2 * Copyright (C) 2012 Alexander Block. All rights reserved.
4 * This program is free software; you can redistribute it and/or
5 * modify it under the terms of the GNU General Public
6 * License v2 as published by the Free Software Foundation.
8 * This program is distributed in the hope that it will be useful,
9 * but WITHOUT ANY WARRANTY; without even the implied warranty of
10 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
11 * General Public License for more details.
13 * You should have received a copy of the GNU General Public
14 * License along with this program; if not, write to the
15 * Free Software Foundation, Inc., 59 Temple Place - Suite 330,
16 * Boston, MA 021110-1307, USA.
19 #include <linux/bsearch.h>
21 #include <linux/file.h>
22 #include <linux/sort.h>
23 #include <linux/mount.h>
24 #include <linux/xattr.h>
25 #include <linux/posix_acl_xattr.h>
26 #include <linux/radix-tree.h>
27 #include <linux/vmalloc.h>
28 #include <linux/string.h>
35 #include "btrfs_inode.h"
36 #include "transaction.h"
37 #include "compression.h"
41 * Maximum number of references an extent can have in order for us to attempt to
42 * issue clone operations instead of write operations. This currently exists to
43 * avoid hitting limitations of the backreference walking code (taking a lot of
44 * time and using too much memory for extents with large number of references).
46 #define SEND_MAX_EXTENT_REFS 64
49 * A fs_path is a helper to dynamically build path names with unknown size.
50 * It reallocates the internal buffer on demand.
51 * It allows fast adding of path elements on the right side (normal path) and
52 * fast adding to the left side (reversed path). A reversed path can also be
53 * unreversed if needed.
62 unsigned short buf_len:15;
63 unsigned short reversed:1;
67 * Average path length does not exceed 200 bytes, we'll have
68 * better packing in the slab and higher chance to satisfy
69 * a allocation later during send.
74 #define FS_PATH_INLINE_SIZE \
75 (sizeof(struct fs_path) - offsetof(struct fs_path, inline_buf))
78 /* reused for each extent */
80 struct btrfs_root *root;
87 #define SEND_CTX_MAX_NAME_CACHE_SIZE 128
88 #define SEND_CTX_NAME_CACHE_CLEAN_SIZE (SEND_CTX_MAX_NAME_CACHE_SIZE * 2)
91 struct file *send_filp;
97 u64 cmd_send_size[BTRFS_SEND_C_MAX + 1];
98 u64 flags; /* 'flags' member of btrfs_ioctl_send_args is u64 */
100 struct btrfs_root *send_root;
101 struct btrfs_root *parent_root;
102 struct clone_root *clone_roots;
105 /* current state of the compare_tree call */
106 struct btrfs_path *left_path;
107 struct btrfs_path *right_path;
108 struct btrfs_key *cmp_key;
111 * infos of the currently processed inode. In case of deleted inodes,
112 * these are the values from the deleted inode.
117 int cur_inode_new_gen;
118 int cur_inode_deleted;
122 u64 cur_inode_last_extent;
126 struct list_head new_refs;
127 struct list_head deleted_refs;
129 struct radix_tree_root name_cache;
130 struct list_head name_cache_list;
133 struct file_ra_state ra;
138 * We process inodes by their increasing order, so if before an
139 * incremental send we reverse the parent/child relationship of
140 * directories such that a directory with a lower inode number was
141 * the parent of a directory with a higher inode number, and the one
142 * becoming the new parent got renamed too, we can't rename/move the
143 * directory with lower inode number when we finish processing it - we
144 * must process the directory with higher inode number first, then
145 * rename/move it and then rename/move the directory with lower inode
146 * number. Example follows.
148 * Tree state when the first send was performed:
160 * Tree state when the second (incremental) send is performed:
169 * The sequence of steps that lead to the second state was:
171 * mv /a/b/c/d /a/b/c2/d2
172 * mv /a/b/c /a/b/c2/d2/cc
174 * "c" has lower inode number, but we can't move it (2nd mv operation)
175 * before we move "d", which has higher inode number.
177 * So we just memorize which move/rename operations must be performed
178 * later when their respective parent is processed and moved/renamed.
181 /* Indexed by parent directory inode number. */
182 struct rb_root pending_dir_moves;
185 * Reverse index, indexed by the inode number of a directory that
186 * is waiting for the move/rename of its immediate parent before its
187 * own move/rename can be performed.
189 struct rb_root waiting_dir_moves;
192 * A directory that is going to be rm'ed might have a child directory
193 * which is in the pending directory moves index above. In this case,
194 * the directory can only be removed after the move/rename of its child
195 * is performed. Example:
215 * Sequence of steps that lead to the send snapshot:
216 * rm -f /a/b/c/foo.txt
218 * mv /a/b/c/x /a/b/YY
221 * When the child is processed, its move/rename is delayed until its
222 * parent is processed (as explained above), but all other operations
223 * like update utimes, chown, chgrp, etc, are performed and the paths
224 * that it uses for those operations must use the orphanized name of
225 * its parent (the directory we're going to rm later), so we need to
226 * memorize that name.
228 * Indexed by the inode number of the directory to be deleted.
230 struct rb_root orphan_dirs;
233 struct pending_dir_move {
235 struct list_head list;
239 struct list_head update_refs;
242 struct waiting_dir_move {
246 * There might be some directory that could not be removed because it
247 * was waiting for this directory inode to be moved first. Therefore
248 * after this directory is moved, we can try to rmdir the ino rmdir_ino.
254 struct orphan_dir_info {
260 struct name_cache_entry {
261 struct list_head list;
263 * radix_tree has only 32bit entries but we need to handle 64bit inums.
264 * We use the lower 32bit of the 64bit inum to store it in the tree. If
265 * more then one inum would fall into the same entry, we use radix_list
266 * to store the additional entries. radix_list is also used to store
267 * entries where two entries have the same inum but different
270 struct list_head radix_list;
276 int need_later_update;
281 static void inconsistent_snapshot_error(struct send_ctx *sctx,
282 enum btrfs_compare_tree_result result,
285 const char *result_string;
288 case BTRFS_COMPARE_TREE_NEW:
289 result_string = "new";
291 case BTRFS_COMPARE_TREE_DELETED:
292 result_string = "deleted";
294 case BTRFS_COMPARE_TREE_CHANGED:
295 result_string = "updated";
297 case BTRFS_COMPARE_TREE_SAME:
299 result_string = "unchanged";
303 result_string = "unexpected";
306 btrfs_err(sctx->send_root->fs_info,
307 "Send: inconsistent snapshot, found %s %s for inode %llu without updated inode item, send root is %llu, parent root is %llu",
308 result_string, what, sctx->cmp_key->objectid,
309 sctx->send_root->root_key.objectid,
311 sctx->parent_root->root_key.objectid : 0));
314 static int is_waiting_for_move(struct send_ctx *sctx, u64 ino);
316 static struct waiting_dir_move *
317 get_waiting_dir_move(struct send_ctx *sctx, u64 ino);
319 static int is_waiting_for_rm(struct send_ctx *sctx, u64 dir_ino);
321 static int need_send_hole(struct send_ctx *sctx)
323 return (sctx->parent_root && !sctx->cur_inode_new &&
324 !sctx->cur_inode_new_gen && !sctx->cur_inode_deleted &&
325 S_ISREG(sctx->cur_inode_mode));
328 static void fs_path_reset(struct fs_path *p)
331 p->start = p->buf + p->buf_len - 1;
341 static struct fs_path *fs_path_alloc(void)
345 p = kmalloc(sizeof(*p), GFP_KERNEL);
349 p->buf = p->inline_buf;
350 p->buf_len = FS_PATH_INLINE_SIZE;
355 static struct fs_path *fs_path_alloc_reversed(void)
367 static void fs_path_free(struct fs_path *p)
371 if (p->buf != p->inline_buf)
376 static int fs_path_len(struct fs_path *p)
378 return p->end - p->start;
381 static int fs_path_ensure_buf(struct fs_path *p, int len)
389 if (p->buf_len >= len)
392 if (len > PATH_MAX) {
397 path_len = p->end - p->start;
398 old_buf_len = p->buf_len;
401 * First time the inline_buf does not suffice
403 if (p->buf == p->inline_buf) {
404 tmp_buf = kmalloc(len, GFP_KERNEL);
406 memcpy(tmp_buf, p->buf, old_buf_len);
408 tmp_buf = krealloc(p->buf, len, GFP_KERNEL);
414 * The real size of the buffer is bigger, this will let the fast path
415 * happen most of the time
417 p->buf_len = ksize(p->buf);
420 tmp_buf = p->buf + old_buf_len - path_len - 1;
421 p->end = p->buf + p->buf_len - 1;
422 p->start = p->end - path_len;
423 memmove(p->start, tmp_buf, path_len + 1);
426 p->end = p->start + path_len;
431 static int fs_path_prepare_for_add(struct fs_path *p, int name_len,
437 new_len = p->end - p->start + name_len;
438 if (p->start != p->end)
440 ret = fs_path_ensure_buf(p, new_len);
445 if (p->start != p->end)
447 p->start -= name_len;
448 *prepared = p->start;
450 if (p->start != p->end)
461 static int fs_path_add(struct fs_path *p, const char *name, int name_len)
466 ret = fs_path_prepare_for_add(p, name_len, &prepared);
469 memcpy(prepared, name, name_len);
475 static int fs_path_add_path(struct fs_path *p, struct fs_path *p2)
480 ret = fs_path_prepare_for_add(p, p2->end - p2->start, &prepared);
483 memcpy(prepared, p2->start, p2->end - p2->start);
489 static int fs_path_add_from_extent_buffer(struct fs_path *p,
490 struct extent_buffer *eb,
491 unsigned long off, int len)
496 ret = fs_path_prepare_for_add(p, len, &prepared);
500 read_extent_buffer(eb, prepared, off, len);
506 static int fs_path_copy(struct fs_path *p, struct fs_path *from)
510 p->reversed = from->reversed;
513 ret = fs_path_add_path(p, from);
519 static void fs_path_unreverse(struct fs_path *p)
528 len = p->end - p->start;
530 p->end = p->start + len;
531 memmove(p->start, tmp, len + 1);
535 static struct btrfs_path *alloc_path_for_send(void)
537 struct btrfs_path *path;
539 path = btrfs_alloc_path();
542 path->search_commit_root = 1;
543 path->skip_locking = 1;
544 path->need_commit_sem = 1;
548 static int write_buf(struct file *filp, const void *buf, u32 len, loff_t *off)
558 ret = vfs_write(filp, (__force const char __user *)buf + pos,
560 /* TODO handle that correctly */
561 /*if (ret == -ERESTARTSYS) {
580 static int tlv_put(struct send_ctx *sctx, u16 attr, const void *data, int len)
582 struct btrfs_tlv_header *hdr;
583 int total_len = sizeof(*hdr) + len;
584 int left = sctx->send_max_size - sctx->send_size;
586 if (unlikely(left < total_len))
589 hdr = (struct btrfs_tlv_header *) (sctx->send_buf + sctx->send_size);
590 hdr->tlv_type = cpu_to_le16(attr);
591 hdr->tlv_len = cpu_to_le16(len);
592 memcpy(hdr + 1, data, len);
593 sctx->send_size += total_len;
598 #define TLV_PUT_DEFINE_INT(bits) \
599 static int tlv_put_u##bits(struct send_ctx *sctx, \
600 u##bits attr, u##bits value) \
602 __le##bits __tmp = cpu_to_le##bits(value); \
603 return tlv_put(sctx, attr, &__tmp, sizeof(__tmp)); \
606 TLV_PUT_DEFINE_INT(64)
608 static int tlv_put_string(struct send_ctx *sctx, u16 attr,
609 const char *str, int len)
613 return tlv_put(sctx, attr, str, len);
616 static int tlv_put_uuid(struct send_ctx *sctx, u16 attr,
619 return tlv_put(sctx, attr, uuid, BTRFS_UUID_SIZE);
622 static int tlv_put_btrfs_timespec(struct send_ctx *sctx, u16 attr,
623 struct extent_buffer *eb,
624 struct btrfs_timespec *ts)
626 struct btrfs_timespec bts;
627 read_extent_buffer(eb, &bts, (unsigned long)ts, sizeof(bts));
628 return tlv_put(sctx, attr, &bts, sizeof(bts));
632 #define TLV_PUT(sctx, attrtype, attrlen, data) \
634 ret = tlv_put(sctx, attrtype, attrlen, data); \
636 goto tlv_put_failure; \
639 #define TLV_PUT_INT(sctx, attrtype, bits, value) \
641 ret = tlv_put_u##bits(sctx, attrtype, value); \
643 goto tlv_put_failure; \
646 #define TLV_PUT_U8(sctx, attrtype, data) TLV_PUT_INT(sctx, attrtype, 8, data)
647 #define TLV_PUT_U16(sctx, attrtype, data) TLV_PUT_INT(sctx, attrtype, 16, data)
648 #define TLV_PUT_U32(sctx, attrtype, data) TLV_PUT_INT(sctx, attrtype, 32, data)
649 #define TLV_PUT_U64(sctx, attrtype, data) TLV_PUT_INT(sctx, attrtype, 64, data)
650 #define TLV_PUT_STRING(sctx, attrtype, str, len) \
652 ret = tlv_put_string(sctx, attrtype, str, len); \
654 goto tlv_put_failure; \
656 #define TLV_PUT_PATH(sctx, attrtype, p) \
658 ret = tlv_put_string(sctx, attrtype, p->start, \
659 p->end - p->start); \
661 goto tlv_put_failure; \
663 #define TLV_PUT_UUID(sctx, attrtype, uuid) \
665 ret = tlv_put_uuid(sctx, attrtype, uuid); \
667 goto tlv_put_failure; \
669 #define TLV_PUT_BTRFS_TIMESPEC(sctx, attrtype, eb, ts) \
671 ret = tlv_put_btrfs_timespec(sctx, attrtype, eb, ts); \
673 goto tlv_put_failure; \
676 static int send_header(struct send_ctx *sctx)
678 struct btrfs_stream_header hdr;
680 strcpy(hdr.magic, BTRFS_SEND_STREAM_MAGIC);
681 hdr.version = cpu_to_le32(BTRFS_SEND_STREAM_VERSION);
683 return write_buf(sctx->send_filp, &hdr, sizeof(hdr),
688 * For each command/item we want to send to userspace, we call this function.
690 static int begin_cmd(struct send_ctx *sctx, int cmd)
692 struct btrfs_cmd_header *hdr;
694 if (WARN_ON(!sctx->send_buf))
697 BUG_ON(sctx->send_size);
699 sctx->send_size += sizeof(*hdr);
700 hdr = (struct btrfs_cmd_header *)sctx->send_buf;
701 hdr->cmd = cpu_to_le16(cmd);
706 static int send_cmd(struct send_ctx *sctx)
709 struct btrfs_cmd_header *hdr;
712 hdr = (struct btrfs_cmd_header *)sctx->send_buf;
713 hdr->len = cpu_to_le32(sctx->send_size - sizeof(*hdr));
716 crc = btrfs_crc32c(0, (unsigned char *)sctx->send_buf, sctx->send_size);
717 hdr->crc = cpu_to_le32(crc);
719 ret = write_buf(sctx->send_filp, sctx->send_buf, sctx->send_size,
722 sctx->total_send_size += sctx->send_size;
723 sctx->cmd_send_size[le16_to_cpu(hdr->cmd)] += sctx->send_size;
730 * Sends a move instruction to user space
732 static int send_rename(struct send_ctx *sctx,
733 struct fs_path *from, struct fs_path *to)
735 struct btrfs_fs_info *fs_info = sctx->send_root->fs_info;
738 btrfs_debug(fs_info, "send_rename %s -> %s", from->start, to->start);
740 ret = begin_cmd(sctx, BTRFS_SEND_C_RENAME);
744 TLV_PUT_PATH(sctx, BTRFS_SEND_A_PATH, from);
745 TLV_PUT_PATH(sctx, BTRFS_SEND_A_PATH_TO, to);
747 ret = send_cmd(sctx);
755 * Sends a link instruction to user space
757 static int send_link(struct send_ctx *sctx,
758 struct fs_path *path, struct fs_path *lnk)
760 struct btrfs_fs_info *fs_info = sctx->send_root->fs_info;
763 btrfs_debug(fs_info, "send_link %s -> %s", path->start, lnk->start);
765 ret = begin_cmd(sctx, BTRFS_SEND_C_LINK);
769 TLV_PUT_PATH(sctx, BTRFS_SEND_A_PATH, path);
770 TLV_PUT_PATH(sctx, BTRFS_SEND_A_PATH_LINK, lnk);
772 ret = send_cmd(sctx);
780 * Sends an unlink instruction to user space
782 static int send_unlink(struct send_ctx *sctx, struct fs_path *path)
784 struct btrfs_fs_info *fs_info = sctx->send_root->fs_info;
787 btrfs_debug(fs_info, "send_unlink %s", path->start);
789 ret = begin_cmd(sctx, BTRFS_SEND_C_UNLINK);
793 TLV_PUT_PATH(sctx, BTRFS_SEND_A_PATH, path);
795 ret = send_cmd(sctx);
803 * Sends a rmdir instruction to user space
805 static int send_rmdir(struct send_ctx *sctx, struct fs_path *path)
807 struct btrfs_fs_info *fs_info = sctx->send_root->fs_info;
810 btrfs_debug(fs_info, "send_rmdir %s", path->start);
812 ret = begin_cmd(sctx, BTRFS_SEND_C_RMDIR);
816 TLV_PUT_PATH(sctx, BTRFS_SEND_A_PATH, path);
818 ret = send_cmd(sctx);
826 * Helper function to retrieve some fields from an inode item.
828 static int __get_inode_info(struct btrfs_root *root, struct btrfs_path *path,
829 u64 ino, u64 *size, u64 *gen, u64 *mode, u64 *uid,
833 struct btrfs_inode_item *ii;
834 struct btrfs_key key;
837 key.type = BTRFS_INODE_ITEM_KEY;
839 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
846 ii = btrfs_item_ptr(path->nodes[0], path->slots[0],
847 struct btrfs_inode_item);
849 *size = btrfs_inode_size(path->nodes[0], ii);
851 *gen = btrfs_inode_generation(path->nodes[0], ii);
853 *mode = btrfs_inode_mode(path->nodes[0], ii);
855 *uid = btrfs_inode_uid(path->nodes[0], ii);
857 *gid = btrfs_inode_gid(path->nodes[0], ii);
859 *rdev = btrfs_inode_rdev(path->nodes[0], ii);
864 static int get_inode_info(struct btrfs_root *root,
865 u64 ino, u64 *size, u64 *gen,
866 u64 *mode, u64 *uid, u64 *gid,
869 struct btrfs_path *path;
872 path = alloc_path_for_send();
875 ret = __get_inode_info(root, path, ino, size, gen, mode, uid, gid,
877 btrfs_free_path(path);
881 typedef int (*iterate_inode_ref_t)(int num, u64 dir, int index,
886 * Helper function to iterate the entries in ONE btrfs_inode_ref or
887 * btrfs_inode_extref.
888 * The iterate callback may return a non zero value to stop iteration. This can
889 * be a negative value for error codes or 1 to simply stop it.
891 * path must point to the INODE_REF or INODE_EXTREF when called.
893 static int iterate_inode_ref(struct btrfs_root *root, struct btrfs_path *path,
894 struct btrfs_key *found_key, int resolve,
895 iterate_inode_ref_t iterate, void *ctx)
897 struct extent_buffer *eb = path->nodes[0];
898 struct btrfs_item *item;
899 struct btrfs_inode_ref *iref;
900 struct btrfs_inode_extref *extref;
901 struct btrfs_path *tmp_path;
905 int slot = path->slots[0];
912 unsigned long name_off;
913 unsigned long elem_size;
916 p = fs_path_alloc_reversed();
920 tmp_path = alloc_path_for_send();
927 if (found_key->type == BTRFS_INODE_REF_KEY) {
928 ptr = (unsigned long)btrfs_item_ptr(eb, slot,
929 struct btrfs_inode_ref);
930 item = btrfs_item_nr(slot);
931 total = btrfs_item_size(eb, item);
932 elem_size = sizeof(*iref);
934 ptr = btrfs_item_ptr_offset(eb, slot);
935 total = btrfs_item_size_nr(eb, slot);
936 elem_size = sizeof(*extref);
939 while (cur < total) {
942 if (found_key->type == BTRFS_INODE_REF_KEY) {
943 iref = (struct btrfs_inode_ref *)(ptr + cur);
944 name_len = btrfs_inode_ref_name_len(eb, iref);
945 name_off = (unsigned long)(iref + 1);
946 index = btrfs_inode_ref_index(eb, iref);
947 dir = found_key->offset;
949 extref = (struct btrfs_inode_extref *)(ptr + cur);
950 name_len = btrfs_inode_extref_name_len(eb, extref);
951 name_off = (unsigned long)&extref->name;
952 index = btrfs_inode_extref_index(eb, extref);
953 dir = btrfs_inode_extref_parent(eb, extref);
957 start = btrfs_ref_to_path(root, tmp_path, name_len,
961 ret = PTR_ERR(start);
964 if (start < p->buf) {
965 /* overflow , try again with larger buffer */
966 ret = fs_path_ensure_buf(p,
967 p->buf_len + p->buf - start);
970 start = btrfs_ref_to_path(root, tmp_path,
975 ret = PTR_ERR(start);
978 BUG_ON(start < p->buf);
982 ret = fs_path_add_from_extent_buffer(p, eb, name_off,
988 cur += elem_size + name_len;
989 ret = iterate(num, dir, index, p, ctx);
996 btrfs_free_path(tmp_path);
1001 typedef int (*iterate_dir_item_t)(int num, struct btrfs_key *di_key,
1002 const char *name, int name_len,
1003 const char *data, int data_len,
1004 u8 type, void *ctx);
1007 * Helper function to iterate the entries in ONE btrfs_dir_item.
1008 * The iterate callback may return a non zero value to stop iteration. This can
1009 * be a negative value for error codes or 1 to simply stop it.
1011 * path must point to the dir item when called.
1013 static int iterate_dir_item(struct btrfs_root *root, struct btrfs_path *path,
1014 struct btrfs_key *found_key,
1015 iterate_dir_item_t iterate, void *ctx)
1018 struct extent_buffer *eb;
1019 struct btrfs_item *item;
1020 struct btrfs_dir_item *di;
1021 struct btrfs_key di_key;
1034 * Start with a small buffer (1 page). If later we end up needing more
1035 * space, which can happen for xattrs on a fs with a leaf size greater
1036 * then the page size, attempt to increase the buffer. Typically xattr
1040 buf = kmalloc(buf_len, GFP_KERNEL);
1046 eb = path->nodes[0];
1047 slot = path->slots[0];
1048 item = btrfs_item_nr(slot);
1049 di = btrfs_item_ptr(eb, slot, struct btrfs_dir_item);
1052 total = btrfs_item_size(eb, item);
1055 while (cur < total) {
1056 name_len = btrfs_dir_name_len(eb, di);
1057 data_len = btrfs_dir_data_len(eb, di);
1058 type = btrfs_dir_type(eb, di);
1059 btrfs_dir_item_key_to_cpu(eb, di, &di_key);
1061 if (type == BTRFS_FT_XATTR) {
1062 if (name_len > XATTR_NAME_MAX) {
1063 ret = -ENAMETOOLONG;
1066 if (name_len + data_len > BTRFS_MAX_XATTR_SIZE(root)) {
1074 if (name_len + data_len > PATH_MAX) {
1075 ret = -ENAMETOOLONG;
1080 if (name_len + data_len > buf_len) {
1081 buf_len = name_len + data_len;
1082 if (is_vmalloc_addr(buf)) {
1086 char *tmp = krealloc(buf, buf_len,
1087 GFP_KERNEL | __GFP_NOWARN);
1094 buf = vmalloc(buf_len);
1102 read_extent_buffer(eb, buf, (unsigned long)(di + 1),
1103 name_len + data_len);
1105 len = sizeof(*di) + name_len + data_len;
1106 di = (struct btrfs_dir_item *)((char *)di + len);
1109 ret = iterate(num, &di_key, buf, name_len, buf + name_len,
1110 data_len, type, ctx);
1126 static int __copy_first_ref(int num, u64 dir, int index,
1127 struct fs_path *p, void *ctx)
1130 struct fs_path *pt = ctx;
1132 ret = fs_path_copy(pt, p);
1136 /* we want the first only */
1141 * Retrieve the first path of an inode. If an inode has more then one
1142 * ref/hardlink, this is ignored.
1144 static int get_inode_path(struct btrfs_root *root,
1145 u64 ino, struct fs_path *path)
1148 struct btrfs_key key, found_key;
1149 struct btrfs_path *p;
1151 p = alloc_path_for_send();
1155 fs_path_reset(path);
1158 key.type = BTRFS_INODE_REF_KEY;
1161 ret = btrfs_search_slot_for_read(root, &key, p, 1, 0);
1168 btrfs_item_key_to_cpu(p->nodes[0], &found_key, p->slots[0]);
1169 if (found_key.objectid != ino ||
1170 (found_key.type != BTRFS_INODE_REF_KEY &&
1171 found_key.type != BTRFS_INODE_EXTREF_KEY)) {
1176 ret = iterate_inode_ref(root, p, &found_key, 1,
1177 __copy_first_ref, path);
1187 struct backref_ctx {
1188 struct send_ctx *sctx;
1190 struct btrfs_path *path;
1191 /* number of total found references */
1195 * used for clones found in send_root. clones found behind cur_objectid
1196 * and cur_offset are not considered as allowed clones.
1201 /* may be truncated in case it's the last extent in a file */
1204 /* data offset in the file extent item */
1207 /* Just to check for bugs in backref resolving */
1211 static int __clone_root_cmp_bsearch(const void *key, const void *elt)
1213 u64 root = (u64)(uintptr_t)key;
1214 struct clone_root *cr = (struct clone_root *)elt;
1216 if (root < cr->root->objectid)
1218 if (root > cr->root->objectid)
1223 static int __clone_root_cmp_sort(const void *e1, const void *e2)
1225 struct clone_root *cr1 = (struct clone_root *)e1;
1226 struct clone_root *cr2 = (struct clone_root *)e2;
1228 if (cr1->root->objectid < cr2->root->objectid)
1230 if (cr1->root->objectid > cr2->root->objectid)
1236 * Called for every backref that is found for the current extent.
1237 * Results are collected in sctx->clone_roots->ino/offset/found_refs
1239 static int __iterate_backrefs(u64 ino, u64 offset, u64 root, void *ctx_)
1241 struct backref_ctx *bctx = ctx_;
1242 struct clone_root *found;
1246 /* First check if the root is in the list of accepted clone sources */
1247 found = bsearch((void *)(uintptr_t)root, bctx->sctx->clone_roots,
1248 bctx->sctx->clone_roots_cnt,
1249 sizeof(struct clone_root),
1250 __clone_root_cmp_bsearch);
1254 if (found->root == bctx->sctx->send_root &&
1255 ino == bctx->cur_objectid &&
1256 offset == bctx->cur_offset) {
1257 bctx->found_itself = 1;
1261 * There are inodes that have extents that lie behind its i_size. Don't
1262 * accept clones from these extents.
1264 ret = __get_inode_info(found->root, bctx->path, ino, &i_size, NULL, NULL,
1266 btrfs_release_path(bctx->path);
1270 if (offset + bctx->data_offset + bctx->extent_len > i_size)
1274 * Make sure we don't consider clones from send_root that are
1275 * behind the current inode/offset.
1277 if (found->root == bctx->sctx->send_root) {
1279 * TODO for the moment we don't accept clones from the inode
1280 * that is currently send. We may change this when
1281 * BTRFS_IOC_CLONE_RANGE supports cloning from and to the same
1284 if (ino >= bctx->cur_objectid)
1287 if (ino > bctx->cur_objectid)
1289 if (offset + bctx->extent_len > bctx->cur_offset)
1295 found->found_refs++;
1296 if (ino < found->ino) {
1298 found->offset = offset;
1299 } else if (found->ino == ino) {
1301 * same extent found more then once in the same file.
1303 if (found->offset > offset + bctx->extent_len)
1304 found->offset = offset;
1311 * Given an inode, offset and extent item, it finds a good clone for a clone
1312 * instruction. Returns -ENOENT when none could be found. The function makes
1313 * sure that the returned clone is usable at the point where sending is at the
1314 * moment. This means, that no clones are accepted which lie behind the current
1317 * path must point to the extent item when called.
1319 static int find_extent_clone(struct send_ctx *sctx,
1320 struct btrfs_path *path,
1321 u64 ino, u64 data_offset,
1323 struct clone_root **found)
1325 struct btrfs_fs_info *fs_info = sctx->send_root->fs_info;
1331 u64 extent_item_pos;
1333 struct btrfs_file_extent_item *fi;
1334 struct extent_buffer *eb = path->nodes[0];
1335 struct backref_ctx *backref_ctx = NULL;
1336 struct clone_root *cur_clone_root;
1337 struct btrfs_key found_key;
1338 struct btrfs_path *tmp_path;
1339 struct btrfs_extent_item *ei;
1343 tmp_path = alloc_path_for_send();
1347 /* We only use this path under the commit sem */
1348 tmp_path->need_commit_sem = 0;
1350 backref_ctx = kmalloc(sizeof(*backref_ctx), GFP_KERNEL);
1356 backref_ctx->path = tmp_path;
1358 if (data_offset >= ino_size) {
1360 * There may be extents that lie behind the file's size.
1361 * I at least had this in combination with snapshotting while
1362 * writing large files.
1368 fi = btrfs_item_ptr(eb, path->slots[0],
1369 struct btrfs_file_extent_item);
1370 extent_type = btrfs_file_extent_type(eb, fi);
1371 if (extent_type == BTRFS_FILE_EXTENT_INLINE) {
1375 compressed = btrfs_file_extent_compression(eb, fi);
1377 num_bytes = btrfs_file_extent_num_bytes(eb, fi);
1378 disk_byte = btrfs_file_extent_disk_bytenr(eb, fi);
1379 if (disk_byte == 0) {
1383 logical = disk_byte + btrfs_file_extent_offset(eb, fi);
1385 down_read(&fs_info->commit_root_sem);
1386 ret = extent_from_logical(fs_info, disk_byte, tmp_path,
1387 &found_key, &flags);
1388 up_read(&fs_info->commit_root_sem);
1392 if (flags & BTRFS_EXTENT_FLAG_TREE_BLOCK) {
1397 ei = btrfs_item_ptr(tmp_path->nodes[0], tmp_path->slots[0],
1398 struct btrfs_extent_item);
1400 * Backreference walking (iterate_extent_inodes() below) is currently
1401 * too expensive when an extent has a large number of references, both
1402 * in time spent and used memory. So for now just fallback to write
1403 * operations instead of clone operations when an extent has more than
1404 * a certain amount of references.
1406 if (btrfs_extent_refs(tmp_path->nodes[0], ei) > SEND_MAX_EXTENT_REFS) {
1410 btrfs_release_path(tmp_path);
1413 * Setup the clone roots.
1415 for (i = 0; i < sctx->clone_roots_cnt; i++) {
1416 cur_clone_root = sctx->clone_roots + i;
1417 cur_clone_root->ino = (u64)-1;
1418 cur_clone_root->offset = 0;
1419 cur_clone_root->found_refs = 0;
1422 backref_ctx->sctx = sctx;
1423 backref_ctx->found = 0;
1424 backref_ctx->cur_objectid = ino;
1425 backref_ctx->cur_offset = data_offset;
1426 backref_ctx->found_itself = 0;
1427 backref_ctx->extent_len = num_bytes;
1429 * For non-compressed extents iterate_extent_inodes() gives us extent
1430 * offsets that already take into account the data offset, but not for
1431 * compressed extents, since the offset is logical and not relative to
1432 * the physical extent locations. We must take this into account to
1433 * avoid sending clone offsets that go beyond the source file's size,
1434 * which would result in the clone ioctl failing with -EINVAL on the
1437 if (compressed == BTRFS_COMPRESS_NONE)
1438 backref_ctx->data_offset = 0;
1440 backref_ctx->data_offset = btrfs_file_extent_offset(eb, fi);
1443 * The last extent of a file may be too large due to page alignment.
1444 * We need to adjust extent_len in this case so that the checks in
1445 * __iterate_backrefs work.
1447 if (data_offset + num_bytes >= ino_size)
1448 backref_ctx->extent_len = ino_size - data_offset;
1451 * Now collect all backrefs.
1453 if (compressed == BTRFS_COMPRESS_NONE)
1454 extent_item_pos = logical - found_key.objectid;
1456 extent_item_pos = 0;
1457 ret = iterate_extent_inodes(fs_info,
1458 found_key.objectid, extent_item_pos, 1,
1459 __iterate_backrefs, backref_ctx);
1464 if (!backref_ctx->found_itself) {
1465 /* found a bug in backref code? */
1468 "did not find backref in send_root. inode=%llu, offset=%llu, disk_byte=%llu found extent=%llu",
1469 ino, data_offset, disk_byte, found_key.objectid);
1473 btrfs_debug(fs_info,
1474 "find_extent_clone: data_offset=%llu, ino=%llu, num_bytes=%llu, logical=%llu",
1475 data_offset, ino, num_bytes, logical);
1477 if (!backref_ctx->found)
1478 btrfs_debug(fs_info, "no clones found");
1480 cur_clone_root = NULL;
1481 for (i = 0; i < sctx->clone_roots_cnt; i++) {
1482 if (sctx->clone_roots[i].found_refs) {
1483 if (!cur_clone_root)
1484 cur_clone_root = sctx->clone_roots + i;
1485 else if (sctx->clone_roots[i].root == sctx->send_root)
1486 /* prefer clones from send_root over others */
1487 cur_clone_root = sctx->clone_roots + i;
1492 if (cur_clone_root) {
1493 *found = cur_clone_root;
1500 btrfs_free_path(tmp_path);
1505 static int read_symlink(struct btrfs_root *root,
1507 struct fs_path *dest)
1510 struct btrfs_path *path;
1511 struct btrfs_key key;
1512 struct btrfs_file_extent_item *ei;
1518 path = alloc_path_for_send();
1523 key.type = BTRFS_EXTENT_DATA_KEY;
1525 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
1530 * An empty symlink inode. Can happen in rare error paths when
1531 * creating a symlink (transaction committed before the inode
1532 * eviction handler removed the symlink inode items and a crash
1533 * happened in between or the subvol was snapshoted in between).
1534 * Print an informative message to dmesg/syslog so that the user
1535 * can delete the symlink.
1537 btrfs_err(root->fs_info,
1538 "Found empty symlink inode %llu at root %llu",
1539 ino, root->root_key.objectid);
1544 ei = btrfs_item_ptr(path->nodes[0], path->slots[0],
1545 struct btrfs_file_extent_item);
1546 type = btrfs_file_extent_type(path->nodes[0], ei);
1547 compression = btrfs_file_extent_compression(path->nodes[0], ei);
1548 BUG_ON(type != BTRFS_FILE_EXTENT_INLINE);
1549 BUG_ON(compression);
1551 off = btrfs_file_extent_inline_start(ei);
1552 len = btrfs_file_extent_inline_len(path->nodes[0], path->slots[0], ei);
1554 ret = fs_path_add_from_extent_buffer(dest, path->nodes[0], off, len);
1557 btrfs_free_path(path);
1562 * Helper function to generate a file name that is unique in the root of
1563 * send_root and parent_root. This is used to generate names for orphan inodes.
1565 static int gen_unique_name(struct send_ctx *sctx,
1567 struct fs_path *dest)
1570 struct btrfs_path *path;
1571 struct btrfs_dir_item *di;
1576 path = alloc_path_for_send();
1581 len = snprintf(tmp, sizeof(tmp), "o%llu-%llu-%llu",
1583 ASSERT(len < sizeof(tmp));
1585 di = btrfs_lookup_dir_item(NULL, sctx->send_root,
1586 path, BTRFS_FIRST_FREE_OBJECTID,
1587 tmp, strlen(tmp), 0);
1588 btrfs_release_path(path);
1594 /* not unique, try again */
1599 if (!sctx->parent_root) {
1605 di = btrfs_lookup_dir_item(NULL, sctx->parent_root,
1606 path, BTRFS_FIRST_FREE_OBJECTID,
1607 tmp, strlen(tmp), 0);
1608 btrfs_release_path(path);
1614 /* not unique, try again */
1622 ret = fs_path_add(dest, tmp, strlen(tmp));
1625 btrfs_free_path(path);
1630 inode_state_no_change,
1631 inode_state_will_create,
1632 inode_state_did_create,
1633 inode_state_will_delete,
1634 inode_state_did_delete,
1637 static int get_cur_inode_state(struct send_ctx *sctx, u64 ino, u64 gen)
1645 ret = get_inode_info(sctx->send_root, ino, NULL, &left_gen, NULL, NULL,
1647 if (ret < 0 && ret != -ENOENT)
1651 if (!sctx->parent_root) {
1652 right_ret = -ENOENT;
1654 ret = get_inode_info(sctx->parent_root, ino, NULL, &right_gen,
1655 NULL, NULL, NULL, NULL);
1656 if (ret < 0 && ret != -ENOENT)
1661 if (!left_ret && !right_ret) {
1662 if (left_gen == gen && right_gen == gen) {
1663 ret = inode_state_no_change;
1664 } else if (left_gen == gen) {
1665 if (ino < sctx->send_progress)
1666 ret = inode_state_did_create;
1668 ret = inode_state_will_create;
1669 } else if (right_gen == gen) {
1670 if (ino < sctx->send_progress)
1671 ret = inode_state_did_delete;
1673 ret = inode_state_will_delete;
1677 } else if (!left_ret) {
1678 if (left_gen == gen) {
1679 if (ino < sctx->send_progress)
1680 ret = inode_state_did_create;
1682 ret = inode_state_will_create;
1686 } else if (!right_ret) {
1687 if (right_gen == gen) {
1688 if (ino < sctx->send_progress)
1689 ret = inode_state_did_delete;
1691 ret = inode_state_will_delete;
1703 static int is_inode_existent(struct send_ctx *sctx, u64 ino, u64 gen)
1707 if (ino == BTRFS_FIRST_FREE_OBJECTID)
1710 ret = get_cur_inode_state(sctx, ino, gen);
1714 if (ret == inode_state_no_change ||
1715 ret == inode_state_did_create ||
1716 ret == inode_state_will_delete)
1726 * Helper function to lookup a dir item in a dir.
1728 static int lookup_dir_item_inode(struct btrfs_root *root,
1729 u64 dir, const char *name, int name_len,
1734 struct btrfs_dir_item *di;
1735 struct btrfs_key key;
1736 struct btrfs_path *path;
1738 path = alloc_path_for_send();
1742 di = btrfs_lookup_dir_item(NULL, root, path,
1743 dir, name, name_len, 0);
1752 btrfs_dir_item_key_to_cpu(path->nodes[0], di, &key);
1753 if (key.type == BTRFS_ROOT_ITEM_KEY) {
1757 *found_inode = key.objectid;
1758 *found_type = btrfs_dir_type(path->nodes[0], di);
1761 btrfs_free_path(path);
1766 * Looks up the first btrfs_inode_ref of a given ino. It returns the parent dir,
1767 * generation of the parent dir and the name of the dir entry.
1769 static int get_first_ref(struct btrfs_root *root, u64 ino,
1770 u64 *dir, u64 *dir_gen, struct fs_path *name)
1773 struct btrfs_key key;
1774 struct btrfs_key found_key;
1775 struct btrfs_path *path;
1779 path = alloc_path_for_send();
1784 key.type = BTRFS_INODE_REF_KEY;
1787 ret = btrfs_search_slot_for_read(root, &key, path, 1, 0);
1791 btrfs_item_key_to_cpu(path->nodes[0], &found_key,
1793 if (ret || found_key.objectid != ino ||
1794 (found_key.type != BTRFS_INODE_REF_KEY &&
1795 found_key.type != BTRFS_INODE_EXTREF_KEY)) {
1800 if (found_key.type == BTRFS_INODE_REF_KEY) {
1801 struct btrfs_inode_ref *iref;
1802 iref = btrfs_item_ptr(path->nodes[0], path->slots[0],
1803 struct btrfs_inode_ref);
1804 len = btrfs_inode_ref_name_len(path->nodes[0], iref);
1805 ret = fs_path_add_from_extent_buffer(name, path->nodes[0],
1806 (unsigned long)(iref + 1),
1808 parent_dir = found_key.offset;
1810 struct btrfs_inode_extref *extref;
1811 extref = btrfs_item_ptr(path->nodes[0], path->slots[0],
1812 struct btrfs_inode_extref);
1813 len = btrfs_inode_extref_name_len(path->nodes[0], extref);
1814 ret = fs_path_add_from_extent_buffer(name, path->nodes[0],
1815 (unsigned long)&extref->name, len);
1816 parent_dir = btrfs_inode_extref_parent(path->nodes[0], extref);
1820 btrfs_release_path(path);
1823 ret = get_inode_info(root, parent_dir, NULL, dir_gen, NULL,
1832 btrfs_free_path(path);
1836 static int is_first_ref(struct btrfs_root *root,
1838 const char *name, int name_len)
1841 struct fs_path *tmp_name;
1844 tmp_name = fs_path_alloc();
1848 ret = get_first_ref(root, ino, &tmp_dir, NULL, tmp_name);
1852 if (dir != tmp_dir || name_len != fs_path_len(tmp_name)) {
1857 ret = !memcmp(tmp_name->start, name, name_len);
1860 fs_path_free(tmp_name);
1865 * Used by process_recorded_refs to determine if a new ref would overwrite an
1866 * already existing ref. In case it detects an overwrite, it returns the
1867 * inode/gen in who_ino/who_gen.
1868 * When an overwrite is detected, process_recorded_refs does proper orphanizing
1869 * to make sure later references to the overwritten inode are possible.
1870 * Orphanizing is however only required for the first ref of an inode.
1871 * process_recorded_refs does an additional is_first_ref check to see if
1872 * orphanizing is really required.
1874 static int will_overwrite_ref(struct send_ctx *sctx, u64 dir, u64 dir_gen,
1875 const char *name, int name_len,
1876 u64 *who_ino, u64 *who_gen)
1880 u64 other_inode = 0;
1883 if (!sctx->parent_root)
1886 ret = is_inode_existent(sctx, dir, dir_gen);
1891 * If we have a parent root we need to verify that the parent dir was
1892 * not deleted and then re-created, if it was then we have no overwrite
1893 * and we can just unlink this entry.
1895 if (sctx->parent_root && dir != BTRFS_FIRST_FREE_OBJECTID) {
1896 ret = get_inode_info(sctx->parent_root, dir, NULL, &gen, NULL,
1898 if (ret < 0 && ret != -ENOENT)
1908 ret = lookup_dir_item_inode(sctx->parent_root, dir, name, name_len,
1909 &other_inode, &other_type);
1910 if (ret < 0 && ret != -ENOENT)
1918 * Check if the overwritten ref was already processed. If yes, the ref
1919 * was already unlinked/moved, so we can safely assume that we will not
1920 * overwrite anything at this point in time.
1922 if (other_inode > sctx->send_progress ||
1923 is_waiting_for_move(sctx, other_inode)) {
1924 ret = get_inode_info(sctx->parent_root, other_inode, NULL,
1925 who_gen, NULL, NULL, NULL, NULL);
1930 *who_ino = other_inode;
1940 * Checks if the ref was overwritten by an already processed inode. This is
1941 * used by __get_cur_name_and_parent to find out if the ref was orphanized and
1942 * thus the orphan name needs be used.
1943 * process_recorded_refs also uses it to avoid unlinking of refs that were
1946 static int did_overwrite_ref(struct send_ctx *sctx,
1947 u64 dir, u64 dir_gen,
1948 u64 ino, u64 ino_gen,
1949 const char *name, int name_len)
1956 if (!sctx->parent_root)
1959 ret = is_inode_existent(sctx, dir, dir_gen);
1963 /* check if the ref was overwritten by another ref */
1964 ret = lookup_dir_item_inode(sctx->send_root, dir, name, name_len,
1965 &ow_inode, &other_type);
1966 if (ret < 0 && ret != -ENOENT)
1969 /* was never and will never be overwritten */
1974 ret = get_inode_info(sctx->send_root, ow_inode, NULL, &gen, NULL, NULL,
1979 if (ow_inode == ino && gen == ino_gen) {
1985 * We know that it is or will be overwritten. Check this now.
1986 * The current inode being processed might have been the one that caused
1987 * inode 'ino' to be orphanized, therefore check if ow_inode matches
1988 * the current inode being processed.
1990 if ((ow_inode < sctx->send_progress) ||
1991 (ino != sctx->cur_ino && ow_inode == sctx->cur_ino &&
1992 gen == sctx->cur_inode_gen))
2002 * Same as did_overwrite_ref, but also checks if it is the first ref of an inode
2003 * that got overwritten. This is used by process_recorded_refs to determine
2004 * if it has to use the path as returned by get_cur_path or the orphan name.
2006 static int did_overwrite_first_ref(struct send_ctx *sctx, u64 ino, u64 gen)
2009 struct fs_path *name = NULL;
2013 if (!sctx->parent_root)
2016 name = fs_path_alloc();
2020 ret = get_first_ref(sctx->parent_root, ino, &dir, &dir_gen, name);
2024 ret = did_overwrite_ref(sctx, dir, dir_gen, ino, gen,
2025 name->start, fs_path_len(name));
2033 * Insert a name cache entry. On 32bit kernels the radix tree index is 32bit,
2034 * so we need to do some special handling in case we have clashes. This function
2035 * takes care of this with the help of name_cache_entry::radix_list.
2036 * In case of error, nce is kfreed.
2038 static int name_cache_insert(struct send_ctx *sctx,
2039 struct name_cache_entry *nce)
2042 struct list_head *nce_head;
2044 nce_head = radix_tree_lookup(&sctx->name_cache,
2045 (unsigned long)nce->ino);
2047 nce_head = kmalloc(sizeof(*nce_head), GFP_KERNEL);
2052 INIT_LIST_HEAD(nce_head);
2054 ret = radix_tree_insert(&sctx->name_cache, nce->ino, nce_head);
2061 list_add_tail(&nce->radix_list, nce_head);
2062 list_add_tail(&nce->list, &sctx->name_cache_list);
2063 sctx->name_cache_size++;
2068 static void name_cache_delete(struct send_ctx *sctx,
2069 struct name_cache_entry *nce)
2071 struct list_head *nce_head;
2073 nce_head = radix_tree_lookup(&sctx->name_cache,
2074 (unsigned long)nce->ino);
2076 btrfs_err(sctx->send_root->fs_info,
2077 "name_cache_delete lookup failed ino %llu cache size %d, leaking memory",
2078 nce->ino, sctx->name_cache_size);
2081 list_del(&nce->radix_list);
2082 list_del(&nce->list);
2083 sctx->name_cache_size--;
2086 * We may not get to the final release of nce_head if the lookup fails
2088 if (nce_head && list_empty(nce_head)) {
2089 radix_tree_delete(&sctx->name_cache, (unsigned long)nce->ino);
2094 static struct name_cache_entry *name_cache_search(struct send_ctx *sctx,
2097 struct list_head *nce_head;
2098 struct name_cache_entry *cur;
2100 nce_head = radix_tree_lookup(&sctx->name_cache, (unsigned long)ino);
2104 list_for_each_entry(cur, nce_head, radix_list) {
2105 if (cur->ino == ino && cur->gen == gen)
2112 * Removes the entry from the list and adds it back to the end. This marks the
2113 * entry as recently used so that name_cache_clean_unused does not remove it.
2115 static void name_cache_used(struct send_ctx *sctx, struct name_cache_entry *nce)
2117 list_del(&nce->list);
2118 list_add_tail(&nce->list, &sctx->name_cache_list);
2122 * Remove some entries from the beginning of name_cache_list.
2124 static void name_cache_clean_unused(struct send_ctx *sctx)
2126 struct name_cache_entry *nce;
2128 if (sctx->name_cache_size < SEND_CTX_NAME_CACHE_CLEAN_SIZE)
2131 while (sctx->name_cache_size > SEND_CTX_MAX_NAME_CACHE_SIZE) {
2132 nce = list_entry(sctx->name_cache_list.next,
2133 struct name_cache_entry, list);
2134 name_cache_delete(sctx, nce);
2139 static void name_cache_free(struct send_ctx *sctx)
2141 struct name_cache_entry *nce;
2143 while (!list_empty(&sctx->name_cache_list)) {
2144 nce = list_entry(sctx->name_cache_list.next,
2145 struct name_cache_entry, list);
2146 name_cache_delete(sctx, nce);
2152 * Used by get_cur_path for each ref up to the root.
2153 * Returns 0 if it succeeded.
2154 * Returns 1 if the inode is not existent or got overwritten. In that case, the
2155 * name is an orphan name. This instructs get_cur_path to stop iterating. If 1
2156 * is returned, parent_ino/parent_gen are not guaranteed to be valid.
2157 * Returns <0 in case of error.
2159 static int __get_cur_name_and_parent(struct send_ctx *sctx,
2163 struct fs_path *dest)
2167 struct name_cache_entry *nce = NULL;
2170 * First check if we already did a call to this function with the same
2171 * ino/gen. If yes, check if the cache entry is still up-to-date. If yes
2172 * return the cached result.
2174 nce = name_cache_search(sctx, ino, gen);
2176 if (ino < sctx->send_progress && nce->need_later_update) {
2177 name_cache_delete(sctx, nce);
2181 name_cache_used(sctx, nce);
2182 *parent_ino = nce->parent_ino;
2183 *parent_gen = nce->parent_gen;
2184 ret = fs_path_add(dest, nce->name, nce->name_len);
2193 * If the inode is not existent yet, add the orphan name and return 1.
2194 * This should only happen for the parent dir that we determine in
2197 ret = is_inode_existent(sctx, ino, gen);
2202 ret = gen_unique_name(sctx, ino, gen, dest);
2210 * Depending on whether the inode was already processed or not, use
2211 * send_root or parent_root for ref lookup.
2213 if (ino < sctx->send_progress)
2214 ret = get_first_ref(sctx->send_root, ino,
2215 parent_ino, parent_gen, dest);
2217 ret = get_first_ref(sctx->parent_root, ino,
2218 parent_ino, parent_gen, dest);
2223 * Check if the ref was overwritten by an inode's ref that was processed
2224 * earlier. If yes, treat as orphan and return 1.
2226 ret = did_overwrite_ref(sctx, *parent_ino, *parent_gen, ino, gen,
2227 dest->start, dest->end - dest->start);
2231 fs_path_reset(dest);
2232 ret = gen_unique_name(sctx, ino, gen, dest);
2240 * Store the result of the lookup in the name cache.
2242 nce = kmalloc(sizeof(*nce) + fs_path_len(dest) + 1, GFP_KERNEL);
2250 nce->parent_ino = *parent_ino;
2251 nce->parent_gen = *parent_gen;
2252 nce->name_len = fs_path_len(dest);
2254 strcpy(nce->name, dest->start);
2256 if (ino < sctx->send_progress)
2257 nce->need_later_update = 0;
2259 nce->need_later_update = 1;
2261 nce_ret = name_cache_insert(sctx, nce);
2264 name_cache_clean_unused(sctx);
2271 * Magic happens here. This function returns the first ref to an inode as it
2272 * would look like while receiving the stream at this point in time.
2273 * We walk the path up to the root. For every inode in between, we check if it
2274 * was already processed/sent. If yes, we continue with the parent as found
2275 * in send_root. If not, we continue with the parent as found in parent_root.
2276 * If we encounter an inode that was deleted at this point in time, we use the
2277 * inodes "orphan" name instead of the real name and stop. Same with new inodes
2278 * that were not created yet and overwritten inodes/refs.
2280 * When do we have have orphan inodes:
2281 * 1. When an inode is freshly created and thus no valid refs are available yet
2282 * 2. When a directory lost all it's refs (deleted) but still has dir items
2283 * inside which were not processed yet (pending for move/delete). If anyone
2284 * tried to get the path to the dir items, it would get a path inside that
2286 * 3. When an inode is moved around or gets new links, it may overwrite the ref
2287 * of an unprocessed inode. If in that case the first ref would be
2288 * overwritten, the overwritten inode gets "orphanized". Later when we
2289 * process this overwritten inode, it is restored at a new place by moving
2292 * sctx->send_progress tells this function at which point in time receiving
2295 static int get_cur_path(struct send_ctx *sctx, u64 ino, u64 gen,
2296 struct fs_path *dest)
2299 struct fs_path *name = NULL;
2300 u64 parent_inode = 0;
2304 name = fs_path_alloc();
2311 fs_path_reset(dest);
2313 while (!stop && ino != BTRFS_FIRST_FREE_OBJECTID) {
2314 struct waiting_dir_move *wdm;
2316 fs_path_reset(name);
2318 if (is_waiting_for_rm(sctx, ino)) {
2319 ret = gen_unique_name(sctx, ino, gen, name);
2322 ret = fs_path_add_path(dest, name);
2326 wdm = get_waiting_dir_move(sctx, ino);
2327 if (wdm && wdm->orphanized) {
2328 ret = gen_unique_name(sctx, ino, gen, name);
2331 ret = get_first_ref(sctx->parent_root, ino,
2332 &parent_inode, &parent_gen, name);
2334 ret = __get_cur_name_and_parent(sctx, ino, gen,
2344 ret = fs_path_add_path(dest, name);
2355 fs_path_unreverse(dest);
2360 * Sends a BTRFS_SEND_C_SUBVOL command/item to userspace
2362 static int send_subvol_begin(struct send_ctx *sctx)
2365 struct btrfs_root *send_root = sctx->send_root;
2366 struct btrfs_root *parent_root = sctx->parent_root;
2367 struct btrfs_path *path;
2368 struct btrfs_key key;
2369 struct btrfs_root_ref *ref;
2370 struct extent_buffer *leaf;
2374 path = btrfs_alloc_path();
2378 name = kmalloc(BTRFS_PATH_NAME_MAX, GFP_KERNEL);
2380 btrfs_free_path(path);
2384 key.objectid = send_root->objectid;
2385 key.type = BTRFS_ROOT_BACKREF_KEY;
2388 ret = btrfs_search_slot_for_read(send_root->fs_info->tree_root,
2397 leaf = path->nodes[0];
2398 btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
2399 if (key.type != BTRFS_ROOT_BACKREF_KEY ||
2400 key.objectid != send_root->objectid) {
2404 ref = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_root_ref);
2405 namelen = btrfs_root_ref_name_len(leaf, ref);
2406 read_extent_buffer(leaf, name, (unsigned long)(ref + 1), namelen);
2407 btrfs_release_path(path);
2410 ret = begin_cmd(sctx, BTRFS_SEND_C_SNAPSHOT);
2414 ret = begin_cmd(sctx, BTRFS_SEND_C_SUBVOL);
2419 TLV_PUT_STRING(sctx, BTRFS_SEND_A_PATH, name, namelen);
2421 if (!btrfs_is_empty_uuid(sctx->send_root->root_item.received_uuid))
2422 TLV_PUT_UUID(sctx, BTRFS_SEND_A_UUID,
2423 sctx->send_root->root_item.received_uuid);
2425 TLV_PUT_UUID(sctx, BTRFS_SEND_A_UUID,
2426 sctx->send_root->root_item.uuid);
2428 TLV_PUT_U64(sctx, BTRFS_SEND_A_CTRANSID,
2429 le64_to_cpu(sctx->send_root->root_item.ctransid));
2431 if (!btrfs_is_empty_uuid(parent_root->root_item.received_uuid))
2432 TLV_PUT_UUID(sctx, BTRFS_SEND_A_CLONE_UUID,
2433 parent_root->root_item.received_uuid);
2435 TLV_PUT_UUID(sctx, BTRFS_SEND_A_CLONE_UUID,
2436 parent_root->root_item.uuid);
2437 TLV_PUT_U64(sctx, BTRFS_SEND_A_CLONE_CTRANSID,
2438 le64_to_cpu(sctx->parent_root->root_item.ctransid));
2441 ret = send_cmd(sctx);
2445 btrfs_free_path(path);
2450 static int send_truncate(struct send_ctx *sctx, u64 ino, u64 gen, u64 size)
2452 struct btrfs_fs_info *fs_info = sctx->send_root->fs_info;
2456 btrfs_debug(fs_info, "send_truncate %llu size=%llu", ino, size);
2458 p = fs_path_alloc();
2462 ret = begin_cmd(sctx, BTRFS_SEND_C_TRUNCATE);
2466 ret = get_cur_path(sctx, ino, gen, p);
2469 TLV_PUT_PATH(sctx, BTRFS_SEND_A_PATH, p);
2470 TLV_PUT_U64(sctx, BTRFS_SEND_A_SIZE, size);
2472 ret = send_cmd(sctx);
2480 static int send_chmod(struct send_ctx *sctx, u64 ino, u64 gen, u64 mode)
2482 struct btrfs_fs_info *fs_info = sctx->send_root->fs_info;
2486 btrfs_debug(fs_info, "send_chmod %llu mode=%llu", ino, mode);
2488 p = fs_path_alloc();
2492 ret = begin_cmd(sctx, BTRFS_SEND_C_CHMOD);
2496 ret = get_cur_path(sctx, ino, gen, p);
2499 TLV_PUT_PATH(sctx, BTRFS_SEND_A_PATH, p);
2500 TLV_PUT_U64(sctx, BTRFS_SEND_A_MODE, mode & 07777);
2502 ret = send_cmd(sctx);
2510 static int send_chown(struct send_ctx *sctx, u64 ino, u64 gen, u64 uid, u64 gid)
2512 struct btrfs_fs_info *fs_info = sctx->send_root->fs_info;
2516 btrfs_debug(fs_info, "send_chown %llu uid=%llu, gid=%llu",
2519 p = fs_path_alloc();
2523 ret = begin_cmd(sctx, BTRFS_SEND_C_CHOWN);
2527 ret = get_cur_path(sctx, ino, gen, p);
2530 TLV_PUT_PATH(sctx, BTRFS_SEND_A_PATH, p);
2531 TLV_PUT_U64(sctx, BTRFS_SEND_A_UID, uid);
2532 TLV_PUT_U64(sctx, BTRFS_SEND_A_GID, gid);
2534 ret = send_cmd(sctx);
2542 static int send_utimes(struct send_ctx *sctx, u64 ino, u64 gen)
2544 struct btrfs_fs_info *fs_info = sctx->send_root->fs_info;
2546 struct fs_path *p = NULL;
2547 struct btrfs_inode_item *ii;
2548 struct btrfs_path *path = NULL;
2549 struct extent_buffer *eb;
2550 struct btrfs_key key;
2553 btrfs_debug(fs_info, "send_utimes %llu", ino);
2555 p = fs_path_alloc();
2559 path = alloc_path_for_send();
2566 key.type = BTRFS_INODE_ITEM_KEY;
2568 ret = btrfs_search_slot(NULL, sctx->send_root, &key, path, 0, 0);
2574 eb = path->nodes[0];
2575 slot = path->slots[0];
2576 ii = btrfs_item_ptr(eb, slot, struct btrfs_inode_item);
2578 ret = begin_cmd(sctx, BTRFS_SEND_C_UTIMES);
2582 ret = get_cur_path(sctx, ino, gen, p);
2585 TLV_PUT_PATH(sctx, BTRFS_SEND_A_PATH, p);
2586 TLV_PUT_BTRFS_TIMESPEC(sctx, BTRFS_SEND_A_ATIME, eb, &ii->atime);
2587 TLV_PUT_BTRFS_TIMESPEC(sctx, BTRFS_SEND_A_MTIME, eb, &ii->mtime);
2588 TLV_PUT_BTRFS_TIMESPEC(sctx, BTRFS_SEND_A_CTIME, eb, &ii->ctime);
2589 /* TODO Add otime support when the otime patches get into upstream */
2591 ret = send_cmd(sctx);
2596 btrfs_free_path(path);
2601 * Sends a BTRFS_SEND_C_MKXXX or SYMLINK command to user space. We don't have
2602 * a valid path yet because we did not process the refs yet. So, the inode
2603 * is created as orphan.
2605 static int send_create_inode(struct send_ctx *sctx, u64 ino)
2607 struct btrfs_fs_info *fs_info = sctx->send_root->fs_info;
2615 btrfs_debug(fs_info, "send_create_inode %llu", ino);
2617 p = fs_path_alloc();
2621 if (ino != sctx->cur_ino) {
2622 ret = get_inode_info(sctx->send_root, ino, NULL, &gen, &mode,
2627 gen = sctx->cur_inode_gen;
2628 mode = sctx->cur_inode_mode;
2629 rdev = sctx->cur_inode_rdev;
2632 if (S_ISREG(mode)) {
2633 cmd = BTRFS_SEND_C_MKFILE;
2634 } else if (S_ISDIR(mode)) {
2635 cmd = BTRFS_SEND_C_MKDIR;
2636 } else if (S_ISLNK(mode)) {
2637 cmd = BTRFS_SEND_C_SYMLINK;
2638 } else if (S_ISCHR(mode) || S_ISBLK(mode)) {
2639 cmd = BTRFS_SEND_C_MKNOD;
2640 } else if (S_ISFIFO(mode)) {
2641 cmd = BTRFS_SEND_C_MKFIFO;
2642 } else if (S_ISSOCK(mode)) {
2643 cmd = BTRFS_SEND_C_MKSOCK;
2645 btrfs_warn(sctx->send_root->fs_info, "unexpected inode type %o",
2646 (int)(mode & S_IFMT));
2651 ret = begin_cmd(sctx, cmd);
2655 ret = gen_unique_name(sctx, ino, gen, p);
2659 TLV_PUT_PATH(sctx, BTRFS_SEND_A_PATH, p);
2660 TLV_PUT_U64(sctx, BTRFS_SEND_A_INO, ino);
2662 if (S_ISLNK(mode)) {
2664 ret = read_symlink(sctx->send_root, ino, p);
2667 TLV_PUT_PATH(sctx, BTRFS_SEND_A_PATH_LINK, p);
2668 } else if (S_ISCHR(mode) || S_ISBLK(mode) ||
2669 S_ISFIFO(mode) || S_ISSOCK(mode)) {
2670 TLV_PUT_U64(sctx, BTRFS_SEND_A_RDEV, new_encode_dev(rdev));
2671 TLV_PUT_U64(sctx, BTRFS_SEND_A_MODE, mode);
2674 ret = send_cmd(sctx);
2686 * We need some special handling for inodes that get processed before the parent
2687 * directory got created. See process_recorded_refs for details.
2688 * This function does the check if we already created the dir out of order.
2690 static int did_create_dir(struct send_ctx *sctx, u64 dir)
2693 struct btrfs_path *path = NULL;
2694 struct btrfs_key key;
2695 struct btrfs_key found_key;
2696 struct btrfs_key di_key;
2697 struct extent_buffer *eb;
2698 struct btrfs_dir_item *di;
2701 path = alloc_path_for_send();
2708 key.type = BTRFS_DIR_INDEX_KEY;
2710 ret = btrfs_search_slot(NULL, sctx->send_root, &key, path, 0, 0);
2715 eb = path->nodes[0];
2716 slot = path->slots[0];
2717 if (slot >= btrfs_header_nritems(eb)) {
2718 ret = btrfs_next_leaf(sctx->send_root, path);
2721 } else if (ret > 0) {
2728 btrfs_item_key_to_cpu(eb, &found_key, slot);
2729 if (found_key.objectid != key.objectid ||
2730 found_key.type != key.type) {
2735 di = btrfs_item_ptr(eb, slot, struct btrfs_dir_item);
2736 btrfs_dir_item_key_to_cpu(eb, di, &di_key);
2738 if (di_key.type != BTRFS_ROOT_ITEM_KEY &&
2739 di_key.objectid < sctx->send_progress) {
2748 btrfs_free_path(path);
2753 * Only creates the inode if it is:
2754 * 1. Not a directory
2755 * 2. Or a directory which was not created already due to out of order
2756 * directories. See did_create_dir and process_recorded_refs for details.
2758 static int send_create_inode_if_needed(struct send_ctx *sctx)
2762 if (S_ISDIR(sctx->cur_inode_mode)) {
2763 ret = did_create_dir(sctx, sctx->cur_ino);
2772 ret = send_create_inode(sctx, sctx->cur_ino);
2780 struct recorded_ref {
2781 struct list_head list;
2784 struct fs_path *full_path;
2792 * We need to process new refs before deleted refs, but compare_tree gives us
2793 * everything mixed. So we first record all refs and later process them.
2794 * This function is a helper to record one ref.
2796 static int __record_ref(struct list_head *head, u64 dir,
2797 u64 dir_gen, struct fs_path *path)
2799 struct recorded_ref *ref;
2801 ref = kmalloc(sizeof(*ref), GFP_KERNEL);
2806 ref->dir_gen = dir_gen;
2807 ref->full_path = path;
2809 ref->name = (char *)kbasename(ref->full_path->start);
2810 ref->name_len = ref->full_path->end - ref->name;
2811 ref->dir_path = ref->full_path->start;
2812 if (ref->name == ref->full_path->start)
2813 ref->dir_path_len = 0;
2815 ref->dir_path_len = ref->full_path->end -
2816 ref->full_path->start - 1 - ref->name_len;
2818 list_add_tail(&ref->list, head);
2822 static int dup_ref(struct recorded_ref *ref, struct list_head *list)
2824 struct recorded_ref *new;
2826 new = kmalloc(sizeof(*ref), GFP_KERNEL);
2830 new->dir = ref->dir;
2831 new->dir_gen = ref->dir_gen;
2832 new->full_path = NULL;
2833 INIT_LIST_HEAD(&new->list);
2834 list_add_tail(&new->list, list);
2838 static void __free_recorded_refs(struct list_head *head)
2840 struct recorded_ref *cur;
2842 while (!list_empty(head)) {
2843 cur = list_entry(head->next, struct recorded_ref, list);
2844 fs_path_free(cur->full_path);
2845 list_del(&cur->list);
2850 static void free_recorded_refs(struct send_ctx *sctx)
2852 __free_recorded_refs(&sctx->new_refs);
2853 __free_recorded_refs(&sctx->deleted_refs);
2857 * Renames/moves a file/dir to its orphan name. Used when the first
2858 * ref of an unprocessed inode gets overwritten and for all non empty
2861 static int orphanize_inode(struct send_ctx *sctx, u64 ino, u64 gen,
2862 struct fs_path *path)
2865 struct fs_path *orphan;
2867 orphan = fs_path_alloc();
2871 ret = gen_unique_name(sctx, ino, gen, orphan);
2875 ret = send_rename(sctx, path, orphan);
2878 fs_path_free(orphan);
2882 static struct orphan_dir_info *
2883 add_orphan_dir_info(struct send_ctx *sctx, u64 dir_ino)
2885 struct rb_node **p = &sctx->orphan_dirs.rb_node;
2886 struct rb_node *parent = NULL;
2887 struct orphan_dir_info *entry, *odi;
2889 odi = kmalloc(sizeof(*odi), GFP_KERNEL);
2891 return ERR_PTR(-ENOMEM);
2897 entry = rb_entry(parent, struct orphan_dir_info, node);
2898 if (dir_ino < entry->ino) {
2900 } else if (dir_ino > entry->ino) {
2901 p = &(*p)->rb_right;
2908 rb_link_node(&odi->node, parent, p);
2909 rb_insert_color(&odi->node, &sctx->orphan_dirs);
2913 static struct orphan_dir_info *
2914 get_orphan_dir_info(struct send_ctx *sctx, u64 dir_ino)
2916 struct rb_node *n = sctx->orphan_dirs.rb_node;
2917 struct orphan_dir_info *entry;
2920 entry = rb_entry(n, struct orphan_dir_info, node);
2921 if (dir_ino < entry->ino)
2923 else if (dir_ino > entry->ino)
2931 static int is_waiting_for_rm(struct send_ctx *sctx, u64 dir_ino)
2933 struct orphan_dir_info *odi = get_orphan_dir_info(sctx, dir_ino);
2938 static void free_orphan_dir_info(struct send_ctx *sctx,
2939 struct orphan_dir_info *odi)
2943 rb_erase(&odi->node, &sctx->orphan_dirs);
2948 * Returns 1 if a directory can be removed at this point in time.
2949 * We check this by iterating all dir items and checking if the inode behind
2950 * the dir item was already processed.
2952 static int can_rmdir(struct send_ctx *sctx, u64 dir, u64 dir_gen,
2956 struct btrfs_root *root = sctx->parent_root;
2957 struct btrfs_path *path;
2958 struct btrfs_key key;
2959 struct btrfs_key found_key;
2960 struct btrfs_key loc;
2961 struct btrfs_dir_item *di;
2964 * Don't try to rmdir the top/root subvolume dir.
2966 if (dir == BTRFS_FIRST_FREE_OBJECTID)
2969 path = alloc_path_for_send();
2974 key.type = BTRFS_DIR_INDEX_KEY;
2976 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
2981 struct waiting_dir_move *dm;
2983 if (path->slots[0] >= btrfs_header_nritems(path->nodes[0])) {
2984 ret = btrfs_next_leaf(root, path);
2991 btrfs_item_key_to_cpu(path->nodes[0], &found_key,
2993 if (found_key.objectid != key.objectid ||
2994 found_key.type != key.type)
2997 di = btrfs_item_ptr(path->nodes[0], path->slots[0],
2998 struct btrfs_dir_item);
2999 btrfs_dir_item_key_to_cpu(path->nodes[0], di, &loc);
3001 dm = get_waiting_dir_move(sctx, loc.objectid);
3003 struct orphan_dir_info *odi;
3005 odi = add_orphan_dir_info(sctx, dir);
3011 dm->rmdir_ino = dir;
3016 if (loc.objectid > send_progress) {
3017 struct orphan_dir_info *odi;
3019 odi = get_orphan_dir_info(sctx, dir);
3020 free_orphan_dir_info(sctx, odi);
3031 btrfs_free_path(path);
3035 static int is_waiting_for_move(struct send_ctx *sctx, u64 ino)
3037 struct waiting_dir_move *entry = get_waiting_dir_move(sctx, ino);
3039 return entry != NULL;
3042 static int add_waiting_dir_move(struct send_ctx *sctx, u64 ino, bool orphanized)
3044 struct rb_node **p = &sctx->waiting_dir_moves.rb_node;
3045 struct rb_node *parent = NULL;
3046 struct waiting_dir_move *entry, *dm;
3048 dm = kmalloc(sizeof(*dm), GFP_KERNEL);
3053 dm->orphanized = orphanized;
3057 entry = rb_entry(parent, struct waiting_dir_move, node);
3058 if (ino < entry->ino) {
3060 } else if (ino > entry->ino) {
3061 p = &(*p)->rb_right;
3068 rb_link_node(&dm->node, parent, p);
3069 rb_insert_color(&dm->node, &sctx->waiting_dir_moves);
3073 static struct waiting_dir_move *
3074 get_waiting_dir_move(struct send_ctx *sctx, u64 ino)
3076 struct rb_node *n = sctx->waiting_dir_moves.rb_node;
3077 struct waiting_dir_move *entry;
3080 entry = rb_entry(n, struct waiting_dir_move, node);
3081 if (ino < entry->ino)
3083 else if (ino > entry->ino)
3091 static void free_waiting_dir_move(struct send_ctx *sctx,
3092 struct waiting_dir_move *dm)
3096 rb_erase(&dm->node, &sctx->waiting_dir_moves);
3100 static int add_pending_dir_move(struct send_ctx *sctx,
3104 struct list_head *new_refs,
3105 struct list_head *deleted_refs,
3106 const bool is_orphan)
3108 struct rb_node **p = &sctx->pending_dir_moves.rb_node;
3109 struct rb_node *parent = NULL;
3110 struct pending_dir_move *entry = NULL, *pm;
3111 struct recorded_ref *cur;
3115 pm = kmalloc(sizeof(*pm), GFP_KERNEL);
3118 pm->parent_ino = parent_ino;
3121 INIT_LIST_HEAD(&pm->list);
3122 INIT_LIST_HEAD(&pm->update_refs);
3123 RB_CLEAR_NODE(&pm->node);
3127 entry = rb_entry(parent, struct pending_dir_move, node);
3128 if (parent_ino < entry->parent_ino) {
3130 } else if (parent_ino > entry->parent_ino) {
3131 p = &(*p)->rb_right;
3138 list_for_each_entry(cur, deleted_refs, list) {
3139 ret = dup_ref(cur, &pm->update_refs);
3143 list_for_each_entry(cur, new_refs, list) {
3144 ret = dup_ref(cur, &pm->update_refs);
3149 ret = add_waiting_dir_move(sctx, pm->ino, is_orphan);
3154 list_add_tail(&pm->list, &entry->list);
3156 rb_link_node(&pm->node, parent, p);
3157 rb_insert_color(&pm->node, &sctx->pending_dir_moves);
3162 __free_recorded_refs(&pm->update_refs);
3168 static struct pending_dir_move *get_pending_dir_moves(struct send_ctx *sctx,
3171 struct rb_node *n = sctx->pending_dir_moves.rb_node;
3172 struct pending_dir_move *entry;
3175 entry = rb_entry(n, struct pending_dir_move, node);
3176 if (parent_ino < entry->parent_ino)
3178 else if (parent_ino > entry->parent_ino)
3186 static int path_loop(struct send_ctx *sctx, struct fs_path *name,
3187 u64 ino, u64 gen, u64 *ancestor_ino)
3190 u64 parent_inode = 0;
3192 u64 start_ino = ino;
3195 while (ino != BTRFS_FIRST_FREE_OBJECTID) {
3196 fs_path_reset(name);
3198 if (is_waiting_for_rm(sctx, ino))
3200 if (is_waiting_for_move(sctx, ino)) {
3201 if (*ancestor_ino == 0)
3202 *ancestor_ino = ino;
3203 ret = get_first_ref(sctx->parent_root, ino,
3204 &parent_inode, &parent_gen, name);
3206 ret = __get_cur_name_and_parent(sctx, ino, gen,
3216 if (parent_inode == start_ino) {
3218 if (*ancestor_ino == 0)
3219 *ancestor_ino = ino;
3228 static int apply_dir_move(struct send_ctx *sctx, struct pending_dir_move *pm)
3230 struct fs_path *from_path = NULL;
3231 struct fs_path *to_path = NULL;
3232 struct fs_path *name = NULL;
3233 u64 orig_progress = sctx->send_progress;
3234 struct recorded_ref *cur;
3235 u64 parent_ino, parent_gen;
3236 struct waiting_dir_move *dm = NULL;
3242 name = fs_path_alloc();
3243 from_path = fs_path_alloc();
3244 if (!name || !from_path) {
3249 dm = get_waiting_dir_move(sctx, pm->ino);
3251 rmdir_ino = dm->rmdir_ino;
3252 is_orphan = dm->orphanized;
3253 free_waiting_dir_move(sctx, dm);
3256 ret = gen_unique_name(sctx, pm->ino,
3257 pm->gen, from_path);
3259 ret = get_first_ref(sctx->parent_root, pm->ino,
3260 &parent_ino, &parent_gen, name);
3263 ret = get_cur_path(sctx, parent_ino, parent_gen,
3267 ret = fs_path_add_path(from_path, name);
3272 sctx->send_progress = sctx->cur_ino + 1;
3273 ret = path_loop(sctx, name, pm->ino, pm->gen, &ancestor);
3277 LIST_HEAD(deleted_refs);
3278 ASSERT(ancestor > BTRFS_FIRST_FREE_OBJECTID);
3279 ret = add_pending_dir_move(sctx, pm->ino, pm->gen, ancestor,
3280 &pm->update_refs, &deleted_refs,
3285 dm = get_waiting_dir_move(sctx, pm->ino);
3287 dm->rmdir_ino = rmdir_ino;
3291 fs_path_reset(name);
3294 ret = get_cur_path(sctx, pm->ino, pm->gen, to_path);
3298 ret = send_rename(sctx, from_path, to_path);
3303 struct orphan_dir_info *odi;
3305 odi = get_orphan_dir_info(sctx, rmdir_ino);
3307 /* already deleted */
3310 ret = can_rmdir(sctx, rmdir_ino, odi->gen, sctx->cur_ino);
3316 name = fs_path_alloc();
3321 ret = get_cur_path(sctx, rmdir_ino, odi->gen, name);
3324 ret = send_rmdir(sctx, name);
3327 free_orphan_dir_info(sctx, odi);
3331 ret = send_utimes(sctx, pm->ino, pm->gen);
3336 * After rename/move, need to update the utimes of both new parent(s)
3337 * and old parent(s).
3339 list_for_each_entry(cur, &pm->update_refs, list) {
3341 * The parent inode might have been deleted in the send snapshot
3343 ret = get_inode_info(sctx->send_root, cur->dir, NULL,
3344 NULL, NULL, NULL, NULL, NULL);
3345 if (ret == -ENOENT) {
3352 ret = send_utimes(sctx, cur->dir, cur->dir_gen);
3359 fs_path_free(from_path);
3360 fs_path_free(to_path);
3361 sctx->send_progress = orig_progress;
3366 static void free_pending_move(struct send_ctx *sctx, struct pending_dir_move *m)
3368 if (!list_empty(&m->list))
3370 if (!RB_EMPTY_NODE(&m->node))
3371 rb_erase(&m->node, &sctx->pending_dir_moves);
3372 __free_recorded_refs(&m->update_refs);
3376 static void tail_append_pending_moves(struct send_ctx *sctx,
3377 struct pending_dir_move *moves,
3378 struct list_head *stack)
3380 if (list_empty(&moves->list)) {
3381 list_add_tail(&moves->list, stack);
3384 list_splice_init(&moves->list, &list);
3385 list_add_tail(&moves->list, stack);
3386 list_splice_tail(&list, stack);
3388 if (!RB_EMPTY_NODE(&moves->node)) {
3389 rb_erase(&moves->node, &sctx->pending_dir_moves);
3390 RB_CLEAR_NODE(&moves->node);
3394 static int apply_children_dir_moves(struct send_ctx *sctx)
3396 struct pending_dir_move *pm;
3397 struct list_head stack;
3398 u64 parent_ino = sctx->cur_ino;
3401 pm = get_pending_dir_moves(sctx, parent_ino);
3405 INIT_LIST_HEAD(&stack);
3406 tail_append_pending_moves(sctx, pm, &stack);
3408 while (!list_empty(&stack)) {
3409 pm = list_first_entry(&stack, struct pending_dir_move, list);
3410 parent_ino = pm->ino;
3411 ret = apply_dir_move(sctx, pm);
3412 free_pending_move(sctx, pm);
3415 pm = get_pending_dir_moves(sctx, parent_ino);
3417 tail_append_pending_moves(sctx, pm, &stack);
3422 while (!list_empty(&stack)) {
3423 pm = list_first_entry(&stack, struct pending_dir_move, list);
3424 free_pending_move(sctx, pm);
3430 * We might need to delay a directory rename even when no ancestor directory
3431 * (in the send root) with a higher inode number than ours (sctx->cur_ino) was
3432 * renamed. This happens when we rename a directory to the old name (the name
3433 * in the parent root) of some other unrelated directory that got its rename
3434 * delayed due to some ancestor with higher number that got renamed.
3440 * |---- a/ (ino 257)
3441 * | |---- file (ino 260)
3443 * |---- b/ (ino 258)
3444 * |---- c/ (ino 259)
3448 * |---- a/ (ino 258)
3449 * |---- x/ (ino 259)
3450 * |---- y/ (ino 257)
3451 * |----- file (ino 260)
3453 * Here we can not rename 258 from 'b' to 'a' without the rename of inode 257
3454 * from 'a' to 'x/y' happening first, which in turn depends on the rename of
3455 * inode 259 from 'c' to 'x'. So the order of rename commands the send stream
3458 * 1 - rename 259 from 'c' to 'x'
3459 * 2 - rename 257 from 'a' to 'x/y'
3460 * 3 - rename 258 from 'b' to 'a'
3462 * Returns 1 if the rename of sctx->cur_ino needs to be delayed, 0 if it can
3463 * be done right away and < 0 on error.
3465 static int wait_for_dest_dir_move(struct send_ctx *sctx,
3466 struct recorded_ref *parent_ref,
3467 const bool is_orphan)
3469 struct btrfs_path *path;
3470 struct btrfs_key key;
3471 struct btrfs_key di_key;
3472 struct btrfs_dir_item *di;
3476 struct waiting_dir_move *wdm;
3478 if (RB_EMPTY_ROOT(&sctx->waiting_dir_moves))
3481 path = alloc_path_for_send();
3485 key.objectid = parent_ref->dir;
3486 key.type = BTRFS_DIR_ITEM_KEY;
3487 key.offset = btrfs_name_hash(parent_ref->name, parent_ref->name_len);
3489 ret = btrfs_search_slot(NULL, sctx->parent_root, &key, path, 0, 0);
3492 } else if (ret > 0) {
3497 di = btrfs_match_dir_item_name(sctx->parent_root, path,
3498 parent_ref->name, parent_ref->name_len);
3504 * di_key.objectid has the number of the inode that has a dentry in the
3505 * parent directory with the same name that sctx->cur_ino is being
3506 * renamed to. We need to check if that inode is in the send root as
3507 * well and if it is currently marked as an inode with a pending rename,
3508 * if it is, we need to delay the rename of sctx->cur_ino as well, so
3509 * that it happens after that other inode is renamed.
3511 btrfs_dir_item_key_to_cpu(path->nodes[0], di, &di_key);
3512 if (di_key.type != BTRFS_INODE_ITEM_KEY) {
3517 ret = get_inode_info(sctx->parent_root, di_key.objectid, NULL,
3518 &left_gen, NULL, NULL, NULL, NULL);
3521 ret = get_inode_info(sctx->send_root, di_key.objectid, NULL,
3522 &right_gen, NULL, NULL, NULL, NULL);
3529 /* Different inode, no need to delay the rename of sctx->cur_ino */
3530 if (right_gen != left_gen) {
3535 wdm = get_waiting_dir_move(sctx, di_key.objectid);
3536 if (wdm && !wdm->orphanized) {
3537 ret = add_pending_dir_move(sctx,
3539 sctx->cur_inode_gen,
3542 &sctx->deleted_refs,
3548 btrfs_free_path(path);
3553 * Check if ino ino1 is an ancestor of inode ino2 in the given root.
3554 * Return 1 if true, 0 if false and < 0 on error.
3556 static int is_ancestor(struct btrfs_root *root,
3560 struct fs_path *fs_path)
3564 while (ino > BTRFS_FIRST_FREE_OBJECTID) {
3569 fs_path_reset(fs_path);
3570 ret = get_first_ref(root, ino, &parent, &parent_gen, fs_path);
3572 if (ret == -ENOENT && ino == ino2)
3577 return parent_gen == ino1_gen ? 1 : 0;
3583 static int wait_for_parent_move(struct send_ctx *sctx,
3584 struct recorded_ref *parent_ref,
3585 const bool is_orphan)
3588 u64 ino = parent_ref->dir;
3589 u64 parent_ino_before, parent_ino_after;
3590 struct fs_path *path_before = NULL;
3591 struct fs_path *path_after = NULL;
3594 path_after = fs_path_alloc();
3595 path_before = fs_path_alloc();
3596 if (!path_after || !path_before) {
3602 * Our current directory inode may not yet be renamed/moved because some
3603 * ancestor (immediate or not) has to be renamed/moved first. So find if
3604 * such ancestor exists and make sure our own rename/move happens after
3605 * that ancestor is processed to avoid path build infinite loops (done
3606 * at get_cur_path()).
3608 while (ino > BTRFS_FIRST_FREE_OBJECTID) {
3609 if (is_waiting_for_move(sctx, ino)) {
3611 * If the current inode is an ancestor of ino in the
3612 * parent root, we need to delay the rename of the
3613 * current inode, otherwise don't delayed the rename
3614 * because we can end up with a circular dependency
3615 * of renames, resulting in some directories never
3616 * getting the respective rename operations issued in
3617 * the send stream or getting into infinite path build
3620 ret = is_ancestor(sctx->parent_root,
3621 sctx->cur_ino, sctx->cur_inode_gen,
3627 fs_path_reset(path_before);
3628 fs_path_reset(path_after);
3630 ret = get_first_ref(sctx->send_root, ino, &parent_ino_after,
3634 ret = get_first_ref(sctx->parent_root, ino, &parent_ino_before,
3636 if (ret < 0 && ret != -ENOENT) {
3638 } else if (ret == -ENOENT) {
3643 len1 = fs_path_len(path_before);
3644 len2 = fs_path_len(path_after);
3645 if (ino > sctx->cur_ino &&
3646 (parent_ino_before != parent_ino_after || len1 != len2 ||
3647 memcmp(path_before->start, path_after->start, len1))) {
3651 ino = parent_ino_after;
3655 fs_path_free(path_before);
3656 fs_path_free(path_after);
3659 ret = add_pending_dir_move(sctx,
3661 sctx->cur_inode_gen,
3664 &sctx->deleted_refs,
3674 * This does all the move/link/unlink/rmdir magic.
3676 static int process_recorded_refs(struct send_ctx *sctx, int *pending_move)
3678 struct btrfs_fs_info *fs_info = sctx->send_root->fs_info;
3680 struct recorded_ref *cur;
3681 struct recorded_ref *cur2;
3682 struct list_head check_dirs;
3683 struct fs_path *valid_path = NULL;
3686 int did_overwrite = 0;
3688 u64 last_dir_ino_rm = 0;
3689 bool can_rename = true;
3691 btrfs_debug(fs_info, "process_recorded_refs %llu", sctx->cur_ino);
3694 * This should never happen as the root dir always has the same ref
3695 * which is always '..'
3697 BUG_ON(sctx->cur_ino <= BTRFS_FIRST_FREE_OBJECTID);
3698 INIT_LIST_HEAD(&check_dirs);
3700 valid_path = fs_path_alloc();
3707 * First, check if the first ref of the current inode was overwritten
3708 * before. If yes, we know that the current inode was already orphanized
3709 * and thus use the orphan name. If not, we can use get_cur_path to
3710 * get the path of the first ref as it would like while receiving at
3711 * this point in time.
3712 * New inodes are always orphan at the beginning, so force to use the
3713 * orphan name in this case.
3714 * The first ref is stored in valid_path and will be updated if it
3715 * gets moved around.
3717 if (!sctx->cur_inode_new) {
3718 ret = did_overwrite_first_ref(sctx, sctx->cur_ino,
3719 sctx->cur_inode_gen);
3725 if (sctx->cur_inode_new || did_overwrite) {
3726 ret = gen_unique_name(sctx, sctx->cur_ino,
3727 sctx->cur_inode_gen, valid_path);
3732 ret = get_cur_path(sctx, sctx->cur_ino, sctx->cur_inode_gen,
3738 list_for_each_entry(cur, &sctx->new_refs, list) {
3740 * We may have refs where the parent directory does not exist
3741 * yet. This happens if the parent directories inum is higher
3742 * the the current inum. To handle this case, we create the
3743 * parent directory out of order. But we need to check if this
3744 * did already happen before due to other refs in the same dir.
3746 ret = get_cur_inode_state(sctx, cur->dir, cur->dir_gen);
3749 if (ret == inode_state_will_create) {
3752 * First check if any of the current inodes refs did
3753 * already create the dir.
3755 list_for_each_entry(cur2, &sctx->new_refs, list) {
3758 if (cur2->dir == cur->dir) {
3765 * If that did not happen, check if a previous inode
3766 * did already create the dir.
3769 ret = did_create_dir(sctx, cur->dir);
3773 ret = send_create_inode(sctx, cur->dir);
3780 * Check if this new ref would overwrite the first ref of
3781 * another unprocessed inode. If yes, orphanize the
3782 * overwritten inode. If we find an overwritten ref that is
3783 * not the first ref, simply unlink it.
3785 ret = will_overwrite_ref(sctx, cur->dir, cur->dir_gen,
3786 cur->name, cur->name_len,
3787 &ow_inode, &ow_gen);
3791 ret = is_first_ref(sctx->parent_root,
3792 ow_inode, cur->dir, cur->name,
3797 struct name_cache_entry *nce;
3798 struct waiting_dir_move *wdm;
3800 ret = orphanize_inode(sctx, ow_inode, ow_gen,
3806 * If ow_inode has its rename operation delayed
3807 * make sure that its orphanized name is used in
3808 * the source path when performing its rename
3811 if (is_waiting_for_move(sctx, ow_inode)) {
3812 wdm = get_waiting_dir_move(sctx,
3815 wdm->orphanized = true;
3819 * Make sure we clear our orphanized inode's
3820 * name from the name cache. This is because the
3821 * inode ow_inode might be an ancestor of some
3822 * other inode that will be orphanized as well
3823 * later and has an inode number greater than
3824 * sctx->send_progress. We need to prevent
3825 * future name lookups from using the old name
3826 * and get instead the orphan name.
3828 nce = name_cache_search(sctx, ow_inode, ow_gen);
3830 name_cache_delete(sctx, nce);
3835 * ow_inode might currently be an ancestor of
3836 * cur_ino, therefore compute valid_path (the
3837 * current path of cur_ino) again because it
3838 * might contain the pre-orphanization name of
3839 * ow_inode, which is no longer valid.
3841 fs_path_reset(valid_path);
3842 ret = get_cur_path(sctx, sctx->cur_ino,
3843 sctx->cur_inode_gen, valid_path);
3847 ret = send_unlink(sctx, cur->full_path);
3853 if (S_ISDIR(sctx->cur_inode_mode) && sctx->parent_root) {
3854 ret = wait_for_dest_dir_move(sctx, cur, is_orphan);
3863 if (S_ISDIR(sctx->cur_inode_mode) && sctx->parent_root &&
3865 ret = wait_for_parent_move(sctx, cur, is_orphan);
3875 * link/move the ref to the new place. If we have an orphan
3876 * inode, move it and update valid_path. If not, link or move
3877 * it depending on the inode mode.
3879 if (is_orphan && can_rename) {
3880 ret = send_rename(sctx, valid_path, cur->full_path);
3884 ret = fs_path_copy(valid_path, cur->full_path);
3887 } else if (can_rename) {
3888 if (S_ISDIR(sctx->cur_inode_mode)) {
3890 * Dirs can't be linked, so move it. For moved
3891 * dirs, we always have one new and one deleted
3892 * ref. The deleted ref is ignored later.
3894 ret = send_rename(sctx, valid_path,
3897 ret = fs_path_copy(valid_path,
3902 ret = send_link(sctx, cur->full_path,
3908 ret = dup_ref(cur, &check_dirs);
3913 if (S_ISDIR(sctx->cur_inode_mode) && sctx->cur_inode_deleted) {
3915 * Check if we can already rmdir the directory. If not,
3916 * orphanize it. For every dir item inside that gets deleted
3917 * later, we do this check again and rmdir it then if possible.
3918 * See the use of check_dirs for more details.
3920 ret = can_rmdir(sctx, sctx->cur_ino, sctx->cur_inode_gen,
3925 ret = send_rmdir(sctx, valid_path);
3928 } else if (!is_orphan) {
3929 ret = orphanize_inode(sctx, sctx->cur_ino,
3930 sctx->cur_inode_gen, valid_path);
3936 list_for_each_entry(cur, &sctx->deleted_refs, list) {
3937 ret = dup_ref(cur, &check_dirs);
3941 } else if (S_ISDIR(sctx->cur_inode_mode) &&
3942 !list_empty(&sctx->deleted_refs)) {
3944 * We have a moved dir. Add the old parent to check_dirs
3946 cur = list_entry(sctx->deleted_refs.next, struct recorded_ref,
3948 ret = dup_ref(cur, &check_dirs);
3951 } else if (!S_ISDIR(sctx->cur_inode_mode)) {
3953 * We have a non dir inode. Go through all deleted refs and
3954 * unlink them if they were not already overwritten by other
3957 list_for_each_entry(cur, &sctx->deleted_refs, list) {
3958 ret = did_overwrite_ref(sctx, cur->dir, cur->dir_gen,
3959 sctx->cur_ino, sctx->cur_inode_gen,
3960 cur->name, cur->name_len);
3964 ret = send_unlink(sctx, cur->full_path);
3968 ret = dup_ref(cur, &check_dirs);
3973 * If the inode is still orphan, unlink the orphan. This may
3974 * happen when a previous inode did overwrite the first ref
3975 * of this inode and no new refs were added for the current
3976 * inode. Unlinking does not mean that the inode is deleted in
3977 * all cases. There may still be links to this inode in other
3981 ret = send_unlink(sctx, valid_path);
3988 * We did collect all parent dirs where cur_inode was once located. We
3989 * now go through all these dirs and check if they are pending for
3990 * deletion and if it's finally possible to perform the rmdir now.
3991 * We also update the inode stats of the parent dirs here.
3993 list_for_each_entry(cur, &check_dirs, list) {
3995 * In case we had refs into dirs that were not processed yet,
3996 * we don't need to do the utime and rmdir logic for these dirs.
3997 * The dir will be processed later.
3999 if (cur->dir > sctx->cur_ino)
4002 ret = get_cur_inode_state(sctx, cur->dir, cur->dir_gen);
4006 if (ret == inode_state_did_create ||
4007 ret == inode_state_no_change) {
4008 /* TODO delayed utimes */
4009 ret = send_utimes(sctx, cur->dir, cur->dir_gen);
4012 } else if (ret == inode_state_did_delete &&
4013 cur->dir != last_dir_ino_rm) {
4014 ret = can_rmdir(sctx, cur->dir, cur->dir_gen,
4019 ret = get_cur_path(sctx, cur->dir,
4020 cur->dir_gen, valid_path);
4023 ret = send_rmdir(sctx, valid_path);
4026 last_dir_ino_rm = cur->dir;
4034 __free_recorded_refs(&check_dirs);
4035 free_recorded_refs(sctx);
4036 fs_path_free(valid_path);
4040 static int record_ref(struct btrfs_root *root, int num, u64 dir, int index,
4041 struct fs_path *name, void *ctx, struct list_head *refs)
4044 struct send_ctx *sctx = ctx;
4048 p = fs_path_alloc();
4052 ret = get_inode_info(root, dir, NULL, &gen, NULL, NULL,
4057 ret = get_cur_path(sctx, dir, gen, p);
4060 ret = fs_path_add_path(p, name);
4064 ret = __record_ref(refs, dir, gen, p);
4072 static int __record_new_ref(int num, u64 dir, int index,
4073 struct fs_path *name,
4076 struct send_ctx *sctx = ctx;
4077 return record_ref(sctx->send_root, num, dir, index, name,
4078 ctx, &sctx->new_refs);
4082 static int __record_deleted_ref(int num, u64 dir, int index,
4083 struct fs_path *name,
4086 struct send_ctx *sctx = ctx;
4087 return record_ref(sctx->parent_root, num, dir, index, name,
4088 ctx, &sctx->deleted_refs);
4091 static int record_new_ref(struct send_ctx *sctx)
4095 ret = iterate_inode_ref(sctx->send_root, sctx->left_path,
4096 sctx->cmp_key, 0, __record_new_ref, sctx);
4105 static int record_deleted_ref(struct send_ctx *sctx)
4109 ret = iterate_inode_ref(sctx->parent_root, sctx->right_path,
4110 sctx->cmp_key, 0, __record_deleted_ref, sctx);
4119 struct find_ref_ctx {
4122 struct btrfs_root *root;
4123 struct fs_path *name;
4127 static int __find_iref(int num, u64 dir, int index,
4128 struct fs_path *name,
4131 struct find_ref_ctx *ctx = ctx_;
4135 if (dir == ctx->dir && fs_path_len(name) == fs_path_len(ctx->name) &&
4136 strncmp(name->start, ctx->name->start, fs_path_len(name)) == 0) {
4138 * To avoid doing extra lookups we'll only do this if everything
4141 ret = get_inode_info(ctx->root, dir, NULL, &dir_gen, NULL,
4145 if (dir_gen != ctx->dir_gen)
4147 ctx->found_idx = num;
4153 static int find_iref(struct btrfs_root *root,
4154 struct btrfs_path *path,
4155 struct btrfs_key *key,
4156 u64 dir, u64 dir_gen, struct fs_path *name)
4159 struct find_ref_ctx ctx;
4163 ctx.dir_gen = dir_gen;
4167 ret = iterate_inode_ref(root, path, key, 0, __find_iref, &ctx);
4171 if (ctx.found_idx == -1)
4174 return ctx.found_idx;
4177 static int __record_changed_new_ref(int num, u64 dir, int index,
4178 struct fs_path *name,
4183 struct send_ctx *sctx = ctx;
4185 ret = get_inode_info(sctx->send_root, dir, NULL, &dir_gen, NULL,
4190 ret = find_iref(sctx->parent_root, sctx->right_path,
4191 sctx->cmp_key, dir, dir_gen, name);
4193 ret = __record_new_ref(num, dir, index, name, sctx);
4200 static int __record_changed_deleted_ref(int num, u64 dir, int index,
4201 struct fs_path *name,
4206 struct send_ctx *sctx = ctx;
4208 ret = get_inode_info(sctx->parent_root, dir, NULL, &dir_gen, NULL,
4213 ret = find_iref(sctx->send_root, sctx->left_path, sctx->cmp_key,
4214 dir, dir_gen, name);
4216 ret = __record_deleted_ref(num, dir, index, name, sctx);
4223 static int record_changed_ref(struct send_ctx *sctx)
4227 ret = iterate_inode_ref(sctx->send_root, sctx->left_path,
4228 sctx->cmp_key, 0, __record_changed_new_ref, sctx);
4231 ret = iterate_inode_ref(sctx->parent_root, sctx->right_path,
4232 sctx->cmp_key, 0, __record_changed_deleted_ref, sctx);
4242 * Record and process all refs at once. Needed when an inode changes the
4243 * generation number, which means that it was deleted and recreated.
4245 static int process_all_refs(struct send_ctx *sctx,
4246 enum btrfs_compare_tree_result cmd)
4249 struct btrfs_root *root;
4250 struct btrfs_path *path;
4251 struct btrfs_key key;
4252 struct btrfs_key found_key;
4253 struct extent_buffer *eb;
4255 iterate_inode_ref_t cb;
4256 int pending_move = 0;
4258 path = alloc_path_for_send();
4262 if (cmd == BTRFS_COMPARE_TREE_NEW) {
4263 root = sctx->send_root;
4264 cb = __record_new_ref;
4265 } else if (cmd == BTRFS_COMPARE_TREE_DELETED) {
4266 root = sctx->parent_root;
4267 cb = __record_deleted_ref;
4269 btrfs_err(sctx->send_root->fs_info,
4270 "Wrong command %d in process_all_refs", cmd);
4275 key.objectid = sctx->cmp_key->objectid;
4276 key.type = BTRFS_INODE_REF_KEY;
4278 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
4283 eb = path->nodes[0];
4284 slot = path->slots[0];
4285 if (slot >= btrfs_header_nritems(eb)) {
4286 ret = btrfs_next_leaf(root, path);
4294 btrfs_item_key_to_cpu(eb, &found_key, slot);
4296 if (found_key.objectid != key.objectid ||
4297 (found_key.type != BTRFS_INODE_REF_KEY &&
4298 found_key.type != BTRFS_INODE_EXTREF_KEY))
4301 ret = iterate_inode_ref(root, path, &found_key, 0, cb, sctx);
4307 btrfs_release_path(path);
4310 * We don't actually care about pending_move as we are simply
4311 * re-creating this inode and will be rename'ing it into place once we
4312 * rename the parent directory.
4314 ret = process_recorded_refs(sctx, &pending_move);
4316 btrfs_free_path(path);
4320 static int send_set_xattr(struct send_ctx *sctx,
4321 struct fs_path *path,
4322 const char *name, int name_len,
4323 const char *data, int data_len)
4327 ret = begin_cmd(sctx, BTRFS_SEND_C_SET_XATTR);
4331 TLV_PUT_PATH(sctx, BTRFS_SEND_A_PATH, path);
4332 TLV_PUT_STRING(sctx, BTRFS_SEND_A_XATTR_NAME, name, name_len);
4333 TLV_PUT(sctx, BTRFS_SEND_A_XATTR_DATA, data, data_len);
4335 ret = send_cmd(sctx);
4342 static int send_remove_xattr(struct send_ctx *sctx,
4343 struct fs_path *path,
4344 const char *name, int name_len)
4348 ret = begin_cmd(sctx, BTRFS_SEND_C_REMOVE_XATTR);
4352 TLV_PUT_PATH(sctx, BTRFS_SEND_A_PATH, path);
4353 TLV_PUT_STRING(sctx, BTRFS_SEND_A_XATTR_NAME, name, name_len);
4355 ret = send_cmd(sctx);
4362 static int __process_new_xattr(int num, struct btrfs_key *di_key,
4363 const char *name, int name_len,
4364 const char *data, int data_len,
4368 struct send_ctx *sctx = ctx;
4370 struct posix_acl_xattr_header dummy_acl;
4372 /* Capabilities are emitted by finish_inode_if_needed */
4373 if (!strncmp(name, XATTR_NAME_CAPS, name_len))
4376 p = fs_path_alloc();
4381 * This hack is needed because empty acls are stored as zero byte
4382 * data in xattrs. Problem with that is, that receiving these zero byte
4383 * acls will fail later. To fix this, we send a dummy acl list that
4384 * only contains the version number and no entries.
4386 if (!strncmp(name, XATTR_NAME_POSIX_ACL_ACCESS, name_len) ||
4387 !strncmp(name, XATTR_NAME_POSIX_ACL_DEFAULT, name_len)) {
4388 if (data_len == 0) {
4389 dummy_acl.a_version =
4390 cpu_to_le32(POSIX_ACL_XATTR_VERSION);
4391 data = (char *)&dummy_acl;
4392 data_len = sizeof(dummy_acl);
4396 ret = get_cur_path(sctx, sctx->cur_ino, sctx->cur_inode_gen, p);
4400 ret = send_set_xattr(sctx, p, name, name_len, data, data_len);
4407 static int __process_deleted_xattr(int num, struct btrfs_key *di_key,
4408 const char *name, int name_len,
4409 const char *data, int data_len,
4413 struct send_ctx *sctx = ctx;
4416 p = fs_path_alloc();
4420 ret = get_cur_path(sctx, sctx->cur_ino, sctx->cur_inode_gen, p);
4424 ret = send_remove_xattr(sctx, p, name, name_len);
4431 static int process_new_xattr(struct send_ctx *sctx)
4435 ret = iterate_dir_item(sctx->send_root, sctx->left_path,
4436 sctx->cmp_key, __process_new_xattr, sctx);
4441 static int process_deleted_xattr(struct send_ctx *sctx)
4443 return iterate_dir_item(sctx->parent_root, sctx->right_path,
4444 sctx->cmp_key, __process_deleted_xattr, sctx);
4447 struct find_xattr_ctx {
4455 static int __find_xattr(int num, struct btrfs_key *di_key,
4456 const char *name, int name_len,
4457 const char *data, int data_len,
4458 u8 type, void *vctx)
4460 struct find_xattr_ctx *ctx = vctx;
4462 if (name_len == ctx->name_len &&
4463 strncmp(name, ctx->name, name_len) == 0) {
4464 ctx->found_idx = num;
4465 ctx->found_data_len = data_len;
4466 ctx->found_data = kmemdup(data, data_len, GFP_KERNEL);
4467 if (!ctx->found_data)
4474 static int find_xattr(struct btrfs_root *root,
4475 struct btrfs_path *path,
4476 struct btrfs_key *key,
4477 const char *name, int name_len,
4478 char **data, int *data_len)
4481 struct find_xattr_ctx ctx;
4484 ctx.name_len = name_len;
4486 ctx.found_data = NULL;
4487 ctx.found_data_len = 0;
4489 ret = iterate_dir_item(root, path, key, __find_xattr, &ctx);
4493 if (ctx.found_idx == -1)
4496 *data = ctx.found_data;
4497 *data_len = ctx.found_data_len;
4499 kfree(ctx.found_data);
4501 return ctx.found_idx;
4505 static int __process_changed_new_xattr(int num, struct btrfs_key *di_key,
4506 const char *name, int name_len,
4507 const char *data, int data_len,
4511 struct send_ctx *sctx = ctx;
4512 char *found_data = NULL;
4513 int found_data_len = 0;
4515 ret = find_xattr(sctx->parent_root, sctx->right_path,
4516 sctx->cmp_key, name, name_len, &found_data,
4518 if (ret == -ENOENT) {
4519 ret = __process_new_xattr(num, di_key, name, name_len, data,
4520 data_len, type, ctx);
4521 } else if (ret >= 0) {
4522 if (data_len != found_data_len ||
4523 memcmp(data, found_data, data_len)) {
4524 ret = __process_new_xattr(num, di_key, name, name_len,
4525 data, data_len, type, ctx);
4535 static int __process_changed_deleted_xattr(int num, struct btrfs_key *di_key,
4536 const char *name, int name_len,
4537 const char *data, int data_len,
4541 struct send_ctx *sctx = ctx;
4543 ret = find_xattr(sctx->send_root, sctx->left_path, sctx->cmp_key,
4544 name, name_len, NULL, NULL);
4546 ret = __process_deleted_xattr(num, di_key, name, name_len, data,
4547 data_len, type, ctx);
4554 static int process_changed_xattr(struct send_ctx *sctx)
4558 ret = iterate_dir_item(sctx->send_root, sctx->left_path,
4559 sctx->cmp_key, __process_changed_new_xattr, sctx);
4562 ret = iterate_dir_item(sctx->parent_root, sctx->right_path,
4563 sctx->cmp_key, __process_changed_deleted_xattr, sctx);
4569 static int process_all_new_xattrs(struct send_ctx *sctx)
4572 struct btrfs_root *root;
4573 struct btrfs_path *path;
4574 struct btrfs_key key;
4575 struct btrfs_key found_key;
4576 struct extent_buffer *eb;
4579 path = alloc_path_for_send();
4583 root = sctx->send_root;
4585 key.objectid = sctx->cmp_key->objectid;
4586 key.type = BTRFS_XATTR_ITEM_KEY;
4588 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
4593 eb = path->nodes[0];
4594 slot = path->slots[0];
4595 if (slot >= btrfs_header_nritems(eb)) {
4596 ret = btrfs_next_leaf(root, path);
4599 } else if (ret > 0) {
4606 btrfs_item_key_to_cpu(eb, &found_key, slot);
4607 if (found_key.objectid != key.objectid ||
4608 found_key.type != key.type) {
4613 ret = iterate_dir_item(root, path, &found_key,
4614 __process_new_xattr, sctx);
4622 btrfs_free_path(path);
4626 static ssize_t fill_read_buf(struct send_ctx *sctx, u64 offset, u32 len)
4628 struct btrfs_root *root = sctx->send_root;
4629 struct btrfs_fs_info *fs_info = root->fs_info;
4630 struct inode *inode;
4633 struct btrfs_key key;
4634 pgoff_t index = offset >> PAGE_SHIFT;
4636 unsigned pg_offset = offset & ~PAGE_MASK;
4639 key.objectid = sctx->cur_ino;
4640 key.type = BTRFS_INODE_ITEM_KEY;
4643 inode = btrfs_iget(fs_info->sb, &key, root, NULL);
4645 return PTR_ERR(inode);
4647 if (offset + len > i_size_read(inode)) {
4648 if (offset > i_size_read(inode))
4651 len = offset - i_size_read(inode);
4656 last_index = (offset + len - 1) >> PAGE_SHIFT;
4658 /* initial readahead */
4659 memset(&sctx->ra, 0, sizeof(struct file_ra_state));
4660 file_ra_state_init(&sctx->ra, inode->i_mapping);
4661 btrfs_force_ra(inode->i_mapping, &sctx->ra, NULL, index,
4662 last_index - index + 1);
4664 while (index <= last_index) {
4665 unsigned cur_len = min_t(unsigned, len,
4666 PAGE_SIZE - pg_offset);
4667 page = find_or_create_page(inode->i_mapping, index, GFP_KERNEL);
4673 if (!PageUptodate(page)) {
4674 btrfs_readpage(NULL, page);
4676 if (!PageUptodate(page)) {
4679 "send: IO error at offset %llu for inode %llu root %llu",
4680 page_offset(page), sctx->cur_ino,
4681 sctx->send_root->root_key.objectid);
4689 memcpy(sctx->read_buf + ret, addr + pg_offset, cur_len);
4704 * Read some bytes from the current inode/file and send a write command to
4707 static int send_write(struct send_ctx *sctx, u64 offset, u32 len)
4709 struct btrfs_fs_info *fs_info = sctx->send_root->fs_info;
4712 ssize_t num_read = 0;
4714 p = fs_path_alloc();
4718 btrfs_debug(fs_info, "send_write offset=%llu, len=%d", offset, len);
4720 num_read = fill_read_buf(sctx, offset, len);
4721 if (num_read <= 0) {
4727 ret = begin_cmd(sctx, BTRFS_SEND_C_WRITE);
4731 ret = get_cur_path(sctx, sctx->cur_ino, sctx->cur_inode_gen, p);
4735 TLV_PUT_PATH(sctx, BTRFS_SEND_A_PATH, p);
4736 TLV_PUT_U64(sctx, BTRFS_SEND_A_FILE_OFFSET, offset);
4737 TLV_PUT(sctx, BTRFS_SEND_A_DATA, sctx->read_buf, num_read);
4739 ret = send_cmd(sctx);
4750 * Send a clone command to user space.
4752 static int send_clone(struct send_ctx *sctx,
4753 u64 offset, u32 len,
4754 struct clone_root *clone_root)
4760 btrfs_debug(sctx->send_root->fs_info,
4761 "send_clone offset=%llu, len=%d, clone_root=%llu, clone_inode=%llu, clone_offset=%llu",
4762 offset, len, clone_root->root->objectid, clone_root->ino,
4763 clone_root->offset);
4765 p = fs_path_alloc();
4769 ret = begin_cmd(sctx, BTRFS_SEND_C_CLONE);
4773 ret = get_cur_path(sctx, sctx->cur_ino, sctx->cur_inode_gen, p);
4777 TLV_PUT_U64(sctx, BTRFS_SEND_A_FILE_OFFSET, offset);
4778 TLV_PUT_U64(sctx, BTRFS_SEND_A_CLONE_LEN, len);
4779 TLV_PUT_PATH(sctx, BTRFS_SEND_A_PATH, p);
4781 if (clone_root->root == sctx->send_root) {
4782 ret = get_inode_info(sctx->send_root, clone_root->ino, NULL,
4783 &gen, NULL, NULL, NULL, NULL);
4786 ret = get_cur_path(sctx, clone_root->ino, gen, p);
4788 ret = get_inode_path(clone_root->root, clone_root->ino, p);
4794 * If the parent we're using has a received_uuid set then use that as
4795 * our clone source as that is what we will look for when doing a
4798 * This covers the case that we create a snapshot off of a received
4799 * subvolume and then use that as the parent and try to receive on a
4802 if (!btrfs_is_empty_uuid(clone_root->root->root_item.received_uuid))
4803 TLV_PUT_UUID(sctx, BTRFS_SEND_A_CLONE_UUID,
4804 clone_root->root->root_item.received_uuid);
4806 TLV_PUT_UUID(sctx, BTRFS_SEND_A_CLONE_UUID,
4807 clone_root->root->root_item.uuid);
4808 TLV_PUT_U64(sctx, BTRFS_SEND_A_CLONE_CTRANSID,
4809 le64_to_cpu(clone_root->root->root_item.ctransid));
4810 TLV_PUT_PATH(sctx, BTRFS_SEND_A_CLONE_PATH, p);
4811 TLV_PUT_U64(sctx, BTRFS_SEND_A_CLONE_OFFSET,
4812 clone_root->offset);
4814 ret = send_cmd(sctx);
4823 * Send an update extent command to user space.
4825 static int send_update_extent(struct send_ctx *sctx,
4826 u64 offset, u32 len)
4831 p = fs_path_alloc();
4835 ret = begin_cmd(sctx, BTRFS_SEND_C_UPDATE_EXTENT);
4839 ret = get_cur_path(sctx, sctx->cur_ino, sctx->cur_inode_gen, p);
4843 TLV_PUT_PATH(sctx, BTRFS_SEND_A_PATH, p);
4844 TLV_PUT_U64(sctx, BTRFS_SEND_A_FILE_OFFSET, offset);
4845 TLV_PUT_U64(sctx, BTRFS_SEND_A_SIZE, len);
4847 ret = send_cmd(sctx);
4855 static int send_hole(struct send_ctx *sctx, u64 end)
4857 struct fs_path *p = NULL;
4858 u64 offset = sctx->cur_inode_last_extent;
4862 if (sctx->flags & BTRFS_SEND_FLAG_NO_FILE_DATA)
4863 return send_update_extent(sctx, offset, end - offset);
4865 p = fs_path_alloc();
4868 ret = get_cur_path(sctx, sctx->cur_ino, sctx->cur_inode_gen, p);
4870 goto tlv_put_failure;
4871 memset(sctx->read_buf, 0, BTRFS_SEND_READ_SIZE);
4872 while (offset < end) {
4873 len = min_t(u64, end - offset, BTRFS_SEND_READ_SIZE);
4875 ret = begin_cmd(sctx, BTRFS_SEND_C_WRITE);
4878 TLV_PUT_PATH(sctx, BTRFS_SEND_A_PATH, p);
4879 TLV_PUT_U64(sctx, BTRFS_SEND_A_FILE_OFFSET, offset);
4880 TLV_PUT(sctx, BTRFS_SEND_A_DATA, sctx->read_buf, len);
4881 ret = send_cmd(sctx);
4891 static int send_extent_data(struct send_ctx *sctx,
4897 if (sctx->flags & BTRFS_SEND_FLAG_NO_FILE_DATA)
4898 return send_update_extent(sctx, offset, len);
4900 while (sent < len) {
4901 u64 size = len - sent;
4904 if (size > BTRFS_SEND_READ_SIZE)
4905 size = BTRFS_SEND_READ_SIZE;
4906 ret = send_write(sctx, offset + sent, size);
4917 * Search for a capability xattr related to sctx->cur_ino. If the capability is
4918 * found, call send_set_xattr function to emit it.
4920 * Return 0 if there isn't a capability, or when the capability was emitted
4921 * successfully, or < 0 if an error occurred.
4923 static int send_capabilities(struct send_ctx *sctx)
4925 struct fs_path *fspath = NULL;
4926 struct btrfs_path *path;
4927 struct btrfs_dir_item *di;
4928 struct extent_buffer *leaf;
4929 unsigned long data_ptr;
4934 path = alloc_path_for_send();
4938 di = btrfs_lookup_xattr(NULL, sctx->send_root, path, sctx->cur_ino,
4939 XATTR_NAME_CAPS, strlen(XATTR_NAME_CAPS), 0);
4941 /* There is no xattr for this inode */
4943 } else if (IS_ERR(di)) {
4948 leaf = path->nodes[0];
4949 buf_len = btrfs_dir_data_len(leaf, di);
4951 fspath = fs_path_alloc();
4952 buf = kmalloc(buf_len, GFP_KERNEL);
4953 if (!fspath || !buf) {
4958 ret = get_cur_path(sctx, sctx->cur_ino, sctx->cur_inode_gen, fspath);
4962 data_ptr = (unsigned long)(di + 1) + btrfs_dir_name_len(leaf, di);
4963 read_extent_buffer(leaf, buf, data_ptr, buf_len);
4965 ret = send_set_xattr(sctx, fspath, XATTR_NAME_CAPS,
4966 strlen(XATTR_NAME_CAPS), buf, buf_len);
4969 fs_path_free(fspath);
4970 btrfs_free_path(path);
4974 static int clone_range(struct send_ctx *sctx,
4975 struct clone_root *clone_root,
4976 const u64 disk_byte,
4981 struct btrfs_path *path;
4982 struct btrfs_key key;
4985 path = alloc_path_for_send();
4990 * We can't send a clone operation for the entire range if we find
4991 * extent items in the respective range in the source file that
4992 * refer to different extents or if we find holes.
4993 * So check for that and do a mix of clone and regular write/copy
4994 * operations if needed.
4998 * mkfs.btrfs -f /dev/sda
4999 * mount /dev/sda /mnt
5000 * xfs_io -f -c "pwrite -S 0xaa 0K 100K" /mnt/foo
5001 * cp --reflink=always /mnt/foo /mnt/bar
5002 * xfs_io -c "pwrite -S 0xbb 50K 50K" /mnt/foo
5003 * btrfs subvolume snapshot -r /mnt /mnt/snap
5005 * If when we send the snapshot and we are processing file bar (which
5006 * has a higher inode number than foo) we blindly send a clone operation
5007 * for the [0, 100K[ range from foo to bar, the receiver ends up getting
5008 * a file bar that matches the content of file foo - iow, doesn't match
5009 * the content from bar in the original filesystem.
5011 key.objectid = clone_root->ino;
5012 key.type = BTRFS_EXTENT_DATA_KEY;
5013 key.offset = clone_root->offset;
5014 ret = btrfs_search_slot(NULL, clone_root->root, &key, path, 0, 0);
5017 if (ret > 0 && path->slots[0] > 0) {
5018 btrfs_item_key_to_cpu(path->nodes[0], &key, path->slots[0] - 1);
5019 if (key.objectid == clone_root->ino &&
5020 key.type == BTRFS_EXTENT_DATA_KEY)
5025 struct extent_buffer *leaf = path->nodes[0];
5026 int slot = path->slots[0];
5027 struct btrfs_file_extent_item *ei;
5032 if (slot >= btrfs_header_nritems(leaf)) {
5033 ret = btrfs_next_leaf(clone_root->root, path);
5041 btrfs_item_key_to_cpu(leaf, &key, slot);
5044 * We might have an implicit trailing hole (NO_HOLES feature
5045 * enabled). We deal with it after leaving this loop.
5047 if (key.objectid != clone_root->ino ||
5048 key.type != BTRFS_EXTENT_DATA_KEY)
5051 ei = btrfs_item_ptr(leaf, slot, struct btrfs_file_extent_item);
5052 type = btrfs_file_extent_type(leaf, ei);
5053 if (type == BTRFS_FILE_EXTENT_INLINE) {
5054 ext_len = btrfs_file_extent_inline_len(leaf, slot, ei);
5055 ext_len = PAGE_ALIGN(ext_len);
5057 ext_len = btrfs_file_extent_num_bytes(leaf, ei);
5060 if (key.offset + ext_len <= clone_root->offset)
5063 if (key.offset > clone_root->offset) {
5064 /* Implicit hole, NO_HOLES feature enabled. */
5065 u64 hole_len = key.offset - clone_root->offset;
5069 ret = send_extent_data(sctx, offset, hole_len);
5077 clone_root->offset += hole_len;
5078 data_offset += hole_len;
5081 if (key.offset >= clone_root->offset + len)
5084 clone_len = min_t(u64, ext_len, len);
5086 if (btrfs_file_extent_disk_bytenr(leaf, ei) == disk_byte &&
5087 btrfs_file_extent_offset(leaf, ei) == data_offset)
5088 ret = send_clone(sctx, offset, clone_len, clone_root);
5090 ret = send_extent_data(sctx, offset, clone_len);
5098 offset += clone_len;
5099 clone_root->offset += clone_len;
5100 data_offset += clone_len;
5106 ret = send_extent_data(sctx, offset, len);
5110 btrfs_free_path(path);
5114 static int send_write_or_clone(struct send_ctx *sctx,
5115 struct btrfs_path *path,
5116 struct btrfs_key *key,
5117 struct clone_root *clone_root)
5120 struct btrfs_file_extent_item *ei;
5121 u64 offset = key->offset;
5124 u64 bs = sctx->send_root->fs_info->sb->s_blocksize;
5126 ei = btrfs_item_ptr(path->nodes[0], path->slots[0],
5127 struct btrfs_file_extent_item);
5128 type = btrfs_file_extent_type(path->nodes[0], ei);
5129 if (type == BTRFS_FILE_EXTENT_INLINE) {
5130 len = btrfs_file_extent_inline_len(path->nodes[0],
5131 path->slots[0], ei);
5133 * it is possible the inline item won't cover the whole page,
5134 * but there may be items after this page. Make
5135 * sure to send the whole thing
5137 len = PAGE_ALIGN(len);
5139 len = btrfs_file_extent_num_bytes(path->nodes[0], ei);
5142 if (offset + len > sctx->cur_inode_size)
5143 len = sctx->cur_inode_size - offset;
5149 if (clone_root && IS_ALIGNED(offset + len, bs)) {
5153 disk_byte = btrfs_file_extent_disk_bytenr(path->nodes[0], ei);
5154 data_offset = btrfs_file_extent_offset(path->nodes[0], ei);
5155 ret = clone_range(sctx, clone_root, disk_byte, data_offset,
5158 ret = send_extent_data(sctx, offset, len);
5164 static int is_extent_unchanged(struct send_ctx *sctx,
5165 struct btrfs_path *left_path,
5166 struct btrfs_key *ekey)
5169 struct btrfs_key key;
5170 struct btrfs_path *path = NULL;
5171 struct extent_buffer *eb;
5173 struct btrfs_key found_key;
5174 struct btrfs_file_extent_item *ei;
5179 u64 left_offset_fixed;
5187 path = alloc_path_for_send();
5191 eb = left_path->nodes[0];
5192 slot = left_path->slots[0];
5193 ei = btrfs_item_ptr(eb, slot, struct btrfs_file_extent_item);
5194 left_type = btrfs_file_extent_type(eb, ei);
5196 if (left_type != BTRFS_FILE_EXTENT_REG) {
5200 left_disknr = btrfs_file_extent_disk_bytenr(eb, ei);
5201 left_len = btrfs_file_extent_num_bytes(eb, ei);
5202 left_offset = btrfs_file_extent_offset(eb, ei);
5203 left_gen = btrfs_file_extent_generation(eb, ei);
5206 * Following comments will refer to these graphics. L is the left
5207 * extents which we are checking at the moment. 1-8 are the right
5208 * extents that we iterate.
5211 * |-1-|-2a-|-3-|-4-|-5-|-6-|
5214 * |--1--|-2b-|...(same as above)
5216 * Alternative situation. Happens on files where extents got split.
5218 * |-----------7-----------|-6-|
5220 * Alternative situation. Happens on files which got larger.
5223 * Nothing follows after 8.
5226 key.objectid = ekey->objectid;
5227 key.type = BTRFS_EXTENT_DATA_KEY;
5228 key.offset = ekey->offset;
5229 ret = btrfs_search_slot_for_read(sctx->parent_root, &key, path, 0, 0);
5238 * Handle special case where the right side has no extents at all.
5240 eb = path->nodes[0];
5241 slot = path->slots[0];
5242 btrfs_item_key_to_cpu(eb, &found_key, slot);
5243 if (found_key.objectid != key.objectid ||
5244 found_key.type != key.type) {
5245 /* If we're a hole then just pretend nothing changed */
5246 ret = (left_disknr) ? 0 : 1;
5251 * We're now on 2a, 2b or 7.
5254 while (key.offset < ekey->offset + left_len) {
5255 ei = btrfs_item_ptr(eb, slot, struct btrfs_file_extent_item);
5256 right_type = btrfs_file_extent_type(eb, ei);
5257 if (right_type != BTRFS_FILE_EXTENT_REG &&
5258 right_type != BTRFS_FILE_EXTENT_INLINE) {
5263 if (right_type == BTRFS_FILE_EXTENT_INLINE) {
5264 right_len = btrfs_file_extent_inline_len(eb, slot, ei);
5265 right_len = PAGE_ALIGN(right_len);
5267 right_len = btrfs_file_extent_num_bytes(eb, ei);
5271 * Are we at extent 8? If yes, we know the extent is changed.
5272 * This may only happen on the first iteration.
5274 if (found_key.offset + right_len <= ekey->offset) {
5275 /* If we're a hole just pretend nothing changed */
5276 ret = (left_disknr) ? 0 : 1;
5281 * We just wanted to see if when we have an inline extent, what
5282 * follows it is a regular extent (wanted to check the above
5283 * condition for inline extents too). This should normally not
5284 * happen but it's possible for example when we have an inline
5285 * compressed extent representing data with a size matching
5286 * the page size (currently the same as sector size).
5288 if (right_type == BTRFS_FILE_EXTENT_INLINE) {
5293 right_disknr = btrfs_file_extent_disk_bytenr(eb, ei);
5294 right_offset = btrfs_file_extent_offset(eb, ei);
5295 right_gen = btrfs_file_extent_generation(eb, ei);
5297 left_offset_fixed = left_offset;
5298 if (key.offset < ekey->offset) {
5299 /* Fix the right offset for 2a and 7. */
5300 right_offset += ekey->offset - key.offset;
5302 /* Fix the left offset for all behind 2a and 2b */
5303 left_offset_fixed += key.offset - ekey->offset;
5307 * Check if we have the same extent.
5309 if (left_disknr != right_disknr ||
5310 left_offset_fixed != right_offset ||
5311 left_gen != right_gen) {
5317 * Go to the next extent.
5319 ret = btrfs_next_item(sctx->parent_root, path);
5323 eb = path->nodes[0];
5324 slot = path->slots[0];
5325 btrfs_item_key_to_cpu(eb, &found_key, slot);
5327 if (ret || found_key.objectid != key.objectid ||
5328 found_key.type != key.type) {
5329 key.offset += right_len;
5332 if (found_key.offset != key.offset + right_len) {
5340 * We're now behind the left extent (treat as unchanged) or at the end
5341 * of the right side (treat as changed).
5343 if (key.offset >= ekey->offset + left_len)
5350 btrfs_free_path(path);
5354 static int get_last_extent(struct send_ctx *sctx, u64 offset)
5356 struct btrfs_path *path;
5357 struct btrfs_root *root = sctx->send_root;
5358 struct btrfs_file_extent_item *fi;
5359 struct btrfs_key key;
5364 path = alloc_path_for_send();
5368 sctx->cur_inode_last_extent = 0;
5370 key.objectid = sctx->cur_ino;
5371 key.type = BTRFS_EXTENT_DATA_KEY;
5372 key.offset = offset;
5373 ret = btrfs_search_slot_for_read(root, &key, path, 0, 1);
5377 btrfs_item_key_to_cpu(path->nodes[0], &key, path->slots[0]);
5378 if (key.objectid != sctx->cur_ino || key.type != BTRFS_EXTENT_DATA_KEY)
5381 fi = btrfs_item_ptr(path->nodes[0], path->slots[0],
5382 struct btrfs_file_extent_item);
5383 type = btrfs_file_extent_type(path->nodes[0], fi);
5384 if (type == BTRFS_FILE_EXTENT_INLINE) {
5385 u64 size = btrfs_file_extent_inline_len(path->nodes[0],
5386 path->slots[0], fi);
5387 extent_end = ALIGN(key.offset + size,
5388 sctx->send_root->sectorsize);
5390 extent_end = key.offset +
5391 btrfs_file_extent_num_bytes(path->nodes[0], fi);
5393 sctx->cur_inode_last_extent = extent_end;
5395 btrfs_free_path(path);
5399 static int maybe_send_hole(struct send_ctx *sctx, struct btrfs_path *path,
5400 struct btrfs_key *key)
5402 struct btrfs_file_extent_item *fi;
5407 if (sctx->cur_ino != key->objectid || !need_send_hole(sctx))
5410 if (sctx->cur_inode_last_extent == (u64)-1) {
5411 ret = get_last_extent(sctx, key->offset - 1);
5416 fi = btrfs_item_ptr(path->nodes[0], path->slots[0],
5417 struct btrfs_file_extent_item);
5418 type = btrfs_file_extent_type(path->nodes[0], fi);
5419 if (type == BTRFS_FILE_EXTENT_INLINE) {
5420 u64 size = btrfs_file_extent_inline_len(path->nodes[0],
5421 path->slots[0], fi);
5422 extent_end = ALIGN(key->offset + size,
5423 sctx->send_root->sectorsize);
5425 extent_end = key->offset +
5426 btrfs_file_extent_num_bytes(path->nodes[0], fi);
5429 if (path->slots[0] == 0 &&
5430 sctx->cur_inode_last_extent < key->offset) {
5432 * We might have skipped entire leafs that contained only
5433 * file extent items for our current inode. These leafs have
5434 * a generation number smaller (older) than the one in the
5435 * current leaf and the leaf our last extent came from, and
5436 * are located between these 2 leafs.
5438 ret = get_last_extent(sctx, key->offset - 1);
5443 if (sctx->cur_inode_last_extent < key->offset)
5444 ret = send_hole(sctx, key->offset);
5445 sctx->cur_inode_last_extent = extent_end;
5449 static int process_extent(struct send_ctx *sctx,
5450 struct btrfs_path *path,
5451 struct btrfs_key *key)
5453 struct clone_root *found_clone = NULL;
5456 if (S_ISLNK(sctx->cur_inode_mode))
5459 if (sctx->parent_root && !sctx->cur_inode_new) {
5460 ret = is_extent_unchanged(sctx, path, key);
5468 struct btrfs_file_extent_item *ei;
5471 ei = btrfs_item_ptr(path->nodes[0], path->slots[0],
5472 struct btrfs_file_extent_item);
5473 type = btrfs_file_extent_type(path->nodes[0], ei);
5474 if (type == BTRFS_FILE_EXTENT_PREALLOC ||
5475 type == BTRFS_FILE_EXTENT_REG) {
5477 * The send spec does not have a prealloc command yet,
5478 * so just leave a hole for prealloc'ed extents until
5479 * we have enough commands queued up to justify rev'ing
5482 if (type == BTRFS_FILE_EXTENT_PREALLOC) {
5487 /* Have a hole, just skip it. */
5488 if (btrfs_file_extent_disk_bytenr(path->nodes[0], ei) == 0) {
5495 ret = find_extent_clone(sctx, path, key->objectid, key->offset,
5496 sctx->cur_inode_size, &found_clone);
5497 if (ret != -ENOENT && ret < 0)
5500 ret = send_write_or_clone(sctx, path, key, found_clone);
5504 ret = maybe_send_hole(sctx, path, key);
5509 static int process_all_extents(struct send_ctx *sctx)
5512 struct btrfs_root *root;
5513 struct btrfs_path *path;
5514 struct btrfs_key key;
5515 struct btrfs_key found_key;
5516 struct extent_buffer *eb;
5519 root = sctx->send_root;
5520 path = alloc_path_for_send();
5524 key.objectid = sctx->cmp_key->objectid;
5525 key.type = BTRFS_EXTENT_DATA_KEY;
5527 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
5532 eb = path->nodes[0];
5533 slot = path->slots[0];
5535 if (slot >= btrfs_header_nritems(eb)) {
5536 ret = btrfs_next_leaf(root, path);
5539 } else if (ret > 0) {
5546 btrfs_item_key_to_cpu(eb, &found_key, slot);
5548 if (found_key.objectid != key.objectid ||
5549 found_key.type != key.type) {
5554 ret = process_extent(sctx, path, &found_key);
5562 btrfs_free_path(path);
5566 static int process_recorded_refs_if_needed(struct send_ctx *sctx, int at_end,
5568 int *refs_processed)
5572 if (sctx->cur_ino == 0)
5574 if (!at_end && sctx->cur_ino == sctx->cmp_key->objectid &&
5575 sctx->cmp_key->type <= BTRFS_INODE_EXTREF_KEY)
5577 if (list_empty(&sctx->new_refs) && list_empty(&sctx->deleted_refs))
5580 ret = process_recorded_refs(sctx, pending_move);
5584 *refs_processed = 1;
5589 static int finish_inode_if_needed(struct send_ctx *sctx, int at_end)
5600 int pending_move = 0;
5601 int refs_processed = 0;
5603 ret = process_recorded_refs_if_needed(sctx, at_end, &pending_move,
5609 * We have processed the refs and thus need to advance send_progress.
5610 * Now, calls to get_cur_xxx will take the updated refs of the current
5611 * inode into account.
5613 * On the other hand, if our current inode is a directory and couldn't
5614 * be moved/renamed because its parent was renamed/moved too and it has
5615 * a higher inode number, we can only move/rename our current inode
5616 * after we moved/renamed its parent. Therefore in this case operate on
5617 * the old path (pre move/rename) of our current inode, and the
5618 * move/rename will be performed later.
5620 if (refs_processed && !pending_move)
5621 sctx->send_progress = sctx->cur_ino + 1;
5623 if (sctx->cur_ino == 0 || sctx->cur_inode_deleted)
5625 if (!at_end && sctx->cmp_key->objectid == sctx->cur_ino)
5628 ret = get_inode_info(sctx->send_root, sctx->cur_ino, NULL, NULL,
5629 &left_mode, &left_uid, &left_gid, NULL);
5633 if (!sctx->parent_root || sctx->cur_inode_new) {
5635 if (!S_ISLNK(sctx->cur_inode_mode))
5638 ret = get_inode_info(sctx->parent_root, sctx->cur_ino,
5639 NULL, NULL, &right_mode, &right_uid,
5644 if (left_uid != right_uid || left_gid != right_gid)
5646 if (!S_ISLNK(sctx->cur_inode_mode) && left_mode != right_mode)
5650 if (S_ISREG(sctx->cur_inode_mode)) {
5651 if (need_send_hole(sctx)) {
5652 if (sctx->cur_inode_last_extent == (u64)-1 ||
5653 sctx->cur_inode_last_extent <
5654 sctx->cur_inode_size) {
5655 ret = get_last_extent(sctx, (u64)-1);
5659 if (sctx->cur_inode_last_extent <
5660 sctx->cur_inode_size) {
5661 ret = send_hole(sctx, sctx->cur_inode_size);
5666 ret = send_truncate(sctx, sctx->cur_ino, sctx->cur_inode_gen,
5667 sctx->cur_inode_size);
5673 ret = send_chown(sctx, sctx->cur_ino, sctx->cur_inode_gen,
5674 left_uid, left_gid);
5679 ret = send_chmod(sctx, sctx->cur_ino, sctx->cur_inode_gen,
5685 ret = send_capabilities(sctx);
5690 * If other directory inodes depended on our current directory
5691 * inode's move/rename, now do their move/rename operations.
5693 if (!is_waiting_for_move(sctx, sctx->cur_ino)) {
5694 ret = apply_children_dir_moves(sctx);
5698 * Need to send that every time, no matter if it actually
5699 * changed between the two trees as we have done changes to
5700 * the inode before. If our inode is a directory and it's
5701 * waiting to be moved/renamed, we will send its utimes when
5702 * it's moved/renamed, therefore we don't need to do it here.
5704 sctx->send_progress = sctx->cur_ino + 1;
5705 ret = send_utimes(sctx, sctx->cur_ino, sctx->cur_inode_gen);
5714 static int changed_inode(struct send_ctx *sctx,
5715 enum btrfs_compare_tree_result result)
5718 struct btrfs_key *key = sctx->cmp_key;
5719 struct btrfs_inode_item *left_ii = NULL;
5720 struct btrfs_inode_item *right_ii = NULL;
5724 sctx->cur_ino = key->objectid;
5725 sctx->cur_inode_new_gen = 0;
5726 sctx->cur_inode_last_extent = (u64)-1;
5729 * Set send_progress to current inode. This will tell all get_cur_xxx
5730 * functions that the current inode's refs are not updated yet. Later,
5731 * when process_recorded_refs is finished, it is set to cur_ino + 1.
5733 sctx->send_progress = sctx->cur_ino;
5735 if (result == BTRFS_COMPARE_TREE_NEW ||
5736 result == BTRFS_COMPARE_TREE_CHANGED) {
5737 left_ii = btrfs_item_ptr(sctx->left_path->nodes[0],
5738 sctx->left_path->slots[0],
5739 struct btrfs_inode_item);
5740 left_gen = btrfs_inode_generation(sctx->left_path->nodes[0],
5743 right_ii = btrfs_item_ptr(sctx->right_path->nodes[0],
5744 sctx->right_path->slots[0],
5745 struct btrfs_inode_item);
5746 right_gen = btrfs_inode_generation(sctx->right_path->nodes[0],
5749 if (result == BTRFS_COMPARE_TREE_CHANGED) {
5750 right_ii = btrfs_item_ptr(sctx->right_path->nodes[0],
5751 sctx->right_path->slots[0],
5752 struct btrfs_inode_item);
5754 right_gen = btrfs_inode_generation(sctx->right_path->nodes[0],
5758 * The cur_ino = root dir case is special here. We can't treat
5759 * the inode as deleted+reused because it would generate a
5760 * stream that tries to delete/mkdir the root dir.
5762 if (left_gen != right_gen &&
5763 sctx->cur_ino != BTRFS_FIRST_FREE_OBJECTID)
5764 sctx->cur_inode_new_gen = 1;
5767 if (result == BTRFS_COMPARE_TREE_NEW) {
5768 sctx->cur_inode_gen = left_gen;
5769 sctx->cur_inode_new = 1;
5770 sctx->cur_inode_deleted = 0;
5771 sctx->cur_inode_size = btrfs_inode_size(
5772 sctx->left_path->nodes[0], left_ii);
5773 sctx->cur_inode_mode = btrfs_inode_mode(
5774 sctx->left_path->nodes[0], left_ii);
5775 sctx->cur_inode_rdev = btrfs_inode_rdev(
5776 sctx->left_path->nodes[0], left_ii);
5777 if (sctx->cur_ino != BTRFS_FIRST_FREE_OBJECTID)
5778 ret = send_create_inode_if_needed(sctx);
5779 } else if (result == BTRFS_COMPARE_TREE_DELETED) {
5780 sctx->cur_inode_gen = right_gen;
5781 sctx->cur_inode_new = 0;
5782 sctx->cur_inode_deleted = 1;
5783 sctx->cur_inode_size = btrfs_inode_size(
5784 sctx->right_path->nodes[0], right_ii);
5785 sctx->cur_inode_mode = btrfs_inode_mode(
5786 sctx->right_path->nodes[0], right_ii);
5787 } else if (result == BTRFS_COMPARE_TREE_CHANGED) {
5789 * We need to do some special handling in case the inode was
5790 * reported as changed with a changed generation number. This
5791 * means that the original inode was deleted and new inode
5792 * reused the same inum. So we have to treat the old inode as
5793 * deleted and the new one as new.
5795 if (sctx->cur_inode_new_gen) {
5797 * First, process the inode as if it was deleted.
5799 sctx->cur_inode_gen = right_gen;
5800 sctx->cur_inode_new = 0;
5801 sctx->cur_inode_deleted = 1;
5802 sctx->cur_inode_size = btrfs_inode_size(
5803 sctx->right_path->nodes[0], right_ii);
5804 sctx->cur_inode_mode = btrfs_inode_mode(
5805 sctx->right_path->nodes[0], right_ii);
5806 ret = process_all_refs(sctx,
5807 BTRFS_COMPARE_TREE_DELETED);
5812 * Now process the inode as if it was new.
5814 sctx->cur_inode_gen = left_gen;
5815 sctx->cur_inode_new = 1;
5816 sctx->cur_inode_deleted = 0;
5817 sctx->cur_inode_size = btrfs_inode_size(
5818 sctx->left_path->nodes[0], left_ii);
5819 sctx->cur_inode_mode = btrfs_inode_mode(
5820 sctx->left_path->nodes[0], left_ii);
5821 sctx->cur_inode_rdev = btrfs_inode_rdev(
5822 sctx->left_path->nodes[0], left_ii);
5823 ret = send_create_inode_if_needed(sctx);
5827 ret = process_all_refs(sctx, BTRFS_COMPARE_TREE_NEW);
5831 * Advance send_progress now as we did not get into
5832 * process_recorded_refs_if_needed in the new_gen case.
5834 sctx->send_progress = sctx->cur_ino + 1;
5837 * Now process all extents and xattrs of the inode as if
5838 * they were all new.
5840 ret = process_all_extents(sctx);
5843 ret = process_all_new_xattrs(sctx);
5847 sctx->cur_inode_gen = left_gen;
5848 sctx->cur_inode_new = 0;
5849 sctx->cur_inode_new_gen = 0;
5850 sctx->cur_inode_deleted = 0;
5851 sctx->cur_inode_size = btrfs_inode_size(
5852 sctx->left_path->nodes[0], left_ii);
5853 sctx->cur_inode_mode = btrfs_inode_mode(
5854 sctx->left_path->nodes[0], left_ii);
5863 * We have to process new refs before deleted refs, but compare_trees gives us
5864 * the new and deleted refs mixed. To fix this, we record the new/deleted refs
5865 * first and later process them in process_recorded_refs.
5866 * For the cur_inode_new_gen case, we skip recording completely because
5867 * changed_inode did already initiate processing of refs. The reason for this is
5868 * that in this case, compare_tree actually compares the refs of 2 different
5869 * inodes. To fix this, process_all_refs is used in changed_inode to handle all
5870 * refs of the right tree as deleted and all refs of the left tree as new.
5872 static int changed_ref(struct send_ctx *sctx,
5873 enum btrfs_compare_tree_result result)
5877 if (sctx->cur_ino != sctx->cmp_key->objectid) {
5878 inconsistent_snapshot_error(sctx, result, "reference");
5882 if (!sctx->cur_inode_new_gen &&
5883 sctx->cur_ino != BTRFS_FIRST_FREE_OBJECTID) {
5884 if (result == BTRFS_COMPARE_TREE_NEW)
5885 ret = record_new_ref(sctx);
5886 else if (result == BTRFS_COMPARE_TREE_DELETED)
5887 ret = record_deleted_ref(sctx);
5888 else if (result == BTRFS_COMPARE_TREE_CHANGED)
5889 ret = record_changed_ref(sctx);
5896 * Process new/deleted/changed xattrs. We skip processing in the
5897 * cur_inode_new_gen case because changed_inode did already initiate processing
5898 * of xattrs. The reason is the same as in changed_ref
5900 static int changed_xattr(struct send_ctx *sctx,
5901 enum btrfs_compare_tree_result result)
5905 if (sctx->cur_ino != sctx->cmp_key->objectid) {
5906 inconsistent_snapshot_error(sctx, result, "xattr");
5910 if (!sctx->cur_inode_new_gen && !sctx->cur_inode_deleted) {
5911 if (result == BTRFS_COMPARE_TREE_NEW)
5912 ret = process_new_xattr(sctx);
5913 else if (result == BTRFS_COMPARE_TREE_DELETED)
5914 ret = process_deleted_xattr(sctx);
5915 else if (result == BTRFS_COMPARE_TREE_CHANGED)
5916 ret = process_changed_xattr(sctx);
5923 * Process new/deleted/changed extents. We skip processing in the
5924 * cur_inode_new_gen case because changed_inode did already initiate processing
5925 * of extents. The reason is the same as in changed_ref
5927 static int changed_extent(struct send_ctx *sctx,
5928 enum btrfs_compare_tree_result result)
5933 * We have found an extent item that changed without the inode item
5934 * having changed. This can happen either after relocation (where the
5935 * disk_bytenr of an extent item is replaced at
5936 * relocation.c:replace_file_extents()) or after deduplication into a
5937 * file in both the parent and send snapshots (where an extent item can
5938 * get modified or replaced with a new one). Note that deduplication
5939 * updates the inode item, but it only changes the iversion (sequence
5940 * field in the inode item) of the inode, so if a file is deduplicated
5941 * the same amount of times in both the parent and send snapshots, its
5942 * iversion becames the same in both snapshots, whence the inode item is
5943 * the same on both snapshots.
5945 if (sctx->cur_ino != sctx->cmp_key->objectid)
5948 if (!sctx->cur_inode_new_gen && !sctx->cur_inode_deleted) {
5949 if (result != BTRFS_COMPARE_TREE_DELETED)
5950 ret = process_extent(sctx, sctx->left_path,
5957 static int dir_changed(struct send_ctx *sctx, u64 dir)
5959 u64 orig_gen, new_gen;
5962 ret = get_inode_info(sctx->send_root, dir, NULL, &new_gen, NULL, NULL,
5967 ret = get_inode_info(sctx->parent_root, dir, NULL, &orig_gen, NULL,
5972 return (orig_gen != new_gen) ? 1 : 0;
5975 static int compare_refs(struct send_ctx *sctx, struct btrfs_path *path,
5976 struct btrfs_key *key)
5978 struct btrfs_inode_extref *extref;
5979 struct extent_buffer *leaf;
5980 u64 dirid = 0, last_dirid = 0;
5987 /* Easy case, just check this one dirid */
5988 if (key->type == BTRFS_INODE_REF_KEY) {
5989 dirid = key->offset;
5991 ret = dir_changed(sctx, dirid);
5995 leaf = path->nodes[0];
5996 item_size = btrfs_item_size_nr(leaf, path->slots[0]);
5997 ptr = btrfs_item_ptr_offset(leaf, path->slots[0]);
5998 while (cur_offset < item_size) {
5999 extref = (struct btrfs_inode_extref *)(ptr +
6001 dirid = btrfs_inode_extref_parent(leaf, extref);
6002 ref_name_len = btrfs_inode_extref_name_len(leaf, extref);
6003 cur_offset += ref_name_len + sizeof(*extref);
6004 if (dirid == last_dirid)
6006 ret = dir_changed(sctx, dirid);
6016 * Updates compare related fields in sctx and simply forwards to the actual
6017 * changed_xxx functions.
6019 static int changed_cb(struct btrfs_root *left_root,
6020 struct btrfs_root *right_root,
6021 struct btrfs_path *left_path,
6022 struct btrfs_path *right_path,
6023 struct btrfs_key *key,
6024 enum btrfs_compare_tree_result result,
6028 struct send_ctx *sctx = ctx;
6030 if (result == BTRFS_COMPARE_TREE_SAME) {
6031 if (key->type == BTRFS_INODE_REF_KEY ||
6032 key->type == BTRFS_INODE_EXTREF_KEY) {
6033 ret = compare_refs(sctx, left_path, key);
6038 } else if (key->type == BTRFS_EXTENT_DATA_KEY) {
6039 return maybe_send_hole(sctx, left_path, key);
6043 result = BTRFS_COMPARE_TREE_CHANGED;
6047 sctx->left_path = left_path;
6048 sctx->right_path = right_path;
6049 sctx->cmp_key = key;
6051 ret = finish_inode_if_needed(sctx, 0);
6055 /* Ignore non-FS objects */
6056 if (key->objectid == BTRFS_FREE_INO_OBJECTID ||
6057 key->objectid == BTRFS_FREE_SPACE_OBJECTID)
6060 if (key->type == BTRFS_INODE_ITEM_KEY)
6061 ret = changed_inode(sctx, result);
6062 else if (key->type == BTRFS_INODE_REF_KEY ||
6063 key->type == BTRFS_INODE_EXTREF_KEY)
6064 ret = changed_ref(sctx, result);
6065 else if (key->type == BTRFS_XATTR_ITEM_KEY)
6066 ret = changed_xattr(sctx, result);
6067 else if (key->type == BTRFS_EXTENT_DATA_KEY)
6068 ret = changed_extent(sctx, result);
6074 static int full_send_tree(struct send_ctx *sctx)
6077 struct btrfs_root *send_root = sctx->send_root;
6078 struct btrfs_key key;
6079 struct btrfs_key found_key;
6080 struct btrfs_path *path;
6081 struct extent_buffer *eb;
6084 path = alloc_path_for_send();
6088 key.objectid = BTRFS_FIRST_FREE_OBJECTID;
6089 key.type = BTRFS_INODE_ITEM_KEY;
6092 ret = btrfs_search_slot_for_read(send_root, &key, path, 1, 0);
6099 eb = path->nodes[0];
6100 slot = path->slots[0];
6101 btrfs_item_key_to_cpu(eb, &found_key, slot);
6103 ret = changed_cb(send_root, NULL, path, NULL,
6104 &found_key, BTRFS_COMPARE_TREE_NEW, sctx);
6108 key.objectid = found_key.objectid;
6109 key.type = found_key.type;
6110 key.offset = found_key.offset + 1;
6112 ret = btrfs_next_item(send_root, path);
6122 ret = finish_inode_if_needed(sctx, 1);
6125 btrfs_free_path(path);
6129 static int send_subvol(struct send_ctx *sctx)
6133 if (!(sctx->flags & BTRFS_SEND_FLAG_OMIT_STREAM_HEADER)) {
6134 ret = send_header(sctx);
6139 ret = send_subvol_begin(sctx);
6143 if (sctx->parent_root) {
6144 ret = btrfs_compare_trees(sctx->send_root, sctx->parent_root,
6148 ret = finish_inode_if_needed(sctx, 1);
6152 ret = full_send_tree(sctx);
6158 free_recorded_refs(sctx);
6163 * If orphan cleanup did remove any orphans from a root, it means the tree
6164 * was modified and therefore the commit root is not the same as the current
6165 * root anymore. This is a problem, because send uses the commit root and
6166 * therefore can see inode items that don't exist in the current root anymore,
6167 * and for example make calls to btrfs_iget, which will do tree lookups based
6168 * on the current root and not on the commit root. Those lookups will fail,
6169 * returning a -ESTALE error, and making send fail with that error. So make
6170 * sure a send does not see any orphans we have just removed, and that it will
6171 * see the same inodes regardless of whether a transaction commit happened
6172 * before it started (meaning that the commit root will be the same as the
6173 * current root) or not.
6175 static int ensure_commit_roots_uptodate(struct send_ctx *sctx)
6178 struct btrfs_trans_handle *trans = NULL;
6181 if (sctx->parent_root &&
6182 sctx->parent_root->node != sctx->parent_root->commit_root)
6185 for (i = 0; i < sctx->clone_roots_cnt; i++)
6186 if (sctx->clone_roots[i].root->node !=
6187 sctx->clone_roots[i].root->commit_root)
6191 return btrfs_end_transaction(trans, sctx->send_root);
6196 /* Use any root, all fs roots will get their commit roots updated. */
6198 trans = btrfs_join_transaction(sctx->send_root);
6200 return PTR_ERR(trans);
6204 return btrfs_commit_transaction(trans, sctx->send_root);
6207 static void btrfs_root_dec_send_in_progress(struct btrfs_root* root)
6209 spin_lock(&root->root_item_lock);
6210 root->send_in_progress--;
6212 * Not much left to do, we don't know why it's unbalanced and
6213 * can't blindly reset it to 0.
6215 if (root->send_in_progress < 0)
6216 btrfs_err(root->fs_info,
6217 "send_in_progres unbalanced %d root %llu",
6218 root->send_in_progress, root->root_key.objectid);
6219 spin_unlock(&root->root_item_lock);
6222 long btrfs_ioctl_send(struct file *mnt_file, void __user *arg_)
6225 struct btrfs_root *send_root;
6226 struct btrfs_root *clone_root;
6227 struct btrfs_fs_info *fs_info;
6228 struct btrfs_ioctl_send_args *arg = NULL;
6229 struct btrfs_key key;
6230 struct send_ctx *sctx = NULL;
6232 u64 *clone_sources_tmp = NULL;
6233 int clone_sources_to_rollback = 0;
6234 unsigned alloc_size;
6235 int sort_clone_roots = 0;
6238 if (!capable(CAP_SYS_ADMIN))
6241 send_root = BTRFS_I(file_inode(mnt_file))->root;
6242 fs_info = send_root->fs_info;
6245 * The subvolume must remain read-only during send, protect against
6246 * making it RW. This also protects against deletion.
6248 spin_lock(&send_root->root_item_lock);
6249 send_root->send_in_progress++;
6250 spin_unlock(&send_root->root_item_lock);
6253 * This is done when we lookup the root, it should already be complete
6254 * by the time we get here.
6256 WARN_ON(send_root->orphan_cleanup_state != ORPHAN_CLEANUP_DONE);
6259 * Userspace tools do the checks and warn the user if it's
6262 if (!btrfs_root_readonly(send_root)) {
6267 arg = memdup_user(arg_, sizeof(*arg));
6275 * Check that we don't overflow at later allocations, we request
6276 * clone_sources_count + 1 items, and compare to unsigned long inside
6279 if (arg->clone_sources_count >
6280 ULONG_MAX / sizeof(struct clone_root) - 1) {
6285 if (!access_ok(VERIFY_READ, arg->clone_sources,
6286 sizeof(*arg->clone_sources) *
6287 arg->clone_sources_count)) {
6292 if (arg->flags & ~BTRFS_SEND_FLAG_MASK) {
6297 sctx = kzalloc(sizeof(struct send_ctx), GFP_KERNEL);
6303 INIT_LIST_HEAD(&sctx->new_refs);
6304 INIT_LIST_HEAD(&sctx->deleted_refs);
6305 INIT_RADIX_TREE(&sctx->name_cache, GFP_KERNEL);
6306 INIT_LIST_HEAD(&sctx->name_cache_list);
6308 sctx->flags = arg->flags;
6310 sctx->send_filp = fget(arg->send_fd);
6311 if (!sctx->send_filp) {
6316 sctx->send_root = send_root;
6318 * Unlikely but possible, if the subvolume is marked for deletion but
6319 * is slow to remove the directory entry, send can still be started
6321 if (btrfs_root_dead(sctx->send_root)) {
6326 sctx->clone_roots_cnt = arg->clone_sources_count;
6328 sctx->send_max_size = BTRFS_SEND_BUF_SIZE;
6329 sctx->send_buf = kmalloc(sctx->send_max_size, GFP_KERNEL | __GFP_NOWARN);
6330 if (!sctx->send_buf) {
6331 sctx->send_buf = vmalloc(sctx->send_max_size);
6332 if (!sctx->send_buf) {
6338 sctx->read_buf = kmalloc(BTRFS_SEND_READ_SIZE, GFP_KERNEL | __GFP_NOWARN);
6339 if (!sctx->read_buf) {
6340 sctx->read_buf = vmalloc(BTRFS_SEND_READ_SIZE);
6341 if (!sctx->read_buf) {
6347 sctx->pending_dir_moves = RB_ROOT;
6348 sctx->waiting_dir_moves = RB_ROOT;
6349 sctx->orphan_dirs = RB_ROOT;
6351 alloc_size = sizeof(struct clone_root) * (arg->clone_sources_count + 1);
6353 sctx->clone_roots = kzalloc(alloc_size, GFP_KERNEL | __GFP_NOWARN);
6354 if (!sctx->clone_roots) {
6355 sctx->clone_roots = vzalloc(alloc_size);
6356 if (!sctx->clone_roots) {
6362 alloc_size = arg->clone_sources_count * sizeof(*arg->clone_sources);
6364 if (arg->clone_sources_count) {
6365 clone_sources_tmp = kmalloc(alloc_size, GFP_KERNEL | __GFP_NOWARN);
6366 if (!clone_sources_tmp) {
6367 clone_sources_tmp = vmalloc(alloc_size);
6368 if (!clone_sources_tmp) {
6374 ret = copy_from_user(clone_sources_tmp, arg->clone_sources,
6381 for (i = 0; i < arg->clone_sources_count; i++) {
6382 key.objectid = clone_sources_tmp[i];
6383 key.type = BTRFS_ROOT_ITEM_KEY;
6384 key.offset = (u64)-1;
6386 index = srcu_read_lock(&fs_info->subvol_srcu);
6388 clone_root = btrfs_read_fs_root_no_name(fs_info, &key);
6389 if (IS_ERR(clone_root)) {
6390 srcu_read_unlock(&fs_info->subvol_srcu, index);
6391 ret = PTR_ERR(clone_root);
6394 spin_lock(&clone_root->root_item_lock);
6395 if (!btrfs_root_readonly(clone_root) ||
6396 btrfs_root_dead(clone_root)) {
6397 spin_unlock(&clone_root->root_item_lock);
6398 srcu_read_unlock(&fs_info->subvol_srcu, index);
6402 clone_root->send_in_progress++;
6403 spin_unlock(&clone_root->root_item_lock);
6404 srcu_read_unlock(&fs_info->subvol_srcu, index);
6406 sctx->clone_roots[i].root = clone_root;
6407 clone_sources_to_rollback = i + 1;
6409 kvfree(clone_sources_tmp);
6410 clone_sources_tmp = NULL;
6413 if (arg->parent_root) {
6414 key.objectid = arg->parent_root;
6415 key.type = BTRFS_ROOT_ITEM_KEY;
6416 key.offset = (u64)-1;
6418 index = srcu_read_lock(&fs_info->subvol_srcu);
6420 sctx->parent_root = btrfs_read_fs_root_no_name(fs_info, &key);
6421 if (IS_ERR(sctx->parent_root)) {
6422 srcu_read_unlock(&fs_info->subvol_srcu, index);
6423 ret = PTR_ERR(sctx->parent_root);
6427 spin_lock(&sctx->parent_root->root_item_lock);
6428 sctx->parent_root->send_in_progress++;
6429 if (!btrfs_root_readonly(sctx->parent_root) ||
6430 btrfs_root_dead(sctx->parent_root)) {
6431 spin_unlock(&sctx->parent_root->root_item_lock);
6432 srcu_read_unlock(&fs_info->subvol_srcu, index);
6436 spin_unlock(&sctx->parent_root->root_item_lock);
6438 srcu_read_unlock(&fs_info->subvol_srcu, index);
6442 * Clones from send_root are allowed, but only if the clone source
6443 * is behind the current send position. This is checked while searching
6444 * for possible clone sources.
6446 sctx->clone_roots[sctx->clone_roots_cnt++].root = sctx->send_root;
6448 /* We do a bsearch later */
6449 sort(sctx->clone_roots, sctx->clone_roots_cnt,
6450 sizeof(*sctx->clone_roots), __clone_root_cmp_sort,
6452 sort_clone_roots = 1;
6454 ret = ensure_commit_roots_uptodate(sctx);
6458 current->journal_info = BTRFS_SEND_TRANS_STUB;
6459 ret = send_subvol(sctx);
6460 current->journal_info = NULL;
6464 if (!(sctx->flags & BTRFS_SEND_FLAG_OMIT_END_CMD)) {
6465 ret = begin_cmd(sctx, BTRFS_SEND_C_END);
6468 ret = send_cmd(sctx);
6474 WARN_ON(sctx && !ret && !RB_EMPTY_ROOT(&sctx->pending_dir_moves));
6475 while (sctx && !RB_EMPTY_ROOT(&sctx->pending_dir_moves)) {
6477 struct pending_dir_move *pm;
6479 n = rb_first(&sctx->pending_dir_moves);
6480 pm = rb_entry(n, struct pending_dir_move, node);
6481 while (!list_empty(&pm->list)) {
6482 struct pending_dir_move *pm2;
6484 pm2 = list_first_entry(&pm->list,
6485 struct pending_dir_move, list);
6486 free_pending_move(sctx, pm2);
6488 free_pending_move(sctx, pm);
6491 WARN_ON(sctx && !ret && !RB_EMPTY_ROOT(&sctx->waiting_dir_moves));
6492 while (sctx && !RB_EMPTY_ROOT(&sctx->waiting_dir_moves)) {
6494 struct waiting_dir_move *dm;
6496 n = rb_first(&sctx->waiting_dir_moves);
6497 dm = rb_entry(n, struct waiting_dir_move, node);
6498 rb_erase(&dm->node, &sctx->waiting_dir_moves);
6502 WARN_ON(sctx && !ret && !RB_EMPTY_ROOT(&sctx->orphan_dirs));
6503 while (sctx && !RB_EMPTY_ROOT(&sctx->orphan_dirs)) {
6505 struct orphan_dir_info *odi;
6507 n = rb_first(&sctx->orphan_dirs);
6508 odi = rb_entry(n, struct orphan_dir_info, node);
6509 free_orphan_dir_info(sctx, odi);
6512 if (sort_clone_roots) {
6513 for (i = 0; i < sctx->clone_roots_cnt; i++)
6514 btrfs_root_dec_send_in_progress(
6515 sctx->clone_roots[i].root);
6517 for (i = 0; sctx && i < clone_sources_to_rollback; i++)
6518 btrfs_root_dec_send_in_progress(
6519 sctx->clone_roots[i].root);
6521 btrfs_root_dec_send_in_progress(send_root);
6523 if (sctx && !IS_ERR_OR_NULL(sctx->parent_root))
6524 btrfs_root_dec_send_in_progress(sctx->parent_root);
6527 kvfree(clone_sources_tmp);
6530 if (sctx->send_filp)
6531 fput(sctx->send_filp);
6533 kvfree(sctx->clone_roots);
6534 kvfree(sctx->send_buf);
6535 kvfree(sctx->read_buf);
6537 name_cache_free(sctx);