1 // SPDX-License-Identifier: GPL-2.0
3 * Copyright (C) 2011, 2012 STRATO. All rights reserved.
6 #include <linux/blkdev.h>
7 #include <linux/ratelimit.h>
8 #include <linux/sched/mm.h>
12 #include "ordered-data.h"
13 #include "transaction.h"
15 #include "extent_io.h"
16 #include "dev-replace.h"
17 #include "check-integrity.h"
18 #include "rcu-string.h"
22 * This is only the first step towards a full-features scrub. It reads all
23 * extent and super block and verifies the checksums. In case a bad checksum
24 * is found or the extent cannot be read, good data will be written back if
27 * Future enhancements:
28 * - In case an unrepairable extent is encountered, track which files are
29 * affected and report them
30 * - track and record media errors, throw out bad devices
31 * - add a mode to also read unallocated space
38 * the following three values only influence the performance.
39 * The last one configures the number of parallel and outstanding I/O
40 * operations. The first two values configure an upper limit for the number
41 * of (dynamically allocated) pages that are added to a bio.
43 #define SCRUB_PAGES_PER_RD_BIO 32 /* 128k per bio */
44 #define SCRUB_PAGES_PER_WR_BIO 32 /* 128k per bio */
45 #define SCRUB_BIOS_PER_SCTX 64 /* 8MB per device in flight */
48 * the following value times PAGE_SIZE needs to be large enough to match the
49 * largest node/leaf/sector size that shall be supported.
50 * Values larger than BTRFS_STRIPE_LEN are not supported.
52 #define SCRUB_MAX_PAGES_PER_BLOCK 16 /* 64k per node/leaf/sector */
54 struct scrub_recover {
56 struct btrfs_bio *bbio;
61 struct scrub_block *sblock;
63 struct btrfs_device *dev;
64 struct list_head list;
65 u64 flags; /* extent flags */
69 u64 physical_for_dev_replace;
72 unsigned int mirror_num:8;
73 unsigned int have_csum:1;
74 unsigned int io_error:1;
76 u8 csum[BTRFS_CSUM_SIZE];
78 struct scrub_recover *recover;
83 struct scrub_ctx *sctx;
84 struct btrfs_device *dev;
89 #if SCRUB_PAGES_PER_WR_BIO >= SCRUB_PAGES_PER_RD_BIO
90 struct scrub_page *pagev[SCRUB_PAGES_PER_WR_BIO];
92 struct scrub_page *pagev[SCRUB_PAGES_PER_RD_BIO];
96 struct btrfs_work work;
100 struct scrub_page *pagev[SCRUB_MAX_PAGES_PER_BLOCK];
102 atomic_t outstanding_pages;
103 refcount_t refs; /* free mem on transition to zero */
104 struct scrub_ctx *sctx;
105 struct scrub_parity *sparity;
107 unsigned int header_error:1;
108 unsigned int checksum_error:1;
109 unsigned int no_io_error_seen:1;
110 unsigned int generation_error:1; /* also sets header_error */
112 /* The following is for the data used to check parity */
113 /* It is for the data with checksum */
114 unsigned int data_corrected:1;
116 struct btrfs_work work;
119 /* Used for the chunks with parity stripe such RAID5/6 */
120 struct scrub_parity {
121 struct scrub_ctx *sctx;
123 struct btrfs_device *scrub_dev;
135 struct list_head spages;
137 /* Work of parity check and repair */
138 struct btrfs_work work;
140 /* Mark the parity blocks which have data */
141 unsigned long *dbitmap;
144 * Mark the parity blocks which have data, but errors happen when
145 * read data or check data
147 unsigned long *ebitmap;
149 unsigned long bitmap[0];
153 struct scrub_bio *bios[SCRUB_BIOS_PER_SCTX];
154 struct btrfs_fs_info *fs_info;
157 atomic_t bios_in_flight;
158 atomic_t workers_pending;
159 spinlock_t list_lock;
160 wait_queue_head_t list_wait;
162 struct list_head csum_list;
165 int pages_per_rd_bio;
169 struct scrub_bio *wr_curr_bio;
170 struct mutex wr_lock;
171 int pages_per_wr_bio; /* <= SCRUB_PAGES_PER_WR_BIO */
172 struct btrfs_device *wr_tgtdev;
173 bool flush_all_writes;
178 struct btrfs_scrub_progress stat;
179 spinlock_t stat_lock;
182 * Use a ref counter to avoid use-after-free issues. Scrub workers
183 * decrement bios_in_flight and workers_pending and then do a wakeup
184 * on the list_wait wait queue. We must ensure the main scrub task
185 * doesn't free the scrub context before or while the workers are
186 * doing the wakeup() call.
191 struct scrub_warning {
192 struct btrfs_path *path;
193 u64 extent_item_size;
197 struct btrfs_device *dev;
200 struct full_stripe_lock {
207 static void scrub_pending_bio_inc(struct scrub_ctx *sctx);
208 static void scrub_pending_bio_dec(struct scrub_ctx *sctx);
209 static int scrub_handle_errored_block(struct scrub_block *sblock_to_check);
210 static int scrub_setup_recheck_block(struct scrub_block *original_sblock,
211 struct scrub_block *sblocks_for_recheck);
212 static void scrub_recheck_block(struct btrfs_fs_info *fs_info,
213 struct scrub_block *sblock,
214 int retry_failed_mirror);
215 static void scrub_recheck_block_checksum(struct scrub_block *sblock);
216 static int scrub_repair_block_from_good_copy(struct scrub_block *sblock_bad,
217 struct scrub_block *sblock_good);
218 static int scrub_repair_page_from_good_copy(struct scrub_block *sblock_bad,
219 struct scrub_block *sblock_good,
220 int page_num, int force_write);
221 static void scrub_write_block_to_dev_replace(struct scrub_block *sblock);
222 static int scrub_write_page_to_dev_replace(struct scrub_block *sblock,
224 static int scrub_checksum_data(struct scrub_block *sblock);
225 static int scrub_checksum_tree_block(struct scrub_block *sblock);
226 static int scrub_checksum_super(struct scrub_block *sblock);
227 static void scrub_block_get(struct scrub_block *sblock);
228 static void scrub_block_put(struct scrub_block *sblock);
229 static void scrub_page_get(struct scrub_page *spage);
230 static void scrub_page_put(struct scrub_page *spage);
231 static void scrub_parity_get(struct scrub_parity *sparity);
232 static void scrub_parity_put(struct scrub_parity *sparity);
233 static int scrub_add_page_to_rd_bio(struct scrub_ctx *sctx,
234 struct scrub_page *spage);
235 static int scrub_pages(struct scrub_ctx *sctx, u64 logical, u64 len,
236 u64 physical, struct btrfs_device *dev, u64 flags,
237 u64 gen, int mirror_num, u8 *csum, int force,
238 u64 physical_for_dev_replace);
239 static void scrub_bio_end_io(struct bio *bio);
240 static void scrub_bio_end_io_worker(struct btrfs_work *work);
241 static void scrub_block_complete(struct scrub_block *sblock);
242 static void scrub_remap_extent(struct btrfs_fs_info *fs_info,
243 u64 extent_logical, u64 extent_len,
244 u64 *extent_physical,
245 struct btrfs_device **extent_dev,
246 int *extent_mirror_num);
247 static int scrub_add_page_to_wr_bio(struct scrub_ctx *sctx,
248 struct scrub_page *spage);
249 static void scrub_wr_submit(struct scrub_ctx *sctx);
250 static void scrub_wr_bio_end_io(struct bio *bio);
251 static void scrub_wr_bio_end_io_worker(struct btrfs_work *work);
252 static void __scrub_blocked_if_needed(struct btrfs_fs_info *fs_info);
253 static void scrub_blocked_if_needed(struct btrfs_fs_info *fs_info);
254 static void scrub_put_ctx(struct scrub_ctx *sctx);
256 static inline int scrub_is_page_on_raid56(struct scrub_page *page)
258 return page->recover &&
259 (page->recover->bbio->map_type & BTRFS_BLOCK_GROUP_RAID56_MASK);
262 static void scrub_pending_bio_inc(struct scrub_ctx *sctx)
264 refcount_inc(&sctx->refs);
265 atomic_inc(&sctx->bios_in_flight);
268 static void scrub_pending_bio_dec(struct scrub_ctx *sctx)
270 atomic_dec(&sctx->bios_in_flight);
271 wake_up(&sctx->list_wait);
275 static void __scrub_blocked_if_needed(struct btrfs_fs_info *fs_info)
277 while (atomic_read(&fs_info->scrub_pause_req)) {
278 mutex_unlock(&fs_info->scrub_lock);
279 wait_event(fs_info->scrub_pause_wait,
280 atomic_read(&fs_info->scrub_pause_req) == 0);
281 mutex_lock(&fs_info->scrub_lock);
285 static void scrub_pause_on(struct btrfs_fs_info *fs_info)
287 atomic_inc(&fs_info->scrubs_paused);
288 wake_up(&fs_info->scrub_pause_wait);
291 static void scrub_pause_off(struct btrfs_fs_info *fs_info)
293 mutex_lock(&fs_info->scrub_lock);
294 __scrub_blocked_if_needed(fs_info);
295 atomic_dec(&fs_info->scrubs_paused);
296 mutex_unlock(&fs_info->scrub_lock);
298 wake_up(&fs_info->scrub_pause_wait);
301 static void scrub_blocked_if_needed(struct btrfs_fs_info *fs_info)
303 scrub_pause_on(fs_info);
304 scrub_pause_off(fs_info);
308 * Insert new full stripe lock into full stripe locks tree
310 * Return pointer to existing or newly inserted full_stripe_lock structure if
311 * everything works well.
312 * Return ERR_PTR(-ENOMEM) if we failed to allocate memory
314 * NOTE: caller must hold full_stripe_locks_root->lock before calling this
317 static struct full_stripe_lock *insert_full_stripe_lock(
318 struct btrfs_full_stripe_locks_tree *locks_root,
322 struct rb_node *parent = NULL;
323 struct full_stripe_lock *entry;
324 struct full_stripe_lock *ret;
325 unsigned int nofs_flag;
327 lockdep_assert_held(&locks_root->lock);
329 p = &locks_root->root.rb_node;
332 entry = rb_entry(parent, struct full_stripe_lock, node);
333 if (fstripe_logical < entry->logical) {
335 } else if (fstripe_logical > entry->logical) {
346 * We must use GFP_NOFS because the scrub task might be waiting for a
347 * worker task executing this function and in turn a transaction commit
348 * might be waiting the scrub task to pause (which needs to wait for all
349 * the worker tasks to complete before pausing).
351 nofs_flag = memalloc_nofs_save();
352 ret = kmalloc(sizeof(*ret), GFP_KERNEL);
353 memalloc_nofs_restore(nofs_flag);
355 return ERR_PTR(-ENOMEM);
356 ret->logical = fstripe_logical;
358 mutex_init(&ret->mutex);
360 rb_link_node(&ret->node, parent, p);
361 rb_insert_color(&ret->node, &locks_root->root);
366 * Search for a full stripe lock of a block group
368 * Return pointer to existing full stripe lock if found
369 * Return NULL if not found
371 static struct full_stripe_lock *search_full_stripe_lock(
372 struct btrfs_full_stripe_locks_tree *locks_root,
375 struct rb_node *node;
376 struct full_stripe_lock *entry;
378 lockdep_assert_held(&locks_root->lock);
380 node = locks_root->root.rb_node;
382 entry = rb_entry(node, struct full_stripe_lock, node);
383 if (fstripe_logical < entry->logical)
384 node = node->rb_left;
385 else if (fstripe_logical > entry->logical)
386 node = node->rb_right;
394 * Helper to get full stripe logical from a normal bytenr.
396 * Caller must ensure @cache is a RAID56 block group.
398 static u64 get_full_stripe_logical(struct btrfs_block_group_cache *cache,
404 * Due to chunk item size limit, full stripe length should not be
405 * larger than U32_MAX. Just a sanity check here.
407 WARN_ON_ONCE(cache->full_stripe_len >= U32_MAX);
410 * round_down() can only handle power of 2, while RAID56 full
411 * stripe length can be 64KiB * n, so we need to manually round down.
413 ret = div64_u64(bytenr - cache->key.objectid, cache->full_stripe_len) *
414 cache->full_stripe_len + cache->key.objectid;
419 * Lock a full stripe to avoid concurrency of recovery and read
421 * It's only used for profiles with parities (RAID5/6), for other profiles it
424 * Return 0 if we locked full stripe covering @bytenr, with a mutex held.
425 * So caller must call unlock_full_stripe() at the same context.
427 * Return <0 if encounters error.
429 static int lock_full_stripe(struct btrfs_fs_info *fs_info, u64 bytenr,
432 struct btrfs_block_group_cache *bg_cache;
433 struct btrfs_full_stripe_locks_tree *locks_root;
434 struct full_stripe_lock *existing;
439 bg_cache = btrfs_lookup_block_group(fs_info, bytenr);
445 /* Profiles not based on parity don't need full stripe lock */
446 if (!(bg_cache->flags & BTRFS_BLOCK_GROUP_RAID56_MASK))
448 locks_root = &bg_cache->full_stripe_locks_root;
450 fstripe_start = get_full_stripe_logical(bg_cache, bytenr);
452 /* Now insert the full stripe lock */
453 mutex_lock(&locks_root->lock);
454 existing = insert_full_stripe_lock(locks_root, fstripe_start);
455 mutex_unlock(&locks_root->lock);
456 if (IS_ERR(existing)) {
457 ret = PTR_ERR(existing);
460 mutex_lock(&existing->mutex);
463 btrfs_put_block_group(bg_cache);
468 * Unlock a full stripe.
470 * NOTE: Caller must ensure it's the same context calling corresponding
471 * lock_full_stripe().
473 * Return 0 if we unlock full stripe without problem.
474 * Return <0 for error
476 static int unlock_full_stripe(struct btrfs_fs_info *fs_info, u64 bytenr,
479 struct btrfs_block_group_cache *bg_cache;
480 struct btrfs_full_stripe_locks_tree *locks_root;
481 struct full_stripe_lock *fstripe_lock;
486 /* If we didn't acquire full stripe lock, no need to continue */
490 bg_cache = btrfs_lookup_block_group(fs_info, bytenr);
495 if (!(bg_cache->flags & BTRFS_BLOCK_GROUP_RAID56_MASK))
498 locks_root = &bg_cache->full_stripe_locks_root;
499 fstripe_start = get_full_stripe_logical(bg_cache, bytenr);
501 mutex_lock(&locks_root->lock);
502 fstripe_lock = search_full_stripe_lock(locks_root, fstripe_start);
503 /* Unpaired unlock_full_stripe() detected */
507 mutex_unlock(&locks_root->lock);
511 if (fstripe_lock->refs == 0) {
513 btrfs_warn(fs_info, "full stripe lock at %llu refcount underflow",
514 fstripe_lock->logical);
516 fstripe_lock->refs--;
519 if (fstripe_lock->refs == 0) {
520 rb_erase(&fstripe_lock->node, &locks_root->root);
523 mutex_unlock(&locks_root->lock);
525 mutex_unlock(&fstripe_lock->mutex);
529 btrfs_put_block_group(bg_cache);
533 static void scrub_free_csums(struct scrub_ctx *sctx)
535 while (!list_empty(&sctx->csum_list)) {
536 struct btrfs_ordered_sum *sum;
537 sum = list_first_entry(&sctx->csum_list,
538 struct btrfs_ordered_sum, list);
539 list_del(&sum->list);
544 static noinline_for_stack void scrub_free_ctx(struct scrub_ctx *sctx)
551 /* this can happen when scrub is cancelled */
552 if (sctx->curr != -1) {
553 struct scrub_bio *sbio = sctx->bios[sctx->curr];
555 for (i = 0; i < sbio->page_count; i++) {
556 WARN_ON(!sbio->pagev[i]->page);
557 scrub_block_put(sbio->pagev[i]->sblock);
562 for (i = 0; i < SCRUB_BIOS_PER_SCTX; ++i) {
563 struct scrub_bio *sbio = sctx->bios[i];
570 kfree(sctx->wr_curr_bio);
571 scrub_free_csums(sctx);
575 static void scrub_put_ctx(struct scrub_ctx *sctx)
577 if (refcount_dec_and_test(&sctx->refs))
578 scrub_free_ctx(sctx);
581 static noinline_for_stack struct scrub_ctx *scrub_setup_ctx(
582 struct btrfs_fs_info *fs_info, int is_dev_replace)
584 struct scrub_ctx *sctx;
587 sctx = kzalloc(sizeof(*sctx), GFP_KERNEL);
590 refcount_set(&sctx->refs, 1);
591 sctx->is_dev_replace = is_dev_replace;
592 sctx->pages_per_rd_bio = SCRUB_PAGES_PER_RD_BIO;
594 sctx->fs_info = fs_info;
595 INIT_LIST_HEAD(&sctx->csum_list);
596 for (i = 0; i < SCRUB_BIOS_PER_SCTX; ++i) {
597 struct scrub_bio *sbio;
599 sbio = kzalloc(sizeof(*sbio), GFP_KERNEL);
602 sctx->bios[i] = sbio;
606 sbio->page_count = 0;
607 btrfs_init_work(&sbio->work, btrfs_scrub_helper,
608 scrub_bio_end_io_worker, NULL, NULL);
610 if (i != SCRUB_BIOS_PER_SCTX - 1)
611 sctx->bios[i]->next_free = i + 1;
613 sctx->bios[i]->next_free = -1;
615 sctx->first_free = 0;
616 atomic_set(&sctx->bios_in_flight, 0);
617 atomic_set(&sctx->workers_pending, 0);
618 atomic_set(&sctx->cancel_req, 0);
619 sctx->csum_size = btrfs_super_csum_size(fs_info->super_copy);
621 spin_lock_init(&sctx->list_lock);
622 spin_lock_init(&sctx->stat_lock);
623 init_waitqueue_head(&sctx->list_wait);
625 WARN_ON(sctx->wr_curr_bio != NULL);
626 mutex_init(&sctx->wr_lock);
627 sctx->wr_curr_bio = NULL;
628 if (is_dev_replace) {
629 WARN_ON(!fs_info->dev_replace.tgtdev);
630 sctx->pages_per_wr_bio = SCRUB_PAGES_PER_WR_BIO;
631 sctx->wr_tgtdev = fs_info->dev_replace.tgtdev;
632 sctx->flush_all_writes = false;
638 scrub_free_ctx(sctx);
639 return ERR_PTR(-ENOMEM);
642 static int scrub_print_warning_inode(u64 inum, u64 offset, u64 root,
650 struct extent_buffer *eb;
651 struct btrfs_inode_item *inode_item;
652 struct scrub_warning *swarn = warn_ctx;
653 struct btrfs_fs_info *fs_info = swarn->dev->fs_info;
654 struct inode_fs_paths *ipath = NULL;
655 struct btrfs_root *local_root;
656 struct btrfs_key root_key;
657 struct btrfs_key key;
659 root_key.objectid = root;
660 root_key.type = BTRFS_ROOT_ITEM_KEY;
661 root_key.offset = (u64)-1;
662 local_root = btrfs_read_fs_root_no_name(fs_info, &root_key);
663 if (IS_ERR(local_root)) {
664 ret = PTR_ERR(local_root);
669 * this makes the path point to (inum INODE_ITEM ioff)
672 key.type = BTRFS_INODE_ITEM_KEY;
675 ret = btrfs_search_slot(NULL, local_root, &key, swarn->path, 0, 0);
677 btrfs_release_path(swarn->path);
681 eb = swarn->path->nodes[0];
682 inode_item = btrfs_item_ptr(eb, swarn->path->slots[0],
683 struct btrfs_inode_item);
684 isize = btrfs_inode_size(eb, inode_item);
685 nlink = btrfs_inode_nlink(eb, inode_item);
686 btrfs_release_path(swarn->path);
689 * init_path might indirectly call vmalloc, or use GFP_KERNEL. Scrub
690 * uses GFP_NOFS in this context, so we keep it consistent but it does
691 * not seem to be strictly necessary.
693 nofs_flag = memalloc_nofs_save();
694 ipath = init_ipath(4096, local_root, swarn->path);
695 memalloc_nofs_restore(nofs_flag);
697 ret = PTR_ERR(ipath);
701 ret = paths_from_inode(inum, ipath);
707 * we deliberately ignore the bit ipath might have been too small to
708 * hold all of the paths here
710 for (i = 0; i < ipath->fspath->elem_cnt; ++i)
711 btrfs_warn_in_rcu(fs_info,
712 "%s at logical %llu on dev %s, physical %llu, root %llu, inode %llu, offset %llu, length %llu, links %u (path: %s)",
713 swarn->errstr, swarn->logical,
714 rcu_str_deref(swarn->dev->name),
717 min(isize - offset, (u64)PAGE_SIZE), nlink,
718 (char *)(unsigned long)ipath->fspath->val[i]);
724 btrfs_warn_in_rcu(fs_info,
725 "%s at logical %llu on dev %s, physical %llu, root %llu, inode %llu, offset %llu: path resolving failed with ret=%d",
726 swarn->errstr, swarn->logical,
727 rcu_str_deref(swarn->dev->name),
729 root, inum, offset, ret);
735 static void scrub_print_warning(const char *errstr, struct scrub_block *sblock)
737 struct btrfs_device *dev;
738 struct btrfs_fs_info *fs_info;
739 struct btrfs_path *path;
740 struct btrfs_key found_key;
741 struct extent_buffer *eb;
742 struct btrfs_extent_item *ei;
743 struct scrub_warning swarn;
744 unsigned long ptr = 0;
752 WARN_ON(sblock->page_count < 1);
753 dev = sblock->pagev[0]->dev;
754 fs_info = sblock->sctx->fs_info;
756 path = btrfs_alloc_path();
760 swarn.physical = sblock->pagev[0]->physical;
761 swarn.logical = sblock->pagev[0]->logical;
762 swarn.errstr = errstr;
765 ret = extent_from_logical(fs_info, swarn.logical, path, &found_key,
770 extent_item_pos = swarn.logical - found_key.objectid;
771 swarn.extent_item_size = found_key.offset;
774 ei = btrfs_item_ptr(eb, path->slots[0], struct btrfs_extent_item);
775 item_size = btrfs_item_size_nr(eb, path->slots[0]);
777 if (flags & BTRFS_EXTENT_FLAG_TREE_BLOCK) {
779 ret = tree_backref_for_extent(&ptr, eb, &found_key, ei,
780 item_size, &ref_root,
782 btrfs_warn_in_rcu(fs_info,
783 "%s at logical %llu on dev %s, physical %llu: metadata %s (level %d) in tree %llu",
784 errstr, swarn.logical,
785 rcu_str_deref(dev->name),
787 ref_level ? "node" : "leaf",
788 ret < 0 ? -1 : ref_level,
789 ret < 0 ? -1 : ref_root);
791 btrfs_release_path(path);
793 btrfs_release_path(path);
796 iterate_extent_inodes(fs_info, found_key.objectid,
798 scrub_print_warning_inode, &swarn, false);
802 btrfs_free_path(path);
805 static inline void scrub_get_recover(struct scrub_recover *recover)
807 refcount_inc(&recover->refs);
810 static inline void scrub_put_recover(struct btrfs_fs_info *fs_info,
811 struct scrub_recover *recover)
813 if (refcount_dec_and_test(&recover->refs)) {
814 btrfs_bio_counter_dec(fs_info);
815 btrfs_put_bbio(recover->bbio);
821 * scrub_handle_errored_block gets called when either verification of the
822 * pages failed or the bio failed to read, e.g. with EIO. In the latter
823 * case, this function handles all pages in the bio, even though only one
825 * The goal of this function is to repair the errored block by using the
826 * contents of one of the mirrors.
828 static int scrub_handle_errored_block(struct scrub_block *sblock_to_check)
830 struct scrub_ctx *sctx = sblock_to_check->sctx;
831 struct btrfs_device *dev;
832 struct btrfs_fs_info *fs_info;
834 unsigned int failed_mirror_index;
835 unsigned int is_metadata;
836 unsigned int have_csum;
837 struct scrub_block *sblocks_for_recheck; /* holds one for each mirror */
838 struct scrub_block *sblock_bad;
843 bool full_stripe_locked;
844 static DEFINE_RATELIMIT_STATE(_rs, DEFAULT_RATELIMIT_INTERVAL,
845 DEFAULT_RATELIMIT_BURST);
847 BUG_ON(sblock_to_check->page_count < 1);
848 fs_info = sctx->fs_info;
849 if (sblock_to_check->pagev[0]->flags & BTRFS_EXTENT_FLAG_SUPER) {
851 * if we find an error in a super block, we just report it.
852 * They will get written with the next transaction commit
855 spin_lock(&sctx->stat_lock);
856 ++sctx->stat.super_errors;
857 spin_unlock(&sctx->stat_lock);
860 logical = sblock_to_check->pagev[0]->logical;
861 BUG_ON(sblock_to_check->pagev[0]->mirror_num < 1);
862 failed_mirror_index = sblock_to_check->pagev[0]->mirror_num - 1;
863 is_metadata = !(sblock_to_check->pagev[0]->flags &
864 BTRFS_EXTENT_FLAG_DATA);
865 have_csum = sblock_to_check->pagev[0]->have_csum;
866 dev = sblock_to_check->pagev[0]->dev;
869 * For RAID5/6, race can happen for a different device scrub thread.
870 * For data corruption, Parity and Data threads will both try
871 * to recovery the data.
872 * Race can lead to doubly added csum error, or even unrecoverable
875 ret = lock_full_stripe(fs_info, logical, &full_stripe_locked);
877 spin_lock(&sctx->stat_lock);
879 sctx->stat.malloc_errors++;
880 sctx->stat.read_errors++;
881 sctx->stat.uncorrectable_errors++;
882 spin_unlock(&sctx->stat_lock);
887 * read all mirrors one after the other. This includes to
888 * re-read the extent or metadata block that failed (that was
889 * the cause that this fixup code is called) another time,
890 * page by page this time in order to know which pages
891 * caused I/O errors and which ones are good (for all mirrors).
892 * It is the goal to handle the situation when more than one
893 * mirror contains I/O errors, but the errors do not
894 * overlap, i.e. the data can be repaired by selecting the
895 * pages from those mirrors without I/O error on the
896 * particular pages. One example (with blocks >= 2 * PAGE_SIZE)
897 * would be that mirror #1 has an I/O error on the first page,
898 * the second page is good, and mirror #2 has an I/O error on
899 * the second page, but the first page is good.
900 * Then the first page of the first mirror can be repaired by
901 * taking the first page of the second mirror, and the
902 * second page of the second mirror can be repaired by
903 * copying the contents of the 2nd page of the 1st mirror.
904 * One more note: if the pages of one mirror contain I/O
905 * errors, the checksum cannot be verified. In order to get
906 * the best data for repairing, the first attempt is to find
907 * a mirror without I/O errors and with a validated checksum.
908 * Only if this is not possible, the pages are picked from
909 * mirrors with I/O errors without considering the checksum.
910 * If the latter is the case, at the end, the checksum of the
911 * repaired area is verified in order to correctly maintain
915 sblocks_for_recheck = kcalloc(BTRFS_MAX_MIRRORS,
916 sizeof(*sblocks_for_recheck), GFP_NOFS);
917 if (!sblocks_for_recheck) {
918 spin_lock(&sctx->stat_lock);
919 sctx->stat.malloc_errors++;
920 sctx->stat.read_errors++;
921 sctx->stat.uncorrectable_errors++;
922 spin_unlock(&sctx->stat_lock);
923 btrfs_dev_stat_inc_and_print(dev, BTRFS_DEV_STAT_READ_ERRS);
927 /* setup the context, map the logical blocks and alloc the pages */
928 ret = scrub_setup_recheck_block(sblock_to_check, sblocks_for_recheck);
930 spin_lock(&sctx->stat_lock);
931 sctx->stat.read_errors++;
932 sctx->stat.uncorrectable_errors++;
933 spin_unlock(&sctx->stat_lock);
934 btrfs_dev_stat_inc_and_print(dev, BTRFS_DEV_STAT_READ_ERRS);
937 BUG_ON(failed_mirror_index >= BTRFS_MAX_MIRRORS);
938 sblock_bad = sblocks_for_recheck + failed_mirror_index;
940 /* build and submit the bios for the failed mirror, check checksums */
941 scrub_recheck_block(fs_info, sblock_bad, 1);
943 if (!sblock_bad->header_error && !sblock_bad->checksum_error &&
944 sblock_bad->no_io_error_seen) {
946 * the error disappeared after reading page by page, or
947 * the area was part of a huge bio and other parts of the
948 * bio caused I/O errors, or the block layer merged several
949 * read requests into one and the error is caused by a
950 * different bio (usually one of the two latter cases is
953 spin_lock(&sctx->stat_lock);
954 sctx->stat.unverified_errors++;
955 sblock_to_check->data_corrected = 1;
956 spin_unlock(&sctx->stat_lock);
958 if (sctx->is_dev_replace)
959 scrub_write_block_to_dev_replace(sblock_bad);
963 if (!sblock_bad->no_io_error_seen) {
964 spin_lock(&sctx->stat_lock);
965 sctx->stat.read_errors++;
966 spin_unlock(&sctx->stat_lock);
967 if (__ratelimit(&_rs))
968 scrub_print_warning("i/o error", sblock_to_check);
969 btrfs_dev_stat_inc_and_print(dev, BTRFS_DEV_STAT_READ_ERRS);
970 } else if (sblock_bad->checksum_error) {
971 spin_lock(&sctx->stat_lock);
972 sctx->stat.csum_errors++;
973 spin_unlock(&sctx->stat_lock);
974 if (__ratelimit(&_rs))
975 scrub_print_warning("checksum error", sblock_to_check);
976 btrfs_dev_stat_inc_and_print(dev,
977 BTRFS_DEV_STAT_CORRUPTION_ERRS);
978 } else if (sblock_bad->header_error) {
979 spin_lock(&sctx->stat_lock);
980 sctx->stat.verify_errors++;
981 spin_unlock(&sctx->stat_lock);
982 if (__ratelimit(&_rs))
983 scrub_print_warning("checksum/header error",
985 if (sblock_bad->generation_error)
986 btrfs_dev_stat_inc_and_print(dev,
987 BTRFS_DEV_STAT_GENERATION_ERRS);
989 btrfs_dev_stat_inc_and_print(dev,
990 BTRFS_DEV_STAT_CORRUPTION_ERRS);
993 if (sctx->readonly) {
994 ASSERT(!sctx->is_dev_replace);
999 * now build and submit the bios for the other mirrors, check
1001 * First try to pick the mirror which is completely without I/O
1002 * errors and also does not have a checksum error.
1003 * If one is found, and if a checksum is present, the full block
1004 * that is known to contain an error is rewritten. Afterwards
1005 * the block is known to be corrected.
1006 * If a mirror is found which is completely correct, and no
1007 * checksum is present, only those pages are rewritten that had
1008 * an I/O error in the block to be repaired, since it cannot be
1009 * determined, which copy of the other pages is better (and it
1010 * could happen otherwise that a correct page would be
1011 * overwritten by a bad one).
1013 for (mirror_index = 0; ;mirror_index++) {
1014 struct scrub_block *sblock_other;
1016 if (mirror_index == failed_mirror_index)
1019 /* raid56's mirror can be more than BTRFS_MAX_MIRRORS */
1020 if (!scrub_is_page_on_raid56(sblock_bad->pagev[0])) {
1021 if (mirror_index >= BTRFS_MAX_MIRRORS)
1023 if (!sblocks_for_recheck[mirror_index].page_count)
1026 sblock_other = sblocks_for_recheck + mirror_index;
1028 struct scrub_recover *r = sblock_bad->pagev[0]->recover;
1029 int max_allowed = r->bbio->num_stripes -
1030 r->bbio->num_tgtdevs;
1032 if (mirror_index >= max_allowed)
1034 if (!sblocks_for_recheck[1].page_count)
1037 ASSERT(failed_mirror_index == 0);
1038 sblock_other = sblocks_for_recheck + 1;
1039 sblock_other->pagev[0]->mirror_num = 1 + mirror_index;
1042 /* build and submit the bios, check checksums */
1043 scrub_recheck_block(fs_info, sblock_other, 0);
1045 if (!sblock_other->header_error &&
1046 !sblock_other->checksum_error &&
1047 sblock_other->no_io_error_seen) {
1048 if (sctx->is_dev_replace) {
1049 scrub_write_block_to_dev_replace(sblock_other);
1050 goto corrected_error;
1052 ret = scrub_repair_block_from_good_copy(
1053 sblock_bad, sblock_other);
1055 goto corrected_error;
1060 if (sblock_bad->no_io_error_seen && !sctx->is_dev_replace)
1061 goto did_not_correct_error;
1064 * In case of I/O errors in the area that is supposed to be
1065 * repaired, continue by picking good copies of those pages.
1066 * Select the good pages from mirrors to rewrite bad pages from
1067 * the area to fix. Afterwards verify the checksum of the block
1068 * that is supposed to be repaired. This verification step is
1069 * only done for the purpose of statistic counting and for the
1070 * final scrub report, whether errors remain.
1071 * A perfect algorithm could make use of the checksum and try
1072 * all possible combinations of pages from the different mirrors
1073 * until the checksum verification succeeds. For example, when
1074 * the 2nd page of mirror #1 faces I/O errors, and the 2nd page
1075 * of mirror #2 is readable but the final checksum test fails,
1076 * then the 2nd page of mirror #3 could be tried, whether now
1077 * the final checksum succeeds. But this would be a rare
1078 * exception and is therefore not implemented. At least it is
1079 * avoided that the good copy is overwritten.
1080 * A more useful improvement would be to pick the sectors
1081 * without I/O error based on sector sizes (512 bytes on legacy
1082 * disks) instead of on PAGE_SIZE. Then maybe 512 byte of one
1083 * mirror could be repaired by taking 512 byte of a different
1084 * mirror, even if other 512 byte sectors in the same PAGE_SIZE
1085 * area are unreadable.
1088 for (page_num = 0; page_num < sblock_bad->page_count;
1090 struct scrub_page *page_bad = sblock_bad->pagev[page_num];
1091 struct scrub_block *sblock_other = NULL;
1093 /* skip no-io-error page in scrub */
1094 if (!page_bad->io_error && !sctx->is_dev_replace)
1097 if (scrub_is_page_on_raid56(sblock_bad->pagev[0])) {
1099 * In case of dev replace, if raid56 rebuild process
1100 * didn't work out correct data, then copy the content
1101 * in sblock_bad to make sure target device is identical
1102 * to source device, instead of writing garbage data in
1103 * sblock_for_recheck array to target device.
1105 sblock_other = NULL;
1106 } else if (page_bad->io_error) {
1107 /* try to find no-io-error page in mirrors */
1108 for (mirror_index = 0;
1109 mirror_index < BTRFS_MAX_MIRRORS &&
1110 sblocks_for_recheck[mirror_index].page_count > 0;
1112 if (!sblocks_for_recheck[mirror_index].
1113 pagev[page_num]->io_error) {
1114 sblock_other = sblocks_for_recheck +
1123 if (sctx->is_dev_replace) {
1125 * did not find a mirror to fetch the page
1126 * from. scrub_write_page_to_dev_replace()
1127 * handles this case (page->io_error), by
1128 * filling the block with zeros before
1129 * submitting the write request
1132 sblock_other = sblock_bad;
1134 if (scrub_write_page_to_dev_replace(sblock_other,
1136 btrfs_dev_replace_stats_inc(
1137 &fs_info->dev_replace.num_write_errors);
1140 } else if (sblock_other) {
1141 ret = scrub_repair_page_from_good_copy(sblock_bad,
1145 page_bad->io_error = 0;
1151 if (success && !sctx->is_dev_replace) {
1152 if (is_metadata || have_csum) {
1154 * need to verify the checksum now that all
1155 * sectors on disk are repaired (the write
1156 * request for data to be repaired is on its way).
1157 * Just be lazy and use scrub_recheck_block()
1158 * which re-reads the data before the checksum
1159 * is verified, but most likely the data comes out
1160 * of the page cache.
1162 scrub_recheck_block(fs_info, sblock_bad, 1);
1163 if (!sblock_bad->header_error &&
1164 !sblock_bad->checksum_error &&
1165 sblock_bad->no_io_error_seen)
1166 goto corrected_error;
1168 goto did_not_correct_error;
1171 spin_lock(&sctx->stat_lock);
1172 sctx->stat.corrected_errors++;
1173 sblock_to_check->data_corrected = 1;
1174 spin_unlock(&sctx->stat_lock);
1175 btrfs_err_rl_in_rcu(fs_info,
1176 "fixed up error at logical %llu on dev %s",
1177 logical, rcu_str_deref(dev->name));
1180 did_not_correct_error:
1181 spin_lock(&sctx->stat_lock);
1182 sctx->stat.uncorrectable_errors++;
1183 spin_unlock(&sctx->stat_lock);
1184 btrfs_err_rl_in_rcu(fs_info,
1185 "unable to fixup (regular) error at logical %llu on dev %s",
1186 logical, rcu_str_deref(dev->name));
1190 if (sblocks_for_recheck) {
1191 for (mirror_index = 0; mirror_index < BTRFS_MAX_MIRRORS;
1193 struct scrub_block *sblock = sblocks_for_recheck +
1195 struct scrub_recover *recover;
1198 for (page_index = 0; page_index < sblock->page_count;
1200 sblock->pagev[page_index]->sblock = NULL;
1201 recover = sblock->pagev[page_index]->recover;
1203 scrub_put_recover(fs_info, recover);
1204 sblock->pagev[page_index]->recover =
1207 scrub_page_put(sblock->pagev[page_index]);
1210 kfree(sblocks_for_recheck);
1213 ret = unlock_full_stripe(fs_info, logical, full_stripe_locked);
1219 static inline int scrub_nr_raid_mirrors(struct btrfs_bio *bbio)
1221 if (bbio->map_type & BTRFS_BLOCK_GROUP_RAID5)
1223 else if (bbio->map_type & BTRFS_BLOCK_GROUP_RAID6)
1226 return (int)bbio->num_stripes;
1229 static inline void scrub_stripe_index_and_offset(u64 logical, u64 map_type,
1232 int nstripes, int mirror,
1238 if (map_type & BTRFS_BLOCK_GROUP_RAID56_MASK) {
1240 for (i = 0; i < nstripes; i++) {
1241 if (raid_map[i] == RAID6_Q_STRIPE ||
1242 raid_map[i] == RAID5_P_STRIPE)
1245 if (logical >= raid_map[i] &&
1246 logical < raid_map[i] + mapped_length)
1251 *stripe_offset = logical - raid_map[i];
1253 /* The other RAID type */
1254 *stripe_index = mirror;
1259 static int scrub_setup_recheck_block(struct scrub_block *original_sblock,
1260 struct scrub_block *sblocks_for_recheck)
1262 struct scrub_ctx *sctx = original_sblock->sctx;
1263 struct btrfs_fs_info *fs_info = sctx->fs_info;
1264 u64 length = original_sblock->page_count * PAGE_SIZE;
1265 u64 logical = original_sblock->pagev[0]->logical;
1266 u64 generation = original_sblock->pagev[0]->generation;
1267 u64 flags = original_sblock->pagev[0]->flags;
1268 u64 have_csum = original_sblock->pagev[0]->have_csum;
1269 struct scrub_recover *recover;
1270 struct btrfs_bio *bbio;
1281 * note: the two members refs and outstanding_pages
1282 * are not used (and not set) in the blocks that are used for
1283 * the recheck procedure
1286 while (length > 0) {
1287 sublen = min_t(u64, length, PAGE_SIZE);
1288 mapped_length = sublen;
1292 * with a length of PAGE_SIZE, each returned stripe
1293 * represents one mirror
1295 btrfs_bio_counter_inc_blocked(fs_info);
1296 ret = btrfs_map_sblock(fs_info, BTRFS_MAP_GET_READ_MIRRORS,
1297 logical, &mapped_length, &bbio);
1298 if (ret || !bbio || mapped_length < sublen) {
1299 btrfs_put_bbio(bbio);
1300 btrfs_bio_counter_dec(fs_info);
1304 recover = kzalloc(sizeof(struct scrub_recover), GFP_NOFS);
1306 btrfs_put_bbio(bbio);
1307 btrfs_bio_counter_dec(fs_info);
1311 refcount_set(&recover->refs, 1);
1312 recover->bbio = bbio;
1313 recover->map_length = mapped_length;
1315 BUG_ON(page_index >= SCRUB_MAX_PAGES_PER_BLOCK);
1317 nmirrors = min(scrub_nr_raid_mirrors(bbio), BTRFS_MAX_MIRRORS);
1319 for (mirror_index = 0; mirror_index < nmirrors;
1321 struct scrub_block *sblock;
1322 struct scrub_page *page;
1324 sblock = sblocks_for_recheck + mirror_index;
1325 sblock->sctx = sctx;
1327 page = kzalloc(sizeof(*page), GFP_NOFS);
1330 spin_lock(&sctx->stat_lock);
1331 sctx->stat.malloc_errors++;
1332 spin_unlock(&sctx->stat_lock);
1333 scrub_put_recover(fs_info, recover);
1336 scrub_page_get(page);
1337 sblock->pagev[page_index] = page;
1338 page->sblock = sblock;
1339 page->flags = flags;
1340 page->generation = generation;
1341 page->logical = logical;
1342 page->have_csum = have_csum;
1345 original_sblock->pagev[0]->csum,
1348 scrub_stripe_index_and_offset(logical,
1357 page->physical = bbio->stripes[stripe_index].physical +
1359 page->dev = bbio->stripes[stripe_index].dev;
1361 BUG_ON(page_index >= original_sblock->page_count);
1362 page->physical_for_dev_replace =
1363 original_sblock->pagev[page_index]->
1364 physical_for_dev_replace;
1365 /* for missing devices, dev->bdev is NULL */
1366 page->mirror_num = mirror_index + 1;
1367 sblock->page_count++;
1368 page->page = alloc_page(GFP_NOFS);
1372 scrub_get_recover(recover);
1373 page->recover = recover;
1375 scrub_put_recover(fs_info, recover);
1384 static void scrub_bio_wait_endio(struct bio *bio)
1386 complete(bio->bi_private);
1389 static int scrub_submit_raid56_bio_wait(struct btrfs_fs_info *fs_info,
1391 struct scrub_page *page)
1393 DECLARE_COMPLETION_ONSTACK(done);
1397 bio->bi_iter.bi_sector = page->logical >> 9;
1398 bio->bi_private = &done;
1399 bio->bi_end_io = scrub_bio_wait_endio;
1401 mirror_num = page->sblock->pagev[0]->mirror_num;
1402 ret = raid56_parity_recover(fs_info, bio, page->recover->bbio,
1403 page->recover->map_length,
1408 wait_for_completion_io(&done);
1409 return blk_status_to_errno(bio->bi_status);
1412 static void scrub_recheck_block_on_raid56(struct btrfs_fs_info *fs_info,
1413 struct scrub_block *sblock)
1415 struct scrub_page *first_page = sblock->pagev[0];
1419 /* All pages in sblock belong to the same stripe on the same device. */
1420 ASSERT(first_page->dev);
1421 if (!first_page->dev->bdev)
1424 bio = btrfs_io_bio_alloc(BIO_MAX_PAGES);
1425 bio_set_dev(bio, first_page->dev->bdev);
1427 for (page_num = 0; page_num < sblock->page_count; page_num++) {
1428 struct scrub_page *page = sblock->pagev[page_num];
1430 WARN_ON(!page->page);
1431 bio_add_page(bio, page->page, PAGE_SIZE, 0);
1434 if (scrub_submit_raid56_bio_wait(fs_info, bio, first_page)) {
1441 scrub_recheck_block_checksum(sblock);
1445 for (page_num = 0; page_num < sblock->page_count; page_num++)
1446 sblock->pagev[page_num]->io_error = 1;
1448 sblock->no_io_error_seen = 0;
1452 * this function will check the on disk data for checksum errors, header
1453 * errors and read I/O errors. If any I/O errors happen, the exact pages
1454 * which are errored are marked as being bad. The goal is to enable scrub
1455 * to take those pages that are not errored from all the mirrors so that
1456 * the pages that are errored in the just handled mirror can be repaired.
1458 static void scrub_recheck_block(struct btrfs_fs_info *fs_info,
1459 struct scrub_block *sblock,
1460 int retry_failed_mirror)
1464 sblock->no_io_error_seen = 1;
1466 /* short cut for raid56 */
1467 if (!retry_failed_mirror && scrub_is_page_on_raid56(sblock->pagev[0]))
1468 return scrub_recheck_block_on_raid56(fs_info, sblock);
1470 for (page_num = 0; page_num < sblock->page_count; page_num++) {
1472 struct scrub_page *page = sblock->pagev[page_num];
1474 if (page->dev->bdev == NULL) {
1476 sblock->no_io_error_seen = 0;
1480 WARN_ON(!page->page);
1481 bio = btrfs_io_bio_alloc(1);
1482 bio_set_dev(bio, page->dev->bdev);
1484 bio_add_page(bio, page->page, PAGE_SIZE, 0);
1485 bio->bi_iter.bi_sector = page->physical >> 9;
1486 bio->bi_opf = REQ_OP_READ;
1488 if (btrfsic_submit_bio_wait(bio)) {
1490 sblock->no_io_error_seen = 0;
1496 if (sblock->no_io_error_seen)
1497 scrub_recheck_block_checksum(sblock);
1500 static inline int scrub_check_fsid(u8 fsid[],
1501 struct scrub_page *spage)
1503 struct btrfs_fs_devices *fs_devices = spage->dev->fs_devices;
1506 ret = memcmp(fsid, fs_devices->fsid, BTRFS_FSID_SIZE);
1510 static void scrub_recheck_block_checksum(struct scrub_block *sblock)
1512 sblock->header_error = 0;
1513 sblock->checksum_error = 0;
1514 sblock->generation_error = 0;
1516 if (sblock->pagev[0]->flags & BTRFS_EXTENT_FLAG_DATA)
1517 scrub_checksum_data(sblock);
1519 scrub_checksum_tree_block(sblock);
1522 static int scrub_repair_block_from_good_copy(struct scrub_block *sblock_bad,
1523 struct scrub_block *sblock_good)
1528 for (page_num = 0; page_num < sblock_bad->page_count; page_num++) {
1531 ret_sub = scrub_repair_page_from_good_copy(sblock_bad,
1541 static int scrub_repair_page_from_good_copy(struct scrub_block *sblock_bad,
1542 struct scrub_block *sblock_good,
1543 int page_num, int force_write)
1545 struct scrub_page *page_bad = sblock_bad->pagev[page_num];
1546 struct scrub_page *page_good = sblock_good->pagev[page_num];
1547 struct btrfs_fs_info *fs_info = sblock_bad->sctx->fs_info;
1549 BUG_ON(page_bad->page == NULL);
1550 BUG_ON(page_good->page == NULL);
1551 if (force_write || sblock_bad->header_error ||
1552 sblock_bad->checksum_error || page_bad->io_error) {
1556 if (!page_bad->dev->bdev) {
1557 btrfs_warn_rl(fs_info,
1558 "scrub_repair_page_from_good_copy(bdev == NULL) is unexpected");
1562 bio = btrfs_io_bio_alloc(1);
1563 bio_set_dev(bio, page_bad->dev->bdev);
1564 bio->bi_iter.bi_sector = page_bad->physical >> 9;
1565 bio->bi_opf = REQ_OP_WRITE;
1567 ret = bio_add_page(bio, page_good->page, PAGE_SIZE, 0);
1568 if (PAGE_SIZE != ret) {
1573 if (btrfsic_submit_bio_wait(bio)) {
1574 btrfs_dev_stat_inc_and_print(page_bad->dev,
1575 BTRFS_DEV_STAT_WRITE_ERRS);
1576 btrfs_dev_replace_stats_inc(
1577 &fs_info->dev_replace.num_write_errors);
1587 static void scrub_write_block_to_dev_replace(struct scrub_block *sblock)
1589 struct btrfs_fs_info *fs_info = sblock->sctx->fs_info;
1593 * This block is used for the check of the parity on the source device,
1594 * so the data needn't be written into the destination device.
1596 if (sblock->sparity)
1599 for (page_num = 0; page_num < sblock->page_count; page_num++) {
1602 ret = scrub_write_page_to_dev_replace(sblock, page_num);
1604 btrfs_dev_replace_stats_inc(
1605 &fs_info->dev_replace.num_write_errors);
1609 static int scrub_write_page_to_dev_replace(struct scrub_block *sblock,
1612 struct scrub_page *spage = sblock->pagev[page_num];
1614 BUG_ON(spage->page == NULL);
1615 if (spage->io_error) {
1616 void *mapped_buffer = kmap_atomic(spage->page);
1618 clear_page(mapped_buffer);
1619 flush_dcache_page(spage->page);
1620 kunmap_atomic(mapped_buffer);
1622 return scrub_add_page_to_wr_bio(sblock->sctx, spage);
1625 static int scrub_add_page_to_wr_bio(struct scrub_ctx *sctx,
1626 struct scrub_page *spage)
1628 struct scrub_bio *sbio;
1631 mutex_lock(&sctx->wr_lock);
1633 if (!sctx->wr_curr_bio) {
1634 unsigned int nofs_flag;
1637 * We must use GFP_NOFS because the scrub task might be waiting
1638 * for a worker task executing this function and in turn a
1639 * transaction commit might be waiting the scrub task to pause
1640 * (which needs to wait for all the worker tasks to complete
1643 nofs_flag = memalloc_nofs_save();
1644 sctx->wr_curr_bio = kzalloc(sizeof(*sctx->wr_curr_bio),
1646 memalloc_nofs_restore(nofs_flag);
1647 if (!sctx->wr_curr_bio) {
1648 mutex_unlock(&sctx->wr_lock);
1651 sctx->wr_curr_bio->sctx = sctx;
1652 sctx->wr_curr_bio->page_count = 0;
1654 sbio = sctx->wr_curr_bio;
1655 if (sbio->page_count == 0) {
1658 sbio->physical = spage->physical_for_dev_replace;
1659 sbio->logical = spage->logical;
1660 sbio->dev = sctx->wr_tgtdev;
1663 bio = btrfs_io_bio_alloc(sctx->pages_per_wr_bio);
1667 bio->bi_private = sbio;
1668 bio->bi_end_io = scrub_wr_bio_end_io;
1669 bio_set_dev(bio, sbio->dev->bdev);
1670 bio->bi_iter.bi_sector = sbio->physical >> 9;
1671 bio->bi_opf = REQ_OP_WRITE;
1673 } else if (sbio->physical + sbio->page_count * PAGE_SIZE !=
1674 spage->physical_for_dev_replace ||
1675 sbio->logical + sbio->page_count * PAGE_SIZE !=
1677 scrub_wr_submit(sctx);
1681 ret = bio_add_page(sbio->bio, spage->page, PAGE_SIZE, 0);
1682 if (ret != PAGE_SIZE) {
1683 if (sbio->page_count < 1) {
1686 mutex_unlock(&sctx->wr_lock);
1689 scrub_wr_submit(sctx);
1693 sbio->pagev[sbio->page_count] = spage;
1694 scrub_page_get(spage);
1696 if (sbio->page_count == sctx->pages_per_wr_bio)
1697 scrub_wr_submit(sctx);
1698 mutex_unlock(&sctx->wr_lock);
1703 static void scrub_wr_submit(struct scrub_ctx *sctx)
1705 struct scrub_bio *sbio;
1707 if (!sctx->wr_curr_bio)
1710 sbio = sctx->wr_curr_bio;
1711 sctx->wr_curr_bio = NULL;
1712 WARN_ON(!sbio->bio->bi_disk);
1713 scrub_pending_bio_inc(sctx);
1714 /* process all writes in a single worker thread. Then the block layer
1715 * orders the requests before sending them to the driver which
1716 * doubled the write performance on spinning disks when measured
1718 btrfsic_submit_bio(sbio->bio);
1721 static void scrub_wr_bio_end_io(struct bio *bio)
1723 struct scrub_bio *sbio = bio->bi_private;
1724 struct btrfs_fs_info *fs_info = sbio->dev->fs_info;
1726 sbio->status = bio->bi_status;
1729 btrfs_init_work(&sbio->work, btrfs_scrubwrc_helper,
1730 scrub_wr_bio_end_io_worker, NULL, NULL);
1731 btrfs_queue_work(fs_info->scrub_wr_completion_workers, &sbio->work);
1734 static void scrub_wr_bio_end_io_worker(struct btrfs_work *work)
1736 struct scrub_bio *sbio = container_of(work, struct scrub_bio, work);
1737 struct scrub_ctx *sctx = sbio->sctx;
1740 WARN_ON(sbio->page_count > SCRUB_PAGES_PER_WR_BIO);
1742 struct btrfs_dev_replace *dev_replace =
1743 &sbio->sctx->fs_info->dev_replace;
1745 for (i = 0; i < sbio->page_count; i++) {
1746 struct scrub_page *spage = sbio->pagev[i];
1748 spage->io_error = 1;
1749 btrfs_dev_replace_stats_inc(&dev_replace->
1754 for (i = 0; i < sbio->page_count; i++)
1755 scrub_page_put(sbio->pagev[i]);
1759 scrub_pending_bio_dec(sctx);
1762 static int scrub_checksum(struct scrub_block *sblock)
1768 * No need to initialize these stats currently,
1769 * because this function only use return value
1770 * instead of these stats value.
1775 sblock->header_error = 0;
1776 sblock->generation_error = 0;
1777 sblock->checksum_error = 0;
1779 WARN_ON(sblock->page_count < 1);
1780 flags = sblock->pagev[0]->flags;
1782 if (flags & BTRFS_EXTENT_FLAG_DATA)
1783 ret = scrub_checksum_data(sblock);
1784 else if (flags & BTRFS_EXTENT_FLAG_TREE_BLOCK)
1785 ret = scrub_checksum_tree_block(sblock);
1786 else if (flags & BTRFS_EXTENT_FLAG_SUPER)
1787 (void)scrub_checksum_super(sblock);
1791 scrub_handle_errored_block(sblock);
1796 static int scrub_checksum_data(struct scrub_block *sblock)
1798 struct scrub_ctx *sctx = sblock->sctx;
1799 u8 csum[BTRFS_CSUM_SIZE];
1807 BUG_ON(sblock->page_count < 1);
1808 if (!sblock->pagev[0]->have_csum)
1811 on_disk_csum = sblock->pagev[0]->csum;
1812 page = sblock->pagev[0]->page;
1813 buffer = kmap_atomic(page);
1815 len = sctx->fs_info->sectorsize;
1818 u64 l = min_t(u64, len, PAGE_SIZE);
1820 crc = btrfs_csum_data(buffer, crc, l);
1821 kunmap_atomic(buffer);
1826 BUG_ON(index >= sblock->page_count);
1827 BUG_ON(!sblock->pagev[index]->page);
1828 page = sblock->pagev[index]->page;
1829 buffer = kmap_atomic(page);
1832 btrfs_csum_final(crc, csum);
1833 if (memcmp(csum, on_disk_csum, sctx->csum_size))
1834 sblock->checksum_error = 1;
1836 return sblock->checksum_error;
1839 static int scrub_checksum_tree_block(struct scrub_block *sblock)
1841 struct scrub_ctx *sctx = sblock->sctx;
1842 struct btrfs_header *h;
1843 struct btrfs_fs_info *fs_info = sctx->fs_info;
1844 u8 calculated_csum[BTRFS_CSUM_SIZE];
1845 u8 on_disk_csum[BTRFS_CSUM_SIZE];
1847 void *mapped_buffer;
1854 BUG_ON(sblock->page_count < 1);
1855 page = sblock->pagev[0]->page;
1856 mapped_buffer = kmap_atomic(page);
1857 h = (struct btrfs_header *)mapped_buffer;
1858 memcpy(on_disk_csum, h->csum, sctx->csum_size);
1861 * we don't use the getter functions here, as we
1862 * a) don't have an extent buffer and
1863 * b) the page is already kmapped
1865 if (sblock->pagev[0]->logical != btrfs_stack_header_bytenr(h))
1866 sblock->header_error = 1;
1868 if (sblock->pagev[0]->generation != btrfs_stack_header_generation(h)) {
1869 sblock->header_error = 1;
1870 sblock->generation_error = 1;
1873 if (!scrub_check_fsid(h->fsid, sblock->pagev[0]))
1874 sblock->header_error = 1;
1876 if (memcmp(h->chunk_tree_uuid, fs_info->chunk_tree_uuid,
1878 sblock->header_error = 1;
1880 len = sctx->fs_info->nodesize - BTRFS_CSUM_SIZE;
1881 mapped_size = PAGE_SIZE - BTRFS_CSUM_SIZE;
1882 p = ((u8 *)mapped_buffer) + BTRFS_CSUM_SIZE;
1885 u64 l = min_t(u64, len, mapped_size);
1887 crc = btrfs_csum_data(p, crc, l);
1888 kunmap_atomic(mapped_buffer);
1893 BUG_ON(index >= sblock->page_count);
1894 BUG_ON(!sblock->pagev[index]->page);
1895 page = sblock->pagev[index]->page;
1896 mapped_buffer = kmap_atomic(page);
1897 mapped_size = PAGE_SIZE;
1901 btrfs_csum_final(crc, calculated_csum);
1902 if (memcmp(calculated_csum, on_disk_csum, sctx->csum_size))
1903 sblock->checksum_error = 1;
1905 return sblock->header_error || sblock->checksum_error;
1908 static int scrub_checksum_super(struct scrub_block *sblock)
1910 struct btrfs_super_block *s;
1911 struct scrub_ctx *sctx = sblock->sctx;
1912 u8 calculated_csum[BTRFS_CSUM_SIZE];
1913 u8 on_disk_csum[BTRFS_CSUM_SIZE];
1915 void *mapped_buffer;
1924 BUG_ON(sblock->page_count < 1);
1925 page = sblock->pagev[0]->page;
1926 mapped_buffer = kmap_atomic(page);
1927 s = (struct btrfs_super_block *)mapped_buffer;
1928 memcpy(on_disk_csum, s->csum, sctx->csum_size);
1930 if (sblock->pagev[0]->logical != btrfs_super_bytenr(s))
1933 if (sblock->pagev[0]->generation != btrfs_super_generation(s))
1936 if (!scrub_check_fsid(s->fsid, sblock->pagev[0]))
1939 len = BTRFS_SUPER_INFO_SIZE - BTRFS_CSUM_SIZE;
1940 mapped_size = PAGE_SIZE - BTRFS_CSUM_SIZE;
1941 p = ((u8 *)mapped_buffer) + BTRFS_CSUM_SIZE;
1944 u64 l = min_t(u64, len, mapped_size);
1946 crc = btrfs_csum_data(p, crc, l);
1947 kunmap_atomic(mapped_buffer);
1952 BUG_ON(index >= sblock->page_count);
1953 BUG_ON(!sblock->pagev[index]->page);
1954 page = sblock->pagev[index]->page;
1955 mapped_buffer = kmap_atomic(page);
1956 mapped_size = PAGE_SIZE;
1960 btrfs_csum_final(crc, calculated_csum);
1961 if (memcmp(calculated_csum, on_disk_csum, sctx->csum_size))
1964 if (fail_cor + fail_gen) {
1966 * if we find an error in a super block, we just report it.
1967 * They will get written with the next transaction commit
1970 spin_lock(&sctx->stat_lock);
1971 ++sctx->stat.super_errors;
1972 spin_unlock(&sctx->stat_lock);
1974 btrfs_dev_stat_inc_and_print(sblock->pagev[0]->dev,
1975 BTRFS_DEV_STAT_CORRUPTION_ERRS);
1977 btrfs_dev_stat_inc_and_print(sblock->pagev[0]->dev,
1978 BTRFS_DEV_STAT_GENERATION_ERRS);
1981 return fail_cor + fail_gen;
1984 static void scrub_block_get(struct scrub_block *sblock)
1986 refcount_inc(&sblock->refs);
1989 static void scrub_block_put(struct scrub_block *sblock)
1991 if (refcount_dec_and_test(&sblock->refs)) {
1994 if (sblock->sparity)
1995 scrub_parity_put(sblock->sparity);
1997 for (i = 0; i < sblock->page_count; i++)
1998 scrub_page_put(sblock->pagev[i]);
2003 static void scrub_page_get(struct scrub_page *spage)
2005 atomic_inc(&spage->refs);
2008 static void scrub_page_put(struct scrub_page *spage)
2010 if (atomic_dec_and_test(&spage->refs)) {
2012 __free_page(spage->page);
2017 static void scrub_submit(struct scrub_ctx *sctx)
2019 struct scrub_bio *sbio;
2021 if (sctx->curr == -1)
2024 sbio = sctx->bios[sctx->curr];
2026 scrub_pending_bio_inc(sctx);
2027 btrfsic_submit_bio(sbio->bio);
2030 static int scrub_add_page_to_rd_bio(struct scrub_ctx *sctx,
2031 struct scrub_page *spage)
2033 struct scrub_block *sblock = spage->sblock;
2034 struct scrub_bio *sbio;
2039 * grab a fresh bio or wait for one to become available
2041 while (sctx->curr == -1) {
2042 spin_lock(&sctx->list_lock);
2043 sctx->curr = sctx->first_free;
2044 if (sctx->curr != -1) {
2045 sctx->first_free = sctx->bios[sctx->curr]->next_free;
2046 sctx->bios[sctx->curr]->next_free = -1;
2047 sctx->bios[sctx->curr]->page_count = 0;
2048 spin_unlock(&sctx->list_lock);
2050 spin_unlock(&sctx->list_lock);
2051 wait_event(sctx->list_wait, sctx->first_free != -1);
2054 sbio = sctx->bios[sctx->curr];
2055 if (sbio->page_count == 0) {
2058 sbio->physical = spage->physical;
2059 sbio->logical = spage->logical;
2060 sbio->dev = spage->dev;
2063 bio = btrfs_io_bio_alloc(sctx->pages_per_rd_bio);
2067 bio->bi_private = sbio;
2068 bio->bi_end_io = scrub_bio_end_io;
2069 bio_set_dev(bio, sbio->dev->bdev);
2070 bio->bi_iter.bi_sector = sbio->physical >> 9;
2071 bio->bi_opf = REQ_OP_READ;
2073 } else if (sbio->physical + sbio->page_count * PAGE_SIZE !=
2075 sbio->logical + sbio->page_count * PAGE_SIZE !=
2077 sbio->dev != spage->dev) {
2082 sbio->pagev[sbio->page_count] = spage;
2083 ret = bio_add_page(sbio->bio, spage->page, PAGE_SIZE, 0);
2084 if (ret != PAGE_SIZE) {
2085 if (sbio->page_count < 1) {
2094 scrub_block_get(sblock); /* one for the page added to the bio */
2095 atomic_inc(&sblock->outstanding_pages);
2097 if (sbio->page_count == sctx->pages_per_rd_bio)
2103 static void scrub_missing_raid56_end_io(struct bio *bio)
2105 struct scrub_block *sblock = bio->bi_private;
2106 struct btrfs_fs_info *fs_info = sblock->sctx->fs_info;
2109 sblock->no_io_error_seen = 0;
2113 btrfs_queue_work(fs_info->scrub_workers, &sblock->work);
2116 static void scrub_missing_raid56_worker(struct btrfs_work *work)
2118 struct scrub_block *sblock = container_of(work, struct scrub_block, work);
2119 struct scrub_ctx *sctx = sblock->sctx;
2120 struct btrfs_fs_info *fs_info = sctx->fs_info;
2122 struct btrfs_device *dev;
2124 logical = sblock->pagev[0]->logical;
2125 dev = sblock->pagev[0]->dev;
2127 if (sblock->no_io_error_seen)
2128 scrub_recheck_block_checksum(sblock);
2130 if (!sblock->no_io_error_seen) {
2131 spin_lock(&sctx->stat_lock);
2132 sctx->stat.read_errors++;
2133 spin_unlock(&sctx->stat_lock);
2134 btrfs_err_rl_in_rcu(fs_info,
2135 "IO error rebuilding logical %llu for dev %s",
2136 logical, rcu_str_deref(dev->name));
2137 } else if (sblock->header_error || sblock->checksum_error) {
2138 spin_lock(&sctx->stat_lock);
2139 sctx->stat.uncorrectable_errors++;
2140 spin_unlock(&sctx->stat_lock);
2141 btrfs_err_rl_in_rcu(fs_info,
2142 "failed to rebuild valid logical %llu for dev %s",
2143 logical, rcu_str_deref(dev->name));
2145 scrub_write_block_to_dev_replace(sblock);
2148 if (sctx->is_dev_replace && sctx->flush_all_writes) {
2149 mutex_lock(&sctx->wr_lock);
2150 scrub_wr_submit(sctx);
2151 mutex_unlock(&sctx->wr_lock);
2154 scrub_block_put(sblock);
2155 scrub_pending_bio_dec(sctx);
2158 static void scrub_missing_raid56_pages(struct scrub_block *sblock)
2160 struct scrub_ctx *sctx = sblock->sctx;
2161 struct btrfs_fs_info *fs_info = sctx->fs_info;
2162 u64 length = sblock->page_count * PAGE_SIZE;
2163 u64 logical = sblock->pagev[0]->logical;
2164 struct btrfs_bio *bbio = NULL;
2166 struct btrfs_raid_bio *rbio;
2170 btrfs_bio_counter_inc_blocked(fs_info);
2171 ret = btrfs_map_sblock(fs_info, BTRFS_MAP_GET_READ_MIRRORS, logical,
2173 if (ret || !bbio || !bbio->raid_map)
2176 if (WARN_ON(!sctx->is_dev_replace ||
2177 !(bbio->map_type & BTRFS_BLOCK_GROUP_RAID56_MASK))) {
2179 * We shouldn't be scrubbing a missing device. Even for dev
2180 * replace, we should only get here for RAID 5/6. We either
2181 * managed to mount something with no mirrors remaining or
2182 * there's a bug in scrub_remap_extent()/btrfs_map_block().
2187 bio = btrfs_io_bio_alloc(0);
2188 bio->bi_iter.bi_sector = logical >> 9;
2189 bio->bi_private = sblock;
2190 bio->bi_end_io = scrub_missing_raid56_end_io;
2192 rbio = raid56_alloc_missing_rbio(fs_info, bio, bbio, length);
2196 for (i = 0; i < sblock->page_count; i++) {
2197 struct scrub_page *spage = sblock->pagev[i];
2199 raid56_add_scrub_pages(rbio, spage->page, spage->logical);
2202 btrfs_init_work(&sblock->work, btrfs_scrub_helper,
2203 scrub_missing_raid56_worker, NULL, NULL);
2204 scrub_block_get(sblock);
2205 scrub_pending_bio_inc(sctx);
2206 raid56_submit_missing_rbio(rbio);
2212 btrfs_bio_counter_dec(fs_info);
2213 btrfs_put_bbio(bbio);
2214 spin_lock(&sctx->stat_lock);
2215 sctx->stat.malloc_errors++;
2216 spin_unlock(&sctx->stat_lock);
2219 static int scrub_pages(struct scrub_ctx *sctx, u64 logical, u64 len,
2220 u64 physical, struct btrfs_device *dev, u64 flags,
2221 u64 gen, int mirror_num, u8 *csum, int force,
2222 u64 physical_for_dev_replace)
2224 struct scrub_block *sblock;
2227 sblock = kzalloc(sizeof(*sblock), GFP_KERNEL);
2229 spin_lock(&sctx->stat_lock);
2230 sctx->stat.malloc_errors++;
2231 spin_unlock(&sctx->stat_lock);
2235 /* one ref inside this function, plus one for each page added to
2237 refcount_set(&sblock->refs, 1);
2238 sblock->sctx = sctx;
2239 sblock->no_io_error_seen = 1;
2241 for (index = 0; len > 0; index++) {
2242 struct scrub_page *spage;
2243 u64 l = min_t(u64, len, PAGE_SIZE);
2245 spage = kzalloc(sizeof(*spage), GFP_KERNEL);
2248 spin_lock(&sctx->stat_lock);
2249 sctx->stat.malloc_errors++;
2250 spin_unlock(&sctx->stat_lock);
2251 scrub_block_put(sblock);
2254 BUG_ON(index >= SCRUB_MAX_PAGES_PER_BLOCK);
2255 scrub_page_get(spage);
2256 sblock->pagev[index] = spage;
2257 spage->sblock = sblock;
2259 spage->flags = flags;
2260 spage->generation = gen;
2261 spage->logical = logical;
2262 spage->physical = physical;
2263 spage->physical_for_dev_replace = physical_for_dev_replace;
2264 spage->mirror_num = mirror_num;
2266 spage->have_csum = 1;
2267 memcpy(spage->csum, csum, sctx->csum_size);
2269 spage->have_csum = 0;
2271 sblock->page_count++;
2272 spage->page = alloc_page(GFP_KERNEL);
2278 physical_for_dev_replace += l;
2281 WARN_ON(sblock->page_count == 0);
2282 if (test_bit(BTRFS_DEV_STATE_MISSING, &dev->dev_state)) {
2284 * This case should only be hit for RAID 5/6 device replace. See
2285 * the comment in scrub_missing_raid56_pages() for details.
2287 scrub_missing_raid56_pages(sblock);
2289 for (index = 0; index < sblock->page_count; index++) {
2290 struct scrub_page *spage = sblock->pagev[index];
2293 ret = scrub_add_page_to_rd_bio(sctx, spage);
2295 scrub_block_put(sblock);
2304 /* last one frees, either here or in bio completion for last page */
2305 scrub_block_put(sblock);
2309 static void scrub_bio_end_io(struct bio *bio)
2311 struct scrub_bio *sbio = bio->bi_private;
2312 struct btrfs_fs_info *fs_info = sbio->dev->fs_info;
2314 sbio->status = bio->bi_status;
2317 btrfs_queue_work(fs_info->scrub_workers, &sbio->work);
2320 static void scrub_bio_end_io_worker(struct btrfs_work *work)
2322 struct scrub_bio *sbio = container_of(work, struct scrub_bio, work);
2323 struct scrub_ctx *sctx = sbio->sctx;
2326 BUG_ON(sbio->page_count > SCRUB_PAGES_PER_RD_BIO);
2328 for (i = 0; i < sbio->page_count; i++) {
2329 struct scrub_page *spage = sbio->pagev[i];
2331 spage->io_error = 1;
2332 spage->sblock->no_io_error_seen = 0;
2336 /* now complete the scrub_block items that have all pages completed */
2337 for (i = 0; i < sbio->page_count; i++) {
2338 struct scrub_page *spage = sbio->pagev[i];
2339 struct scrub_block *sblock = spage->sblock;
2341 if (atomic_dec_and_test(&sblock->outstanding_pages))
2342 scrub_block_complete(sblock);
2343 scrub_block_put(sblock);
2348 spin_lock(&sctx->list_lock);
2349 sbio->next_free = sctx->first_free;
2350 sctx->first_free = sbio->index;
2351 spin_unlock(&sctx->list_lock);
2353 if (sctx->is_dev_replace && sctx->flush_all_writes) {
2354 mutex_lock(&sctx->wr_lock);
2355 scrub_wr_submit(sctx);
2356 mutex_unlock(&sctx->wr_lock);
2359 scrub_pending_bio_dec(sctx);
2362 static inline void __scrub_mark_bitmap(struct scrub_parity *sparity,
2363 unsigned long *bitmap,
2369 int sectorsize = sparity->sctx->fs_info->sectorsize;
2371 if (len >= sparity->stripe_len) {
2372 bitmap_set(bitmap, 0, sparity->nsectors);
2376 start -= sparity->logic_start;
2377 start = div64_u64_rem(start, sparity->stripe_len, &offset);
2378 offset = div_u64(offset, sectorsize);
2379 nsectors64 = div_u64(len, sectorsize);
2381 ASSERT(nsectors64 < UINT_MAX);
2382 nsectors = (u32)nsectors64;
2384 if (offset + nsectors <= sparity->nsectors) {
2385 bitmap_set(bitmap, offset, nsectors);
2389 bitmap_set(bitmap, offset, sparity->nsectors - offset);
2390 bitmap_set(bitmap, 0, nsectors - (sparity->nsectors - offset));
2393 static inline void scrub_parity_mark_sectors_error(struct scrub_parity *sparity,
2396 __scrub_mark_bitmap(sparity, sparity->ebitmap, start, len);
2399 static inline void scrub_parity_mark_sectors_data(struct scrub_parity *sparity,
2402 __scrub_mark_bitmap(sparity, sparity->dbitmap, start, len);
2405 static void scrub_block_complete(struct scrub_block *sblock)
2409 if (!sblock->no_io_error_seen) {
2411 scrub_handle_errored_block(sblock);
2414 * if has checksum error, write via repair mechanism in
2415 * dev replace case, otherwise write here in dev replace
2418 corrupted = scrub_checksum(sblock);
2419 if (!corrupted && sblock->sctx->is_dev_replace)
2420 scrub_write_block_to_dev_replace(sblock);
2423 if (sblock->sparity && corrupted && !sblock->data_corrected) {
2424 u64 start = sblock->pagev[0]->logical;
2425 u64 end = sblock->pagev[sblock->page_count - 1]->logical +
2428 scrub_parity_mark_sectors_error(sblock->sparity,
2429 start, end - start);
2433 static int scrub_find_csum(struct scrub_ctx *sctx, u64 logical, u8 *csum)
2435 struct btrfs_ordered_sum *sum = NULL;
2436 unsigned long index;
2437 unsigned long num_sectors;
2439 while (!list_empty(&sctx->csum_list)) {
2440 sum = list_first_entry(&sctx->csum_list,
2441 struct btrfs_ordered_sum, list);
2442 if (sum->bytenr > logical)
2444 if (sum->bytenr + sum->len > logical)
2447 ++sctx->stat.csum_discards;
2448 list_del(&sum->list);
2455 index = div_u64(logical - sum->bytenr, sctx->fs_info->sectorsize);
2456 ASSERT(index < UINT_MAX);
2458 num_sectors = sum->len / sctx->fs_info->sectorsize;
2459 memcpy(csum, sum->sums + index, sctx->csum_size);
2460 if (index == num_sectors - 1) {
2461 list_del(&sum->list);
2467 /* scrub extent tries to collect up to 64 kB for each bio */
2468 static int scrub_extent(struct scrub_ctx *sctx, struct map_lookup *map,
2469 u64 logical, u64 len,
2470 u64 physical, struct btrfs_device *dev, u64 flags,
2471 u64 gen, int mirror_num, u64 physical_for_dev_replace)
2474 u8 csum[BTRFS_CSUM_SIZE];
2477 if (flags & BTRFS_EXTENT_FLAG_DATA) {
2478 if (map->type & BTRFS_BLOCK_GROUP_RAID56_MASK)
2479 blocksize = map->stripe_len;
2481 blocksize = sctx->fs_info->sectorsize;
2482 spin_lock(&sctx->stat_lock);
2483 sctx->stat.data_extents_scrubbed++;
2484 sctx->stat.data_bytes_scrubbed += len;
2485 spin_unlock(&sctx->stat_lock);
2486 } else if (flags & BTRFS_EXTENT_FLAG_TREE_BLOCK) {
2487 if (map->type & BTRFS_BLOCK_GROUP_RAID56_MASK)
2488 blocksize = map->stripe_len;
2490 blocksize = sctx->fs_info->nodesize;
2491 spin_lock(&sctx->stat_lock);
2492 sctx->stat.tree_extents_scrubbed++;
2493 sctx->stat.tree_bytes_scrubbed += len;
2494 spin_unlock(&sctx->stat_lock);
2496 blocksize = sctx->fs_info->sectorsize;
2501 u64 l = min_t(u64, len, blocksize);
2504 if (flags & BTRFS_EXTENT_FLAG_DATA) {
2505 /* push csums to sbio */
2506 have_csum = scrub_find_csum(sctx, logical, csum);
2508 ++sctx->stat.no_csum;
2510 ret = scrub_pages(sctx, logical, l, physical, dev, flags, gen,
2511 mirror_num, have_csum ? csum : NULL, 0,
2512 physical_for_dev_replace);
2518 physical_for_dev_replace += l;
2523 static int scrub_pages_for_parity(struct scrub_parity *sparity,
2524 u64 logical, u64 len,
2525 u64 physical, struct btrfs_device *dev,
2526 u64 flags, u64 gen, int mirror_num, u8 *csum)
2528 struct scrub_ctx *sctx = sparity->sctx;
2529 struct scrub_block *sblock;
2532 sblock = kzalloc(sizeof(*sblock), GFP_KERNEL);
2534 spin_lock(&sctx->stat_lock);
2535 sctx->stat.malloc_errors++;
2536 spin_unlock(&sctx->stat_lock);
2540 /* one ref inside this function, plus one for each page added to
2542 refcount_set(&sblock->refs, 1);
2543 sblock->sctx = sctx;
2544 sblock->no_io_error_seen = 1;
2545 sblock->sparity = sparity;
2546 scrub_parity_get(sparity);
2548 for (index = 0; len > 0; index++) {
2549 struct scrub_page *spage;
2550 u64 l = min_t(u64, len, PAGE_SIZE);
2552 spage = kzalloc(sizeof(*spage), GFP_KERNEL);
2555 spin_lock(&sctx->stat_lock);
2556 sctx->stat.malloc_errors++;
2557 spin_unlock(&sctx->stat_lock);
2558 scrub_block_put(sblock);
2561 BUG_ON(index >= SCRUB_MAX_PAGES_PER_BLOCK);
2562 /* For scrub block */
2563 scrub_page_get(spage);
2564 sblock->pagev[index] = spage;
2565 /* For scrub parity */
2566 scrub_page_get(spage);
2567 list_add_tail(&spage->list, &sparity->spages);
2568 spage->sblock = sblock;
2570 spage->flags = flags;
2571 spage->generation = gen;
2572 spage->logical = logical;
2573 spage->physical = physical;
2574 spage->mirror_num = mirror_num;
2576 spage->have_csum = 1;
2577 memcpy(spage->csum, csum, sctx->csum_size);
2579 spage->have_csum = 0;
2581 sblock->page_count++;
2582 spage->page = alloc_page(GFP_KERNEL);
2590 WARN_ON(sblock->page_count == 0);
2591 for (index = 0; index < sblock->page_count; index++) {
2592 struct scrub_page *spage = sblock->pagev[index];
2595 ret = scrub_add_page_to_rd_bio(sctx, spage);
2597 scrub_block_put(sblock);
2602 /* last one frees, either here or in bio completion for last page */
2603 scrub_block_put(sblock);
2607 static int scrub_extent_for_parity(struct scrub_parity *sparity,
2608 u64 logical, u64 len,
2609 u64 physical, struct btrfs_device *dev,
2610 u64 flags, u64 gen, int mirror_num)
2612 struct scrub_ctx *sctx = sparity->sctx;
2614 u8 csum[BTRFS_CSUM_SIZE];
2617 if (test_bit(BTRFS_DEV_STATE_MISSING, &dev->dev_state)) {
2618 scrub_parity_mark_sectors_error(sparity, logical, len);
2622 if (flags & BTRFS_EXTENT_FLAG_DATA) {
2623 blocksize = sparity->stripe_len;
2624 } else if (flags & BTRFS_EXTENT_FLAG_TREE_BLOCK) {
2625 blocksize = sparity->stripe_len;
2627 blocksize = sctx->fs_info->sectorsize;
2632 u64 l = min_t(u64, len, blocksize);
2635 if (flags & BTRFS_EXTENT_FLAG_DATA) {
2636 /* push csums to sbio */
2637 have_csum = scrub_find_csum(sctx, logical, csum);
2641 ret = scrub_pages_for_parity(sparity, logical, l, physical, dev,
2642 flags, gen, mirror_num,
2643 have_csum ? csum : NULL);
2655 * Given a physical address, this will calculate it's
2656 * logical offset. if this is a parity stripe, it will return
2657 * the most left data stripe's logical offset.
2659 * return 0 if it is a data stripe, 1 means parity stripe.
2661 static int get_raid56_logic_offset(u64 physical, int num,
2662 struct map_lookup *map, u64 *offset,
2672 last_offset = (physical - map->stripes[num].physical) *
2673 nr_data_stripes(map);
2675 *stripe_start = last_offset;
2677 *offset = last_offset;
2678 for (i = 0; i < nr_data_stripes(map); i++) {
2679 *offset = last_offset + i * map->stripe_len;
2681 stripe_nr = div64_u64(*offset, map->stripe_len);
2682 stripe_nr = div_u64(stripe_nr, nr_data_stripes(map));
2684 /* Work out the disk rotation on this stripe-set */
2685 stripe_nr = div_u64_rem(stripe_nr, map->num_stripes, &rot);
2686 /* calculate which stripe this data locates */
2688 stripe_index = rot % map->num_stripes;
2689 if (stripe_index == num)
2691 if (stripe_index < num)
2694 *offset = last_offset + j * map->stripe_len;
2698 static void scrub_free_parity(struct scrub_parity *sparity)
2700 struct scrub_ctx *sctx = sparity->sctx;
2701 struct scrub_page *curr, *next;
2704 nbits = bitmap_weight(sparity->ebitmap, sparity->nsectors);
2706 spin_lock(&sctx->stat_lock);
2707 sctx->stat.read_errors += nbits;
2708 sctx->stat.uncorrectable_errors += nbits;
2709 spin_unlock(&sctx->stat_lock);
2712 list_for_each_entry_safe(curr, next, &sparity->spages, list) {
2713 list_del_init(&curr->list);
2714 scrub_page_put(curr);
2720 static void scrub_parity_bio_endio_worker(struct btrfs_work *work)
2722 struct scrub_parity *sparity = container_of(work, struct scrub_parity,
2724 struct scrub_ctx *sctx = sparity->sctx;
2726 scrub_free_parity(sparity);
2727 scrub_pending_bio_dec(sctx);
2730 static void scrub_parity_bio_endio(struct bio *bio)
2732 struct scrub_parity *sparity = (struct scrub_parity *)bio->bi_private;
2733 struct btrfs_fs_info *fs_info = sparity->sctx->fs_info;
2736 bitmap_or(sparity->ebitmap, sparity->ebitmap, sparity->dbitmap,
2741 btrfs_init_work(&sparity->work, btrfs_scrubparity_helper,
2742 scrub_parity_bio_endio_worker, NULL, NULL);
2743 btrfs_queue_work(fs_info->scrub_parity_workers, &sparity->work);
2746 static void scrub_parity_check_and_repair(struct scrub_parity *sparity)
2748 struct scrub_ctx *sctx = sparity->sctx;
2749 struct btrfs_fs_info *fs_info = sctx->fs_info;
2751 struct btrfs_raid_bio *rbio;
2752 struct btrfs_bio *bbio = NULL;
2756 if (!bitmap_andnot(sparity->dbitmap, sparity->dbitmap, sparity->ebitmap,
2760 length = sparity->logic_end - sparity->logic_start;
2762 btrfs_bio_counter_inc_blocked(fs_info);
2763 ret = btrfs_map_sblock(fs_info, BTRFS_MAP_WRITE, sparity->logic_start,
2765 if (ret || !bbio || !bbio->raid_map)
2768 bio = btrfs_io_bio_alloc(0);
2769 bio->bi_iter.bi_sector = sparity->logic_start >> 9;
2770 bio->bi_private = sparity;
2771 bio->bi_end_io = scrub_parity_bio_endio;
2773 rbio = raid56_parity_alloc_scrub_rbio(fs_info, bio, bbio,
2774 length, sparity->scrub_dev,
2780 scrub_pending_bio_inc(sctx);
2781 raid56_parity_submit_scrub_rbio(rbio);
2787 btrfs_bio_counter_dec(fs_info);
2788 btrfs_put_bbio(bbio);
2789 bitmap_or(sparity->ebitmap, sparity->ebitmap, sparity->dbitmap,
2791 spin_lock(&sctx->stat_lock);
2792 sctx->stat.malloc_errors++;
2793 spin_unlock(&sctx->stat_lock);
2795 scrub_free_parity(sparity);
2798 static inline int scrub_calc_parity_bitmap_len(int nsectors)
2800 return DIV_ROUND_UP(nsectors, BITS_PER_LONG) * sizeof(long);
2803 static void scrub_parity_get(struct scrub_parity *sparity)
2805 refcount_inc(&sparity->refs);
2808 static void scrub_parity_put(struct scrub_parity *sparity)
2810 if (!refcount_dec_and_test(&sparity->refs))
2813 scrub_parity_check_and_repair(sparity);
2816 static noinline_for_stack int scrub_raid56_parity(struct scrub_ctx *sctx,
2817 struct map_lookup *map,
2818 struct btrfs_device *sdev,
2819 struct btrfs_path *path,
2823 struct btrfs_fs_info *fs_info = sctx->fs_info;
2824 struct btrfs_root *root = fs_info->extent_root;
2825 struct btrfs_root *csum_root = fs_info->csum_root;
2826 struct btrfs_extent_item *extent;
2827 struct btrfs_bio *bbio = NULL;
2831 struct extent_buffer *l;
2832 struct btrfs_key key;
2835 u64 extent_physical;
2838 struct btrfs_device *extent_dev;
2839 struct scrub_parity *sparity;
2842 int extent_mirror_num;
2845 nsectors = div_u64(map->stripe_len, fs_info->sectorsize);
2846 bitmap_len = scrub_calc_parity_bitmap_len(nsectors);
2847 sparity = kzalloc(sizeof(struct scrub_parity) + 2 * bitmap_len,
2850 spin_lock(&sctx->stat_lock);
2851 sctx->stat.malloc_errors++;
2852 spin_unlock(&sctx->stat_lock);
2856 sparity->stripe_len = map->stripe_len;
2857 sparity->nsectors = nsectors;
2858 sparity->sctx = sctx;
2859 sparity->scrub_dev = sdev;
2860 sparity->logic_start = logic_start;
2861 sparity->logic_end = logic_end;
2862 refcount_set(&sparity->refs, 1);
2863 INIT_LIST_HEAD(&sparity->spages);
2864 sparity->dbitmap = sparity->bitmap;
2865 sparity->ebitmap = (void *)sparity->bitmap + bitmap_len;
2868 while (logic_start < logic_end) {
2869 if (btrfs_fs_incompat(fs_info, SKINNY_METADATA))
2870 key.type = BTRFS_METADATA_ITEM_KEY;
2872 key.type = BTRFS_EXTENT_ITEM_KEY;
2873 key.objectid = logic_start;
2874 key.offset = (u64)-1;
2876 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
2881 ret = btrfs_previous_extent_item(root, path, 0);
2885 btrfs_release_path(path);
2886 ret = btrfs_search_slot(NULL, root, &key,
2898 slot = path->slots[0];
2899 if (slot >= btrfs_header_nritems(l)) {
2900 ret = btrfs_next_leaf(root, path);
2909 btrfs_item_key_to_cpu(l, &key, slot);
2911 if (key.type != BTRFS_EXTENT_ITEM_KEY &&
2912 key.type != BTRFS_METADATA_ITEM_KEY)
2915 if (key.type == BTRFS_METADATA_ITEM_KEY)
2916 bytes = fs_info->nodesize;
2920 if (key.objectid + bytes <= logic_start)
2923 if (key.objectid >= logic_end) {
2928 while (key.objectid >= logic_start + map->stripe_len)
2929 logic_start += map->stripe_len;
2931 extent = btrfs_item_ptr(l, slot,
2932 struct btrfs_extent_item);
2933 flags = btrfs_extent_flags(l, extent);
2934 generation = btrfs_extent_generation(l, extent);
2936 if ((flags & BTRFS_EXTENT_FLAG_TREE_BLOCK) &&
2937 (key.objectid < logic_start ||
2938 key.objectid + bytes >
2939 logic_start + map->stripe_len)) {
2941 "scrub: tree block %llu spanning stripes, ignored. logical=%llu",
2942 key.objectid, logic_start);
2943 spin_lock(&sctx->stat_lock);
2944 sctx->stat.uncorrectable_errors++;
2945 spin_unlock(&sctx->stat_lock);
2949 extent_logical = key.objectid;
2952 if (extent_logical < logic_start) {
2953 extent_len -= logic_start - extent_logical;
2954 extent_logical = logic_start;
2957 if (extent_logical + extent_len >
2958 logic_start + map->stripe_len)
2959 extent_len = logic_start + map->stripe_len -
2962 scrub_parity_mark_sectors_data(sparity, extent_logical,
2965 mapped_length = extent_len;
2967 ret = btrfs_map_block(fs_info, BTRFS_MAP_READ,
2968 extent_logical, &mapped_length, &bbio,
2971 if (!bbio || mapped_length < extent_len)
2975 btrfs_put_bbio(bbio);
2978 extent_physical = bbio->stripes[0].physical;
2979 extent_mirror_num = bbio->mirror_num;
2980 extent_dev = bbio->stripes[0].dev;
2981 btrfs_put_bbio(bbio);
2983 ret = btrfs_lookup_csums_range(csum_root,
2985 extent_logical + extent_len - 1,
2986 &sctx->csum_list, 1);
2990 ret = scrub_extent_for_parity(sparity, extent_logical,
2997 scrub_free_csums(sctx);
3002 if (extent_logical + extent_len <
3003 key.objectid + bytes) {
3004 logic_start += map->stripe_len;
3006 if (logic_start >= logic_end) {
3011 if (logic_start < key.objectid + bytes) {
3020 btrfs_release_path(path);
3025 logic_start += map->stripe_len;
3029 scrub_parity_mark_sectors_error(sparity, logic_start,
3030 logic_end - logic_start);
3031 scrub_parity_put(sparity);
3033 mutex_lock(&sctx->wr_lock);
3034 scrub_wr_submit(sctx);
3035 mutex_unlock(&sctx->wr_lock);
3037 btrfs_release_path(path);
3038 return ret < 0 ? ret : 0;
3041 static noinline_for_stack int scrub_stripe(struct scrub_ctx *sctx,
3042 struct map_lookup *map,
3043 struct btrfs_device *scrub_dev,
3044 int num, u64 base, u64 length)
3046 struct btrfs_path *path, *ppath;
3047 struct btrfs_fs_info *fs_info = sctx->fs_info;
3048 struct btrfs_root *root = fs_info->extent_root;
3049 struct btrfs_root *csum_root = fs_info->csum_root;
3050 struct btrfs_extent_item *extent;
3051 struct blk_plug plug;
3056 struct extent_buffer *l;
3063 struct reada_control *reada1;
3064 struct reada_control *reada2;
3065 struct btrfs_key key;
3066 struct btrfs_key key_end;
3067 u64 increment = map->stripe_len;
3070 u64 extent_physical;
3074 struct btrfs_device *extent_dev;
3075 int extent_mirror_num;
3078 physical = map->stripes[num].physical;
3080 nstripes = div64_u64(length, map->stripe_len);
3081 if (map->type & BTRFS_BLOCK_GROUP_RAID0) {
3082 offset = map->stripe_len * num;
3083 increment = map->stripe_len * map->num_stripes;
3085 } else if (map->type & BTRFS_BLOCK_GROUP_RAID10) {
3086 int factor = map->num_stripes / map->sub_stripes;
3087 offset = map->stripe_len * (num / map->sub_stripes);
3088 increment = map->stripe_len * factor;
3089 mirror_num = num % map->sub_stripes + 1;
3090 } else if (map->type & BTRFS_BLOCK_GROUP_RAID1) {
3091 increment = map->stripe_len;
3092 mirror_num = num % map->num_stripes + 1;
3093 } else if (map->type & BTRFS_BLOCK_GROUP_DUP) {
3094 increment = map->stripe_len;
3095 mirror_num = num % map->num_stripes + 1;
3096 } else if (map->type & BTRFS_BLOCK_GROUP_RAID56_MASK) {
3097 get_raid56_logic_offset(physical, num, map, &offset, NULL);
3098 increment = map->stripe_len * nr_data_stripes(map);
3101 increment = map->stripe_len;
3105 path = btrfs_alloc_path();
3109 ppath = btrfs_alloc_path();
3111 btrfs_free_path(path);
3116 * work on commit root. The related disk blocks are static as
3117 * long as COW is applied. This means, it is save to rewrite
3118 * them to repair disk errors without any race conditions
3120 path->search_commit_root = 1;
3121 path->skip_locking = 1;
3123 ppath->search_commit_root = 1;
3124 ppath->skip_locking = 1;
3126 * trigger the readahead for extent tree csum tree and wait for
3127 * completion. During readahead, the scrub is officially paused
3128 * to not hold off transaction commits
3130 logical = base + offset;
3131 physical_end = physical + nstripes * map->stripe_len;
3132 if (map->type & BTRFS_BLOCK_GROUP_RAID56_MASK) {
3133 get_raid56_logic_offset(physical_end, num,
3134 map, &logic_end, NULL);
3137 logic_end = logical + increment * nstripes;
3139 wait_event(sctx->list_wait,
3140 atomic_read(&sctx->bios_in_flight) == 0);
3141 scrub_blocked_if_needed(fs_info);
3143 /* FIXME it might be better to start readahead at commit root */
3144 key.objectid = logical;
3145 key.type = BTRFS_EXTENT_ITEM_KEY;
3146 key.offset = (u64)0;
3147 key_end.objectid = logic_end;
3148 key_end.type = BTRFS_METADATA_ITEM_KEY;
3149 key_end.offset = (u64)-1;
3150 reada1 = btrfs_reada_add(root, &key, &key_end);
3152 key.objectid = BTRFS_EXTENT_CSUM_OBJECTID;
3153 key.type = BTRFS_EXTENT_CSUM_KEY;
3154 key.offset = logical;
3155 key_end.objectid = BTRFS_EXTENT_CSUM_OBJECTID;
3156 key_end.type = BTRFS_EXTENT_CSUM_KEY;
3157 key_end.offset = logic_end;
3158 reada2 = btrfs_reada_add(csum_root, &key, &key_end);
3160 if (!IS_ERR(reada1))
3161 btrfs_reada_wait(reada1);
3162 if (!IS_ERR(reada2))
3163 btrfs_reada_wait(reada2);
3167 * collect all data csums for the stripe to avoid seeking during
3168 * the scrub. This might currently (crc32) end up to be about 1MB
3170 blk_start_plug(&plug);
3173 * now find all extents for each stripe and scrub them
3176 while (physical < physical_end) {
3180 if (atomic_read(&fs_info->scrub_cancel_req) ||
3181 atomic_read(&sctx->cancel_req)) {
3186 * check to see if we have to pause
3188 if (atomic_read(&fs_info->scrub_pause_req)) {
3189 /* push queued extents */
3190 sctx->flush_all_writes = true;
3192 mutex_lock(&sctx->wr_lock);
3193 scrub_wr_submit(sctx);
3194 mutex_unlock(&sctx->wr_lock);
3195 wait_event(sctx->list_wait,
3196 atomic_read(&sctx->bios_in_flight) == 0);
3197 sctx->flush_all_writes = false;
3198 scrub_blocked_if_needed(fs_info);
3201 if (map->type & BTRFS_BLOCK_GROUP_RAID56_MASK) {
3202 ret = get_raid56_logic_offset(physical, num, map,
3207 /* it is parity strip */
3208 stripe_logical += base;
3209 stripe_end = stripe_logical + increment;
3210 ret = scrub_raid56_parity(sctx, map, scrub_dev,
3211 ppath, stripe_logical,
3219 if (btrfs_fs_incompat(fs_info, SKINNY_METADATA))
3220 key.type = BTRFS_METADATA_ITEM_KEY;
3222 key.type = BTRFS_EXTENT_ITEM_KEY;
3223 key.objectid = logical;
3224 key.offset = (u64)-1;
3226 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
3231 ret = btrfs_previous_extent_item(root, path, 0);
3235 /* there's no smaller item, so stick with the
3237 btrfs_release_path(path);
3238 ret = btrfs_search_slot(NULL, root, &key,
3250 slot = path->slots[0];
3251 if (slot >= btrfs_header_nritems(l)) {
3252 ret = btrfs_next_leaf(root, path);
3261 btrfs_item_key_to_cpu(l, &key, slot);
3263 if (key.type != BTRFS_EXTENT_ITEM_KEY &&
3264 key.type != BTRFS_METADATA_ITEM_KEY)
3267 if (key.type == BTRFS_METADATA_ITEM_KEY)
3268 bytes = fs_info->nodesize;
3272 if (key.objectid + bytes <= logical)
3275 if (key.objectid >= logical + map->stripe_len) {
3276 /* out of this device extent */
3277 if (key.objectid >= logic_end)
3282 extent = btrfs_item_ptr(l, slot,
3283 struct btrfs_extent_item);
3284 flags = btrfs_extent_flags(l, extent);
3285 generation = btrfs_extent_generation(l, extent);
3287 if ((flags & BTRFS_EXTENT_FLAG_TREE_BLOCK) &&
3288 (key.objectid < logical ||
3289 key.objectid + bytes >
3290 logical + map->stripe_len)) {
3292 "scrub: tree block %llu spanning stripes, ignored. logical=%llu",
3293 key.objectid, logical);
3294 spin_lock(&sctx->stat_lock);
3295 sctx->stat.uncorrectable_errors++;
3296 spin_unlock(&sctx->stat_lock);
3301 extent_logical = key.objectid;
3305 * trim extent to this stripe
3307 if (extent_logical < logical) {
3308 extent_len -= logical - extent_logical;
3309 extent_logical = logical;
3311 if (extent_logical + extent_len >
3312 logical + map->stripe_len) {
3313 extent_len = logical + map->stripe_len -
3317 extent_physical = extent_logical - logical + physical;
3318 extent_dev = scrub_dev;
3319 extent_mirror_num = mirror_num;
3320 if (sctx->is_dev_replace)
3321 scrub_remap_extent(fs_info, extent_logical,
3322 extent_len, &extent_physical,
3324 &extent_mirror_num);
3326 ret = btrfs_lookup_csums_range(csum_root,
3330 &sctx->csum_list, 1);
3334 ret = scrub_extent(sctx, map, extent_logical, extent_len,
3335 extent_physical, extent_dev, flags,
3336 generation, extent_mirror_num,
3337 extent_logical - logical + physical);
3339 scrub_free_csums(sctx);
3344 if (extent_logical + extent_len <
3345 key.objectid + bytes) {
3346 if (map->type & BTRFS_BLOCK_GROUP_RAID56_MASK) {
3348 * loop until we find next data stripe
3349 * or we have finished all stripes.
3352 physical += map->stripe_len;
3353 ret = get_raid56_logic_offset(physical,
3358 if (ret && physical < physical_end) {
3359 stripe_logical += base;
3360 stripe_end = stripe_logical +
3362 ret = scrub_raid56_parity(sctx,
3363 map, scrub_dev, ppath,
3371 physical += map->stripe_len;
3372 logical += increment;
3374 if (logical < key.objectid + bytes) {
3379 if (physical >= physical_end) {
3387 btrfs_release_path(path);
3389 logical += increment;
3390 physical += map->stripe_len;
3391 spin_lock(&sctx->stat_lock);
3393 sctx->stat.last_physical = map->stripes[num].physical +
3396 sctx->stat.last_physical = physical;
3397 spin_unlock(&sctx->stat_lock);
3402 /* push queued extents */
3404 mutex_lock(&sctx->wr_lock);
3405 scrub_wr_submit(sctx);
3406 mutex_unlock(&sctx->wr_lock);
3408 blk_finish_plug(&plug);
3409 btrfs_free_path(path);
3410 btrfs_free_path(ppath);
3411 return ret < 0 ? ret : 0;
3414 static noinline_for_stack int scrub_chunk(struct scrub_ctx *sctx,
3415 struct btrfs_device *scrub_dev,
3416 u64 chunk_offset, u64 length,
3418 struct btrfs_block_group_cache *cache)
3420 struct btrfs_fs_info *fs_info = sctx->fs_info;
3421 struct btrfs_mapping_tree *map_tree = &fs_info->mapping_tree;
3422 struct map_lookup *map;
3423 struct extent_map *em;
3427 read_lock(&map_tree->map_tree.lock);
3428 em = lookup_extent_mapping(&map_tree->map_tree, chunk_offset, 1);
3429 read_unlock(&map_tree->map_tree.lock);
3433 * Might have been an unused block group deleted by the cleaner
3434 * kthread or relocation.
3436 spin_lock(&cache->lock);
3437 if (!cache->removed)
3439 spin_unlock(&cache->lock);
3444 map = em->map_lookup;
3445 if (em->start != chunk_offset)
3448 if (em->len < length)
3451 for (i = 0; i < map->num_stripes; ++i) {
3452 if (map->stripes[i].dev->bdev == scrub_dev->bdev &&
3453 map->stripes[i].physical == dev_offset) {
3454 ret = scrub_stripe(sctx, map, scrub_dev, i,
3455 chunk_offset, length);
3461 free_extent_map(em);
3466 static noinline_for_stack
3467 int scrub_enumerate_chunks(struct scrub_ctx *sctx,
3468 struct btrfs_device *scrub_dev, u64 start, u64 end)
3470 struct btrfs_dev_extent *dev_extent = NULL;
3471 struct btrfs_path *path;
3472 struct btrfs_fs_info *fs_info = sctx->fs_info;
3473 struct btrfs_root *root = fs_info->dev_root;
3479 struct extent_buffer *l;
3480 struct btrfs_key key;
3481 struct btrfs_key found_key;
3482 struct btrfs_block_group_cache *cache;
3483 struct btrfs_dev_replace *dev_replace = &fs_info->dev_replace;
3485 path = btrfs_alloc_path();
3489 path->reada = READA_FORWARD;
3490 path->search_commit_root = 1;
3491 path->skip_locking = 1;
3493 key.objectid = scrub_dev->devid;
3495 key.type = BTRFS_DEV_EXTENT_KEY;
3498 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
3502 if (path->slots[0] >=
3503 btrfs_header_nritems(path->nodes[0])) {
3504 ret = btrfs_next_leaf(root, path);
3517 slot = path->slots[0];
3519 btrfs_item_key_to_cpu(l, &found_key, slot);
3521 if (found_key.objectid != scrub_dev->devid)
3524 if (found_key.type != BTRFS_DEV_EXTENT_KEY)
3527 if (found_key.offset >= end)
3530 if (found_key.offset < key.offset)
3533 dev_extent = btrfs_item_ptr(l, slot, struct btrfs_dev_extent);
3534 length = btrfs_dev_extent_length(l, dev_extent);
3536 if (found_key.offset + length <= start)
3539 chunk_offset = btrfs_dev_extent_chunk_offset(l, dev_extent);
3542 * get a reference on the corresponding block group to prevent
3543 * the chunk from going away while we scrub it
3545 cache = btrfs_lookup_block_group(fs_info, chunk_offset);
3547 /* some chunks are removed but not committed to disk yet,
3548 * continue scrubbing */
3553 * we need call btrfs_inc_block_group_ro() with scrubs_paused,
3554 * to avoid deadlock caused by:
3555 * btrfs_inc_block_group_ro()
3556 * -> btrfs_wait_for_commit()
3557 * -> btrfs_commit_transaction()
3558 * -> btrfs_scrub_pause()
3560 scrub_pause_on(fs_info);
3561 ret = btrfs_inc_block_group_ro(cache);
3562 if (!ret && sctx->is_dev_replace) {
3564 * If we are doing a device replace wait for any tasks
3565 * that started dellaloc right before we set the block
3566 * group to RO mode, as they might have just allocated
3567 * an extent from it or decided they could do a nocow
3568 * write. And if any such tasks did that, wait for their
3569 * ordered extents to complete and then commit the
3570 * current transaction, so that we can later see the new
3571 * extent items in the extent tree - the ordered extents
3572 * create delayed data references (for cow writes) when
3573 * they complete, which will be run and insert the
3574 * corresponding extent items into the extent tree when
3575 * we commit the transaction they used when running
3576 * inode.c:btrfs_finish_ordered_io(). We later use
3577 * the commit root of the extent tree to find extents
3578 * to copy from the srcdev into the tgtdev, and we don't
3579 * want to miss any new extents.
3581 btrfs_wait_block_group_reservations(cache);
3582 btrfs_wait_nocow_writers(cache);
3583 ret = btrfs_wait_ordered_roots(fs_info, U64_MAX,
3584 cache->key.objectid,
3587 struct btrfs_trans_handle *trans;
3589 trans = btrfs_join_transaction(root);
3591 ret = PTR_ERR(trans);
3593 ret = btrfs_commit_transaction(trans);
3595 scrub_pause_off(fs_info);
3596 btrfs_put_block_group(cache);
3601 scrub_pause_off(fs_info);
3605 } else if (ret == -ENOSPC) {
3607 * btrfs_inc_block_group_ro return -ENOSPC when it
3608 * failed in creating new chunk for metadata.
3609 * It is not a problem for scrub/replace, because
3610 * metadata are always cowed, and our scrub paused
3611 * commit_transactions.
3616 "failed setting block group ro: %d", ret);
3617 btrfs_put_block_group(cache);
3621 btrfs_dev_replace_write_lock(&fs_info->dev_replace);
3622 dev_replace->cursor_right = found_key.offset + length;
3623 dev_replace->cursor_left = found_key.offset;
3624 dev_replace->item_needs_writeback = 1;
3625 btrfs_dev_replace_write_unlock(&fs_info->dev_replace);
3626 ret = scrub_chunk(sctx, scrub_dev, chunk_offset, length,
3627 found_key.offset, cache);
3630 * flush, submit all pending read and write bios, afterwards
3632 * Note that in the dev replace case, a read request causes
3633 * write requests that are submitted in the read completion
3634 * worker. Therefore in the current situation, it is required
3635 * that all write requests are flushed, so that all read and
3636 * write requests are really completed when bios_in_flight
3639 sctx->flush_all_writes = true;
3641 mutex_lock(&sctx->wr_lock);
3642 scrub_wr_submit(sctx);
3643 mutex_unlock(&sctx->wr_lock);
3645 wait_event(sctx->list_wait,
3646 atomic_read(&sctx->bios_in_flight) == 0);
3648 scrub_pause_on(fs_info);
3651 * must be called before we decrease @scrub_paused.
3652 * make sure we don't block transaction commit while
3653 * we are waiting pending workers finished.
3655 wait_event(sctx->list_wait,
3656 atomic_read(&sctx->workers_pending) == 0);
3657 sctx->flush_all_writes = false;
3659 scrub_pause_off(fs_info);
3661 btrfs_dev_replace_write_lock(&fs_info->dev_replace);
3662 dev_replace->cursor_left = dev_replace->cursor_right;
3663 dev_replace->item_needs_writeback = 1;
3664 btrfs_dev_replace_write_unlock(&fs_info->dev_replace);
3667 btrfs_dec_block_group_ro(cache);
3670 * We might have prevented the cleaner kthread from deleting
3671 * this block group if it was already unused because we raced
3672 * and set it to RO mode first. So add it back to the unused
3673 * list, otherwise it might not ever be deleted unless a manual
3674 * balance is triggered or it becomes used and unused again.
3676 spin_lock(&cache->lock);
3677 if (!cache->removed && !cache->ro && cache->reserved == 0 &&
3678 btrfs_block_group_used(&cache->item) == 0) {
3679 spin_unlock(&cache->lock);
3680 btrfs_mark_bg_unused(cache);
3682 spin_unlock(&cache->lock);
3685 btrfs_put_block_group(cache);
3688 if (sctx->is_dev_replace &&
3689 atomic64_read(&dev_replace->num_write_errors) > 0) {
3693 if (sctx->stat.malloc_errors > 0) {
3698 key.offset = found_key.offset + length;
3699 btrfs_release_path(path);
3702 btrfs_free_path(path);
3707 static noinline_for_stack int scrub_supers(struct scrub_ctx *sctx,
3708 struct btrfs_device *scrub_dev)
3714 struct btrfs_fs_info *fs_info = sctx->fs_info;
3716 if (test_bit(BTRFS_FS_STATE_ERROR, &fs_info->fs_state))
3719 /* Seed devices of a new filesystem has their own generation. */
3720 if (scrub_dev->fs_devices != fs_info->fs_devices)
3721 gen = scrub_dev->generation;
3723 gen = fs_info->last_trans_committed;
3725 for (i = 0; i < BTRFS_SUPER_MIRROR_MAX; i++) {
3726 bytenr = btrfs_sb_offset(i);
3727 if (bytenr + BTRFS_SUPER_INFO_SIZE >
3728 scrub_dev->commit_total_bytes)
3731 ret = scrub_pages(sctx, bytenr, BTRFS_SUPER_INFO_SIZE, bytenr,
3732 scrub_dev, BTRFS_EXTENT_FLAG_SUPER, gen, i,
3737 wait_event(sctx->list_wait, atomic_read(&sctx->bios_in_flight) == 0);
3743 * get a reference count on fs_info->scrub_workers. start worker if necessary
3745 static noinline_for_stack int scrub_workers_get(struct btrfs_fs_info *fs_info,
3748 unsigned int flags = WQ_FREEZABLE | WQ_UNBOUND;
3749 int max_active = fs_info->thread_pool_size;
3751 if (fs_info->scrub_workers_refcnt == 0) {
3752 fs_info->scrub_workers = btrfs_alloc_workqueue(fs_info, "scrub",
3753 flags, is_dev_replace ? 1 : max_active, 4);
3754 if (!fs_info->scrub_workers)
3755 goto fail_scrub_workers;
3757 fs_info->scrub_wr_completion_workers =
3758 btrfs_alloc_workqueue(fs_info, "scrubwrc", flags,
3760 if (!fs_info->scrub_wr_completion_workers)
3761 goto fail_scrub_wr_completion_workers;
3763 fs_info->scrub_parity_workers =
3764 btrfs_alloc_workqueue(fs_info, "scrubparity", flags,
3766 if (!fs_info->scrub_parity_workers)
3767 goto fail_scrub_parity_workers;
3769 ++fs_info->scrub_workers_refcnt;
3772 fail_scrub_parity_workers:
3773 btrfs_destroy_workqueue(fs_info->scrub_wr_completion_workers);
3774 fail_scrub_wr_completion_workers:
3775 btrfs_destroy_workqueue(fs_info->scrub_workers);
3780 int btrfs_scrub_dev(struct btrfs_fs_info *fs_info, u64 devid, u64 start,
3781 u64 end, struct btrfs_scrub_progress *progress,
3782 int readonly, int is_dev_replace)
3784 struct scrub_ctx *sctx;
3786 struct btrfs_device *dev;
3787 unsigned int nofs_flag;
3788 struct btrfs_workqueue *scrub_workers = NULL;
3789 struct btrfs_workqueue *scrub_wr_comp = NULL;
3790 struct btrfs_workqueue *scrub_parity = NULL;
3792 if (btrfs_fs_closing(fs_info))
3795 if (fs_info->nodesize > BTRFS_STRIPE_LEN) {
3797 * in this case scrub is unable to calculate the checksum
3798 * the way scrub is implemented. Do not handle this
3799 * situation at all because it won't ever happen.
3802 "scrub: size assumption nodesize <= BTRFS_STRIPE_LEN (%d <= %d) fails",
3808 if (fs_info->sectorsize != PAGE_SIZE) {
3809 /* not supported for data w/o checksums */
3810 btrfs_err_rl(fs_info,
3811 "scrub: size assumption sectorsize != PAGE_SIZE (%d != %lu) fails",
3812 fs_info->sectorsize, PAGE_SIZE);
3816 if (fs_info->nodesize >
3817 PAGE_SIZE * SCRUB_MAX_PAGES_PER_BLOCK ||
3818 fs_info->sectorsize > PAGE_SIZE * SCRUB_MAX_PAGES_PER_BLOCK) {
3820 * would exhaust the array bounds of pagev member in
3821 * struct scrub_block
3824 "scrub: size assumption nodesize and sectorsize <= SCRUB_MAX_PAGES_PER_BLOCK (%d <= %d && %d <= %d) fails",
3826 SCRUB_MAX_PAGES_PER_BLOCK,
3827 fs_info->sectorsize,
3828 SCRUB_MAX_PAGES_PER_BLOCK);
3832 /* Allocate outside of device_list_mutex */
3833 sctx = scrub_setup_ctx(fs_info, is_dev_replace);
3835 return PTR_ERR(sctx);
3837 mutex_lock(&fs_info->fs_devices->device_list_mutex);
3838 dev = btrfs_find_device(fs_info->fs_devices, devid, NULL, NULL, true);
3839 if (!dev || (test_bit(BTRFS_DEV_STATE_MISSING, &dev->dev_state) &&
3841 mutex_unlock(&fs_info->fs_devices->device_list_mutex);
3846 if (!is_dev_replace && !readonly &&
3847 !test_bit(BTRFS_DEV_STATE_WRITEABLE, &dev->dev_state)) {
3848 mutex_unlock(&fs_info->fs_devices->device_list_mutex);
3849 btrfs_err_in_rcu(fs_info, "scrub: device %s is not writable",
3850 rcu_str_deref(dev->name));
3855 mutex_lock(&fs_info->scrub_lock);
3856 if (!test_bit(BTRFS_DEV_STATE_IN_FS_METADATA, &dev->dev_state) ||
3857 test_bit(BTRFS_DEV_STATE_REPLACE_TGT, &dev->dev_state)) {
3858 mutex_unlock(&fs_info->scrub_lock);
3859 mutex_unlock(&fs_info->fs_devices->device_list_mutex);
3864 btrfs_dev_replace_read_lock(&fs_info->dev_replace);
3865 if (dev->scrub_ctx ||
3867 btrfs_dev_replace_is_ongoing(&fs_info->dev_replace))) {
3868 btrfs_dev_replace_read_unlock(&fs_info->dev_replace);
3869 mutex_unlock(&fs_info->scrub_lock);
3870 mutex_unlock(&fs_info->fs_devices->device_list_mutex);
3874 btrfs_dev_replace_read_unlock(&fs_info->dev_replace);
3876 ret = scrub_workers_get(fs_info, is_dev_replace);
3878 mutex_unlock(&fs_info->scrub_lock);
3879 mutex_unlock(&fs_info->fs_devices->device_list_mutex);
3883 sctx->readonly = readonly;
3884 dev->scrub_ctx = sctx;
3885 mutex_unlock(&fs_info->fs_devices->device_list_mutex);
3888 * checking @scrub_pause_req here, we can avoid
3889 * race between committing transaction and scrubbing.
3891 __scrub_blocked_if_needed(fs_info);
3892 atomic_inc(&fs_info->scrubs_running);
3893 mutex_unlock(&fs_info->scrub_lock);
3896 * In order to avoid deadlock with reclaim when there is a transaction
3897 * trying to pause scrub, make sure we use GFP_NOFS for all the
3898 * allocations done at btrfs_scrub_pages() and scrub_pages_for_parity()
3899 * invoked by our callees. The pausing request is done when the
3900 * transaction commit starts, and it blocks the transaction until scrub
3901 * is paused (done at specific points at scrub_stripe() or right above
3902 * before incrementing fs_info->scrubs_running).
3904 nofs_flag = memalloc_nofs_save();
3905 if (!is_dev_replace) {
3907 * by holding device list mutex, we can
3908 * kick off writing super in log tree sync.
3910 mutex_lock(&fs_info->fs_devices->device_list_mutex);
3911 ret = scrub_supers(sctx, dev);
3912 mutex_unlock(&fs_info->fs_devices->device_list_mutex);
3916 ret = scrub_enumerate_chunks(sctx, dev, start, end);
3917 memalloc_nofs_restore(nofs_flag);
3919 wait_event(sctx->list_wait, atomic_read(&sctx->bios_in_flight) == 0);
3920 atomic_dec(&fs_info->scrubs_running);
3921 wake_up(&fs_info->scrub_pause_wait);
3923 wait_event(sctx->list_wait, atomic_read(&sctx->workers_pending) == 0);
3926 memcpy(progress, &sctx->stat, sizeof(*progress));
3928 mutex_lock(&fs_info->scrub_lock);
3929 dev->scrub_ctx = NULL;
3930 if (--fs_info->scrub_workers_refcnt == 0) {
3931 scrub_workers = fs_info->scrub_workers;
3932 scrub_wr_comp = fs_info->scrub_wr_completion_workers;
3933 scrub_parity = fs_info->scrub_parity_workers;
3935 mutex_unlock(&fs_info->scrub_lock);
3937 btrfs_destroy_workqueue(scrub_workers);
3938 btrfs_destroy_workqueue(scrub_wr_comp);
3939 btrfs_destroy_workqueue(scrub_parity);
3940 scrub_put_ctx(sctx);
3945 scrub_free_ctx(sctx);
3950 void btrfs_scrub_pause(struct btrfs_fs_info *fs_info)
3952 mutex_lock(&fs_info->scrub_lock);
3953 atomic_inc(&fs_info->scrub_pause_req);
3954 while (atomic_read(&fs_info->scrubs_paused) !=
3955 atomic_read(&fs_info->scrubs_running)) {
3956 mutex_unlock(&fs_info->scrub_lock);
3957 wait_event(fs_info->scrub_pause_wait,
3958 atomic_read(&fs_info->scrubs_paused) ==
3959 atomic_read(&fs_info->scrubs_running));
3960 mutex_lock(&fs_info->scrub_lock);
3962 mutex_unlock(&fs_info->scrub_lock);
3965 void btrfs_scrub_continue(struct btrfs_fs_info *fs_info)
3967 atomic_dec(&fs_info->scrub_pause_req);
3968 wake_up(&fs_info->scrub_pause_wait);
3971 int btrfs_scrub_cancel(struct btrfs_fs_info *fs_info)
3973 mutex_lock(&fs_info->scrub_lock);
3974 if (!atomic_read(&fs_info->scrubs_running)) {
3975 mutex_unlock(&fs_info->scrub_lock);
3979 atomic_inc(&fs_info->scrub_cancel_req);
3980 while (atomic_read(&fs_info->scrubs_running)) {
3981 mutex_unlock(&fs_info->scrub_lock);
3982 wait_event(fs_info->scrub_pause_wait,
3983 atomic_read(&fs_info->scrubs_running) == 0);
3984 mutex_lock(&fs_info->scrub_lock);
3986 atomic_dec(&fs_info->scrub_cancel_req);
3987 mutex_unlock(&fs_info->scrub_lock);
3992 int btrfs_scrub_cancel_dev(struct btrfs_fs_info *fs_info,
3993 struct btrfs_device *dev)
3995 struct scrub_ctx *sctx;
3997 mutex_lock(&fs_info->scrub_lock);
3998 sctx = dev->scrub_ctx;
4000 mutex_unlock(&fs_info->scrub_lock);
4003 atomic_inc(&sctx->cancel_req);
4004 while (dev->scrub_ctx) {
4005 mutex_unlock(&fs_info->scrub_lock);
4006 wait_event(fs_info->scrub_pause_wait,
4007 dev->scrub_ctx == NULL);
4008 mutex_lock(&fs_info->scrub_lock);
4010 mutex_unlock(&fs_info->scrub_lock);
4015 int btrfs_scrub_progress(struct btrfs_fs_info *fs_info, u64 devid,
4016 struct btrfs_scrub_progress *progress)
4018 struct btrfs_device *dev;
4019 struct scrub_ctx *sctx = NULL;
4021 mutex_lock(&fs_info->fs_devices->device_list_mutex);
4022 dev = btrfs_find_device(fs_info->fs_devices, devid, NULL, NULL, true);
4024 sctx = dev->scrub_ctx;
4026 memcpy(progress, &sctx->stat, sizeof(*progress));
4027 mutex_unlock(&fs_info->fs_devices->device_list_mutex);
4029 return dev ? (sctx ? 0 : -ENOTCONN) : -ENODEV;
4032 static void scrub_remap_extent(struct btrfs_fs_info *fs_info,
4033 u64 extent_logical, u64 extent_len,
4034 u64 *extent_physical,
4035 struct btrfs_device **extent_dev,
4036 int *extent_mirror_num)
4039 struct btrfs_bio *bbio = NULL;
4042 mapped_length = extent_len;
4043 ret = btrfs_map_block(fs_info, BTRFS_MAP_READ, extent_logical,
4044 &mapped_length, &bbio, 0);
4045 if (ret || !bbio || mapped_length < extent_len ||
4046 !bbio->stripes[0].dev->bdev) {
4047 btrfs_put_bbio(bbio);
4051 *extent_physical = bbio->stripes[0].physical;
4052 *extent_mirror_num = bbio->mirror_num;
4053 *extent_dev = bbio->stripes[0].dev;
4054 btrfs_put_bbio(bbio);