GNU Linux-libre 5.19-rc6-gnu
[releases.git] / fs / btrfs / transaction.c
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * Copyright (C) 2007 Oracle.  All rights reserved.
4  */
5
6 #include <linux/fs.h>
7 #include <linux/slab.h>
8 #include <linux/sched.h>
9 #include <linux/writeback.h>
10 #include <linux/pagemap.h>
11 #include <linux/blkdev.h>
12 #include <linux/uuid.h>
13 #include "misc.h"
14 #include "ctree.h"
15 #include "disk-io.h"
16 #include "transaction.h"
17 #include "locking.h"
18 #include "tree-log.h"
19 #include "volumes.h"
20 #include "dev-replace.h"
21 #include "qgroup.h"
22 #include "block-group.h"
23 #include "space-info.h"
24 #include "zoned.h"
25
26 #define BTRFS_ROOT_TRANS_TAG                            XA_MARK_0
27
28 /*
29  * Transaction states and transitions
30  *
31  * No running transaction (fs tree blocks are not modified)
32  * |
33  * | To next stage:
34  * |  Call start_transaction() variants. Except btrfs_join_transaction_nostart().
35  * V
36  * Transaction N [[TRANS_STATE_RUNNING]]
37  * |
38  * | New trans handles can be attached to transaction N by calling all
39  * | start_transaction() variants.
40  * |
41  * | To next stage:
42  * |  Call btrfs_commit_transaction() on any trans handle attached to
43  * |  transaction N
44  * V
45  * Transaction N [[TRANS_STATE_COMMIT_START]]
46  * |
47  * | Will wait for previous running transaction to completely finish if there
48  * | is one
49  * |
50  * | Then one of the following happes:
51  * | - Wait for all other trans handle holders to release.
52  * |   The btrfs_commit_transaction() caller will do the commit work.
53  * | - Wait for current transaction to be committed by others.
54  * |   Other btrfs_commit_transaction() caller will do the commit work.
55  * |
56  * | At this stage, only btrfs_join_transaction*() variants can attach
57  * | to this running transaction.
58  * | All other variants will wait for current one to finish and attach to
59  * | transaction N+1.
60  * |
61  * | To next stage:
62  * |  Caller is chosen to commit transaction N, and all other trans handle
63  * |  haven been released.
64  * V
65  * Transaction N [[TRANS_STATE_COMMIT_DOING]]
66  * |
67  * | The heavy lifting transaction work is started.
68  * | From running delayed refs (modifying extent tree) to creating pending
69  * | snapshots, running qgroups.
70  * | In short, modify supporting trees to reflect modifications of subvolume
71  * | trees.
72  * |
73  * | At this stage, all start_transaction() calls will wait for this
74  * | transaction to finish and attach to transaction N+1.
75  * |
76  * | To next stage:
77  * |  Until all supporting trees are updated.
78  * V
79  * Transaction N [[TRANS_STATE_UNBLOCKED]]
80  * |                                                Transaction N+1
81  * | All needed trees are modified, thus we only    [[TRANS_STATE_RUNNING]]
82  * | need to write them back to disk and update     |
83  * | super blocks.                                  |
84  * |                                                |
85  * | At this stage, new transaction is allowed to   |
86  * | start.                                         |
87  * | All new start_transaction() calls will be      |
88  * | attached to transid N+1.                       |
89  * |                                                |
90  * | To next stage:                                 |
91  * |  Until all tree blocks are super blocks are    |
92  * |  written to block devices                      |
93  * V                                                |
94  * Transaction N [[TRANS_STATE_COMPLETED]]          V
95  *   All tree blocks and super blocks are written.  Transaction N+1
96  *   This transaction is finished and all its       [[TRANS_STATE_COMMIT_START]]
97  *   data structures will be cleaned up.            | Life goes on
98  */
99 static const unsigned int btrfs_blocked_trans_types[TRANS_STATE_MAX] = {
100         [TRANS_STATE_RUNNING]           = 0U,
101         [TRANS_STATE_COMMIT_START]      = (__TRANS_START | __TRANS_ATTACH),
102         [TRANS_STATE_COMMIT_DOING]      = (__TRANS_START |
103                                            __TRANS_ATTACH |
104                                            __TRANS_JOIN |
105                                            __TRANS_JOIN_NOSTART),
106         [TRANS_STATE_UNBLOCKED]         = (__TRANS_START |
107                                            __TRANS_ATTACH |
108                                            __TRANS_JOIN |
109                                            __TRANS_JOIN_NOLOCK |
110                                            __TRANS_JOIN_NOSTART),
111         [TRANS_STATE_SUPER_COMMITTED]   = (__TRANS_START |
112                                            __TRANS_ATTACH |
113                                            __TRANS_JOIN |
114                                            __TRANS_JOIN_NOLOCK |
115                                            __TRANS_JOIN_NOSTART),
116         [TRANS_STATE_COMPLETED]         = (__TRANS_START |
117                                            __TRANS_ATTACH |
118                                            __TRANS_JOIN |
119                                            __TRANS_JOIN_NOLOCK |
120                                            __TRANS_JOIN_NOSTART),
121 };
122
123 void btrfs_put_transaction(struct btrfs_transaction *transaction)
124 {
125         WARN_ON(refcount_read(&transaction->use_count) == 0);
126         if (refcount_dec_and_test(&transaction->use_count)) {
127                 BUG_ON(!list_empty(&transaction->list));
128                 WARN_ON(!RB_EMPTY_ROOT(
129                                 &transaction->delayed_refs.href_root.rb_root));
130                 WARN_ON(!RB_EMPTY_ROOT(
131                                 &transaction->delayed_refs.dirty_extent_root));
132                 if (transaction->delayed_refs.pending_csums)
133                         btrfs_err(transaction->fs_info,
134                                   "pending csums is %llu",
135                                   transaction->delayed_refs.pending_csums);
136                 /*
137                  * If any block groups are found in ->deleted_bgs then it's
138                  * because the transaction was aborted and a commit did not
139                  * happen (things failed before writing the new superblock
140                  * and calling btrfs_finish_extent_commit()), so we can not
141                  * discard the physical locations of the block groups.
142                  */
143                 while (!list_empty(&transaction->deleted_bgs)) {
144                         struct btrfs_block_group *cache;
145
146                         cache = list_first_entry(&transaction->deleted_bgs,
147                                                  struct btrfs_block_group,
148                                                  bg_list);
149                         list_del_init(&cache->bg_list);
150                         btrfs_unfreeze_block_group(cache);
151                         btrfs_put_block_group(cache);
152                 }
153                 WARN_ON(!list_empty(&transaction->dev_update_list));
154                 kfree(transaction);
155         }
156 }
157
158 static noinline void switch_commit_roots(struct btrfs_trans_handle *trans)
159 {
160         struct btrfs_transaction *cur_trans = trans->transaction;
161         struct btrfs_fs_info *fs_info = trans->fs_info;
162         struct btrfs_root *root, *tmp;
163         struct btrfs_caching_control *caching_ctl, *next;
164
165         /*
166          * At this point no one can be using this transaction to modify any tree
167          * and no one can start another transaction to modify any tree either.
168          */
169         ASSERT(cur_trans->state == TRANS_STATE_COMMIT_DOING);
170
171         down_write(&fs_info->commit_root_sem);
172
173         if (test_bit(BTRFS_FS_RELOC_RUNNING, &fs_info->flags))
174                 fs_info->last_reloc_trans = trans->transid;
175
176         list_for_each_entry_safe(root, tmp, &cur_trans->switch_commits,
177                                  dirty_list) {
178                 list_del_init(&root->dirty_list);
179                 free_extent_buffer(root->commit_root);
180                 root->commit_root = btrfs_root_node(root);
181                 extent_io_tree_release(&root->dirty_log_pages);
182                 btrfs_qgroup_clean_swapped_blocks(root);
183         }
184
185         /* We can free old roots now. */
186         spin_lock(&cur_trans->dropped_roots_lock);
187         while (!list_empty(&cur_trans->dropped_roots)) {
188                 root = list_first_entry(&cur_trans->dropped_roots,
189                                         struct btrfs_root, root_list);
190                 list_del_init(&root->root_list);
191                 spin_unlock(&cur_trans->dropped_roots_lock);
192                 btrfs_free_log(trans, root);
193                 btrfs_drop_and_free_fs_root(fs_info, root);
194                 spin_lock(&cur_trans->dropped_roots_lock);
195         }
196         spin_unlock(&cur_trans->dropped_roots_lock);
197
198         /*
199          * We have to update the last_byte_to_unpin under the commit_root_sem,
200          * at the same time we swap out the commit roots.
201          *
202          * This is because we must have a real view of the last spot the caching
203          * kthreads were while caching.  Consider the following views of the
204          * extent tree for a block group
205          *
206          * commit root
207          * +----+----+----+----+----+----+----+
208          * |\\\\|    |\\\\|\\\\|    |\\\\|\\\\|
209          * +----+----+----+----+----+----+----+
210          * 0    1    2    3    4    5    6    7
211          *
212          * new commit root
213          * +----+----+----+----+----+----+----+
214          * |    |    |    |\\\\|    |    |\\\\|
215          * +----+----+----+----+----+----+----+
216          * 0    1    2    3    4    5    6    7
217          *
218          * If the cache_ctl->progress was at 3, then we are only allowed to
219          * unpin [0,1) and [2,3], because the caching thread has already
220          * processed those extents.  We are not allowed to unpin [5,6), because
221          * the caching thread will re-start it's search from 3, and thus find
222          * the hole from [4,6) to add to the free space cache.
223          */
224         write_lock(&fs_info->block_group_cache_lock);
225         list_for_each_entry_safe(caching_ctl, next,
226                                  &fs_info->caching_block_groups, list) {
227                 struct btrfs_block_group *cache = caching_ctl->block_group;
228
229                 if (btrfs_block_group_done(cache)) {
230                         cache->last_byte_to_unpin = (u64)-1;
231                         list_del_init(&caching_ctl->list);
232                         btrfs_put_caching_control(caching_ctl);
233                 } else {
234                         cache->last_byte_to_unpin = caching_ctl->progress;
235                 }
236         }
237         write_unlock(&fs_info->block_group_cache_lock);
238         up_write(&fs_info->commit_root_sem);
239 }
240
241 static inline void extwriter_counter_inc(struct btrfs_transaction *trans,
242                                          unsigned int type)
243 {
244         if (type & TRANS_EXTWRITERS)
245                 atomic_inc(&trans->num_extwriters);
246 }
247
248 static inline void extwriter_counter_dec(struct btrfs_transaction *trans,
249                                          unsigned int type)
250 {
251         if (type & TRANS_EXTWRITERS)
252                 atomic_dec(&trans->num_extwriters);
253 }
254
255 static inline void extwriter_counter_init(struct btrfs_transaction *trans,
256                                           unsigned int type)
257 {
258         atomic_set(&trans->num_extwriters, ((type & TRANS_EXTWRITERS) ? 1 : 0));
259 }
260
261 static inline int extwriter_counter_read(struct btrfs_transaction *trans)
262 {
263         return atomic_read(&trans->num_extwriters);
264 }
265
266 /*
267  * To be called after doing the chunk btree updates right after allocating a new
268  * chunk (after btrfs_chunk_alloc_add_chunk_item() is called), when removing a
269  * chunk after all chunk btree updates and after finishing the second phase of
270  * chunk allocation (btrfs_create_pending_block_groups()) in case some block
271  * group had its chunk item insertion delayed to the second phase.
272  */
273 void btrfs_trans_release_chunk_metadata(struct btrfs_trans_handle *trans)
274 {
275         struct btrfs_fs_info *fs_info = trans->fs_info;
276
277         if (!trans->chunk_bytes_reserved)
278                 return;
279
280         btrfs_block_rsv_release(fs_info, &fs_info->chunk_block_rsv,
281                                 trans->chunk_bytes_reserved, NULL);
282         trans->chunk_bytes_reserved = 0;
283 }
284
285 /*
286  * either allocate a new transaction or hop into the existing one
287  */
288 static noinline int join_transaction(struct btrfs_fs_info *fs_info,
289                                      unsigned int type)
290 {
291         struct btrfs_transaction *cur_trans;
292
293         spin_lock(&fs_info->trans_lock);
294 loop:
295         /* The file system has been taken offline. No new transactions. */
296         if (BTRFS_FS_ERROR(fs_info)) {
297                 spin_unlock(&fs_info->trans_lock);
298                 return -EROFS;
299         }
300
301         cur_trans = fs_info->running_transaction;
302         if (cur_trans) {
303                 if (TRANS_ABORTED(cur_trans)) {
304                         spin_unlock(&fs_info->trans_lock);
305                         return cur_trans->aborted;
306                 }
307                 if (btrfs_blocked_trans_types[cur_trans->state] & type) {
308                         spin_unlock(&fs_info->trans_lock);
309                         return -EBUSY;
310                 }
311                 refcount_inc(&cur_trans->use_count);
312                 atomic_inc(&cur_trans->num_writers);
313                 extwriter_counter_inc(cur_trans, type);
314                 spin_unlock(&fs_info->trans_lock);
315                 return 0;
316         }
317         spin_unlock(&fs_info->trans_lock);
318
319         /*
320          * If we are ATTACH, we just want to catch the current transaction,
321          * and commit it. If there is no transaction, just return ENOENT.
322          */
323         if (type == TRANS_ATTACH)
324                 return -ENOENT;
325
326         /*
327          * JOIN_NOLOCK only happens during the transaction commit, so
328          * it is impossible that ->running_transaction is NULL
329          */
330         BUG_ON(type == TRANS_JOIN_NOLOCK);
331
332         cur_trans = kmalloc(sizeof(*cur_trans), GFP_NOFS);
333         if (!cur_trans)
334                 return -ENOMEM;
335
336         spin_lock(&fs_info->trans_lock);
337         if (fs_info->running_transaction) {
338                 /*
339                  * someone started a transaction after we unlocked.  Make sure
340                  * to redo the checks above
341                  */
342                 kfree(cur_trans);
343                 goto loop;
344         } else if (BTRFS_FS_ERROR(fs_info)) {
345                 spin_unlock(&fs_info->trans_lock);
346                 kfree(cur_trans);
347                 return -EROFS;
348         }
349
350         cur_trans->fs_info = fs_info;
351         atomic_set(&cur_trans->pending_ordered, 0);
352         init_waitqueue_head(&cur_trans->pending_wait);
353         atomic_set(&cur_trans->num_writers, 1);
354         extwriter_counter_init(cur_trans, type);
355         init_waitqueue_head(&cur_trans->writer_wait);
356         init_waitqueue_head(&cur_trans->commit_wait);
357         cur_trans->state = TRANS_STATE_RUNNING;
358         /*
359          * One for this trans handle, one so it will live on until we
360          * commit the transaction.
361          */
362         refcount_set(&cur_trans->use_count, 2);
363         cur_trans->flags = 0;
364         cur_trans->start_time = ktime_get_seconds();
365
366         memset(&cur_trans->delayed_refs, 0, sizeof(cur_trans->delayed_refs));
367
368         cur_trans->delayed_refs.href_root = RB_ROOT_CACHED;
369         cur_trans->delayed_refs.dirty_extent_root = RB_ROOT;
370         atomic_set(&cur_trans->delayed_refs.num_entries, 0);
371
372         /*
373          * although the tree mod log is per file system and not per transaction,
374          * the log must never go across transaction boundaries.
375          */
376         smp_mb();
377         if (!list_empty(&fs_info->tree_mod_seq_list))
378                 WARN(1, KERN_ERR "BTRFS: tree_mod_seq_list not empty when creating a fresh transaction\n");
379         if (!RB_EMPTY_ROOT(&fs_info->tree_mod_log))
380                 WARN(1, KERN_ERR "BTRFS: tree_mod_log rb tree not empty when creating a fresh transaction\n");
381         atomic64_set(&fs_info->tree_mod_seq, 0);
382
383         spin_lock_init(&cur_trans->delayed_refs.lock);
384
385         INIT_LIST_HEAD(&cur_trans->pending_snapshots);
386         INIT_LIST_HEAD(&cur_trans->dev_update_list);
387         INIT_LIST_HEAD(&cur_trans->switch_commits);
388         INIT_LIST_HEAD(&cur_trans->dirty_bgs);
389         INIT_LIST_HEAD(&cur_trans->io_bgs);
390         INIT_LIST_HEAD(&cur_trans->dropped_roots);
391         mutex_init(&cur_trans->cache_write_mutex);
392         spin_lock_init(&cur_trans->dirty_bgs_lock);
393         INIT_LIST_HEAD(&cur_trans->deleted_bgs);
394         spin_lock_init(&cur_trans->dropped_roots_lock);
395         INIT_LIST_HEAD(&cur_trans->releasing_ebs);
396         spin_lock_init(&cur_trans->releasing_ebs_lock);
397         list_add_tail(&cur_trans->list, &fs_info->trans_list);
398         extent_io_tree_init(fs_info, &cur_trans->dirty_pages,
399                         IO_TREE_TRANS_DIRTY_PAGES, fs_info->btree_inode);
400         extent_io_tree_init(fs_info, &cur_trans->pinned_extents,
401                         IO_TREE_FS_PINNED_EXTENTS, NULL);
402         fs_info->generation++;
403         cur_trans->transid = fs_info->generation;
404         fs_info->running_transaction = cur_trans;
405         cur_trans->aborted = 0;
406         spin_unlock(&fs_info->trans_lock);
407
408         return 0;
409 }
410
411 /*
412  * This does all the record keeping required to make sure that a shareable root
413  * is properly recorded in a given transaction.  This is required to make sure
414  * the old root from before we joined the transaction is deleted when the
415  * transaction commits.
416  */
417 static int record_root_in_trans(struct btrfs_trans_handle *trans,
418                                struct btrfs_root *root,
419                                int force)
420 {
421         struct btrfs_fs_info *fs_info = root->fs_info;
422         int ret = 0;
423
424         if ((test_bit(BTRFS_ROOT_SHAREABLE, &root->state) &&
425             root->last_trans < trans->transid) || force) {
426                 WARN_ON(!force && root->commit_root != root->node);
427
428                 /*
429                  * see below for IN_TRANS_SETUP usage rules
430                  * we have the reloc mutex held now, so there
431                  * is only one writer in this function
432                  */
433                 set_bit(BTRFS_ROOT_IN_TRANS_SETUP, &root->state);
434
435                 /* make sure readers find IN_TRANS_SETUP before
436                  * they find our root->last_trans update
437                  */
438                 smp_wmb();
439
440                 spin_lock(&fs_info->fs_roots_lock);
441                 if (root->last_trans == trans->transid && !force) {
442                         spin_unlock(&fs_info->fs_roots_lock);
443                         return 0;
444                 }
445                 xa_set_mark(&fs_info->fs_roots,
446                             (unsigned long)root->root_key.objectid,
447                             BTRFS_ROOT_TRANS_TAG);
448                 spin_unlock(&fs_info->fs_roots_lock);
449                 root->last_trans = trans->transid;
450
451                 /* this is pretty tricky.  We don't want to
452                  * take the relocation lock in btrfs_record_root_in_trans
453                  * unless we're really doing the first setup for this root in
454                  * this transaction.
455                  *
456                  * Normally we'd use root->last_trans as a flag to decide
457                  * if we want to take the expensive mutex.
458                  *
459                  * But, we have to set root->last_trans before we
460                  * init the relocation root, otherwise, we trip over warnings
461                  * in ctree.c.  The solution used here is to flag ourselves
462                  * with root IN_TRANS_SETUP.  When this is 1, we're still
463                  * fixing up the reloc trees and everyone must wait.
464                  *
465                  * When this is zero, they can trust root->last_trans and fly
466                  * through btrfs_record_root_in_trans without having to take the
467                  * lock.  smp_wmb() makes sure that all the writes above are
468                  * done before we pop in the zero below
469                  */
470                 ret = btrfs_init_reloc_root(trans, root);
471                 smp_mb__before_atomic();
472                 clear_bit(BTRFS_ROOT_IN_TRANS_SETUP, &root->state);
473         }
474         return ret;
475 }
476
477
478 void btrfs_add_dropped_root(struct btrfs_trans_handle *trans,
479                             struct btrfs_root *root)
480 {
481         struct btrfs_fs_info *fs_info = root->fs_info;
482         struct btrfs_transaction *cur_trans = trans->transaction;
483
484         /* Add ourselves to the transaction dropped list */
485         spin_lock(&cur_trans->dropped_roots_lock);
486         list_add_tail(&root->root_list, &cur_trans->dropped_roots);
487         spin_unlock(&cur_trans->dropped_roots_lock);
488
489         /* Make sure we don't try to update the root at commit time */
490         xa_clear_mark(&fs_info->fs_roots,
491                       (unsigned long)root->root_key.objectid,
492                       BTRFS_ROOT_TRANS_TAG);
493 }
494
495 int btrfs_record_root_in_trans(struct btrfs_trans_handle *trans,
496                                struct btrfs_root *root)
497 {
498         struct btrfs_fs_info *fs_info = root->fs_info;
499         int ret;
500
501         if (!test_bit(BTRFS_ROOT_SHAREABLE, &root->state))
502                 return 0;
503
504         /*
505          * see record_root_in_trans for comments about IN_TRANS_SETUP usage
506          * and barriers
507          */
508         smp_rmb();
509         if (root->last_trans == trans->transid &&
510             !test_bit(BTRFS_ROOT_IN_TRANS_SETUP, &root->state))
511                 return 0;
512
513         mutex_lock(&fs_info->reloc_mutex);
514         ret = record_root_in_trans(trans, root, 0);
515         mutex_unlock(&fs_info->reloc_mutex);
516
517         return ret;
518 }
519
520 static inline int is_transaction_blocked(struct btrfs_transaction *trans)
521 {
522         return (trans->state >= TRANS_STATE_COMMIT_START &&
523                 trans->state < TRANS_STATE_UNBLOCKED &&
524                 !TRANS_ABORTED(trans));
525 }
526
527 /* wait for commit against the current transaction to become unblocked
528  * when this is done, it is safe to start a new transaction, but the current
529  * transaction might not be fully on disk.
530  */
531 static void wait_current_trans(struct btrfs_fs_info *fs_info)
532 {
533         struct btrfs_transaction *cur_trans;
534
535         spin_lock(&fs_info->trans_lock);
536         cur_trans = fs_info->running_transaction;
537         if (cur_trans && is_transaction_blocked(cur_trans)) {
538                 refcount_inc(&cur_trans->use_count);
539                 spin_unlock(&fs_info->trans_lock);
540
541                 wait_event(fs_info->transaction_wait,
542                            cur_trans->state >= TRANS_STATE_UNBLOCKED ||
543                            TRANS_ABORTED(cur_trans));
544                 btrfs_put_transaction(cur_trans);
545         } else {
546                 spin_unlock(&fs_info->trans_lock);
547         }
548 }
549
550 static int may_wait_transaction(struct btrfs_fs_info *fs_info, int type)
551 {
552         if (test_bit(BTRFS_FS_LOG_RECOVERING, &fs_info->flags))
553                 return 0;
554
555         if (type == TRANS_START)
556                 return 1;
557
558         return 0;
559 }
560
561 static inline bool need_reserve_reloc_root(struct btrfs_root *root)
562 {
563         struct btrfs_fs_info *fs_info = root->fs_info;
564
565         if (!fs_info->reloc_ctl ||
566             !test_bit(BTRFS_ROOT_SHAREABLE, &root->state) ||
567             root->root_key.objectid == BTRFS_TREE_RELOC_OBJECTID ||
568             root->reloc_root)
569                 return false;
570
571         return true;
572 }
573
574 static struct btrfs_trans_handle *
575 start_transaction(struct btrfs_root *root, unsigned int num_items,
576                   unsigned int type, enum btrfs_reserve_flush_enum flush,
577                   bool enforce_qgroups)
578 {
579         struct btrfs_fs_info *fs_info = root->fs_info;
580         struct btrfs_block_rsv *delayed_refs_rsv = &fs_info->delayed_refs_rsv;
581         struct btrfs_trans_handle *h;
582         struct btrfs_transaction *cur_trans;
583         u64 num_bytes = 0;
584         u64 qgroup_reserved = 0;
585         bool reloc_reserved = false;
586         bool do_chunk_alloc = false;
587         int ret;
588
589         if (BTRFS_FS_ERROR(fs_info))
590                 return ERR_PTR(-EROFS);
591
592         if (current->journal_info) {
593                 WARN_ON(type & TRANS_EXTWRITERS);
594                 h = current->journal_info;
595                 refcount_inc(&h->use_count);
596                 WARN_ON(refcount_read(&h->use_count) > 2);
597                 h->orig_rsv = h->block_rsv;
598                 h->block_rsv = NULL;
599                 goto got_it;
600         }
601
602         /*
603          * Do the reservation before we join the transaction so we can do all
604          * the appropriate flushing if need be.
605          */
606         if (num_items && root != fs_info->chunk_root) {
607                 struct btrfs_block_rsv *rsv = &fs_info->trans_block_rsv;
608                 u64 delayed_refs_bytes = 0;
609
610                 qgroup_reserved = num_items * fs_info->nodesize;
611                 ret = btrfs_qgroup_reserve_meta_pertrans(root, qgroup_reserved,
612                                 enforce_qgroups);
613                 if (ret)
614                         return ERR_PTR(ret);
615
616                 /*
617                  * We want to reserve all the bytes we may need all at once, so
618                  * we only do 1 enospc flushing cycle per transaction start.  We
619                  * accomplish this by simply assuming we'll do 2 x num_items
620                  * worth of delayed refs updates in this trans handle, and
621                  * refill that amount for whatever is missing in the reserve.
622                  */
623                 num_bytes = btrfs_calc_insert_metadata_size(fs_info, num_items);
624                 if (flush == BTRFS_RESERVE_FLUSH_ALL &&
625                     delayed_refs_rsv->full == 0) {
626                         delayed_refs_bytes = num_bytes;
627                         num_bytes <<= 1;
628                 }
629
630                 /*
631                  * Do the reservation for the relocation root creation
632                  */
633                 if (need_reserve_reloc_root(root)) {
634                         num_bytes += fs_info->nodesize;
635                         reloc_reserved = true;
636                 }
637
638                 ret = btrfs_block_rsv_add(fs_info, rsv, num_bytes, flush);
639                 if (ret)
640                         goto reserve_fail;
641                 if (delayed_refs_bytes) {
642                         btrfs_migrate_to_delayed_refs_rsv(fs_info, rsv,
643                                                           delayed_refs_bytes);
644                         num_bytes -= delayed_refs_bytes;
645                 }
646
647                 if (rsv->space_info->force_alloc)
648                         do_chunk_alloc = true;
649         } else if (num_items == 0 && flush == BTRFS_RESERVE_FLUSH_ALL &&
650                    !delayed_refs_rsv->full) {
651                 /*
652                  * Some people call with btrfs_start_transaction(root, 0)
653                  * because they can be throttled, but have some other mechanism
654                  * for reserving space.  We still want these guys to refill the
655                  * delayed block_rsv so just add 1 items worth of reservation
656                  * here.
657                  */
658                 ret = btrfs_delayed_refs_rsv_refill(fs_info, flush);
659                 if (ret)
660                         goto reserve_fail;
661         }
662 again:
663         h = kmem_cache_zalloc(btrfs_trans_handle_cachep, GFP_NOFS);
664         if (!h) {
665                 ret = -ENOMEM;
666                 goto alloc_fail;
667         }
668
669         /*
670          * If we are JOIN_NOLOCK we're already committing a transaction and
671          * waiting on this guy, so we don't need to do the sb_start_intwrite
672          * because we're already holding a ref.  We need this because we could
673          * have raced in and did an fsync() on a file which can kick a commit
674          * and then we deadlock with somebody doing a freeze.
675          *
676          * If we are ATTACH, it means we just want to catch the current
677          * transaction and commit it, so we needn't do sb_start_intwrite(). 
678          */
679         if (type & __TRANS_FREEZABLE)
680                 sb_start_intwrite(fs_info->sb);
681
682         if (may_wait_transaction(fs_info, type))
683                 wait_current_trans(fs_info);
684
685         do {
686                 ret = join_transaction(fs_info, type);
687                 if (ret == -EBUSY) {
688                         wait_current_trans(fs_info);
689                         if (unlikely(type == TRANS_ATTACH ||
690                                      type == TRANS_JOIN_NOSTART))
691                                 ret = -ENOENT;
692                 }
693         } while (ret == -EBUSY);
694
695         if (ret < 0)
696                 goto join_fail;
697
698         cur_trans = fs_info->running_transaction;
699
700         h->transid = cur_trans->transid;
701         h->transaction = cur_trans;
702         refcount_set(&h->use_count, 1);
703         h->fs_info = root->fs_info;
704
705         h->type = type;
706         INIT_LIST_HEAD(&h->new_bgs);
707
708         smp_mb();
709         if (cur_trans->state >= TRANS_STATE_COMMIT_START &&
710             may_wait_transaction(fs_info, type)) {
711                 current->journal_info = h;
712                 btrfs_commit_transaction(h);
713                 goto again;
714         }
715
716         if (num_bytes) {
717                 trace_btrfs_space_reservation(fs_info, "transaction",
718                                               h->transid, num_bytes, 1);
719                 h->block_rsv = &fs_info->trans_block_rsv;
720                 h->bytes_reserved = num_bytes;
721                 h->reloc_reserved = reloc_reserved;
722         }
723
724 got_it:
725         if (!current->journal_info)
726                 current->journal_info = h;
727
728         /*
729          * If the space_info is marked ALLOC_FORCE then we'll get upgraded to
730          * ALLOC_FORCE the first run through, and then we won't allocate for
731          * anybody else who races in later.  We don't care about the return
732          * value here.
733          */
734         if (do_chunk_alloc && num_bytes) {
735                 u64 flags = h->block_rsv->space_info->flags;
736
737                 btrfs_chunk_alloc(h, btrfs_get_alloc_profile(fs_info, flags),
738                                   CHUNK_ALLOC_NO_FORCE);
739         }
740
741         /*
742          * btrfs_record_root_in_trans() needs to alloc new extents, and may
743          * call btrfs_join_transaction() while we're also starting a
744          * transaction.
745          *
746          * Thus it need to be called after current->journal_info initialized,
747          * or we can deadlock.
748          */
749         ret = btrfs_record_root_in_trans(h, root);
750         if (ret) {
751                 /*
752                  * The transaction handle is fully initialized and linked with
753                  * other structures so it needs to be ended in case of errors,
754                  * not just freed.
755                  */
756                 btrfs_end_transaction(h);
757                 return ERR_PTR(ret);
758         }
759
760         return h;
761
762 join_fail:
763         if (type & __TRANS_FREEZABLE)
764                 sb_end_intwrite(fs_info->sb);
765         kmem_cache_free(btrfs_trans_handle_cachep, h);
766 alloc_fail:
767         if (num_bytes)
768                 btrfs_block_rsv_release(fs_info, &fs_info->trans_block_rsv,
769                                         num_bytes, NULL);
770 reserve_fail:
771         btrfs_qgroup_free_meta_pertrans(root, qgroup_reserved);
772         return ERR_PTR(ret);
773 }
774
775 struct btrfs_trans_handle *btrfs_start_transaction(struct btrfs_root *root,
776                                                    unsigned int num_items)
777 {
778         return start_transaction(root, num_items, TRANS_START,
779                                  BTRFS_RESERVE_FLUSH_ALL, true);
780 }
781
782 struct btrfs_trans_handle *btrfs_start_transaction_fallback_global_rsv(
783                                         struct btrfs_root *root,
784                                         unsigned int num_items)
785 {
786         return start_transaction(root, num_items, TRANS_START,
787                                  BTRFS_RESERVE_FLUSH_ALL_STEAL, false);
788 }
789
790 struct btrfs_trans_handle *btrfs_join_transaction(struct btrfs_root *root)
791 {
792         return start_transaction(root, 0, TRANS_JOIN, BTRFS_RESERVE_NO_FLUSH,
793                                  true);
794 }
795
796 struct btrfs_trans_handle *btrfs_join_transaction_spacecache(struct btrfs_root *root)
797 {
798         return start_transaction(root, 0, TRANS_JOIN_NOLOCK,
799                                  BTRFS_RESERVE_NO_FLUSH, true);
800 }
801
802 /*
803  * Similar to regular join but it never starts a transaction when none is
804  * running or after waiting for the current one to finish.
805  */
806 struct btrfs_trans_handle *btrfs_join_transaction_nostart(struct btrfs_root *root)
807 {
808         return start_transaction(root, 0, TRANS_JOIN_NOSTART,
809                                  BTRFS_RESERVE_NO_FLUSH, true);
810 }
811
812 /*
813  * btrfs_attach_transaction() - catch the running transaction
814  *
815  * It is used when we want to commit the current the transaction, but
816  * don't want to start a new one.
817  *
818  * Note: If this function return -ENOENT, it just means there is no
819  * running transaction. But it is possible that the inactive transaction
820  * is still in the memory, not fully on disk. If you hope there is no
821  * inactive transaction in the fs when -ENOENT is returned, you should
822  * invoke
823  *     btrfs_attach_transaction_barrier()
824  */
825 struct btrfs_trans_handle *btrfs_attach_transaction(struct btrfs_root *root)
826 {
827         return start_transaction(root, 0, TRANS_ATTACH,
828                                  BTRFS_RESERVE_NO_FLUSH, true);
829 }
830
831 /*
832  * btrfs_attach_transaction_barrier() - catch the running transaction
833  *
834  * It is similar to the above function, the difference is this one
835  * will wait for all the inactive transactions until they fully
836  * complete.
837  */
838 struct btrfs_trans_handle *
839 btrfs_attach_transaction_barrier(struct btrfs_root *root)
840 {
841         struct btrfs_trans_handle *trans;
842
843         trans = start_transaction(root, 0, TRANS_ATTACH,
844                                   BTRFS_RESERVE_NO_FLUSH, true);
845         if (trans == ERR_PTR(-ENOENT))
846                 btrfs_wait_for_commit(root->fs_info, 0);
847
848         return trans;
849 }
850
851 /* Wait for a transaction commit to reach at least the given state. */
852 static noinline void wait_for_commit(struct btrfs_transaction *commit,
853                                      const enum btrfs_trans_state min_state)
854 {
855         struct btrfs_fs_info *fs_info = commit->fs_info;
856         u64 transid = commit->transid;
857         bool put = false;
858
859         while (1) {
860                 wait_event(commit->commit_wait, commit->state >= min_state);
861                 if (put)
862                         btrfs_put_transaction(commit);
863
864                 if (min_state < TRANS_STATE_COMPLETED)
865                         break;
866
867                 /*
868                  * A transaction isn't really completed until all of the
869                  * previous transactions are completed, but with fsync we can
870                  * end up with SUPER_COMMITTED transactions before a COMPLETED
871                  * transaction. Wait for those.
872                  */
873
874                 spin_lock(&fs_info->trans_lock);
875                 commit = list_first_entry_or_null(&fs_info->trans_list,
876                                                   struct btrfs_transaction,
877                                                   list);
878                 if (!commit || commit->transid > transid) {
879                         spin_unlock(&fs_info->trans_lock);
880                         break;
881                 }
882                 refcount_inc(&commit->use_count);
883                 put = true;
884                 spin_unlock(&fs_info->trans_lock);
885         }
886 }
887
888 int btrfs_wait_for_commit(struct btrfs_fs_info *fs_info, u64 transid)
889 {
890         struct btrfs_transaction *cur_trans = NULL, *t;
891         int ret = 0;
892
893         if (transid) {
894                 if (transid <= fs_info->last_trans_committed)
895                         goto out;
896
897                 /* find specified transaction */
898                 spin_lock(&fs_info->trans_lock);
899                 list_for_each_entry(t, &fs_info->trans_list, list) {
900                         if (t->transid == transid) {
901                                 cur_trans = t;
902                                 refcount_inc(&cur_trans->use_count);
903                                 ret = 0;
904                                 break;
905                         }
906                         if (t->transid > transid) {
907                                 ret = 0;
908                                 break;
909                         }
910                 }
911                 spin_unlock(&fs_info->trans_lock);
912
913                 /*
914                  * The specified transaction doesn't exist, or we
915                  * raced with btrfs_commit_transaction
916                  */
917                 if (!cur_trans) {
918                         if (transid > fs_info->last_trans_committed)
919                                 ret = -EINVAL;
920                         goto out;
921                 }
922         } else {
923                 /* find newest transaction that is committing | committed */
924                 spin_lock(&fs_info->trans_lock);
925                 list_for_each_entry_reverse(t, &fs_info->trans_list,
926                                             list) {
927                         if (t->state >= TRANS_STATE_COMMIT_START) {
928                                 if (t->state == TRANS_STATE_COMPLETED)
929                                         break;
930                                 cur_trans = t;
931                                 refcount_inc(&cur_trans->use_count);
932                                 break;
933                         }
934                 }
935                 spin_unlock(&fs_info->trans_lock);
936                 if (!cur_trans)
937                         goto out;  /* nothing committing|committed */
938         }
939
940         wait_for_commit(cur_trans, TRANS_STATE_COMPLETED);
941         btrfs_put_transaction(cur_trans);
942 out:
943         return ret;
944 }
945
946 void btrfs_throttle(struct btrfs_fs_info *fs_info)
947 {
948         wait_current_trans(fs_info);
949 }
950
951 static bool should_end_transaction(struct btrfs_trans_handle *trans)
952 {
953         struct btrfs_fs_info *fs_info = trans->fs_info;
954
955         if (btrfs_check_space_for_delayed_refs(fs_info))
956                 return true;
957
958         return !!btrfs_block_rsv_check(&fs_info->global_block_rsv, 5);
959 }
960
961 bool btrfs_should_end_transaction(struct btrfs_trans_handle *trans)
962 {
963         struct btrfs_transaction *cur_trans = trans->transaction;
964
965         if (cur_trans->state >= TRANS_STATE_COMMIT_START ||
966             test_bit(BTRFS_DELAYED_REFS_FLUSHING, &cur_trans->delayed_refs.flags))
967                 return true;
968
969         return should_end_transaction(trans);
970 }
971
972 static void btrfs_trans_release_metadata(struct btrfs_trans_handle *trans)
973
974 {
975         struct btrfs_fs_info *fs_info = trans->fs_info;
976
977         if (!trans->block_rsv) {
978                 ASSERT(!trans->bytes_reserved);
979                 return;
980         }
981
982         if (!trans->bytes_reserved)
983                 return;
984
985         ASSERT(trans->block_rsv == &fs_info->trans_block_rsv);
986         trace_btrfs_space_reservation(fs_info, "transaction",
987                                       trans->transid, trans->bytes_reserved, 0);
988         btrfs_block_rsv_release(fs_info, trans->block_rsv,
989                                 trans->bytes_reserved, NULL);
990         trans->bytes_reserved = 0;
991 }
992
993 static int __btrfs_end_transaction(struct btrfs_trans_handle *trans,
994                                    int throttle)
995 {
996         struct btrfs_fs_info *info = trans->fs_info;
997         struct btrfs_transaction *cur_trans = trans->transaction;
998         int err = 0;
999
1000         if (refcount_read(&trans->use_count) > 1) {
1001                 refcount_dec(&trans->use_count);
1002                 trans->block_rsv = trans->orig_rsv;
1003                 return 0;
1004         }
1005
1006         btrfs_trans_release_metadata(trans);
1007         trans->block_rsv = NULL;
1008
1009         btrfs_create_pending_block_groups(trans);
1010
1011         btrfs_trans_release_chunk_metadata(trans);
1012
1013         if (trans->type & __TRANS_FREEZABLE)
1014                 sb_end_intwrite(info->sb);
1015
1016         WARN_ON(cur_trans != info->running_transaction);
1017         WARN_ON(atomic_read(&cur_trans->num_writers) < 1);
1018         atomic_dec(&cur_trans->num_writers);
1019         extwriter_counter_dec(cur_trans, trans->type);
1020
1021         cond_wake_up(&cur_trans->writer_wait);
1022         btrfs_put_transaction(cur_trans);
1023
1024         if (current->journal_info == trans)
1025                 current->journal_info = NULL;
1026
1027         if (throttle)
1028                 btrfs_run_delayed_iputs(info);
1029
1030         if (TRANS_ABORTED(trans) || BTRFS_FS_ERROR(info)) {
1031                 wake_up_process(info->transaction_kthread);
1032                 if (TRANS_ABORTED(trans))
1033                         err = trans->aborted;
1034                 else
1035                         err = -EROFS;
1036         }
1037
1038         kmem_cache_free(btrfs_trans_handle_cachep, trans);
1039         return err;
1040 }
1041
1042 int btrfs_end_transaction(struct btrfs_trans_handle *trans)
1043 {
1044         return __btrfs_end_transaction(trans, 0);
1045 }
1046
1047 int btrfs_end_transaction_throttle(struct btrfs_trans_handle *trans)
1048 {
1049         return __btrfs_end_transaction(trans, 1);
1050 }
1051
1052 /*
1053  * when btree blocks are allocated, they have some corresponding bits set for
1054  * them in one of two extent_io trees.  This is used to make sure all of
1055  * those extents are sent to disk but does not wait on them
1056  */
1057 int btrfs_write_marked_extents(struct btrfs_fs_info *fs_info,
1058                                struct extent_io_tree *dirty_pages, int mark)
1059 {
1060         int err = 0;
1061         int werr = 0;
1062         struct address_space *mapping = fs_info->btree_inode->i_mapping;
1063         struct extent_state *cached_state = NULL;
1064         u64 start = 0;
1065         u64 end;
1066
1067         atomic_inc(&BTRFS_I(fs_info->btree_inode)->sync_writers);
1068         while (!find_first_extent_bit(dirty_pages, start, &start, &end,
1069                                       mark, &cached_state)) {
1070                 bool wait_writeback = false;
1071
1072                 err = convert_extent_bit(dirty_pages, start, end,
1073                                          EXTENT_NEED_WAIT,
1074                                          mark, &cached_state);
1075                 /*
1076                  * convert_extent_bit can return -ENOMEM, which is most of the
1077                  * time a temporary error. So when it happens, ignore the error
1078                  * and wait for writeback of this range to finish - because we
1079                  * failed to set the bit EXTENT_NEED_WAIT for the range, a call
1080                  * to __btrfs_wait_marked_extents() would not know that
1081                  * writeback for this range started and therefore wouldn't
1082                  * wait for it to finish - we don't want to commit a
1083                  * superblock that points to btree nodes/leafs for which
1084                  * writeback hasn't finished yet (and without errors).
1085                  * We cleanup any entries left in the io tree when committing
1086                  * the transaction (through extent_io_tree_release()).
1087                  */
1088                 if (err == -ENOMEM) {
1089                         err = 0;
1090                         wait_writeback = true;
1091                 }
1092                 if (!err)
1093                         err = filemap_fdatawrite_range(mapping, start, end);
1094                 if (err)
1095                         werr = err;
1096                 else if (wait_writeback)
1097                         werr = filemap_fdatawait_range(mapping, start, end);
1098                 free_extent_state(cached_state);
1099                 cached_state = NULL;
1100                 cond_resched();
1101                 start = end + 1;
1102         }
1103         atomic_dec(&BTRFS_I(fs_info->btree_inode)->sync_writers);
1104         return werr;
1105 }
1106
1107 /*
1108  * when btree blocks are allocated, they have some corresponding bits set for
1109  * them in one of two extent_io trees.  This is used to make sure all of
1110  * those extents are on disk for transaction or log commit.  We wait
1111  * on all the pages and clear them from the dirty pages state tree
1112  */
1113 static int __btrfs_wait_marked_extents(struct btrfs_fs_info *fs_info,
1114                                        struct extent_io_tree *dirty_pages)
1115 {
1116         int err = 0;
1117         int werr = 0;
1118         struct address_space *mapping = fs_info->btree_inode->i_mapping;
1119         struct extent_state *cached_state = NULL;
1120         u64 start = 0;
1121         u64 end;
1122
1123         while (!find_first_extent_bit(dirty_pages, start, &start, &end,
1124                                       EXTENT_NEED_WAIT, &cached_state)) {
1125                 /*
1126                  * Ignore -ENOMEM errors returned by clear_extent_bit().
1127                  * When committing the transaction, we'll remove any entries
1128                  * left in the io tree. For a log commit, we don't remove them
1129                  * after committing the log because the tree can be accessed
1130                  * concurrently - we do it only at transaction commit time when
1131                  * it's safe to do it (through extent_io_tree_release()).
1132                  */
1133                 err = clear_extent_bit(dirty_pages, start, end,
1134                                        EXTENT_NEED_WAIT, 0, 0, &cached_state);
1135                 if (err == -ENOMEM)
1136                         err = 0;
1137                 if (!err)
1138                         err = filemap_fdatawait_range(mapping, start, end);
1139                 if (err)
1140                         werr = err;
1141                 free_extent_state(cached_state);
1142                 cached_state = NULL;
1143                 cond_resched();
1144                 start = end + 1;
1145         }
1146         if (err)
1147                 werr = err;
1148         return werr;
1149 }
1150
1151 static int btrfs_wait_extents(struct btrfs_fs_info *fs_info,
1152                        struct extent_io_tree *dirty_pages)
1153 {
1154         bool errors = false;
1155         int err;
1156
1157         err = __btrfs_wait_marked_extents(fs_info, dirty_pages);
1158         if (test_and_clear_bit(BTRFS_FS_BTREE_ERR, &fs_info->flags))
1159                 errors = true;
1160
1161         if (errors && !err)
1162                 err = -EIO;
1163         return err;
1164 }
1165
1166 int btrfs_wait_tree_log_extents(struct btrfs_root *log_root, int mark)
1167 {
1168         struct btrfs_fs_info *fs_info = log_root->fs_info;
1169         struct extent_io_tree *dirty_pages = &log_root->dirty_log_pages;
1170         bool errors = false;
1171         int err;
1172
1173         ASSERT(log_root->root_key.objectid == BTRFS_TREE_LOG_OBJECTID);
1174
1175         err = __btrfs_wait_marked_extents(fs_info, dirty_pages);
1176         if ((mark & EXTENT_DIRTY) &&
1177             test_and_clear_bit(BTRFS_FS_LOG1_ERR, &fs_info->flags))
1178                 errors = true;
1179
1180         if ((mark & EXTENT_NEW) &&
1181             test_and_clear_bit(BTRFS_FS_LOG2_ERR, &fs_info->flags))
1182                 errors = true;
1183
1184         if (errors && !err)
1185                 err = -EIO;
1186         return err;
1187 }
1188
1189 /*
1190  * When btree blocks are allocated the corresponding extents are marked dirty.
1191  * This function ensures such extents are persisted on disk for transaction or
1192  * log commit.
1193  *
1194  * @trans: transaction whose dirty pages we'd like to write
1195  */
1196 static int btrfs_write_and_wait_transaction(struct btrfs_trans_handle *trans)
1197 {
1198         int ret;
1199         int ret2;
1200         struct extent_io_tree *dirty_pages = &trans->transaction->dirty_pages;
1201         struct btrfs_fs_info *fs_info = trans->fs_info;
1202         struct blk_plug plug;
1203
1204         blk_start_plug(&plug);
1205         ret = btrfs_write_marked_extents(fs_info, dirty_pages, EXTENT_DIRTY);
1206         blk_finish_plug(&plug);
1207         ret2 = btrfs_wait_extents(fs_info, dirty_pages);
1208
1209         extent_io_tree_release(&trans->transaction->dirty_pages);
1210
1211         if (ret)
1212                 return ret;
1213         else if (ret2)
1214                 return ret2;
1215         else
1216                 return 0;
1217 }
1218
1219 /*
1220  * this is used to update the root pointer in the tree of tree roots.
1221  *
1222  * But, in the case of the extent allocation tree, updating the root
1223  * pointer may allocate blocks which may change the root of the extent
1224  * allocation tree.
1225  *
1226  * So, this loops and repeats and makes sure the cowonly root didn't
1227  * change while the root pointer was being updated in the metadata.
1228  */
1229 static int update_cowonly_root(struct btrfs_trans_handle *trans,
1230                                struct btrfs_root *root)
1231 {
1232         int ret;
1233         u64 old_root_bytenr;
1234         u64 old_root_used;
1235         struct btrfs_fs_info *fs_info = root->fs_info;
1236         struct btrfs_root *tree_root = fs_info->tree_root;
1237
1238         old_root_used = btrfs_root_used(&root->root_item);
1239
1240         while (1) {
1241                 old_root_bytenr = btrfs_root_bytenr(&root->root_item);
1242                 if (old_root_bytenr == root->node->start &&
1243                     old_root_used == btrfs_root_used(&root->root_item))
1244                         break;
1245
1246                 btrfs_set_root_node(&root->root_item, root->node);
1247                 ret = btrfs_update_root(trans, tree_root,
1248                                         &root->root_key,
1249                                         &root->root_item);
1250                 if (ret)
1251                         return ret;
1252
1253                 old_root_used = btrfs_root_used(&root->root_item);
1254         }
1255
1256         return 0;
1257 }
1258
1259 /*
1260  * update all the cowonly tree roots on disk
1261  *
1262  * The error handling in this function may not be obvious. Any of the
1263  * failures will cause the file system to go offline. We still need
1264  * to clean up the delayed refs.
1265  */
1266 static noinline int commit_cowonly_roots(struct btrfs_trans_handle *trans)
1267 {
1268         struct btrfs_fs_info *fs_info = trans->fs_info;
1269         struct list_head *dirty_bgs = &trans->transaction->dirty_bgs;
1270         struct list_head *io_bgs = &trans->transaction->io_bgs;
1271         struct list_head *next;
1272         struct extent_buffer *eb;
1273         int ret;
1274
1275         /*
1276          * At this point no one can be using this transaction to modify any tree
1277          * and no one can start another transaction to modify any tree either.
1278          */
1279         ASSERT(trans->transaction->state == TRANS_STATE_COMMIT_DOING);
1280
1281         eb = btrfs_lock_root_node(fs_info->tree_root);
1282         ret = btrfs_cow_block(trans, fs_info->tree_root, eb, NULL,
1283                               0, &eb, BTRFS_NESTING_COW);
1284         btrfs_tree_unlock(eb);
1285         free_extent_buffer(eb);
1286
1287         if (ret)
1288                 return ret;
1289
1290         ret = btrfs_run_dev_stats(trans);
1291         if (ret)
1292                 return ret;
1293         ret = btrfs_run_dev_replace(trans);
1294         if (ret)
1295                 return ret;
1296         ret = btrfs_run_qgroups(trans);
1297         if (ret)
1298                 return ret;
1299
1300         ret = btrfs_setup_space_cache(trans);
1301         if (ret)
1302                 return ret;
1303
1304 again:
1305         while (!list_empty(&fs_info->dirty_cowonly_roots)) {
1306                 struct btrfs_root *root;
1307                 next = fs_info->dirty_cowonly_roots.next;
1308                 list_del_init(next);
1309                 root = list_entry(next, struct btrfs_root, dirty_list);
1310                 clear_bit(BTRFS_ROOT_DIRTY, &root->state);
1311
1312                 list_add_tail(&root->dirty_list,
1313                               &trans->transaction->switch_commits);
1314                 ret = update_cowonly_root(trans, root);
1315                 if (ret)
1316                         return ret;
1317         }
1318
1319         /* Now flush any delayed refs generated by updating all of the roots */
1320         ret = btrfs_run_delayed_refs(trans, (unsigned long)-1);
1321         if (ret)
1322                 return ret;
1323
1324         while (!list_empty(dirty_bgs) || !list_empty(io_bgs)) {
1325                 ret = btrfs_write_dirty_block_groups(trans);
1326                 if (ret)
1327                         return ret;
1328
1329                 /*
1330                  * We're writing the dirty block groups, which could generate
1331                  * delayed refs, which could generate more dirty block groups,
1332                  * so we want to keep this flushing in this loop to make sure
1333                  * everything gets run.
1334                  */
1335                 ret = btrfs_run_delayed_refs(trans, (unsigned long)-1);
1336                 if (ret)
1337                         return ret;
1338         }
1339
1340         if (!list_empty(&fs_info->dirty_cowonly_roots))
1341                 goto again;
1342
1343         /* Update dev-replace pointer once everything is committed */
1344         fs_info->dev_replace.committed_cursor_left =
1345                 fs_info->dev_replace.cursor_left_last_write_of_item;
1346
1347         return 0;
1348 }
1349
1350 /*
1351  * If we had a pending drop we need to see if there are any others left in our
1352  * dead roots list, and if not clear our bit and wake any waiters.
1353  */
1354 void btrfs_maybe_wake_unfinished_drop(struct btrfs_fs_info *fs_info)
1355 {
1356         /*
1357          * We put the drop in progress roots at the front of the list, so if the
1358          * first entry doesn't have UNFINISHED_DROP set we can wake everybody
1359          * up.
1360          */
1361         spin_lock(&fs_info->trans_lock);
1362         if (!list_empty(&fs_info->dead_roots)) {
1363                 struct btrfs_root *root = list_first_entry(&fs_info->dead_roots,
1364                                                            struct btrfs_root,
1365                                                            root_list);
1366                 if (test_bit(BTRFS_ROOT_UNFINISHED_DROP, &root->state)) {
1367                         spin_unlock(&fs_info->trans_lock);
1368                         return;
1369                 }
1370         }
1371         spin_unlock(&fs_info->trans_lock);
1372
1373         btrfs_wake_unfinished_drop(fs_info);
1374 }
1375
1376 /*
1377  * dead roots are old snapshots that need to be deleted.  This allocates
1378  * a dirty root struct and adds it into the list of dead roots that need to
1379  * be deleted
1380  */
1381 void btrfs_add_dead_root(struct btrfs_root *root)
1382 {
1383         struct btrfs_fs_info *fs_info = root->fs_info;
1384
1385         spin_lock(&fs_info->trans_lock);
1386         if (list_empty(&root->root_list)) {
1387                 btrfs_grab_root(root);
1388
1389                 /* We want to process the partially complete drops first. */
1390                 if (test_bit(BTRFS_ROOT_UNFINISHED_DROP, &root->state))
1391                         list_add(&root->root_list, &fs_info->dead_roots);
1392                 else
1393                         list_add_tail(&root->root_list, &fs_info->dead_roots);
1394         }
1395         spin_unlock(&fs_info->trans_lock);
1396 }
1397
1398 /*
1399  * Update each subvolume root and its relocation root, if it exists, in the tree
1400  * of tree roots. Also free log roots if they exist.
1401  */
1402 static noinline int commit_fs_roots(struct btrfs_trans_handle *trans)
1403 {
1404         struct btrfs_fs_info *fs_info = trans->fs_info;
1405         struct btrfs_root *root;
1406         unsigned long index;
1407
1408         /*
1409          * At this point no one can be using this transaction to modify any tree
1410          * and no one can start another transaction to modify any tree either.
1411          */
1412         ASSERT(trans->transaction->state == TRANS_STATE_COMMIT_DOING);
1413
1414         spin_lock(&fs_info->fs_roots_lock);
1415         xa_for_each_marked(&fs_info->fs_roots, index, root, BTRFS_ROOT_TRANS_TAG) {
1416                 int ret;
1417
1418                 /*
1419                  * At this point we can neither have tasks logging inodes
1420                  * from a root nor trying to commit a log tree.
1421                  */
1422                 ASSERT(atomic_read(&root->log_writers) == 0);
1423                 ASSERT(atomic_read(&root->log_commit[0]) == 0);
1424                 ASSERT(atomic_read(&root->log_commit[1]) == 0);
1425
1426                 xa_clear_mark(&fs_info->fs_roots,
1427                               (unsigned long)root->root_key.objectid,
1428                               BTRFS_ROOT_TRANS_TAG);
1429                 spin_unlock(&fs_info->fs_roots_lock);
1430
1431                 btrfs_free_log(trans, root);
1432                 ret = btrfs_update_reloc_root(trans, root);
1433                 if (ret)
1434                         return ret;
1435
1436                 /* See comments in should_cow_block() */
1437                 clear_bit(BTRFS_ROOT_FORCE_COW, &root->state);
1438                 smp_mb__after_atomic();
1439
1440                 if (root->commit_root != root->node) {
1441                         list_add_tail(&root->dirty_list,
1442                                       &trans->transaction->switch_commits);
1443                         btrfs_set_root_node(&root->root_item, root->node);
1444                 }
1445
1446                 ret = btrfs_update_root(trans, fs_info->tree_root,
1447                                         &root->root_key, &root->root_item);
1448                 if (ret)
1449                         return ret;
1450                 spin_lock(&fs_info->fs_roots_lock);
1451                 btrfs_qgroup_free_meta_all_pertrans(root);
1452         }
1453         spin_unlock(&fs_info->fs_roots_lock);
1454         return 0;
1455 }
1456
1457 /*
1458  * defrag a given btree.
1459  * Every leaf in the btree is read and defragged.
1460  */
1461 int btrfs_defrag_root(struct btrfs_root *root)
1462 {
1463         struct btrfs_fs_info *info = root->fs_info;
1464         struct btrfs_trans_handle *trans;
1465         int ret;
1466
1467         if (test_and_set_bit(BTRFS_ROOT_DEFRAG_RUNNING, &root->state))
1468                 return 0;
1469
1470         while (1) {
1471                 trans = btrfs_start_transaction(root, 0);
1472                 if (IS_ERR(trans)) {
1473                         ret = PTR_ERR(trans);
1474                         break;
1475                 }
1476
1477                 ret = btrfs_defrag_leaves(trans, root);
1478
1479                 btrfs_end_transaction(trans);
1480                 btrfs_btree_balance_dirty(info);
1481                 cond_resched();
1482
1483                 if (btrfs_fs_closing(info) || ret != -EAGAIN)
1484                         break;
1485
1486                 if (btrfs_defrag_cancelled(info)) {
1487                         btrfs_debug(info, "defrag_root cancelled");
1488                         ret = -EAGAIN;
1489                         break;
1490                 }
1491         }
1492         clear_bit(BTRFS_ROOT_DEFRAG_RUNNING, &root->state);
1493         return ret;
1494 }
1495
1496 /*
1497  * Do all special snapshot related qgroup dirty hack.
1498  *
1499  * Will do all needed qgroup inherit and dirty hack like switch commit
1500  * roots inside one transaction and write all btree into disk, to make
1501  * qgroup works.
1502  */
1503 static int qgroup_account_snapshot(struct btrfs_trans_handle *trans,
1504                                    struct btrfs_root *src,
1505                                    struct btrfs_root *parent,
1506                                    struct btrfs_qgroup_inherit *inherit,
1507                                    u64 dst_objectid)
1508 {
1509         struct btrfs_fs_info *fs_info = src->fs_info;
1510         int ret;
1511
1512         /*
1513          * Save some performance in the case that qgroups are not
1514          * enabled. If this check races with the ioctl, rescan will
1515          * kick in anyway.
1516          */
1517         if (!test_bit(BTRFS_FS_QUOTA_ENABLED, &fs_info->flags))
1518                 return 0;
1519
1520         /*
1521          * Ensure dirty @src will be committed.  Or, after coming
1522          * commit_fs_roots() and switch_commit_roots(), any dirty but not
1523          * recorded root will never be updated again, causing an outdated root
1524          * item.
1525          */
1526         ret = record_root_in_trans(trans, src, 1);
1527         if (ret)
1528                 return ret;
1529
1530         /*
1531          * btrfs_qgroup_inherit relies on a consistent view of the usage for the
1532          * src root, so we must run the delayed refs here.
1533          *
1534          * However this isn't particularly fool proof, because there's no
1535          * synchronization keeping us from changing the tree after this point
1536          * before we do the qgroup_inherit, or even from making changes while
1537          * we're doing the qgroup_inherit.  But that's a problem for the future,
1538          * for now flush the delayed refs to narrow the race window where the
1539          * qgroup counters could end up wrong.
1540          */
1541         ret = btrfs_run_delayed_refs(trans, (unsigned long)-1);
1542         if (ret) {
1543                 btrfs_abort_transaction(trans, ret);
1544                 return ret;
1545         }
1546
1547         ret = commit_fs_roots(trans);
1548         if (ret)
1549                 goto out;
1550         ret = btrfs_qgroup_account_extents(trans);
1551         if (ret < 0)
1552                 goto out;
1553
1554         /* Now qgroup are all updated, we can inherit it to new qgroups */
1555         ret = btrfs_qgroup_inherit(trans, src->root_key.objectid, dst_objectid,
1556                                    inherit);
1557         if (ret < 0)
1558                 goto out;
1559
1560         /*
1561          * Now we do a simplified commit transaction, which will:
1562          * 1) commit all subvolume and extent tree
1563          *    To ensure all subvolume and extent tree have a valid
1564          *    commit_root to accounting later insert_dir_item()
1565          * 2) write all btree blocks onto disk
1566          *    This is to make sure later btree modification will be cowed
1567          *    Or commit_root can be populated and cause wrong qgroup numbers
1568          * In this simplified commit, we don't really care about other trees
1569          * like chunk and root tree, as they won't affect qgroup.
1570          * And we don't write super to avoid half committed status.
1571          */
1572         ret = commit_cowonly_roots(trans);
1573         if (ret)
1574                 goto out;
1575         switch_commit_roots(trans);
1576         ret = btrfs_write_and_wait_transaction(trans);
1577         if (ret)
1578                 btrfs_handle_fs_error(fs_info, ret,
1579                         "Error while writing out transaction for qgroup");
1580
1581 out:
1582         /*
1583          * Force parent root to be updated, as we recorded it before so its
1584          * last_trans == cur_transid.
1585          * Or it won't be committed again onto disk after later
1586          * insert_dir_item()
1587          */
1588         if (!ret)
1589                 ret = record_root_in_trans(trans, parent, 1);
1590         return ret;
1591 }
1592
1593 /*
1594  * new snapshots need to be created at a very specific time in the
1595  * transaction commit.  This does the actual creation.
1596  *
1597  * Note:
1598  * If the error which may affect the commitment of the current transaction
1599  * happens, we should return the error number. If the error which just affect
1600  * the creation of the pending snapshots, just return 0.
1601  */
1602 static noinline int create_pending_snapshot(struct btrfs_trans_handle *trans,
1603                                    struct btrfs_pending_snapshot *pending)
1604 {
1605
1606         struct btrfs_fs_info *fs_info = trans->fs_info;
1607         struct btrfs_key key;
1608         struct btrfs_root_item *new_root_item;
1609         struct btrfs_root *tree_root = fs_info->tree_root;
1610         struct btrfs_root *root = pending->root;
1611         struct btrfs_root *parent_root;
1612         struct btrfs_block_rsv *rsv;
1613         struct inode *parent_inode;
1614         struct btrfs_path *path;
1615         struct btrfs_dir_item *dir_item;
1616         struct dentry *dentry;
1617         struct extent_buffer *tmp;
1618         struct extent_buffer *old;
1619         struct timespec64 cur_time;
1620         int ret = 0;
1621         u64 to_reserve = 0;
1622         u64 index = 0;
1623         u64 objectid;
1624         u64 root_flags;
1625
1626         ASSERT(pending->path);
1627         path = pending->path;
1628
1629         ASSERT(pending->root_item);
1630         new_root_item = pending->root_item;
1631
1632         pending->error = btrfs_get_free_objectid(tree_root, &objectid);
1633         if (pending->error)
1634                 goto no_free_objectid;
1635
1636         /*
1637          * Make qgroup to skip current new snapshot's qgroupid, as it is
1638          * accounted by later btrfs_qgroup_inherit().
1639          */
1640         btrfs_set_skip_qgroup(trans, objectid);
1641
1642         btrfs_reloc_pre_snapshot(pending, &to_reserve);
1643
1644         if (to_reserve > 0) {
1645                 pending->error = btrfs_block_rsv_add(fs_info,
1646                                                      &pending->block_rsv,
1647                                                      to_reserve,
1648                                                      BTRFS_RESERVE_NO_FLUSH);
1649                 if (pending->error)
1650                         goto clear_skip_qgroup;
1651         }
1652
1653         key.objectid = objectid;
1654         key.offset = (u64)-1;
1655         key.type = BTRFS_ROOT_ITEM_KEY;
1656
1657         rsv = trans->block_rsv;
1658         trans->block_rsv = &pending->block_rsv;
1659         trans->bytes_reserved = trans->block_rsv->reserved;
1660         trace_btrfs_space_reservation(fs_info, "transaction",
1661                                       trans->transid,
1662                                       trans->bytes_reserved, 1);
1663         dentry = pending->dentry;
1664         parent_inode = pending->dir;
1665         parent_root = BTRFS_I(parent_inode)->root;
1666         ret = record_root_in_trans(trans, parent_root, 0);
1667         if (ret)
1668                 goto fail;
1669         cur_time = current_time(parent_inode);
1670
1671         /*
1672          * insert the directory item
1673          */
1674         ret = btrfs_set_inode_index(BTRFS_I(parent_inode), &index);
1675         BUG_ON(ret); /* -ENOMEM */
1676
1677         /* check if there is a file/dir which has the same name. */
1678         dir_item = btrfs_lookup_dir_item(NULL, parent_root, path,
1679                                          btrfs_ino(BTRFS_I(parent_inode)),
1680                                          dentry->d_name.name,
1681                                          dentry->d_name.len, 0);
1682         if (dir_item != NULL && !IS_ERR(dir_item)) {
1683                 pending->error = -EEXIST;
1684                 goto dir_item_existed;
1685         } else if (IS_ERR(dir_item)) {
1686                 ret = PTR_ERR(dir_item);
1687                 btrfs_abort_transaction(trans, ret);
1688                 goto fail;
1689         }
1690         btrfs_release_path(path);
1691
1692         /*
1693          * pull in the delayed directory update
1694          * and the delayed inode item
1695          * otherwise we corrupt the FS during
1696          * snapshot
1697          */
1698         ret = btrfs_run_delayed_items(trans);
1699         if (ret) {      /* Transaction aborted */
1700                 btrfs_abort_transaction(trans, ret);
1701                 goto fail;
1702         }
1703
1704         ret = record_root_in_trans(trans, root, 0);
1705         if (ret) {
1706                 btrfs_abort_transaction(trans, ret);
1707                 goto fail;
1708         }
1709         btrfs_set_root_last_snapshot(&root->root_item, trans->transid);
1710         memcpy(new_root_item, &root->root_item, sizeof(*new_root_item));
1711         btrfs_check_and_init_root_item(new_root_item);
1712
1713         root_flags = btrfs_root_flags(new_root_item);
1714         if (pending->readonly)
1715                 root_flags |= BTRFS_ROOT_SUBVOL_RDONLY;
1716         else
1717                 root_flags &= ~BTRFS_ROOT_SUBVOL_RDONLY;
1718         btrfs_set_root_flags(new_root_item, root_flags);
1719
1720         btrfs_set_root_generation_v2(new_root_item,
1721                         trans->transid);
1722         generate_random_guid(new_root_item->uuid);
1723         memcpy(new_root_item->parent_uuid, root->root_item.uuid,
1724                         BTRFS_UUID_SIZE);
1725         if (!(root_flags & BTRFS_ROOT_SUBVOL_RDONLY)) {
1726                 memset(new_root_item->received_uuid, 0,
1727                        sizeof(new_root_item->received_uuid));
1728                 memset(&new_root_item->stime, 0, sizeof(new_root_item->stime));
1729                 memset(&new_root_item->rtime, 0, sizeof(new_root_item->rtime));
1730                 btrfs_set_root_stransid(new_root_item, 0);
1731                 btrfs_set_root_rtransid(new_root_item, 0);
1732         }
1733         btrfs_set_stack_timespec_sec(&new_root_item->otime, cur_time.tv_sec);
1734         btrfs_set_stack_timespec_nsec(&new_root_item->otime, cur_time.tv_nsec);
1735         btrfs_set_root_otransid(new_root_item, trans->transid);
1736
1737         old = btrfs_lock_root_node(root);
1738         ret = btrfs_cow_block(trans, root, old, NULL, 0, &old,
1739                               BTRFS_NESTING_COW);
1740         if (ret) {
1741                 btrfs_tree_unlock(old);
1742                 free_extent_buffer(old);
1743                 btrfs_abort_transaction(trans, ret);
1744                 goto fail;
1745         }
1746
1747         ret = btrfs_copy_root(trans, root, old, &tmp, objectid);
1748         /* clean up in any case */
1749         btrfs_tree_unlock(old);
1750         free_extent_buffer(old);
1751         if (ret) {
1752                 btrfs_abort_transaction(trans, ret);
1753                 goto fail;
1754         }
1755         /* see comments in should_cow_block() */
1756         set_bit(BTRFS_ROOT_FORCE_COW, &root->state);
1757         smp_wmb();
1758
1759         btrfs_set_root_node(new_root_item, tmp);
1760         /* record when the snapshot was created in key.offset */
1761         key.offset = trans->transid;
1762         ret = btrfs_insert_root(trans, tree_root, &key, new_root_item);
1763         btrfs_tree_unlock(tmp);
1764         free_extent_buffer(tmp);
1765         if (ret) {
1766                 btrfs_abort_transaction(trans, ret);
1767                 goto fail;
1768         }
1769
1770         /*
1771          * insert root back/forward references
1772          */
1773         ret = btrfs_add_root_ref(trans, objectid,
1774                                  parent_root->root_key.objectid,
1775                                  btrfs_ino(BTRFS_I(parent_inode)), index,
1776                                  dentry->d_name.name, dentry->d_name.len);
1777         if (ret) {
1778                 btrfs_abort_transaction(trans, ret);
1779                 goto fail;
1780         }
1781
1782         key.offset = (u64)-1;
1783         pending->snap = btrfs_get_new_fs_root(fs_info, objectid, pending->anon_dev);
1784         if (IS_ERR(pending->snap)) {
1785                 ret = PTR_ERR(pending->snap);
1786                 pending->snap = NULL;
1787                 btrfs_abort_transaction(trans, ret);
1788                 goto fail;
1789         }
1790
1791         ret = btrfs_reloc_post_snapshot(trans, pending);
1792         if (ret) {
1793                 btrfs_abort_transaction(trans, ret);
1794                 goto fail;
1795         }
1796
1797         /*
1798          * Do special qgroup accounting for snapshot, as we do some qgroup
1799          * snapshot hack to do fast snapshot.
1800          * To co-operate with that hack, we do hack again.
1801          * Or snapshot will be greatly slowed down by a subtree qgroup rescan
1802          */
1803         ret = qgroup_account_snapshot(trans, root, parent_root,
1804                                       pending->inherit, objectid);
1805         if (ret < 0)
1806                 goto fail;
1807
1808         ret = btrfs_insert_dir_item(trans, dentry->d_name.name,
1809                                     dentry->d_name.len, BTRFS_I(parent_inode),
1810                                     &key, BTRFS_FT_DIR, index);
1811         /* We have check then name at the beginning, so it is impossible. */
1812         BUG_ON(ret == -EEXIST || ret == -EOVERFLOW);
1813         if (ret) {
1814                 btrfs_abort_transaction(trans, ret);
1815                 goto fail;
1816         }
1817
1818         btrfs_i_size_write(BTRFS_I(parent_inode), parent_inode->i_size +
1819                                          dentry->d_name.len * 2);
1820         parent_inode->i_mtime = parent_inode->i_ctime =
1821                 current_time(parent_inode);
1822         ret = btrfs_update_inode_fallback(trans, parent_root, BTRFS_I(parent_inode));
1823         if (ret) {
1824                 btrfs_abort_transaction(trans, ret);
1825                 goto fail;
1826         }
1827         ret = btrfs_uuid_tree_add(trans, new_root_item->uuid,
1828                                   BTRFS_UUID_KEY_SUBVOL,
1829                                   objectid);
1830         if (ret) {
1831                 btrfs_abort_transaction(trans, ret);
1832                 goto fail;
1833         }
1834         if (!btrfs_is_empty_uuid(new_root_item->received_uuid)) {
1835                 ret = btrfs_uuid_tree_add(trans, new_root_item->received_uuid,
1836                                           BTRFS_UUID_KEY_RECEIVED_SUBVOL,
1837                                           objectid);
1838                 if (ret && ret != -EEXIST) {
1839                         btrfs_abort_transaction(trans, ret);
1840                         goto fail;
1841                 }
1842         }
1843
1844 fail:
1845         pending->error = ret;
1846 dir_item_existed:
1847         trans->block_rsv = rsv;
1848         trans->bytes_reserved = 0;
1849 clear_skip_qgroup:
1850         btrfs_clear_skip_qgroup(trans);
1851 no_free_objectid:
1852         kfree(new_root_item);
1853         pending->root_item = NULL;
1854         btrfs_free_path(path);
1855         pending->path = NULL;
1856
1857         return ret;
1858 }
1859
1860 /*
1861  * create all the snapshots we've scheduled for creation
1862  */
1863 static noinline int create_pending_snapshots(struct btrfs_trans_handle *trans)
1864 {
1865         struct btrfs_pending_snapshot *pending, *next;
1866         struct list_head *head = &trans->transaction->pending_snapshots;
1867         int ret = 0;
1868
1869         list_for_each_entry_safe(pending, next, head, list) {
1870                 list_del(&pending->list);
1871                 ret = create_pending_snapshot(trans, pending);
1872                 if (ret)
1873                         break;
1874         }
1875         return ret;
1876 }
1877
1878 static void update_super_roots(struct btrfs_fs_info *fs_info)
1879 {
1880         struct btrfs_root_item *root_item;
1881         struct btrfs_super_block *super;
1882
1883         super = fs_info->super_copy;
1884
1885         root_item = &fs_info->chunk_root->root_item;
1886         super->chunk_root = root_item->bytenr;
1887         super->chunk_root_generation = root_item->generation;
1888         super->chunk_root_level = root_item->level;
1889
1890         root_item = &fs_info->tree_root->root_item;
1891         super->root = root_item->bytenr;
1892         super->generation = root_item->generation;
1893         super->root_level = root_item->level;
1894         if (btrfs_test_opt(fs_info, SPACE_CACHE))
1895                 super->cache_generation = root_item->generation;
1896         else if (test_bit(BTRFS_FS_CLEANUP_SPACE_CACHE_V1, &fs_info->flags))
1897                 super->cache_generation = 0;
1898         if (test_bit(BTRFS_FS_UPDATE_UUID_TREE_GEN, &fs_info->flags))
1899                 super->uuid_tree_generation = root_item->generation;
1900
1901         if (btrfs_fs_incompat(fs_info, EXTENT_TREE_V2)) {
1902                 root_item = &fs_info->block_group_root->root_item;
1903
1904                 super->block_group_root = root_item->bytenr;
1905                 super->block_group_root_generation = root_item->generation;
1906                 super->block_group_root_level = root_item->level;
1907         }
1908 }
1909
1910 int btrfs_transaction_in_commit(struct btrfs_fs_info *info)
1911 {
1912         struct btrfs_transaction *trans;
1913         int ret = 0;
1914
1915         spin_lock(&info->trans_lock);
1916         trans = info->running_transaction;
1917         if (trans)
1918                 ret = (trans->state >= TRANS_STATE_COMMIT_START);
1919         spin_unlock(&info->trans_lock);
1920         return ret;
1921 }
1922
1923 int btrfs_transaction_blocked(struct btrfs_fs_info *info)
1924 {
1925         struct btrfs_transaction *trans;
1926         int ret = 0;
1927
1928         spin_lock(&info->trans_lock);
1929         trans = info->running_transaction;
1930         if (trans)
1931                 ret = is_transaction_blocked(trans);
1932         spin_unlock(&info->trans_lock);
1933         return ret;
1934 }
1935
1936 void btrfs_commit_transaction_async(struct btrfs_trans_handle *trans)
1937 {
1938         struct btrfs_fs_info *fs_info = trans->fs_info;
1939         struct btrfs_transaction *cur_trans;
1940
1941         /* Kick the transaction kthread. */
1942         set_bit(BTRFS_FS_COMMIT_TRANS, &fs_info->flags);
1943         wake_up_process(fs_info->transaction_kthread);
1944
1945         /* take transaction reference */
1946         cur_trans = trans->transaction;
1947         refcount_inc(&cur_trans->use_count);
1948
1949         btrfs_end_transaction(trans);
1950
1951         /*
1952          * Wait for the current transaction commit to start and block
1953          * subsequent transaction joins
1954          */
1955         wait_event(fs_info->transaction_blocked_wait,
1956                    cur_trans->state >= TRANS_STATE_COMMIT_START ||
1957                    TRANS_ABORTED(cur_trans));
1958         btrfs_put_transaction(cur_trans);
1959 }
1960
1961 static void cleanup_transaction(struct btrfs_trans_handle *trans, int err)
1962 {
1963         struct btrfs_fs_info *fs_info = trans->fs_info;
1964         struct btrfs_transaction *cur_trans = trans->transaction;
1965
1966         WARN_ON(refcount_read(&trans->use_count) > 1);
1967
1968         btrfs_abort_transaction(trans, err);
1969
1970         spin_lock(&fs_info->trans_lock);
1971
1972         /*
1973          * If the transaction is removed from the list, it means this
1974          * transaction has been committed successfully, so it is impossible
1975          * to call the cleanup function.
1976          */
1977         BUG_ON(list_empty(&cur_trans->list));
1978
1979         if (cur_trans == fs_info->running_transaction) {
1980                 cur_trans->state = TRANS_STATE_COMMIT_DOING;
1981                 spin_unlock(&fs_info->trans_lock);
1982                 wait_event(cur_trans->writer_wait,
1983                            atomic_read(&cur_trans->num_writers) == 1);
1984
1985                 spin_lock(&fs_info->trans_lock);
1986         }
1987
1988         /*
1989          * Now that we know no one else is still using the transaction we can
1990          * remove the transaction from the list of transactions. This avoids
1991          * the transaction kthread from cleaning up the transaction while some
1992          * other task is still using it, which could result in a use-after-free
1993          * on things like log trees, as it forces the transaction kthread to
1994          * wait for this transaction to be cleaned up by us.
1995          */
1996         list_del_init(&cur_trans->list);
1997
1998         spin_unlock(&fs_info->trans_lock);
1999
2000         btrfs_cleanup_one_transaction(trans->transaction, fs_info);
2001
2002         spin_lock(&fs_info->trans_lock);
2003         if (cur_trans == fs_info->running_transaction)
2004                 fs_info->running_transaction = NULL;
2005         spin_unlock(&fs_info->trans_lock);
2006
2007         if (trans->type & __TRANS_FREEZABLE)
2008                 sb_end_intwrite(fs_info->sb);
2009         btrfs_put_transaction(cur_trans);
2010         btrfs_put_transaction(cur_trans);
2011
2012         trace_btrfs_transaction_commit(fs_info);
2013
2014         if (current->journal_info == trans)
2015                 current->journal_info = NULL;
2016         btrfs_scrub_cancel(fs_info);
2017
2018         kmem_cache_free(btrfs_trans_handle_cachep, trans);
2019 }
2020
2021 /*
2022  * Release reserved delayed ref space of all pending block groups of the
2023  * transaction and remove them from the list
2024  */
2025 static void btrfs_cleanup_pending_block_groups(struct btrfs_trans_handle *trans)
2026 {
2027        struct btrfs_fs_info *fs_info = trans->fs_info;
2028        struct btrfs_block_group *block_group, *tmp;
2029
2030        list_for_each_entry_safe(block_group, tmp, &trans->new_bgs, bg_list) {
2031                btrfs_delayed_refs_rsv_release(fs_info, 1);
2032                list_del_init(&block_group->bg_list);
2033        }
2034 }
2035
2036 static inline int btrfs_start_delalloc_flush(struct btrfs_fs_info *fs_info)
2037 {
2038         /*
2039          * We use try_to_writeback_inodes_sb() here because if we used
2040          * btrfs_start_delalloc_roots we would deadlock with fs freeze.
2041          * Currently are holding the fs freeze lock, if we do an async flush
2042          * we'll do btrfs_join_transaction() and deadlock because we need to
2043          * wait for the fs freeze lock.  Using the direct flushing we benefit
2044          * from already being in a transaction and our join_transaction doesn't
2045          * have to re-take the fs freeze lock.
2046          *
2047          * Note that try_to_writeback_inodes_sb() will only trigger writeback
2048          * if it can read lock sb->s_umount. It will always be able to lock it,
2049          * except when the filesystem is being unmounted or being frozen, but in
2050          * those cases sync_filesystem() is called, which results in calling
2051          * writeback_inodes_sb() while holding a write lock on sb->s_umount.
2052          * Note that we don't call writeback_inodes_sb() directly, because it
2053          * will emit a warning if sb->s_umount is not locked.
2054          */
2055         if (btrfs_test_opt(fs_info, FLUSHONCOMMIT))
2056                 try_to_writeback_inodes_sb(fs_info->sb, WB_REASON_SYNC);
2057         return 0;
2058 }
2059
2060 static inline void btrfs_wait_delalloc_flush(struct btrfs_fs_info *fs_info)
2061 {
2062         if (btrfs_test_opt(fs_info, FLUSHONCOMMIT))
2063                 btrfs_wait_ordered_roots(fs_info, U64_MAX, 0, (u64)-1);
2064 }
2065
2066 /*
2067  * Add a pending snapshot associated with the given transaction handle to the
2068  * respective handle. This must be called after the transaction commit started
2069  * and while holding fs_info->trans_lock.
2070  * This serves to guarantee a caller of btrfs_commit_transaction() that it can
2071  * safely free the pending snapshot pointer in case btrfs_commit_transaction()
2072  * returns an error.
2073  */
2074 static void add_pending_snapshot(struct btrfs_trans_handle *trans)
2075 {
2076         struct btrfs_transaction *cur_trans = trans->transaction;
2077
2078         if (!trans->pending_snapshot)
2079                 return;
2080
2081         lockdep_assert_held(&trans->fs_info->trans_lock);
2082         ASSERT(cur_trans->state >= TRANS_STATE_COMMIT_START);
2083
2084         list_add(&trans->pending_snapshot->list, &cur_trans->pending_snapshots);
2085 }
2086
2087 int btrfs_commit_transaction(struct btrfs_trans_handle *trans)
2088 {
2089         struct btrfs_fs_info *fs_info = trans->fs_info;
2090         struct btrfs_transaction *cur_trans = trans->transaction;
2091         struct btrfs_transaction *prev_trans = NULL;
2092         int ret;
2093
2094         ASSERT(refcount_read(&trans->use_count) == 1);
2095
2096         /* Stop the commit early if ->aborted is set */
2097         if (TRANS_ABORTED(cur_trans)) {
2098                 ret = cur_trans->aborted;
2099                 btrfs_end_transaction(trans);
2100                 return ret;
2101         }
2102
2103         btrfs_trans_release_metadata(trans);
2104         trans->block_rsv = NULL;
2105
2106         /*
2107          * We only want one transaction commit doing the flushing so we do not
2108          * waste a bunch of time on lock contention on the extent root node.
2109          */
2110         if (!test_and_set_bit(BTRFS_DELAYED_REFS_FLUSHING,
2111                               &cur_trans->delayed_refs.flags)) {
2112                 /*
2113                  * Make a pass through all the delayed refs we have so far.
2114                  * Any running threads may add more while we are here.
2115                  */
2116                 ret = btrfs_run_delayed_refs(trans, 0);
2117                 if (ret) {
2118                         btrfs_end_transaction(trans);
2119                         return ret;
2120                 }
2121         }
2122
2123         btrfs_create_pending_block_groups(trans);
2124
2125         if (!test_bit(BTRFS_TRANS_DIRTY_BG_RUN, &cur_trans->flags)) {
2126                 int run_it = 0;
2127
2128                 /* this mutex is also taken before trying to set
2129                  * block groups readonly.  We need to make sure
2130                  * that nobody has set a block group readonly
2131                  * after a extents from that block group have been
2132                  * allocated for cache files.  btrfs_set_block_group_ro
2133                  * will wait for the transaction to commit if it
2134                  * finds BTRFS_TRANS_DIRTY_BG_RUN set.
2135                  *
2136                  * The BTRFS_TRANS_DIRTY_BG_RUN flag is also used to make sure
2137                  * only one process starts all the block group IO.  It wouldn't
2138                  * hurt to have more than one go through, but there's no
2139                  * real advantage to it either.
2140                  */
2141                 mutex_lock(&fs_info->ro_block_group_mutex);
2142                 if (!test_and_set_bit(BTRFS_TRANS_DIRTY_BG_RUN,
2143                                       &cur_trans->flags))
2144                         run_it = 1;
2145                 mutex_unlock(&fs_info->ro_block_group_mutex);
2146
2147                 if (run_it) {
2148                         ret = btrfs_start_dirty_block_groups(trans);
2149                         if (ret) {
2150                                 btrfs_end_transaction(trans);
2151                                 return ret;
2152                         }
2153                 }
2154         }
2155
2156         spin_lock(&fs_info->trans_lock);
2157         if (cur_trans->state >= TRANS_STATE_COMMIT_START) {
2158                 enum btrfs_trans_state want_state = TRANS_STATE_COMPLETED;
2159
2160                 add_pending_snapshot(trans);
2161
2162                 spin_unlock(&fs_info->trans_lock);
2163                 refcount_inc(&cur_trans->use_count);
2164
2165                 if (trans->in_fsync)
2166                         want_state = TRANS_STATE_SUPER_COMMITTED;
2167                 ret = btrfs_end_transaction(trans);
2168                 wait_for_commit(cur_trans, want_state);
2169
2170                 if (TRANS_ABORTED(cur_trans))
2171                         ret = cur_trans->aborted;
2172
2173                 btrfs_put_transaction(cur_trans);
2174
2175                 return ret;
2176         }
2177
2178         cur_trans->state = TRANS_STATE_COMMIT_START;
2179         wake_up(&fs_info->transaction_blocked_wait);
2180
2181         if (cur_trans->list.prev != &fs_info->trans_list) {
2182                 enum btrfs_trans_state want_state = TRANS_STATE_COMPLETED;
2183
2184                 if (trans->in_fsync)
2185                         want_state = TRANS_STATE_SUPER_COMMITTED;
2186
2187                 prev_trans = list_entry(cur_trans->list.prev,
2188                                         struct btrfs_transaction, list);
2189                 if (prev_trans->state < want_state) {
2190                         refcount_inc(&prev_trans->use_count);
2191                         spin_unlock(&fs_info->trans_lock);
2192
2193                         wait_for_commit(prev_trans, want_state);
2194
2195                         ret = READ_ONCE(prev_trans->aborted);
2196
2197                         btrfs_put_transaction(prev_trans);
2198                         if (ret)
2199                                 goto cleanup_transaction;
2200                 } else {
2201                         spin_unlock(&fs_info->trans_lock);
2202                 }
2203         } else {
2204                 spin_unlock(&fs_info->trans_lock);
2205                 /*
2206                  * The previous transaction was aborted and was already removed
2207                  * from the list of transactions at fs_info->trans_list. So we
2208                  * abort to prevent writing a new superblock that reflects a
2209                  * corrupt state (pointing to trees with unwritten nodes/leafs).
2210                  */
2211                 if (BTRFS_FS_ERROR(fs_info)) {
2212                         ret = -EROFS;
2213                         goto cleanup_transaction;
2214                 }
2215         }
2216
2217         extwriter_counter_dec(cur_trans, trans->type);
2218
2219         ret = btrfs_start_delalloc_flush(fs_info);
2220         if (ret)
2221                 goto cleanup_transaction;
2222
2223         ret = btrfs_run_delayed_items(trans);
2224         if (ret)
2225                 goto cleanup_transaction;
2226
2227         wait_event(cur_trans->writer_wait,
2228                    extwriter_counter_read(cur_trans) == 0);
2229
2230         /* some pending stuffs might be added after the previous flush. */
2231         ret = btrfs_run_delayed_items(trans);
2232         if (ret)
2233                 goto cleanup_transaction;
2234
2235         btrfs_wait_delalloc_flush(fs_info);
2236
2237         /*
2238          * Wait for all ordered extents started by a fast fsync that joined this
2239          * transaction. Otherwise if this transaction commits before the ordered
2240          * extents complete we lose logged data after a power failure.
2241          */
2242         wait_event(cur_trans->pending_wait,
2243                    atomic_read(&cur_trans->pending_ordered) == 0);
2244
2245         btrfs_scrub_pause(fs_info);
2246         /*
2247          * Ok now we need to make sure to block out any other joins while we
2248          * commit the transaction.  We could have started a join before setting
2249          * COMMIT_DOING so make sure to wait for num_writers to == 1 again.
2250          */
2251         spin_lock(&fs_info->trans_lock);
2252         add_pending_snapshot(trans);
2253         cur_trans->state = TRANS_STATE_COMMIT_DOING;
2254         spin_unlock(&fs_info->trans_lock);
2255         wait_event(cur_trans->writer_wait,
2256                    atomic_read(&cur_trans->num_writers) == 1);
2257
2258         /*
2259          * We've started the commit, clear the flag in case we were triggered to
2260          * do an async commit but somebody else started before the transaction
2261          * kthread could do the work.
2262          */
2263         clear_bit(BTRFS_FS_COMMIT_TRANS, &fs_info->flags);
2264
2265         if (TRANS_ABORTED(cur_trans)) {
2266                 ret = cur_trans->aborted;
2267                 goto scrub_continue;
2268         }
2269         /*
2270          * the reloc mutex makes sure that we stop
2271          * the balancing code from coming in and moving
2272          * extents around in the middle of the commit
2273          */
2274         mutex_lock(&fs_info->reloc_mutex);
2275
2276         /*
2277          * We needn't worry about the delayed items because we will
2278          * deal with them in create_pending_snapshot(), which is the
2279          * core function of the snapshot creation.
2280          */
2281         ret = create_pending_snapshots(trans);
2282         if (ret)
2283                 goto unlock_reloc;
2284
2285         /*
2286          * We insert the dir indexes of the snapshots and update the inode
2287          * of the snapshots' parents after the snapshot creation, so there
2288          * are some delayed items which are not dealt with. Now deal with
2289          * them.
2290          *
2291          * We needn't worry that this operation will corrupt the snapshots,
2292          * because all the tree which are snapshoted will be forced to COW
2293          * the nodes and leaves.
2294          */
2295         ret = btrfs_run_delayed_items(trans);
2296         if (ret)
2297                 goto unlock_reloc;
2298
2299         ret = btrfs_run_delayed_refs(trans, (unsigned long)-1);
2300         if (ret)
2301                 goto unlock_reloc;
2302
2303         /*
2304          * make sure none of the code above managed to slip in a
2305          * delayed item
2306          */
2307         btrfs_assert_delayed_root_empty(fs_info);
2308
2309         WARN_ON(cur_trans != trans->transaction);
2310
2311         ret = commit_fs_roots(trans);
2312         if (ret)
2313                 goto unlock_reloc;
2314
2315         /*
2316          * Since the transaction is done, we can apply the pending changes
2317          * before the next transaction.
2318          */
2319         btrfs_apply_pending_changes(fs_info);
2320
2321         /* commit_fs_roots gets rid of all the tree log roots, it is now
2322          * safe to free the root of tree log roots
2323          */
2324         btrfs_free_log_root_tree(trans, fs_info);
2325
2326         /*
2327          * Since fs roots are all committed, we can get a quite accurate
2328          * new_roots. So let's do quota accounting.
2329          */
2330         ret = btrfs_qgroup_account_extents(trans);
2331         if (ret < 0)
2332                 goto unlock_reloc;
2333
2334         ret = commit_cowonly_roots(trans);
2335         if (ret)
2336                 goto unlock_reloc;
2337
2338         /*
2339          * The tasks which save the space cache and inode cache may also
2340          * update ->aborted, check it.
2341          */
2342         if (TRANS_ABORTED(cur_trans)) {
2343                 ret = cur_trans->aborted;
2344                 goto unlock_reloc;
2345         }
2346
2347         cur_trans = fs_info->running_transaction;
2348
2349         btrfs_set_root_node(&fs_info->tree_root->root_item,
2350                             fs_info->tree_root->node);
2351         list_add_tail(&fs_info->tree_root->dirty_list,
2352                       &cur_trans->switch_commits);
2353
2354         btrfs_set_root_node(&fs_info->chunk_root->root_item,
2355                             fs_info->chunk_root->node);
2356         list_add_tail(&fs_info->chunk_root->dirty_list,
2357                       &cur_trans->switch_commits);
2358
2359         if (btrfs_fs_incompat(fs_info, EXTENT_TREE_V2)) {
2360                 btrfs_set_root_node(&fs_info->block_group_root->root_item,
2361                                     fs_info->block_group_root->node);
2362                 list_add_tail(&fs_info->block_group_root->dirty_list,
2363                               &cur_trans->switch_commits);
2364         }
2365
2366         switch_commit_roots(trans);
2367
2368         ASSERT(list_empty(&cur_trans->dirty_bgs));
2369         ASSERT(list_empty(&cur_trans->io_bgs));
2370         update_super_roots(fs_info);
2371
2372         btrfs_set_super_log_root(fs_info->super_copy, 0);
2373         btrfs_set_super_log_root_level(fs_info->super_copy, 0);
2374         memcpy(fs_info->super_for_commit, fs_info->super_copy,
2375                sizeof(*fs_info->super_copy));
2376
2377         btrfs_commit_device_sizes(cur_trans);
2378
2379         clear_bit(BTRFS_FS_LOG1_ERR, &fs_info->flags);
2380         clear_bit(BTRFS_FS_LOG2_ERR, &fs_info->flags);
2381
2382         btrfs_trans_release_chunk_metadata(trans);
2383
2384         /*
2385          * Before changing the transaction state to TRANS_STATE_UNBLOCKED and
2386          * setting fs_info->running_transaction to NULL, lock tree_log_mutex to
2387          * make sure that before we commit our superblock, no other task can
2388          * start a new transaction and commit a log tree before we commit our
2389          * superblock. Anyone trying to commit a log tree locks this mutex before
2390          * writing its superblock.
2391          */
2392         mutex_lock(&fs_info->tree_log_mutex);
2393
2394         spin_lock(&fs_info->trans_lock);
2395         cur_trans->state = TRANS_STATE_UNBLOCKED;
2396         fs_info->running_transaction = NULL;
2397         spin_unlock(&fs_info->trans_lock);
2398         mutex_unlock(&fs_info->reloc_mutex);
2399
2400         wake_up(&fs_info->transaction_wait);
2401
2402         ret = btrfs_write_and_wait_transaction(trans);
2403         if (ret) {
2404                 btrfs_handle_fs_error(fs_info, ret,
2405                                       "Error while writing out transaction");
2406                 mutex_unlock(&fs_info->tree_log_mutex);
2407                 goto scrub_continue;
2408         }
2409
2410         /*
2411          * At this point, we should have written all the tree blocks allocated
2412          * in this transaction. So it's now safe to free the redirtyied extent
2413          * buffers.
2414          */
2415         btrfs_free_redirty_list(cur_trans);
2416
2417         ret = write_all_supers(fs_info, 0);
2418         /*
2419          * the super is written, we can safely allow the tree-loggers
2420          * to go about their business
2421          */
2422         mutex_unlock(&fs_info->tree_log_mutex);
2423         if (ret)
2424                 goto scrub_continue;
2425
2426         /*
2427          * We needn't acquire the lock here because there is no other task
2428          * which can change it.
2429          */
2430         cur_trans->state = TRANS_STATE_SUPER_COMMITTED;
2431         wake_up(&cur_trans->commit_wait);
2432
2433         btrfs_finish_extent_commit(trans);
2434
2435         if (test_bit(BTRFS_TRANS_HAVE_FREE_BGS, &cur_trans->flags))
2436                 btrfs_clear_space_info_full(fs_info);
2437
2438         fs_info->last_trans_committed = cur_trans->transid;
2439         /*
2440          * We needn't acquire the lock here because there is no other task
2441          * which can change it.
2442          */
2443         cur_trans->state = TRANS_STATE_COMPLETED;
2444         wake_up(&cur_trans->commit_wait);
2445
2446         spin_lock(&fs_info->trans_lock);
2447         list_del_init(&cur_trans->list);
2448         spin_unlock(&fs_info->trans_lock);
2449
2450         btrfs_put_transaction(cur_trans);
2451         btrfs_put_transaction(cur_trans);
2452
2453         if (trans->type & __TRANS_FREEZABLE)
2454                 sb_end_intwrite(fs_info->sb);
2455
2456         trace_btrfs_transaction_commit(fs_info);
2457
2458         btrfs_scrub_continue(fs_info);
2459
2460         if (current->journal_info == trans)
2461                 current->journal_info = NULL;
2462
2463         kmem_cache_free(btrfs_trans_handle_cachep, trans);
2464
2465         return ret;
2466
2467 unlock_reloc:
2468         mutex_unlock(&fs_info->reloc_mutex);
2469 scrub_continue:
2470         btrfs_scrub_continue(fs_info);
2471 cleanup_transaction:
2472         btrfs_trans_release_metadata(trans);
2473         btrfs_cleanup_pending_block_groups(trans);
2474         btrfs_trans_release_chunk_metadata(trans);
2475         trans->block_rsv = NULL;
2476         btrfs_warn(fs_info, "Skipping commit of aborted transaction.");
2477         if (current->journal_info == trans)
2478                 current->journal_info = NULL;
2479         cleanup_transaction(trans, ret);
2480
2481         return ret;
2482 }
2483
2484 /*
2485  * return < 0 if error
2486  * 0 if there are no more dead_roots at the time of call
2487  * 1 there are more to be processed, call me again
2488  *
2489  * The return value indicates there are certainly more snapshots to delete, but
2490  * if there comes a new one during processing, it may return 0. We don't mind,
2491  * because btrfs_commit_super will poke cleaner thread and it will process it a
2492  * few seconds later.
2493  */
2494 int btrfs_clean_one_deleted_snapshot(struct btrfs_fs_info *fs_info)
2495 {
2496         struct btrfs_root *root;
2497         int ret;
2498
2499         spin_lock(&fs_info->trans_lock);
2500         if (list_empty(&fs_info->dead_roots)) {
2501                 spin_unlock(&fs_info->trans_lock);
2502                 return 0;
2503         }
2504         root = list_first_entry(&fs_info->dead_roots,
2505                         struct btrfs_root, root_list);
2506         list_del_init(&root->root_list);
2507         spin_unlock(&fs_info->trans_lock);
2508
2509         btrfs_debug(fs_info, "cleaner removing %llu", root->root_key.objectid);
2510
2511         btrfs_kill_all_delayed_nodes(root);
2512
2513         if (btrfs_header_backref_rev(root->node) <
2514                         BTRFS_MIXED_BACKREF_REV)
2515                 ret = btrfs_drop_snapshot(root, 0, 0);
2516         else
2517                 ret = btrfs_drop_snapshot(root, 1, 0);
2518
2519         btrfs_put_root(root);
2520         return (ret < 0) ? 0 : 1;
2521 }
2522
2523 void btrfs_apply_pending_changes(struct btrfs_fs_info *fs_info)
2524 {
2525         unsigned long prev;
2526         unsigned long bit;
2527
2528         prev = xchg(&fs_info->pending_changes, 0);
2529         if (!prev)
2530                 return;
2531
2532         bit = 1 << BTRFS_PENDING_COMMIT;
2533         if (prev & bit)
2534                 btrfs_debug(fs_info, "pending commit done");
2535         prev &= ~bit;
2536
2537         if (prev)
2538                 btrfs_warn(fs_info,
2539                         "unknown pending changes left 0x%lx, ignoring", prev);
2540 }