2 * Copyright (C) 2007 Oracle. All rights reserved.
4 * This program is free software; you can redistribute it and/or
5 * modify it under the terms of the GNU General Public
6 * License v2 as published by the Free Software Foundation.
8 * This program is distributed in the hope that it will be useful,
9 * but WITHOUT ANY WARRANTY; without even the implied warranty of
10 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
11 * General Public License for more details.
13 * You should have received a copy of the GNU General Public
14 * License along with this program; if not, write to the
15 * Free Software Foundation, Inc., 59 Temple Place - Suite 330,
16 * Boston, MA 021110-1307, USA.
20 #include <linux/slab.h>
21 #include <linux/sched.h>
22 #include <linux/writeback.h>
23 #include <linux/pagemap.h>
24 #include <linux/blkdev.h>
25 #include <linux/uuid.h>
28 #include "transaction.h"
31 #include "inode-map.h"
33 #include "dev-replace.h"
36 #define BTRFS_ROOT_TRANS_TAG 0
38 static const unsigned int btrfs_blocked_trans_types[TRANS_STATE_MAX] = {
39 [TRANS_STATE_RUNNING] = 0U,
40 [TRANS_STATE_BLOCKED] = (__TRANS_USERSPACE |
42 [TRANS_STATE_COMMIT_START] = (__TRANS_USERSPACE |
45 [TRANS_STATE_COMMIT_DOING] = (__TRANS_USERSPACE |
49 [TRANS_STATE_UNBLOCKED] = (__TRANS_USERSPACE |
54 [TRANS_STATE_COMPLETED] = (__TRANS_USERSPACE |
61 void btrfs_put_transaction(struct btrfs_transaction *transaction)
63 WARN_ON(atomic_read(&transaction->use_count) == 0);
64 if (atomic_dec_and_test(&transaction->use_count)) {
65 BUG_ON(!list_empty(&transaction->list));
66 WARN_ON(!RB_EMPTY_ROOT(&transaction->delayed_refs.href_root));
67 if (transaction->delayed_refs.pending_csums)
68 btrfs_err(transaction->fs_info,
69 "pending csums is %llu",
70 transaction->delayed_refs.pending_csums);
71 while (!list_empty(&transaction->pending_chunks)) {
72 struct extent_map *em;
74 em = list_first_entry(&transaction->pending_chunks,
75 struct extent_map, list);
76 list_del_init(&em->list);
80 * If any block groups are found in ->deleted_bgs then it's
81 * because the transaction was aborted and a commit did not
82 * happen (things failed before writing the new superblock
83 * and calling btrfs_finish_extent_commit()), so we can not
84 * discard the physical locations of the block groups.
86 while (!list_empty(&transaction->deleted_bgs)) {
87 struct btrfs_block_group_cache *cache;
89 cache = list_first_entry(&transaction->deleted_bgs,
90 struct btrfs_block_group_cache,
92 list_del_init(&cache->bg_list);
93 btrfs_put_block_group_trimming(cache);
94 btrfs_put_block_group(cache);
96 kmem_cache_free(btrfs_transaction_cachep, transaction);
100 static void clear_btree_io_tree(struct extent_io_tree *tree)
102 spin_lock(&tree->lock);
104 * Do a single barrier for the waitqueue_active check here, the state
105 * of the waitqueue should not change once clear_btree_io_tree is
109 while (!RB_EMPTY_ROOT(&tree->state)) {
110 struct rb_node *node;
111 struct extent_state *state;
113 node = rb_first(&tree->state);
114 state = rb_entry(node, struct extent_state, rb_node);
115 rb_erase(&state->rb_node, &tree->state);
116 RB_CLEAR_NODE(&state->rb_node);
118 * btree io trees aren't supposed to have tasks waiting for
119 * changes in the flags of extent states ever.
121 ASSERT(!waitqueue_active(&state->wq));
122 free_extent_state(state);
124 cond_resched_lock(&tree->lock);
126 spin_unlock(&tree->lock);
129 static noinline void switch_commit_roots(struct btrfs_transaction *trans,
130 struct btrfs_fs_info *fs_info)
132 struct btrfs_root *root, *tmp;
134 down_write(&fs_info->commit_root_sem);
135 list_for_each_entry_safe(root, tmp, &trans->switch_commits,
137 list_del_init(&root->dirty_list);
138 free_extent_buffer(root->commit_root);
139 root->commit_root = btrfs_root_node(root);
140 if (is_fstree(root->objectid))
141 btrfs_unpin_free_ino(root);
142 clear_btree_io_tree(&root->dirty_log_pages);
145 /* We can free old roots now. */
146 spin_lock(&trans->dropped_roots_lock);
147 while (!list_empty(&trans->dropped_roots)) {
148 root = list_first_entry(&trans->dropped_roots,
149 struct btrfs_root, root_list);
150 list_del_init(&root->root_list);
151 spin_unlock(&trans->dropped_roots_lock);
152 btrfs_drop_and_free_fs_root(fs_info, root);
153 spin_lock(&trans->dropped_roots_lock);
155 spin_unlock(&trans->dropped_roots_lock);
156 up_write(&fs_info->commit_root_sem);
159 static inline void extwriter_counter_inc(struct btrfs_transaction *trans,
162 if (type & TRANS_EXTWRITERS)
163 atomic_inc(&trans->num_extwriters);
166 static inline void extwriter_counter_dec(struct btrfs_transaction *trans,
169 if (type & TRANS_EXTWRITERS)
170 atomic_dec(&trans->num_extwriters);
173 static inline void extwriter_counter_init(struct btrfs_transaction *trans,
176 atomic_set(&trans->num_extwriters, ((type & TRANS_EXTWRITERS) ? 1 : 0));
179 static inline int extwriter_counter_read(struct btrfs_transaction *trans)
181 return atomic_read(&trans->num_extwriters);
185 * either allocate a new transaction or hop into the existing one
187 static noinline int join_transaction(struct btrfs_root *root, unsigned int type)
189 struct btrfs_transaction *cur_trans;
190 struct btrfs_fs_info *fs_info = root->fs_info;
192 spin_lock(&fs_info->trans_lock);
194 /* The file system has been taken offline. No new transactions. */
195 if (test_bit(BTRFS_FS_STATE_ERROR, &fs_info->fs_state)) {
196 spin_unlock(&fs_info->trans_lock);
200 cur_trans = fs_info->running_transaction;
202 if (cur_trans->aborted) {
203 spin_unlock(&fs_info->trans_lock);
204 return cur_trans->aborted;
206 if (btrfs_blocked_trans_types[cur_trans->state] & type) {
207 spin_unlock(&fs_info->trans_lock);
210 atomic_inc(&cur_trans->use_count);
211 atomic_inc(&cur_trans->num_writers);
212 extwriter_counter_inc(cur_trans, type);
213 spin_unlock(&fs_info->trans_lock);
216 spin_unlock(&fs_info->trans_lock);
219 * If we are ATTACH, we just want to catch the current transaction,
220 * and commit it. If there is no transaction, just return ENOENT.
222 if (type == TRANS_ATTACH)
226 * JOIN_NOLOCK only happens during the transaction commit, so
227 * it is impossible that ->running_transaction is NULL
229 BUG_ON(type == TRANS_JOIN_NOLOCK);
231 cur_trans = kmem_cache_alloc(btrfs_transaction_cachep, GFP_NOFS);
235 spin_lock(&fs_info->trans_lock);
236 if (fs_info->running_transaction) {
238 * someone started a transaction after we unlocked. Make sure
239 * to redo the checks above
241 kmem_cache_free(btrfs_transaction_cachep, cur_trans);
243 } else if (test_bit(BTRFS_FS_STATE_ERROR, &fs_info->fs_state)) {
244 spin_unlock(&fs_info->trans_lock);
245 kmem_cache_free(btrfs_transaction_cachep, cur_trans);
249 cur_trans->fs_info = fs_info;
250 atomic_set(&cur_trans->num_writers, 1);
251 extwriter_counter_init(cur_trans, type);
252 init_waitqueue_head(&cur_trans->writer_wait);
253 init_waitqueue_head(&cur_trans->commit_wait);
254 init_waitqueue_head(&cur_trans->pending_wait);
255 cur_trans->state = TRANS_STATE_RUNNING;
257 * One for this trans handle, one so it will live on until we
258 * commit the transaction.
260 atomic_set(&cur_trans->use_count, 2);
261 atomic_set(&cur_trans->pending_ordered, 0);
262 cur_trans->flags = 0;
263 cur_trans->start_time = get_seconds();
265 memset(&cur_trans->delayed_refs, 0, sizeof(cur_trans->delayed_refs));
267 cur_trans->delayed_refs.href_root = RB_ROOT;
268 cur_trans->delayed_refs.dirty_extent_root = RB_ROOT;
269 atomic_set(&cur_trans->delayed_refs.num_entries, 0);
272 * although the tree mod log is per file system and not per transaction,
273 * the log must never go across transaction boundaries.
276 if (!list_empty(&fs_info->tree_mod_seq_list))
277 WARN(1, KERN_ERR "BTRFS: tree_mod_seq_list not empty when creating a fresh transaction\n");
278 if (!RB_EMPTY_ROOT(&fs_info->tree_mod_log))
279 WARN(1, KERN_ERR "BTRFS: tree_mod_log rb tree not empty when creating a fresh transaction\n");
280 atomic64_set(&fs_info->tree_mod_seq, 0);
282 spin_lock_init(&cur_trans->delayed_refs.lock);
284 INIT_LIST_HEAD(&cur_trans->pending_snapshots);
285 INIT_LIST_HEAD(&cur_trans->pending_chunks);
286 INIT_LIST_HEAD(&cur_trans->switch_commits);
287 INIT_LIST_HEAD(&cur_trans->dirty_bgs);
288 INIT_LIST_HEAD(&cur_trans->io_bgs);
289 INIT_LIST_HEAD(&cur_trans->dropped_roots);
290 mutex_init(&cur_trans->cache_write_mutex);
291 cur_trans->num_dirty_bgs = 0;
292 spin_lock_init(&cur_trans->dirty_bgs_lock);
293 INIT_LIST_HEAD(&cur_trans->deleted_bgs);
294 spin_lock_init(&cur_trans->dropped_roots_lock);
295 list_add_tail(&cur_trans->list, &fs_info->trans_list);
296 extent_io_tree_init(&cur_trans->dirty_pages,
297 fs_info->btree_inode->i_mapping);
298 fs_info->generation++;
299 cur_trans->transid = fs_info->generation;
300 fs_info->running_transaction = cur_trans;
301 cur_trans->aborted = 0;
302 spin_unlock(&fs_info->trans_lock);
308 * this does all the record keeping required to make sure that a reference
309 * counted root is properly recorded in a given transaction. This is required
310 * to make sure the old root from before we joined the transaction is deleted
311 * when the transaction commits
313 static int record_root_in_trans(struct btrfs_trans_handle *trans,
314 struct btrfs_root *root,
317 if ((test_bit(BTRFS_ROOT_REF_COWS, &root->state) &&
318 root->last_trans < trans->transid) || force) {
319 WARN_ON(root == root->fs_info->extent_root);
320 WARN_ON(root->commit_root != root->node);
323 * see below for IN_TRANS_SETUP usage rules
324 * we have the reloc mutex held now, so there
325 * is only one writer in this function
327 set_bit(BTRFS_ROOT_IN_TRANS_SETUP, &root->state);
329 /* make sure readers find IN_TRANS_SETUP before
330 * they find our root->last_trans update
334 spin_lock(&root->fs_info->fs_roots_radix_lock);
335 if (root->last_trans == trans->transid && !force) {
336 spin_unlock(&root->fs_info->fs_roots_radix_lock);
339 radix_tree_tag_set(&root->fs_info->fs_roots_radix,
340 (unsigned long)root->root_key.objectid,
341 BTRFS_ROOT_TRANS_TAG);
342 spin_unlock(&root->fs_info->fs_roots_radix_lock);
343 root->last_trans = trans->transid;
345 /* this is pretty tricky. We don't want to
346 * take the relocation lock in btrfs_record_root_in_trans
347 * unless we're really doing the first setup for this root in
350 * Normally we'd use root->last_trans as a flag to decide
351 * if we want to take the expensive mutex.
353 * But, we have to set root->last_trans before we
354 * init the relocation root, otherwise, we trip over warnings
355 * in ctree.c. The solution used here is to flag ourselves
356 * with root IN_TRANS_SETUP. When this is 1, we're still
357 * fixing up the reloc trees and everyone must wait.
359 * When this is zero, they can trust root->last_trans and fly
360 * through btrfs_record_root_in_trans without having to take the
361 * lock. smp_wmb() makes sure that all the writes above are
362 * done before we pop in the zero below
364 btrfs_init_reloc_root(trans, root);
365 smp_mb__before_atomic();
366 clear_bit(BTRFS_ROOT_IN_TRANS_SETUP, &root->state);
372 void btrfs_add_dropped_root(struct btrfs_trans_handle *trans,
373 struct btrfs_root *root)
375 struct btrfs_transaction *cur_trans = trans->transaction;
377 /* Add ourselves to the transaction dropped list */
378 spin_lock(&cur_trans->dropped_roots_lock);
379 list_add_tail(&root->root_list, &cur_trans->dropped_roots);
380 spin_unlock(&cur_trans->dropped_roots_lock);
382 /* Make sure we don't try to update the root at commit time */
383 spin_lock(&root->fs_info->fs_roots_radix_lock);
384 radix_tree_tag_clear(&root->fs_info->fs_roots_radix,
385 (unsigned long)root->root_key.objectid,
386 BTRFS_ROOT_TRANS_TAG);
387 spin_unlock(&root->fs_info->fs_roots_radix_lock);
390 int btrfs_record_root_in_trans(struct btrfs_trans_handle *trans,
391 struct btrfs_root *root)
393 if (!test_bit(BTRFS_ROOT_REF_COWS, &root->state))
397 * see record_root_in_trans for comments about IN_TRANS_SETUP usage
401 if (root->last_trans == trans->transid &&
402 !test_bit(BTRFS_ROOT_IN_TRANS_SETUP, &root->state))
405 mutex_lock(&root->fs_info->reloc_mutex);
406 record_root_in_trans(trans, root, 0);
407 mutex_unlock(&root->fs_info->reloc_mutex);
412 static inline int is_transaction_blocked(struct btrfs_transaction *trans)
414 return (trans->state >= TRANS_STATE_BLOCKED &&
415 trans->state < TRANS_STATE_UNBLOCKED &&
419 /* wait for commit against the current transaction to become unblocked
420 * when this is done, it is safe to start a new transaction, but the current
421 * transaction might not be fully on disk.
423 static void wait_current_trans(struct btrfs_root *root)
425 struct btrfs_transaction *cur_trans;
427 spin_lock(&root->fs_info->trans_lock);
428 cur_trans = root->fs_info->running_transaction;
429 if (cur_trans && is_transaction_blocked(cur_trans)) {
430 atomic_inc(&cur_trans->use_count);
431 spin_unlock(&root->fs_info->trans_lock);
433 wait_event(root->fs_info->transaction_wait,
434 cur_trans->state >= TRANS_STATE_UNBLOCKED ||
436 btrfs_put_transaction(cur_trans);
438 spin_unlock(&root->fs_info->trans_lock);
442 static int may_wait_transaction(struct btrfs_root *root, int type)
444 if (test_bit(BTRFS_FS_LOG_RECOVERING, &root->fs_info->flags))
447 if (type == TRANS_USERSPACE)
450 if (type == TRANS_START &&
451 !atomic_read(&root->fs_info->open_ioctl_trans))
457 static inline bool need_reserve_reloc_root(struct btrfs_root *root)
459 if (!root->fs_info->reloc_ctl ||
460 !test_bit(BTRFS_ROOT_REF_COWS, &root->state) ||
461 root->root_key.objectid == BTRFS_TREE_RELOC_OBJECTID ||
468 static struct btrfs_trans_handle *
469 start_transaction(struct btrfs_root *root, unsigned int num_items,
470 unsigned int type, enum btrfs_reserve_flush_enum flush)
472 struct btrfs_trans_handle *h;
473 struct btrfs_transaction *cur_trans;
475 u64 qgroup_reserved = 0;
476 bool reloc_reserved = false;
479 /* Send isn't supposed to start transactions. */
480 ASSERT(current->journal_info != BTRFS_SEND_TRANS_STUB);
482 if (test_bit(BTRFS_FS_STATE_ERROR, &root->fs_info->fs_state))
483 return ERR_PTR(-EROFS);
485 if (current->journal_info) {
486 WARN_ON(type & TRANS_EXTWRITERS);
487 h = current->journal_info;
489 WARN_ON(h->use_count > 2);
490 h->orig_rsv = h->block_rsv;
496 * Do the reservation before we join the transaction so we can do all
497 * the appropriate flushing if need be.
499 if (num_items > 0 && root != root->fs_info->chunk_root) {
500 qgroup_reserved = num_items * root->nodesize;
501 ret = btrfs_qgroup_reserve_meta(root, qgroup_reserved);
505 num_bytes = btrfs_calc_trans_metadata_size(root, num_items);
507 * Do the reservation for the relocation root creation
509 if (need_reserve_reloc_root(root)) {
510 num_bytes += root->nodesize;
511 reloc_reserved = true;
514 ret = btrfs_block_rsv_add(root,
515 &root->fs_info->trans_block_rsv,
521 h = kmem_cache_zalloc(btrfs_trans_handle_cachep, GFP_NOFS);
528 * If we are JOIN_NOLOCK we're already committing a transaction and
529 * waiting on this guy, so we don't need to do the sb_start_intwrite
530 * because we're already holding a ref. We need this because we could
531 * have raced in and did an fsync() on a file which can kick a commit
532 * and then we deadlock with somebody doing a freeze.
534 * If we are ATTACH, it means we just want to catch the current
535 * transaction and commit it, so we needn't do sb_start_intwrite().
537 if (type & __TRANS_FREEZABLE)
538 sb_start_intwrite(root->fs_info->sb);
540 if (may_wait_transaction(root, type))
541 wait_current_trans(root);
544 ret = join_transaction(root, type);
546 wait_current_trans(root);
547 if (unlikely(type == TRANS_ATTACH))
550 } while (ret == -EBUSY);
555 cur_trans = root->fs_info->running_transaction;
557 h->transid = cur_trans->transid;
558 h->transaction = cur_trans;
561 h->fs_info = root->fs_info;
564 h->can_flush_pending_bgs = true;
565 INIT_LIST_HEAD(&h->qgroup_ref_list);
566 INIT_LIST_HEAD(&h->new_bgs);
569 if (cur_trans->state >= TRANS_STATE_BLOCKED &&
570 may_wait_transaction(root, type)) {
571 current->journal_info = h;
572 btrfs_commit_transaction(h, root);
577 trace_btrfs_space_reservation(root->fs_info, "transaction",
578 h->transid, num_bytes, 1);
579 h->block_rsv = &root->fs_info->trans_block_rsv;
580 h->bytes_reserved = num_bytes;
581 h->reloc_reserved = reloc_reserved;
585 btrfs_record_root_in_trans(h, root);
587 if (!current->journal_info && type != TRANS_USERSPACE)
588 current->journal_info = h;
592 if (type & __TRANS_FREEZABLE)
593 sb_end_intwrite(root->fs_info->sb);
594 kmem_cache_free(btrfs_trans_handle_cachep, h);
597 btrfs_block_rsv_release(root, &root->fs_info->trans_block_rsv,
600 btrfs_qgroup_free_meta(root, qgroup_reserved);
604 struct btrfs_trans_handle *btrfs_start_transaction(struct btrfs_root *root,
605 unsigned int num_items)
607 return start_transaction(root, num_items, TRANS_START,
608 BTRFS_RESERVE_FLUSH_ALL);
610 struct btrfs_trans_handle *btrfs_start_transaction_fallback_global_rsv(
611 struct btrfs_root *root,
612 unsigned int num_items,
615 struct btrfs_trans_handle *trans;
619 trans = btrfs_start_transaction(root, num_items);
620 if (!IS_ERR(trans) || PTR_ERR(trans) != -ENOSPC)
623 trans = btrfs_start_transaction(root, 0);
627 num_bytes = btrfs_calc_trans_metadata_size(root, num_items);
628 ret = btrfs_cond_migrate_bytes(root->fs_info,
629 &root->fs_info->trans_block_rsv,
633 btrfs_end_transaction(trans, root);
637 trans->block_rsv = &root->fs_info->trans_block_rsv;
638 trans->bytes_reserved = num_bytes;
639 trace_btrfs_space_reservation(root->fs_info, "transaction",
640 trans->transid, num_bytes, 1);
645 struct btrfs_trans_handle *btrfs_start_transaction_lflush(
646 struct btrfs_root *root,
647 unsigned int num_items)
649 return start_transaction(root, num_items, TRANS_START,
650 BTRFS_RESERVE_FLUSH_LIMIT);
653 struct btrfs_trans_handle *btrfs_join_transaction(struct btrfs_root *root)
655 return start_transaction(root, 0, TRANS_JOIN,
656 BTRFS_RESERVE_NO_FLUSH);
659 struct btrfs_trans_handle *btrfs_join_transaction_nolock(struct btrfs_root *root)
661 return start_transaction(root, 0, TRANS_JOIN_NOLOCK,
662 BTRFS_RESERVE_NO_FLUSH);
665 struct btrfs_trans_handle *btrfs_start_ioctl_transaction(struct btrfs_root *root)
667 return start_transaction(root, 0, TRANS_USERSPACE,
668 BTRFS_RESERVE_NO_FLUSH);
672 * btrfs_attach_transaction() - catch the running transaction
674 * It is used when we want to commit the current the transaction, but
675 * don't want to start a new one.
677 * Note: If this function return -ENOENT, it just means there is no
678 * running transaction. But it is possible that the inactive transaction
679 * is still in the memory, not fully on disk. If you hope there is no
680 * inactive transaction in the fs when -ENOENT is returned, you should
682 * btrfs_attach_transaction_barrier()
684 struct btrfs_trans_handle *btrfs_attach_transaction(struct btrfs_root *root)
686 return start_transaction(root, 0, TRANS_ATTACH,
687 BTRFS_RESERVE_NO_FLUSH);
691 * btrfs_attach_transaction_barrier() - catch the running transaction
693 * It is similar to the above function, the differentia is this one
694 * will wait for all the inactive transactions until they fully
697 struct btrfs_trans_handle *
698 btrfs_attach_transaction_barrier(struct btrfs_root *root)
700 struct btrfs_trans_handle *trans;
702 trans = start_transaction(root, 0, TRANS_ATTACH,
703 BTRFS_RESERVE_NO_FLUSH);
704 if (IS_ERR(trans) && PTR_ERR(trans) == -ENOENT)
705 btrfs_wait_for_commit(root, 0);
710 /* wait for a transaction commit to be fully complete */
711 static noinline void wait_for_commit(struct btrfs_root *root,
712 struct btrfs_transaction *commit)
714 wait_event(commit->commit_wait, commit->state == TRANS_STATE_COMPLETED);
717 int btrfs_wait_for_commit(struct btrfs_root *root, u64 transid)
719 struct btrfs_transaction *cur_trans = NULL, *t;
723 if (transid <= root->fs_info->last_trans_committed)
726 /* find specified transaction */
727 spin_lock(&root->fs_info->trans_lock);
728 list_for_each_entry(t, &root->fs_info->trans_list, list) {
729 if (t->transid == transid) {
731 atomic_inc(&cur_trans->use_count);
735 if (t->transid > transid) {
740 spin_unlock(&root->fs_info->trans_lock);
743 * The specified transaction doesn't exist, or we
744 * raced with btrfs_commit_transaction
747 if (transid > root->fs_info->last_trans_committed)
752 /* find newest transaction that is committing | committed */
753 spin_lock(&root->fs_info->trans_lock);
754 list_for_each_entry_reverse(t, &root->fs_info->trans_list,
756 if (t->state >= TRANS_STATE_COMMIT_START) {
757 if (t->state == TRANS_STATE_COMPLETED)
760 atomic_inc(&cur_trans->use_count);
764 spin_unlock(&root->fs_info->trans_lock);
766 goto out; /* nothing committing|committed */
769 wait_for_commit(root, cur_trans);
770 btrfs_put_transaction(cur_trans);
775 void btrfs_throttle(struct btrfs_root *root)
777 if (!atomic_read(&root->fs_info->open_ioctl_trans))
778 wait_current_trans(root);
781 static int should_end_transaction(struct btrfs_trans_handle *trans,
782 struct btrfs_root *root)
784 if (root->fs_info->global_block_rsv.space_info->full &&
785 btrfs_check_space_for_delayed_refs(trans, root))
788 return !!btrfs_block_rsv_check(root, &root->fs_info->global_block_rsv, 5);
791 int btrfs_should_end_transaction(struct btrfs_trans_handle *trans,
792 struct btrfs_root *root)
794 struct btrfs_transaction *cur_trans = trans->transaction;
799 if (cur_trans->state >= TRANS_STATE_BLOCKED ||
800 cur_trans->delayed_refs.flushing)
803 updates = trans->delayed_ref_updates;
804 trans->delayed_ref_updates = 0;
806 err = btrfs_run_delayed_refs(trans, root, updates * 2);
807 if (err) /* Error code will also eval true */
811 return should_end_transaction(trans, root);
814 static int __btrfs_end_transaction(struct btrfs_trans_handle *trans,
815 struct btrfs_root *root, int throttle)
817 struct btrfs_transaction *cur_trans = trans->transaction;
818 struct btrfs_fs_info *info = root->fs_info;
819 u64 transid = trans->transid;
820 unsigned long cur = trans->delayed_ref_updates;
821 int lock = (trans->type != TRANS_JOIN_NOLOCK);
823 int must_run_delayed_refs = 0;
825 if (trans->use_count > 1) {
827 trans->block_rsv = trans->orig_rsv;
831 btrfs_trans_release_metadata(trans, root);
832 trans->block_rsv = NULL;
834 if (!list_empty(&trans->new_bgs))
835 btrfs_create_pending_block_groups(trans, root);
837 trans->delayed_ref_updates = 0;
839 must_run_delayed_refs =
840 btrfs_should_throttle_delayed_refs(trans, root);
841 cur = max_t(unsigned long, cur, 32);
844 * don't make the caller wait if they are from a NOLOCK
845 * or ATTACH transaction, it will deadlock with commit
847 if (must_run_delayed_refs == 1 &&
848 (trans->type & (__TRANS_JOIN_NOLOCK | __TRANS_ATTACH)))
849 must_run_delayed_refs = 2;
852 btrfs_trans_release_metadata(trans, root);
853 trans->block_rsv = NULL;
855 if (!list_empty(&trans->new_bgs))
856 btrfs_create_pending_block_groups(trans, root);
858 btrfs_trans_release_chunk_metadata(trans);
860 if (lock && !atomic_read(&root->fs_info->open_ioctl_trans) &&
861 should_end_transaction(trans, root) &&
862 ACCESS_ONCE(cur_trans->state) == TRANS_STATE_RUNNING) {
863 spin_lock(&info->trans_lock);
864 if (cur_trans->state == TRANS_STATE_RUNNING)
865 cur_trans->state = TRANS_STATE_BLOCKED;
866 spin_unlock(&info->trans_lock);
869 if (lock && ACCESS_ONCE(cur_trans->state) == TRANS_STATE_BLOCKED) {
871 return btrfs_commit_transaction(trans, root);
873 wake_up_process(info->transaction_kthread);
876 if (trans->type & __TRANS_FREEZABLE)
877 sb_end_intwrite(root->fs_info->sb);
879 WARN_ON(cur_trans != info->running_transaction);
880 WARN_ON(atomic_read(&cur_trans->num_writers) < 1);
881 atomic_dec(&cur_trans->num_writers);
882 extwriter_counter_dec(cur_trans, trans->type);
885 * Make sure counter is updated before we wake up waiters.
888 if (waitqueue_active(&cur_trans->writer_wait))
889 wake_up(&cur_trans->writer_wait);
890 btrfs_put_transaction(cur_trans);
892 if (current->journal_info == trans)
893 current->journal_info = NULL;
896 btrfs_run_delayed_iputs(root);
898 if (trans->aborted ||
899 test_bit(BTRFS_FS_STATE_ERROR, &root->fs_info->fs_state)) {
900 wake_up_process(info->transaction_kthread);
903 assert_qgroups_uptodate(trans);
905 kmem_cache_free(btrfs_trans_handle_cachep, trans);
906 if (must_run_delayed_refs) {
907 btrfs_async_run_delayed_refs(root, cur, transid,
908 must_run_delayed_refs == 1);
913 int btrfs_end_transaction(struct btrfs_trans_handle *trans,
914 struct btrfs_root *root)
916 return __btrfs_end_transaction(trans, root, 0);
919 int btrfs_end_transaction_throttle(struct btrfs_trans_handle *trans,
920 struct btrfs_root *root)
922 return __btrfs_end_transaction(trans, root, 1);
926 * when btree blocks are allocated, they have some corresponding bits set for
927 * them in one of two extent_io trees. This is used to make sure all of
928 * those extents are sent to disk but does not wait on them
930 int btrfs_write_marked_extents(struct btrfs_root *root,
931 struct extent_io_tree *dirty_pages, int mark)
935 struct address_space *mapping = root->fs_info->btree_inode->i_mapping;
936 struct extent_state *cached_state = NULL;
940 while (!find_first_extent_bit(dirty_pages, start, &start, &end,
941 mark, &cached_state)) {
942 bool wait_writeback = false;
944 err = convert_extent_bit(dirty_pages, start, end,
946 mark, &cached_state);
948 * convert_extent_bit can return -ENOMEM, which is most of the
949 * time a temporary error. So when it happens, ignore the error
950 * and wait for writeback of this range to finish - because we
951 * failed to set the bit EXTENT_NEED_WAIT for the range, a call
952 * to btrfs_wait_marked_extents() would not know that writeback
953 * for this range started and therefore wouldn't wait for it to
954 * finish - we don't want to commit a superblock that points to
955 * btree nodes/leafs for which writeback hasn't finished yet
956 * (and without errors).
957 * We cleanup any entries left in the io tree when committing
958 * the transaction (through clear_btree_io_tree()).
960 if (err == -ENOMEM) {
962 wait_writeback = true;
965 err = filemap_fdatawrite_range(mapping, start, end);
968 else if (wait_writeback)
969 werr = filemap_fdatawait_range(mapping, start, end);
970 free_extent_state(cached_state);
979 * when btree blocks are allocated, they have some corresponding bits set for
980 * them in one of two extent_io trees. This is used to make sure all of
981 * those extents are on disk for transaction or log commit. We wait
982 * on all the pages and clear them from the dirty pages state tree
984 int btrfs_wait_marked_extents(struct btrfs_root *root,
985 struct extent_io_tree *dirty_pages, int mark)
989 struct address_space *mapping = root->fs_info->btree_inode->i_mapping;
990 struct extent_state *cached_state = NULL;
995 while (!find_first_extent_bit(dirty_pages, start, &start, &end,
996 EXTENT_NEED_WAIT, &cached_state)) {
998 * Ignore -ENOMEM errors returned by clear_extent_bit().
999 * When committing the transaction, we'll remove any entries
1000 * left in the io tree. For a log commit, we don't remove them
1001 * after committing the log because the tree can be accessed
1002 * concurrently - we do it only at transaction commit time when
1003 * it's safe to do it (through clear_btree_io_tree()).
1005 err = clear_extent_bit(dirty_pages, start, end,
1007 0, 0, &cached_state, GFP_NOFS);
1011 err = filemap_fdatawait_range(mapping, start, end);
1014 free_extent_state(cached_state);
1015 cached_state = NULL;
1022 if (root->root_key.objectid == BTRFS_TREE_LOG_OBJECTID) {
1023 if ((mark & EXTENT_DIRTY) &&
1024 test_and_clear_bit(BTRFS_FS_LOG1_ERR,
1025 &root->fs_info->flags))
1028 if ((mark & EXTENT_NEW) &&
1029 test_and_clear_bit(BTRFS_FS_LOG2_ERR,
1030 &root->fs_info->flags))
1033 if (test_and_clear_bit(BTRFS_FS_BTREE_ERR,
1034 &root->fs_info->flags))
1038 if (errors && !werr)
1045 * when btree blocks are allocated, they have some corresponding bits set for
1046 * them in one of two extent_io trees. This is used to make sure all of
1047 * those extents are on disk for transaction or log commit
1049 static int btrfs_write_and_wait_marked_extents(struct btrfs_root *root,
1050 struct extent_io_tree *dirty_pages, int mark)
1054 struct blk_plug plug;
1056 blk_start_plug(&plug);
1057 ret = btrfs_write_marked_extents(root, dirty_pages, mark);
1058 blk_finish_plug(&plug);
1059 ret2 = btrfs_wait_marked_extents(root, dirty_pages, mark);
1068 static int btrfs_write_and_wait_transaction(struct btrfs_trans_handle *trans,
1069 struct btrfs_root *root)
1073 ret = btrfs_write_and_wait_marked_extents(root,
1074 &trans->transaction->dirty_pages,
1076 clear_btree_io_tree(&trans->transaction->dirty_pages);
1082 * this is used to update the root pointer in the tree of tree roots.
1084 * But, in the case of the extent allocation tree, updating the root
1085 * pointer may allocate blocks which may change the root of the extent
1088 * So, this loops and repeats and makes sure the cowonly root didn't
1089 * change while the root pointer was being updated in the metadata.
1091 static int update_cowonly_root(struct btrfs_trans_handle *trans,
1092 struct btrfs_root *root)
1095 u64 old_root_bytenr;
1097 struct btrfs_root *tree_root = root->fs_info->tree_root;
1099 old_root_used = btrfs_root_used(&root->root_item);
1102 old_root_bytenr = btrfs_root_bytenr(&root->root_item);
1103 if (old_root_bytenr == root->node->start &&
1104 old_root_used == btrfs_root_used(&root->root_item))
1107 btrfs_set_root_node(&root->root_item, root->node);
1108 ret = btrfs_update_root(trans, tree_root,
1114 old_root_used = btrfs_root_used(&root->root_item);
1121 * update all the cowonly tree roots on disk
1123 * The error handling in this function may not be obvious. Any of the
1124 * failures will cause the file system to go offline. We still need
1125 * to clean up the delayed refs.
1127 static noinline int commit_cowonly_roots(struct btrfs_trans_handle *trans,
1128 struct btrfs_root *root)
1130 struct btrfs_fs_info *fs_info = root->fs_info;
1131 struct list_head *dirty_bgs = &trans->transaction->dirty_bgs;
1132 struct list_head *io_bgs = &trans->transaction->io_bgs;
1133 struct list_head *next;
1134 struct extent_buffer *eb;
1137 eb = btrfs_lock_root_node(fs_info->tree_root);
1138 ret = btrfs_cow_block(trans, fs_info->tree_root, eb, NULL,
1140 btrfs_tree_unlock(eb);
1141 free_extent_buffer(eb);
1146 ret = btrfs_run_delayed_refs(trans, root, (unsigned long)-1);
1150 ret = btrfs_run_dev_stats(trans, root->fs_info);
1153 ret = btrfs_run_dev_replace(trans, root->fs_info);
1156 ret = btrfs_run_qgroups(trans, root->fs_info);
1160 ret = btrfs_setup_space_cache(trans, root);
1164 /* run_qgroups might have added some more refs */
1165 ret = btrfs_run_delayed_refs(trans, root, (unsigned long)-1);
1169 while (!list_empty(&fs_info->dirty_cowonly_roots)) {
1170 next = fs_info->dirty_cowonly_roots.next;
1171 list_del_init(next);
1172 root = list_entry(next, struct btrfs_root, dirty_list);
1173 clear_bit(BTRFS_ROOT_DIRTY, &root->state);
1175 if (root != fs_info->extent_root)
1176 list_add_tail(&root->dirty_list,
1177 &trans->transaction->switch_commits);
1178 ret = update_cowonly_root(trans, root);
1181 ret = btrfs_run_delayed_refs(trans, root, (unsigned long)-1);
1186 while (!list_empty(dirty_bgs) || !list_empty(io_bgs)) {
1187 ret = btrfs_write_dirty_block_groups(trans, root);
1190 ret = btrfs_run_delayed_refs(trans, root, (unsigned long)-1);
1195 if (!list_empty(&fs_info->dirty_cowonly_roots))
1198 list_add_tail(&fs_info->extent_root->dirty_list,
1199 &trans->transaction->switch_commits);
1200 btrfs_after_dev_replace_commit(fs_info);
1206 * dead roots are old snapshots that need to be deleted. This allocates
1207 * a dirty root struct and adds it into the list of dead roots that need to
1210 void btrfs_add_dead_root(struct btrfs_root *root)
1212 spin_lock(&root->fs_info->trans_lock);
1213 if (list_empty(&root->root_list))
1214 list_add_tail(&root->root_list, &root->fs_info->dead_roots);
1215 spin_unlock(&root->fs_info->trans_lock);
1219 * update all the cowonly tree roots on disk
1221 static noinline int commit_fs_roots(struct btrfs_trans_handle *trans,
1222 struct btrfs_root *root)
1224 struct btrfs_root *gang[8];
1225 struct btrfs_fs_info *fs_info = root->fs_info;
1230 spin_lock(&fs_info->fs_roots_radix_lock);
1232 ret = radix_tree_gang_lookup_tag(&fs_info->fs_roots_radix,
1235 BTRFS_ROOT_TRANS_TAG);
1238 for (i = 0; i < ret; i++) {
1240 radix_tree_tag_clear(&fs_info->fs_roots_radix,
1241 (unsigned long)root->root_key.objectid,
1242 BTRFS_ROOT_TRANS_TAG);
1243 spin_unlock(&fs_info->fs_roots_radix_lock);
1245 btrfs_free_log(trans, root);
1246 btrfs_update_reloc_root(trans, root);
1247 btrfs_orphan_commit_root(trans, root);
1249 btrfs_save_ino_cache(root, trans);
1251 /* see comments in should_cow_block() */
1252 clear_bit(BTRFS_ROOT_FORCE_COW, &root->state);
1253 smp_mb__after_atomic();
1255 if (root->commit_root != root->node) {
1256 list_add_tail(&root->dirty_list,
1257 &trans->transaction->switch_commits);
1258 btrfs_set_root_node(&root->root_item,
1262 err = btrfs_update_root(trans, fs_info->tree_root,
1265 spin_lock(&fs_info->fs_roots_radix_lock);
1268 btrfs_qgroup_free_meta_all(root);
1271 spin_unlock(&fs_info->fs_roots_radix_lock);
1276 * defrag a given btree.
1277 * Every leaf in the btree is read and defragged.
1279 int btrfs_defrag_root(struct btrfs_root *root)
1281 struct btrfs_fs_info *info = root->fs_info;
1282 struct btrfs_trans_handle *trans;
1285 if (test_and_set_bit(BTRFS_ROOT_DEFRAG_RUNNING, &root->state))
1289 trans = btrfs_start_transaction(root, 0);
1290 if (IS_ERR(trans)) {
1291 ret = PTR_ERR(trans);
1295 ret = btrfs_defrag_leaves(trans, root);
1297 btrfs_end_transaction(trans, root);
1298 btrfs_btree_balance_dirty(info->tree_root);
1301 if (btrfs_fs_closing(info) || ret != -EAGAIN)
1304 if (btrfs_defrag_cancelled(info)) {
1305 btrfs_debug(info, "defrag_root cancelled");
1310 clear_bit(BTRFS_ROOT_DEFRAG_RUNNING, &root->state);
1315 * Do all special snapshot related qgroup dirty hack.
1317 * Will do all needed qgroup inherit and dirty hack like switch commit
1318 * roots inside one transaction and write all btree into disk, to make
1321 static int qgroup_account_snapshot(struct btrfs_trans_handle *trans,
1322 struct btrfs_root *src,
1323 struct btrfs_root *parent,
1324 struct btrfs_qgroup_inherit *inherit,
1327 struct btrfs_fs_info *fs_info = src->fs_info;
1331 * Save some performance in the case that qgroups are not
1332 * enabled. If this check races with the ioctl, rescan will
1335 mutex_lock(&fs_info->qgroup_ioctl_lock);
1336 if (!test_bit(BTRFS_FS_QUOTA_ENABLED, &fs_info->flags)) {
1337 mutex_unlock(&fs_info->qgroup_ioctl_lock);
1340 mutex_unlock(&fs_info->qgroup_ioctl_lock);
1343 * We are going to commit transaction, see btrfs_commit_transaction()
1344 * comment for reason locking tree_log_mutex
1346 mutex_lock(&fs_info->tree_log_mutex);
1348 ret = commit_fs_roots(trans, src);
1351 ret = btrfs_qgroup_prepare_account_extents(trans, fs_info);
1354 ret = btrfs_qgroup_account_extents(trans, fs_info);
1358 /* Now qgroup are all updated, we can inherit it to new qgroups */
1359 ret = btrfs_qgroup_inherit(trans, fs_info,
1360 src->root_key.objectid, dst_objectid,
1366 * Now we do a simplified commit transaction, which will:
1367 * 1) commit all subvolume and extent tree
1368 * To ensure all subvolume and extent tree have a valid
1369 * commit_root to accounting later insert_dir_item()
1370 * 2) write all btree blocks onto disk
1371 * This is to make sure later btree modification will be cowed
1372 * Or commit_root can be populated and cause wrong qgroup numbers
1373 * In this simplified commit, we don't really care about other trees
1374 * like chunk and root tree, as they won't affect qgroup.
1375 * And we don't write super to avoid half committed status.
1377 ret = commit_cowonly_roots(trans, src);
1380 switch_commit_roots(trans->transaction, fs_info);
1381 ret = btrfs_write_and_wait_transaction(trans, src);
1383 btrfs_handle_fs_error(fs_info, ret,
1384 "Error while writing out transaction for qgroup");
1387 mutex_unlock(&fs_info->tree_log_mutex);
1390 * Force parent root to be updated, as we recorded it before so its
1391 * last_trans == cur_transid.
1392 * Or it won't be committed again onto disk after later
1396 record_root_in_trans(trans, parent, 1);
1401 * new snapshots need to be created at a very specific time in the
1402 * transaction commit. This does the actual creation.
1405 * If the error which may affect the commitment of the current transaction
1406 * happens, we should return the error number. If the error which just affect
1407 * the creation of the pending snapshots, just return 0.
1409 static noinline int create_pending_snapshot(struct btrfs_trans_handle *trans,
1410 struct btrfs_fs_info *fs_info,
1411 struct btrfs_pending_snapshot *pending)
1413 struct btrfs_key key;
1414 struct btrfs_root_item *new_root_item;
1415 struct btrfs_root *tree_root = fs_info->tree_root;
1416 struct btrfs_root *root = pending->root;
1417 struct btrfs_root *parent_root;
1418 struct btrfs_block_rsv *rsv;
1419 struct inode *parent_inode;
1420 struct btrfs_path *path;
1421 struct btrfs_dir_item *dir_item;
1422 struct dentry *dentry;
1423 struct extent_buffer *tmp;
1424 struct extent_buffer *old;
1425 struct timespec cur_time;
1433 ASSERT(pending->path);
1434 path = pending->path;
1436 ASSERT(pending->root_item);
1437 new_root_item = pending->root_item;
1439 pending->error = btrfs_find_free_objectid(tree_root, &objectid);
1441 goto no_free_objectid;
1444 * Make qgroup to skip current new snapshot's qgroupid, as it is
1445 * accounted by later btrfs_qgroup_inherit().
1447 btrfs_set_skip_qgroup(trans, objectid);
1449 btrfs_reloc_pre_snapshot(pending, &to_reserve);
1451 if (to_reserve > 0) {
1452 pending->error = btrfs_block_rsv_add(root,
1453 &pending->block_rsv,
1455 BTRFS_RESERVE_NO_FLUSH);
1457 goto clear_skip_qgroup;
1460 key.objectid = objectid;
1461 key.offset = (u64)-1;
1462 key.type = BTRFS_ROOT_ITEM_KEY;
1464 rsv = trans->block_rsv;
1465 trans->block_rsv = &pending->block_rsv;
1466 trans->bytes_reserved = trans->block_rsv->reserved;
1467 trace_btrfs_space_reservation(root->fs_info, "transaction",
1469 trans->bytes_reserved, 1);
1470 dentry = pending->dentry;
1471 parent_inode = pending->dir;
1472 parent_root = BTRFS_I(parent_inode)->root;
1473 record_root_in_trans(trans, parent_root, 0);
1475 cur_time = current_time(parent_inode);
1478 * insert the directory item
1480 ret = btrfs_set_inode_index(parent_inode, &index);
1481 BUG_ON(ret); /* -ENOMEM */
1483 /* check if there is a file/dir which has the same name. */
1484 dir_item = btrfs_lookup_dir_item(NULL, parent_root, path,
1485 btrfs_ino(parent_inode),
1486 dentry->d_name.name,
1487 dentry->d_name.len, 0);
1488 if (dir_item != NULL && !IS_ERR(dir_item)) {
1489 pending->error = -EEXIST;
1490 goto dir_item_existed;
1491 } else if (IS_ERR(dir_item)) {
1492 ret = PTR_ERR(dir_item);
1493 btrfs_abort_transaction(trans, ret);
1496 btrfs_release_path(path);
1499 * pull in the delayed directory update
1500 * and the delayed inode item
1501 * otherwise we corrupt the FS during
1504 ret = btrfs_run_delayed_items(trans, root);
1505 if (ret) { /* Transaction aborted */
1506 btrfs_abort_transaction(trans, ret);
1510 record_root_in_trans(trans, root, 0);
1511 btrfs_set_root_last_snapshot(&root->root_item, trans->transid);
1512 memcpy(new_root_item, &root->root_item, sizeof(*new_root_item));
1513 btrfs_check_and_init_root_item(new_root_item);
1515 root_flags = btrfs_root_flags(new_root_item);
1516 if (pending->readonly)
1517 root_flags |= BTRFS_ROOT_SUBVOL_RDONLY;
1519 root_flags &= ~BTRFS_ROOT_SUBVOL_RDONLY;
1520 btrfs_set_root_flags(new_root_item, root_flags);
1522 btrfs_set_root_generation_v2(new_root_item,
1524 uuid_le_gen(&new_uuid);
1525 memcpy(new_root_item->uuid, new_uuid.b, BTRFS_UUID_SIZE);
1526 memcpy(new_root_item->parent_uuid, root->root_item.uuid,
1528 if (!(root_flags & BTRFS_ROOT_SUBVOL_RDONLY)) {
1529 memset(new_root_item->received_uuid, 0,
1530 sizeof(new_root_item->received_uuid));
1531 memset(&new_root_item->stime, 0, sizeof(new_root_item->stime));
1532 memset(&new_root_item->rtime, 0, sizeof(new_root_item->rtime));
1533 btrfs_set_root_stransid(new_root_item, 0);
1534 btrfs_set_root_rtransid(new_root_item, 0);
1536 btrfs_set_stack_timespec_sec(&new_root_item->otime, cur_time.tv_sec);
1537 btrfs_set_stack_timespec_nsec(&new_root_item->otime, cur_time.tv_nsec);
1538 btrfs_set_root_otransid(new_root_item, trans->transid);
1540 old = btrfs_lock_root_node(root);
1541 ret = btrfs_cow_block(trans, root, old, NULL, 0, &old);
1543 btrfs_tree_unlock(old);
1544 free_extent_buffer(old);
1545 btrfs_abort_transaction(trans, ret);
1549 btrfs_set_lock_blocking(old);
1551 ret = btrfs_copy_root(trans, root, old, &tmp, objectid);
1552 /* clean up in any case */
1553 btrfs_tree_unlock(old);
1554 free_extent_buffer(old);
1556 btrfs_abort_transaction(trans, ret);
1559 /* see comments in should_cow_block() */
1560 set_bit(BTRFS_ROOT_FORCE_COW, &root->state);
1563 btrfs_set_root_node(new_root_item, tmp);
1564 /* record when the snapshot was created in key.offset */
1565 key.offset = trans->transid;
1566 ret = btrfs_insert_root(trans, tree_root, &key, new_root_item);
1567 btrfs_tree_unlock(tmp);
1568 free_extent_buffer(tmp);
1570 btrfs_abort_transaction(trans, ret);
1575 * insert root back/forward references
1577 ret = btrfs_add_root_ref(trans, tree_root, objectid,
1578 parent_root->root_key.objectid,
1579 btrfs_ino(parent_inode), index,
1580 dentry->d_name.name, dentry->d_name.len);
1582 btrfs_abort_transaction(trans, ret);
1586 key.offset = (u64)-1;
1587 pending->snap = btrfs_read_fs_root_no_name(root->fs_info, &key);
1588 if (IS_ERR(pending->snap)) {
1589 ret = PTR_ERR(pending->snap);
1590 btrfs_abort_transaction(trans, ret);
1594 ret = btrfs_reloc_post_snapshot(trans, pending);
1596 btrfs_abort_transaction(trans, ret);
1600 ret = btrfs_run_delayed_refs(trans, root, (unsigned long)-1);
1602 btrfs_abort_transaction(trans, ret);
1607 * Do special qgroup accounting for snapshot, as we do some qgroup
1608 * snapshot hack to do fast snapshot.
1609 * To co-operate with that hack, we do hack again.
1610 * Or snapshot will be greatly slowed down by a subtree qgroup rescan
1612 ret = qgroup_account_snapshot(trans, root, parent_root,
1613 pending->inherit, objectid);
1617 ret = btrfs_insert_dir_item(trans, parent_root,
1618 dentry->d_name.name, dentry->d_name.len,
1620 BTRFS_FT_DIR, index);
1621 /* We have check then name at the beginning, so it is impossible. */
1622 BUG_ON(ret == -EEXIST || ret == -EOVERFLOW);
1624 btrfs_abort_transaction(trans, ret);
1628 btrfs_i_size_write(parent_inode, parent_inode->i_size +
1629 dentry->d_name.len * 2);
1630 parent_inode->i_mtime = parent_inode->i_ctime =
1631 current_time(parent_inode);
1632 ret = btrfs_update_inode_fallback(trans, parent_root, parent_inode);
1634 btrfs_abort_transaction(trans, ret);
1637 ret = btrfs_uuid_tree_add(trans, fs_info->uuid_root, new_uuid.b,
1638 BTRFS_UUID_KEY_SUBVOL, objectid);
1640 btrfs_abort_transaction(trans, ret);
1643 if (!btrfs_is_empty_uuid(new_root_item->received_uuid)) {
1644 ret = btrfs_uuid_tree_add(trans, fs_info->uuid_root,
1645 new_root_item->received_uuid,
1646 BTRFS_UUID_KEY_RECEIVED_SUBVOL,
1648 if (ret && ret != -EEXIST) {
1649 btrfs_abort_transaction(trans, ret);
1654 ret = btrfs_run_delayed_refs(trans, root, (unsigned long)-1);
1656 btrfs_abort_transaction(trans, ret);
1661 pending->error = ret;
1663 trans->block_rsv = rsv;
1664 trans->bytes_reserved = 0;
1666 btrfs_clear_skip_qgroup(trans);
1668 kfree(new_root_item);
1669 pending->root_item = NULL;
1670 btrfs_free_path(path);
1671 pending->path = NULL;
1677 * create all the snapshots we've scheduled for creation
1679 static noinline int create_pending_snapshots(struct btrfs_trans_handle *trans,
1680 struct btrfs_fs_info *fs_info)
1682 struct btrfs_pending_snapshot *pending, *next;
1683 struct list_head *head = &trans->transaction->pending_snapshots;
1686 list_for_each_entry_safe(pending, next, head, list) {
1687 list_del(&pending->list);
1688 ret = create_pending_snapshot(trans, fs_info, pending);
1695 static void update_super_roots(struct btrfs_root *root)
1697 struct btrfs_root_item *root_item;
1698 struct btrfs_super_block *super;
1700 super = root->fs_info->super_copy;
1702 root_item = &root->fs_info->chunk_root->root_item;
1703 super->chunk_root = root_item->bytenr;
1704 super->chunk_root_generation = root_item->generation;
1705 super->chunk_root_level = root_item->level;
1707 root_item = &root->fs_info->tree_root->root_item;
1708 super->root = root_item->bytenr;
1709 super->generation = root_item->generation;
1710 super->root_level = root_item->level;
1711 if (btrfs_test_opt(root->fs_info, SPACE_CACHE))
1712 super->cache_generation = root_item->generation;
1713 if (test_bit(BTRFS_FS_UPDATE_UUID_TREE_GEN, &root->fs_info->flags))
1714 super->uuid_tree_generation = root_item->generation;
1717 int btrfs_transaction_in_commit(struct btrfs_fs_info *info)
1719 struct btrfs_transaction *trans;
1722 spin_lock(&info->trans_lock);
1723 trans = info->running_transaction;
1725 ret = (trans->state >= TRANS_STATE_COMMIT_START);
1726 spin_unlock(&info->trans_lock);
1730 int btrfs_transaction_blocked(struct btrfs_fs_info *info)
1732 struct btrfs_transaction *trans;
1735 spin_lock(&info->trans_lock);
1736 trans = info->running_transaction;
1738 ret = is_transaction_blocked(trans);
1739 spin_unlock(&info->trans_lock);
1744 * wait for the current transaction commit to start and block subsequent
1747 static void wait_current_trans_commit_start(struct btrfs_root *root,
1748 struct btrfs_transaction *trans)
1750 wait_event(root->fs_info->transaction_blocked_wait,
1751 trans->state >= TRANS_STATE_COMMIT_START ||
1756 * wait for the current transaction to start and then become unblocked.
1759 static void wait_current_trans_commit_start_and_unblock(struct btrfs_root *root,
1760 struct btrfs_transaction *trans)
1762 wait_event(root->fs_info->transaction_wait,
1763 trans->state >= TRANS_STATE_UNBLOCKED ||
1768 * commit transactions asynchronously. once btrfs_commit_transaction_async
1769 * returns, any subsequent transaction will not be allowed to join.
1771 struct btrfs_async_commit {
1772 struct btrfs_trans_handle *newtrans;
1773 struct btrfs_root *root;
1774 struct work_struct work;
1777 static void do_async_commit(struct work_struct *work)
1779 struct btrfs_async_commit *ac =
1780 container_of(work, struct btrfs_async_commit, work);
1783 * We've got freeze protection passed with the transaction.
1784 * Tell lockdep about it.
1786 if (ac->newtrans->type & __TRANS_FREEZABLE)
1787 __sb_writers_acquired(ac->root->fs_info->sb, SB_FREEZE_FS);
1789 current->journal_info = ac->newtrans;
1791 btrfs_commit_transaction(ac->newtrans, ac->root);
1795 int btrfs_commit_transaction_async(struct btrfs_trans_handle *trans,
1796 struct btrfs_root *root,
1797 int wait_for_unblock)
1799 struct btrfs_async_commit *ac;
1800 struct btrfs_transaction *cur_trans;
1802 ac = kmalloc(sizeof(*ac), GFP_NOFS);
1806 INIT_WORK(&ac->work, do_async_commit);
1808 ac->newtrans = btrfs_join_transaction(root);
1809 if (IS_ERR(ac->newtrans)) {
1810 int err = PTR_ERR(ac->newtrans);
1815 /* take transaction reference */
1816 cur_trans = trans->transaction;
1817 atomic_inc(&cur_trans->use_count);
1819 btrfs_end_transaction(trans, root);
1822 * Tell lockdep we've released the freeze rwsem, since the
1823 * async commit thread will be the one to unlock it.
1825 if (ac->newtrans->type & __TRANS_FREEZABLE)
1826 __sb_writers_release(root->fs_info->sb, SB_FREEZE_FS);
1828 schedule_work(&ac->work);
1830 /* wait for transaction to start and unblock */
1831 if (wait_for_unblock)
1832 wait_current_trans_commit_start_and_unblock(root, cur_trans);
1834 wait_current_trans_commit_start(root, cur_trans);
1836 if (current->journal_info == trans)
1837 current->journal_info = NULL;
1839 btrfs_put_transaction(cur_trans);
1844 static void cleanup_transaction(struct btrfs_trans_handle *trans,
1845 struct btrfs_root *root, int err)
1847 struct btrfs_transaction *cur_trans = trans->transaction;
1850 WARN_ON(trans->use_count > 1);
1852 btrfs_abort_transaction(trans, err);
1854 spin_lock(&root->fs_info->trans_lock);
1857 * If the transaction is removed from the list, it means this
1858 * transaction has been committed successfully, so it is impossible
1859 * to call the cleanup function.
1861 BUG_ON(list_empty(&cur_trans->list));
1863 list_del_init(&cur_trans->list);
1864 if (cur_trans == root->fs_info->running_transaction) {
1865 cur_trans->state = TRANS_STATE_COMMIT_DOING;
1866 spin_unlock(&root->fs_info->trans_lock);
1867 wait_event(cur_trans->writer_wait,
1868 atomic_read(&cur_trans->num_writers) == 1);
1870 spin_lock(&root->fs_info->trans_lock);
1872 spin_unlock(&root->fs_info->trans_lock);
1874 btrfs_cleanup_one_transaction(trans->transaction, root);
1876 spin_lock(&root->fs_info->trans_lock);
1877 if (cur_trans == root->fs_info->running_transaction)
1878 root->fs_info->running_transaction = NULL;
1879 spin_unlock(&root->fs_info->trans_lock);
1881 if (trans->type & __TRANS_FREEZABLE)
1882 sb_end_intwrite(root->fs_info->sb);
1883 btrfs_put_transaction(cur_trans);
1884 btrfs_put_transaction(cur_trans);
1886 trace_btrfs_transaction_commit(root);
1888 if (current->journal_info == trans)
1889 current->journal_info = NULL;
1890 btrfs_scrub_cancel(root->fs_info);
1892 kmem_cache_free(btrfs_trans_handle_cachep, trans);
1895 static inline int btrfs_start_delalloc_flush(struct btrfs_fs_info *fs_info)
1897 if (btrfs_test_opt(fs_info, FLUSHONCOMMIT))
1898 return btrfs_start_delalloc_roots(fs_info, 1, -1);
1902 static inline void btrfs_wait_delalloc_flush(struct btrfs_fs_info *fs_info)
1904 if (btrfs_test_opt(fs_info, FLUSHONCOMMIT))
1905 btrfs_wait_ordered_roots(fs_info, -1, 0, (u64)-1);
1909 btrfs_wait_pending_ordered(struct btrfs_transaction *cur_trans)
1911 wait_event(cur_trans->pending_wait,
1912 atomic_read(&cur_trans->pending_ordered) == 0);
1915 int btrfs_commit_transaction(struct btrfs_trans_handle *trans,
1916 struct btrfs_root *root)
1918 struct btrfs_transaction *cur_trans = trans->transaction;
1919 struct btrfs_transaction *prev_trans = NULL;
1923 * Some places just start a transaction to commit it. We need to make
1924 * sure that if this commit fails that the abort code actually marks the
1925 * transaction as failed, so set trans->dirty to make the abort code do
1928 trans->dirty = true;
1930 /* Stop the commit early if ->aborted is set */
1931 if (unlikely(ACCESS_ONCE(cur_trans->aborted))) {
1932 ret = cur_trans->aborted;
1933 btrfs_end_transaction(trans, root);
1937 btrfs_trans_release_metadata(trans, root);
1938 trans->block_rsv = NULL;
1940 /* make a pass through all the delayed refs we have so far
1941 * any runnings procs may add more while we are here
1943 ret = btrfs_run_delayed_refs(trans, root, 0);
1945 btrfs_end_transaction(trans, root);
1949 cur_trans = trans->transaction;
1952 * set the flushing flag so procs in this transaction have to
1953 * start sending their work down.
1955 cur_trans->delayed_refs.flushing = 1;
1958 if (!list_empty(&trans->new_bgs))
1959 btrfs_create_pending_block_groups(trans, root);
1961 ret = btrfs_run_delayed_refs(trans, root, 0);
1963 btrfs_end_transaction(trans, root);
1967 if (!test_bit(BTRFS_TRANS_DIRTY_BG_RUN, &cur_trans->flags)) {
1970 /* this mutex is also taken before trying to set
1971 * block groups readonly. We need to make sure
1972 * that nobody has set a block group readonly
1973 * after a extents from that block group have been
1974 * allocated for cache files. btrfs_set_block_group_ro
1975 * will wait for the transaction to commit if it
1976 * finds BTRFS_TRANS_DIRTY_BG_RUN set.
1978 * The BTRFS_TRANS_DIRTY_BG_RUN flag is also used to make sure
1979 * only one process starts all the block group IO. It wouldn't
1980 * hurt to have more than one go through, but there's no
1981 * real advantage to it either.
1983 mutex_lock(&root->fs_info->ro_block_group_mutex);
1984 if (!test_and_set_bit(BTRFS_TRANS_DIRTY_BG_RUN,
1987 mutex_unlock(&root->fs_info->ro_block_group_mutex);
1990 ret = btrfs_start_dirty_block_groups(trans, root);
1993 btrfs_end_transaction(trans, root);
1997 spin_lock(&root->fs_info->trans_lock);
1998 if (cur_trans->state >= TRANS_STATE_COMMIT_START) {
1999 spin_unlock(&root->fs_info->trans_lock);
2000 atomic_inc(&cur_trans->use_count);
2001 ret = btrfs_end_transaction(trans, root);
2003 wait_for_commit(root, cur_trans);
2005 if (unlikely(cur_trans->aborted))
2006 ret = cur_trans->aborted;
2008 btrfs_put_transaction(cur_trans);
2013 cur_trans->state = TRANS_STATE_COMMIT_START;
2014 wake_up(&root->fs_info->transaction_blocked_wait);
2016 if (cur_trans->list.prev != &root->fs_info->trans_list) {
2017 prev_trans = list_entry(cur_trans->list.prev,
2018 struct btrfs_transaction, list);
2019 if (prev_trans->state != TRANS_STATE_COMPLETED) {
2020 atomic_inc(&prev_trans->use_count);
2021 spin_unlock(&root->fs_info->trans_lock);
2023 wait_for_commit(root, prev_trans);
2024 ret = prev_trans->aborted;
2026 btrfs_put_transaction(prev_trans);
2028 goto cleanup_transaction;
2030 spin_unlock(&root->fs_info->trans_lock);
2033 spin_unlock(&root->fs_info->trans_lock);
2036 extwriter_counter_dec(cur_trans, trans->type);
2038 ret = btrfs_start_delalloc_flush(root->fs_info);
2040 goto cleanup_transaction;
2042 ret = btrfs_run_delayed_items(trans, root);
2044 goto cleanup_transaction;
2046 wait_event(cur_trans->writer_wait,
2047 extwriter_counter_read(cur_trans) == 0);
2049 /* some pending stuffs might be added after the previous flush. */
2050 ret = btrfs_run_delayed_items(trans, root);
2052 goto cleanup_transaction;
2054 btrfs_wait_delalloc_flush(root->fs_info);
2056 btrfs_wait_pending_ordered(cur_trans);
2058 btrfs_scrub_pause(root);
2060 * Ok now we need to make sure to block out any other joins while we
2061 * commit the transaction. We could have started a join before setting
2062 * COMMIT_DOING so make sure to wait for num_writers to == 1 again.
2064 spin_lock(&root->fs_info->trans_lock);
2065 cur_trans->state = TRANS_STATE_COMMIT_DOING;
2066 spin_unlock(&root->fs_info->trans_lock);
2067 wait_event(cur_trans->writer_wait,
2068 atomic_read(&cur_trans->num_writers) == 1);
2070 /* ->aborted might be set after the previous check, so check it */
2071 if (unlikely(ACCESS_ONCE(cur_trans->aborted))) {
2072 ret = cur_trans->aborted;
2073 goto scrub_continue;
2076 * the reloc mutex makes sure that we stop
2077 * the balancing code from coming in and moving
2078 * extents around in the middle of the commit
2080 mutex_lock(&root->fs_info->reloc_mutex);
2083 * We needn't worry about the delayed items because we will
2084 * deal with them in create_pending_snapshot(), which is the
2085 * core function of the snapshot creation.
2087 ret = create_pending_snapshots(trans, root->fs_info);
2089 mutex_unlock(&root->fs_info->reloc_mutex);
2090 goto scrub_continue;
2094 * We insert the dir indexes of the snapshots and update the inode
2095 * of the snapshots' parents after the snapshot creation, so there
2096 * are some delayed items which are not dealt with. Now deal with
2099 * We needn't worry that this operation will corrupt the snapshots,
2100 * because all the tree which are snapshoted will be forced to COW
2101 * the nodes and leaves.
2103 ret = btrfs_run_delayed_items(trans, root);
2105 mutex_unlock(&root->fs_info->reloc_mutex);
2106 goto scrub_continue;
2109 ret = btrfs_run_delayed_refs(trans, root, (unsigned long)-1);
2111 mutex_unlock(&root->fs_info->reloc_mutex);
2112 goto scrub_continue;
2115 /* Reocrd old roots for later qgroup accounting */
2116 ret = btrfs_qgroup_prepare_account_extents(trans, root->fs_info);
2118 mutex_unlock(&root->fs_info->reloc_mutex);
2119 goto scrub_continue;
2123 * make sure none of the code above managed to slip in a
2126 btrfs_assert_delayed_root_empty(root);
2128 WARN_ON(cur_trans != trans->transaction);
2130 /* btrfs_commit_tree_roots is responsible for getting the
2131 * various roots consistent with each other. Every pointer
2132 * in the tree of tree roots has to point to the most up to date
2133 * root for every subvolume and other tree. So, we have to keep
2134 * the tree logging code from jumping in and changing any
2137 * At this point in the commit, there can't be any tree-log
2138 * writers, but a little lower down we drop the trans mutex
2139 * and let new people in. By holding the tree_log_mutex
2140 * from now until after the super is written, we avoid races
2141 * with the tree-log code.
2143 mutex_lock(&root->fs_info->tree_log_mutex);
2145 ret = commit_fs_roots(trans, root);
2147 mutex_unlock(&root->fs_info->tree_log_mutex);
2148 mutex_unlock(&root->fs_info->reloc_mutex);
2149 goto scrub_continue;
2153 * Since the transaction is done, we can apply the pending changes
2154 * before the next transaction.
2156 btrfs_apply_pending_changes(root->fs_info);
2158 /* commit_fs_roots gets rid of all the tree log roots, it is now
2159 * safe to free the root of tree log roots
2161 btrfs_free_log_root_tree(trans, root->fs_info);
2164 * Since fs roots are all committed, we can get a quite accurate
2165 * new_roots. So let's do quota accounting.
2167 ret = btrfs_qgroup_account_extents(trans, root->fs_info);
2169 mutex_unlock(&root->fs_info->tree_log_mutex);
2170 mutex_unlock(&root->fs_info->reloc_mutex);
2171 goto scrub_continue;
2174 ret = commit_cowonly_roots(trans, root);
2176 mutex_unlock(&root->fs_info->tree_log_mutex);
2177 mutex_unlock(&root->fs_info->reloc_mutex);
2178 goto scrub_continue;
2182 * The tasks which save the space cache and inode cache may also
2183 * update ->aborted, check it.
2185 if (unlikely(ACCESS_ONCE(cur_trans->aborted))) {
2186 ret = cur_trans->aborted;
2187 mutex_unlock(&root->fs_info->tree_log_mutex);
2188 mutex_unlock(&root->fs_info->reloc_mutex);
2189 goto scrub_continue;
2192 btrfs_prepare_extent_commit(trans, root);
2194 cur_trans = root->fs_info->running_transaction;
2196 btrfs_set_root_node(&root->fs_info->tree_root->root_item,
2197 root->fs_info->tree_root->node);
2198 list_add_tail(&root->fs_info->tree_root->dirty_list,
2199 &cur_trans->switch_commits);
2201 btrfs_set_root_node(&root->fs_info->chunk_root->root_item,
2202 root->fs_info->chunk_root->node);
2203 list_add_tail(&root->fs_info->chunk_root->dirty_list,
2204 &cur_trans->switch_commits);
2206 switch_commit_roots(cur_trans, root->fs_info);
2208 assert_qgroups_uptodate(trans);
2209 ASSERT(list_empty(&cur_trans->dirty_bgs));
2210 ASSERT(list_empty(&cur_trans->io_bgs));
2211 update_super_roots(root);
2213 btrfs_set_super_log_root(root->fs_info->super_copy, 0);
2214 btrfs_set_super_log_root_level(root->fs_info->super_copy, 0);
2215 memcpy(root->fs_info->super_for_commit, root->fs_info->super_copy,
2216 sizeof(*root->fs_info->super_copy));
2218 btrfs_update_commit_device_size(root->fs_info);
2219 btrfs_update_commit_device_bytes_used(root, cur_trans);
2221 clear_bit(BTRFS_FS_LOG1_ERR, &root->fs_info->flags);
2222 clear_bit(BTRFS_FS_LOG2_ERR, &root->fs_info->flags);
2224 btrfs_trans_release_chunk_metadata(trans);
2226 spin_lock(&root->fs_info->trans_lock);
2227 cur_trans->state = TRANS_STATE_UNBLOCKED;
2228 root->fs_info->running_transaction = NULL;
2229 spin_unlock(&root->fs_info->trans_lock);
2230 mutex_unlock(&root->fs_info->reloc_mutex);
2232 wake_up(&root->fs_info->transaction_wait);
2234 ret = btrfs_write_and_wait_transaction(trans, root);
2236 btrfs_handle_fs_error(root->fs_info, ret,
2237 "Error while writing out transaction");
2238 mutex_unlock(&root->fs_info->tree_log_mutex);
2239 goto scrub_continue;
2242 ret = write_ctree_super(trans, root, 0);
2244 mutex_unlock(&root->fs_info->tree_log_mutex);
2245 goto scrub_continue;
2249 * the super is written, we can safely allow the tree-loggers
2250 * to go about their business
2252 mutex_unlock(&root->fs_info->tree_log_mutex);
2254 btrfs_finish_extent_commit(trans, root);
2256 if (test_bit(BTRFS_TRANS_HAVE_FREE_BGS, &cur_trans->flags))
2257 btrfs_clear_space_info_full(root->fs_info);
2259 root->fs_info->last_trans_committed = cur_trans->transid;
2261 * We needn't acquire the lock here because there is no other task
2262 * which can change it.
2264 cur_trans->state = TRANS_STATE_COMPLETED;
2265 wake_up(&cur_trans->commit_wait);
2267 spin_lock(&root->fs_info->trans_lock);
2268 list_del_init(&cur_trans->list);
2269 spin_unlock(&root->fs_info->trans_lock);
2271 btrfs_put_transaction(cur_trans);
2272 btrfs_put_transaction(cur_trans);
2274 if (trans->type & __TRANS_FREEZABLE)
2275 sb_end_intwrite(root->fs_info->sb);
2277 trace_btrfs_transaction_commit(root);
2279 btrfs_scrub_continue(root);
2281 if (current->journal_info == trans)
2282 current->journal_info = NULL;
2284 kmem_cache_free(btrfs_trans_handle_cachep, trans);
2287 * If fs has been frozen, we can not handle delayed iputs, otherwise
2288 * it'll result in deadlock about SB_FREEZE_FS.
2290 if (current != root->fs_info->transaction_kthread &&
2291 current != root->fs_info->cleaner_kthread &&
2292 !root->fs_info->fs_frozen)
2293 btrfs_run_delayed_iputs(root);
2298 btrfs_scrub_continue(root);
2299 cleanup_transaction:
2300 btrfs_trans_release_metadata(trans, root);
2301 btrfs_trans_release_chunk_metadata(trans);
2302 trans->block_rsv = NULL;
2303 btrfs_warn(root->fs_info, "Skipping commit of aborted transaction.");
2304 if (current->journal_info == trans)
2305 current->journal_info = NULL;
2306 cleanup_transaction(trans, root, ret);
2312 * return < 0 if error
2313 * 0 if there are no more dead_roots at the time of call
2314 * 1 there are more to be processed, call me again
2316 * The return value indicates there are certainly more snapshots to delete, but
2317 * if there comes a new one during processing, it may return 0. We don't mind,
2318 * because btrfs_commit_super will poke cleaner thread and it will process it a
2319 * few seconds later.
2321 int btrfs_clean_one_deleted_snapshot(struct btrfs_root *root)
2324 struct btrfs_fs_info *fs_info = root->fs_info;
2326 spin_lock(&fs_info->trans_lock);
2327 if (list_empty(&fs_info->dead_roots)) {
2328 spin_unlock(&fs_info->trans_lock);
2331 root = list_first_entry(&fs_info->dead_roots,
2332 struct btrfs_root, root_list);
2333 list_del_init(&root->root_list);
2334 spin_unlock(&fs_info->trans_lock);
2336 btrfs_debug(fs_info, "cleaner removing %llu", root->objectid);
2338 btrfs_kill_all_delayed_nodes(root);
2340 if (btrfs_header_backref_rev(root->node) <
2341 BTRFS_MIXED_BACKREF_REV)
2342 ret = btrfs_drop_snapshot(root, NULL, 0, 0);
2344 ret = btrfs_drop_snapshot(root, NULL, 1, 0);
2346 return (ret < 0) ? 0 : 1;
2349 void btrfs_apply_pending_changes(struct btrfs_fs_info *fs_info)
2354 prev = xchg(&fs_info->pending_changes, 0);
2358 bit = 1 << BTRFS_PENDING_SET_INODE_MAP_CACHE;
2360 btrfs_set_opt(fs_info->mount_opt, INODE_MAP_CACHE);
2363 bit = 1 << BTRFS_PENDING_CLEAR_INODE_MAP_CACHE;
2365 btrfs_clear_opt(fs_info->mount_opt, INODE_MAP_CACHE);
2368 bit = 1 << BTRFS_PENDING_COMMIT;
2370 btrfs_debug(fs_info, "pending commit done");
2375 "unknown pending changes left 0x%lx, ignoring", prev);