GNU Linux-libre 6.9-gnu
[releases.git] / fs / btrfs / transaction.c
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * Copyright (C) 2007 Oracle.  All rights reserved.
4  */
5
6 #include <linux/fs.h>
7 #include <linux/slab.h>
8 #include <linux/sched.h>
9 #include <linux/sched/mm.h>
10 #include <linux/writeback.h>
11 #include <linux/pagemap.h>
12 #include <linux/blkdev.h>
13 #include <linux/uuid.h>
14 #include <linux/timekeeping.h>
15 #include "misc.h"
16 #include "ctree.h"
17 #include "disk-io.h"
18 #include "transaction.h"
19 #include "locking.h"
20 #include "tree-log.h"
21 #include "volumes.h"
22 #include "dev-replace.h"
23 #include "qgroup.h"
24 #include "block-group.h"
25 #include "space-info.h"
26 #include "fs.h"
27 #include "accessors.h"
28 #include "extent-tree.h"
29 #include "root-tree.h"
30 #include "dir-item.h"
31 #include "uuid-tree.h"
32 #include "ioctl.h"
33 #include "relocation.h"
34 #include "scrub.h"
35
36 static struct kmem_cache *btrfs_trans_handle_cachep;
37
38 /*
39  * Transaction states and transitions
40  *
41  * No running transaction (fs tree blocks are not modified)
42  * |
43  * | To next stage:
44  * |  Call start_transaction() variants. Except btrfs_join_transaction_nostart().
45  * V
46  * Transaction N [[TRANS_STATE_RUNNING]]
47  * |
48  * | New trans handles can be attached to transaction N by calling all
49  * | start_transaction() variants.
50  * |
51  * | To next stage:
52  * |  Call btrfs_commit_transaction() on any trans handle attached to
53  * |  transaction N
54  * V
55  * Transaction N [[TRANS_STATE_COMMIT_PREP]]
56  * |
57  * | If there are simultaneous calls to btrfs_commit_transaction() one will win
58  * | the race and the rest will wait for the winner to commit the transaction.
59  * |
60  * | The winner will wait for previous running transaction to completely finish
61  * | if there is one.
62  * |
63  * Transaction N [[TRANS_STATE_COMMIT_START]]
64  * |
65  * | Then one of the following happens:
66  * | - Wait for all other trans handle holders to release.
67  * |   The btrfs_commit_transaction() caller will do the commit work.
68  * | - Wait for current transaction to be committed by others.
69  * |   Other btrfs_commit_transaction() caller will do the commit work.
70  * |
71  * | At this stage, only btrfs_join_transaction*() variants can attach
72  * | to this running transaction.
73  * | All other variants will wait for current one to finish and attach to
74  * | transaction N+1.
75  * |
76  * | To next stage:
77  * |  Caller is chosen to commit transaction N, and all other trans handle
78  * |  haven been released.
79  * V
80  * Transaction N [[TRANS_STATE_COMMIT_DOING]]
81  * |
82  * | The heavy lifting transaction work is started.
83  * | From running delayed refs (modifying extent tree) to creating pending
84  * | snapshots, running qgroups.
85  * | In short, modify supporting trees to reflect modifications of subvolume
86  * | trees.
87  * |
88  * | At this stage, all start_transaction() calls will wait for this
89  * | transaction to finish and attach to transaction N+1.
90  * |
91  * | To next stage:
92  * |  Until all supporting trees are updated.
93  * V
94  * Transaction N [[TRANS_STATE_UNBLOCKED]]
95  * |                                                Transaction N+1
96  * | All needed trees are modified, thus we only    [[TRANS_STATE_RUNNING]]
97  * | need to write them back to disk and update     |
98  * | super blocks.                                  |
99  * |                                                |
100  * | At this stage, new transaction is allowed to   |
101  * | start.                                         |
102  * | All new start_transaction() calls will be      |
103  * | attached to transid N+1.                       |
104  * |                                                |
105  * | To next stage:                                 |
106  * |  Until all tree blocks are super blocks are    |
107  * |  written to block devices                      |
108  * V                                                |
109  * Transaction N [[TRANS_STATE_COMPLETED]]          V
110  *   All tree blocks and super blocks are written.  Transaction N+1
111  *   This transaction is finished and all its       [[TRANS_STATE_COMMIT_START]]
112  *   data structures will be cleaned up.            | Life goes on
113  */
114 static const unsigned int btrfs_blocked_trans_types[TRANS_STATE_MAX] = {
115         [TRANS_STATE_RUNNING]           = 0U,
116         [TRANS_STATE_COMMIT_PREP]       = 0U,
117         [TRANS_STATE_COMMIT_START]      = (__TRANS_START | __TRANS_ATTACH),
118         [TRANS_STATE_COMMIT_DOING]      = (__TRANS_START |
119                                            __TRANS_ATTACH |
120                                            __TRANS_JOIN |
121                                            __TRANS_JOIN_NOSTART),
122         [TRANS_STATE_UNBLOCKED]         = (__TRANS_START |
123                                            __TRANS_ATTACH |
124                                            __TRANS_JOIN |
125                                            __TRANS_JOIN_NOLOCK |
126                                            __TRANS_JOIN_NOSTART),
127         [TRANS_STATE_SUPER_COMMITTED]   = (__TRANS_START |
128                                            __TRANS_ATTACH |
129                                            __TRANS_JOIN |
130                                            __TRANS_JOIN_NOLOCK |
131                                            __TRANS_JOIN_NOSTART),
132         [TRANS_STATE_COMPLETED]         = (__TRANS_START |
133                                            __TRANS_ATTACH |
134                                            __TRANS_JOIN |
135                                            __TRANS_JOIN_NOLOCK |
136                                            __TRANS_JOIN_NOSTART),
137 };
138
139 void btrfs_put_transaction(struct btrfs_transaction *transaction)
140 {
141         WARN_ON(refcount_read(&transaction->use_count) == 0);
142         if (refcount_dec_and_test(&transaction->use_count)) {
143                 BUG_ON(!list_empty(&transaction->list));
144                 WARN_ON(!RB_EMPTY_ROOT(
145                                 &transaction->delayed_refs.href_root.rb_root));
146                 WARN_ON(!RB_EMPTY_ROOT(
147                                 &transaction->delayed_refs.dirty_extent_root));
148                 if (transaction->delayed_refs.pending_csums)
149                         btrfs_err(transaction->fs_info,
150                                   "pending csums is %llu",
151                                   transaction->delayed_refs.pending_csums);
152                 /*
153                  * If any block groups are found in ->deleted_bgs then it's
154                  * because the transaction was aborted and a commit did not
155                  * happen (things failed before writing the new superblock
156                  * and calling btrfs_finish_extent_commit()), so we can not
157                  * discard the physical locations of the block groups.
158                  */
159                 while (!list_empty(&transaction->deleted_bgs)) {
160                         struct btrfs_block_group *cache;
161
162                         cache = list_first_entry(&transaction->deleted_bgs,
163                                                  struct btrfs_block_group,
164                                                  bg_list);
165                         list_del_init(&cache->bg_list);
166                         btrfs_unfreeze_block_group(cache);
167                         btrfs_put_block_group(cache);
168                 }
169                 WARN_ON(!list_empty(&transaction->dev_update_list));
170                 kfree(transaction);
171         }
172 }
173
174 static noinline void switch_commit_roots(struct btrfs_trans_handle *trans)
175 {
176         struct btrfs_transaction *cur_trans = trans->transaction;
177         struct btrfs_fs_info *fs_info = trans->fs_info;
178         struct btrfs_root *root, *tmp;
179
180         /*
181          * At this point no one can be using this transaction to modify any tree
182          * and no one can start another transaction to modify any tree either.
183          */
184         ASSERT(cur_trans->state == TRANS_STATE_COMMIT_DOING);
185
186         down_write(&fs_info->commit_root_sem);
187
188         if (test_bit(BTRFS_FS_RELOC_RUNNING, &fs_info->flags))
189                 fs_info->last_reloc_trans = trans->transid;
190
191         list_for_each_entry_safe(root, tmp, &cur_trans->switch_commits,
192                                  dirty_list) {
193                 list_del_init(&root->dirty_list);
194                 free_extent_buffer(root->commit_root);
195                 root->commit_root = btrfs_root_node(root);
196                 extent_io_tree_release(&root->dirty_log_pages);
197                 btrfs_qgroup_clean_swapped_blocks(root);
198         }
199
200         /* We can free old roots now. */
201         spin_lock(&cur_trans->dropped_roots_lock);
202         while (!list_empty(&cur_trans->dropped_roots)) {
203                 root = list_first_entry(&cur_trans->dropped_roots,
204                                         struct btrfs_root, root_list);
205                 list_del_init(&root->root_list);
206                 spin_unlock(&cur_trans->dropped_roots_lock);
207                 btrfs_free_log(trans, root);
208                 btrfs_drop_and_free_fs_root(fs_info, root);
209                 spin_lock(&cur_trans->dropped_roots_lock);
210         }
211         spin_unlock(&cur_trans->dropped_roots_lock);
212
213         up_write(&fs_info->commit_root_sem);
214 }
215
216 static inline void extwriter_counter_inc(struct btrfs_transaction *trans,
217                                          unsigned int type)
218 {
219         if (type & TRANS_EXTWRITERS)
220                 atomic_inc(&trans->num_extwriters);
221 }
222
223 static inline void extwriter_counter_dec(struct btrfs_transaction *trans,
224                                          unsigned int type)
225 {
226         if (type & TRANS_EXTWRITERS)
227                 atomic_dec(&trans->num_extwriters);
228 }
229
230 static inline void extwriter_counter_init(struct btrfs_transaction *trans,
231                                           unsigned int type)
232 {
233         atomic_set(&trans->num_extwriters, ((type & TRANS_EXTWRITERS) ? 1 : 0));
234 }
235
236 static inline int extwriter_counter_read(struct btrfs_transaction *trans)
237 {
238         return atomic_read(&trans->num_extwriters);
239 }
240
241 /*
242  * To be called after doing the chunk btree updates right after allocating a new
243  * chunk (after btrfs_chunk_alloc_add_chunk_item() is called), when removing a
244  * chunk after all chunk btree updates and after finishing the second phase of
245  * chunk allocation (btrfs_create_pending_block_groups()) in case some block
246  * group had its chunk item insertion delayed to the second phase.
247  */
248 void btrfs_trans_release_chunk_metadata(struct btrfs_trans_handle *trans)
249 {
250         struct btrfs_fs_info *fs_info = trans->fs_info;
251
252         if (!trans->chunk_bytes_reserved)
253                 return;
254
255         btrfs_block_rsv_release(fs_info, &fs_info->chunk_block_rsv,
256                                 trans->chunk_bytes_reserved, NULL);
257         trans->chunk_bytes_reserved = 0;
258 }
259
260 /*
261  * either allocate a new transaction or hop into the existing one
262  */
263 static noinline int join_transaction(struct btrfs_fs_info *fs_info,
264                                      unsigned int type)
265 {
266         struct btrfs_transaction *cur_trans;
267
268         spin_lock(&fs_info->trans_lock);
269 loop:
270         /* The file system has been taken offline. No new transactions. */
271         if (BTRFS_FS_ERROR(fs_info)) {
272                 spin_unlock(&fs_info->trans_lock);
273                 return -EROFS;
274         }
275
276         cur_trans = fs_info->running_transaction;
277         if (cur_trans) {
278                 if (TRANS_ABORTED(cur_trans)) {
279                         spin_unlock(&fs_info->trans_lock);
280                         return cur_trans->aborted;
281                 }
282                 if (btrfs_blocked_trans_types[cur_trans->state] & type) {
283                         spin_unlock(&fs_info->trans_lock);
284                         return -EBUSY;
285                 }
286                 refcount_inc(&cur_trans->use_count);
287                 atomic_inc(&cur_trans->num_writers);
288                 extwriter_counter_inc(cur_trans, type);
289                 spin_unlock(&fs_info->trans_lock);
290                 btrfs_lockdep_acquire(fs_info, btrfs_trans_num_writers);
291                 btrfs_lockdep_acquire(fs_info, btrfs_trans_num_extwriters);
292                 return 0;
293         }
294         spin_unlock(&fs_info->trans_lock);
295
296         /*
297          * If we are ATTACH or TRANS_JOIN_NOSTART, we just want to catch the
298          * current transaction, and commit it. If there is no transaction, just
299          * return ENOENT.
300          */
301         if (type == TRANS_ATTACH || type == TRANS_JOIN_NOSTART)
302                 return -ENOENT;
303
304         /*
305          * JOIN_NOLOCK only happens during the transaction commit, so
306          * it is impossible that ->running_transaction is NULL
307          */
308         BUG_ON(type == TRANS_JOIN_NOLOCK);
309
310         cur_trans = kmalloc(sizeof(*cur_trans), GFP_NOFS);
311         if (!cur_trans)
312                 return -ENOMEM;
313
314         btrfs_lockdep_acquire(fs_info, btrfs_trans_num_writers);
315         btrfs_lockdep_acquire(fs_info, btrfs_trans_num_extwriters);
316
317         spin_lock(&fs_info->trans_lock);
318         if (fs_info->running_transaction) {
319                 /*
320                  * someone started a transaction after we unlocked.  Make sure
321                  * to redo the checks above
322                  */
323                 btrfs_lockdep_release(fs_info, btrfs_trans_num_extwriters);
324                 btrfs_lockdep_release(fs_info, btrfs_trans_num_writers);
325                 kfree(cur_trans);
326                 goto loop;
327         } else if (BTRFS_FS_ERROR(fs_info)) {
328                 spin_unlock(&fs_info->trans_lock);
329                 btrfs_lockdep_release(fs_info, btrfs_trans_num_extwriters);
330                 btrfs_lockdep_release(fs_info, btrfs_trans_num_writers);
331                 kfree(cur_trans);
332                 return -EROFS;
333         }
334
335         cur_trans->fs_info = fs_info;
336         atomic_set(&cur_trans->pending_ordered, 0);
337         init_waitqueue_head(&cur_trans->pending_wait);
338         atomic_set(&cur_trans->num_writers, 1);
339         extwriter_counter_init(cur_trans, type);
340         init_waitqueue_head(&cur_trans->writer_wait);
341         init_waitqueue_head(&cur_trans->commit_wait);
342         cur_trans->state = TRANS_STATE_RUNNING;
343         /*
344          * One for this trans handle, one so it will live on until we
345          * commit the transaction.
346          */
347         refcount_set(&cur_trans->use_count, 2);
348         cur_trans->flags = 0;
349         cur_trans->start_time = ktime_get_seconds();
350
351         memset(&cur_trans->delayed_refs, 0, sizeof(cur_trans->delayed_refs));
352
353         cur_trans->delayed_refs.href_root = RB_ROOT_CACHED;
354         cur_trans->delayed_refs.dirty_extent_root = RB_ROOT;
355         atomic_set(&cur_trans->delayed_refs.num_entries, 0);
356
357         /*
358          * although the tree mod log is per file system and not per transaction,
359          * the log must never go across transaction boundaries.
360          */
361         smp_mb();
362         if (!list_empty(&fs_info->tree_mod_seq_list))
363                 WARN(1, KERN_ERR "BTRFS: tree_mod_seq_list not empty when creating a fresh transaction\n");
364         if (!RB_EMPTY_ROOT(&fs_info->tree_mod_log))
365                 WARN(1, KERN_ERR "BTRFS: tree_mod_log rb tree not empty when creating a fresh transaction\n");
366         atomic64_set(&fs_info->tree_mod_seq, 0);
367
368         spin_lock_init(&cur_trans->delayed_refs.lock);
369
370         INIT_LIST_HEAD(&cur_trans->pending_snapshots);
371         INIT_LIST_HEAD(&cur_trans->dev_update_list);
372         INIT_LIST_HEAD(&cur_trans->switch_commits);
373         INIT_LIST_HEAD(&cur_trans->dirty_bgs);
374         INIT_LIST_HEAD(&cur_trans->io_bgs);
375         INIT_LIST_HEAD(&cur_trans->dropped_roots);
376         mutex_init(&cur_trans->cache_write_mutex);
377         spin_lock_init(&cur_trans->dirty_bgs_lock);
378         INIT_LIST_HEAD(&cur_trans->deleted_bgs);
379         spin_lock_init(&cur_trans->dropped_roots_lock);
380         list_add_tail(&cur_trans->list, &fs_info->trans_list);
381         extent_io_tree_init(fs_info, &cur_trans->dirty_pages,
382                         IO_TREE_TRANS_DIRTY_PAGES);
383         extent_io_tree_init(fs_info, &cur_trans->pinned_extents,
384                         IO_TREE_FS_PINNED_EXTENTS);
385         btrfs_set_fs_generation(fs_info, fs_info->generation + 1);
386         cur_trans->transid = fs_info->generation;
387         fs_info->running_transaction = cur_trans;
388         cur_trans->aborted = 0;
389         spin_unlock(&fs_info->trans_lock);
390
391         return 0;
392 }
393
394 /*
395  * This does all the record keeping required to make sure that a shareable root
396  * is properly recorded in a given transaction.  This is required to make sure
397  * the old root from before we joined the transaction is deleted when the
398  * transaction commits.
399  */
400 static int record_root_in_trans(struct btrfs_trans_handle *trans,
401                                struct btrfs_root *root,
402                                int force)
403 {
404         struct btrfs_fs_info *fs_info = root->fs_info;
405         int ret = 0;
406
407         if ((test_bit(BTRFS_ROOT_SHAREABLE, &root->state) &&
408             root->last_trans < trans->transid) || force) {
409                 WARN_ON(!force && root->commit_root != root->node);
410
411                 /*
412                  * see below for IN_TRANS_SETUP usage rules
413                  * we have the reloc mutex held now, so there
414                  * is only one writer in this function
415                  */
416                 set_bit(BTRFS_ROOT_IN_TRANS_SETUP, &root->state);
417
418                 /* make sure readers find IN_TRANS_SETUP before
419                  * they find our root->last_trans update
420                  */
421                 smp_wmb();
422
423                 spin_lock(&fs_info->fs_roots_radix_lock);
424                 if (root->last_trans == trans->transid && !force) {
425                         spin_unlock(&fs_info->fs_roots_radix_lock);
426                         return 0;
427                 }
428                 radix_tree_tag_set(&fs_info->fs_roots_radix,
429                                    (unsigned long)root->root_key.objectid,
430                                    BTRFS_ROOT_TRANS_TAG);
431                 spin_unlock(&fs_info->fs_roots_radix_lock);
432                 root->last_trans = trans->transid;
433
434                 /* this is pretty tricky.  We don't want to
435                  * take the relocation lock in btrfs_record_root_in_trans
436                  * unless we're really doing the first setup for this root in
437                  * this transaction.
438                  *
439                  * Normally we'd use root->last_trans as a flag to decide
440                  * if we want to take the expensive mutex.
441                  *
442                  * But, we have to set root->last_trans before we
443                  * init the relocation root, otherwise, we trip over warnings
444                  * in ctree.c.  The solution used here is to flag ourselves
445                  * with root IN_TRANS_SETUP.  When this is 1, we're still
446                  * fixing up the reloc trees and everyone must wait.
447                  *
448                  * When this is zero, they can trust root->last_trans and fly
449                  * through btrfs_record_root_in_trans without having to take the
450                  * lock.  smp_wmb() makes sure that all the writes above are
451                  * done before we pop in the zero below
452                  */
453                 ret = btrfs_init_reloc_root(trans, root);
454                 smp_mb__before_atomic();
455                 clear_bit(BTRFS_ROOT_IN_TRANS_SETUP, &root->state);
456         }
457         return ret;
458 }
459
460
461 void btrfs_add_dropped_root(struct btrfs_trans_handle *trans,
462                             struct btrfs_root *root)
463 {
464         struct btrfs_fs_info *fs_info = root->fs_info;
465         struct btrfs_transaction *cur_trans = trans->transaction;
466
467         /* Add ourselves to the transaction dropped list */
468         spin_lock(&cur_trans->dropped_roots_lock);
469         list_add_tail(&root->root_list, &cur_trans->dropped_roots);
470         spin_unlock(&cur_trans->dropped_roots_lock);
471
472         /* Make sure we don't try to update the root at commit time */
473         spin_lock(&fs_info->fs_roots_radix_lock);
474         radix_tree_tag_clear(&fs_info->fs_roots_radix,
475                              (unsigned long)root->root_key.objectid,
476                              BTRFS_ROOT_TRANS_TAG);
477         spin_unlock(&fs_info->fs_roots_radix_lock);
478 }
479
480 int btrfs_record_root_in_trans(struct btrfs_trans_handle *trans,
481                                struct btrfs_root *root)
482 {
483         struct btrfs_fs_info *fs_info = root->fs_info;
484         int ret;
485
486         if (!test_bit(BTRFS_ROOT_SHAREABLE, &root->state))
487                 return 0;
488
489         /*
490          * see record_root_in_trans for comments about IN_TRANS_SETUP usage
491          * and barriers
492          */
493         smp_rmb();
494         if (root->last_trans == trans->transid &&
495             !test_bit(BTRFS_ROOT_IN_TRANS_SETUP, &root->state))
496                 return 0;
497
498         mutex_lock(&fs_info->reloc_mutex);
499         ret = record_root_in_trans(trans, root, 0);
500         mutex_unlock(&fs_info->reloc_mutex);
501
502         return ret;
503 }
504
505 static inline int is_transaction_blocked(struct btrfs_transaction *trans)
506 {
507         return (trans->state >= TRANS_STATE_COMMIT_START &&
508                 trans->state < TRANS_STATE_UNBLOCKED &&
509                 !TRANS_ABORTED(trans));
510 }
511
512 /* wait for commit against the current transaction to become unblocked
513  * when this is done, it is safe to start a new transaction, but the current
514  * transaction might not be fully on disk.
515  */
516 static void wait_current_trans(struct btrfs_fs_info *fs_info)
517 {
518         struct btrfs_transaction *cur_trans;
519
520         spin_lock(&fs_info->trans_lock);
521         cur_trans = fs_info->running_transaction;
522         if (cur_trans && is_transaction_blocked(cur_trans)) {
523                 refcount_inc(&cur_trans->use_count);
524                 spin_unlock(&fs_info->trans_lock);
525
526                 btrfs_might_wait_for_state(fs_info, BTRFS_LOCKDEP_TRANS_UNBLOCKED);
527                 wait_event(fs_info->transaction_wait,
528                            cur_trans->state >= TRANS_STATE_UNBLOCKED ||
529                            TRANS_ABORTED(cur_trans));
530                 btrfs_put_transaction(cur_trans);
531         } else {
532                 spin_unlock(&fs_info->trans_lock);
533         }
534 }
535
536 static int may_wait_transaction(struct btrfs_fs_info *fs_info, int type)
537 {
538         if (test_bit(BTRFS_FS_LOG_RECOVERING, &fs_info->flags))
539                 return 0;
540
541         if (type == TRANS_START)
542                 return 1;
543
544         return 0;
545 }
546
547 static inline bool need_reserve_reloc_root(struct btrfs_root *root)
548 {
549         struct btrfs_fs_info *fs_info = root->fs_info;
550
551         if (!fs_info->reloc_ctl ||
552             !test_bit(BTRFS_ROOT_SHAREABLE, &root->state) ||
553             root->root_key.objectid == BTRFS_TREE_RELOC_OBJECTID ||
554             root->reloc_root)
555                 return false;
556
557         return true;
558 }
559
560 static int btrfs_reserve_trans_metadata(struct btrfs_fs_info *fs_info,
561                                         enum btrfs_reserve_flush_enum flush,
562                                         u64 num_bytes,
563                                         u64 *delayed_refs_bytes)
564 {
565         struct btrfs_space_info *si = fs_info->trans_block_rsv.space_info;
566         u64 bytes = num_bytes + *delayed_refs_bytes;
567         int ret;
568
569         /*
570          * We want to reserve all the bytes we may need all at once, so we only
571          * do 1 enospc flushing cycle per transaction start.
572          */
573         ret = btrfs_reserve_metadata_bytes(fs_info, si, bytes, flush);
574
575         /*
576          * If we are an emergency flush, which can steal from the global block
577          * reserve, then attempt to not reserve space for the delayed refs, as
578          * we will consume space for them from the global block reserve.
579          */
580         if (ret && flush == BTRFS_RESERVE_FLUSH_ALL_STEAL) {
581                 bytes -= *delayed_refs_bytes;
582                 *delayed_refs_bytes = 0;
583                 ret = btrfs_reserve_metadata_bytes(fs_info, si, bytes, flush);
584         }
585
586         return ret;
587 }
588
589 static struct btrfs_trans_handle *
590 start_transaction(struct btrfs_root *root, unsigned int num_items,
591                   unsigned int type, enum btrfs_reserve_flush_enum flush,
592                   bool enforce_qgroups)
593 {
594         struct btrfs_fs_info *fs_info = root->fs_info;
595         struct btrfs_block_rsv *delayed_refs_rsv = &fs_info->delayed_refs_rsv;
596         struct btrfs_block_rsv *trans_rsv = &fs_info->trans_block_rsv;
597         struct btrfs_trans_handle *h;
598         struct btrfs_transaction *cur_trans;
599         u64 num_bytes = 0;
600         u64 qgroup_reserved = 0;
601         u64 delayed_refs_bytes = 0;
602         bool reloc_reserved = false;
603         bool do_chunk_alloc = false;
604         int ret;
605
606         if (BTRFS_FS_ERROR(fs_info))
607                 return ERR_PTR(-EROFS);
608
609         if (current->journal_info) {
610                 WARN_ON(type & TRANS_EXTWRITERS);
611                 h = current->journal_info;
612                 refcount_inc(&h->use_count);
613                 WARN_ON(refcount_read(&h->use_count) > 2);
614                 h->orig_rsv = h->block_rsv;
615                 h->block_rsv = NULL;
616                 goto got_it;
617         }
618
619         /*
620          * Do the reservation before we join the transaction so we can do all
621          * the appropriate flushing if need be.
622          */
623         if (num_items && root != fs_info->chunk_root) {
624                 qgroup_reserved = num_items * fs_info->nodesize;
625                 /*
626                  * Use prealloc for now, as there might be a currently running
627                  * transaction that could free this reserved space prematurely
628                  * by committing.
629                  */
630                 ret = btrfs_qgroup_reserve_meta_prealloc(root, qgroup_reserved,
631                                                          enforce_qgroups, false);
632                 if (ret)
633                         return ERR_PTR(ret);
634
635                 num_bytes = btrfs_calc_insert_metadata_size(fs_info, num_items);
636                 /*
637                  * If we plan to insert/update/delete "num_items" from a btree,
638                  * we will also generate delayed refs for extent buffers in the
639                  * respective btree paths, so reserve space for the delayed refs
640                  * that will be generated by the caller as it modifies btrees.
641                  * Try to reserve them to avoid excessive use of the global
642                  * block reserve.
643                  */
644                 delayed_refs_bytes = btrfs_calc_delayed_ref_bytes(fs_info, num_items);
645
646                 /*
647                  * Do the reservation for the relocation root creation
648                  */
649                 if (need_reserve_reloc_root(root)) {
650                         num_bytes += fs_info->nodesize;
651                         reloc_reserved = true;
652                 }
653
654                 ret = btrfs_reserve_trans_metadata(fs_info, flush, num_bytes,
655                                                    &delayed_refs_bytes);
656                 if (ret)
657                         goto reserve_fail;
658
659                 btrfs_block_rsv_add_bytes(trans_rsv, num_bytes, true);
660
661                 if (trans_rsv->space_info->force_alloc)
662                         do_chunk_alloc = true;
663         } else if (num_items == 0 && flush == BTRFS_RESERVE_FLUSH_ALL &&
664                    !btrfs_block_rsv_full(delayed_refs_rsv)) {
665                 /*
666                  * Some people call with btrfs_start_transaction(root, 0)
667                  * because they can be throttled, but have some other mechanism
668                  * for reserving space.  We still want these guys to refill the
669                  * delayed block_rsv so just add 1 items worth of reservation
670                  * here.
671                  */
672                 ret = btrfs_delayed_refs_rsv_refill(fs_info, flush);
673                 if (ret)
674                         goto reserve_fail;
675         }
676 again:
677         h = kmem_cache_zalloc(btrfs_trans_handle_cachep, GFP_NOFS);
678         if (!h) {
679                 ret = -ENOMEM;
680                 goto alloc_fail;
681         }
682
683         /*
684          * If we are JOIN_NOLOCK we're already committing a transaction and
685          * waiting on this guy, so we don't need to do the sb_start_intwrite
686          * because we're already holding a ref.  We need this because we could
687          * have raced in and did an fsync() on a file which can kick a commit
688          * and then we deadlock with somebody doing a freeze.
689          *
690          * If we are ATTACH, it means we just want to catch the current
691          * transaction and commit it, so we needn't do sb_start_intwrite(). 
692          */
693         if (type & __TRANS_FREEZABLE)
694                 sb_start_intwrite(fs_info->sb);
695
696         if (may_wait_transaction(fs_info, type))
697                 wait_current_trans(fs_info);
698
699         do {
700                 ret = join_transaction(fs_info, type);
701                 if (ret == -EBUSY) {
702                         wait_current_trans(fs_info);
703                         if (unlikely(type == TRANS_ATTACH ||
704                                      type == TRANS_JOIN_NOSTART))
705                                 ret = -ENOENT;
706                 }
707         } while (ret == -EBUSY);
708
709         if (ret < 0)
710                 goto join_fail;
711
712         cur_trans = fs_info->running_transaction;
713
714         h->transid = cur_trans->transid;
715         h->transaction = cur_trans;
716         refcount_set(&h->use_count, 1);
717         h->fs_info = root->fs_info;
718
719         h->type = type;
720         INIT_LIST_HEAD(&h->new_bgs);
721         btrfs_init_metadata_block_rsv(fs_info, &h->delayed_rsv, BTRFS_BLOCK_RSV_DELOPS);
722
723         smp_mb();
724         if (cur_trans->state >= TRANS_STATE_COMMIT_START &&
725             may_wait_transaction(fs_info, type)) {
726                 current->journal_info = h;
727                 btrfs_commit_transaction(h);
728                 goto again;
729         }
730
731         if (num_bytes) {
732                 trace_btrfs_space_reservation(fs_info, "transaction",
733                                               h->transid, num_bytes, 1);
734                 h->block_rsv = trans_rsv;
735                 h->bytes_reserved = num_bytes;
736                 if (delayed_refs_bytes > 0) {
737                         trace_btrfs_space_reservation(fs_info,
738                                                       "local_delayed_refs_rsv",
739                                                       h->transid,
740                                                       delayed_refs_bytes, 1);
741                         h->delayed_refs_bytes_reserved = delayed_refs_bytes;
742                         btrfs_block_rsv_add_bytes(&h->delayed_rsv, delayed_refs_bytes, true);
743                         delayed_refs_bytes = 0;
744                 }
745                 h->reloc_reserved = reloc_reserved;
746         }
747
748 got_it:
749         if (!current->journal_info)
750                 current->journal_info = h;
751
752         /*
753          * If the space_info is marked ALLOC_FORCE then we'll get upgraded to
754          * ALLOC_FORCE the first run through, and then we won't allocate for
755          * anybody else who races in later.  We don't care about the return
756          * value here.
757          */
758         if (do_chunk_alloc && num_bytes) {
759                 u64 flags = h->block_rsv->space_info->flags;
760
761                 btrfs_chunk_alloc(h, btrfs_get_alloc_profile(fs_info, flags),
762                                   CHUNK_ALLOC_NO_FORCE);
763         }
764
765         /*
766          * btrfs_record_root_in_trans() needs to alloc new extents, and may
767          * call btrfs_join_transaction() while we're also starting a
768          * transaction.
769          *
770          * Thus it need to be called after current->journal_info initialized,
771          * or we can deadlock.
772          */
773         ret = btrfs_record_root_in_trans(h, root);
774         if (ret) {
775                 /*
776                  * The transaction handle is fully initialized and linked with
777                  * other structures so it needs to be ended in case of errors,
778                  * not just freed.
779                  */
780                 btrfs_end_transaction(h);
781                 goto reserve_fail;
782         }
783         /*
784          * Now that we have found a transaction to be a part of, convert the
785          * qgroup reservation from prealloc to pertrans. A different transaction
786          * can't race in and free our pertrans out from under us.
787          */
788         if (qgroup_reserved)
789                 btrfs_qgroup_convert_reserved_meta(root, qgroup_reserved);
790
791         return h;
792
793 join_fail:
794         if (type & __TRANS_FREEZABLE)
795                 sb_end_intwrite(fs_info->sb);
796         kmem_cache_free(btrfs_trans_handle_cachep, h);
797 alloc_fail:
798         if (num_bytes)
799                 btrfs_block_rsv_release(fs_info, trans_rsv, num_bytes, NULL);
800         if (delayed_refs_bytes)
801                 btrfs_space_info_free_bytes_may_use(fs_info, trans_rsv->space_info,
802                                                     delayed_refs_bytes);
803 reserve_fail:
804         btrfs_qgroup_free_meta_prealloc(root, qgroup_reserved);
805         return ERR_PTR(ret);
806 }
807
808 struct btrfs_trans_handle *btrfs_start_transaction(struct btrfs_root *root,
809                                                    unsigned int num_items)
810 {
811         return start_transaction(root, num_items, TRANS_START,
812                                  BTRFS_RESERVE_FLUSH_ALL, true);
813 }
814
815 struct btrfs_trans_handle *btrfs_start_transaction_fallback_global_rsv(
816                                         struct btrfs_root *root,
817                                         unsigned int num_items)
818 {
819         return start_transaction(root, num_items, TRANS_START,
820                                  BTRFS_RESERVE_FLUSH_ALL_STEAL, false);
821 }
822
823 struct btrfs_trans_handle *btrfs_join_transaction(struct btrfs_root *root)
824 {
825         return start_transaction(root, 0, TRANS_JOIN, BTRFS_RESERVE_NO_FLUSH,
826                                  true);
827 }
828
829 struct btrfs_trans_handle *btrfs_join_transaction_spacecache(struct btrfs_root *root)
830 {
831         return start_transaction(root, 0, TRANS_JOIN_NOLOCK,
832                                  BTRFS_RESERVE_NO_FLUSH, true);
833 }
834
835 /*
836  * Similar to regular join but it never starts a transaction when none is
837  * running or when there's a running one at a state >= TRANS_STATE_UNBLOCKED.
838  * This is similar to btrfs_attach_transaction() but it allows the join to
839  * happen if the transaction commit already started but it's not yet in the
840  * "doing" phase (the state is < TRANS_STATE_COMMIT_DOING).
841  */
842 struct btrfs_trans_handle *btrfs_join_transaction_nostart(struct btrfs_root *root)
843 {
844         return start_transaction(root, 0, TRANS_JOIN_NOSTART,
845                                  BTRFS_RESERVE_NO_FLUSH, true);
846 }
847
848 /*
849  * Catch the running transaction.
850  *
851  * It is used when we want to commit the current the transaction, but
852  * don't want to start a new one.
853  *
854  * Note: If this function return -ENOENT, it just means there is no
855  * running transaction. But it is possible that the inactive transaction
856  * is still in the memory, not fully on disk. If you hope there is no
857  * inactive transaction in the fs when -ENOENT is returned, you should
858  * invoke
859  *     btrfs_attach_transaction_barrier()
860  */
861 struct btrfs_trans_handle *btrfs_attach_transaction(struct btrfs_root *root)
862 {
863         return start_transaction(root, 0, TRANS_ATTACH,
864                                  BTRFS_RESERVE_NO_FLUSH, true);
865 }
866
867 /*
868  * Catch the running transaction.
869  *
870  * It is similar to the above function, the difference is this one
871  * will wait for all the inactive transactions until they fully
872  * complete.
873  */
874 struct btrfs_trans_handle *
875 btrfs_attach_transaction_barrier(struct btrfs_root *root)
876 {
877         struct btrfs_trans_handle *trans;
878
879         trans = start_transaction(root, 0, TRANS_ATTACH,
880                                   BTRFS_RESERVE_NO_FLUSH, true);
881         if (trans == ERR_PTR(-ENOENT)) {
882                 int ret;
883
884                 ret = btrfs_wait_for_commit(root->fs_info, 0);
885                 if (ret)
886                         return ERR_PTR(ret);
887         }
888
889         return trans;
890 }
891
892 /* Wait for a transaction commit to reach at least the given state. */
893 static noinline void wait_for_commit(struct btrfs_transaction *commit,
894                                      const enum btrfs_trans_state min_state)
895 {
896         struct btrfs_fs_info *fs_info = commit->fs_info;
897         u64 transid = commit->transid;
898         bool put = false;
899
900         /*
901          * At the moment this function is called with min_state either being
902          * TRANS_STATE_COMPLETED or TRANS_STATE_SUPER_COMMITTED.
903          */
904         if (min_state == TRANS_STATE_COMPLETED)
905                 btrfs_might_wait_for_state(fs_info, BTRFS_LOCKDEP_TRANS_COMPLETED);
906         else
907                 btrfs_might_wait_for_state(fs_info, BTRFS_LOCKDEP_TRANS_SUPER_COMMITTED);
908
909         while (1) {
910                 wait_event(commit->commit_wait, commit->state >= min_state);
911                 if (put)
912                         btrfs_put_transaction(commit);
913
914                 if (min_state < TRANS_STATE_COMPLETED)
915                         break;
916
917                 /*
918                  * A transaction isn't really completed until all of the
919                  * previous transactions are completed, but with fsync we can
920                  * end up with SUPER_COMMITTED transactions before a COMPLETED
921                  * transaction. Wait for those.
922                  */
923
924                 spin_lock(&fs_info->trans_lock);
925                 commit = list_first_entry_or_null(&fs_info->trans_list,
926                                                   struct btrfs_transaction,
927                                                   list);
928                 if (!commit || commit->transid > transid) {
929                         spin_unlock(&fs_info->trans_lock);
930                         break;
931                 }
932                 refcount_inc(&commit->use_count);
933                 put = true;
934                 spin_unlock(&fs_info->trans_lock);
935         }
936 }
937
938 int btrfs_wait_for_commit(struct btrfs_fs_info *fs_info, u64 transid)
939 {
940         struct btrfs_transaction *cur_trans = NULL, *t;
941         int ret = 0;
942
943         if (transid) {
944                 if (transid <= btrfs_get_last_trans_committed(fs_info))
945                         goto out;
946
947                 /* find specified transaction */
948                 spin_lock(&fs_info->trans_lock);
949                 list_for_each_entry(t, &fs_info->trans_list, list) {
950                         if (t->transid == transid) {
951                                 cur_trans = t;
952                                 refcount_inc(&cur_trans->use_count);
953                                 ret = 0;
954                                 break;
955                         }
956                         if (t->transid > transid) {
957                                 ret = 0;
958                                 break;
959                         }
960                 }
961                 spin_unlock(&fs_info->trans_lock);
962
963                 /*
964                  * The specified transaction doesn't exist, or we
965                  * raced with btrfs_commit_transaction
966                  */
967                 if (!cur_trans) {
968                         if (transid > btrfs_get_last_trans_committed(fs_info))
969                                 ret = -EINVAL;
970                         goto out;
971                 }
972         } else {
973                 /* find newest transaction that is committing | committed */
974                 spin_lock(&fs_info->trans_lock);
975                 list_for_each_entry_reverse(t, &fs_info->trans_list,
976                                             list) {
977                         if (t->state >= TRANS_STATE_COMMIT_START) {
978                                 if (t->state == TRANS_STATE_COMPLETED)
979                                         break;
980                                 cur_trans = t;
981                                 refcount_inc(&cur_trans->use_count);
982                                 break;
983                         }
984                 }
985                 spin_unlock(&fs_info->trans_lock);
986                 if (!cur_trans)
987                         goto out;  /* nothing committing|committed */
988         }
989
990         wait_for_commit(cur_trans, TRANS_STATE_COMPLETED);
991         ret = cur_trans->aborted;
992         btrfs_put_transaction(cur_trans);
993 out:
994         return ret;
995 }
996
997 void btrfs_throttle(struct btrfs_fs_info *fs_info)
998 {
999         wait_current_trans(fs_info);
1000 }
1001
1002 bool btrfs_should_end_transaction(struct btrfs_trans_handle *trans)
1003 {
1004         struct btrfs_transaction *cur_trans = trans->transaction;
1005
1006         if (cur_trans->state >= TRANS_STATE_COMMIT_START ||
1007             test_bit(BTRFS_DELAYED_REFS_FLUSHING, &cur_trans->delayed_refs.flags))
1008                 return true;
1009
1010         if (btrfs_check_space_for_delayed_refs(trans->fs_info))
1011                 return true;
1012
1013         return !!btrfs_block_rsv_check(&trans->fs_info->global_block_rsv, 50);
1014 }
1015
1016 static void btrfs_trans_release_metadata(struct btrfs_trans_handle *trans)
1017
1018 {
1019         struct btrfs_fs_info *fs_info = trans->fs_info;
1020
1021         if (!trans->block_rsv) {
1022                 ASSERT(!trans->bytes_reserved);
1023                 ASSERT(!trans->delayed_refs_bytes_reserved);
1024                 return;
1025         }
1026
1027         if (!trans->bytes_reserved) {
1028                 ASSERT(!trans->delayed_refs_bytes_reserved);
1029                 return;
1030         }
1031
1032         ASSERT(trans->block_rsv == &fs_info->trans_block_rsv);
1033         trace_btrfs_space_reservation(fs_info, "transaction",
1034                                       trans->transid, trans->bytes_reserved, 0);
1035         btrfs_block_rsv_release(fs_info, trans->block_rsv,
1036                                 trans->bytes_reserved, NULL);
1037         trans->bytes_reserved = 0;
1038
1039         if (!trans->delayed_refs_bytes_reserved)
1040                 return;
1041
1042         trace_btrfs_space_reservation(fs_info, "local_delayed_refs_rsv",
1043                                       trans->transid,
1044                                       trans->delayed_refs_bytes_reserved, 0);
1045         btrfs_block_rsv_release(fs_info, &trans->delayed_rsv,
1046                                 trans->delayed_refs_bytes_reserved, NULL);
1047         trans->delayed_refs_bytes_reserved = 0;
1048 }
1049
1050 static int __btrfs_end_transaction(struct btrfs_trans_handle *trans,
1051                                    int throttle)
1052 {
1053         struct btrfs_fs_info *info = trans->fs_info;
1054         struct btrfs_transaction *cur_trans = trans->transaction;
1055         int err = 0;
1056
1057         if (refcount_read(&trans->use_count) > 1) {
1058                 refcount_dec(&trans->use_count);
1059                 trans->block_rsv = trans->orig_rsv;
1060                 return 0;
1061         }
1062
1063         btrfs_trans_release_metadata(trans);
1064         trans->block_rsv = NULL;
1065
1066         btrfs_create_pending_block_groups(trans);
1067
1068         btrfs_trans_release_chunk_metadata(trans);
1069
1070         if (trans->type & __TRANS_FREEZABLE)
1071                 sb_end_intwrite(info->sb);
1072
1073         WARN_ON(cur_trans != info->running_transaction);
1074         WARN_ON(atomic_read(&cur_trans->num_writers) < 1);
1075         atomic_dec(&cur_trans->num_writers);
1076         extwriter_counter_dec(cur_trans, trans->type);
1077
1078         cond_wake_up(&cur_trans->writer_wait);
1079
1080         btrfs_lockdep_release(info, btrfs_trans_num_extwriters);
1081         btrfs_lockdep_release(info, btrfs_trans_num_writers);
1082
1083         btrfs_put_transaction(cur_trans);
1084
1085         if (current->journal_info == trans)
1086                 current->journal_info = NULL;
1087
1088         if (throttle)
1089                 btrfs_run_delayed_iputs(info);
1090
1091         if (TRANS_ABORTED(trans) || BTRFS_FS_ERROR(info)) {
1092                 wake_up_process(info->transaction_kthread);
1093                 if (TRANS_ABORTED(trans))
1094                         err = trans->aborted;
1095                 else
1096                         err = -EROFS;
1097         }
1098
1099         kmem_cache_free(btrfs_trans_handle_cachep, trans);
1100         return err;
1101 }
1102
1103 int btrfs_end_transaction(struct btrfs_trans_handle *trans)
1104 {
1105         return __btrfs_end_transaction(trans, 0);
1106 }
1107
1108 int btrfs_end_transaction_throttle(struct btrfs_trans_handle *trans)
1109 {
1110         return __btrfs_end_transaction(trans, 1);
1111 }
1112
1113 /*
1114  * when btree blocks are allocated, they have some corresponding bits set for
1115  * them in one of two extent_io trees.  This is used to make sure all of
1116  * those extents are sent to disk but does not wait on them
1117  */
1118 int btrfs_write_marked_extents(struct btrfs_fs_info *fs_info,
1119                                struct extent_io_tree *dirty_pages, int mark)
1120 {
1121         int err = 0;
1122         int werr = 0;
1123         struct address_space *mapping = fs_info->btree_inode->i_mapping;
1124         struct extent_state *cached_state = NULL;
1125         u64 start = 0;
1126         u64 end;
1127
1128         while (find_first_extent_bit(dirty_pages, start, &start, &end,
1129                                      mark, &cached_state)) {
1130                 bool wait_writeback = false;
1131
1132                 err = convert_extent_bit(dirty_pages, start, end,
1133                                          EXTENT_NEED_WAIT,
1134                                          mark, &cached_state);
1135                 /*
1136                  * convert_extent_bit can return -ENOMEM, which is most of the
1137                  * time a temporary error. So when it happens, ignore the error
1138                  * and wait for writeback of this range to finish - because we
1139                  * failed to set the bit EXTENT_NEED_WAIT for the range, a call
1140                  * to __btrfs_wait_marked_extents() would not know that
1141                  * writeback for this range started and therefore wouldn't
1142                  * wait for it to finish - we don't want to commit a
1143                  * superblock that points to btree nodes/leafs for which
1144                  * writeback hasn't finished yet (and without errors).
1145                  * We cleanup any entries left in the io tree when committing
1146                  * the transaction (through extent_io_tree_release()).
1147                  */
1148                 if (err == -ENOMEM) {
1149                         err = 0;
1150                         wait_writeback = true;
1151                 }
1152                 if (!err)
1153                         err = filemap_fdatawrite_range(mapping, start, end);
1154                 if (err)
1155                         werr = err;
1156                 else if (wait_writeback)
1157                         werr = filemap_fdatawait_range(mapping, start, end);
1158                 free_extent_state(cached_state);
1159                 cached_state = NULL;
1160                 cond_resched();
1161                 start = end + 1;
1162         }
1163         return werr;
1164 }
1165
1166 /*
1167  * when btree blocks are allocated, they have some corresponding bits set for
1168  * them in one of two extent_io trees.  This is used to make sure all of
1169  * those extents are on disk for transaction or log commit.  We wait
1170  * on all the pages and clear them from the dirty pages state tree
1171  */
1172 static int __btrfs_wait_marked_extents(struct btrfs_fs_info *fs_info,
1173                                        struct extent_io_tree *dirty_pages)
1174 {
1175         int err = 0;
1176         int werr = 0;
1177         struct address_space *mapping = fs_info->btree_inode->i_mapping;
1178         struct extent_state *cached_state = NULL;
1179         u64 start = 0;
1180         u64 end;
1181
1182         while (find_first_extent_bit(dirty_pages, start, &start, &end,
1183                                      EXTENT_NEED_WAIT, &cached_state)) {
1184                 /*
1185                  * Ignore -ENOMEM errors returned by clear_extent_bit().
1186                  * When committing the transaction, we'll remove any entries
1187                  * left in the io tree. For a log commit, we don't remove them
1188                  * after committing the log because the tree can be accessed
1189                  * concurrently - we do it only at transaction commit time when
1190                  * it's safe to do it (through extent_io_tree_release()).
1191                  */
1192                 err = clear_extent_bit(dirty_pages, start, end,
1193                                        EXTENT_NEED_WAIT, &cached_state);
1194                 if (err == -ENOMEM)
1195                         err = 0;
1196                 if (!err)
1197                         err = filemap_fdatawait_range(mapping, start, end);
1198                 if (err)
1199                         werr = err;
1200                 free_extent_state(cached_state);
1201                 cached_state = NULL;
1202                 cond_resched();
1203                 start = end + 1;
1204         }
1205         if (err)
1206                 werr = err;
1207         return werr;
1208 }
1209
1210 static int btrfs_wait_extents(struct btrfs_fs_info *fs_info,
1211                        struct extent_io_tree *dirty_pages)
1212 {
1213         bool errors = false;
1214         int err;
1215
1216         err = __btrfs_wait_marked_extents(fs_info, dirty_pages);
1217         if (test_and_clear_bit(BTRFS_FS_BTREE_ERR, &fs_info->flags))
1218                 errors = true;
1219
1220         if (errors && !err)
1221                 err = -EIO;
1222         return err;
1223 }
1224
1225 int btrfs_wait_tree_log_extents(struct btrfs_root *log_root, int mark)
1226 {
1227         struct btrfs_fs_info *fs_info = log_root->fs_info;
1228         struct extent_io_tree *dirty_pages = &log_root->dirty_log_pages;
1229         bool errors = false;
1230         int err;
1231
1232         ASSERT(log_root->root_key.objectid == BTRFS_TREE_LOG_OBJECTID);
1233
1234         err = __btrfs_wait_marked_extents(fs_info, dirty_pages);
1235         if ((mark & EXTENT_DIRTY) &&
1236             test_and_clear_bit(BTRFS_FS_LOG1_ERR, &fs_info->flags))
1237                 errors = true;
1238
1239         if ((mark & EXTENT_NEW) &&
1240             test_and_clear_bit(BTRFS_FS_LOG2_ERR, &fs_info->flags))
1241                 errors = true;
1242
1243         if (errors && !err)
1244                 err = -EIO;
1245         return err;
1246 }
1247
1248 /*
1249  * When btree blocks are allocated the corresponding extents are marked dirty.
1250  * This function ensures such extents are persisted on disk for transaction or
1251  * log commit.
1252  *
1253  * @trans: transaction whose dirty pages we'd like to write
1254  */
1255 static int btrfs_write_and_wait_transaction(struct btrfs_trans_handle *trans)
1256 {
1257         int ret;
1258         int ret2;
1259         struct extent_io_tree *dirty_pages = &trans->transaction->dirty_pages;
1260         struct btrfs_fs_info *fs_info = trans->fs_info;
1261         struct blk_plug plug;
1262
1263         blk_start_plug(&plug);
1264         ret = btrfs_write_marked_extents(fs_info, dirty_pages, EXTENT_DIRTY);
1265         blk_finish_plug(&plug);
1266         ret2 = btrfs_wait_extents(fs_info, dirty_pages);
1267
1268         extent_io_tree_release(&trans->transaction->dirty_pages);
1269
1270         if (ret)
1271                 return ret;
1272         else if (ret2)
1273                 return ret2;
1274         else
1275                 return 0;
1276 }
1277
1278 /*
1279  * this is used to update the root pointer in the tree of tree roots.
1280  *
1281  * But, in the case of the extent allocation tree, updating the root
1282  * pointer may allocate blocks which may change the root of the extent
1283  * allocation tree.
1284  *
1285  * So, this loops and repeats and makes sure the cowonly root didn't
1286  * change while the root pointer was being updated in the metadata.
1287  */
1288 static int update_cowonly_root(struct btrfs_trans_handle *trans,
1289                                struct btrfs_root *root)
1290 {
1291         int ret;
1292         u64 old_root_bytenr;
1293         u64 old_root_used;
1294         struct btrfs_fs_info *fs_info = root->fs_info;
1295         struct btrfs_root *tree_root = fs_info->tree_root;
1296
1297         old_root_used = btrfs_root_used(&root->root_item);
1298
1299         while (1) {
1300                 old_root_bytenr = btrfs_root_bytenr(&root->root_item);
1301                 if (old_root_bytenr == root->node->start &&
1302                     old_root_used == btrfs_root_used(&root->root_item))
1303                         break;
1304
1305                 btrfs_set_root_node(&root->root_item, root->node);
1306                 ret = btrfs_update_root(trans, tree_root,
1307                                         &root->root_key,
1308                                         &root->root_item);
1309                 if (ret)
1310                         return ret;
1311
1312                 old_root_used = btrfs_root_used(&root->root_item);
1313         }
1314
1315         return 0;
1316 }
1317
1318 /*
1319  * update all the cowonly tree roots on disk
1320  *
1321  * The error handling in this function may not be obvious. Any of the
1322  * failures will cause the file system to go offline. We still need
1323  * to clean up the delayed refs.
1324  */
1325 static noinline int commit_cowonly_roots(struct btrfs_trans_handle *trans)
1326 {
1327         struct btrfs_fs_info *fs_info = trans->fs_info;
1328         struct list_head *dirty_bgs = &trans->transaction->dirty_bgs;
1329         struct list_head *io_bgs = &trans->transaction->io_bgs;
1330         struct list_head *next;
1331         struct extent_buffer *eb;
1332         int ret;
1333
1334         /*
1335          * At this point no one can be using this transaction to modify any tree
1336          * and no one can start another transaction to modify any tree either.
1337          */
1338         ASSERT(trans->transaction->state == TRANS_STATE_COMMIT_DOING);
1339
1340         eb = btrfs_lock_root_node(fs_info->tree_root);
1341         ret = btrfs_cow_block(trans, fs_info->tree_root, eb, NULL,
1342                               0, &eb, BTRFS_NESTING_COW);
1343         btrfs_tree_unlock(eb);
1344         free_extent_buffer(eb);
1345
1346         if (ret)
1347                 return ret;
1348
1349         ret = btrfs_run_dev_stats(trans);
1350         if (ret)
1351                 return ret;
1352         ret = btrfs_run_dev_replace(trans);
1353         if (ret)
1354                 return ret;
1355         ret = btrfs_run_qgroups(trans);
1356         if (ret)
1357                 return ret;
1358
1359         ret = btrfs_setup_space_cache(trans);
1360         if (ret)
1361                 return ret;
1362
1363 again:
1364         while (!list_empty(&fs_info->dirty_cowonly_roots)) {
1365                 struct btrfs_root *root;
1366                 next = fs_info->dirty_cowonly_roots.next;
1367                 list_del_init(next);
1368                 root = list_entry(next, struct btrfs_root, dirty_list);
1369                 clear_bit(BTRFS_ROOT_DIRTY, &root->state);
1370
1371                 list_add_tail(&root->dirty_list,
1372                               &trans->transaction->switch_commits);
1373                 ret = update_cowonly_root(trans, root);
1374                 if (ret)
1375                         return ret;
1376         }
1377
1378         /* Now flush any delayed refs generated by updating all of the roots */
1379         ret = btrfs_run_delayed_refs(trans, U64_MAX);
1380         if (ret)
1381                 return ret;
1382
1383         while (!list_empty(dirty_bgs) || !list_empty(io_bgs)) {
1384                 ret = btrfs_write_dirty_block_groups(trans);
1385                 if (ret)
1386                         return ret;
1387
1388                 /*
1389                  * We're writing the dirty block groups, which could generate
1390                  * delayed refs, which could generate more dirty block groups,
1391                  * so we want to keep this flushing in this loop to make sure
1392                  * everything gets run.
1393                  */
1394                 ret = btrfs_run_delayed_refs(trans, U64_MAX);
1395                 if (ret)
1396                         return ret;
1397         }
1398
1399         if (!list_empty(&fs_info->dirty_cowonly_roots))
1400                 goto again;
1401
1402         /* Update dev-replace pointer once everything is committed */
1403         fs_info->dev_replace.committed_cursor_left =
1404                 fs_info->dev_replace.cursor_left_last_write_of_item;
1405
1406         return 0;
1407 }
1408
1409 /*
1410  * If we had a pending drop we need to see if there are any others left in our
1411  * dead roots list, and if not clear our bit and wake any waiters.
1412  */
1413 void btrfs_maybe_wake_unfinished_drop(struct btrfs_fs_info *fs_info)
1414 {
1415         /*
1416          * We put the drop in progress roots at the front of the list, so if the
1417          * first entry doesn't have UNFINISHED_DROP set we can wake everybody
1418          * up.
1419          */
1420         spin_lock(&fs_info->trans_lock);
1421         if (!list_empty(&fs_info->dead_roots)) {
1422                 struct btrfs_root *root = list_first_entry(&fs_info->dead_roots,
1423                                                            struct btrfs_root,
1424                                                            root_list);
1425                 if (test_bit(BTRFS_ROOT_UNFINISHED_DROP, &root->state)) {
1426                         spin_unlock(&fs_info->trans_lock);
1427                         return;
1428                 }
1429         }
1430         spin_unlock(&fs_info->trans_lock);
1431
1432         btrfs_wake_unfinished_drop(fs_info);
1433 }
1434
1435 /*
1436  * dead roots are old snapshots that need to be deleted.  This allocates
1437  * a dirty root struct and adds it into the list of dead roots that need to
1438  * be deleted
1439  */
1440 void btrfs_add_dead_root(struct btrfs_root *root)
1441 {
1442         struct btrfs_fs_info *fs_info = root->fs_info;
1443
1444         spin_lock(&fs_info->trans_lock);
1445         if (list_empty(&root->root_list)) {
1446                 btrfs_grab_root(root);
1447
1448                 /* We want to process the partially complete drops first. */
1449                 if (test_bit(BTRFS_ROOT_UNFINISHED_DROP, &root->state))
1450                         list_add(&root->root_list, &fs_info->dead_roots);
1451                 else
1452                         list_add_tail(&root->root_list, &fs_info->dead_roots);
1453         }
1454         spin_unlock(&fs_info->trans_lock);
1455 }
1456
1457 /*
1458  * Update each subvolume root and its relocation root, if it exists, in the tree
1459  * of tree roots. Also free log roots if they exist.
1460  */
1461 static noinline int commit_fs_roots(struct btrfs_trans_handle *trans)
1462 {
1463         struct btrfs_fs_info *fs_info = trans->fs_info;
1464         struct btrfs_root *gang[8];
1465         int i;
1466         int ret;
1467
1468         /*
1469          * At this point no one can be using this transaction to modify any tree
1470          * and no one can start another transaction to modify any tree either.
1471          */
1472         ASSERT(trans->transaction->state == TRANS_STATE_COMMIT_DOING);
1473
1474         spin_lock(&fs_info->fs_roots_radix_lock);
1475         while (1) {
1476                 ret = radix_tree_gang_lookup_tag(&fs_info->fs_roots_radix,
1477                                                  (void **)gang, 0,
1478                                                  ARRAY_SIZE(gang),
1479                                                  BTRFS_ROOT_TRANS_TAG);
1480                 if (ret == 0)
1481                         break;
1482                 for (i = 0; i < ret; i++) {
1483                         struct btrfs_root *root = gang[i];
1484                         int ret2;
1485
1486                         /*
1487                          * At this point we can neither have tasks logging inodes
1488                          * from a root nor trying to commit a log tree.
1489                          */
1490                         ASSERT(atomic_read(&root->log_writers) == 0);
1491                         ASSERT(atomic_read(&root->log_commit[0]) == 0);
1492                         ASSERT(atomic_read(&root->log_commit[1]) == 0);
1493
1494                         radix_tree_tag_clear(&fs_info->fs_roots_radix,
1495                                         (unsigned long)root->root_key.objectid,
1496                                         BTRFS_ROOT_TRANS_TAG);
1497                         btrfs_qgroup_free_meta_all_pertrans(root);
1498                         spin_unlock(&fs_info->fs_roots_radix_lock);
1499
1500                         btrfs_free_log(trans, root);
1501                         ret2 = btrfs_update_reloc_root(trans, root);
1502                         if (ret2)
1503                                 return ret2;
1504
1505                         /* see comments in should_cow_block() */
1506                         clear_bit(BTRFS_ROOT_FORCE_COW, &root->state);
1507                         smp_mb__after_atomic();
1508
1509                         if (root->commit_root != root->node) {
1510                                 list_add_tail(&root->dirty_list,
1511                                         &trans->transaction->switch_commits);
1512                                 btrfs_set_root_node(&root->root_item,
1513                                                     root->node);
1514                         }
1515
1516                         ret2 = btrfs_update_root(trans, fs_info->tree_root,
1517                                                 &root->root_key,
1518                                                 &root->root_item);
1519                         if (ret2)
1520                                 return ret2;
1521                         spin_lock(&fs_info->fs_roots_radix_lock);
1522                 }
1523         }
1524         spin_unlock(&fs_info->fs_roots_radix_lock);
1525         return 0;
1526 }
1527
1528 /*
1529  * Do all special snapshot related qgroup dirty hack.
1530  *
1531  * Will do all needed qgroup inherit and dirty hack like switch commit
1532  * roots inside one transaction and write all btree into disk, to make
1533  * qgroup works.
1534  */
1535 static int qgroup_account_snapshot(struct btrfs_trans_handle *trans,
1536                                    struct btrfs_root *src,
1537                                    struct btrfs_root *parent,
1538                                    struct btrfs_qgroup_inherit *inherit,
1539                                    u64 dst_objectid)
1540 {
1541         struct btrfs_fs_info *fs_info = src->fs_info;
1542         int ret;
1543
1544         /*
1545          * Save some performance in the case that qgroups are not enabled. If
1546          * this check races with the ioctl, rescan will kick in anyway.
1547          */
1548         if (!btrfs_qgroup_full_accounting(fs_info))
1549                 return 0;
1550
1551         /*
1552          * Ensure dirty @src will be committed.  Or, after coming
1553          * commit_fs_roots() and switch_commit_roots(), any dirty but not
1554          * recorded root will never be updated again, causing an outdated root
1555          * item.
1556          */
1557         ret = record_root_in_trans(trans, src, 1);
1558         if (ret)
1559                 return ret;
1560
1561         /*
1562          * btrfs_qgroup_inherit relies on a consistent view of the usage for the
1563          * src root, so we must run the delayed refs here.
1564          *
1565          * However this isn't particularly fool proof, because there's no
1566          * synchronization keeping us from changing the tree after this point
1567          * before we do the qgroup_inherit, or even from making changes while
1568          * we're doing the qgroup_inherit.  But that's a problem for the future,
1569          * for now flush the delayed refs to narrow the race window where the
1570          * qgroup counters could end up wrong.
1571          */
1572         ret = btrfs_run_delayed_refs(trans, U64_MAX);
1573         if (ret) {
1574                 btrfs_abort_transaction(trans, ret);
1575                 return ret;
1576         }
1577
1578         ret = commit_fs_roots(trans);
1579         if (ret)
1580                 goto out;
1581         ret = btrfs_qgroup_account_extents(trans);
1582         if (ret < 0)
1583                 goto out;
1584
1585         /* Now qgroup are all updated, we can inherit it to new qgroups */
1586         ret = btrfs_qgroup_inherit(trans, src->root_key.objectid, dst_objectid,
1587                                    parent->root_key.objectid, inherit);
1588         if (ret < 0)
1589                 goto out;
1590
1591         /*
1592          * Now we do a simplified commit transaction, which will:
1593          * 1) commit all subvolume and extent tree
1594          *    To ensure all subvolume and extent tree have a valid
1595          *    commit_root to accounting later insert_dir_item()
1596          * 2) write all btree blocks onto disk
1597          *    This is to make sure later btree modification will be cowed
1598          *    Or commit_root can be populated and cause wrong qgroup numbers
1599          * In this simplified commit, we don't really care about other trees
1600          * like chunk and root tree, as they won't affect qgroup.
1601          * And we don't write super to avoid half committed status.
1602          */
1603         ret = commit_cowonly_roots(trans);
1604         if (ret)
1605                 goto out;
1606         switch_commit_roots(trans);
1607         ret = btrfs_write_and_wait_transaction(trans);
1608         if (ret)
1609                 btrfs_handle_fs_error(fs_info, ret,
1610                         "Error while writing out transaction for qgroup");
1611
1612 out:
1613         /*
1614          * Force parent root to be updated, as we recorded it before so its
1615          * last_trans == cur_transid.
1616          * Or it won't be committed again onto disk after later
1617          * insert_dir_item()
1618          */
1619         if (!ret)
1620                 ret = record_root_in_trans(trans, parent, 1);
1621         return ret;
1622 }
1623
1624 /*
1625  * new snapshots need to be created at a very specific time in the
1626  * transaction commit.  This does the actual creation.
1627  *
1628  * Note:
1629  * If the error which may affect the commitment of the current transaction
1630  * happens, we should return the error number. If the error which just affect
1631  * the creation of the pending snapshots, just return 0.
1632  */
1633 static noinline int create_pending_snapshot(struct btrfs_trans_handle *trans,
1634                                    struct btrfs_pending_snapshot *pending)
1635 {
1636
1637         struct btrfs_fs_info *fs_info = trans->fs_info;
1638         struct btrfs_key key;
1639         struct btrfs_root_item *new_root_item;
1640         struct btrfs_root *tree_root = fs_info->tree_root;
1641         struct btrfs_root *root = pending->root;
1642         struct btrfs_root *parent_root;
1643         struct btrfs_block_rsv *rsv;
1644         struct inode *parent_inode = pending->dir;
1645         struct btrfs_path *path;
1646         struct btrfs_dir_item *dir_item;
1647         struct extent_buffer *tmp;
1648         struct extent_buffer *old;
1649         struct timespec64 cur_time;
1650         int ret = 0;
1651         u64 to_reserve = 0;
1652         u64 index = 0;
1653         u64 objectid;
1654         u64 root_flags;
1655         unsigned int nofs_flags;
1656         struct fscrypt_name fname;
1657
1658         ASSERT(pending->path);
1659         path = pending->path;
1660
1661         ASSERT(pending->root_item);
1662         new_root_item = pending->root_item;
1663
1664         /*
1665          * We're inside a transaction and must make sure that any potential
1666          * allocations with GFP_KERNEL in fscrypt won't recurse back to
1667          * filesystem.
1668          */
1669         nofs_flags = memalloc_nofs_save();
1670         pending->error = fscrypt_setup_filename(parent_inode,
1671                                                 &pending->dentry->d_name, 0,
1672                                                 &fname);
1673         memalloc_nofs_restore(nofs_flags);
1674         if (pending->error)
1675                 goto free_pending;
1676
1677         pending->error = btrfs_get_free_objectid(tree_root, &objectid);
1678         if (pending->error)
1679                 goto free_fname;
1680
1681         /*
1682          * Make qgroup to skip current new snapshot's qgroupid, as it is
1683          * accounted by later btrfs_qgroup_inherit().
1684          */
1685         btrfs_set_skip_qgroup(trans, objectid);
1686
1687         btrfs_reloc_pre_snapshot(pending, &to_reserve);
1688
1689         if (to_reserve > 0) {
1690                 pending->error = btrfs_block_rsv_add(fs_info,
1691                                                      &pending->block_rsv,
1692                                                      to_reserve,
1693                                                      BTRFS_RESERVE_NO_FLUSH);
1694                 if (pending->error)
1695                         goto clear_skip_qgroup;
1696         }
1697
1698         key.objectid = objectid;
1699         key.offset = (u64)-1;
1700         key.type = BTRFS_ROOT_ITEM_KEY;
1701
1702         rsv = trans->block_rsv;
1703         trans->block_rsv = &pending->block_rsv;
1704         trans->bytes_reserved = trans->block_rsv->reserved;
1705         trace_btrfs_space_reservation(fs_info, "transaction",
1706                                       trans->transid,
1707                                       trans->bytes_reserved, 1);
1708         parent_root = BTRFS_I(parent_inode)->root;
1709         ret = record_root_in_trans(trans, parent_root, 0);
1710         if (ret)
1711                 goto fail;
1712         cur_time = current_time(parent_inode);
1713
1714         /*
1715          * insert the directory item
1716          */
1717         ret = btrfs_set_inode_index(BTRFS_I(parent_inode), &index);
1718         if (ret) {
1719                 btrfs_abort_transaction(trans, ret);
1720                 goto fail;
1721         }
1722
1723         /* check if there is a file/dir which has the same name. */
1724         dir_item = btrfs_lookup_dir_item(NULL, parent_root, path,
1725                                          btrfs_ino(BTRFS_I(parent_inode)),
1726                                          &fname.disk_name, 0);
1727         if (dir_item != NULL && !IS_ERR(dir_item)) {
1728                 pending->error = -EEXIST;
1729                 goto dir_item_existed;
1730         } else if (IS_ERR(dir_item)) {
1731                 ret = PTR_ERR(dir_item);
1732                 btrfs_abort_transaction(trans, ret);
1733                 goto fail;
1734         }
1735         btrfs_release_path(path);
1736
1737         ret = btrfs_create_qgroup(trans, objectid);
1738         if (ret && ret != -EEXIST) {
1739                 btrfs_abort_transaction(trans, ret);
1740                 goto fail;
1741         }
1742
1743         /*
1744          * pull in the delayed directory update
1745          * and the delayed inode item
1746          * otherwise we corrupt the FS during
1747          * snapshot
1748          */
1749         ret = btrfs_run_delayed_items(trans);
1750         if (ret) {      /* Transaction aborted */
1751                 btrfs_abort_transaction(trans, ret);
1752                 goto fail;
1753         }
1754
1755         ret = record_root_in_trans(trans, root, 0);
1756         if (ret) {
1757                 btrfs_abort_transaction(trans, ret);
1758                 goto fail;
1759         }
1760         btrfs_set_root_last_snapshot(&root->root_item, trans->transid);
1761         memcpy(new_root_item, &root->root_item, sizeof(*new_root_item));
1762         btrfs_check_and_init_root_item(new_root_item);
1763
1764         root_flags = btrfs_root_flags(new_root_item);
1765         if (pending->readonly)
1766                 root_flags |= BTRFS_ROOT_SUBVOL_RDONLY;
1767         else
1768                 root_flags &= ~BTRFS_ROOT_SUBVOL_RDONLY;
1769         btrfs_set_root_flags(new_root_item, root_flags);
1770
1771         btrfs_set_root_generation_v2(new_root_item,
1772                         trans->transid);
1773         generate_random_guid(new_root_item->uuid);
1774         memcpy(new_root_item->parent_uuid, root->root_item.uuid,
1775                         BTRFS_UUID_SIZE);
1776         if (!(root_flags & BTRFS_ROOT_SUBVOL_RDONLY)) {
1777                 memset(new_root_item->received_uuid, 0,
1778                        sizeof(new_root_item->received_uuid));
1779                 memset(&new_root_item->stime, 0, sizeof(new_root_item->stime));
1780                 memset(&new_root_item->rtime, 0, sizeof(new_root_item->rtime));
1781                 btrfs_set_root_stransid(new_root_item, 0);
1782                 btrfs_set_root_rtransid(new_root_item, 0);
1783         }
1784         btrfs_set_stack_timespec_sec(&new_root_item->otime, cur_time.tv_sec);
1785         btrfs_set_stack_timespec_nsec(&new_root_item->otime, cur_time.tv_nsec);
1786         btrfs_set_root_otransid(new_root_item, trans->transid);
1787
1788         old = btrfs_lock_root_node(root);
1789         ret = btrfs_cow_block(trans, root, old, NULL, 0, &old,
1790                               BTRFS_NESTING_COW);
1791         if (ret) {
1792                 btrfs_tree_unlock(old);
1793                 free_extent_buffer(old);
1794                 btrfs_abort_transaction(trans, ret);
1795                 goto fail;
1796         }
1797
1798         ret = btrfs_copy_root(trans, root, old, &tmp, objectid);
1799         /* clean up in any case */
1800         btrfs_tree_unlock(old);
1801         free_extent_buffer(old);
1802         if (ret) {
1803                 btrfs_abort_transaction(trans, ret);
1804                 goto fail;
1805         }
1806         /* see comments in should_cow_block() */
1807         set_bit(BTRFS_ROOT_FORCE_COW, &root->state);
1808         smp_wmb();
1809
1810         btrfs_set_root_node(new_root_item, tmp);
1811         /* record when the snapshot was created in key.offset */
1812         key.offset = trans->transid;
1813         ret = btrfs_insert_root(trans, tree_root, &key, new_root_item);
1814         btrfs_tree_unlock(tmp);
1815         free_extent_buffer(tmp);
1816         if (ret) {
1817                 btrfs_abort_transaction(trans, ret);
1818                 goto fail;
1819         }
1820
1821         /*
1822          * insert root back/forward references
1823          */
1824         ret = btrfs_add_root_ref(trans, objectid,
1825                                  parent_root->root_key.objectid,
1826                                  btrfs_ino(BTRFS_I(parent_inode)), index,
1827                                  &fname.disk_name);
1828         if (ret) {
1829                 btrfs_abort_transaction(trans, ret);
1830                 goto fail;
1831         }
1832
1833         key.offset = (u64)-1;
1834         pending->snap = btrfs_get_new_fs_root(fs_info, objectid, &pending->anon_dev);
1835         if (IS_ERR(pending->snap)) {
1836                 ret = PTR_ERR(pending->snap);
1837                 pending->snap = NULL;
1838                 btrfs_abort_transaction(trans, ret);
1839                 goto fail;
1840         }
1841
1842         ret = btrfs_reloc_post_snapshot(trans, pending);
1843         if (ret) {
1844                 btrfs_abort_transaction(trans, ret);
1845                 goto fail;
1846         }
1847
1848         /*
1849          * Do special qgroup accounting for snapshot, as we do some qgroup
1850          * snapshot hack to do fast snapshot.
1851          * To co-operate with that hack, we do hack again.
1852          * Or snapshot will be greatly slowed down by a subtree qgroup rescan
1853          */
1854         if (btrfs_qgroup_mode(fs_info) == BTRFS_QGROUP_MODE_FULL)
1855                 ret = qgroup_account_snapshot(trans, root, parent_root,
1856                                               pending->inherit, objectid);
1857         else if (btrfs_qgroup_mode(fs_info) == BTRFS_QGROUP_MODE_SIMPLE)
1858                 ret = btrfs_qgroup_inherit(trans, root->root_key.objectid, objectid,
1859                                            parent_root->root_key.objectid, pending->inherit);
1860         if (ret < 0)
1861                 goto fail;
1862
1863         ret = btrfs_insert_dir_item(trans, &fname.disk_name,
1864                                     BTRFS_I(parent_inode), &key, BTRFS_FT_DIR,
1865                                     index);
1866         /* We have check then name at the beginning, so it is impossible. */
1867         BUG_ON(ret == -EEXIST || ret == -EOVERFLOW);
1868         if (ret) {
1869                 btrfs_abort_transaction(trans, ret);
1870                 goto fail;
1871         }
1872
1873         btrfs_i_size_write(BTRFS_I(parent_inode), parent_inode->i_size +
1874                                                   fname.disk_name.len * 2);
1875         inode_set_mtime_to_ts(parent_inode,
1876                               inode_set_ctime_current(parent_inode));
1877         ret = btrfs_update_inode_fallback(trans, BTRFS_I(parent_inode));
1878         if (ret) {
1879                 btrfs_abort_transaction(trans, ret);
1880                 goto fail;
1881         }
1882         ret = btrfs_uuid_tree_add(trans, new_root_item->uuid,
1883                                   BTRFS_UUID_KEY_SUBVOL,
1884                                   objectid);
1885         if (ret) {
1886                 btrfs_abort_transaction(trans, ret);
1887                 goto fail;
1888         }
1889         if (!btrfs_is_empty_uuid(new_root_item->received_uuid)) {
1890                 ret = btrfs_uuid_tree_add(trans, new_root_item->received_uuid,
1891                                           BTRFS_UUID_KEY_RECEIVED_SUBVOL,
1892                                           objectid);
1893                 if (ret && ret != -EEXIST) {
1894                         btrfs_abort_transaction(trans, ret);
1895                         goto fail;
1896                 }
1897         }
1898
1899 fail:
1900         pending->error = ret;
1901 dir_item_existed:
1902         trans->block_rsv = rsv;
1903         trans->bytes_reserved = 0;
1904 clear_skip_qgroup:
1905         btrfs_clear_skip_qgroup(trans);
1906 free_fname:
1907         fscrypt_free_filename(&fname);
1908 free_pending:
1909         kfree(new_root_item);
1910         pending->root_item = NULL;
1911         btrfs_free_path(path);
1912         pending->path = NULL;
1913
1914         return ret;
1915 }
1916
1917 /*
1918  * create all the snapshots we've scheduled for creation
1919  */
1920 static noinline int create_pending_snapshots(struct btrfs_trans_handle *trans)
1921 {
1922         struct btrfs_pending_snapshot *pending, *next;
1923         struct list_head *head = &trans->transaction->pending_snapshots;
1924         int ret = 0;
1925
1926         list_for_each_entry_safe(pending, next, head, list) {
1927                 list_del(&pending->list);
1928                 ret = create_pending_snapshot(trans, pending);
1929                 if (ret)
1930                         break;
1931         }
1932         return ret;
1933 }
1934
1935 static void update_super_roots(struct btrfs_fs_info *fs_info)
1936 {
1937         struct btrfs_root_item *root_item;
1938         struct btrfs_super_block *super;
1939
1940         super = fs_info->super_copy;
1941
1942         root_item = &fs_info->chunk_root->root_item;
1943         super->chunk_root = root_item->bytenr;
1944         super->chunk_root_generation = root_item->generation;
1945         super->chunk_root_level = root_item->level;
1946
1947         root_item = &fs_info->tree_root->root_item;
1948         super->root = root_item->bytenr;
1949         super->generation = root_item->generation;
1950         super->root_level = root_item->level;
1951         if (btrfs_test_opt(fs_info, SPACE_CACHE))
1952                 super->cache_generation = root_item->generation;
1953         else if (test_bit(BTRFS_FS_CLEANUP_SPACE_CACHE_V1, &fs_info->flags))
1954                 super->cache_generation = 0;
1955         if (test_bit(BTRFS_FS_UPDATE_UUID_TREE_GEN, &fs_info->flags))
1956                 super->uuid_tree_generation = root_item->generation;
1957 }
1958
1959 int btrfs_transaction_blocked(struct btrfs_fs_info *info)
1960 {
1961         struct btrfs_transaction *trans;
1962         int ret = 0;
1963
1964         spin_lock(&info->trans_lock);
1965         trans = info->running_transaction;
1966         if (trans)
1967                 ret = is_transaction_blocked(trans);
1968         spin_unlock(&info->trans_lock);
1969         return ret;
1970 }
1971
1972 void btrfs_commit_transaction_async(struct btrfs_trans_handle *trans)
1973 {
1974         struct btrfs_fs_info *fs_info = trans->fs_info;
1975         struct btrfs_transaction *cur_trans;
1976
1977         /* Kick the transaction kthread. */
1978         set_bit(BTRFS_FS_COMMIT_TRANS, &fs_info->flags);
1979         wake_up_process(fs_info->transaction_kthread);
1980
1981         /* take transaction reference */
1982         cur_trans = trans->transaction;
1983         refcount_inc(&cur_trans->use_count);
1984
1985         btrfs_end_transaction(trans);
1986
1987         /*
1988          * Wait for the current transaction commit to start and block
1989          * subsequent transaction joins
1990          */
1991         btrfs_might_wait_for_state(fs_info, BTRFS_LOCKDEP_TRANS_COMMIT_PREP);
1992         wait_event(fs_info->transaction_blocked_wait,
1993                    cur_trans->state >= TRANS_STATE_COMMIT_START ||
1994                    TRANS_ABORTED(cur_trans));
1995         btrfs_put_transaction(cur_trans);
1996 }
1997
1998 static void cleanup_transaction(struct btrfs_trans_handle *trans, int err)
1999 {
2000         struct btrfs_fs_info *fs_info = trans->fs_info;
2001         struct btrfs_transaction *cur_trans = trans->transaction;
2002
2003         WARN_ON(refcount_read(&trans->use_count) > 1);
2004
2005         btrfs_abort_transaction(trans, err);
2006
2007         spin_lock(&fs_info->trans_lock);
2008
2009         /*
2010          * If the transaction is removed from the list, it means this
2011          * transaction has been committed successfully, so it is impossible
2012          * to call the cleanup function.
2013          */
2014         BUG_ON(list_empty(&cur_trans->list));
2015
2016         if (cur_trans == fs_info->running_transaction) {
2017                 cur_trans->state = TRANS_STATE_COMMIT_DOING;
2018                 spin_unlock(&fs_info->trans_lock);
2019
2020                 /*
2021                  * The thread has already released the lockdep map as reader
2022                  * already in btrfs_commit_transaction().
2023                  */
2024                 btrfs_might_wait_for_event(fs_info, btrfs_trans_num_writers);
2025                 wait_event(cur_trans->writer_wait,
2026                            atomic_read(&cur_trans->num_writers) == 1);
2027
2028                 spin_lock(&fs_info->trans_lock);
2029         }
2030
2031         /*
2032          * Now that we know no one else is still using the transaction we can
2033          * remove the transaction from the list of transactions. This avoids
2034          * the transaction kthread from cleaning up the transaction while some
2035          * other task is still using it, which could result in a use-after-free
2036          * on things like log trees, as it forces the transaction kthread to
2037          * wait for this transaction to be cleaned up by us.
2038          */
2039         list_del_init(&cur_trans->list);
2040
2041         spin_unlock(&fs_info->trans_lock);
2042
2043         btrfs_cleanup_one_transaction(trans->transaction, fs_info);
2044
2045         spin_lock(&fs_info->trans_lock);
2046         if (cur_trans == fs_info->running_transaction)
2047                 fs_info->running_transaction = NULL;
2048         spin_unlock(&fs_info->trans_lock);
2049
2050         if (trans->type & __TRANS_FREEZABLE)
2051                 sb_end_intwrite(fs_info->sb);
2052         btrfs_put_transaction(cur_trans);
2053         btrfs_put_transaction(cur_trans);
2054
2055         trace_btrfs_transaction_commit(fs_info);
2056
2057         if (current->journal_info == trans)
2058                 current->journal_info = NULL;
2059
2060         /*
2061          * If relocation is running, we can't cancel scrub because that will
2062          * result in a deadlock. Before relocating a block group, relocation
2063          * pauses scrub, then starts and commits a transaction before unpausing
2064          * scrub. If the transaction commit is being done by the relocation
2065          * task or triggered by another task and the relocation task is waiting
2066          * for the commit, and we end up here due to an error in the commit
2067          * path, then calling btrfs_scrub_cancel() will deadlock, as we are
2068          * asking for scrub to stop while having it asked to be paused higher
2069          * above in relocation code.
2070          */
2071         if (!test_bit(BTRFS_FS_RELOC_RUNNING, &fs_info->flags))
2072                 btrfs_scrub_cancel(fs_info);
2073
2074         kmem_cache_free(btrfs_trans_handle_cachep, trans);
2075 }
2076
2077 /*
2078  * Release reserved delayed ref space of all pending block groups of the
2079  * transaction and remove them from the list
2080  */
2081 static void btrfs_cleanup_pending_block_groups(struct btrfs_trans_handle *trans)
2082 {
2083        struct btrfs_fs_info *fs_info = trans->fs_info;
2084        struct btrfs_block_group *block_group, *tmp;
2085
2086        list_for_each_entry_safe(block_group, tmp, &trans->new_bgs, bg_list) {
2087                btrfs_dec_delayed_refs_rsv_bg_inserts(fs_info);
2088                list_del_init(&block_group->bg_list);
2089        }
2090 }
2091
2092 static inline int btrfs_start_delalloc_flush(struct btrfs_fs_info *fs_info)
2093 {
2094         /*
2095          * We use try_to_writeback_inodes_sb() here because if we used
2096          * btrfs_start_delalloc_roots we would deadlock with fs freeze.
2097          * Currently are holding the fs freeze lock, if we do an async flush
2098          * we'll do btrfs_join_transaction() and deadlock because we need to
2099          * wait for the fs freeze lock.  Using the direct flushing we benefit
2100          * from already being in a transaction and our join_transaction doesn't
2101          * have to re-take the fs freeze lock.
2102          *
2103          * Note that try_to_writeback_inodes_sb() will only trigger writeback
2104          * if it can read lock sb->s_umount. It will always be able to lock it,
2105          * except when the filesystem is being unmounted or being frozen, but in
2106          * those cases sync_filesystem() is called, which results in calling
2107          * writeback_inodes_sb() while holding a write lock on sb->s_umount.
2108          * Note that we don't call writeback_inodes_sb() directly, because it
2109          * will emit a warning if sb->s_umount is not locked.
2110          */
2111         if (btrfs_test_opt(fs_info, FLUSHONCOMMIT))
2112                 try_to_writeback_inodes_sb(fs_info->sb, WB_REASON_SYNC);
2113         return 0;
2114 }
2115
2116 static inline void btrfs_wait_delalloc_flush(struct btrfs_fs_info *fs_info)
2117 {
2118         if (btrfs_test_opt(fs_info, FLUSHONCOMMIT))
2119                 btrfs_wait_ordered_roots(fs_info, U64_MAX, 0, (u64)-1);
2120 }
2121
2122 /*
2123  * Add a pending snapshot associated with the given transaction handle to the
2124  * respective handle. This must be called after the transaction commit started
2125  * and while holding fs_info->trans_lock.
2126  * This serves to guarantee a caller of btrfs_commit_transaction() that it can
2127  * safely free the pending snapshot pointer in case btrfs_commit_transaction()
2128  * returns an error.
2129  */
2130 static void add_pending_snapshot(struct btrfs_trans_handle *trans)
2131 {
2132         struct btrfs_transaction *cur_trans = trans->transaction;
2133
2134         if (!trans->pending_snapshot)
2135                 return;
2136
2137         lockdep_assert_held(&trans->fs_info->trans_lock);
2138         ASSERT(cur_trans->state >= TRANS_STATE_COMMIT_PREP);
2139
2140         list_add(&trans->pending_snapshot->list, &cur_trans->pending_snapshots);
2141 }
2142
2143 static void update_commit_stats(struct btrfs_fs_info *fs_info, ktime_t interval)
2144 {
2145         fs_info->commit_stats.commit_count++;
2146         fs_info->commit_stats.last_commit_dur = interval;
2147         fs_info->commit_stats.max_commit_dur =
2148                         max_t(u64, fs_info->commit_stats.max_commit_dur, interval);
2149         fs_info->commit_stats.total_commit_dur += interval;
2150 }
2151
2152 int btrfs_commit_transaction(struct btrfs_trans_handle *trans)
2153 {
2154         struct btrfs_fs_info *fs_info = trans->fs_info;
2155         struct btrfs_transaction *cur_trans = trans->transaction;
2156         struct btrfs_transaction *prev_trans = NULL;
2157         int ret;
2158         ktime_t start_time;
2159         ktime_t interval;
2160
2161         ASSERT(refcount_read(&trans->use_count) == 1);
2162         btrfs_trans_state_lockdep_acquire(fs_info, BTRFS_LOCKDEP_TRANS_COMMIT_PREP);
2163
2164         clear_bit(BTRFS_FS_NEED_TRANS_COMMIT, &fs_info->flags);
2165
2166         /* Stop the commit early if ->aborted is set */
2167         if (TRANS_ABORTED(cur_trans)) {
2168                 ret = cur_trans->aborted;
2169                 goto lockdep_trans_commit_start_release;
2170         }
2171
2172         btrfs_trans_release_metadata(trans);
2173         trans->block_rsv = NULL;
2174
2175         /*
2176          * We only want one transaction commit doing the flushing so we do not
2177          * waste a bunch of time on lock contention on the extent root node.
2178          */
2179         if (!test_and_set_bit(BTRFS_DELAYED_REFS_FLUSHING,
2180                               &cur_trans->delayed_refs.flags)) {
2181                 /*
2182                  * Make a pass through all the delayed refs we have so far.
2183                  * Any running threads may add more while we are here.
2184                  */
2185                 ret = btrfs_run_delayed_refs(trans, 0);
2186                 if (ret)
2187                         goto lockdep_trans_commit_start_release;
2188         }
2189
2190         btrfs_create_pending_block_groups(trans);
2191
2192         if (!test_bit(BTRFS_TRANS_DIRTY_BG_RUN, &cur_trans->flags)) {
2193                 int run_it = 0;
2194
2195                 /* this mutex is also taken before trying to set
2196                  * block groups readonly.  We need to make sure
2197                  * that nobody has set a block group readonly
2198                  * after a extents from that block group have been
2199                  * allocated for cache files.  btrfs_set_block_group_ro
2200                  * will wait for the transaction to commit if it
2201                  * finds BTRFS_TRANS_DIRTY_BG_RUN set.
2202                  *
2203                  * The BTRFS_TRANS_DIRTY_BG_RUN flag is also used to make sure
2204                  * only one process starts all the block group IO.  It wouldn't
2205                  * hurt to have more than one go through, but there's no
2206                  * real advantage to it either.
2207                  */
2208                 mutex_lock(&fs_info->ro_block_group_mutex);
2209                 if (!test_and_set_bit(BTRFS_TRANS_DIRTY_BG_RUN,
2210                                       &cur_trans->flags))
2211                         run_it = 1;
2212                 mutex_unlock(&fs_info->ro_block_group_mutex);
2213
2214                 if (run_it) {
2215                         ret = btrfs_start_dirty_block_groups(trans);
2216                         if (ret)
2217                                 goto lockdep_trans_commit_start_release;
2218                 }
2219         }
2220
2221         spin_lock(&fs_info->trans_lock);
2222         if (cur_trans->state >= TRANS_STATE_COMMIT_PREP) {
2223                 enum btrfs_trans_state want_state = TRANS_STATE_COMPLETED;
2224
2225                 add_pending_snapshot(trans);
2226
2227                 spin_unlock(&fs_info->trans_lock);
2228                 refcount_inc(&cur_trans->use_count);
2229
2230                 if (trans->in_fsync)
2231                         want_state = TRANS_STATE_SUPER_COMMITTED;
2232
2233                 btrfs_trans_state_lockdep_release(fs_info,
2234                                                   BTRFS_LOCKDEP_TRANS_COMMIT_PREP);
2235                 ret = btrfs_end_transaction(trans);
2236                 wait_for_commit(cur_trans, want_state);
2237
2238                 if (TRANS_ABORTED(cur_trans))
2239                         ret = cur_trans->aborted;
2240
2241                 btrfs_put_transaction(cur_trans);
2242
2243                 return ret;
2244         }
2245
2246         cur_trans->state = TRANS_STATE_COMMIT_PREP;
2247         wake_up(&fs_info->transaction_blocked_wait);
2248         btrfs_trans_state_lockdep_release(fs_info, BTRFS_LOCKDEP_TRANS_COMMIT_PREP);
2249
2250         if (cur_trans->list.prev != &fs_info->trans_list) {
2251                 enum btrfs_trans_state want_state = TRANS_STATE_COMPLETED;
2252
2253                 if (trans->in_fsync)
2254                         want_state = TRANS_STATE_SUPER_COMMITTED;
2255
2256                 prev_trans = list_entry(cur_trans->list.prev,
2257                                         struct btrfs_transaction, list);
2258                 if (prev_trans->state < want_state) {
2259                         refcount_inc(&prev_trans->use_count);
2260                         spin_unlock(&fs_info->trans_lock);
2261
2262                         wait_for_commit(prev_trans, want_state);
2263
2264                         ret = READ_ONCE(prev_trans->aborted);
2265
2266                         btrfs_put_transaction(prev_trans);
2267                         if (ret)
2268                                 goto lockdep_release;
2269                         spin_lock(&fs_info->trans_lock);
2270                 }
2271         } else {
2272                 /*
2273                  * The previous transaction was aborted and was already removed
2274                  * from the list of transactions at fs_info->trans_list. So we
2275                  * abort to prevent writing a new superblock that reflects a
2276                  * corrupt state (pointing to trees with unwritten nodes/leafs).
2277                  */
2278                 if (BTRFS_FS_ERROR(fs_info)) {
2279                         spin_unlock(&fs_info->trans_lock);
2280                         ret = -EROFS;
2281                         goto lockdep_release;
2282                 }
2283         }
2284
2285         cur_trans->state = TRANS_STATE_COMMIT_START;
2286         wake_up(&fs_info->transaction_blocked_wait);
2287         spin_unlock(&fs_info->trans_lock);
2288
2289         /*
2290          * Get the time spent on the work done by the commit thread and not
2291          * the time spent waiting on a previous commit
2292          */
2293         start_time = ktime_get_ns();
2294
2295         extwriter_counter_dec(cur_trans, trans->type);
2296
2297         ret = btrfs_start_delalloc_flush(fs_info);
2298         if (ret)
2299                 goto lockdep_release;
2300
2301         ret = btrfs_run_delayed_items(trans);
2302         if (ret)
2303                 goto lockdep_release;
2304
2305         /*
2306          * The thread has started/joined the transaction thus it holds the
2307          * lockdep map as a reader. It has to release it before acquiring the
2308          * lockdep map as a writer.
2309          */
2310         btrfs_lockdep_release(fs_info, btrfs_trans_num_extwriters);
2311         btrfs_might_wait_for_event(fs_info, btrfs_trans_num_extwriters);
2312         wait_event(cur_trans->writer_wait,
2313                    extwriter_counter_read(cur_trans) == 0);
2314
2315         /* some pending stuffs might be added after the previous flush. */
2316         ret = btrfs_run_delayed_items(trans);
2317         if (ret) {
2318                 btrfs_lockdep_release(fs_info, btrfs_trans_num_writers);
2319                 goto cleanup_transaction;
2320         }
2321
2322         btrfs_wait_delalloc_flush(fs_info);
2323
2324         /*
2325          * Wait for all ordered extents started by a fast fsync that joined this
2326          * transaction. Otherwise if this transaction commits before the ordered
2327          * extents complete we lose logged data after a power failure.
2328          */
2329         btrfs_might_wait_for_event(fs_info, btrfs_trans_pending_ordered);
2330         wait_event(cur_trans->pending_wait,
2331                    atomic_read(&cur_trans->pending_ordered) == 0);
2332
2333         btrfs_scrub_pause(fs_info);
2334         /*
2335          * Ok now we need to make sure to block out any other joins while we
2336          * commit the transaction.  We could have started a join before setting
2337          * COMMIT_DOING so make sure to wait for num_writers to == 1 again.
2338          */
2339         spin_lock(&fs_info->trans_lock);
2340         add_pending_snapshot(trans);
2341         cur_trans->state = TRANS_STATE_COMMIT_DOING;
2342         spin_unlock(&fs_info->trans_lock);
2343
2344         /*
2345          * The thread has started/joined the transaction thus it holds the
2346          * lockdep map as a reader. It has to release it before acquiring the
2347          * lockdep map as a writer.
2348          */
2349         btrfs_lockdep_release(fs_info, btrfs_trans_num_writers);
2350         btrfs_might_wait_for_event(fs_info, btrfs_trans_num_writers);
2351         wait_event(cur_trans->writer_wait,
2352                    atomic_read(&cur_trans->num_writers) == 1);
2353
2354         /*
2355          * Make lockdep happy by acquiring the state locks after
2356          * btrfs_trans_num_writers is released. If we acquired the state locks
2357          * before releasing the btrfs_trans_num_writers lock then lockdep would
2358          * complain because we did not follow the reverse order unlocking rule.
2359          */
2360         btrfs_trans_state_lockdep_acquire(fs_info, BTRFS_LOCKDEP_TRANS_COMPLETED);
2361         btrfs_trans_state_lockdep_acquire(fs_info, BTRFS_LOCKDEP_TRANS_SUPER_COMMITTED);
2362         btrfs_trans_state_lockdep_acquire(fs_info, BTRFS_LOCKDEP_TRANS_UNBLOCKED);
2363
2364         /*
2365          * We've started the commit, clear the flag in case we were triggered to
2366          * do an async commit but somebody else started before the transaction
2367          * kthread could do the work.
2368          */
2369         clear_bit(BTRFS_FS_COMMIT_TRANS, &fs_info->flags);
2370
2371         if (TRANS_ABORTED(cur_trans)) {
2372                 ret = cur_trans->aborted;
2373                 btrfs_trans_state_lockdep_release(fs_info, BTRFS_LOCKDEP_TRANS_UNBLOCKED);
2374                 goto scrub_continue;
2375         }
2376         /*
2377          * the reloc mutex makes sure that we stop
2378          * the balancing code from coming in and moving
2379          * extents around in the middle of the commit
2380          */
2381         mutex_lock(&fs_info->reloc_mutex);
2382
2383         /*
2384          * We needn't worry about the delayed items because we will
2385          * deal with them in create_pending_snapshot(), which is the
2386          * core function of the snapshot creation.
2387          */
2388         ret = create_pending_snapshots(trans);
2389         if (ret)
2390                 goto unlock_reloc;
2391
2392         /*
2393          * We insert the dir indexes of the snapshots and update the inode
2394          * of the snapshots' parents after the snapshot creation, so there
2395          * are some delayed items which are not dealt with. Now deal with
2396          * them.
2397          *
2398          * We needn't worry that this operation will corrupt the snapshots,
2399          * because all the tree which are snapshoted will be forced to COW
2400          * the nodes and leaves.
2401          */
2402         ret = btrfs_run_delayed_items(trans);
2403         if (ret)
2404                 goto unlock_reloc;
2405
2406         ret = btrfs_run_delayed_refs(trans, U64_MAX);
2407         if (ret)
2408                 goto unlock_reloc;
2409
2410         /*
2411          * make sure none of the code above managed to slip in a
2412          * delayed item
2413          */
2414         btrfs_assert_delayed_root_empty(fs_info);
2415
2416         WARN_ON(cur_trans != trans->transaction);
2417
2418         ret = commit_fs_roots(trans);
2419         if (ret)
2420                 goto unlock_reloc;
2421
2422         /* commit_fs_roots gets rid of all the tree log roots, it is now
2423          * safe to free the root of tree log roots
2424          */
2425         btrfs_free_log_root_tree(trans, fs_info);
2426
2427         /*
2428          * Since fs roots are all committed, we can get a quite accurate
2429          * new_roots. So let's do quota accounting.
2430          */
2431         ret = btrfs_qgroup_account_extents(trans);
2432         if (ret < 0)
2433                 goto unlock_reloc;
2434
2435         ret = commit_cowonly_roots(trans);
2436         if (ret)
2437                 goto unlock_reloc;
2438
2439         /*
2440          * The tasks which save the space cache and inode cache may also
2441          * update ->aborted, check it.
2442          */
2443         if (TRANS_ABORTED(cur_trans)) {
2444                 ret = cur_trans->aborted;
2445                 goto unlock_reloc;
2446         }
2447
2448         cur_trans = fs_info->running_transaction;
2449
2450         btrfs_set_root_node(&fs_info->tree_root->root_item,
2451                             fs_info->tree_root->node);
2452         list_add_tail(&fs_info->tree_root->dirty_list,
2453                       &cur_trans->switch_commits);
2454
2455         btrfs_set_root_node(&fs_info->chunk_root->root_item,
2456                             fs_info->chunk_root->node);
2457         list_add_tail(&fs_info->chunk_root->dirty_list,
2458                       &cur_trans->switch_commits);
2459
2460         if (btrfs_fs_incompat(fs_info, EXTENT_TREE_V2)) {
2461                 btrfs_set_root_node(&fs_info->block_group_root->root_item,
2462                                     fs_info->block_group_root->node);
2463                 list_add_tail(&fs_info->block_group_root->dirty_list,
2464                               &cur_trans->switch_commits);
2465         }
2466
2467         switch_commit_roots(trans);
2468
2469         ASSERT(list_empty(&cur_trans->dirty_bgs));
2470         ASSERT(list_empty(&cur_trans->io_bgs));
2471         update_super_roots(fs_info);
2472
2473         btrfs_set_super_log_root(fs_info->super_copy, 0);
2474         btrfs_set_super_log_root_level(fs_info->super_copy, 0);
2475         memcpy(fs_info->super_for_commit, fs_info->super_copy,
2476                sizeof(*fs_info->super_copy));
2477
2478         btrfs_commit_device_sizes(cur_trans);
2479
2480         clear_bit(BTRFS_FS_LOG1_ERR, &fs_info->flags);
2481         clear_bit(BTRFS_FS_LOG2_ERR, &fs_info->flags);
2482
2483         btrfs_trans_release_chunk_metadata(trans);
2484
2485         /*
2486          * Before changing the transaction state to TRANS_STATE_UNBLOCKED and
2487          * setting fs_info->running_transaction to NULL, lock tree_log_mutex to
2488          * make sure that before we commit our superblock, no other task can
2489          * start a new transaction and commit a log tree before we commit our
2490          * superblock. Anyone trying to commit a log tree locks this mutex before
2491          * writing its superblock.
2492          */
2493         mutex_lock(&fs_info->tree_log_mutex);
2494
2495         spin_lock(&fs_info->trans_lock);
2496         cur_trans->state = TRANS_STATE_UNBLOCKED;
2497         fs_info->running_transaction = NULL;
2498         spin_unlock(&fs_info->trans_lock);
2499         mutex_unlock(&fs_info->reloc_mutex);
2500
2501         wake_up(&fs_info->transaction_wait);
2502         btrfs_trans_state_lockdep_release(fs_info, BTRFS_LOCKDEP_TRANS_UNBLOCKED);
2503
2504         /* If we have features changed, wake up the cleaner to update sysfs. */
2505         if (test_bit(BTRFS_FS_FEATURE_CHANGED, &fs_info->flags) &&
2506             fs_info->cleaner_kthread)
2507                 wake_up_process(fs_info->cleaner_kthread);
2508
2509         ret = btrfs_write_and_wait_transaction(trans);
2510         if (ret) {
2511                 btrfs_handle_fs_error(fs_info, ret,
2512                                       "Error while writing out transaction");
2513                 mutex_unlock(&fs_info->tree_log_mutex);
2514                 goto scrub_continue;
2515         }
2516
2517         ret = write_all_supers(fs_info, 0);
2518         /*
2519          * the super is written, we can safely allow the tree-loggers
2520          * to go about their business
2521          */
2522         mutex_unlock(&fs_info->tree_log_mutex);
2523         if (ret)
2524                 goto scrub_continue;
2525
2526         /*
2527          * We needn't acquire the lock here because there is no other task
2528          * which can change it.
2529          */
2530         cur_trans->state = TRANS_STATE_SUPER_COMMITTED;
2531         wake_up(&cur_trans->commit_wait);
2532         btrfs_trans_state_lockdep_release(fs_info, BTRFS_LOCKDEP_TRANS_SUPER_COMMITTED);
2533
2534         btrfs_finish_extent_commit(trans);
2535
2536         if (test_bit(BTRFS_TRANS_HAVE_FREE_BGS, &cur_trans->flags))
2537                 btrfs_clear_space_info_full(fs_info);
2538
2539         btrfs_set_last_trans_committed(fs_info, cur_trans->transid);
2540         /*
2541          * We needn't acquire the lock here because there is no other task
2542          * which can change it.
2543          */
2544         cur_trans->state = TRANS_STATE_COMPLETED;
2545         wake_up(&cur_trans->commit_wait);
2546         btrfs_trans_state_lockdep_release(fs_info, BTRFS_LOCKDEP_TRANS_COMPLETED);
2547
2548         spin_lock(&fs_info->trans_lock);
2549         list_del_init(&cur_trans->list);
2550         spin_unlock(&fs_info->trans_lock);
2551
2552         btrfs_put_transaction(cur_trans);
2553         btrfs_put_transaction(cur_trans);
2554
2555         if (trans->type & __TRANS_FREEZABLE)
2556                 sb_end_intwrite(fs_info->sb);
2557
2558         trace_btrfs_transaction_commit(fs_info);
2559
2560         interval = ktime_get_ns() - start_time;
2561
2562         btrfs_scrub_continue(fs_info);
2563
2564         if (current->journal_info == trans)
2565                 current->journal_info = NULL;
2566
2567         kmem_cache_free(btrfs_trans_handle_cachep, trans);
2568
2569         update_commit_stats(fs_info, interval);
2570
2571         return ret;
2572
2573 unlock_reloc:
2574         mutex_unlock(&fs_info->reloc_mutex);
2575         btrfs_trans_state_lockdep_release(fs_info, BTRFS_LOCKDEP_TRANS_UNBLOCKED);
2576 scrub_continue:
2577         btrfs_trans_state_lockdep_release(fs_info, BTRFS_LOCKDEP_TRANS_SUPER_COMMITTED);
2578         btrfs_trans_state_lockdep_release(fs_info, BTRFS_LOCKDEP_TRANS_COMPLETED);
2579         btrfs_scrub_continue(fs_info);
2580 cleanup_transaction:
2581         btrfs_trans_release_metadata(trans);
2582         btrfs_cleanup_pending_block_groups(trans);
2583         btrfs_trans_release_chunk_metadata(trans);
2584         trans->block_rsv = NULL;
2585         btrfs_warn(fs_info, "Skipping commit of aborted transaction.");
2586         if (current->journal_info == trans)
2587                 current->journal_info = NULL;
2588         cleanup_transaction(trans, ret);
2589
2590         return ret;
2591
2592 lockdep_release:
2593         btrfs_lockdep_release(fs_info, btrfs_trans_num_extwriters);
2594         btrfs_lockdep_release(fs_info, btrfs_trans_num_writers);
2595         goto cleanup_transaction;
2596
2597 lockdep_trans_commit_start_release:
2598         btrfs_trans_state_lockdep_release(fs_info, BTRFS_LOCKDEP_TRANS_COMMIT_PREP);
2599         btrfs_end_transaction(trans);
2600         return ret;
2601 }
2602
2603 /*
2604  * return < 0 if error
2605  * 0 if there are no more dead_roots at the time of call
2606  * 1 there are more to be processed, call me again
2607  *
2608  * The return value indicates there are certainly more snapshots to delete, but
2609  * if there comes a new one during processing, it may return 0. We don't mind,
2610  * because btrfs_commit_super will poke cleaner thread and it will process it a
2611  * few seconds later.
2612  */
2613 int btrfs_clean_one_deleted_snapshot(struct btrfs_fs_info *fs_info)
2614 {
2615         struct btrfs_root *root;
2616         int ret;
2617
2618         spin_lock(&fs_info->trans_lock);
2619         if (list_empty(&fs_info->dead_roots)) {
2620                 spin_unlock(&fs_info->trans_lock);
2621                 return 0;
2622         }
2623         root = list_first_entry(&fs_info->dead_roots,
2624                         struct btrfs_root, root_list);
2625         list_del_init(&root->root_list);
2626         spin_unlock(&fs_info->trans_lock);
2627
2628         btrfs_debug(fs_info, "cleaner removing %llu", root->root_key.objectid);
2629
2630         btrfs_kill_all_delayed_nodes(root);
2631
2632         if (btrfs_header_backref_rev(root->node) <
2633                         BTRFS_MIXED_BACKREF_REV)
2634                 ret = btrfs_drop_snapshot(root, 0, 0);
2635         else
2636                 ret = btrfs_drop_snapshot(root, 1, 0);
2637
2638         btrfs_put_root(root);
2639         return (ret < 0) ? 0 : 1;
2640 }
2641
2642 /*
2643  * We only mark the transaction aborted and then set the file system read-only.
2644  * This will prevent new transactions from starting or trying to join this
2645  * one.
2646  *
2647  * This means that error recovery at the call site is limited to freeing
2648  * any local memory allocations and passing the error code up without
2649  * further cleanup. The transaction should complete as it normally would
2650  * in the call path but will return -EIO.
2651  *
2652  * We'll complete the cleanup in btrfs_end_transaction and
2653  * btrfs_commit_transaction.
2654  */
2655 void __cold __btrfs_abort_transaction(struct btrfs_trans_handle *trans,
2656                                       const char *function,
2657                                       unsigned int line, int error, bool first_hit)
2658 {
2659         struct btrfs_fs_info *fs_info = trans->fs_info;
2660
2661         WRITE_ONCE(trans->aborted, error);
2662         WRITE_ONCE(trans->transaction->aborted, error);
2663         if (first_hit && error == -ENOSPC)
2664                 btrfs_dump_space_info_for_trans_abort(fs_info);
2665         /* Wake up anybody who may be waiting on this transaction */
2666         wake_up(&fs_info->transaction_wait);
2667         wake_up(&fs_info->transaction_blocked_wait);
2668         __btrfs_handle_fs_error(fs_info, function, line, error, NULL);
2669 }
2670
2671 int __init btrfs_transaction_init(void)
2672 {
2673         btrfs_trans_handle_cachep = KMEM_CACHE(btrfs_trans_handle, SLAB_TEMPORARY);
2674         if (!btrfs_trans_handle_cachep)
2675                 return -ENOMEM;
2676         return 0;
2677 }
2678
2679 void __cold btrfs_transaction_exit(void)
2680 {
2681         kmem_cache_destroy(btrfs_trans_handle_cachep);
2682 }