,
2096                       &cur_trans->switch_commits);
2097
2098         btrfs_set_root_node(&root->fs_info->chunk_root->root_item,
2099                             root->fs_info->chunk_root->node);
2100         list_add_tail(&root->fs_info->chunk_root->dirty_list,
2101                       &cur_trans->switch_commits);
2102
2103         switch_commit_roots(cur_trans, root->fs_info);
2104
2105         assert_qgroups_uptodate(trans);
2106         ASSERT(list_empty(&cur_trans->dirty_bgs));
2107         ASSERT(list_empty(&cur_trans->io_bgs));
2108         update_super_roots(root);
2109
2110         btrfs_set_super_log_root(root->fs_info->super_copy, 0);
2111         btrfs_set_super_log_root_level(root->fs_info->super_copy, 0);
2112         memcpy(root->fs_info->super_for_commit, root->fs_info->super_copy,
2113                sizeof(*root->fs_info->super_copy));
2114
2115         btrfs_update_commit_device_size(root->fs_info);
2116         btrfs_update_commit_device_bytes_used(root, cur_trans);
2117
2118         clear_bit(BTRFS_INODE_BTREE_LOG1_ERR, &btree_ino->runtime_flags);
2119         clear_bit(BTRFS_INODE_BTREE_LOG2_ERR, &btree_ino->runtime_flags);
2120
2121         btrfs_trans_release_chunk_metadata(trans);
2122
2123         spin_lock(&root->fs_info->trans_lock);
2124         cur_trans->state = TRANS_STATE_UNBLOCKED;
2125         root->fs_info->running_transaction = NULL;
2126         spin_unlock(&root->fs_info->trans_lock);
2127         mutex_unlock(&root->fs_info->reloc_mutex);
2128
2129         wake_up(&root->fs_info->transaction_wait);
2130
2131         ret = btrfs_write_and_wait_transaction(trans, root);
2132         if (ret) {
2133                 btrfs_std_error(root->fs_info, ret,
2134                             "Error while writing out transaction");
2135                 mutex_unlock(&root->fs_info->tree_log_mutex);
2136                 goto scrub_continue;
2137         }
2138
2139         ret = write_ctree_super(trans, root, 0);
2140         if (ret) {
2141                 mutex_unlock(&root->fs_info->tree_log_mutex);
2142                 goto scrub_continue;
2143         }
2144
2145         /*
2146          * the super is written, we can safely allow the tree-loggers
2147          * to go about their business
2148          */
2149         mutex_unlock(&root->fs_info->tree_log_mutex);
2150
2151         btrfs_finish_extent_commit(trans, root);
2152
2153         if (test_bit(BTRFS_TRANS_HAVE_FREE_BGS, &cur_trans->flags))
2154                 btrfs_clear_space_info_full(root->fs_info);
2155
2156         root->fs_info->last_trans_committed = cur_trans->transid;
2157         /*
2158          * We needn't acquire the lock here because there is no other task
2159          * which can change it.
2160          */
2161         cur_trans->state = TRANS_STATE_COMPLETED;
2162         wake_up(&cur_trans->commit_wait);
2163
2164         spin_lock(&root->fs_info->trans_lock);
2165         list_del_init(&cur_trans->list);
2166         spin_unlock(&root->fs_info->trans_lock);
2167
2168         btrfs_put_transaction(cur_trans);
2169         btrfs_put_transaction(cur_trans);
2170
2171         if (trans->type & __TRANS_FREEZABLE)
2172                 sb_end_intwrite(root->fs_info->sb);
2173
2174         trace_btrfs_transaction_commit(root);
2175
2176         btrfs_scrub_continue(root);
2177
2178         if (current->journal_info == trans)
2179                 current->journal_info = NULL;
2180
2181         kmem_cache_free(btrfs_trans_handle_cachep, trans);
2182
2183         if (current != root->fs_info->transaction_kthread &&
2184             current != root->fs_info->cleaner_kthread)
2185                 btrfs_run_delayed_iputs(root);
2186
2187         return ret;
2188
2189 scrub_continue:
2190         btrfs_scrub_continue(root);
2191 cleanup_transaction:
2192         btrfs_trans_release_metadata(trans, root);
2193         btrfs_trans_release_chunk_metadata(trans);
2194         trans->block_rsv = NULL;
2195         btrfs_warn(root->fs_info, "Skipping commit of aborted transaction.");
2196         if (current->journal_info == trans)
2197                 current->journal_info = NULL;
2198         cleanup_transaction(trans, root, ret);
2199
2200         return ret;
2201 }
2202
2203 /*
2204  * return < 0 if error
2205  * 0 if there are no more dead_roots at the time of call
2206  * 1 there are more to be processed, call me again
2207  *
2208  * The return value indicates there are certainly more snapshots to delete, but
2209  * if there comes a new one during processing, it may return 0. We don't mind,
2210  * because btrfs_commit_super will poke cleaner thread and it will process it a
2211  * few seconds later.
2212  */
2213 int btrfs_clean_one_deleted_snapshot(struct btrfs_root *root)
2214 {
2215         int ret;
2216         struct btrfs_fs_info *fs_info = root->fs_info;
2217
2218         spin_lock(&fs_info->trans_lock);
2219         if (list_empty(&fs_info->dead_roots)) {
2220                 spin_unlock(&fs_info->trans_lock);
2221                 return 0;
2222         }
2223         root = list_first_entry(&fs_info->dead_roots,
2224                         struct btrfs_root, root_list);
2225         list_del_init(&root->root_list);
2226         spin_unlock(&fs_info->trans_lock);
2227
2228         pr_debug("BTRFS: cleaner removing %llu\n", root->objectid);
2229
2230         btrfs_kill_all_delayed_nodes(root);
2231
2232         if (btrfs_header_backref_rev(root->node) <
2233                         BTRFS_MIXED_BACKREF_REV)
2234                 ret = btrfs_drop_snapshot(root, NULL, 0, 0);
2235         else
2236                 ret = btrfs_drop_snapshot(root, NULL, 1, 0);
2237
2238         return (ret < 0) ? 0 : 1;
2239 }
2240
2241 void btrfs_apply_pending_changes(struct btrfs_fs_info *fs_info)
2242 {
2243         unsigned long prev;
2244         unsigned long bit;
2245
2246         prev = xchg(&fs_info->pending_changes, 0);
2247         if (!prev)
2248                 return;
2249
2250         bit = 1 << BTRFS_PENDING_SET_INODE_MAP_CACHE;
2251         if (prev & bit)
2252                 btrfs_set_opt(fs_info->mount_opt, INODE_MAP_CACHE);
2253         prev &= ~bit;
2254
2255         bit = 1 << BTRFS_PENDING_CLEAR_INODE_MAP_CACHE;
2256         if (prev & bit)
2257                 btrfs_clear_opt(fs_info->mount_opt, INODE_MAP_CACHE);
2258         prev &= ~bit;
2259
2260         bit = 1 << BTRFS_PENDING_COMMIT;
2261         if (prev & bit)
2262                 btrfs_debug(fs_info, "pending commit done");
2263         prev &= ~bit;
2264
2265         if (prev)
2266                 btrfs_warn(fs_info,
2267                         "unknown pending changes left 0x%lx, ignoring", prev);
2268 }