GNU Linux-libre 5.10.217-gnu1
[releases.git] / fs / btrfs / space-info.c
1 // SPDX-License-Identifier: GPL-2.0
2
3 #include "misc.h"
4 #include "ctree.h"
5 #include "space-info.h"
6 #include "sysfs.h"
7 #include "volumes.h"
8 #include "free-space-cache.h"
9 #include "ordered-data.h"
10 #include "transaction.h"
11 #include "block-group.h"
12
13 /*
14  * HOW DOES SPACE RESERVATION WORK
15  *
16  * If you want to know about delalloc specifically, there is a separate comment
17  * for that with the delalloc code.  This comment is about how the whole system
18  * works generally.
19  *
20  * BASIC CONCEPTS
21  *
22  *   1) space_info.  This is the ultimate arbiter of how much space we can use.
23  *   There's a description of the bytes_ fields with the struct declaration,
24  *   refer to that for specifics on each field.  Suffice it to say that for
25  *   reservations we care about total_bytes - SUM(space_info->bytes_) when
26  *   determining if there is space to make an allocation.  There is a space_info
27  *   for METADATA, SYSTEM, and DATA areas.
28  *
29  *   2) block_rsv's.  These are basically buckets for every different type of
30  *   metadata reservation we have.  You can see the comment in the block_rsv
31  *   code on the rules for each type, but generally block_rsv->reserved is how
32  *   much space is accounted for in space_info->bytes_may_use.
33  *
34  *   3) btrfs_calc*_size.  These are the worst case calculations we used based
35  *   on the number of items we will want to modify.  We have one for changing
36  *   items, and one for inserting new items.  Generally we use these helpers to
37  *   determine the size of the block reserves, and then use the actual bytes
38  *   values to adjust the space_info counters.
39  *
40  * MAKING RESERVATIONS, THE NORMAL CASE
41  *
42  *   We call into either btrfs_reserve_data_bytes() or
43  *   btrfs_reserve_metadata_bytes(), depending on which we're looking for, with
44  *   num_bytes we want to reserve.
45  *
46  *   ->reserve
47  *     space_info->bytes_may_reserve += num_bytes
48  *
49  *   ->extent allocation
50  *     Call btrfs_add_reserved_bytes() which does
51  *     space_info->bytes_may_reserve -= num_bytes
52  *     space_info->bytes_reserved += extent_bytes
53  *
54  *   ->insert reference
55  *     Call btrfs_update_block_group() which does
56  *     space_info->bytes_reserved -= extent_bytes
57  *     space_info->bytes_used += extent_bytes
58  *
59  * MAKING RESERVATIONS, FLUSHING NORMALLY (non-priority)
60  *
61  *   Assume we are unable to simply make the reservation because we do not have
62  *   enough space
63  *
64  *   -> __reserve_bytes
65  *     create a reserve_ticket with ->bytes set to our reservation, add it to
66  *     the tail of space_info->tickets, kick async flush thread
67  *
68  *   ->handle_reserve_ticket
69  *     wait on ticket->wait for ->bytes to be reduced to 0, or ->error to be set
70  *     on the ticket.
71  *
72  *   -> btrfs_async_reclaim_metadata_space/btrfs_async_reclaim_data_space
73  *     Flushes various things attempting to free up space.
74  *
75  *   -> btrfs_try_granting_tickets()
76  *     This is called by anything that either subtracts space from
77  *     space_info->bytes_may_use, ->bytes_pinned, etc, or adds to the
78  *     space_info->total_bytes.  This loops through the ->priority_tickets and
79  *     then the ->tickets list checking to see if the reservation can be
80  *     completed.  If it can the space is added to space_info->bytes_may_use and
81  *     the ticket is woken up.
82  *
83  *   -> ticket wakeup
84  *     Check if ->bytes == 0, if it does we got our reservation and we can carry
85  *     on, if not return the appropriate error (ENOSPC, but can be EINTR if we
86  *     were interrupted.)
87  *
88  * MAKING RESERVATIONS, FLUSHING HIGH PRIORITY
89  *
90  *   Same as the above, except we add ourselves to the
91  *   space_info->priority_tickets, and we do not use ticket->wait, we simply
92  *   call flush_space() ourselves for the states that are safe for us to call
93  *   without deadlocking and hope for the best.
94  *
95  * THE FLUSHING STATES
96  *
97  *   Generally speaking we will have two cases for each state, a "nice" state
98  *   and a "ALL THE THINGS" state.  In btrfs we delay a lot of work in order to
99  *   reduce the locking over head on the various trees, and even to keep from
100  *   doing any work at all in the case of delayed refs.  Each of these delayed
101  *   things however hold reservations, and so letting them run allows us to
102  *   reclaim space so we can make new reservations.
103  *
104  *   FLUSH_DELAYED_ITEMS
105  *     Every inode has a delayed item to update the inode.  Take a simple write
106  *     for example, we would update the inode item at write time to update the
107  *     mtime, and then again at finish_ordered_io() time in order to update the
108  *     isize or bytes.  We keep these delayed items to coalesce these operations
109  *     into a single operation done on demand.  These are an easy way to reclaim
110  *     metadata space.
111  *
112  *   FLUSH_DELALLOC
113  *     Look at the delalloc comment to get an idea of how much space is reserved
114  *     for delayed allocation.  We can reclaim some of this space simply by
115  *     running delalloc, but usually we need to wait for ordered extents to
116  *     reclaim the bulk of this space.
117  *
118  *   FLUSH_DELAYED_REFS
119  *     We have a block reserve for the outstanding delayed refs space, and every
120  *     delayed ref operation holds a reservation.  Running these is a quick way
121  *     to reclaim space, but we want to hold this until the end because COW can
122  *     churn a lot and we can avoid making some extent tree modifications if we
123  *     are able to delay for as long as possible.
124  *
125  *   ALLOC_CHUNK
126  *     We will skip this the first time through space reservation, because of
127  *     overcommit and we don't want to have a lot of useless metadata space when
128  *     our worst case reservations will likely never come true.
129  *
130  *   RUN_DELAYED_IPUTS
131  *     If we're freeing inodes we're likely freeing checksums, file extent
132  *     items, and extent tree items.  Loads of space could be freed up by these
133  *     operations, however they won't be usable until the transaction commits.
134  *
135  *   COMMIT_TRANS
136  *     may_commit_transaction() is the ultimate arbiter on whether we commit the
137  *     transaction or not.  In order to avoid constantly churning we do all the
138  *     above flushing first and then commit the transaction as the last resort.
139  *     However we need to take into account things like pinned space that would
140  *     be freed, plus any delayed work we may not have gotten rid of in the case
141  *     of metadata.
142  *
143  * OVERCOMMIT
144  *
145  *   Because we hold so many reservations for metadata we will allow you to
146  *   reserve more space than is currently free in the currently allocate
147  *   metadata space.  This only happens with metadata, data does not allow
148  *   overcommitting.
149  *
150  *   You can see the current logic for when we allow overcommit in
151  *   btrfs_can_overcommit(), but it only applies to unallocated space.  If there
152  *   is no unallocated space to be had, all reservations are kept within the
153  *   free space in the allocated metadata chunks.
154  *
155  *   Because of overcommitting, you generally want to use the
156  *   btrfs_can_overcommit() logic for metadata allocations, as it does the right
157  *   thing with or without extra unallocated space.
158  */
159
160 u64 __pure btrfs_space_info_used(struct btrfs_space_info *s_info,
161                           bool may_use_included)
162 {
163         ASSERT(s_info);
164         return s_info->bytes_used + s_info->bytes_reserved +
165                 s_info->bytes_pinned + s_info->bytes_readonly +
166                 (may_use_included ? s_info->bytes_may_use : 0);
167 }
168
169 /*
170  * after adding space to the filesystem, we need to clear the full flags
171  * on all the space infos.
172  */
173 void btrfs_clear_space_info_full(struct btrfs_fs_info *info)
174 {
175         struct list_head *head = &info->space_info;
176         struct btrfs_space_info *found;
177
178         list_for_each_entry(found, head, list)
179                 found->full = 0;
180 }
181
182 static int create_space_info(struct btrfs_fs_info *info, u64 flags)
183 {
184
185         struct btrfs_space_info *space_info;
186         int i;
187         int ret;
188
189         space_info = kzalloc(sizeof(*space_info), GFP_NOFS);
190         if (!space_info)
191                 return -ENOMEM;
192
193         ret = percpu_counter_init(&space_info->total_bytes_pinned, 0,
194                                  GFP_KERNEL);
195         if (ret) {
196                 kfree(space_info);
197                 return ret;
198         }
199
200         for (i = 0; i < BTRFS_NR_RAID_TYPES; i++)
201                 INIT_LIST_HEAD(&space_info->block_groups[i]);
202         init_rwsem(&space_info->groups_sem);
203         spin_lock_init(&space_info->lock);
204         space_info->flags = flags & BTRFS_BLOCK_GROUP_TYPE_MASK;
205         space_info->force_alloc = CHUNK_ALLOC_NO_FORCE;
206         INIT_LIST_HEAD(&space_info->ro_bgs);
207         INIT_LIST_HEAD(&space_info->tickets);
208         INIT_LIST_HEAD(&space_info->priority_tickets);
209
210         ret = btrfs_sysfs_add_space_info_type(info, space_info);
211         if (ret)
212                 return ret;
213
214         list_add(&space_info->list, &info->space_info);
215         if (flags & BTRFS_BLOCK_GROUP_DATA)
216                 info->data_sinfo = space_info;
217
218         return ret;
219 }
220
221 int btrfs_init_space_info(struct btrfs_fs_info *fs_info)
222 {
223         struct btrfs_super_block *disk_super;
224         u64 features;
225         u64 flags;
226         int mixed = 0;
227         int ret;
228
229         disk_super = fs_info->super_copy;
230         if (!btrfs_super_root(disk_super))
231                 return -EINVAL;
232
233         features = btrfs_super_incompat_flags(disk_super);
234         if (features & BTRFS_FEATURE_INCOMPAT_MIXED_GROUPS)
235                 mixed = 1;
236
237         flags = BTRFS_BLOCK_GROUP_SYSTEM;
238         ret = create_space_info(fs_info, flags);
239         if (ret)
240                 goto out;
241
242         if (mixed) {
243                 flags = BTRFS_BLOCK_GROUP_METADATA | BTRFS_BLOCK_GROUP_DATA;
244                 ret = create_space_info(fs_info, flags);
245         } else {
246                 flags = BTRFS_BLOCK_GROUP_METADATA;
247                 ret = create_space_info(fs_info, flags);
248                 if (ret)
249                         goto out;
250
251                 flags = BTRFS_BLOCK_GROUP_DATA;
252                 ret = create_space_info(fs_info, flags);
253         }
254 out:
255         return ret;
256 }
257
258 void btrfs_update_space_info(struct btrfs_fs_info *info, u64 flags,
259                              u64 total_bytes, u64 bytes_used,
260                              u64 bytes_readonly,
261                              struct btrfs_space_info **space_info)
262 {
263         struct btrfs_space_info *found;
264         int factor;
265
266         factor = btrfs_bg_type_to_factor(flags);
267
268         found = btrfs_find_space_info(info, flags);
269         ASSERT(found);
270         spin_lock(&found->lock);
271         found->total_bytes += total_bytes;
272         found->disk_total += total_bytes * factor;
273         found->bytes_used += bytes_used;
274         found->disk_used += bytes_used * factor;
275         found->bytes_readonly += bytes_readonly;
276         if (total_bytes > 0)
277                 found->full = 0;
278         btrfs_try_granting_tickets(info, found);
279         spin_unlock(&found->lock);
280         *space_info = found;
281 }
282
283 struct btrfs_space_info *btrfs_find_space_info(struct btrfs_fs_info *info,
284                                                u64 flags)
285 {
286         struct list_head *head = &info->space_info;
287         struct btrfs_space_info *found;
288
289         flags &= BTRFS_BLOCK_GROUP_TYPE_MASK;
290
291         list_for_each_entry(found, head, list) {
292                 if (found->flags & flags)
293                         return found;
294         }
295         return NULL;
296 }
297
298 static u64 calc_available_free_space(struct btrfs_fs_info *fs_info,
299                           struct btrfs_space_info *space_info,
300                           enum btrfs_reserve_flush_enum flush)
301 {
302         u64 profile;
303         u64 avail;
304         int factor;
305
306         if (space_info->flags & BTRFS_BLOCK_GROUP_SYSTEM)
307                 profile = btrfs_system_alloc_profile(fs_info);
308         else
309                 profile = btrfs_metadata_alloc_profile(fs_info);
310
311         avail = atomic64_read(&fs_info->free_chunk_space);
312
313         /*
314          * If we have dup, raid1 or raid10 then only half of the free
315          * space is actually usable.  For raid56, the space info used
316          * doesn't include the parity drive, so we don't have to
317          * change the math
318          */
319         factor = btrfs_bg_type_to_factor(profile);
320         avail = div_u64(avail, factor);
321
322         /*
323          * If we aren't flushing all things, let us overcommit up to
324          * 1/2th of the space. If we can flush, don't let us overcommit
325          * too much, let it overcommit up to 1/8 of the space.
326          */
327         if (flush == BTRFS_RESERVE_FLUSH_ALL)
328                 avail >>= 3;
329         else
330                 avail >>= 1;
331         return avail;
332 }
333
334 int btrfs_can_overcommit(struct btrfs_fs_info *fs_info,
335                          struct btrfs_space_info *space_info, u64 bytes,
336                          enum btrfs_reserve_flush_enum flush)
337 {
338         u64 avail;
339         u64 used;
340
341         /* Don't overcommit when in mixed mode */
342         if (space_info->flags & BTRFS_BLOCK_GROUP_DATA)
343                 return 0;
344
345         used = btrfs_space_info_used(space_info, true);
346         avail = calc_available_free_space(fs_info, space_info, flush);
347
348         if (used + bytes < space_info->total_bytes + avail)
349                 return 1;
350         return 0;
351 }
352
353 static void remove_ticket(struct btrfs_space_info *space_info,
354                           struct reserve_ticket *ticket)
355 {
356         if (!list_empty(&ticket->list)) {
357                 list_del_init(&ticket->list);
358                 ASSERT(space_info->reclaim_size >= ticket->bytes);
359                 space_info->reclaim_size -= ticket->bytes;
360         }
361 }
362
363 /*
364  * This is for space we already have accounted in space_info->bytes_may_use, so
365  * basically when we're returning space from block_rsv's.
366  */
367 void btrfs_try_granting_tickets(struct btrfs_fs_info *fs_info,
368                                 struct btrfs_space_info *space_info)
369 {
370         struct list_head *head;
371         enum btrfs_reserve_flush_enum flush = BTRFS_RESERVE_NO_FLUSH;
372
373         lockdep_assert_held(&space_info->lock);
374
375         head = &space_info->priority_tickets;
376 again:
377         while (!list_empty(head)) {
378                 struct reserve_ticket *ticket;
379                 u64 used = btrfs_space_info_used(space_info, true);
380
381                 ticket = list_first_entry(head, struct reserve_ticket, list);
382
383                 /* Check and see if our ticket can be satisified now. */
384                 if ((used + ticket->bytes <= space_info->total_bytes) ||
385                     btrfs_can_overcommit(fs_info, space_info, ticket->bytes,
386                                          flush)) {
387                         btrfs_space_info_update_bytes_may_use(fs_info,
388                                                               space_info,
389                                                               ticket->bytes);
390                         remove_ticket(space_info, ticket);
391                         ticket->bytes = 0;
392                         space_info->tickets_id++;
393                         wake_up(&ticket->wait);
394                 } else {
395                         break;
396                 }
397         }
398
399         if (head == &space_info->priority_tickets) {
400                 head = &space_info->tickets;
401                 flush = BTRFS_RESERVE_FLUSH_ALL;
402                 goto again;
403         }
404 }
405
406 #define DUMP_BLOCK_RSV(fs_info, rsv_name)                               \
407 do {                                                                    \
408         struct btrfs_block_rsv *__rsv = &(fs_info)->rsv_name;           \
409         spin_lock(&__rsv->lock);                                        \
410         btrfs_info(fs_info, #rsv_name ": size %llu reserved %llu",      \
411                    __rsv->size, __rsv->reserved);                       \
412         spin_unlock(&__rsv->lock);                                      \
413 } while (0)
414
415 static void __btrfs_dump_space_info(struct btrfs_fs_info *fs_info,
416                                     struct btrfs_space_info *info)
417 {
418         lockdep_assert_held(&info->lock);
419
420         /* The free space could be negative in case of overcommit */
421         btrfs_info(fs_info, "space_info %llu has %lld free, is %sfull",
422                    info->flags,
423                    (s64)(info->total_bytes - btrfs_space_info_used(info, true)),
424                    info->full ? "" : "not ");
425         btrfs_info(fs_info,
426                 "space_info total=%llu, used=%llu, pinned=%llu, reserved=%llu, may_use=%llu, readonly=%llu",
427                 info->total_bytes, info->bytes_used, info->bytes_pinned,
428                 info->bytes_reserved, info->bytes_may_use,
429                 info->bytes_readonly);
430
431         DUMP_BLOCK_RSV(fs_info, global_block_rsv);
432         DUMP_BLOCK_RSV(fs_info, trans_block_rsv);
433         DUMP_BLOCK_RSV(fs_info, chunk_block_rsv);
434         DUMP_BLOCK_RSV(fs_info, delayed_block_rsv);
435         DUMP_BLOCK_RSV(fs_info, delayed_refs_rsv);
436
437 }
438
439 void btrfs_dump_space_info(struct btrfs_fs_info *fs_info,
440                            struct btrfs_space_info *info, u64 bytes,
441                            int dump_block_groups)
442 {
443         struct btrfs_block_group *cache;
444         int index = 0;
445
446         spin_lock(&info->lock);
447         __btrfs_dump_space_info(fs_info, info);
448         spin_unlock(&info->lock);
449
450         if (!dump_block_groups)
451                 return;
452
453         down_read(&info->groups_sem);
454 again:
455         list_for_each_entry(cache, &info->block_groups[index], list) {
456                 spin_lock(&cache->lock);
457                 btrfs_info(fs_info,
458                         "block group %llu has %llu bytes, %llu used %llu pinned %llu reserved %s",
459                         cache->start, cache->length, cache->used, cache->pinned,
460                         cache->reserved, cache->ro ? "[readonly]" : "");
461                 spin_unlock(&cache->lock);
462                 btrfs_dump_free_space(cache, bytes);
463         }
464         if (++index < BTRFS_NR_RAID_TYPES)
465                 goto again;
466         up_read(&info->groups_sem);
467 }
468
469 static inline u64 calc_reclaim_items_nr(struct btrfs_fs_info *fs_info,
470                                         u64 to_reclaim)
471 {
472         u64 bytes;
473         u64 nr;
474
475         bytes = btrfs_calc_insert_metadata_size(fs_info, 1);
476         nr = div64_u64(to_reclaim, bytes);
477         if (!nr)
478                 nr = 1;
479         return nr;
480 }
481
482 #define EXTENT_SIZE_PER_ITEM    SZ_256K
483
484 /*
485  * shrink metadata reservation for delalloc
486  */
487 static void shrink_delalloc(struct btrfs_fs_info *fs_info,
488                             struct btrfs_space_info *space_info,
489                             u64 to_reclaim, bool wait_ordered)
490 {
491         struct btrfs_trans_handle *trans;
492         u64 delalloc_bytes;
493         u64 dio_bytes;
494         u64 items;
495         long time_left;
496         int loops;
497
498         /* Calc the number of the pages we need flush for space reservation */
499         if (to_reclaim == U64_MAX) {
500                 items = U64_MAX;
501         } else {
502                 /*
503                  * to_reclaim is set to however much metadata we need to
504                  * reclaim, but reclaiming that much data doesn't really track
505                  * exactly, so increase the amount to reclaim by 2x in order to
506                  * make sure we're flushing enough delalloc to hopefully reclaim
507                  * some metadata reservations.
508                  */
509                 items = calc_reclaim_items_nr(fs_info, to_reclaim) * 2;
510                 to_reclaim = items * EXTENT_SIZE_PER_ITEM;
511         }
512
513         trans = (struct btrfs_trans_handle *)current->journal_info;
514
515         delalloc_bytes = percpu_counter_sum_positive(
516                                                 &fs_info->delalloc_bytes);
517         dio_bytes = percpu_counter_sum_positive(&fs_info->dio_bytes);
518         if (delalloc_bytes == 0 && dio_bytes == 0) {
519                 if (trans)
520                         return;
521                 if (wait_ordered)
522                         btrfs_wait_ordered_roots(fs_info, items, 0, (u64)-1);
523                 return;
524         }
525
526         /*
527          * If we are doing more ordered than delalloc we need to just wait on
528          * ordered extents, otherwise we'll waste time trying to flush delalloc
529          * that likely won't give us the space back we need.
530          */
531         if (dio_bytes > delalloc_bytes)
532                 wait_ordered = true;
533
534         loops = 0;
535         while ((delalloc_bytes || dio_bytes) && loops < 3) {
536                 u64 nr_pages = min(delalloc_bytes, to_reclaim) >> PAGE_SHIFT;
537
538                 btrfs_start_delalloc_roots(fs_info, nr_pages, true);
539
540                 loops++;
541                 if (wait_ordered && !trans) {
542                         btrfs_wait_ordered_roots(fs_info, items, 0, (u64)-1);
543                 } else {
544                         time_left = schedule_timeout_killable(1);
545                         if (time_left)
546                                 break;
547                 }
548
549                 spin_lock(&space_info->lock);
550                 if (list_empty(&space_info->tickets) &&
551                     list_empty(&space_info->priority_tickets)) {
552                         spin_unlock(&space_info->lock);
553                         break;
554                 }
555                 spin_unlock(&space_info->lock);
556
557                 delalloc_bytes = percpu_counter_sum_positive(
558                                                 &fs_info->delalloc_bytes);
559                 dio_bytes = percpu_counter_sum_positive(&fs_info->dio_bytes);
560         }
561 }
562
563 /**
564  * maybe_commit_transaction - possibly commit the transaction if its ok to
565  * @root - the root we're allocating for
566  * @bytes - the number of bytes we want to reserve
567  * @force - force the commit
568  *
569  * This will check to make sure that committing the transaction will actually
570  * get us somewhere and then commit the transaction if it does.  Otherwise it
571  * will return -ENOSPC.
572  */
573 static int may_commit_transaction(struct btrfs_fs_info *fs_info,
574                                   struct btrfs_space_info *space_info)
575 {
576         struct reserve_ticket *ticket = NULL;
577         struct btrfs_block_rsv *delayed_rsv = &fs_info->delayed_block_rsv;
578         struct btrfs_block_rsv *delayed_refs_rsv = &fs_info->delayed_refs_rsv;
579         struct btrfs_block_rsv *trans_rsv = &fs_info->trans_block_rsv;
580         struct btrfs_trans_handle *trans;
581         u64 reclaim_bytes = 0;
582         u64 bytes_needed = 0;
583         u64 cur_free_bytes = 0;
584
585         trans = (struct btrfs_trans_handle *)current->journal_info;
586         if (trans)
587                 return -EAGAIN;
588
589         spin_lock(&space_info->lock);
590         cur_free_bytes = btrfs_space_info_used(space_info, true);
591         if (cur_free_bytes < space_info->total_bytes)
592                 cur_free_bytes = space_info->total_bytes - cur_free_bytes;
593         else
594                 cur_free_bytes = 0;
595
596         if (!list_empty(&space_info->priority_tickets))
597                 ticket = list_first_entry(&space_info->priority_tickets,
598                                           struct reserve_ticket, list);
599         else if (!list_empty(&space_info->tickets))
600                 ticket = list_first_entry(&space_info->tickets,
601                                           struct reserve_ticket, list);
602         if (ticket)
603                 bytes_needed = ticket->bytes;
604
605         if (bytes_needed > cur_free_bytes)
606                 bytes_needed -= cur_free_bytes;
607         else
608                 bytes_needed = 0;
609         spin_unlock(&space_info->lock);
610
611         if (!bytes_needed)
612                 return 0;
613
614         trans = btrfs_join_transaction(fs_info->extent_root);
615         if (IS_ERR(trans))
616                 return PTR_ERR(trans);
617
618         /*
619          * See if there is enough pinned space to make this reservation, or if
620          * we have block groups that are going to be freed, allowing us to
621          * possibly do a chunk allocation the next loop through.
622          */
623         if (test_bit(BTRFS_TRANS_HAVE_FREE_BGS, &trans->transaction->flags) ||
624             __percpu_counter_compare(&space_info->total_bytes_pinned,
625                                      bytes_needed,
626                                      BTRFS_TOTAL_BYTES_PINNED_BATCH) >= 0)
627                 goto commit;
628
629         /*
630          * See if there is some space in the delayed insertion reserve for this
631          * reservation.  If the space_info's don't match (like for DATA or
632          * SYSTEM) then just go enospc, reclaiming this space won't recover any
633          * space to satisfy those reservations.
634          */
635         if (space_info != delayed_rsv->space_info)
636                 goto enospc;
637
638         spin_lock(&delayed_rsv->lock);
639         reclaim_bytes += delayed_rsv->reserved;
640         spin_unlock(&delayed_rsv->lock);
641
642         spin_lock(&delayed_refs_rsv->lock);
643         reclaim_bytes += delayed_refs_rsv->reserved;
644         spin_unlock(&delayed_refs_rsv->lock);
645
646         spin_lock(&trans_rsv->lock);
647         reclaim_bytes += trans_rsv->reserved;
648         spin_unlock(&trans_rsv->lock);
649
650         if (reclaim_bytes >= bytes_needed)
651                 goto commit;
652         bytes_needed -= reclaim_bytes;
653
654         if (__percpu_counter_compare(&space_info->total_bytes_pinned,
655                                    bytes_needed,
656                                    BTRFS_TOTAL_BYTES_PINNED_BATCH) < 0)
657                 goto enospc;
658
659 commit:
660         return btrfs_commit_transaction(trans);
661 enospc:
662         btrfs_end_transaction(trans);
663         return -ENOSPC;
664 }
665
666 /*
667  * Try to flush some data based on policy set by @state. This is only advisory
668  * and may fail for various reasons. The caller is supposed to examine the
669  * state of @space_info to detect the outcome.
670  */
671 static void flush_space(struct btrfs_fs_info *fs_info,
672                        struct btrfs_space_info *space_info, u64 num_bytes,
673                        int state)
674 {
675         struct btrfs_root *root = fs_info->extent_root;
676         struct btrfs_trans_handle *trans;
677         int nr;
678         int ret = 0;
679
680         switch (state) {
681         case FLUSH_DELAYED_ITEMS_NR:
682         case FLUSH_DELAYED_ITEMS:
683                 if (state == FLUSH_DELAYED_ITEMS_NR)
684                         nr = calc_reclaim_items_nr(fs_info, num_bytes) * 2;
685                 else
686                         nr = -1;
687
688                 trans = btrfs_join_transaction(root);
689                 if (IS_ERR(trans)) {
690                         ret = PTR_ERR(trans);
691                         break;
692                 }
693                 ret = btrfs_run_delayed_items_nr(trans, nr);
694                 btrfs_end_transaction(trans);
695                 break;
696         case FLUSH_DELALLOC:
697         case FLUSH_DELALLOC_WAIT:
698                 shrink_delalloc(fs_info, space_info, num_bytes,
699                                 state == FLUSH_DELALLOC_WAIT);
700                 break;
701         case FLUSH_DELAYED_REFS_NR:
702         case FLUSH_DELAYED_REFS:
703                 trans = btrfs_join_transaction(root);
704                 if (IS_ERR(trans)) {
705                         ret = PTR_ERR(trans);
706                         break;
707                 }
708                 if (state == FLUSH_DELAYED_REFS_NR)
709                         nr = calc_reclaim_items_nr(fs_info, num_bytes);
710                 else
711                         nr = 0;
712                 btrfs_run_delayed_refs(trans, nr);
713                 btrfs_end_transaction(trans);
714                 break;
715         case ALLOC_CHUNK:
716         case ALLOC_CHUNK_FORCE:
717                 trans = btrfs_join_transaction(root);
718                 if (IS_ERR(trans)) {
719                         ret = PTR_ERR(trans);
720                         break;
721                 }
722                 ret = btrfs_chunk_alloc(trans,
723                                 btrfs_get_alloc_profile(fs_info, space_info->flags),
724                                 (state == ALLOC_CHUNK) ? CHUNK_ALLOC_NO_FORCE :
725                                         CHUNK_ALLOC_FORCE);
726                 btrfs_end_transaction(trans);
727                 if (ret > 0 || ret == -ENOSPC)
728                         ret = 0;
729                 break;
730         case RUN_DELAYED_IPUTS:
731                 /*
732                  * If we have pending delayed iputs then we could free up a
733                  * bunch of pinned space, so make sure we run the iputs before
734                  * we do our pinned bytes check below.
735                  */
736                 btrfs_run_delayed_iputs(fs_info);
737                 btrfs_wait_on_delayed_iputs(fs_info);
738                 break;
739         case COMMIT_TRANS:
740                 ret = may_commit_transaction(fs_info, space_info);
741                 break;
742         default:
743                 ret = -ENOSPC;
744                 break;
745         }
746
747         trace_btrfs_flush_space(fs_info, space_info->flags, num_bytes, state,
748                                 ret);
749         return;
750 }
751
752 static inline u64
753 btrfs_calc_reclaim_metadata_size(struct btrfs_fs_info *fs_info,
754                                  struct btrfs_space_info *space_info)
755 {
756         u64 used;
757         u64 avail;
758         u64 expected;
759         u64 to_reclaim = space_info->reclaim_size;
760
761         lockdep_assert_held(&space_info->lock);
762
763         avail = calc_available_free_space(fs_info, space_info,
764                                           BTRFS_RESERVE_FLUSH_ALL);
765         used = btrfs_space_info_used(space_info, true);
766
767         /*
768          * We may be flushing because suddenly we have less space than we had
769          * before, and now we're well over-committed based on our current free
770          * space.  If that's the case add in our overage so we make sure to put
771          * appropriate pressure on the flushing state machine.
772          */
773         if (space_info->total_bytes + avail < used)
774                 to_reclaim += used - (space_info->total_bytes + avail);
775
776         if (to_reclaim)
777                 return to_reclaim;
778
779         to_reclaim = min_t(u64, num_online_cpus() * SZ_1M, SZ_16M);
780         if (btrfs_can_overcommit(fs_info, space_info, to_reclaim,
781                                  BTRFS_RESERVE_FLUSH_ALL))
782                 return 0;
783
784         used = btrfs_space_info_used(space_info, true);
785
786         if (btrfs_can_overcommit(fs_info, space_info, SZ_1M,
787                                  BTRFS_RESERVE_FLUSH_ALL))
788                 expected = div_factor_fine(space_info->total_bytes, 95);
789         else
790                 expected = div_factor_fine(space_info->total_bytes, 90);
791
792         if (used > expected)
793                 to_reclaim = used - expected;
794         else
795                 to_reclaim = 0;
796         to_reclaim = min(to_reclaim, space_info->bytes_may_use +
797                                      space_info->bytes_reserved);
798         return to_reclaim;
799 }
800
801 static inline int need_do_async_reclaim(struct btrfs_fs_info *fs_info,
802                                         struct btrfs_space_info *space_info,
803                                         u64 used)
804 {
805         u64 thresh = div_factor_fine(space_info->total_bytes, 98);
806
807         /* If we're just plain full then async reclaim just slows us down. */
808         if ((space_info->bytes_used + space_info->bytes_reserved) >= thresh)
809                 return 0;
810
811         if (!btrfs_calc_reclaim_metadata_size(fs_info, space_info))
812                 return 0;
813
814         return (used >= thresh && !btrfs_fs_closing(fs_info) &&
815                 !test_bit(BTRFS_FS_STATE_REMOUNTING, &fs_info->fs_state));
816 }
817
818 static bool steal_from_global_rsv(struct btrfs_fs_info *fs_info,
819                                   struct btrfs_space_info *space_info,
820                                   struct reserve_ticket *ticket)
821 {
822         struct btrfs_block_rsv *global_rsv = &fs_info->global_block_rsv;
823         u64 min_bytes;
824
825         if (global_rsv->space_info != space_info)
826                 return false;
827
828         spin_lock(&global_rsv->lock);
829         min_bytes = div_factor(global_rsv->size, 1);
830         if (global_rsv->reserved < min_bytes + ticket->bytes) {
831                 spin_unlock(&global_rsv->lock);
832                 return false;
833         }
834         global_rsv->reserved -= ticket->bytes;
835         remove_ticket(space_info, ticket);
836         ticket->bytes = 0;
837         wake_up(&ticket->wait);
838         space_info->tickets_id++;
839         if (global_rsv->reserved < global_rsv->size)
840                 global_rsv->full = 0;
841         spin_unlock(&global_rsv->lock);
842
843         return true;
844 }
845
846 /*
847  * maybe_fail_all_tickets - we've exhausted our flushing, start failing tickets
848  * @fs_info - fs_info for this fs
849  * @space_info - the space info we were flushing
850  *
851  * We call this when we've exhausted our flushing ability and haven't made
852  * progress in satisfying tickets.  The reservation code handles tickets in
853  * order, so if there is a large ticket first and then smaller ones we could
854  * very well satisfy the smaller tickets.  This will attempt to wake up any
855  * tickets in the list to catch this case.
856  *
857  * This function returns true if it was able to make progress by clearing out
858  * other tickets, or if it stumbles across a ticket that was smaller than the
859  * first ticket.
860  */
861 static bool maybe_fail_all_tickets(struct btrfs_fs_info *fs_info,
862                                    struct btrfs_space_info *space_info)
863 {
864         struct reserve_ticket *ticket;
865         u64 tickets_id = space_info->tickets_id;
866         u64 first_ticket_bytes = 0;
867
868         if (btrfs_test_opt(fs_info, ENOSPC_DEBUG)) {
869                 btrfs_info(fs_info, "cannot satisfy tickets, dumping space info");
870                 __btrfs_dump_space_info(fs_info, space_info);
871         }
872
873         while (!list_empty(&space_info->tickets) &&
874                tickets_id == space_info->tickets_id) {
875                 ticket = list_first_entry(&space_info->tickets,
876                                           struct reserve_ticket, list);
877
878                 if (ticket->steal &&
879                     steal_from_global_rsv(fs_info, space_info, ticket))
880                         return true;
881
882                 /*
883                  * may_commit_transaction will avoid committing the transaction
884                  * if it doesn't feel like the space reclaimed by the commit
885                  * would result in the ticket succeeding.  However if we have a
886                  * smaller ticket in the queue it may be small enough to be
887                  * satisified by committing the transaction, so if any
888                  * subsequent ticket is smaller than the first ticket go ahead
889                  * and send us back for another loop through the enospc flushing
890                  * code.
891                  */
892                 if (first_ticket_bytes == 0)
893                         first_ticket_bytes = ticket->bytes;
894                 else if (first_ticket_bytes > ticket->bytes)
895                         return true;
896
897                 if (btrfs_test_opt(fs_info, ENOSPC_DEBUG))
898                         btrfs_info(fs_info, "failing ticket with %llu bytes",
899                                    ticket->bytes);
900
901                 remove_ticket(space_info, ticket);
902                 ticket->error = -ENOSPC;
903                 wake_up(&ticket->wait);
904
905                 /*
906                  * We're just throwing tickets away, so more flushing may not
907                  * trip over btrfs_try_granting_tickets, so we need to call it
908                  * here to see if we can make progress with the next ticket in
909                  * the list.
910                  */
911                 btrfs_try_granting_tickets(fs_info, space_info);
912         }
913         return (tickets_id != space_info->tickets_id);
914 }
915
916 /*
917  * This is for normal flushers, we can wait all goddamned day if we want to.  We
918  * will loop and continuously try to flush as long as we are making progress.
919  * We count progress as clearing off tickets each time we have to loop.
920  */
921 static void btrfs_async_reclaim_metadata_space(struct work_struct *work)
922 {
923         struct btrfs_fs_info *fs_info;
924         struct btrfs_space_info *space_info;
925         u64 to_reclaim;
926         int flush_state;
927         int commit_cycles = 0;
928         u64 last_tickets_id;
929
930         fs_info = container_of(work, struct btrfs_fs_info, async_reclaim_work);
931         space_info = btrfs_find_space_info(fs_info, BTRFS_BLOCK_GROUP_METADATA);
932
933         spin_lock(&space_info->lock);
934         to_reclaim = btrfs_calc_reclaim_metadata_size(fs_info, space_info);
935         if (!to_reclaim) {
936                 space_info->flush = 0;
937                 spin_unlock(&space_info->lock);
938                 return;
939         }
940         last_tickets_id = space_info->tickets_id;
941         spin_unlock(&space_info->lock);
942
943         flush_state = FLUSH_DELAYED_ITEMS_NR;
944         do {
945                 flush_space(fs_info, space_info, to_reclaim, flush_state);
946                 spin_lock(&space_info->lock);
947                 if (list_empty(&space_info->tickets)) {
948                         space_info->flush = 0;
949                         spin_unlock(&space_info->lock);
950                         return;
951                 }
952                 to_reclaim = btrfs_calc_reclaim_metadata_size(fs_info,
953                                                               space_info);
954                 if (last_tickets_id == space_info->tickets_id) {
955                         flush_state++;
956                 } else {
957                         last_tickets_id = space_info->tickets_id;
958                         flush_state = FLUSH_DELAYED_ITEMS_NR;
959                         if (commit_cycles)
960                                 commit_cycles--;
961                 }
962
963                 /*
964                  * We don't want to force a chunk allocation until we've tried
965                  * pretty hard to reclaim space.  Think of the case where we
966                  * freed up a bunch of space and so have a lot of pinned space
967                  * to reclaim.  We would rather use that than possibly create a
968                  * underutilized metadata chunk.  So if this is our first run
969                  * through the flushing state machine skip ALLOC_CHUNK_FORCE and
970                  * commit the transaction.  If nothing has changed the next go
971                  * around then we can force a chunk allocation.
972                  */
973                 if (flush_state == ALLOC_CHUNK_FORCE && !commit_cycles)
974                         flush_state++;
975
976                 if (flush_state > COMMIT_TRANS) {
977                         commit_cycles++;
978                         if (commit_cycles > 2) {
979                                 if (maybe_fail_all_tickets(fs_info, space_info)) {
980                                         flush_state = FLUSH_DELAYED_ITEMS_NR;
981                                         commit_cycles--;
982                                 } else {
983                                         space_info->flush = 0;
984                                 }
985                         } else {
986                                 flush_state = FLUSH_DELAYED_ITEMS_NR;
987                         }
988                 }
989                 spin_unlock(&space_info->lock);
990         } while (flush_state <= COMMIT_TRANS);
991 }
992
993 /*
994  * FLUSH_DELALLOC_WAIT:
995  *   Space is freed from flushing delalloc in one of two ways.
996  *
997  *   1) compression is on and we allocate less space than we reserved
998  *   2) we are overwriting existing space
999  *
1000  *   For #1 that extra space is reclaimed as soon as the delalloc pages are
1001  *   COWed, by way of btrfs_add_reserved_bytes() which adds the actual extent
1002  *   length to ->bytes_reserved, and subtracts the reserved space from
1003  *   ->bytes_may_use.
1004  *
1005  *   For #2 this is trickier.  Once the ordered extent runs we will drop the
1006  *   extent in the range we are overwriting, which creates a delayed ref for
1007  *   that freed extent.  This however is not reclaimed until the transaction
1008  *   commits, thus the next stages.
1009  *
1010  * RUN_DELAYED_IPUTS
1011  *   If we are freeing inodes, we want to make sure all delayed iputs have
1012  *   completed, because they could have been on an inode with i_nlink == 0, and
1013  *   thus have been truncated and freed up space.  But again this space is not
1014  *   immediately re-usable, it comes in the form of a delayed ref, which must be
1015  *   run and then the transaction must be committed.
1016  *
1017  * FLUSH_DELAYED_REFS
1018  *   The above two cases generate delayed refs that will affect
1019  *   ->total_bytes_pinned.  However this counter can be inconsistent with
1020  *   reality if there are outstanding delayed refs.  This is because we adjust
1021  *   the counter based solely on the current set of delayed refs and disregard
1022  *   any on-disk state which might include more refs.  So for example, if we
1023  *   have an extent with 2 references, but we only drop 1, we'll see that there
1024  *   is a negative delayed ref count for the extent and assume that the space
1025  *   will be freed, and thus increase ->total_bytes_pinned.
1026  *
1027  *   Running the delayed refs gives us the actual real view of what will be
1028  *   freed at the transaction commit time.  This stage will not actually free
1029  *   space for us, it just makes sure that may_commit_transaction() has all of
1030  *   the information it needs to make the right decision.
1031  *
1032  * COMMIT_TRANS
1033  *   This is where we reclaim all of the pinned space generated by the previous
1034  *   two stages.  We will not commit the transaction if we don't think we're
1035  *   likely to satisfy our request, which means if our current free space +
1036  *   total_bytes_pinned < reservation we will not commit.  This is why the
1037  *   previous states are actually important, to make sure we know for sure
1038  *   whether committing the transaction will allow us to make progress.
1039  *
1040  * ALLOC_CHUNK_FORCE
1041  *   For data we start with alloc chunk force, however we could have been full
1042  *   before, and then the transaction commit could have freed new block groups,
1043  *   so if we now have space to allocate do the force chunk allocation.
1044  */
1045 static const enum btrfs_flush_state data_flush_states[] = {
1046         FLUSH_DELALLOC_WAIT,
1047         RUN_DELAYED_IPUTS,
1048         FLUSH_DELAYED_REFS,
1049         COMMIT_TRANS,
1050         ALLOC_CHUNK_FORCE,
1051 };
1052
1053 static void btrfs_async_reclaim_data_space(struct work_struct *work)
1054 {
1055         struct btrfs_fs_info *fs_info;
1056         struct btrfs_space_info *space_info;
1057         u64 last_tickets_id;
1058         int flush_state = 0;
1059
1060         fs_info = container_of(work, struct btrfs_fs_info, async_data_reclaim_work);
1061         space_info = fs_info->data_sinfo;
1062
1063         spin_lock(&space_info->lock);
1064         if (list_empty(&space_info->tickets)) {
1065                 space_info->flush = 0;
1066                 spin_unlock(&space_info->lock);
1067                 return;
1068         }
1069         last_tickets_id = space_info->tickets_id;
1070         spin_unlock(&space_info->lock);
1071
1072         while (!space_info->full) {
1073                 flush_space(fs_info, space_info, U64_MAX, ALLOC_CHUNK_FORCE);
1074                 spin_lock(&space_info->lock);
1075                 if (list_empty(&space_info->tickets)) {
1076                         space_info->flush = 0;
1077                         spin_unlock(&space_info->lock);
1078                         return;
1079                 }
1080                 last_tickets_id = space_info->tickets_id;
1081                 spin_unlock(&space_info->lock);
1082         }
1083
1084         while (flush_state < ARRAY_SIZE(data_flush_states)) {
1085                 flush_space(fs_info, space_info, U64_MAX,
1086                             data_flush_states[flush_state]);
1087                 spin_lock(&space_info->lock);
1088                 if (list_empty(&space_info->tickets)) {
1089                         space_info->flush = 0;
1090                         spin_unlock(&space_info->lock);
1091                         return;
1092                 }
1093
1094                 if (last_tickets_id == space_info->tickets_id) {
1095                         flush_state++;
1096                 } else {
1097                         last_tickets_id = space_info->tickets_id;
1098                         flush_state = 0;
1099                 }
1100
1101                 if (flush_state >= ARRAY_SIZE(data_flush_states)) {
1102                         if (space_info->full) {
1103                                 if (maybe_fail_all_tickets(fs_info, space_info))
1104                                         flush_state = 0;
1105                                 else
1106                                         space_info->flush = 0;
1107                         } else {
1108                                 flush_state = 0;
1109                         }
1110                 }
1111                 spin_unlock(&space_info->lock);
1112         }
1113 }
1114
1115 void btrfs_init_async_reclaim_work(struct btrfs_fs_info *fs_info)
1116 {
1117         INIT_WORK(&fs_info->async_reclaim_work, btrfs_async_reclaim_metadata_space);
1118         INIT_WORK(&fs_info->async_data_reclaim_work, btrfs_async_reclaim_data_space);
1119 }
1120
1121 static const enum btrfs_flush_state priority_flush_states[] = {
1122         FLUSH_DELAYED_ITEMS_NR,
1123         FLUSH_DELAYED_ITEMS,
1124         ALLOC_CHUNK,
1125 };
1126
1127 static const enum btrfs_flush_state evict_flush_states[] = {
1128         FLUSH_DELAYED_ITEMS_NR,
1129         FLUSH_DELAYED_ITEMS,
1130         FLUSH_DELAYED_REFS_NR,
1131         FLUSH_DELAYED_REFS,
1132         FLUSH_DELALLOC,
1133         FLUSH_DELALLOC_WAIT,
1134         ALLOC_CHUNK,
1135         COMMIT_TRANS,
1136 };
1137
1138 static void priority_reclaim_metadata_space(struct btrfs_fs_info *fs_info,
1139                                 struct btrfs_space_info *space_info,
1140                                 struct reserve_ticket *ticket,
1141                                 const enum btrfs_flush_state *states,
1142                                 int states_nr)
1143 {
1144         u64 to_reclaim;
1145         int flush_state;
1146
1147         spin_lock(&space_info->lock);
1148         to_reclaim = btrfs_calc_reclaim_metadata_size(fs_info, space_info);
1149         if (!to_reclaim) {
1150                 spin_unlock(&space_info->lock);
1151                 return;
1152         }
1153         spin_unlock(&space_info->lock);
1154
1155         flush_state = 0;
1156         do {
1157                 flush_space(fs_info, space_info, to_reclaim, states[flush_state]);
1158                 flush_state++;
1159                 spin_lock(&space_info->lock);
1160                 if (ticket->bytes == 0) {
1161                         spin_unlock(&space_info->lock);
1162                         return;
1163                 }
1164                 spin_unlock(&space_info->lock);
1165         } while (flush_state < states_nr);
1166 }
1167
1168 static void priority_reclaim_data_space(struct btrfs_fs_info *fs_info,
1169                                         struct btrfs_space_info *space_info,
1170                                         struct reserve_ticket *ticket)
1171 {
1172         while (!space_info->full) {
1173                 flush_space(fs_info, space_info, U64_MAX, ALLOC_CHUNK_FORCE);
1174                 spin_lock(&space_info->lock);
1175                 if (ticket->bytes == 0) {
1176                         spin_unlock(&space_info->lock);
1177                         return;
1178                 }
1179                 spin_unlock(&space_info->lock);
1180         }
1181 }
1182
1183 static void wait_reserve_ticket(struct btrfs_fs_info *fs_info,
1184                                 struct btrfs_space_info *space_info,
1185                                 struct reserve_ticket *ticket)
1186
1187 {
1188         DEFINE_WAIT(wait);
1189         int ret = 0;
1190
1191         spin_lock(&space_info->lock);
1192         while (ticket->bytes > 0 && ticket->error == 0) {
1193                 ret = prepare_to_wait_event(&ticket->wait, &wait, TASK_KILLABLE);
1194                 if (ret) {
1195                         /*
1196                          * Delete us from the list. After we unlock the space
1197                          * info, we don't want the async reclaim job to reserve
1198                          * space for this ticket. If that would happen, then the
1199                          * ticket's task would not known that space was reserved
1200                          * despite getting an error, resulting in a space leak
1201                          * (bytes_may_use counter of our space_info).
1202                          */
1203                         remove_ticket(space_info, ticket);
1204                         ticket->error = -EINTR;
1205                         break;
1206                 }
1207                 spin_unlock(&space_info->lock);
1208
1209                 schedule();
1210
1211                 finish_wait(&ticket->wait, &wait);
1212                 spin_lock(&space_info->lock);
1213         }
1214         spin_unlock(&space_info->lock);
1215 }
1216
1217 /**
1218  * handle_reserve_ticket - do the appropriate flushing and waiting for a ticket
1219  * @fs_info - the fs
1220  * @space_info - the space_info for the reservation
1221  * @ticket - the ticket for the reservation
1222  * @flush - how much we can flush
1223  *
1224  * This does the work of figuring out how to flush for the ticket, waiting for
1225  * the reservation, and returning the appropriate error if there is one.
1226  */
1227 static int handle_reserve_ticket(struct btrfs_fs_info *fs_info,
1228                                  struct btrfs_space_info *space_info,
1229                                  struct reserve_ticket *ticket,
1230                                  enum btrfs_reserve_flush_enum flush)
1231 {
1232         int ret;
1233
1234         switch (flush) {
1235         case BTRFS_RESERVE_FLUSH_DATA:
1236         case BTRFS_RESERVE_FLUSH_ALL:
1237         case BTRFS_RESERVE_FLUSH_ALL_STEAL:
1238                 wait_reserve_ticket(fs_info, space_info, ticket);
1239                 break;
1240         case BTRFS_RESERVE_FLUSH_LIMIT:
1241                 priority_reclaim_metadata_space(fs_info, space_info, ticket,
1242                                                 priority_flush_states,
1243                                                 ARRAY_SIZE(priority_flush_states));
1244                 break;
1245         case BTRFS_RESERVE_FLUSH_EVICT:
1246                 priority_reclaim_metadata_space(fs_info, space_info, ticket,
1247                                                 evict_flush_states,
1248                                                 ARRAY_SIZE(evict_flush_states));
1249                 break;
1250         case BTRFS_RESERVE_FLUSH_FREE_SPACE_INODE:
1251                 priority_reclaim_data_space(fs_info, space_info, ticket);
1252                 break;
1253         default:
1254                 ASSERT(0);
1255                 break;
1256         }
1257
1258         spin_lock(&space_info->lock);
1259         ret = ticket->error;
1260         if (ticket->bytes || ticket->error) {
1261                 /*
1262                  * We were a priority ticket, so we need to delete ourselves
1263                  * from the list.  Because we could have other priority tickets
1264                  * behind us that require less space, run
1265                  * btrfs_try_granting_tickets() to see if their reservations can
1266                  * now be made.
1267                  */
1268                 if (!list_empty(&ticket->list)) {
1269                         remove_ticket(space_info, ticket);
1270                         btrfs_try_granting_tickets(fs_info, space_info);
1271                 }
1272
1273                 if (!ret)
1274                         ret = -ENOSPC;
1275         }
1276         spin_unlock(&space_info->lock);
1277         ASSERT(list_empty(&ticket->list));
1278         /*
1279          * Check that we can't have an error set if the reservation succeeded,
1280          * as that would confuse tasks and lead them to error out without
1281          * releasing reserved space (if an error happens the expectation is that
1282          * space wasn't reserved at all).
1283          */
1284         ASSERT(!(ticket->bytes == 0 && ticket->error));
1285         return ret;
1286 }
1287
1288 /*
1289  * This returns true if this flush state will go through the ordinary flushing
1290  * code.
1291  */
1292 static inline bool is_normal_flushing(enum btrfs_reserve_flush_enum flush)
1293 {
1294         return  (flush == BTRFS_RESERVE_FLUSH_ALL) ||
1295                 (flush == BTRFS_RESERVE_FLUSH_ALL_STEAL);
1296 }
1297
1298 /**
1299  * reserve_metadata_bytes - try to reserve bytes from the block_rsv's space
1300  * @root - the root we're allocating for
1301  * @space_info - the space info we want to allocate from
1302  * @orig_bytes - the number of bytes we want
1303  * @flush - whether or not we can flush to make our reservation
1304  *
1305  * This will reserve orig_bytes number of bytes from the space info associated
1306  * with the block_rsv.  If there is not enough space it will make an attempt to
1307  * flush out space to make room.  It will do this by flushing delalloc if
1308  * possible or committing the transaction.  If flush is 0 then no attempts to
1309  * regain reservations will be made and this will fail if there is not enough
1310  * space already.
1311  */
1312 static int __reserve_bytes(struct btrfs_fs_info *fs_info,
1313                            struct btrfs_space_info *space_info, u64 orig_bytes,
1314                            enum btrfs_reserve_flush_enum flush)
1315 {
1316         struct work_struct *async_work;
1317         struct reserve_ticket ticket;
1318         u64 used;
1319         int ret = 0;
1320         bool pending_tickets;
1321
1322         ASSERT(orig_bytes);
1323         ASSERT(!current->journal_info || flush != BTRFS_RESERVE_FLUSH_ALL);
1324
1325         if (flush == BTRFS_RESERVE_FLUSH_DATA)
1326                 async_work = &fs_info->async_data_reclaim_work;
1327         else
1328                 async_work = &fs_info->async_reclaim_work;
1329
1330         spin_lock(&space_info->lock);
1331         ret = -ENOSPC;
1332         used = btrfs_space_info_used(space_info, true);
1333
1334         /*
1335          * We don't want NO_FLUSH allocations to jump everybody, they can
1336          * generally handle ENOSPC in a different way, so treat them the same as
1337          * normal flushers when it comes to skipping pending tickets.
1338          */
1339         if (is_normal_flushing(flush) || (flush == BTRFS_RESERVE_NO_FLUSH))
1340                 pending_tickets = !list_empty(&space_info->tickets) ||
1341                         !list_empty(&space_info->priority_tickets);
1342         else
1343                 pending_tickets = !list_empty(&space_info->priority_tickets);
1344
1345         /*
1346          * Carry on if we have enough space (short-circuit) OR call
1347          * can_overcommit() to ensure we can overcommit to continue.
1348          */
1349         if (!pending_tickets &&
1350             ((used + orig_bytes <= space_info->total_bytes) ||
1351              btrfs_can_overcommit(fs_info, space_info, orig_bytes, flush))) {
1352                 btrfs_space_info_update_bytes_may_use(fs_info, space_info,
1353                                                       orig_bytes);
1354                 ret = 0;
1355         }
1356
1357         /*
1358          * If we couldn't make a reservation then setup our reservation ticket
1359          * and kick the async worker if it's not already running.
1360          *
1361          * If we are a priority flusher then we just need to add our ticket to
1362          * the list and we will do our own flushing further down.
1363          */
1364         if (ret && flush != BTRFS_RESERVE_NO_FLUSH) {
1365                 ticket.bytes = orig_bytes;
1366                 ticket.error = 0;
1367                 space_info->reclaim_size += ticket.bytes;
1368                 init_waitqueue_head(&ticket.wait);
1369                 ticket.steal = (flush == BTRFS_RESERVE_FLUSH_ALL_STEAL);
1370                 if (flush == BTRFS_RESERVE_FLUSH_ALL ||
1371                     flush == BTRFS_RESERVE_FLUSH_ALL_STEAL ||
1372                     flush == BTRFS_RESERVE_FLUSH_DATA) {
1373                         list_add_tail(&ticket.list, &space_info->tickets);
1374                         if (!space_info->flush) {
1375                                 space_info->flush = 1;
1376                                 trace_btrfs_trigger_flush(fs_info,
1377                                                           space_info->flags,
1378                                                           orig_bytes, flush,
1379                                                           "enospc");
1380                                 queue_work(system_unbound_wq, async_work);
1381                         }
1382                 } else {
1383                         list_add_tail(&ticket.list,
1384                                       &space_info->priority_tickets);
1385                 }
1386         } else if (!ret && space_info->flags & BTRFS_BLOCK_GROUP_METADATA) {
1387                 used += orig_bytes;
1388                 /*
1389                  * We will do the space reservation dance during log replay,
1390                  * which means we won't have fs_info->fs_root set, so don't do
1391                  * the async reclaim as we will panic.
1392                  */
1393                 if (!test_bit(BTRFS_FS_LOG_RECOVERING, &fs_info->flags) &&
1394                     need_do_async_reclaim(fs_info, space_info, used) &&
1395                     !work_busy(&fs_info->async_reclaim_work)) {
1396                         trace_btrfs_trigger_flush(fs_info, space_info->flags,
1397                                                   orig_bytes, flush, "preempt");
1398                         queue_work(system_unbound_wq,
1399                                    &fs_info->async_reclaim_work);
1400                 }
1401         }
1402         spin_unlock(&space_info->lock);
1403         if (!ret || flush == BTRFS_RESERVE_NO_FLUSH)
1404                 return ret;
1405
1406         return handle_reserve_ticket(fs_info, space_info, &ticket, flush);
1407 }
1408
1409 /**
1410  * reserve_metadata_bytes - try to reserve bytes from the block_rsv's space
1411  * @root - the root we're allocating for
1412  * @block_rsv - the block_rsv we're allocating for
1413  * @orig_bytes - the number of bytes we want
1414  * @flush - whether or not we can flush to make our reservation
1415  *
1416  * This will reserve orig_bytes number of bytes from the space info associated
1417  * with the block_rsv.  If there is not enough space it will make an attempt to
1418  * flush out space to make room.  It will do this by flushing delalloc if
1419  * possible or committing the transaction.  If flush is 0 then no attempts to
1420  * regain reservations will be made and this will fail if there is not enough
1421  * space already.
1422  */
1423 int btrfs_reserve_metadata_bytes(struct btrfs_root *root,
1424                                  struct btrfs_block_rsv *block_rsv,
1425                                  u64 orig_bytes,
1426                                  enum btrfs_reserve_flush_enum flush)
1427 {
1428         struct btrfs_fs_info *fs_info = root->fs_info;
1429         struct btrfs_block_rsv *global_rsv = &fs_info->global_block_rsv;
1430         int ret;
1431
1432         ret = __reserve_bytes(fs_info, block_rsv->space_info, orig_bytes, flush);
1433         if (ret == -ENOSPC &&
1434             unlikely(root->orphan_cleanup_state == ORPHAN_CLEANUP_STARTED)) {
1435                 if (block_rsv != global_rsv &&
1436                     !btrfs_block_rsv_use_bytes(global_rsv, orig_bytes))
1437                         ret = 0;
1438         }
1439         if (ret == -ENOSPC) {
1440                 trace_btrfs_space_reservation(fs_info, "space_info:enospc",
1441                                               block_rsv->space_info->flags,
1442                                               orig_bytes, 1);
1443
1444                 if (btrfs_test_opt(fs_info, ENOSPC_DEBUG))
1445                         btrfs_dump_space_info(fs_info, block_rsv->space_info,
1446                                               orig_bytes, 0);
1447         }
1448         return ret;
1449 }
1450
1451 /**
1452  * btrfs_reserve_data_bytes - try to reserve data bytes for an allocation
1453  * @fs_info - the filesystem
1454  * @bytes - the number of bytes we need
1455  * @flush - how we are allowed to flush
1456  *
1457  * This will reserve bytes from the data space info.  If there is not enough
1458  * space then we will attempt to flush space as specified by flush.
1459  */
1460 int btrfs_reserve_data_bytes(struct btrfs_fs_info *fs_info, u64 bytes,
1461                              enum btrfs_reserve_flush_enum flush)
1462 {
1463         struct btrfs_space_info *data_sinfo = fs_info->data_sinfo;
1464         int ret;
1465
1466         ASSERT(flush == BTRFS_RESERVE_FLUSH_DATA ||
1467                flush == BTRFS_RESERVE_FLUSH_FREE_SPACE_INODE);
1468         ASSERT(!current->journal_info || flush != BTRFS_RESERVE_FLUSH_DATA);
1469
1470         ret = __reserve_bytes(fs_info, data_sinfo, bytes, flush);
1471         if (ret == -ENOSPC) {
1472                 trace_btrfs_space_reservation(fs_info, "space_info:enospc",
1473                                               data_sinfo->flags, bytes, 1);
1474                 if (btrfs_test_opt(fs_info, ENOSPC_DEBUG))
1475                         btrfs_dump_space_info(fs_info, data_sinfo, bytes, 0);
1476         }
1477         return ret;
1478 }