GNU Linux-libre 5.4.257-gnu1
[releases.git] / fs / btrfs / space-info.c
1 // SPDX-License-Identifier: GPL-2.0
2
3 #include "misc.h"
4 #include "ctree.h"
5 #include "space-info.h"
6 #include "sysfs.h"
7 #include "volumes.h"
8 #include "free-space-cache.h"
9 #include "ordered-data.h"
10 #include "transaction.h"
11 #include "block-group.h"
12
13 u64 btrfs_space_info_used(struct btrfs_space_info *s_info,
14                           bool may_use_included)
15 {
16         ASSERT(s_info);
17         return s_info->bytes_used + s_info->bytes_reserved +
18                 s_info->bytes_pinned + s_info->bytes_readonly +
19                 (may_use_included ? s_info->bytes_may_use : 0);
20 }
21
22 /*
23  * after adding space to the filesystem, we need to clear the full flags
24  * on all the space infos.
25  */
26 void btrfs_clear_space_info_full(struct btrfs_fs_info *info)
27 {
28         struct list_head *head = &info->space_info;
29         struct btrfs_space_info *found;
30
31         rcu_read_lock();
32         list_for_each_entry_rcu(found, head, list)
33                 found->full = 0;
34         rcu_read_unlock();
35 }
36
37 static int create_space_info(struct btrfs_fs_info *info, u64 flags)
38 {
39
40         struct btrfs_space_info *space_info;
41         int i;
42         int ret;
43
44         space_info = kzalloc(sizeof(*space_info), GFP_NOFS);
45         if (!space_info)
46                 return -ENOMEM;
47
48         ret = percpu_counter_init(&space_info->total_bytes_pinned, 0,
49                                  GFP_KERNEL);
50         if (ret) {
51                 kfree(space_info);
52                 return ret;
53         }
54
55         for (i = 0; i < BTRFS_NR_RAID_TYPES; i++)
56                 INIT_LIST_HEAD(&space_info->block_groups[i]);
57         init_rwsem(&space_info->groups_sem);
58         spin_lock_init(&space_info->lock);
59         space_info->flags = flags & BTRFS_BLOCK_GROUP_TYPE_MASK;
60         space_info->force_alloc = CHUNK_ALLOC_NO_FORCE;
61         init_waitqueue_head(&space_info->wait);
62         INIT_LIST_HEAD(&space_info->ro_bgs);
63         INIT_LIST_HEAD(&space_info->tickets);
64         INIT_LIST_HEAD(&space_info->priority_tickets);
65
66         ret = btrfs_sysfs_add_space_info_type(info, space_info);
67         if (ret)
68                 return ret;
69
70         list_add_rcu(&space_info->list, &info->space_info);
71         if (flags & BTRFS_BLOCK_GROUP_DATA)
72                 info->data_sinfo = space_info;
73
74         return ret;
75 }
76
77 int btrfs_init_space_info(struct btrfs_fs_info *fs_info)
78 {
79         struct btrfs_super_block *disk_super;
80         u64 features;
81         u64 flags;
82         int mixed = 0;
83         int ret;
84
85         disk_super = fs_info->super_copy;
86         if (!btrfs_super_root(disk_super))
87                 return -EINVAL;
88
89         features = btrfs_super_incompat_flags(disk_super);
90         if (features & BTRFS_FEATURE_INCOMPAT_MIXED_GROUPS)
91                 mixed = 1;
92
93         flags = BTRFS_BLOCK_GROUP_SYSTEM;
94         ret = create_space_info(fs_info, flags);
95         if (ret)
96                 goto out;
97
98         if (mixed) {
99                 flags = BTRFS_BLOCK_GROUP_METADATA | BTRFS_BLOCK_GROUP_DATA;
100                 ret = create_space_info(fs_info, flags);
101         } else {
102                 flags = BTRFS_BLOCK_GROUP_METADATA;
103                 ret = create_space_info(fs_info, flags);
104                 if (ret)
105                         goto out;
106
107                 flags = BTRFS_BLOCK_GROUP_DATA;
108                 ret = create_space_info(fs_info, flags);
109         }
110 out:
111         return ret;
112 }
113
114 void btrfs_update_space_info(struct btrfs_fs_info *info, u64 flags,
115                              u64 total_bytes, u64 bytes_used,
116                              u64 bytes_readonly,
117                              struct btrfs_space_info **space_info)
118 {
119         struct btrfs_space_info *found;
120         int factor;
121
122         factor = btrfs_bg_type_to_factor(flags);
123
124         found = btrfs_find_space_info(info, flags);
125         ASSERT(found);
126         spin_lock(&found->lock);
127         found->total_bytes += total_bytes;
128         found->disk_total += total_bytes * factor;
129         found->bytes_used += bytes_used;
130         found->disk_used += bytes_used * factor;
131         found->bytes_readonly += bytes_readonly;
132         if (total_bytes > 0)
133                 found->full = 0;
134         btrfs_try_granting_tickets(info, found);
135         spin_unlock(&found->lock);
136         *space_info = found;
137 }
138
139 struct btrfs_space_info *btrfs_find_space_info(struct btrfs_fs_info *info,
140                                                u64 flags)
141 {
142         struct list_head *head = &info->space_info;
143         struct btrfs_space_info *found;
144
145         flags &= BTRFS_BLOCK_GROUP_TYPE_MASK;
146
147         rcu_read_lock();
148         list_for_each_entry_rcu(found, head, list) {
149                 if (found->flags & flags) {
150                         rcu_read_unlock();
151                         return found;
152                 }
153         }
154         rcu_read_unlock();
155         return NULL;
156 }
157
158 static inline u64 calc_global_rsv_need_space(struct btrfs_block_rsv *global)
159 {
160         return (global->size << 1);
161 }
162
163 int btrfs_can_overcommit(struct btrfs_fs_info *fs_info,
164                          struct btrfs_space_info *space_info, u64 bytes,
165                          enum btrfs_reserve_flush_enum flush)
166 {
167         u64 profile;
168         u64 avail;
169         u64 used;
170         int factor;
171
172         /* Don't overcommit when in mixed mode. */
173         if (space_info->flags & BTRFS_BLOCK_GROUP_DATA)
174                 return 0;
175
176         if (space_info->flags & BTRFS_BLOCK_GROUP_SYSTEM)
177                 profile = btrfs_system_alloc_profile(fs_info);
178         else
179                 profile = btrfs_metadata_alloc_profile(fs_info);
180
181         used = btrfs_space_info_used(space_info, true);
182         avail = atomic64_read(&fs_info->free_chunk_space);
183
184         /*
185          * If we have dup, raid1 or raid10 then only half of the free
186          * space is actually usable.  For raid56, the space info used
187          * doesn't include the parity drive, so we don't have to
188          * change the math
189          */
190         factor = btrfs_bg_type_to_factor(profile);
191         avail = div_u64(avail, factor);
192
193         /*
194          * If we aren't flushing all things, let us overcommit up to
195          * 1/2th of the space. If we can flush, don't let us overcommit
196          * too much, let it overcommit up to 1/8 of the space.
197          */
198         if (flush == BTRFS_RESERVE_FLUSH_ALL)
199                 avail >>= 3;
200         else
201                 avail >>= 1;
202
203         if (used + bytes < space_info->total_bytes + avail)
204                 return 1;
205         return 0;
206 }
207
208 /*
209  * This is for space we already have accounted in space_info->bytes_may_use, so
210  * basically when we're returning space from block_rsv's.
211  */
212 void btrfs_try_granting_tickets(struct btrfs_fs_info *fs_info,
213                                 struct btrfs_space_info *space_info)
214 {
215         struct list_head *head;
216         enum btrfs_reserve_flush_enum flush = BTRFS_RESERVE_NO_FLUSH;
217
218         lockdep_assert_held(&space_info->lock);
219
220         head = &space_info->priority_tickets;
221 again:
222         while (!list_empty(head)) {
223                 struct reserve_ticket *ticket;
224                 u64 used = btrfs_space_info_used(space_info, true);
225
226                 ticket = list_first_entry(head, struct reserve_ticket, list);
227
228                 /* Check and see if our ticket can be satisified now. */
229                 if ((used + ticket->bytes <= space_info->total_bytes) ||
230                     btrfs_can_overcommit(fs_info, space_info, ticket->bytes,
231                                          flush)) {
232                         btrfs_space_info_update_bytes_may_use(fs_info,
233                                                               space_info,
234                                                               ticket->bytes);
235                         list_del_init(&ticket->list);
236                         ticket->bytes = 0;
237                         space_info->tickets_id++;
238                         wake_up(&ticket->wait);
239                 } else {
240                         break;
241                 }
242         }
243
244         if (head == &space_info->priority_tickets) {
245                 head = &space_info->tickets;
246                 flush = BTRFS_RESERVE_FLUSH_ALL;
247                 goto again;
248         }
249 }
250
251 #define DUMP_BLOCK_RSV(fs_info, rsv_name)                               \
252 do {                                                                    \
253         struct btrfs_block_rsv *__rsv = &(fs_info)->rsv_name;           \
254         spin_lock(&__rsv->lock);                                        \
255         btrfs_info(fs_info, #rsv_name ": size %llu reserved %llu",      \
256                    __rsv->size, __rsv->reserved);                       \
257         spin_unlock(&__rsv->lock);                                      \
258 } while (0)
259
260 static void __btrfs_dump_space_info(struct btrfs_fs_info *fs_info,
261                                     struct btrfs_space_info *info)
262 {
263         lockdep_assert_held(&info->lock);
264
265         /* The free space could be negative in case of overcommit */
266         btrfs_info(fs_info, "space_info %llu has %lld free, is %sfull",
267                    info->flags,
268                    (s64)(info->total_bytes - btrfs_space_info_used(info, true)),
269                    info->full ? "" : "not ");
270         btrfs_info(fs_info,
271                 "space_info total=%llu, used=%llu, pinned=%llu, reserved=%llu, may_use=%llu, readonly=%llu",
272                 info->total_bytes, info->bytes_used, info->bytes_pinned,
273                 info->bytes_reserved, info->bytes_may_use,
274                 info->bytes_readonly);
275
276         DUMP_BLOCK_RSV(fs_info, global_block_rsv);
277         DUMP_BLOCK_RSV(fs_info, trans_block_rsv);
278         DUMP_BLOCK_RSV(fs_info, chunk_block_rsv);
279         DUMP_BLOCK_RSV(fs_info, delayed_block_rsv);
280         DUMP_BLOCK_RSV(fs_info, delayed_refs_rsv);
281
282 }
283
284 void btrfs_dump_space_info(struct btrfs_fs_info *fs_info,
285                            struct btrfs_space_info *info, u64 bytes,
286                            int dump_block_groups)
287 {
288         struct btrfs_block_group_cache *cache;
289         int index = 0;
290
291         spin_lock(&info->lock);
292         __btrfs_dump_space_info(fs_info, info);
293         spin_unlock(&info->lock);
294
295         if (!dump_block_groups)
296                 return;
297
298         down_read(&info->groups_sem);
299 again:
300         list_for_each_entry(cache, &info->block_groups[index], list) {
301                 spin_lock(&cache->lock);
302                 btrfs_info(fs_info,
303                         "block group %llu has %llu bytes, %llu used %llu pinned %llu reserved %s",
304                         cache->key.objectid, cache->key.offset,
305                         btrfs_block_group_used(&cache->item), cache->pinned,
306                         cache->reserved, cache->ro ? "[readonly]" : "");
307                 spin_unlock(&cache->lock);
308                 btrfs_dump_free_space(cache, bytes);
309         }
310         if (++index < BTRFS_NR_RAID_TYPES)
311                 goto again;
312         up_read(&info->groups_sem);
313 }
314
315 static void btrfs_writeback_inodes_sb_nr(struct btrfs_fs_info *fs_info,
316                                          unsigned long nr_pages, int nr_items)
317 {
318         struct super_block *sb = fs_info->sb;
319
320         if (down_read_trylock(&sb->s_umount)) {
321                 writeback_inodes_sb_nr(sb, nr_pages, WB_REASON_FS_FREE_SPACE);
322                 up_read(&sb->s_umount);
323         } else {
324                 /*
325                  * We needn't worry the filesystem going from r/w to r/o though
326                  * we don't acquire ->s_umount mutex, because the filesystem
327                  * should guarantee the delalloc inodes list be empty after
328                  * the filesystem is readonly(all dirty pages are written to
329                  * the disk).
330                  */
331                 btrfs_start_delalloc_roots(fs_info, nr_items);
332                 if (!current->journal_info)
333                         btrfs_wait_ordered_roots(fs_info, nr_items, 0, (u64)-1);
334         }
335 }
336
337 static inline u64 calc_reclaim_items_nr(struct btrfs_fs_info *fs_info,
338                                         u64 to_reclaim)
339 {
340         u64 bytes;
341         u64 nr;
342
343         bytes = btrfs_calc_insert_metadata_size(fs_info, 1);
344         nr = div64_u64(to_reclaim, bytes);
345         if (!nr)
346                 nr = 1;
347         return nr;
348 }
349
350 #define EXTENT_SIZE_PER_ITEM    SZ_256K
351
352 /*
353  * shrink metadata reservation for delalloc
354  */
355 static void shrink_delalloc(struct btrfs_fs_info *fs_info, u64 to_reclaim,
356                             u64 orig, bool wait_ordered)
357 {
358         struct btrfs_space_info *space_info;
359         struct btrfs_trans_handle *trans;
360         u64 delalloc_bytes;
361         u64 dio_bytes;
362         u64 async_pages;
363         u64 items;
364         long time_left;
365         unsigned long nr_pages;
366         int loops;
367
368         /* Calc the number of the pages we need flush for space reservation */
369         items = calc_reclaim_items_nr(fs_info, to_reclaim);
370         to_reclaim = items * EXTENT_SIZE_PER_ITEM;
371
372         trans = (struct btrfs_trans_handle *)current->journal_info;
373         space_info = btrfs_find_space_info(fs_info, BTRFS_BLOCK_GROUP_METADATA);
374
375         delalloc_bytes = percpu_counter_sum_positive(
376                                                 &fs_info->delalloc_bytes);
377         dio_bytes = percpu_counter_sum_positive(&fs_info->dio_bytes);
378         if (delalloc_bytes == 0 && dio_bytes == 0) {
379                 if (trans)
380                         return;
381                 if (wait_ordered)
382                         btrfs_wait_ordered_roots(fs_info, items, 0, (u64)-1);
383                 return;
384         }
385
386         /*
387          * If we are doing more ordered than delalloc we need to just wait on
388          * ordered extents, otherwise we'll waste time trying to flush delalloc
389          * that likely won't give us the space back we need.
390          */
391         if (dio_bytes > delalloc_bytes)
392                 wait_ordered = true;
393
394         loops = 0;
395         while ((delalloc_bytes || dio_bytes) && loops < 3) {
396                 nr_pages = min(delalloc_bytes, to_reclaim) >> PAGE_SHIFT;
397
398                 /*
399                  * Triggers inode writeback for up to nr_pages. This will invoke
400                  * ->writepages callback and trigger delalloc filling
401                  *  (btrfs_run_delalloc_range()).
402                  */
403                 btrfs_writeback_inodes_sb_nr(fs_info, nr_pages, items);
404
405                 /*
406                  * We need to wait for the compressed pages to start before
407                  * we continue.
408                  */
409                 async_pages = atomic_read(&fs_info->async_delalloc_pages);
410                 if (!async_pages)
411                         goto skip_async;
412
413                 /*
414                  * Calculate how many compressed pages we want to be written
415                  * before we continue. I.e if there are more async pages than we
416                  * require wait_event will wait until nr_pages are written.
417                  */
418                 if (async_pages <= nr_pages)
419                         async_pages = 0;
420                 else
421                         async_pages -= nr_pages;
422
423                 wait_event(fs_info->async_submit_wait,
424                            atomic_read(&fs_info->async_delalloc_pages) <=
425                            (int)async_pages);
426 skip_async:
427                 spin_lock(&space_info->lock);
428                 if (list_empty(&space_info->tickets) &&
429                     list_empty(&space_info->priority_tickets)) {
430                         spin_unlock(&space_info->lock);
431                         break;
432                 }
433                 spin_unlock(&space_info->lock);
434
435                 loops++;
436                 if (wait_ordered && !trans) {
437                         btrfs_wait_ordered_roots(fs_info, items, 0, (u64)-1);
438                 } else {
439                         time_left = schedule_timeout_killable(1);
440                         if (time_left)
441                                 break;
442                 }
443                 delalloc_bytes = percpu_counter_sum_positive(
444                                                 &fs_info->delalloc_bytes);
445                 dio_bytes = percpu_counter_sum_positive(&fs_info->dio_bytes);
446         }
447 }
448
449 /**
450  * maybe_commit_transaction - possibly commit the transaction if its ok to
451  * @root - the root we're allocating for
452  * @bytes - the number of bytes we want to reserve
453  * @force - force the commit
454  *
455  * This will check to make sure that committing the transaction will actually
456  * get us somewhere and then commit the transaction if it does.  Otherwise it
457  * will return -ENOSPC.
458  */
459 static int may_commit_transaction(struct btrfs_fs_info *fs_info,
460                                   struct btrfs_space_info *space_info)
461 {
462         struct reserve_ticket *ticket = NULL;
463         struct btrfs_block_rsv *delayed_rsv = &fs_info->delayed_block_rsv;
464         struct btrfs_block_rsv *delayed_refs_rsv = &fs_info->delayed_refs_rsv;
465         struct btrfs_block_rsv *trans_rsv = &fs_info->trans_block_rsv;
466         struct btrfs_trans_handle *trans;
467         u64 bytes_needed;
468         u64 reclaim_bytes = 0;
469         u64 cur_free_bytes = 0;
470
471         trans = (struct btrfs_trans_handle *)current->journal_info;
472         if (trans)
473                 return -EAGAIN;
474
475         spin_lock(&space_info->lock);
476         cur_free_bytes = btrfs_space_info_used(space_info, true);
477         if (cur_free_bytes < space_info->total_bytes)
478                 cur_free_bytes = space_info->total_bytes - cur_free_bytes;
479         else
480                 cur_free_bytes = 0;
481
482         if (!list_empty(&space_info->priority_tickets))
483                 ticket = list_first_entry(&space_info->priority_tickets,
484                                           struct reserve_ticket, list);
485         else if (!list_empty(&space_info->tickets))
486                 ticket = list_first_entry(&space_info->tickets,
487                                           struct reserve_ticket, list);
488         bytes_needed = (ticket) ? ticket->bytes : 0;
489
490         if (bytes_needed > cur_free_bytes)
491                 bytes_needed -= cur_free_bytes;
492         else
493                 bytes_needed = 0;
494         spin_unlock(&space_info->lock);
495
496         if (!bytes_needed)
497                 return 0;
498
499         trans = btrfs_join_transaction(fs_info->extent_root);
500         if (IS_ERR(trans))
501                 return PTR_ERR(trans);
502
503         /*
504          * See if there is enough pinned space to make this reservation, or if
505          * we have block groups that are going to be freed, allowing us to
506          * possibly do a chunk allocation the next loop through.
507          */
508         if (test_bit(BTRFS_TRANS_HAVE_FREE_BGS, &trans->transaction->flags) ||
509             __percpu_counter_compare(&space_info->total_bytes_pinned,
510                                      bytes_needed,
511                                      BTRFS_TOTAL_BYTES_PINNED_BATCH) >= 0)
512                 goto commit;
513
514         /*
515          * See if there is some space in the delayed insertion reservation for
516          * this reservation.
517          */
518         if (space_info != delayed_rsv->space_info)
519                 goto enospc;
520
521         spin_lock(&delayed_rsv->lock);
522         reclaim_bytes += delayed_rsv->reserved;
523         spin_unlock(&delayed_rsv->lock);
524
525         spin_lock(&delayed_refs_rsv->lock);
526         reclaim_bytes += delayed_refs_rsv->reserved;
527         spin_unlock(&delayed_refs_rsv->lock);
528
529         spin_lock(&trans_rsv->lock);
530         reclaim_bytes += trans_rsv->reserved;
531         spin_unlock(&trans_rsv->lock);
532
533         if (reclaim_bytes >= bytes_needed)
534                 goto commit;
535         bytes_needed -= reclaim_bytes;
536
537         if (__percpu_counter_compare(&space_info->total_bytes_pinned,
538                                    bytes_needed,
539                                    BTRFS_TOTAL_BYTES_PINNED_BATCH) < 0)
540                 goto enospc;
541
542 commit:
543         return btrfs_commit_transaction(trans);
544 enospc:
545         btrfs_end_transaction(trans);
546         return -ENOSPC;
547 }
548
549 /*
550  * Try to flush some data based on policy set by @state. This is only advisory
551  * and may fail for various reasons. The caller is supposed to examine the
552  * state of @space_info to detect the outcome.
553  */
554 static void flush_space(struct btrfs_fs_info *fs_info,
555                        struct btrfs_space_info *space_info, u64 num_bytes,
556                        int state)
557 {
558         struct btrfs_root *root = fs_info->extent_root;
559         struct btrfs_trans_handle *trans;
560         int nr;
561         int ret = 0;
562
563         switch (state) {
564         case FLUSH_DELAYED_ITEMS_NR:
565         case FLUSH_DELAYED_ITEMS:
566                 if (state == FLUSH_DELAYED_ITEMS_NR)
567                         nr = calc_reclaim_items_nr(fs_info, num_bytes) * 2;
568                 else
569                         nr = -1;
570
571                 trans = btrfs_join_transaction(root);
572                 if (IS_ERR(trans)) {
573                         ret = PTR_ERR(trans);
574                         break;
575                 }
576                 ret = btrfs_run_delayed_items_nr(trans, nr);
577                 btrfs_end_transaction(trans);
578                 break;
579         case FLUSH_DELALLOC:
580         case FLUSH_DELALLOC_WAIT:
581                 shrink_delalloc(fs_info, num_bytes * 2, num_bytes,
582                                 state == FLUSH_DELALLOC_WAIT);
583                 break;
584         case FLUSH_DELAYED_REFS_NR:
585         case FLUSH_DELAYED_REFS:
586                 trans = btrfs_join_transaction(root);
587                 if (IS_ERR(trans)) {
588                         ret = PTR_ERR(trans);
589                         break;
590                 }
591                 if (state == FLUSH_DELAYED_REFS_NR)
592                         nr = calc_reclaim_items_nr(fs_info, num_bytes);
593                 else
594                         nr = 0;
595                 btrfs_run_delayed_refs(trans, nr);
596                 btrfs_end_transaction(trans);
597                 break;
598         case ALLOC_CHUNK:
599         case ALLOC_CHUNK_FORCE:
600                 trans = btrfs_join_transaction(root);
601                 if (IS_ERR(trans)) {
602                         ret = PTR_ERR(trans);
603                         break;
604                 }
605                 ret = btrfs_chunk_alloc(trans,
606                                 btrfs_metadata_alloc_profile(fs_info),
607                                 (state == ALLOC_CHUNK) ? CHUNK_ALLOC_NO_FORCE :
608                                         CHUNK_ALLOC_FORCE);
609                 btrfs_end_transaction(trans);
610                 if (ret > 0 || ret == -ENOSPC)
611                         ret = 0;
612                 break;
613         case RUN_DELAYED_IPUTS:
614                 /*
615                  * If we have pending delayed iputs then we could free up a
616                  * bunch of pinned space, so make sure we run the iputs before
617                  * we do our pinned bytes check below.
618                  */
619                 btrfs_run_delayed_iputs(fs_info);
620                 btrfs_wait_on_delayed_iputs(fs_info);
621                 break;
622         case COMMIT_TRANS:
623                 ret = may_commit_transaction(fs_info, space_info);
624                 break;
625         default:
626                 ret = -ENOSPC;
627                 break;
628         }
629
630         trace_btrfs_flush_space(fs_info, space_info->flags, num_bytes, state,
631                                 ret);
632         return;
633 }
634
635 static inline u64
636 btrfs_calc_reclaim_metadata_size(struct btrfs_fs_info *fs_info,
637                                  struct btrfs_space_info *space_info)
638 {
639         struct reserve_ticket *ticket;
640         u64 used;
641         u64 expected;
642         u64 to_reclaim = 0;
643
644         list_for_each_entry(ticket, &space_info->tickets, list)
645                 to_reclaim += ticket->bytes;
646         list_for_each_entry(ticket, &space_info->priority_tickets, list)
647                 to_reclaim += ticket->bytes;
648         if (to_reclaim)
649                 return to_reclaim;
650
651         to_reclaim = min_t(u64, num_online_cpus() * SZ_1M, SZ_16M);
652         if (btrfs_can_overcommit(fs_info, space_info, to_reclaim,
653                                  BTRFS_RESERVE_FLUSH_ALL))
654                 return 0;
655
656         used = btrfs_space_info_used(space_info, true);
657
658         if (btrfs_can_overcommit(fs_info, space_info, SZ_1M,
659                                  BTRFS_RESERVE_FLUSH_ALL))
660                 expected = div_factor_fine(space_info->total_bytes, 95);
661         else
662                 expected = div_factor_fine(space_info->total_bytes, 90);
663
664         if (used > expected)
665                 to_reclaim = used - expected;
666         else
667                 to_reclaim = 0;
668         to_reclaim = min(to_reclaim, space_info->bytes_may_use +
669                                      space_info->bytes_reserved);
670         return to_reclaim;
671 }
672
673 static inline int need_do_async_reclaim(struct btrfs_fs_info *fs_info,
674                                         struct btrfs_space_info *space_info,
675                                         u64 used)
676 {
677         u64 thresh = div_factor_fine(space_info->total_bytes, 98);
678
679         /* If we're just plain full then async reclaim just slows us down. */
680         if ((space_info->bytes_used + space_info->bytes_reserved) >= thresh)
681                 return 0;
682
683         if (!btrfs_calc_reclaim_metadata_size(fs_info, space_info))
684                 return 0;
685
686         return (used >= thresh && !btrfs_fs_closing(fs_info) &&
687                 !test_bit(BTRFS_FS_STATE_REMOUNTING, &fs_info->fs_state));
688 }
689
690 static bool steal_from_global_rsv(struct btrfs_fs_info *fs_info,
691                                   struct btrfs_space_info *space_info,
692                                   struct reserve_ticket *ticket)
693 {
694         struct btrfs_block_rsv *global_rsv = &fs_info->global_block_rsv;
695         u64 min_bytes;
696
697         if (global_rsv->space_info != space_info)
698                 return false;
699
700         spin_lock(&global_rsv->lock);
701         min_bytes = div_factor(global_rsv->size, 5);
702         if (global_rsv->reserved < min_bytes + ticket->bytes) {
703                 spin_unlock(&global_rsv->lock);
704                 return false;
705         }
706         global_rsv->reserved -= ticket->bytes;
707         ticket->bytes = 0;
708         list_del_init(&ticket->list);
709         wake_up(&ticket->wait);
710         space_info->tickets_id++;
711         if (global_rsv->reserved < global_rsv->size)
712                 global_rsv->full = 0;
713         spin_unlock(&global_rsv->lock);
714
715         return true;
716 }
717
718 /*
719  * maybe_fail_all_tickets - we've exhausted our flushing, start failing tickets
720  * @fs_info - fs_info for this fs
721  * @space_info - the space info we were flushing
722  *
723  * We call this when we've exhausted our flushing ability and haven't made
724  * progress in satisfying tickets.  The reservation code handles tickets in
725  * order, so if there is a large ticket first and then smaller ones we could
726  * very well satisfy the smaller tickets.  This will attempt to wake up any
727  * tickets in the list to catch this case.
728  *
729  * This function returns true if it was able to make progress by clearing out
730  * other tickets, or if it stumbles across a ticket that was smaller than the
731  * first ticket.
732  */
733 static bool maybe_fail_all_tickets(struct btrfs_fs_info *fs_info,
734                                    struct btrfs_space_info *space_info)
735 {
736         struct reserve_ticket *ticket;
737         u64 tickets_id = space_info->tickets_id;
738         u64 first_ticket_bytes = 0;
739
740         if (btrfs_test_opt(fs_info, ENOSPC_DEBUG)) {
741                 btrfs_info(fs_info, "cannot satisfy tickets, dumping space info");
742                 __btrfs_dump_space_info(fs_info, space_info);
743         }
744
745         while (!list_empty(&space_info->tickets) &&
746                tickets_id == space_info->tickets_id) {
747                 ticket = list_first_entry(&space_info->tickets,
748                                           struct reserve_ticket, list);
749
750                 if (ticket->steal &&
751                     steal_from_global_rsv(fs_info, space_info, ticket))
752                         return true;
753
754                 /*
755                  * may_commit_transaction will avoid committing the transaction
756                  * if it doesn't feel like the space reclaimed by the commit
757                  * would result in the ticket succeeding.  However if we have a
758                  * smaller ticket in the queue it may be small enough to be
759                  * satisified by committing the transaction, so if any
760                  * subsequent ticket is smaller than the first ticket go ahead
761                  * and send us back for another loop through the enospc flushing
762                  * code.
763                  */
764                 if (first_ticket_bytes == 0)
765                         first_ticket_bytes = ticket->bytes;
766                 else if (first_ticket_bytes > ticket->bytes)
767                         return true;
768
769                 if (btrfs_test_opt(fs_info, ENOSPC_DEBUG))
770                         btrfs_info(fs_info, "failing ticket with %llu bytes",
771                                    ticket->bytes);
772
773                 list_del_init(&ticket->list);
774                 ticket->error = -ENOSPC;
775                 wake_up(&ticket->wait);
776
777                 /*
778                  * We're just throwing tickets away, so more flushing may not
779                  * trip over btrfs_try_granting_tickets, so we need to call it
780                  * here to see if we can make progress with the next ticket in
781                  * the list.
782                  */
783                 btrfs_try_granting_tickets(fs_info, space_info);
784         }
785         return (tickets_id != space_info->tickets_id);
786 }
787
788 /*
789  * This is for normal flushers, we can wait all goddamned day if we want to.  We
790  * will loop and continuously try to flush as long as we are making progress.
791  * We count progress as clearing off tickets each time we have to loop.
792  */
793 static void btrfs_async_reclaim_metadata_space(struct work_struct *work)
794 {
795         struct btrfs_fs_info *fs_info;
796         struct btrfs_space_info *space_info;
797         u64 to_reclaim;
798         int flush_state;
799         int commit_cycles = 0;
800         u64 last_tickets_id;
801
802         fs_info = container_of(work, struct btrfs_fs_info, async_reclaim_work);
803         space_info = btrfs_find_space_info(fs_info, BTRFS_BLOCK_GROUP_METADATA);
804
805         spin_lock(&space_info->lock);
806         to_reclaim = btrfs_calc_reclaim_metadata_size(fs_info, space_info);
807         if (!to_reclaim) {
808                 space_info->flush = 0;
809                 spin_unlock(&space_info->lock);
810                 return;
811         }
812         last_tickets_id = space_info->tickets_id;
813         spin_unlock(&space_info->lock);
814
815         flush_state = FLUSH_DELAYED_ITEMS_NR;
816         do {
817                 flush_space(fs_info, space_info, to_reclaim, flush_state);
818                 spin_lock(&space_info->lock);
819                 if (list_empty(&space_info->tickets)) {
820                         space_info->flush = 0;
821                         spin_unlock(&space_info->lock);
822                         return;
823                 }
824                 to_reclaim = btrfs_calc_reclaim_metadata_size(fs_info,
825                                                               space_info);
826                 if (last_tickets_id == space_info->tickets_id) {
827                         flush_state++;
828                 } else {
829                         last_tickets_id = space_info->tickets_id;
830                         flush_state = FLUSH_DELAYED_ITEMS_NR;
831                         if (commit_cycles)
832                                 commit_cycles--;
833                 }
834
835                 /*
836                  * We don't want to force a chunk allocation until we've tried
837                  * pretty hard to reclaim space.  Think of the case where we
838                  * freed up a bunch of space and so have a lot of pinned space
839                  * to reclaim.  We would rather use that than possibly create a
840                  * underutilized metadata chunk.  So if this is our first run
841                  * through the flushing state machine skip ALLOC_CHUNK_FORCE and
842                  * commit the transaction.  If nothing has changed the next go
843                  * around then we can force a chunk allocation.
844                  */
845                 if (flush_state == ALLOC_CHUNK_FORCE && !commit_cycles)
846                         flush_state++;
847
848                 if (flush_state > COMMIT_TRANS) {
849                         commit_cycles++;
850                         if (commit_cycles > 2) {
851                                 if (maybe_fail_all_tickets(fs_info, space_info)) {
852                                         flush_state = FLUSH_DELAYED_ITEMS_NR;
853                                         commit_cycles--;
854                                 } else {
855                                         space_info->flush = 0;
856                                 }
857                         } else {
858                                 flush_state = FLUSH_DELAYED_ITEMS_NR;
859                         }
860                 }
861                 spin_unlock(&space_info->lock);
862         } while (flush_state <= COMMIT_TRANS);
863 }
864
865 void btrfs_init_async_reclaim_work(struct work_struct *work)
866 {
867         INIT_WORK(work, btrfs_async_reclaim_metadata_space);
868 }
869
870 static const enum btrfs_flush_state priority_flush_states[] = {
871         FLUSH_DELAYED_ITEMS_NR,
872         FLUSH_DELAYED_ITEMS,
873         ALLOC_CHUNK,
874 };
875
876 static const enum btrfs_flush_state evict_flush_states[] = {
877         FLUSH_DELAYED_ITEMS_NR,
878         FLUSH_DELAYED_ITEMS,
879         FLUSH_DELAYED_REFS_NR,
880         FLUSH_DELAYED_REFS,
881         FLUSH_DELALLOC,
882         FLUSH_DELALLOC_WAIT,
883         ALLOC_CHUNK,
884         COMMIT_TRANS,
885 };
886
887 static void priority_reclaim_metadata_space(struct btrfs_fs_info *fs_info,
888                                 struct btrfs_space_info *space_info,
889                                 struct reserve_ticket *ticket,
890                                 const enum btrfs_flush_state *states,
891                                 int states_nr)
892 {
893         u64 to_reclaim;
894         int flush_state;
895
896         spin_lock(&space_info->lock);
897         to_reclaim = btrfs_calc_reclaim_metadata_size(fs_info, space_info);
898         if (!to_reclaim) {
899                 spin_unlock(&space_info->lock);
900                 return;
901         }
902         spin_unlock(&space_info->lock);
903
904         flush_state = 0;
905         do {
906                 flush_space(fs_info, space_info, to_reclaim, states[flush_state]);
907                 flush_state++;
908                 spin_lock(&space_info->lock);
909                 if (ticket->bytes == 0) {
910                         spin_unlock(&space_info->lock);
911                         return;
912                 }
913                 spin_unlock(&space_info->lock);
914         } while (flush_state < states_nr);
915 }
916
917 static void wait_reserve_ticket(struct btrfs_fs_info *fs_info,
918                                 struct btrfs_space_info *space_info,
919                                 struct reserve_ticket *ticket)
920
921 {
922         DEFINE_WAIT(wait);
923         int ret = 0;
924
925         spin_lock(&space_info->lock);
926         while (ticket->bytes > 0 && ticket->error == 0) {
927                 ret = prepare_to_wait_event(&ticket->wait, &wait, TASK_KILLABLE);
928                 if (ret) {
929                         /*
930                          * Delete us from the list. After we unlock the space
931                          * info, we don't want the async reclaim job to reserve
932                          * space for this ticket. If that would happen, then the
933                          * ticket's task would not known that space was reserved
934                          * despite getting an error, resulting in a space leak
935                          * (bytes_may_use counter of our space_info).
936                          */
937                         list_del_init(&ticket->list);
938                         ticket->error = -EINTR;
939                         break;
940                 }
941                 spin_unlock(&space_info->lock);
942
943                 schedule();
944
945                 finish_wait(&ticket->wait, &wait);
946                 spin_lock(&space_info->lock);
947         }
948         spin_unlock(&space_info->lock);
949 }
950
951 /**
952  * handle_reserve_ticket - do the appropriate flushing and waiting for a ticket
953  * @fs_info - the fs
954  * @space_info - the space_info for the reservation
955  * @ticket - the ticket for the reservation
956  * @flush - how much we can flush
957  *
958  * This does the work of figuring out how to flush for the ticket, waiting for
959  * the reservation, and returning the appropriate error if there is one.
960  */
961 static int handle_reserve_ticket(struct btrfs_fs_info *fs_info,
962                                  struct btrfs_space_info *space_info,
963                                  struct reserve_ticket *ticket,
964                                  enum btrfs_reserve_flush_enum flush)
965 {
966         int ret;
967
968         switch (flush) {
969         case BTRFS_RESERVE_FLUSH_ALL:
970         case BTRFS_RESERVE_FLUSH_ALL_STEAL:
971                 wait_reserve_ticket(fs_info, space_info, ticket);
972                 break;
973         case BTRFS_RESERVE_FLUSH_LIMIT:
974                 priority_reclaim_metadata_space(fs_info, space_info, ticket,
975                                                 priority_flush_states,
976                                                 ARRAY_SIZE(priority_flush_states));
977                 break;
978         case BTRFS_RESERVE_FLUSH_EVICT:
979                 priority_reclaim_metadata_space(fs_info, space_info, ticket,
980                                                 evict_flush_states,
981                                                 ARRAY_SIZE(evict_flush_states));
982                 break;
983         default:
984                 ASSERT(0);
985                 break;
986         }
987
988         spin_lock(&space_info->lock);
989         ret = ticket->error;
990         if (ticket->bytes || ticket->error) {
991                 /*
992                  * Need to delete here for priority tickets. For regular tickets
993                  * either the async reclaim job deletes the ticket from the list
994                  * or we delete it ourselves at wait_reserve_ticket().
995                  */
996                 list_del_init(&ticket->list);
997                 if (!ret)
998                         ret = -ENOSPC;
999         }
1000         spin_unlock(&space_info->lock);
1001         ASSERT(list_empty(&ticket->list));
1002         /*
1003          * Check that we can't have an error set if the reservation succeeded,
1004          * as that would confuse tasks and lead them to error out without
1005          * releasing reserved space (if an error happens the expectation is that
1006          * space wasn't reserved at all).
1007          */
1008         ASSERT(!(ticket->bytes == 0 && ticket->error));
1009         return ret;
1010 }
1011
1012 /**
1013  * reserve_metadata_bytes - try to reserve bytes from the block_rsv's space
1014  * @root - the root we're allocating for
1015  * @space_info - the space info we want to allocate from
1016  * @orig_bytes - the number of bytes we want
1017  * @flush - whether or not we can flush to make our reservation
1018  *
1019  * This will reserve orig_bytes number of bytes from the space info associated
1020  * with the block_rsv.  If there is not enough space it will make an attempt to
1021  * flush out space to make room.  It will do this by flushing delalloc if
1022  * possible or committing the transaction.  If flush is 0 then no attempts to
1023  * regain reservations will be made and this will fail if there is not enough
1024  * space already.
1025  */
1026 static int __reserve_metadata_bytes(struct btrfs_fs_info *fs_info,
1027                                     struct btrfs_space_info *space_info,
1028                                     u64 orig_bytes,
1029                                     enum btrfs_reserve_flush_enum flush)
1030 {
1031         struct reserve_ticket ticket;
1032         u64 used;
1033         int ret = 0;
1034         bool pending_tickets;
1035
1036         ASSERT(orig_bytes);
1037         ASSERT(!current->journal_info || flush != BTRFS_RESERVE_FLUSH_ALL);
1038
1039         spin_lock(&space_info->lock);
1040         ret = -ENOSPC;
1041         used = btrfs_space_info_used(space_info, true);
1042         pending_tickets = !list_empty(&space_info->tickets) ||
1043                 !list_empty(&space_info->priority_tickets);
1044
1045         /*
1046          * Carry on if we have enough space (short-circuit) OR call
1047          * can_overcommit() to ensure we can overcommit to continue.
1048          */
1049         if (!pending_tickets &&
1050             ((used + orig_bytes <= space_info->total_bytes) ||
1051              btrfs_can_overcommit(fs_info, space_info, orig_bytes, flush))) {
1052                 btrfs_space_info_update_bytes_may_use(fs_info, space_info,
1053                                                       orig_bytes);
1054                 ret = 0;
1055         }
1056
1057         /*
1058          * If we couldn't make a reservation then setup our reservation ticket
1059          * and kick the async worker if it's not already running.
1060          *
1061          * If we are a priority flusher then we just need to add our ticket to
1062          * the list and we will do our own flushing further down.
1063          */
1064         if (ret && flush != BTRFS_RESERVE_NO_FLUSH) {
1065                 ticket.bytes = orig_bytes;
1066                 ticket.error = 0;
1067                 init_waitqueue_head(&ticket.wait);
1068                 ticket.steal = (flush == BTRFS_RESERVE_FLUSH_ALL_STEAL);
1069                 if (flush == BTRFS_RESERVE_FLUSH_ALL ||
1070                     flush == BTRFS_RESERVE_FLUSH_ALL_STEAL) {
1071                         list_add_tail(&ticket.list, &space_info->tickets);
1072                         if (!space_info->flush) {
1073                                 space_info->flush = 1;
1074                                 trace_btrfs_trigger_flush(fs_info,
1075                                                           space_info->flags,
1076                                                           orig_bytes, flush,
1077                                                           "enospc");
1078                                 queue_work(system_unbound_wq,
1079                                            &fs_info->async_reclaim_work);
1080                         }
1081                 } else {
1082                         list_add_tail(&ticket.list,
1083                                       &space_info->priority_tickets);
1084                 }
1085         } else if (!ret && space_info->flags & BTRFS_BLOCK_GROUP_METADATA) {
1086                 used += orig_bytes;
1087                 /*
1088                  * We will do the space reservation dance during log replay,
1089                  * which means we won't have fs_info->fs_root set, so don't do
1090                  * the async reclaim as we will panic.
1091                  */
1092                 if (!test_bit(BTRFS_FS_LOG_RECOVERING, &fs_info->flags) &&
1093                     need_do_async_reclaim(fs_info, space_info, used) &&
1094                     !work_busy(&fs_info->async_reclaim_work)) {
1095                         trace_btrfs_trigger_flush(fs_info, space_info->flags,
1096                                                   orig_bytes, flush, "preempt");
1097                         queue_work(system_unbound_wq,
1098                                    &fs_info->async_reclaim_work);
1099                 }
1100         }
1101         spin_unlock(&space_info->lock);
1102         if (!ret || flush == BTRFS_RESERVE_NO_FLUSH)
1103                 return ret;
1104
1105         return handle_reserve_ticket(fs_info, space_info, &ticket, flush);
1106 }
1107
1108 /**
1109  * reserve_metadata_bytes - try to reserve bytes from the block_rsv's space
1110  * @root - the root we're allocating for
1111  * @block_rsv - the block_rsv we're allocating for
1112  * @orig_bytes - the number of bytes we want
1113  * @flush - whether or not we can flush to make our reservation
1114  *
1115  * This will reserve orig_bytes number of bytes from the space info associated
1116  * with the block_rsv.  If there is not enough space it will make an attempt to
1117  * flush out space to make room.  It will do this by flushing delalloc if
1118  * possible or committing the transaction.  If flush is 0 then no attempts to
1119  * regain reservations will be made and this will fail if there is not enough
1120  * space already.
1121  */
1122 int btrfs_reserve_metadata_bytes(struct btrfs_root *root,
1123                                  struct btrfs_block_rsv *block_rsv,
1124                                  u64 orig_bytes,
1125                                  enum btrfs_reserve_flush_enum flush)
1126 {
1127         struct btrfs_fs_info *fs_info = root->fs_info;
1128         struct btrfs_block_rsv *global_rsv = &fs_info->global_block_rsv;
1129         int ret;
1130
1131         ret = __reserve_metadata_bytes(fs_info, block_rsv->space_info,
1132                                        orig_bytes, flush);
1133         if (ret == -ENOSPC &&
1134             unlikely(root->orphan_cleanup_state == ORPHAN_CLEANUP_STARTED)) {
1135                 if (block_rsv != global_rsv &&
1136                     !btrfs_block_rsv_use_bytes(global_rsv, orig_bytes))
1137                         ret = 0;
1138         }
1139         if (ret == -ENOSPC) {
1140                 trace_btrfs_space_reservation(fs_info, "space_info:enospc",
1141                                               block_rsv->space_info->flags,
1142                                               orig_bytes, 1);
1143
1144                 if (btrfs_test_opt(fs_info, ENOSPC_DEBUG))
1145                         btrfs_dump_space_info(fs_info, block_rsv->space_info,
1146                                               orig_bytes, 0);
1147         }
1148         return ret;
1149 }