Linux 6.7-rc7
[linux-modified.git] / fs / btrfs / scrub.c
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * Copyright (C) 2011, 2012 STRATO.  All rights reserved.
4  */
5
6 #include <linux/blkdev.h>
7 #include <linux/ratelimit.h>
8 #include <linux/sched/mm.h>
9 #include <crypto/hash.h>
10 #include "ctree.h"
11 #include "discard.h"
12 #include "volumes.h"
13 #include "disk-io.h"
14 #include "ordered-data.h"
15 #include "transaction.h"
16 #include "backref.h"
17 #include "extent_io.h"
18 #include "dev-replace.h"
19 #include "raid56.h"
20 #include "block-group.h"
21 #include "zoned.h"
22 #include "fs.h"
23 #include "accessors.h"
24 #include "file-item.h"
25 #include "scrub.h"
26 #include "raid-stripe-tree.h"
27
28 /*
29  * This is only the first step towards a full-features scrub. It reads all
30  * extent and super block and verifies the checksums. In case a bad checksum
31  * is found or the extent cannot be read, good data will be written back if
32  * any can be found.
33  *
34  * Future enhancements:
35  *  - In case an unrepairable extent is encountered, track which files are
36  *    affected and report them
37  *  - track and record media errors, throw out bad devices
38  *  - add a mode to also read unallocated space
39  */
40
41 struct scrub_ctx;
42
43 /*
44  * The following value only influences the performance.
45  *
46  * This detemines how many stripes would be submitted in one go,
47  * which is 512KiB (BTRFS_STRIPE_LEN * SCRUB_STRIPES_PER_GROUP).
48  */
49 #define SCRUB_STRIPES_PER_GROUP         8
50
51 /*
52  * How many groups we have for each sctx.
53  *
54  * This would be 8M per device, the same value as the old scrub in-flight bios
55  * size limit.
56  */
57 #define SCRUB_GROUPS_PER_SCTX           16
58
59 #define SCRUB_TOTAL_STRIPES             (SCRUB_GROUPS_PER_SCTX * SCRUB_STRIPES_PER_GROUP)
60
61 /*
62  * The following value times PAGE_SIZE needs to be large enough to match the
63  * largest node/leaf/sector size that shall be supported.
64  */
65 #define SCRUB_MAX_SECTORS_PER_BLOCK     (BTRFS_MAX_METADATA_BLOCKSIZE / SZ_4K)
66
67 /* Represent one sector and its needed info to verify the content. */
68 struct scrub_sector_verification {
69         bool is_metadata;
70
71         union {
72                 /*
73                  * Csum pointer for data csum verification.  Should point to a
74                  * sector csum inside scrub_stripe::csums.
75                  *
76                  * NULL if this data sector has no csum.
77                  */
78                 u8 *csum;
79
80                 /*
81                  * Extra info for metadata verification.  All sectors inside a
82                  * tree block share the same generation.
83                  */
84                 u64 generation;
85         };
86 };
87
88 enum scrub_stripe_flags {
89         /* Set when @mirror_num, @dev, @physical and @logical are set. */
90         SCRUB_STRIPE_FLAG_INITIALIZED,
91
92         /* Set when the read-repair is finished. */
93         SCRUB_STRIPE_FLAG_REPAIR_DONE,
94
95         /*
96          * Set for data stripes if it's triggered from P/Q stripe.
97          * During such scrub, we should not report errors in data stripes, nor
98          * update the accounting.
99          */
100         SCRUB_STRIPE_FLAG_NO_REPORT,
101 };
102
103 #define SCRUB_STRIPE_PAGES              (BTRFS_STRIPE_LEN / PAGE_SIZE)
104
105 /*
106  * Represent one contiguous range with a length of BTRFS_STRIPE_LEN.
107  */
108 struct scrub_stripe {
109         struct scrub_ctx *sctx;
110         struct btrfs_block_group *bg;
111
112         struct page *pages[SCRUB_STRIPE_PAGES];
113         struct scrub_sector_verification *sectors;
114
115         struct btrfs_device *dev;
116         u64 logical;
117         u64 physical;
118
119         u16 mirror_num;
120
121         /* Should be BTRFS_STRIPE_LEN / sectorsize. */
122         u16 nr_sectors;
123
124         /*
125          * How many data/meta extents are in this stripe.  Only for scrub status
126          * reporting purposes.
127          */
128         u16 nr_data_extents;
129         u16 nr_meta_extents;
130
131         atomic_t pending_io;
132         wait_queue_head_t io_wait;
133         wait_queue_head_t repair_wait;
134
135         /*
136          * Indicate the states of the stripe.  Bits are defined in
137          * scrub_stripe_flags enum.
138          */
139         unsigned long state;
140
141         /* Indicate which sectors are covered by extent items. */
142         unsigned long extent_sector_bitmap;
143
144         /*
145          * The errors hit during the initial read of the stripe.
146          *
147          * Would be utilized for error reporting and repair.
148          *
149          * The remaining init_nr_* records the number of errors hit, only used
150          * by error reporting.
151          */
152         unsigned long init_error_bitmap;
153         unsigned int init_nr_io_errors;
154         unsigned int init_nr_csum_errors;
155         unsigned int init_nr_meta_errors;
156
157         /*
158          * The following error bitmaps are all for the current status.
159          * Every time we submit a new read, these bitmaps may be updated.
160          *
161          * error_bitmap = io_error_bitmap | csum_error_bitmap | meta_error_bitmap;
162          *
163          * IO and csum errors can happen for both metadata and data.
164          */
165         unsigned long error_bitmap;
166         unsigned long io_error_bitmap;
167         unsigned long csum_error_bitmap;
168         unsigned long meta_error_bitmap;
169
170         /* For writeback (repair or replace) error reporting. */
171         unsigned long write_error_bitmap;
172
173         /* Writeback can be concurrent, thus we need to protect the bitmap. */
174         spinlock_t write_error_lock;
175
176         /*
177          * Checksum for the whole stripe if this stripe is inside a data block
178          * group.
179          */
180         u8 *csums;
181
182         struct work_struct work;
183 };
184
185 struct scrub_ctx {
186         struct scrub_stripe     stripes[SCRUB_TOTAL_STRIPES];
187         struct scrub_stripe     *raid56_data_stripes;
188         struct btrfs_fs_info    *fs_info;
189         struct btrfs_path       extent_path;
190         struct btrfs_path       csum_path;
191         int                     first_free;
192         int                     cur_stripe;
193         atomic_t                cancel_req;
194         int                     readonly;
195         int                     sectors_per_bio;
196
197         /* State of IO submission throttling affecting the associated device */
198         ktime_t                 throttle_deadline;
199         u64                     throttle_sent;
200
201         int                     is_dev_replace;
202         u64                     write_pointer;
203
204         struct mutex            wr_lock;
205         struct btrfs_device     *wr_tgtdev;
206
207         /*
208          * statistics
209          */
210         struct btrfs_scrub_progress stat;
211         spinlock_t              stat_lock;
212
213         /*
214          * Use a ref counter to avoid use-after-free issues. Scrub workers
215          * decrement bios_in_flight and workers_pending and then do a wakeup
216          * on the list_wait wait queue. We must ensure the main scrub task
217          * doesn't free the scrub context before or while the workers are
218          * doing the wakeup() call.
219          */
220         refcount_t              refs;
221 };
222
223 struct scrub_warning {
224         struct btrfs_path       *path;
225         u64                     extent_item_size;
226         const char              *errstr;
227         u64                     physical;
228         u64                     logical;
229         struct btrfs_device     *dev;
230 };
231
232 static void release_scrub_stripe(struct scrub_stripe *stripe)
233 {
234         if (!stripe)
235                 return;
236
237         for (int i = 0; i < SCRUB_STRIPE_PAGES; i++) {
238                 if (stripe->pages[i])
239                         __free_page(stripe->pages[i]);
240                 stripe->pages[i] = NULL;
241         }
242         kfree(stripe->sectors);
243         kfree(stripe->csums);
244         stripe->sectors = NULL;
245         stripe->csums = NULL;
246         stripe->sctx = NULL;
247         stripe->state = 0;
248 }
249
250 static int init_scrub_stripe(struct btrfs_fs_info *fs_info,
251                              struct scrub_stripe *stripe)
252 {
253         int ret;
254
255         memset(stripe, 0, sizeof(*stripe));
256
257         stripe->nr_sectors = BTRFS_STRIPE_LEN >> fs_info->sectorsize_bits;
258         stripe->state = 0;
259
260         init_waitqueue_head(&stripe->io_wait);
261         init_waitqueue_head(&stripe->repair_wait);
262         atomic_set(&stripe->pending_io, 0);
263         spin_lock_init(&stripe->write_error_lock);
264
265         ret = btrfs_alloc_page_array(SCRUB_STRIPE_PAGES, stripe->pages);
266         if (ret < 0)
267                 goto error;
268
269         stripe->sectors = kcalloc(stripe->nr_sectors,
270                                   sizeof(struct scrub_sector_verification),
271                                   GFP_KERNEL);
272         if (!stripe->sectors)
273                 goto error;
274
275         stripe->csums = kcalloc(BTRFS_STRIPE_LEN >> fs_info->sectorsize_bits,
276                                 fs_info->csum_size, GFP_KERNEL);
277         if (!stripe->csums)
278                 goto error;
279         return 0;
280 error:
281         release_scrub_stripe(stripe);
282         return -ENOMEM;
283 }
284
285 static void wait_scrub_stripe_io(struct scrub_stripe *stripe)
286 {
287         wait_event(stripe->io_wait, atomic_read(&stripe->pending_io) == 0);
288 }
289
290 static void scrub_put_ctx(struct scrub_ctx *sctx);
291
292 static void __scrub_blocked_if_needed(struct btrfs_fs_info *fs_info)
293 {
294         while (atomic_read(&fs_info->scrub_pause_req)) {
295                 mutex_unlock(&fs_info->scrub_lock);
296                 wait_event(fs_info->scrub_pause_wait,
297                    atomic_read(&fs_info->scrub_pause_req) == 0);
298                 mutex_lock(&fs_info->scrub_lock);
299         }
300 }
301
302 static void scrub_pause_on(struct btrfs_fs_info *fs_info)
303 {
304         atomic_inc(&fs_info->scrubs_paused);
305         wake_up(&fs_info->scrub_pause_wait);
306 }
307
308 static void scrub_pause_off(struct btrfs_fs_info *fs_info)
309 {
310         mutex_lock(&fs_info->scrub_lock);
311         __scrub_blocked_if_needed(fs_info);
312         atomic_dec(&fs_info->scrubs_paused);
313         mutex_unlock(&fs_info->scrub_lock);
314
315         wake_up(&fs_info->scrub_pause_wait);
316 }
317
318 static void scrub_blocked_if_needed(struct btrfs_fs_info *fs_info)
319 {
320         scrub_pause_on(fs_info);
321         scrub_pause_off(fs_info);
322 }
323
324 static noinline_for_stack void scrub_free_ctx(struct scrub_ctx *sctx)
325 {
326         int i;
327
328         if (!sctx)
329                 return;
330
331         for (i = 0; i < SCRUB_TOTAL_STRIPES; i++)
332                 release_scrub_stripe(&sctx->stripes[i]);
333
334         kvfree(sctx);
335 }
336
337 static void scrub_put_ctx(struct scrub_ctx *sctx)
338 {
339         if (refcount_dec_and_test(&sctx->refs))
340                 scrub_free_ctx(sctx);
341 }
342
343 static noinline_for_stack struct scrub_ctx *scrub_setup_ctx(
344                 struct btrfs_fs_info *fs_info, int is_dev_replace)
345 {
346         struct scrub_ctx *sctx;
347         int             i;
348
349         /* Since sctx has inline 128 stripes, it can go beyond 64K easily.  Use
350          * kvzalloc().
351          */
352         sctx = kvzalloc(sizeof(*sctx), GFP_KERNEL);
353         if (!sctx)
354                 goto nomem;
355         refcount_set(&sctx->refs, 1);
356         sctx->is_dev_replace = is_dev_replace;
357         sctx->fs_info = fs_info;
358         sctx->extent_path.search_commit_root = 1;
359         sctx->extent_path.skip_locking = 1;
360         sctx->csum_path.search_commit_root = 1;
361         sctx->csum_path.skip_locking = 1;
362         for (i = 0; i < SCRUB_TOTAL_STRIPES; i++) {
363                 int ret;
364
365                 ret = init_scrub_stripe(fs_info, &sctx->stripes[i]);
366                 if (ret < 0)
367                         goto nomem;
368                 sctx->stripes[i].sctx = sctx;
369         }
370         sctx->first_free = 0;
371         atomic_set(&sctx->cancel_req, 0);
372
373         spin_lock_init(&sctx->stat_lock);
374         sctx->throttle_deadline = 0;
375
376         mutex_init(&sctx->wr_lock);
377         if (is_dev_replace) {
378                 WARN_ON(!fs_info->dev_replace.tgtdev);
379                 sctx->wr_tgtdev = fs_info->dev_replace.tgtdev;
380         }
381
382         return sctx;
383
384 nomem:
385         scrub_free_ctx(sctx);
386         return ERR_PTR(-ENOMEM);
387 }
388
389 static int scrub_print_warning_inode(u64 inum, u64 offset, u64 num_bytes,
390                                      u64 root, void *warn_ctx)
391 {
392         u32 nlink;
393         int ret;
394         int i;
395         unsigned nofs_flag;
396         struct extent_buffer *eb;
397         struct btrfs_inode_item *inode_item;
398         struct scrub_warning *swarn = warn_ctx;
399         struct btrfs_fs_info *fs_info = swarn->dev->fs_info;
400         struct inode_fs_paths *ipath = NULL;
401         struct btrfs_root *local_root;
402         struct btrfs_key key;
403
404         local_root = btrfs_get_fs_root(fs_info, root, true);
405         if (IS_ERR(local_root)) {
406                 ret = PTR_ERR(local_root);
407                 goto err;
408         }
409
410         /*
411          * this makes the path point to (inum INODE_ITEM ioff)
412          */
413         key.objectid = inum;
414         key.type = BTRFS_INODE_ITEM_KEY;
415         key.offset = 0;
416
417         ret = btrfs_search_slot(NULL, local_root, &key, swarn->path, 0, 0);
418         if (ret) {
419                 btrfs_put_root(local_root);
420                 btrfs_release_path(swarn->path);
421                 goto err;
422         }
423
424         eb = swarn->path->nodes[0];
425         inode_item = btrfs_item_ptr(eb, swarn->path->slots[0],
426                                         struct btrfs_inode_item);
427         nlink = btrfs_inode_nlink(eb, inode_item);
428         btrfs_release_path(swarn->path);
429
430         /*
431          * init_path might indirectly call vmalloc, or use GFP_KERNEL. Scrub
432          * uses GFP_NOFS in this context, so we keep it consistent but it does
433          * not seem to be strictly necessary.
434          */
435         nofs_flag = memalloc_nofs_save();
436         ipath = init_ipath(4096, local_root, swarn->path);
437         memalloc_nofs_restore(nofs_flag);
438         if (IS_ERR(ipath)) {
439                 btrfs_put_root(local_root);
440                 ret = PTR_ERR(ipath);
441                 ipath = NULL;
442                 goto err;
443         }
444         ret = paths_from_inode(inum, ipath);
445
446         if (ret < 0)
447                 goto err;
448
449         /*
450          * we deliberately ignore the bit ipath might have been too small to
451          * hold all of the paths here
452          */
453         for (i = 0; i < ipath->fspath->elem_cnt; ++i)
454                 btrfs_warn_in_rcu(fs_info,
455 "%s at logical %llu on dev %s, physical %llu, root %llu, inode %llu, offset %llu, length %u, links %u (path: %s)",
456                                   swarn->errstr, swarn->logical,
457                                   btrfs_dev_name(swarn->dev),
458                                   swarn->physical,
459                                   root, inum, offset,
460                                   fs_info->sectorsize, nlink,
461                                   (char *)(unsigned long)ipath->fspath->val[i]);
462
463         btrfs_put_root(local_root);
464         free_ipath(ipath);
465         return 0;
466
467 err:
468         btrfs_warn_in_rcu(fs_info,
469                           "%s at logical %llu on dev %s, physical %llu, root %llu, inode %llu, offset %llu: path resolving failed with ret=%d",
470                           swarn->errstr, swarn->logical,
471                           btrfs_dev_name(swarn->dev),
472                           swarn->physical,
473                           root, inum, offset, ret);
474
475         free_ipath(ipath);
476         return 0;
477 }
478
479 static void scrub_print_common_warning(const char *errstr, struct btrfs_device *dev,
480                                        bool is_super, u64 logical, u64 physical)
481 {
482         struct btrfs_fs_info *fs_info = dev->fs_info;
483         struct btrfs_path *path;
484         struct btrfs_key found_key;
485         struct extent_buffer *eb;
486         struct btrfs_extent_item *ei;
487         struct scrub_warning swarn;
488         u64 flags = 0;
489         u32 item_size;
490         int ret;
491
492         /* Super block error, no need to search extent tree. */
493         if (is_super) {
494                 btrfs_warn_in_rcu(fs_info, "%s on device %s, physical %llu",
495                                   errstr, btrfs_dev_name(dev), physical);
496                 return;
497         }
498         path = btrfs_alloc_path();
499         if (!path)
500                 return;
501
502         swarn.physical = physical;
503         swarn.logical = logical;
504         swarn.errstr = errstr;
505         swarn.dev = NULL;
506
507         ret = extent_from_logical(fs_info, swarn.logical, path, &found_key,
508                                   &flags);
509         if (ret < 0)
510                 goto out;
511
512         swarn.extent_item_size = found_key.offset;
513
514         eb = path->nodes[0];
515         ei = btrfs_item_ptr(eb, path->slots[0], struct btrfs_extent_item);
516         item_size = btrfs_item_size(eb, path->slots[0]);
517
518         if (flags & BTRFS_EXTENT_FLAG_TREE_BLOCK) {
519                 unsigned long ptr = 0;
520                 u8 ref_level;
521                 u64 ref_root;
522
523                 while (true) {
524                         ret = tree_backref_for_extent(&ptr, eb, &found_key, ei,
525                                                       item_size, &ref_root,
526                                                       &ref_level);
527                         if (ret < 0) {
528                                 btrfs_warn(fs_info,
529                                 "failed to resolve tree backref for logical %llu: %d",
530                                                   swarn.logical, ret);
531                                 break;
532                         }
533                         if (ret > 0)
534                                 break;
535                         btrfs_warn_in_rcu(fs_info,
536 "%s at logical %llu on dev %s, physical %llu: metadata %s (level %d) in tree %llu",
537                                 errstr, swarn.logical, btrfs_dev_name(dev),
538                                 swarn.physical, (ref_level ? "node" : "leaf"),
539                                 ref_level, ref_root);
540                 }
541                 btrfs_release_path(path);
542         } else {
543                 struct btrfs_backref_walk_ctx ctx = { 0 };
544
545                 btrfs_release_path(path);
546
547                 ctx.bytenr = found_key.objectid;
548                 ctx.extent_item_pos = swarn.logical - found_key.objectid;
549                 ctx.fs_info = fs_info;
550
551                 swarn.path = path;
552                 swarn.dev = dev;
553
554                 iterate_extent_inodes(&ctx, true, scrub_print_warning_inode, &swarn);
555         }
556
557 out:
558         btrfs_free_path(path);
559 }
560
561 static int fill_writer_pointer_gap(struct scrub_ctx *sctx, u64 physical)
562 {
563         int ret = 0;
564         u64 length;
565
566         if (!btrfs_is_zoned(sctx->fs_info))
567                 return 0;
568
569         if (!btrfs_dev_is_sequential(sctx->wr_tgtdev, physical))
570                 return 0;
571
572         if (sctx->write_pointer < physical) {
573                 length = physical - sctx->write_pointer;
574
575                 ret = btrfs_zoned_issue_zeroout(sctx->wr_tgtdev,
576                                                 sctx->write_pointer, length);
577                 if (!ret)
578                         sctx->write_pointer = physical;
579         }
580         return ret;
581 }
582
583 static struct page *scrub_stripe_get_page(struct scrub_stripe *stripe, int sector_nr)
584 {
585         struct btrfs_fs_info *fs_info = stripe->bg->fs_info;
586         int page_index = (sector_nr << fs_info->sectorsize_bits) >> PAGE_SHIFT;
587
588         return stripe->pages[page_index];
589 }
590
591 static unsigned int scrub_stripe_get_page_offset(struct scrub_stripe *stripe,
592                                                  int sector_nr)
593 {
594         struct btrfs_fs_info *fs_info = stripe->bg->fs_info;
595
596         return offset_in_page(sector_nr << fs_info->sectorsize_bits);
597 }
598
599 static void scrub_verify_one_metadata(struct scrub_stripe *stripe, int sector_nr)
600 {
601         struct btrfs_fs_info *fs_info = stripe->bg->fs_info;
602         const u32 sectors_per_tree = fs_info->nodesize >> fs_info->sectorsize_bits;
603         const u64 logical = stripe->logical + (sector_nr << fs_info->sectorsize_bits);
604         const struct page *first_page = scrub_stripe_get_page(stripe, sector_nr);
605         const unsigned int first_off = scrub_stripe_get_page_offset(stripe, sector_nr);
606         SHASH_DESC_ON_STACK(shash, fs_info->csum_shash);
607         u8 on_disk_csum[BTRFS_CSUM_SIZE];
608         u8 calculated_csum[BTRFS_CSUM_SIZE];
609         struct btrfs_header *header;
610
611         /*
612          * Here we don't have a good way to attach the pages (and subpages)
613          * to a dummy extent buffer, thus we have to directly grab the members
614          * from pages.
615          */
616         header = (struct btrfs_header *)(page_address(first_page) + first_off);
617         memcpy(on_disk_csum, header->csum, fs_info->csum_size);
618
619         if (logical != btrfs_stack_header_bytenr(header)) {
620                 bitmap_set(&stripe->csum_error_bitmap, sector_nr, sectors_per_tree);
621                 bitmap_set(&stripe->error_bitmap, sector_nr, sectors_per_tree);
622                 btrfs_warn_rl(fs_info,
623                 "tree block %llu mirror %u has bad bytenr, has %llu want %llu",
624                               logical, stripe->mirror_num,
625                               btrfs_stack_header_bytenr(header), logical);
626                 return;
627         }
628         if (memcmp(header->fsid, fs_info->fs_devices->metadata_uuid,
629                    BTRFS_FSID_SIZE) != 0) {
630                 bitmap_set(&stripe->meta_error_bitmap, sector_nr, sectors_per_tree);
631                 bitmap_set(&stripe->error_bitmap, sector_nr, sectors_per_tree);
632                 btrfs_warn_rl(fs_info,
633                 "tree block %llu mirror %u has bad fsid, has %pU want %pU",
634                               logical, stripe->mirror_num,
635                               header->fsid, fs_info->fs_devices->fsid);
636                 return;
637         }
638         if (memcmp(header->chunk_tree_uuid, fs_info->chunk_tree_uuid,
639                    BTRFS_UUID_SIZE) != 0) {
640                 bitmap_set(&stripe->meta_error_bitmap, sector_nr, sectors_per_tree);
641                 bitmap_set(&stripe->error_bitmap, sector_nr, sectors_per_tree);
642                 btrfs_warn_rl(fs_info,
643                 "tree block %llu mirror %u has bad chunk tree uuid, has %pU want %pU",
644                               logical, stripe->mirror_num,
645                               header->chunk_tree_uuid, fs_info->chunk_tree_uuid);
646                 return;
647         }
648
649         /* Now check tree block csum. */
650         shash->tfm = fs_info->csum_shash;
651         crypto_shash_init(shash);
652         crypto_shash_update(shash, page_address(first_page) + first_off +
653                             BTRFS_CSUM_SIZE, fs_info->sectorsize - BTRFS_CSUM_SIZE);
654
655         for (int i = sector_nr + 1; i < sector_nr + sectors_per_tree; i++) {
656                 struct page *page = scrub_stripe_get_page(stripe, i);
657                 unsigned int page_off = scrub_stripe_get_page_offset(stripe, i);
658
659                 crypto_shash_update(shash, page_address(page) + page_off,
660                                     fs_info->sectorsize);
661         }
662
663         crypto_shash_final(shash, calculated_csum);
664         if (memcmp(calculated_csum, on_disk_csum, fs_info->csum_size) != 0) {
665                 bitmap_set(&stripe->meta_error_bitmap, sector_nr, sectors_per_tree);
666                 bitmap_set(&stripe->error_bitmap, sector_nr, sectors_per_tree);
667                 btrfs_warn_rl(fs_info,
668                 "tree block %llu mirror %u has bad csum, has " CSUM_FMT " want " CSUM_FMT,
669                               logical, stripe->mirror_num,
670                               CSUM_FMT_VALUE(fs_info->csum_size, on_disk_csum),
671                               CSUM_FMT_VALUE(fs_info->csum_size, calculated_csum));
672                 return;
673         }
674         if (stripe->sectors[sector_nr].generation !=
675             btrfs_stack_header_generation(header)) {
676                 bitmap_set(&stripe->meta_error_bitmap, sector_nr, sectors_per_tree);
677                 bitmap_set(&stripe->error_bitmap, sector_nr, sectors_per_tree);
678                 btrfs_warn_rl(fs_info,
679                 "tree block %llu mirror %u has bad generation, has %llu want %llu",
680                               logical, stripe->mirror_num,
681                               btrfs_stack_header_generation(header),
682                               stripe->sectors[sector_nr].generation);
683                 return;
684         }
685         bitmap_clear(&stripe->error_bitmap, sector_nr, sectors_per_tree);
686         bitmap_clear(&stripe->csum_error_bitmap, sector_nr, sectors_per_tree);
687         bitmap_clear(&stripe->meta_error_bitmap, sector_nr, sectors_per_tree);
688 }
689
690 static void scrub_verify_one_sector(struct scrub_stripe *stripe, int sector_nr)
691 {
692         struct btrfs_fs_info *fs_info = stripe->bg->fs_info;
693         struct scrub_sector_verification *sector = &stripe->sectors[sector_nr];
694         const u32 sectors_per_tree = fs_info->nodesize >> fs_info->sectorsize_bits;
695         struct page *page = scrub_stripe_get_page(stripe, sector_nr);
696         unsigned int pgoff = scrub_stripe_get_page_offset(stripe, sector_nr);
697         u8 csum_buf[BTRFS_CSUM_SIZE];
698         int ret;
699
700         ASSERT(sector_nr >= 0 && sector_nr < stripe->nr_sectors);
701
702         /* Sector not utilized, skip it. */
703         if (!test_bit(sector_nr, &stripe->extent_sector_bitmap))
704                 return;
705
706         /* IO error, no need to check. */
707         if (test_bit(sector_nr, &stripe->io_error_bitmap))
708                 return;
709
710         /* Metadata, verify the full tree block. */
711         if (sector->is_metadata) {
712                 /*
713                  * Check if the tree block crosses the stripe boudary.  If
714                  * crossed the boundary, we cannot verify it but only give a
715                  * warning.
716                  *
717                  * This can only happen on a very old filesystem where chunks
718                  * are not ensured to be stripe aligned.
719                  */
720                 if (unlikely(sector_nr + sectors_per_tree > stripe->nr_sectors)) {
721                         btrfs_warn_rl(fs_info,
722                         "tree block at %llu crosses stripe boundary %llu",
723                                       stripe->logical +
724                                       (sector_nr << fs_info->sectorsize_bits),
725                                       stripe->logical);
726                         return;
727                 }
728                 scrub_verify_one_metadata(stripe, sector_nr);
729                 return;
730         }
731
732         /*
733          * Data is easier, we just verify the data csum (if we have it).  For
734          * cases without csum, we have no other choice but to trust it.
735          */
736         if (!sector->csum) {
737                 clear_bit(sector_nr, &stripe->error_bitmap);
738                 return;
739         }
740
741         ret = btrfs_check_sector_csum(fs_info, page, pgoff, csum_buf, sector->csum);
742         if (ret < 0) {
743                 set_bit(sector_nr, &stripe->csum_error_bitmap);
744                 set_bit(sector_nr, &stripe->error_bitmap);
745         } else {
746                 clear_bit(sector_nr, &stripe->csum_error_bitmap);
747                 clear_bit(sector_nr, &stripe->error_bitmap);
748         }
749 }
750
751 /* Verify specified sectors of a stripe. */
752 static void scrub_verify_one_stripe(struct scrub_stripe *stripe, unsigned long bitmap)
753 {
754         struct btrfs_fs_info *fs_info = stripe->bg->fs_info;
755         const u32 sectors_per_tree = fs_info->nodesize >> fs_info->sectorsize_bits;
756         int sector_nr;
757
758         for_each_set_bit(sector_nr, &bitmap, stripe->nr_sectors) {
759                 scrub_verify_one_sector(stripe, sector_nr);
760                 if (stripe->sectors[sector_nr].is_metadata)
761                         sector_nr += sectors_per_tree - 1;
762         }
763 }
764
765 static int calc_sector_number(struct scrub_stripe *stripe, struct bio_vec *first_bvec)
766 {
767         int i;
768
769         for (i = 0; i < stripe->nr_sectors; i++) {
770                 if (scrub_stripe_get_page(stripe, i) == first_bvec->bv_page &&
771                     scrub_stripe_get_page_offset(stripe, i) == first_bvec->bv_offset)
772                         break;
773         }
774         ASSERT(i < stripe->nr_sectors);
775         return i;
776 }
777
778 /*
779  * Repair read is different to the regular read:
780  *
781  * - Only reads the failed sectors
782  * - May have extra blocksize limits
783  */
784 static void scrub_repair_read_endio(struct btrfs_bio *bbio)
785 {
786         struct scrub_stripe *stripe = bbio->private;
787         struct btrfs_fs_info *fs_info = stripe->bg->fs_info;
788         struct bio_vec *bvec;
789         int sector_nr = calc_sector_number(stripe, bio_first_bvec_all(&bbio->bio));
790         u32 bio_size = 0;
791         int i;
792
793         ASSERT(sector_nr < stripe->nr_sectors);
794
795         bio_for_each_bvec_all(bvec, &bbio->bio, i)
796                 bio_size += bvec->bv_len;
797
798         if (bbio->bio.bi_status) {
799                 bitmap_set(&stripe->io_error_bitmap, sector_nr,
800                            bio_size >> fs_info->sectorsize_bits);
801                 bitmap_set(&stripe->error_bitmap, sector_nr,
802                            bio_size >> fs_info->sectorsize_bits);
803         } else {
804                 bitmap_clear(&stripe->io_error_bitmap, sector_nr,
805                              bio_size >> fs_info->sectorsize_bits);
806         }
807         bio_put(&bbio->bio);
808         if (atomic_dec_and_test(&stripe->pending_io))
809                 wake_up(&stripe->io_wait);
810 }
811
812 static int calc_next_mirror(int mirror, int num_copies)
813 {
814         ASSERT(mirror <= num_copies);
815         return (mirror + 1 > num_copies) ? 1 : mirror + 1;
816 }
817
818 static void scrub_stripe_submit_repair_read(struct scrub_stripe *stripe,
819                                             int mirror, int blocksize, bool wait)
820 {
821         struct btrfs_fs_info *fs_info = stripe->bg->fs_info;
822         struct btrfs_bio *bbio = NULL;
823         const unsigned long old_error_bitmap = stripe->error_bitmap;
824         int i;
825
826         ASSERT(stripe->mirror_num >= 1);
827         ASSERT(atomic_read(&stripe->pending_io) == 0);
828
829         for_each_set_bit(i, &old_error_bitmap, stripe->nr_sectors) {
830                 struct page *page;
831                 int pgoff;
832                 int ret;
833
834                 page = scrub_stripe_get_page(stripe, i);
835                 pgoff = scrub_stripe_get_page_offset(stripe, i);
836
837                 /* The current sector cannot be merged, submit the bio. */
838                 if (bbio && ((i > 0 && !test_bit(i - 1, &stripe->error_bitmap)) ||
839                              bbio->bio.bi_iter.bi_size >= blocksize)) {
840                         ASSERT(bbio->bio.bi_iter.bi_size);
841                         atomic_inc(&stripe->pending_io);
842                         btrfs_submit_bio(bbio, mirror);
843                         if (wait)
844                                 wait_scrub_stripe_io(stripe);
845                         bbio = NULL;
846                 }
847
848                 if (!bbio) {
849                         bbio = btrfs_bio_alloc(stripe->nr_sectors, REQ_OP_READ,
850                                 fs_info, scrub_repair_read_endio, stripe);
851                         bbio->bio.bi_iter.bi_sector = (stripe->logical +
852                                 (i << fs_info->sectorsize_bits)) >> SECTOR_SHIFT;
853                 }
854
855                 ret = bio_add_page(&bbio->bio, page, fs_info->sectorsize, pgoff);
856                 ASSERT(ret == fs_info->sectorsize);
857         }
858         if (bbio) {
859                 ASSERT(bbio->bio.bi_iter.bi_size);
860                 atomic_inc(&stripe->pending_io);
861                 btrfs_submit_bio(bbio, mirror);
862                 if (wait)
863                         wait_scrub_stripe_io(stripe);
864         }
865 }
866
867 static void scrub_stripe_report_errors(struct scrub_ctx *sctx,
868                                        struct scrub_stripe *stripe)
869 {
870         static DEFINE_RATELIMIT_STATE(rs, DEFAULT_RATELIMIT_INTERVAL,
871                                       DEFAULT_RATELIMIT_BURST);
872         struct btrfs_fs_info *fs_info = sctx->fs_info;
873         struct btrfs_device *dev = NULL;
874         u64 physical = 0;
875         int nr_data_sectors = 0;
876         int nr_meta_sectors = 0;
877         int nr_nodatacsum_sectors = 0;
878         int nr_repaired_sectors = 0;
879         int sector_nr;
880
881         if (test_bit(SCRUB_STRIPE_FLAG_NO_REPORT, &stripe->state))
882                 return;
883
884         /*
885          * Init needed infos for error reporting.
886          *
887          * Although our scrub_stripe infrastucture is mostly based on btrfs_submit_bio()
888          * thus no need for dev/physical, error reporting still needs dev and physical.
889          */
890         if (!bitmap_empty(&stripe->init_error_bitmap, stripe->nr_sectors)) {
891                 u64 mapped_len = fs_info->sectorsize;
892                 struct btrfs_io_context *bioc = NULL;
893                 int stripe_index = stripe->mirror_num - 1;
894                 int ret;
895
896                 /* For scrub, our mirror_num should always start at 1. */
897                 ASSERT(stripe->mirror_num >= 1);
898                 ret = btrfs_map_block(fs_info, BTRFS_MAP_GET_READ_MIRRORS,
899                                       stripe->logical, &mapped_len, &bioc,
900                                       NULL, NULL);
901                 /*
902                  * If we failed, dev will be NULL, and later detailed reports
903                  * will just be skipped.
904                  */
905                 if (ret < 0)
906                         goto skip;
907                 physical = bioc->stripes[stripe_index].physical;
908                 dev = bioc->stripes[stripe_index].dev;
909                 btrfs_put_bioc(bioc);
910         }
911
912 skip:
913         for_each_set_bit(sector_nr, &stripe->extent_sector_bitmap, stripe->nr_sectors) {
914                 bool repaired = false;
915
916                 if (stripe->sectors[sector_nr].is_metadata) {
917                         nr_meta_sectors++;
918                 } else {
919                         nr_data_sectors++;
920                         if (!stripe->sectors[sector_nr].csum)
921                                 nr_nodatacsum_sectors++;
922                 }
923
924                 if (test_bit(sector_nr, &stripe->init_error_bitmap) &&
925                     !test_bit(sector_nr, &stripe->error_bitmap)) {
926                         nr_repaired_sectors++;
927                         repaired = true;
928                 }
929
930                 /* Good sector from the beginning, nothing need to be done. */
931                 if (!test_bit(sector_nr, &stripe->init_error_bitmap))
932                         continue;
933
934                 /*
935                  * Report error for the corrupted sectors.  If repaired, just
936                  * output the message of repaired message.
937                  */
938                 if (repaired) {
939                         if (dev) {
940                                 btrfs_err_rl_in_rcu(fs_info,
941                         "fixed up error at logical %llu on dev %s physical %llu",
942                                             stripe->logical, btrfs_dev_name(dev),
943                                             physical);
944                         } else {
945                                 btrfs_err_rl_in_rcu(fs_info,
946                         "fixed up error at logical %llu on mirror %u",
947                                             stripe->logical, stripe->mirror_num);
948                         }
949                         continue;
950                 }
951
952                 /* The remaining are all for unrepaired. */
953                 if (dev) {
954                         btrfs_err_rl_in_rcu(fs_info,
955         "unable to fixup (regular) error at logical %llu on dev %s physical %llu",
956                                             stripe->logical, btrfs_dev_name(dev),
957                                             physical);
958                 } else {
959                         btrfs_err_rl_in_rcu(fs_info,
960         "unable to fixup (regular) error at logical %llu on mirror %u",
961                                             stripe->logical, stripe->mirror_num);
962                 }
963
964                 if (test_bit(sector_nr, &stripe->io_error_bitmap))
965                         if (__ratelimit(&rs) && dev)
966                                 scrub_print_common_warning("i/o error", dev, false,
967                                                      stripe->logical, physical);
968                 if (test_bit(sector_nr, &stripe->csum_error_bitmap))
969                         if (__ratelimit(&rs) && dev)
970                                 scrub_print_common_warning("checksum error", dev, false,
971                                                      stripe->logical, physical);
972                 if (test_bit(sector_nr, &stripe->meta_error_bitmap))
973                         if (__ratelimit(&rs) && dev)
974                                 scrub_print_common_warning("header error", dev, false,
975                                                      stripe->logical, physical);
976         }
977
978         spin_lock(&sctx->stat_lock);
979         sctx->stat.data_extents_scrubbed += stripe->nr_data_extents;
980         sctx->stat.tree_extents_scrubbed += stripe->nr_meta_extents;
981         sctx->stat.data_bytes_scrubbed += nr_data_sectors << fs_info->sectorsize_bits;
982         sctx->stat.tree_bytes_scrubbed += nr_meta_sectors << fs_info->sectorsize_bits;
983         sctx->stat.no_csum += nr_nodatacsum_sectors;
984         sctx->stat.read_errors += stripe->init_nr_io_errors;
985         sctx->stat.csum_errors += stripe->init_nr_csum_errors;
986         sctx->stat.verify_errors += stripe->init_nr_meta_errors;
987         sctx->stat.uncorrectable_errors +=
988                 bitmap_weight(&stripe->error_bitmap, stripe->nr_sectors);
989         sctx->stat.corrected_errors += nr_repaired_sectors;
990         spin_unlock(&sctx->stat_lock);
991 }
992
993 static void scrub_write_sectors(struct scrub_ctx *sctx, struct scrub_stripe *stripe,
994                                 unsigned long write_bitmap, bool dev_replace);
995
996 /*
997  * The main entrance for all read related scrub work, including:
998  *
999  * - Wait for the initial read to finish
1000  * - Verify and locate any bad sectors
1001  * - Go through the remaining mirrors and try to read as large blocksize as
1002  *   possible
1003  * - Go through all mirrors (including the failed mirror) sector-by-sector
1004  * - Submit writeback for repaired sectors
1005  *
1006  * Writeback for dev-replace does not happen here, it needs extra
1007  * synchronization for zoned devices.
1008  */
1009 static void scrub_stripe_read_repair_worker(struct work_struct *work)
1010 {
1011         struct scrub_stripe *stripe = container_of(work, struct scrub_stripe, work);
1012         struct scrub_ctx *sctx = stripe->sctx;
1013         struct btrfs_fs_info *fs_info = sctx->fs_info;
1014         int num_copies = btrfs_num_copies(fs_info, stripe->bg->start,
1015                                           stripe->bg->length);
1016         int mirror;
1017         int i;
1018
1019         ASSERT(stripe->mirror_num > 0);
1020
1021         wait_scrub_stripe_io(stripe);
1022         scrub_verify_one_stripe(stripe, stripe->extent_sector_bitmap);
1023         /* Save the initial failed bitmap for later repair and report usage. */
1024         stripe->init_error_bitmap = stripe->error_bitmap;
1025         stripe->init_nr_io_errors = bitmap_weight(&stripe->io_error_bitmap,
1026                                                   stripe->nr_sectors);
1027         stripe->init_nr_csum_errors = bitmap_weight(&stripe->csum_error_bitmap,
1028                                                     stripe->nr_sectors);
1029         stripe->init_nr_meta_errors = bitmap_weight(&stripe->meta_error_bitmap,
1030                                                     stripe->nr_sectors);
1031
1032         if (bitmap_empty(&stripe->init_error_bitmap, stripe->nr_sectors))
1033                 goto out;
1034
1035         /*
1036          * Try all remaining mirrors.
1037          *
1038          * Here we still try to read as large block as possible, as this is
1039          * faster and we have extra safety nets to rely on.
1040          */
1041         for (mirror = calc_next_mirror(stripe->mirror_num, num_copies);
1042              mirror != stripe->mirror_num;
1043              mirror = calc_next_mirror(mirror, num_copies)) {
1044                 const unsigned long old_error_bitmap = stripe->error_bitmap;
1045
1046                 scrub_stripe_submit_repair_read(stripe, mirror,
1047                                                 BTRFS_STRIPE_LEN, false);
1048                 wait_scrub_stripe_io(stripe);
1049                 scrub_verify_one_stripe(stripe, old_error_bitmap);
1050                 if (bitmap_empty(&stripe->error_bitmap, stripe->nr_sectors))
1051                         goto out;
1052         }
1053
1054         /*
1055          * Last safety net, try re-checking all mirrors, including the failed
1056          * one, sector-by-sector.
1057          *
1058          * As if one sector failed the drive's internal csum, the whole read
1059          * containing the offending sector would be marked as error.
1060          * Thus here we do sector-by-sector read.
1061          *
1062          * This can be slow, thus we only try it as the last resort.
1063          */
1064
1065         for (i = 0, mirror = stripe->mirror_num;
1066              i < num_copies;
1067              i++, mirror = calc_next_mirror(mirror, num_copies)) {
1068                 const unsigned long old_error_bitmap = stripe->error_bitmap;
1069
1070                 scrub_stripe_submit_repair_read(stripe, mirror,
1071                                                 fs_info->sectorsize, true);
1072                 wait_scrub_stripe_io(stripe);
1073                 scrub_verify_one_stripe(stripe, old_error_bitmap);
1074                 if (bitmap_empty(&stripe->error_bitmap, stripe->nr_sectors))
1075                         goto out;
1076         }
1077 out:
1078         /*
1079          * Submit the repaired sectors.  For zoned case, we cannot do repair
1080          * in-place, but queue the bg to be relocated.
1081          */
1082         if (btrfs_is_zoned(fs_info)) {
1083                 if (!bitmap_empty(&stripe->error_bitmap, stripe->nr_sectors))
1084                         btrfs_repair_one_zone(fs_info, sctx->stripes[0].bg->start);
1085         } else if (!sctx->readonly) {
1086                 unsigned long repaired;
1087
1088                 bitmap_andnot(&repaired, &stripe->init_error_bitmap,
1089                               &stripe->error_bitmap, stripe->nr_sectors);
1090                 scrub_write_sectors(sctx, stripe, repaired, false);
1091                 wait_scrub_stripe_io(stripe);
1092         }
1093
1094         scrub_stripe_report_errors(sctx, stripe);
1095         set_bit(SCRUB_STRIPE_FLAG_REPAIR_DONE, &stripe->state);
1096         wake_up(&stripe->repair_wait);
1097 }
1098
1099 static void scrub_read_endio(struct btrfs_bio *bbio)
1100 {
1101         struct scrub_stripe *stripe = bbio->private;
1102
1103         if (bbio->bio.bi_status) {
1104                 bitmap_set(&stripe->io_error_bitmap, 0, stripe->nr_sectors);
1105                 bitmap_set(&stripe->error_bitmap, 0, stripe->nr_sectors);
1106         } else {
1107                 bitmap_clear(&stripe->io_error_bitmap, 0, stripe->nr_sectors);
1108         }
1109         bio_put(&bbio->bio);
1110         if (atomic_dec_and_test(&stripe->pending_io)) {
1111                 wake_up(&stripe->io_wait);
1112                 INIT_WORK(&stripe->work, scrub_stripe_read_repair_worker);
1113                 queue_work(stripe->bg->fs_info->scrub_workers, &stripe->work);
1114         }
1115 }
1116
1117 static void scrub_write_endio(struct btrfs_bio *bbio)
1118 {
1119         struct scrub_stripe *stripe = bbio->private;
1120         struct btrfs_fs_info *fs_info = stripe->bg->fs_info;
1121         struct bio_vec *bvec;
1122         int sector_nr = calc_sector_number(stripe, bio_first_bvec_all(&bbio->bio));
1123         u32 bio_size = 0;
1124         int i;
1125
1126         bio_for_each_bvec_all(bvec, &bbio->bio, i)
1127                 bio_size += bvec->bv_len;
1128
1129         if (bbio->bio.bi_status) {
1130                 unsigned long flags;
1131
1132                 spin_lock_irqsave(&stripe->write_error_lock, flags);
1133                 bitmap_set(&stripe->write_error_bitmap, sector_nr,
1134                            bio_size >> fs_info->sectorsize_bits);
1135                 spin_unlock_irqrestore(&stripe->write_error_lock, flags);
1136         }
1137         bio_put(&bbio->bio);
1138
1139         if (atomic_dec_and_test(&stripe->pending_io))
1140                 wake_up(&stripe->io_wait);
1141 }
1142
1143 static void scrub_submit_write_bio(struct scrub_ctx *sctx,
1144                                    struct scrub_stripe *stripe,
1145                                    struct btrfs_bio *bbio, bool dev_replace)
1146 {
1147         struct btrfs_fs_info *fs_info = sctx->fs_info;
1148         u32 bio_len = bbio->bio.bi_iter.bi_size;
1149         u32 bio_off = (bbio->bio.bi_iter.bi_sector << SECTOR_SHIFT) -
1150                       stripe->logical;
1151
1152         fill_writer_pointer_gap(sctx, stripe->physical + bio_off);
1153         atomic_inc(&stripe->pending_io);
1154         btrfs_submit_repair_write(bbio, stripe->mirror_num, dev_replace);
1155         if (!btrfs_is_zoned(fs_info))
1156                 return;
1157         /*
1158          * For zoned writeback, queue depth must be 1, thus we must wait for
1159          * the write to finish before the next write.
1160          */
1161         wait_scrub_stripe_io(stripe);
1162
1163         /*
1164          * And also need to update the write pointer if write finished
1165          * successfully.
1166          */
1167         if (!test_bit(bio_off >> fs_info->sectorsize_bits,
1168                       &stripe->write_error_bitmap))
1169                 sctx->write_pointer += bio_len;
1170 }
1171
1172 /*
1173  * Submit the write bio(s) for the sectors specified by @write_bitmap.
1174  *
1175  * Here we utilize btrfs_submit_repair_write(), which has some extra benefits:
1176  *
1177  * - Only needs logical bytenr and mirror_num
1178  *   Just like the scrub read path
1179  *
1180  * - Would only result in writes to the specified mirror
1181  *   Unlike the regular writeback path, which would write back to all stripes
1182  *
1183  * - Handle dev-replace and read-repair writeback differently
1184  */
1185 static void scrub_write_sectors(struct scrub_ctx *sctx, struct scrub_stripe *stripe,
1186                                 unsigned long write_bitmap, bool dev_replace)
1187 {
1188         struct btrfs_fs_info *fs_info = stripe->bg->fs_info;
1189         struct btrfs_bio *bbio = NULL;
1190         int sector_nr;
1191
1192         for_each_set_bit(sector_nr, &write_bitmap, stripe->nr_sectors) {
1193                 struct page *page = scrub_stripe_get_page(stripe, sector_nr);
1194                 unsigned int pgoff = scrub_stripe_get_page_offset(stripe, sector_nr);
1195                 int ret;
1196
1197                 /* We should only writeback sectors covered by an extent. */
1198                 ASSERT(test_bit(sector_nr, &stripe->extent_sector_bitmap));
1199
1200                 /* Cannot merge with previous sector, submit the current one. */
1201                 if (bbio && sector_nr && !test_bit(sector_nr - 1, &write_bitmap)) {
1202                         scrub_submit_write_bio(sctx, stripe, bbio, dev_replace);
1203                         bbio = NULL;
1204                 }
1205                 if (!bbio) {
1206                         bbio = btrfs_bio_alloc(stripe->nr_sectors, REQ_OP_WRITE,
1207                                                fs_info, scrub_write_endio, stripe);
1208                         bbio->bio.bi_iter.bi_sector = (stripe->logical +
1209                                 (sector_nr << fs_info->sectorsize_bits)) >>
1210                                 SECTOR_SHIFT;
1211                 }
1212                 ret = bio_add_page(&bbio->bio, page, fs_info->sectorsize, pgoff);
1213                 ASSERT(ret == fs_info->sectorsize);
1214         }
1215         if (bbio)
1216                 scrub_submit_write_bio(sctx, stripe, bbio, dev_replace);
1217 }
1218
1219 /*
1220  * Throttling of IO submission, bandwidth-limit based, the timeslice is 1
1221  * second.  Limit can be set via /sys/fs/UUID/devinfo/devid/scrub_speed_max.
1222  */
1223 static void scrub_throttle_dev_io(struct scrub_ctx *sctx, struct btrfs_device *device,
1224                                   unsigned int bio_size)
1225 {
1226         const int time_slice = 1000;
1227         s64 delta;
1228         ktime_t now;
1229         u32 div;
1230         u64 bwlimit;
1231
1232         bwlimit = READ_ONCE(device->scrub_speed_max);
1233         if (bwlimit == 0)
1234                 return;
1235
1236         /*
1237          * Slice is divided into intervals when the IO is submitted, adjust by
1238          * bwlimit and maximum of 64 intervals.
1239          */
1240         div = max_t(u32, 1, (u32)(bwlimit / (16 * 1024 * 1024)));
1241         div = min_t(u32, 64, div);
1242
1243         /* Start new epoch, set deadline */
1244         now = ktime_get();
1245         if (sctx->throttle_deadline == 0) {
1246                 sctx->throttle_deadline = ktime_add_ms(now, time_slice / div);
1247                 sctx->throttle_sent = 0;
1248         }
1249
1250         /* Still in the time to send? */
1251         if (ktime_before(now, sctx->throttle_deadline)) {
1252                 /* If current bio is within the limit, send it */
1253                 sctx->throttle_sent += bio_size;
1254                 if (sctx->throttle_sent <= div_u64(bwlimit, div))
1255                         return;
1256
1257                 /* We're over the limit, sleep until the rest of the slice */
1258                 delta = ktime_ms_delta(sctx->throttle_deadline, now);
1259         } else {
1260                 /* New request after deadline, start new epoch */
1261                 delta = 0;
1262         }
1263
1264         if (delta) {
1265                 long timeout;
1266
1267                 timeout = div_u64(delta * HZ, 1000);
1268                 schedule_timeout_interruptible(timeout);
1269         }
1270
1271         /* Next call will start the deadline period */
1272         sctx->throttle_deadline = 0;
1273 }
1274
1275 /*
1276  * Given a physical address, this will calculate it's
1277  * logical offset. if this is a parity stripe, it will return
1278  * the most left data stripe's logical offset.
1279  *
1280  * return 0 if it is a data stripe, 1 means parity stripe.
1281  */
1282 static int get_raid56_logic_offset(u64 physical, int num,
1283                                    struct map_lookup *map, u64 *offset,
1284                                    u64 *stripe_start)
1285 {
1286         int i;
1287         int j = 0;
1288         u64 last_offset;
1289         const int data_stripes = nr_data_stripes(map);
1290
1291         last_offset = (physical - map->stripes[num].physical) * data_stripes;
1292         if (stripe_start)
1293                 *stripe_start = last_offset;
1294
1295         *offset = last_offset;
1296         for (i = 0; i < data_stripes; i++) {
1297                 u32 stripe_nr;
1298                 u32 stripe_index;
1299                 u32 rot;
1300
1301                 *offset = last_offset + btrfs_stripe_nr_to_offset(i);
1302
1303                 stripe_nr = (u32)(*offset >> BTRFS_STRIPE_LEN_SHIFT) / data_stripes;
1304
1305                 /* Work out the disk rotation on this stripe-set */
1306                 rot = stripe_nr % map->num_stripes;
1307                 /* calculate which stripe this data locates */
1308                 rot += i;
1309                 stripe_index = rot % map->num_stripes;
1310                 if (stripe_index == num)
1311                         return 0;
1312                 if (stripe_index < num)
1313                         j++;
1314         }
1315         *offset = last_offset + btrfs_stripe_nr_to_offset(j);
1316         return 1;
1317 }
1318
1319 /*
1320  * Return 0 if the extent item range covers any byte of the range.
1321  * Return <0 if the extent item is before @search_start.
1322  * Return >0 if the extent item is after @start_start + @search_len.
1323  */
1324 static int compare_extent_item_range(struct btrfs_path *path,
1325                                      u64 search_start, u64 search_len)
1326 {
1327         struct btrfs_fs_info *fs_info = path->nodes[0]->fs_info;
1328         u64 len;
1329         struct btrfs_key key;
1330
1331         btrfs_item_key_to_cpu(path->nodes[0], &key, path->slots[0]);
1332         ASSERT(key.type == BTRFS_EXTENT_ITEM_KEY ||
1333                key.type == BTRFS_METADATA_ITEM_KEY);
1334         if (key.type == BTRFS_METADATA_ITEM_KEY)
1335                 len = fs_info->nodesize;
1336         else
1337                 len = key.offset;
1338
1339         if (key.objectid + len <= search_start)
1340                 return -1;
1341         if (key.objectid >= search_start + search_len)
1342                 return 1;
1343         return 0;
1344 }
1345
1346 /*
1347  * Locate one extent item which covers any byte in range
1348  * [@search_start, @search_start + @search_length)
1349  *
1350  * If the path is not initialized, we will initialize the search by doing
1351  * a btrfs_search_slot().
1352  * If the path is already initialized, we will use the path as the initial
1353  * slot, to avoid duplicated btrfs_search_slot() calls.
1354  *
1355  * NOTE: If an extent item starts before @search_start, we will still
1356  * return the extent item. This is for data extent crossing stripe boundary.
1357  *
1358  * Return 0 if we found such extent item, and @path will point to the extent item.
1359  * Return >0 if no such extent item can be found, and @path will be released.
1360  * Return <0 if hit fatal error, and @path will be released.
1361  */
1362 static int find_first_extent_item(struct btrfs_root *extent_root,
1363                                   struct btrfs_path *path,
1364                                   u64 search_start, u64 search_len)
1365 {
1366         struct btrfs_fs_info *fs_info = extent_root->fs_info;
1367         struct btrfs_key key;
1368         int ret;
1369
1370         /* Continue using the existing path */
1371         if (path->nodes[0])
1372                 goto search_forward;
1373
1374         if (btrfs_fs_incompat(fs_info, SKINNY_METADATA))
1375                 key.type = BTRFS_METADATA_ITEM_KEY;
1376         else
1377                 key.type = BTRFS_EXTENT_ITEM_KEY;
1378         key.objectid = search_start;
1379         key.offset = (u64)-1;
1380
1381         ret = btrfs_search_slot(NULL, extent_root, &key, path, 0, 0);
1382         if (ret < 0)
1383                 return ret;
1384
1385         ASSERT(ret > 0);
1386         /*
1387          * Here we intentionally pass 0 as @min_objectid, as there could be
1388          * an extent item starting before @search_start.
1389          */
1390         ret = btrfs_previous_extent_item(extent_root, path, 0);
1391         if (ret < 0)
1392                 return ret;
1393         /*
1394          * No matter whether we have found an extent item, the next loop will
1395          * properly do every check on the key.
1396          */
1397 search_forward:
1398         while (true) {
1399                 btrfs_item_key_to_cpu(path->nodes[0], &key, path->slots[0]);
1400                 if (key.objectid >= search_start + search_len)
1401                         break;
1402                 if (key.type != BTRFS_METADATA_ITEM_KEY &&
1403                     key.type != BTRFS_EXTENT_ITEM_KEY)
1404                         goto next;
1405
1406                 ret = compare_extent_item_range(path, search_start, search_len);
1407                 if (ret == 0)
1408                         return ret;
1409                 if (ret > 0)
1410                         break;
1411 next:
1412                 path->slots[0]++;
1413                 if (path->slots[0] >= btrfs_header_nritems(path->nodes[0])) {
1414                         ret = btrfs_next_leaf(extent_root, path);
1415                         if (ret) {
1416                                 /* Either no more item or fatal error */
1417                                 btrfs_release_path(path);
1418                                 return ret;
1419                         }
1420                 }
1421         }
1422         btrfs_release_path(path);
1423         return 1;
1424 }
1425
1426 static void get_extent_info(struct btrfs_path *path, u64 *extent_start_ret,
1427                             u64 *size_ret, u64 *flags_ret, u64 *generation_ret)
1428 {
1429         struct btrfs_key key;
1430         struct btrfs_extent_item *ei;
1431
1432         btrfs_item_key_to_cpu(path->nodes[0], &key, path->slots[0]);
1433         ASSERT(key.type == BTRFS_METADATA_ITEM_KEY ||
1434                key.type == BTRFS_EXTENT_ITEM_KEY);
1435         *extent_start_ret = key.objectid;
1436         if (key.type == BTRFS_METADATA_ITEM_KEY)
1437                 *size_ret = path->nodes[0]->fs_info->nodesize;
1438         else
1439                 *size_ret = key.offset;
1440         ei = btrfs_item_ptr(path->nodes[0], path->slots[0], struct btrfs_extent_item);
1441         *flags_ret = btrfs_extent_flags(path->nodes[0], ei);
1442         *generation_ret = btrfs_extent_generation(path->nodes[0], ei);
1443 }
1444
1445 static int sync_write_pointer_for_zoned(struct scrub_ctx *sctx, u64 logical,
1446                                         u64 physical, u64 physical_end)
1447 {
1448         struct btrfs_fs_info *fs_info = sctx->fs_info;
1449         int ret = 0;
1450
1451         if (!btrfs_is_zoned(fs_info))
1452                 return 0;
1453
1454         mutex_lock(&sctx->wr_lock);
1455         if (sctx->write_pointer < physical_end) {
1456                 ret = btrfs_sync_zone_write_pointer(sctx->wr_tgtdev, logical,
1457                                                     physical,
1458                                                     sctx->write_pointer);
1459                 if (ret)
1460                         btrfs_err(fs_info,
1461                                   "zoned: failed to recover write pointer");
1462         }
1463         mutex_unlock(&sctx->wr_lock);
1464         btrfs_dev_clear_zone_empty(sctx->wr_tgtdev, physical);
1465
1466         return ret;
1467 }
1468
1469 static void fill_one_extent_info(struct btrfs_fs_info *fs_info,
1470                                  struct scrub_stripe *stripe,
1471                                  u64 extent_start, u64 extent_len,
1472                                  u64 extent_flags, u64 extent_gen)
1473 {
1474         for (u64 cur_logical = max(stripe->logical, extent_start);
1475              cur_logical < min(stripe->logical + BTRFS_STRIPE_LEN,
1476                                extent_start + extent_len);
1477              cur_logical += fs_info->sectorsize) {
1478                 const int nr_sector = (cur_logical - stripe->logical) >>
1479                                       fs_info->sectorsize_bits;
1480                 struct scrub_sector_verification *sector =
1481                                                 &stripe->sectors[nr_sector];
1482
1483                 set_bit(nr_sector, &stripe->extent_sector_bitmap);
1484                 if (extent_flags & BTRFS_EXTENT_FLAG_TREE_BLOCK) {
1485                         sector->is_metadata = true;
1486                         sector->generation = extent_gen;
1487                 }
1488         }
1489 }
1490
1491 static void scrub_stripe_reset_bitmaps(struct scrub_stripe *stripe)
1492 {
1493         stripe->extent_sector_bitmap = 0;
1494         stripe->init_error_bitmap = 0;
1495         stripe->init_nr_io_errors = 0;
1496         stripe->init_nr_csum_errors = 0;
1497         stripe->init_nr_meta_errors = 0;
1498         stripe->error_bitmap = 0;
1499         stripe->io_error_bitmap = 0;
1500         stripe->csum_error_bitmap = 0;
1501         stripe->meta_error_bitmap = 0;
1502 }
1503
1504 /*
1505  * Locate one stripe which has at least one extent in its range.
1506  *
1507  * Return 0 if found such stripe, and store its info into @stripe.
1508  * Return >0 if there is no such stripe in the specified range.
1509  * Return <0 for error.
1510  */
1511 static int scrub_find_fill_first_stripe(struct btrfs_block_group *bg,
1512                                         struct btrfs_path *extent_path,
1513                                         struct btrfs_path *csum_path,
1514                                         struct btrfs_device *dev, u64 physical,
1515                                         int mirror_num, u64 logical_start,
1516                                         u32 logical_len,
1517                                         struct scrub_stripe *stripe)
1518 {
1519         struct btrfs_fs_info *fs_info = bg->fs_info;
1520         struct btrfs_root *extent_root = btrfs_extent_root(fs_info, bg->start);
1521         struct btrfs_root *csum_root = btrfs_csum_root(fs_info, bg->start);
1522         const u64 logical_end = logical_start + logical_len;
1523         u64 cur_logical = logical_start;
1524         u64 stripe_end;
1525         u64 extent_start;
1526         u64 extent_len;
1527         u64 extent_flags;
1528         u64 extent_gen;
1529         int ret;
1530
1531         memset(stripe->sectors, 0, sizeof(struct scrub_sector_verification) *
1532                                    stripe->nr_sectors);
1533         scrub_stripe_reset_bitmaps(stripe);
1534
1535         /* The range must be inside the bg. */
1536         ASSERT(logical_start >= bg->start && logical_end <= bg->start + bg->length);
1537
1538         ret = find_first_extent_item(extent_root, extent_path, logical_start,
1539                                      logical_len);
1540         /* Either error or not found. */
1541         if (ret)
1542                 goto out;
1543         get_extent_info(extent_path, &extent_start, &extent_len, &extent_flags,
1544                         &extent_gen);
1545         if (extent_flags & BTRFS_EXTENT_FLAG_TREE_BLOCK)
1546                 stripe->nr_meta_extents++;
1547         if (extent_flags & BTRFS_EXTENT_FLAG_DATA)
1548                 stripe->nr_data_extents++;
1549         cur_logical = max(extent_start, cur_logical);
1550
1551         /*
1552          * Round down to stripe boundary.
1553          *
1554          * The extra calculation against bg->start is to handle block groups
1555          * whose logical bytenr is not BTRFS_STRIPE_LEN aligned.
1556          */
1557         stripe->logical = round_down(cur_logical - bg->start, BTRFS_STRIPE_LEN) +
1558                           bg->start;
1559         stripe->physical = physical + stripe->logical - logical_start;
1560         stripe->dev = dev;
1561         stripe->bg = bg;
1562         stripe->mirror_num = mirror_num;
1563         stripe_end = stripe->logical + BTRFS_STRIPE_LEN - 1;
1564
1565         /* Fill the first extent info into stripe->sectors[] array. */
1566         fill_one_extent_info(fs_info, stripe, extent_start, extent_len,
1567                              extent_flags, extent_gen);
1568         cur_logical = extent_start + extent_len;
1569
1570         /* Fill the extent info for the remaining sectors. */
1571         while (cur_logical <= stripe_end) {
1572                 ret = find_first_extent_item(extent_root, extent_path, cur_logical,
1573                                              stripe_end - cur_logical + 1);
1574                 if (ret < 0)
1575                         goto out;
1576                 if (ret > 0) {
1577                         ret = 0;
1578                         break;
1579                 }
1580                 get_extent_info(extent_path, &extent_start, &extent_len,
1581                                 &extent_flags, &extent_gen);
1582                 if (extent_flags & BTRFS_EXTENT_FLAG_TREE_BLOCK)
1583                         stripe->nr_meta_extents++;
1584                 if (extent_flags & BTRFS_EXTENT_FLAG_DATA)
1585                         stripe->nr_data_extents++;
1586                 fill_one_extent_info(fs_info, stripe, extent_start, extent_len,
1587                                      extent_flags, extent_gen);
1588                 cur_logical = extent_start + extent_len;
1589         }
1590
1591         /* Now fill the data csum. */
1592         if (bg->flags & BTRFS_BLOCK_GROUP_DATA) {
1593                 int sector_nr;
1594                 unsigned long csum_bitmap = 0;
1595
1596                 /* Csum space should have already been allocated. */
1597                 ASSERT(stripe->csums);
1598
1599                 /*
1600                  * Our csum bitmap should be large enough, as BTRFS_STRIPE_LEN
1601                  * should contain at most 16 sectors.
1602                  */
1603                 ASSERT(BITS_PER_LONG >= BTRFS_STRIPE_LEN >> fs_info->sectorsize_bits);
1604
1605                 ret = btrfs_lookup_csums_bitmap(csum_root, csum_path,
1606                                                 stripe->logical, stripe_end,
1607                                                 stripe->csums, &csum_bitmap);
1608                 if (ret < 0)
1609                         goto out;
1610                 if (ret > 0)
1611                         ret = 0;
1612
1613                 for_each_set_bit(sector_nr, &csum_bitmap, stripe->nr_sectors) {
1614                         stripe->sectors[sector_nr].csum = stripe->csums +
1615                                 sector_nr * fs_info->csum_size;
1616                 }
1617         }
1618         set_bit(SCRUB_STRIPE_FLAG_INITIALIZED, &stripe->state);
1619 out:
1620         return ret;
1621 }
1622
1623 static void scrub_reset_stripe(struct scrub_stripe *stripe)
1624 {
1625         scrub_stripe_reset_bitmaps(stripe);
1626
1627         stripe->nr_meta_extents = 0;
1628         stripe->nr_data_extents = 0;
1629         stripe->state = 0;
1630
1631         for (int i = 0; i < stripe->nr_sectors; i++) {
1632                 stripe->sectors[i].is_metadata = false;
1633                 stripe->sectors[i].csum = NULL;
1634                 stripe->sectors[i].generation = 0;
1635         }
1636 }
1637
1638 static void scrub_submit_extent_sector_read(struct scrub_ctx *sctx,
1639                                             struct scrub_stripe *stripe)
1640 {
1641         struct btrfs_fs_info *fs_info = stripe->bg->fs_info;
1642         struct btrfs_bio *bbio = NULL;
1643         u64 stripe_len = BTRFS_STRIPE_LEN;
1644         int mirror = stripe->mirror_num;
1645         int i;
1646
1647         atomic_inc(&stripe->pending_io);
1648
1649         for_each_set_bit(i, &stripe->extent_sector_bitmap, stripe->nr_sectors) {
1650                 struct page *page = scrub_stripe_get_page(stripe, i);
1651                 unsigned int pgoff = scrub_stripe_get_page_offset(stripe, i);
1652
1653                 /* The current sector cannot be merged, submit the bio. */
1654                 if (bbio &&
1655                     ((i > 0 &&
1656                       !test_bit(i - 1, &stripe->extent_sector_bitmap)) ||
1657                      bbio->bio.bi_iter.bi_size >= stripe_len)) {
1658                         ASSERT(bbio->bio.bi_iter.bi_size);
1659                         atomic_inc(&stripe->pending_io);
1660                         btrfs_submit_bio(bbio, mirror);
1661                         bbio = NULL;
1662                 }
1663
1664                 if (!bbio) {
1665                         struct btrfs_io_stripe io_stripe = {};
1666                         struct btrfs_io_context *bioc = NULL;
1667                         const u64 logical = stripe->logical +
1668                                             (i << fs_info->sectorsize_bits);
1669                         int err;
1670
1671                         bbio = btrfs_bio_alloc(stripe->nr_sectors, REQ_OP_READ,
1672                                                fs_info, scrub_read_endio, stripe);
1673                         bbio->bio.bi_iter.bi_sector = logical >> SECTOR_SHIFT;
1674
1675                         io_stripe.is_scrub = true;
1676                         err = btrfs_map_block(fs_info, BTRFS_MAP_READ, logical,
1677                                               &stripe_len, &bioc, &io_stripe,
1678                                               &mirror);
1679                         btrfs_put_bioc(bioc);
1680                         if (err) {
1681                                 btrfs_bio_end_io(bbio,
1682                                                  errno_to_blk_status(err));
1683                                 return;
1684                         }
1685                 }
1686
1687                 __bio_add_page(&bbio->bio, page, fs_info->sectorsize, pgoff);
1688         }
1689
1690         if (bbio) {
1691                 ASSERT(bbio->bio.bi_iter.bi_size);
1692                 atomic_inc(&stripe->pending_io);
1693                 btrfs_submit_bio(bbio, mirror);
1694         }
1695
1696         if (atomic_dec_and_test(&stripe->pending_io)) {
1697                 wake_up(&stripe->io_wait);
1698                 INIT_WORK(&stripe->work, scrub_stripe_read_repair_worker);
1699                 queue_work(stripe->bg->fs_info->scrub_workers, &stripe->work);
1700         }
1701 }
1702
1703 static void scrub_submit_initial_read(struct scrub_ctx *sctx,
1704                                       struct scrub_stripe *stripe)
1705 {
1706         struct btrfs_fs_info *fs_info = sctx->fs_info;
1707         struct btrfs_bio *bbio;
1708         int mirror = stripe->mirror_num;
1709
1710         ASSERT(stripe->bg);
1711         ASSERT(stripe->mirror_num > 0);
1712         ASSERT(test_bit(SCRUB_STRIPE_FLAG_INITIALIZED, &stripe->state));
1713
1714         if (btrfs_need_stripe_tree_update(fs_info, stripe->bg->flags)) {
1715                 scrub_submit_extent_sector_read(sctx, stripe);
1716                 return;
1717         }
1718
1719         bbio = btrfs_bio_alloc(SCRUB_STRIPE_PAGES, REQ_OP_READ, fs_info,
1720                                scrub_read_endio, stripe);
1721
1722         /* Read the whole stripe. */
1723         bbio->bio.bi_iter.bi_sector = stripe->logical >> SECTOR_SHIFT;
1724         for (int i = 0; i < BTRFS_STRIPE_LEN >> PAGE_SHIFT; i++) {
1725                 int ret;
1726
1727                 ret = bio_add_page(&bbio->bio, stripe->pages[i], PAGE_SIZE, 0);
1728                 /* We should have allocated enough bio vectors. */
1729                 ASSERT(ret == PAGE_SIZE);
1730         }
1731         atomic_inc(&stripe->pending_io);
1732
1733         /*
1734          * For dev-replace, either user asks to avoid the source dev, or
1735          * the device is missing, we try the next mirror instead.
1736          */
1737         if (sctx->is_dev_replace &&
1738             (fs_info->dev_replace.cont_reading_from_srcdev_mode ==
1739              BTRFS_DEV_REPLACE_ITEM_CONT_READING_FROM_SRCDEV_MODE_AVOID ||
1740              !stripe->dev->bdev)) {
1741                 int num_copies = btrfs_num_copies(fs_info, stripe->bg->start,
1742                                                   stripe->bg->length);
1743
1744                 mirror = calc_next_mirror(mirror, num_copies);
1745         }
1746         btrfs_submit_bio(bbio, mirror);
1747 }
1748
1749 static bool stripe_has_metadata_error(struct scrub_stripe *stripe)
1750 {
1751         int i;
1752
1753         for_each_set_bit(i, &stripe->error_bitmap, stripe->nr_sectors) {
1754                 if (stripe->sectors[i].is_metadata) {
1755                         struct btrfs_fs_info *fs_info = stripe->bg->fs_info;
1756
1757                         btrfs_err(fs_info,
1758                         "stripe %llu has unrepaired metadata sector at %llu",
1759                                   stripe->logical,
1760                                   stripe->logical + (i << fs_info->sectorsize_bits));
1761                         return true;
1762                 }
1763         }
1764         return false;
1765 }
1766
1767 static void submit_initial_group_read(struct scrub_ctx *sctx,
1768                                       unsigned int first_slot,
1769                                       unsigned int nr_stripes)
1770 {
1771         struct blk_plug plug;
1772
1773         ASSERT(first_slot < SCRUB_TOTAL_STRIPES);
1774         ASSERT(first_slot + nr_stripes <= SCRUB_TOTAL_STRIPES);
1775
1776         scrub_throttle_dev_io(sctx, sctx->stripes[0].dev,
1777                               btrfs_stripe_nr_to_offset(nr_stripes));
1778         blk_start_plug(&plug);
1779         for (int i = 0; i < nr_stripes; i++) {
1780                 struct scrub_stripe *stripe = &sctx->stripes[first_slot + i];
1781
1782                 /* Those stripes should be initialized. */
1783                 ASSERT(test_bit(SCRUB_STRIPE_FLAG_INITIALIZED, &stripe->state));
1784                 scrub_submit_initial_read(sctx, stripe);
1785         }
1786         blk_finish_plug(&plug);
1787 }
1788
1789 static int flush_scrub_stripes(struct scrub_ctx *sctx)
1790 {
1791         struct btrfs_fs_info *fs_info = sctx->fs_info;
1792         struct scrub_stripe *stripe;
1793         const int nr_stripes = sctx->cur_stripe;
1794         int ret = 0;
1795
1796         if (!nr_stripes)
1797                 return 0;
1798
1799         ASSERT(test_bit(SCRUB_STRIPE_FLAG_INITIALIZED, &sctx->stripes[0].state));
1800
1801         /* Submit the stripes which are populated but not submitted. */
1802         if (nr_stripes % SCRUB_STRIPES_PER_GROUP) {
1803                 const int first_slot = round_down(nr_stripes, SCRUB_STRIPES_PER_GROUP);
1804
1805                 submit_initial_group_read(sctx, first_slot, nr_stripes - first_slot);
1806         }
1807
1808         for (int i = 0; i < nr_stripes; i++) {
1809                 stripe = &sctx->stripes[i];
1810
1811                 wait_event(stripe->repair_wait,
1812                            test_bit(SCRUB_STRIPE_FLAG_REPAIR_DONE, &stripe->state));
1813         }
1814
1815         /* Submit for dev-replace. */
1816         if (sctx->is_dev_replace) {
1817                 /*
1818                  * For dev-replace, if we know there is something wrong with
1819                  * metadata, we should immedately abort.
1820                  */
1821                 for (int i = 0; i < nr_stripes; i++) {
1822                         if (stripe_has_metadata_error(&sctx->stripes[i])) {
1823                                 ret = -EIO;
1824                                 goto out;
1825                         }
1826                 }
1827                 for (int i = 0; i < nr_stripes; i++) {
1828                         unsigned long good;
1829
1830                         stripe = &sctx->stripes[i];
1831
1832                         ASSERT(stripe->dev == fs_info->dev_replace.srcdev);
1833
1834                         bitmap_andnot(&good, &stripe->extent_sector_bitmap,
1835                                       &stripe->error_bitmap, stripe->nr_sectors);
1836                         scrub_write_sectors(sctx, stripe, good, true);
1837                 }
1838         }
1839
1840         /* Wait for the above writebacks to finish. */
1841         for (int i = 0; i < nr_stripes; i++) {
1842                 stripe = &sctx->stripes[i];
1843
1844                 wait_scrub_stripe_io(stripe);
1845                 scrub_reset_stripe(stripe);
1846         }
1847 out:
1848         sctx->cur_stripe = 0;
1849         return ret;
1850 }
1851
1852 static void raid56_scrub_wait_endio(struct bio *bio)
1853 {
1854         complete(bio->bi_private);
1855 }
1856
1857 static int queue_scrub_stripe(struct scrub_ctx *sctx, struct btrfs_block_group *bg,
1858                               struct btrfs_device *dev, int mirror_num,
1859                               u64 logical, u32 length, u64 physical,
1860                               u64 *found_logical_ret)
1861 {
1862         struct scrub_stripe *stripe;
1863         int ret;
1864
1865         /*
1866          * There should always be one slot left, as caller filling the last
1867          * slot should flush them all.
1868          */
1869         ASSERT(sctx->cur_stripe < SCRUB_TOTAL_STRIPES);
1870
1871         /* @found_logical_ret must be specified. */
1872         ASSERT(found_logical_ret);
1873
1874         stripe = &sctx->stripes[sctx->cur_stripe];
1875         scrub_reset_stripe(stripe);
1876         ret = scrub_find_fill_first_stripe(bg, &sctx->extent_path,
1877                                            &sctx->csum_path, dev, physical,
1878                                            mirror_num, logical, length, stripe);
1879         /* Either >0 as no more extents or <0 for error. */
1880         if (ret)
1881                 return ret;
1882         *found_logical_ret = stripe->logical;
1883         sctx->cur_stripe++;
1884
1885         /* We filled one group, submit it. */
1886         if (sctx->cur_stripe % SCRUB_STRIPES_PER_GROUP == 0) {
1887                 const int first_slot = sctx->cur_stripe - SCRUB_STRIPES_PER_GROUP;
1888
1889                 submit_initial_group_read(sctx, first_slot, SCRUB_STRIPES_PER_GROUP);
1890         }
1891
1892         /* Last slot used, flush them all. */
1893         if (sctx->cur_stripe == SCRUB_TOTAL_STRIPES)
1894                 return flush_scrub_stripes(sctx);
1895         return 0;
1896 }
1897
1898 static int scrub_raid56_parity_stripe(struct scrub_ctx *sctx,
1899                                       struct btrfs_device *scrub_dev,
1900                                       struct btrfs_block_group *bg,
1901                                       struct map_lookup *map,
1902                                       u64 full_stripe_start)
1903 {
1904         DECLARE_COMPLETION_ONSTACK(io_done);
1905         struct btrfs_fs_info *fs_info = sctx->fs_info;
1906         struct btrfs_raid_bio *rbio;
1907         struct btrfs_io_context *bioc = NULL;
1908         struct btrfs_path extent_path = { 0 };
1909         struct btrfs_path csum_path = { 0 };
1910         struct bio *bio;
1911         struct scrub_stripe *stripe;
1912         bool all_empty = true;
1913         const int data_stripes = nr_data_stripes(map);
1914         unsigned long extent_bitmap = 0;
1915         u64 length = btrfs_stripe_nr_to_offset(data_stripes);
1916         int ret;
1917
1918         ASSERT(sctx->raid56_data_stripes);
1919
1920         /*
1921          * For data stripe search, we cannot re-use the same extent/csum paths,
1922          * as the data stripe bytenr may be smaller than previous extent.  Thus
1923          * we have to use our own extent/csum paths.
1924          */
1925         extent_path.search_commit_root = 1;
1926         extent_path.skip_locking = 1;
1927         csum_path.search_commit_root = 1;
1928         csum_path.skip_locking = 1;
1929
1930         for (int i = 0; i < data_stripes; i++) {
1931                 int stripe_index;
1932                 int rot;
1933                 u64 physical;
1934
1935                 stripe = &sctx->raid56_data_stripes[i];
1936                 rot = div_u64(full_stripe_start - bg->start,
1937                               data_stripes) >> BTRFS_STRIPE_LEN_SHIFT;
1938                 stripe_index = (i + rot) % map->num_stripes;
1939                 physical = map->stripes[stripe_index].physical +
1940                            btrfs_stripe_nr_to_offset(rot);
1941
1942                 scrub_reset_stripe(stripe);
1943                 set_bit(SCRUB_STRIPE_FLAG_NO_REPORT, &stripe->state);
1944                 ret = scrub_find_fill_first_stripe(bg, &extent_path, &csum_path,
1945                                 map->stripes[stripe_index].dev, physical, 1,
1946                                 full_stripe_start + btrfs_stripe_nr_to_offset(i),
1947                                 BTRFS_STRIPE_LEN, stripe);
1948                 if (ret < 0)
1949                         goto out;
1950                 /*
1951                  * No extent in this data stripe, need to manually mark them
1952                  * initialized to make later read submission happy.
1953                  */
1954                 if (ret > 0) {
1955                         stripe->logical = full_stripe_start +
1956                                           btrfs_stripe_nr_to_offset(i);
1957                         stripe->dev = map->stripes[stripe_index].dev;
1958                         stripe->mirror_num = 1;
1959                         set_bit(SCRUB_STRIPE_FLAG_INITIALIZED, &stripe->state);
1960                 }
1961         }
1962
1963         /* Check if all data stripes are empty. */
1964         for (int i = 0; i < data_stripes; i++) {
1965                 stripe = &sctx->raid56_data_stripes[i];
1966                 if (!bitmap_empty(&stripe->extent_sector_bitmap, stripe->nr_sectors)) {
1967                         all_empty = false;
1968                         break;
1969                 }
1970         }
1971         if (all_empty) {
1972                 ret = 0;
1973                 goto out;
1974         }
1975
1976         for (int i = 0; i < data_stripes; i++) {
1977                 stripe = &sctx->raid56_data_stripes[i];
1978                 scrub_submit_initial_read(sctx, stripe);
1979         }
1980         for (int i = 0; i < data_stripes; i++) {
1981                 stripe = &sctx->raid56_data_stripes[i];
1982
1983                 wait_event(stripe->repair_wait,
1984                            test_bit(SCRUB_STRIPE_FLAG_REPAIR_DONE, &stripe->state));
1985         }
1986         /* For now, no zoned support for RAID56. */
1987         ASSERT(!btrfs_is_zoned(sctx->fs_info));
1988
1989         /*
1990          * Now all data stripes are properly verified. Check if we have any
1991          * unrepaired, if so abort immediately or we could further corrupt the
1992          * P/Q stripes.
1993          *
1994          * During the loop, also populate extent_bitmap.
1995          */
1996         for (int i = 0; i < data_stripes; i++) {
1997                 unsigned long error;
1998
1999                 stripe = &sctx->raid56_data_stripes[i];
2000
2001                 /*
2002                  * We should only check the errors where there is an extent.
2003                  * As we may hit an empty data stripe while it's missing.
2004                  */
2005                 bitmap_and(&error, &stripe->error_bitmap,
2006                            &stripe->extent_sector_bitmap, stripe->nr_sectors);
2007                 if (!bitmap_empty(&error, stripe->nr_sectors)) {
2008                         btrfs_err(fs_info,
2009 "unrepaired sectors detected, full stripe %llu data stripe %u errors %*pbl",
2010                                   full_stripe_start, i, stripe->nr_sectors,
2011                                   &error);
2012                         ret = -EIO;
2013                         goto out;
2014                 }
2015                 bitmap_or(&extent_bitmap, &extent_bitmap,
2016                           &stripe->extent_sector_bitmap, stripe->nr_sectors);
2017         }
2018
2019         /* Now we can check and regenerate the P/Q stripe. */
2020         bio = bio_alloc(NULL, 1, REQ_OP_READ, GFP_NOFS);
2021         bio->bi_iter.bi_sector = full_stripe_start >> SECTOR_SHIFT;
2022         bio->bi_private = &io_done;
2023         bio->bi_end_io = raid56_scrub_wait_endio;
2024
2025         btrfs_bio_counter_inc_blocked(fs_info);
2026         ret = btrfs_map_block(fs_info, BTRFS_MAP_WRITE, full_stripe_start,
2027                               &length, &bioc, NULL, NULL);
2028         if (ret < 0) {
2029                 btrfs_put_bioc(bioc);
2030                 btrfs_bio_counter_dec(fs_info);
2031                 goto out;
2032         }
2033         rbio = raid56_parity_alloc_scrub_rbio(bio, bioc, scrub_dev, &extent_bitmap,
2034                                 BTRFS_STRIPE_LEN >> fs_info->sectorsize_bits);
2035         btrfs_put_bioc(bioc);
2036         if (!rbio) {
2037                 ret = -ENOMEM;
2038                 btrfs_bio_counter_dec(fs_info);
2039                 goto out;
2040         }
2041         /* Use the recovered stripes as cache to avoid read them from disk again. */
2042         for (int i = 0; i < data_stripes; i++) {
2043                 stripe = &sctx->raid56_data_stripes[i];
2044
2045                 raid56_parity_cache_data_pages(rbio, stripe->pages,
2046                                 full_stripe_start + (i << BTRFS_STRIPE_LEN_SHIFT));
2047         }
2048         raid56_parity_submit_scrub_rbio(rbio);
2049         wait_for_completion_io(&io_done);
2050         ret = blk_status_to_errno(bio->bi_status);
2051         bio_put(bio);
2052         btrfs_bio_counter_dec(fs_info);
2053
2054         btrfs_release_path(&extent_path);
2055         btrfs_release_path(&csum_path);
2056 out:
2057         return ret;
2058 }
2059
2060 /*
2061  * Scrub one range which can only has simple mirror based profile.
2062  * (Including all range in SINGLE/DUP/RAID1/RAID1C*, and each stripe in
2063  *  RAID0/RAID10).
2064  *
2065  * Since we may need to handle a subset of block group, we need @logical_start
2066  * and @logical_length parameter.
2067  */
2068 static int scrub_simple_mirror(struct scrub_ctx *sctx,
2069                                struct btrfs_block_group *bg,
2070                                struct map_lookup *map,
2071                                u64 logical_start, u64 logical_length,
2072                                struct btrfs_device *device,
2073                                u64 physical, int mirror_num)
2074 {
2075         struct btrfs_fs_info *fs_info = sctx->fs_info;
2076         const u64 logical_end = logical_start + logical_length;
2077         u64 cur_logical = logical_start;
2078         int ret;
2079
2080         /* The range must be inside the bg */
2081         ASSERT(logical_start >= bg->start && logical_end <= bg->start + bg->length);
2082
2083         /* Go through each extent items inside the logical range */
2084         while (cur_logical < logical_end) {
2085                 u64 found_logical = U64_MAX;
2086                 u64 cur_physical = physical + cur_logical - logical_start;
2087
2088                 /* Canceled? */
2089                 if (atomic_read(&fs_info->scrub_cancel_req) ||
2090                     atomic_read(&sctx->cancel_req)) {
2091                         ret = -ECANCELED;
2092                         break;
2093                 }
2094                 /* Paused? */
2095                 if (atomic_read(&fs_info->scrub_pause_req)) {
2096                         /* Push queued extents */
2097                         scrub_blocked_if_needed(fs_info);
2098                 }
2099                 /* Block group removed? */
2100                 spin_lock(&bg->lock);
2101                 if (test_bit(BLOCK_GROUP_FLAG_REMOVED, &bg->runtime_flags)) {
2102                         spin_unlock(&bg->lock);
2103                         ret = 0;
2104                         break;
2105                 }
2106                 spin_unlock(&bg->lock);
2107
2108                 ret = queue_scrub_stripe(sctx, bg, device, mirror_num,
2109                                          cur_logical, logical_end - cur_logical,
2110                                          cur_physical, &found_logical);
2111                 if (ret > 0) {
2112                         /* No more extent, just update the accounting */
2113                         sctx->stat.last_physical = physical + logical_length;
2114                         ret = 0;
2115                         break;
2116                 }
2117                 if (ret < 0)
2118                         break;
2119
2120                 /* queue_scrub_stripe() returned 0, @found_logical must be updated. */
2121                 ASSERT(found_logical != U64_MAX);
2122                 cur_logical = found_logical + BTRFS_STRIPE_LEN;
2123
2124                 /* Don't hold CPU for too long time */
2125                 cond_resched();
2126         }
2127         return ret;
2128 }
2129
2130 /* Calculate the full stripe length for simple stripe based profiles */
2131 static u64 simple_stripe_full_stripe_len(const struct map_lookup *map)
2132 {
2133         ASSERT(map->type & (BTRFS_BLOCK_GROUP_RAID0 |
2134                             BTRFS_BLOCK_GROUP_RAID10));
2135
2136         return btrfs_stripe_nr_to_offset(map->num_stripes / map->sub_stripes);
2137 }
2138
2139 /* Get the logical bytenr for the stripe */
2140 static u64 simple_stripe_get_logical(struct map_lookup *map,
2141                                      struct btrfs_block_group *bg,
2142                                      int stripe_index)
2143 {
2144         ASSERT(map->type & (BTRFS_BLOCK_GROUP_RAID0 |
2145                             BTRFS_BLOCK_GROUP_RAID10));
2146         ASSERT(stripe_index < map->num_stripes);
2147
2148         /*
2149          * (stripe_index / sub_stripes) gives how many data stripes we need to
2150          * skip.
2151          */
2152         return btrfs_stripe_nr_to_offset(stripe_index / map->sub_stripes) +
2153                bg->start;
2154 }
2155
2156 /* Get the mirror number for the stripe */
2157 static int simple_stripe_mirror_num(struct map_lookup *map, int stripe_index)
2158 {
2159         ASSERT(map->type & (BTRFS_BLOCK_GROUP_RAID0 |
2160                             BTRFS_BLOCK_GROUP_RAID10));
2161         ASSERT(stripe_index < map->num_stripes);
2162
2163         /* For RAID0, it's fixed to 1, for RAID10 it's 0,1,0,1... */
2164         return stripe_index % map->sub_stripes + 1;
2165 }
2166
2167 static int scrub_simple_stripe(struct scrub_ctx *sctx,
2168                                struct btrfs_block_group *bg,
2169                                struct map_lookup *map,
2170                                struct btrfs_device *device,
2171                                int stripe_index)
2172 {
2173         const u64 logical_increment = simple_stripe_full_stripe_len(map);
2174         const u64 orig_logical = simple_stripe_get_logical(map, bg, stripe_index);
2175         const u64 orig_physical = map->stripes[stripe_index].physical;
2176         const int mirror_num = simple_stripe_mirror_num(map, stripe_index);
2177         u64 cur_logical = orig_logical;
2178         u64 cur_physical = orig_physical;
2179         int ret = 0;
2180
2181         while (cur_logical < bg->start + bg->length) {
2182                 /*
2183                  * Inside each stripe, RAID0 is just SINGLE, and RAID10 is
2184                  * just RAID1, so we can reuse scrub_simple_mirror() to scrub
2185                  * this stripe.
2186                  */
2187                 ret = scrub_simple_mirror(sctx, bg, map, cur_logical,
2188                                           BTRFS_STRIPE_LEN, device, cur_physical,
2189                                           mirror_num);
2190                 if (ret)
2191                         return ret;
2192                 /* Skip to next stripe which belongs to the target device */
2193                 cur_logical += logical_increment;
2194                 /* For physical offset, we just go to next stripe */
2195                 cur_physical += BTRFS_STRIPE_LEN;
2196         }
2197         return ret;
2198 }
2199
2200 static noinline_for_stack int scrub_stripe(struct scrub_ctx *sctx,
2201                                            struct btrfs_block_group *bg,
2202                                            struct extent_map *em,
2203                                            struct btrfs_device *scrub_dev,
2204                                            int stripe_index)
2205 {
2206         struct btrfs_fs_info *fs_info = sctx->fs_info;
2207         struct map_lookup *map = em->map_lookup;
2208         const u64 profile = map->type & BTRFS_BLOCK_GROUP_PROFILE_MASK;
2209         const u64 chunk_logical = bg->start;
2210         int ret;
2211         int ret2;
2212         u64 physical = map->stripes[stripe_index].physical;
2213         const u64 dev_stripe_len = btrfs_calc_stripe_length(em);
2214         const u64 physical_end = physical + dev_stripe_len;
2215         u64 logical;
2216         u64 logic_end;
2217         /* The logical increment after finishing one stripe */
2218         u64 increment;
2219         /* Offset inside the chunk */
2220         u64 offset;
2221         u64 stripe_logical;
2222         int stop_loop = 0;
2223
2224         /* Extent_path should be released by now. */
2225         ASSERT(sctx->extent_path.nodes[0] == NULL);
2226
2227         scrub_blocked_if_needed(fs_info);
2228
2229         if (sctx->is_dev_replace &&
2230             btrfs_dev_is_sequential(sctx->wr_tgtdev, physical)) {
2231                 mutex_lock(&sctx->wr_lock);
2232                 sctx->write_pointer = physical;
2233                 mutex_unlock(&sctx->wr_lock);
2234         }
2235
2236         /* Prepare the extra data stripes used by RAID56. */
2237         if (profile & BTRFS_BLOCK_GROUP_RAID56_MASK) {
2238                 ASSERT(sctx->raid56_data_stripes == NULL);
2239
2240                 sctx->raid56_data_stripes = kcalloc(nr_data_stripes(map),
2241                                                     sizeof(struct scrub_stripe),
2242                                                     GFP_KERNEL);
2243                 if (!sctx->raid56_data_stripes) {
2244                         ret = -ENOMEM;
2245                         goto out;
2246                 }
2247                 for (int i = 0; i < nr_data_stripes(map); i++) {
2248                         ret = init_scrub_stripe(fs_info,
2249                                                 &sctx->raid56_data_stripes[i]);
2250                         if (ret < 0)
2251                                 goto out;
2252                         sctx->raid56_data_stripes[i].bg = bg;
2253                         sctx->raid56_data_stripes[i].sctx = sctx;
2254                 }
2255         }
2256         /*
2257          * There used to be a big double loop to handle all profiles using the
2258          * same routine, which grows larger and more gross over time.
2259          *
2260          * So here we handle each profile differently, so simpler profiles
2261          * have simpler scrubbing function.
2262          */
2263         if (!(profile & (BTRFS_BLOCK_GROUP_RAID0 | BTRFS_BLOCK_GROUP_RAID10 |
2264                          BTRFS_BLOCK_GROUP_RAID56_MASK))) {
2265                 /*
2266                  * Above check rules out all complex profile, the remaining
2267                  * profiles are SINGLE|DUP|RAID1|RAID1C*, which is simple
2268                  * mirrored duplication without stripe.
2269                  *
2270                  * Only @physical and @mirror_num needs to calculated using
2271                  * @stripe_index.
2272                  */
2273                 ret = scrub_simple_mirror(sctx, bg, map, bg->start, bg->length,
2274                                 scrub_dev, map->stripes[stripe_index].physical,
2275                                 stripe_index + 1);
2276                 offset = 0;
2277                 goto out;
2278         }
2279         if (profile & (BTRFS_BLOCK_GROUP_RAID0 | BTRFS_BLOCK_GROUP_RAID10)) {
2280                 ret = scrub_simple_stripe(sctx, bg, map, scrub_dev, stripe_index);
2281                 offset = btrfs_stripe_nr_to_offset(stripe_index / map->sub_stripes);
2282                 goto out;
2283         }
2284
2285         /* Only RAID56 goes through the old code */
2286         ASSERT(map->type & BTRFS_BLOCK_GROUP_RAID56_MASK);
2287         ret = 0;
2288
2289         /* Calculate the logical end of the stripe */
2290         get_raid56_logic_offset(physical_end, stripe_index,
2291                                 map, &logic_end, NULL);
2292         logic_end += chunk_logical;
2293
2294         /* Initialize @offset in case we need to go to out: label */
2295         get_raid56_logic_offset(physical, stripe_index, map, &offset, NULL);
2296         increment = btrfs_stripe_nr_to_offset(nr_data_stripes(map));
2297
2298         /*
2299          * Due to the rotation, for RAID56 it's better to iterate each stripe
2300          * using their physical offset.
2301          */
2302         while (physical < physical_end) {
2303                 ret = get_raid56_logic_offset(physical, stripe_index, map,
2304                                               &logical, &stripe_logical);
2305                 logical += chunk_logical;
2306                 if (ret) {
2307                         /* it is parity strip */
2308                         stripe_logical += chunk_logical;
2309                         ret = scrub_raid56_parity_stripe(sctx, scrub_dev, bg,
2310                                                          map, stripe_logical);
2311                         if (ret)
2312                                 goto out;
2313                         goto next;
2314                 }
2315
2316                 /*
2317                  * Now we're at a data stripe, scrub each extents in the range.
2318                  *
2319                  * At this stage, if we ignore the repair part, inside each data
2320                  * stripe it is no different than SINGLE profile.
2321                  * We can reuse scrub_simple_mirror() here, as the repair part
2322                  * is still based on @mirror_num.
2323                  */
2324                 ret = scrub_simple_mirror(sctx, bg, map, logical, BTRFS_STRIPE_LEN,
2325                                           scrub_dev, physical, 1);
2326                 if (ret < 0)
2327                         goto out;
2328 next:
2329                 logical += increment;
2330                 physical += BTRFS_STRIPE_LEN;
2331                 spin_lock(&sctx->stat_lock);
2332                 if (stop_loop)
2333                         sctx->stat.last_physical =
2334                                 map->stripes[stripe_index].physical + dev_stripe_len;
2335                 else
2336                         sctx->stat.last_physical = physical;
2337                 spin_unlock(&sctx->stat_lock);
2338                 if (stop_loop)
2339                         break;
2340         }
2341 out:
2342         ret2 = flush_scrub_stripes(sctx);
2343         if (!ret)
2344                 ret = ret2;
2345         btrfs_release_path(&sctx->extent_path);
2346         btrfs_release_path(&sctx->csum_path);
2347
2348         if (sctx->raid56_data_stripes) {
2349                 for (int i = 0; i < nr_data_stripes(map); i++)
2350                         release_scrub_stripe(&sctx->raid56_data_stripes[i]);
2351                 kfree(sctx->raid56_data_stripes);
2352                 sctx->raid56_data_stripes = NULL;
2353         }
2354
2355         if (sctx->is_dev_replace && ret >= 0) {
2356                 int ret2;
2357
2358                 ret2 = sync_write_pointer_for_zoned(sctx,
2359                                 chunk_logical + offset,
2360                                 map->stripes[stripe_index].physical,
2361                                 physical_end);
2362                 if (ret2)
2363                         ret = ret2;
2364         }
2365
2366         return ret < 0 ? ret : 0;
2367 }
2368
2369 static noinline_for_stack int scrub_chunk(struct scrub_ctx *sctx,
2370                                           struct btrfs_block_group *bg,
2371                                           struct btrfs_device *scrub_dev,
2372                                           u64 dev_offset,
2373                                           u64 dev_extent_len)
2374 {
2375         struct btrfs_fs_info *fs_info = sctx->fs_info;
2376         struct extent_map_tree *map_tree = &fs_info->mapping_tree;
2377         struct map_lookup *map;
2378         struct extent_map *em;
2379         int i;
2380         int ret = 0;
2381
2382         read_lock(&map_tree->lock);
2383         em = lookup_extent_mapping(map_tree, bg->start, bg->length);
2384         read_unlock(&map_tree->lock);
2385
2386         if (!em) {
2387                 /*
2388                  * Might have been an unused block group deleted by the cleaner
2389                  * kthread or relocation.
2390                  */
2391                 spin_lock(&bg->lock);
2392                 if (!test_bit(BLOCK_GROUP_FLAG_REMOVED, &bg->runtime_flags))
2393                         ret = -EINVAL;
2394                 spin_unlock(&bg->lock);
2395
2396                 return ret;
2397         }
2398         if (em->start != bg->start)
2399                 goto out;
2400         if (em->len < dev_extent_len)
2401                 goto out;
2402
2403         map = em->map_lookup;
2404         for (i = 0; i < map->num_stripes; ++i) {
2405                 if (map->stripes[i].dev->bdev == scrub_dev->bdev &&
2406                     map->stripes[i].physical == dev_offset) {
2407                         ret = scrub_stripe(sctx, bg, em, scrub_dev, i);
2408                         if (ret)
2409                                 goto out;
2410                 }
2411         }
2412 out:
2413         free_extent_map(em);
2414
2415         return ret;
2416 }
2417
2418 static int finish_extent_writes_for_zoned(struct btrfs_root *root,
2419                                           struct btrfs_block_group *cache)
2420 {
2421         struct btrfs_fs_info *fs_info = cache->fs_info;
2422         struct btrfs_trans_handle *trans;
2423
2424         if (!btrfs_is_zoned(fs_info))
2425                 return 0;
2426
2427         btrfs_wait_block_group_reservations(cache);
2428         btrfs_wait_nocow_writers(cache);
2429         btrfs_wait_ordered_roots(fs_info, U64_MAX, cache->start, cache->length);
2430
2431         trans = btrfs_join_transaction(root);
2432         if (IS_ERR(trans))
2433                 return PTR_ERR(trans);
2434         return btrfs_commit_transaction(trans);
2435 }
2436
2437 static noinline_for_stack
2438 int scrub_enumerate_chunks(struct scrub_ctx *sctx,
2439                            struct btrfs_device *scrub_dev, u64 start, u64 end)
2440 {
2441         struct btrfs_dev_extent *dev_extent = NULL;
2442         struct btrfs_path *path;
2443         struct btrfs_fs_info *fs_info = sctx->fs_info;
2444         struct btrfs_root *root = fs_info->dev_root;
2445         u64 chunk_offset;
2446         int ret = 0;
2447         int ro_set;
2448         int slot;
2449         struct extent_buffer *l;
2450         struct btrfs_key key;
2451         struct btrfs_key found_key;
2452         struct btrfs_block_group *cache;
2453         struct btrfs_dev_replace *dev_replace = &fs_info->dev_replace;
2454
2455         path = btrfs_alloc_path();
2456         if (!path)
2457                 return -ENOMEM;
2458
2459         path->reada = READA_FORWARD;
2460         path->search_commit_root = 1;
2461         path->skip_locking = 1;
2462
2463         key.objectid = scrub_dev->devid;
2464         key.offset = 0ull;
2465         key.type = BTRFS_DEV_EXTENT_KEY;
2466
2467         while (1) {
2468                 u64 dev_extent_len;
2469
2470                 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
2471                 if (ret < 0)
2472                         break;
2473                 if (ret > 0) {
2474                         if (path->slots[0] >=
2475                             btrfs_header_nritems(path->nodes[0])) {
2476                                 ret = btrfs_next_leaf(root, path);
2477                                 if (ret < 0)
2478                                         break;
2479                                 if (ret > 0) {
2480                                         ret = 0;
2481                                         break;
2482                                 }
2483                         } else {
2484                                 ret = 0;
2485                         }
2486                 }
2487
2488                 l = path->nodes[0];
2489                 slot = path->slots[0];
2490
2491                 btrfs_item_key_to_cpu(l, &found_key, slot);
2492
2493                 if (found_key.objectid != scrub_dev->devid)
2494                         break;
2495
2496                 if (found_key.type != BTRFS_DEV_EXTENT_KEY)
2497                         break;
2498
2499                 if (found_key.offset >= end)
2500                         break;
2501
2502                 if (found_key.offset < key.offset)
2503                         break;
2504
2505                 dev_extent = btrfs_item_ptr(l, slot, struct btrfs_dev_extent);
2506                 dev_extent_len = btrfs_dev_extent_length(l, dev_extent);
2507
2508                 if (found_key.offset + dev_extent_len <= start)
2509                         goto skip;
2510
2511                 chunk_offset = btrfs_dev_extent_chunk_offset(l, dev_extent);
2512
2513                 /*
2514                  * get a reference on the corresponding block group to prevent
2515                  * the chunk from going away while we scrub it
2516                  */
2517                 cache = btrfs_lookup_block_group(fs_info, chunk_offset);
2518
2519                 /* some chunks are removed but not committed to disk yet,
2520                  * continue scrubbing */
2521                 if (!cache)
2522                         goto skip;
2523
2524                 ASSERT(cache->start <= chunk_offset);
2525                 /*
2526                  * We are using the commit root to search for device extents, so
2527                  * that means we could have found a device extent item from a
2528                  * block group that was deleted in the current transaction. The
2529                  * logical start offset of the deleted block group, stored at
2530                  * @chunk_offset, might be part of the logical address range of
2531                  * a new block group (which uses different physical extents).
2532                  * In this case btrfs_lookup_block_group() has returned the new
2533                  * block group, and its start address is less than @chunk_offset.
2534                  *
2535                  * We skip such new block groups, because it's pointless to
2536                  * process them, as we won't find their extents because we search
2537                  * for them using the commit root of the extent tree. For a device
2538                  * replace it's also fine to skip it, we won't miss copying them
2539                  * to the target device because we have the write duplication
2540                  * setup through the regular write path (by btrfs_map_block()),
2541                  * and we have committed a transaction when we started the device
2542                  * replace, right after setting up the device replace state.
2543                  */
2544                 if (cache->start < chunk_offset) {
2545                         btrfs_put_block_group(cache);
2546                         goto skip;
2547                 }
2548
2549                 if (sctx->is_dev_replace && btrfs_is_zoned(fs_info)) {
2550                         if (!test_bit(BLOCK_GROUP_FLAG_TO_COPY, &cache->runtime_flags)) {
2551                                 btrfs_put_block_group(cache);
2552                                 goto skip;
2553                         }
2554                 }
2555
2556                 /*
2557                  * Make sure that while we are scrubbing the corresponding block
2558                  * group doesn't get its logical address and its device extents
2559                  * reused for another block group, which can possibly be of a
2560                  * different type and different profile. We do this to prevent
2561                  * false error detections and crashes due to bogus attempts to
2562                  * repair extents.
2563                  */
2564                 spin_lock(&cache->lock);
2565                 if (test_bit(BLOCK_GROUP_FLAG_REMOVED, &cache->runtime_flags)) {
2566                         spin_unlock(&cache->lock);
2567                         btrfs_put_block_group(cache);
2568                         goto skip;
2569                 }
2570                 btrfs_freeze_block_group(cache);
2571                 spin_unlock(&cache->lock);
2572
2573                 /*
2574                  * we need call btrfs_inc_block_group_ro() with scrubs_paused,
2575                  * to avoid deadlock caused by:
2576                  * btrfs_inc_block_group_ro()
2577                  * -> btrfs_wait_for_commit()
2578                  * -> btrfs_commit_transaction()
2579                  * -> btrfs_scrub_pause()
2580                  */
2581                 scrub_pause_on(fs_info);
2582
2583                 /*
2584                  * Don't do chunk preallocation for scrub.
2585                  *
2586                  * This is especially important for SYSTEM bgs, or we can hit
2587                  * -EFBIG from btrfs_finish_chunk_alloc() like:
2588                  * 1. The only SYSTEM bg is marked RO.
2589                  *    Since SYSTEM bg is small, that's pretty common.
2590                  * 2. New SYSTEM bg will be allocated
2591                  *    Due to regular version will allocate new chunk.
2592                  * 3. New SYSTEM bg is empty and will get cleaned up
2593                  *    Before cleanup really happens, it's marked RO again.
2594                  * 4. Empty SYSTEM bg get scrubbed
2595                  *    We go back to 2.
2596                  *
2597                  * This can easily boost the amount of SYSTEM chunks if cleaner
2598                  * thread can't be triggered fast enough, and use up all space
2599                  * of btrfs_super_block::sys_chunk_array
2600                  *
2601                  * While for dev replace, we need to try our best to mark block
2602                  * group RO, to prevent race between:
2603                  * - Write duplication
2604                  *   Contains latest data
2605                  * - Scrub copy
2606                  *   Contains data from commit tree
2607                  *
2608                  * If target block group is not marked RO, nocow writes can
2609                  * be overwritten by scrub copy, causing data corruption.
2610                  * So for dev-replace, it's not allowed to continue if a block
2611                  * group is not RO.
2612                  */
2613                 ret = btrfs_inc_block_group_ro(cache, sctx->is_dev_replace);
2614                 if (!ret && sctx->is_dev_replace) {
2615                         ret = finish_extent_writes_for_zoned(root, cache);
2616                         if (ret) {
2617                                 btrfs_dec_block_group_ro(cache);
2618                                 scrub_pause_off(fs_info);
2619                                 btrfs_put_block_group(cache);
2620                                 break;
2621                         }
2622                 }
2623
2624                 if (ret == 0) {
2625                         ro_set = 1;
2626                 } else if (ret == -ENOSPC && !sctx->is_dev_replace &&
2627                            !(cache->flags & BTRFS_BLOCK_GROUP_RAID56_MASK)) {
2628                         /*
2629                          * btrfs_inc_block_group_ro return -ENOSPC when it
2630                          * failed in creating new chunk for metadata.
2631                          * It is not a problem for scrub, because
2632                          * metadata are always cowed, and our scrub paused
2633                          * commit_transactions.
2634                          *
2635                          * For RAID56 chunks, we have to mark them read-only
2636                          * for scrub, as later we would use our own cache
2637                          * out of RAID56 realm.
2638                          * Thus we want the RAID56 bg to be marked RO to
2639                          * prevent RMW from screwing up out cache.
2640                          */
2641                         ro_set = 0;
2642                 } else if (ret == -ETXTBSY) {
2643                         btrfs_warn(fs_info,
2644                    "skipping scrub of block group %llu due to active swapfile",
2645                                    cache->start);
2646                         scrub_pause_off(fs_info);
2647                         ret = 0;
2648                         goto skip_unfreeze;
2649                 } else {
2650                         btrfs_warn(fs_info,
2651                                    "failed setting block group ro: %d", ret);
2652                         btrfs_unfreeze_block_group(cache);
2653                         btrfs_put_block_group(cache);
2654                         scrub_pause_off(fs_info);
2655                         break;
2656                 }
2657
2658                 /*
2659                  * Now the target block is marked RO, wait for nocow writes to
2660                  * finish before dev-replace.
2661                  * COW is fine, as COW never overwrites extents in commit tree.
2662                  */
2663                 if (sctx->is_dev_replace) {
2664                         btrfs_wait_nocow_writers(cache);
2665                         btrfs_wait_ordered_roots(fs_info, U64_MAX, cache->start,
2666                                         cache->length);
2667                 }
2668
2669                 scrub_pause_off(fs_info);
2670                 down_write(&dev_replace->rwsem);
2671                 dev_replace->cursor_right = found_key.offset + dev_extent_len;
2672                 dev_replace->cursor_left = found_key.offset;
2673                 dev_replace->item_needs_writeback = 1;
2674                 up_write(&dev_replace->rwsem);
2675
2676                 ret = scrub_chunk(sctx, cache, scrub_dev, found_key.offset,
2677                                   dev_extent_len);
2678                 if (sctx->is_dev_replace &&
2679                     !btrfs_finish_block_group_to_copy(dev_replace->srcdev,
2680                                                       cache, found_key.offset))
2681                         ro_set = 0;
2682
2683                 down_write(&dev_replace->rwsem);
2684                 dev_replace->cursor_left = dev_replace->cursor_right;
2685                 dev_replace->item_needs_writeback = 1;
2686                 up_write(&dev_replace->rwsem);
2687
2688                 if (ro_set)
2689                         btrfs_dec_block_group_ro(cache);
2690
2691                 /*
2692                  * We might have prevented the cleaner kthread from deleting
2693                  * this block group if it was already unused because we raced
2694                  * and set it to RO mode first. So add it back to the unused
2695                  * list, otherwise it might not ever be deleted unless a manual
2696                  * balance is triggered or it becomes used and unused again.
2697                  */
2698                 spin_lock(&cache->lock);
2699                 if (!test_bit(BLOCK_GROUP_FLAG_REMOVED, &cache->runtime_flags) &&
2700                     !cache->ro && cache->reserved == 0 && cache->used == 0) {
2701                         spin_unlock(&cache->lock);
2702                         if (btrfs_test_opt(fs_info, DISCARD_ASYNC))
2703                                 btrfs_discard_queue_work(&fs_info->discard_ctl,
2704                                                          cache);
2705                         else
2706                                 btrfs_mark_bg_unused(cache);
2707                 } else {
2708                         spin_unlock(&cache->lock);
2709                 }
2710 skip_unfreeze:
2711                 btrfs_unfreeze_block_group(cache);
2712                 btrfs_put_block_group(cache);
2713                 if (ret)
2714                         break;
2715                 if (sctx->is_dev_replace &&
2716                     atomic64_read(&dev_replace->num_write_errors) > 0) {
2717                         ret = -EIO;
2718                         break;
2719                 }
2720                 if (sctx->stat.malloc_errors > 0) {
2721                         ret = -ENOMEM;
2722                         break;
2723                 }
2724 skip:
2725                 key.offset = found_key.offset + dev_extent_len;
2726                 btrfs_release_path(path);
2727         }
2728
2729         btrfs_free_path(path);
2730
2731         return ret;
2732 }
2733
2734 static int scrub_one_super(struct scrub_ctx *sctx, struct btrfs_device *dev,
2735                            struct page *page, u64 physical, u64 generation)
2736 {
2737         struct btrfs_fs_info *fs_info = sctx->fs_info;
2738         struct bio_vec bvec;
2739         struct bio bio;
2740         struct btrfs_super_block *sb = page_address(page);
2741         int ret;
2742
2743         bio_init(&bio, dev->bdev, &bvec, 1, REQ_OP_READ);
2744         bio.bi_iter.bi_sector = physical >> SECTOR_SHIFT;
2745         __bio_add_page(&bio, page, BTRFS_SUPER_INFO_SIZE, 0);
2746         ret = submit_bio_wait(&bio);
2747         bio_uninit(&bio);
2748
2749         if (ret < 0)
2750                 return ret;
2751         ret = btrfs_check_super_csum(fs_info, sb);
2752         if (ret != 0) {
2753                 btrfs_err_rl(fs_info,
2754                         "super block at physical %llu devid %llu has bad csum",
2755                         physical, dev->devid);
2756                 return -EIO;
2757         }
2758         if (btrfs_super_generation(sb) != generation) {
2759                 btrfs_err_rl(fs_info,
2760 "super block at physical %llu devid %llu has bad generation %llu expect %llu",
2761                              physical, dev->devid,
2762                              btrfs_super_generation(sb), generation);
2763                 return -EUCLEAN;
2764         }
2765
2766         return btrfs_validate_super(fs_info, sb, -1);
2767 }
2768
2769 static noinline_for_stack int scrub_supers(struct scrub_ctx *sctx,
2770                                            struct btrfs_device *scrub_dev)
2771 {
2772         int     i;
2773         u64     bytenr;
2774         u64     gen;
2775         int ret = 0;
2776         struct page *page;
2777         struct btrfs_fs_info *fs_info = sctx->fs_info;
2778
2779         if (BTRFS_FS_ERROR(fs_info))
2780                 return -EROFS;
2781
2782         page = alloc_page(GFP_KERNEL);
2783         if (!page) {
2784                 spin_lock(&sctx->stat_lock);
2785                 sctx->stat.malloc_errors++;
2786                 spin_unlock(&sctx->stat_lock);
2787                 return -ENOMEM;
2788         }
2789
2790         /* Seed devices of a new filesystem has their own generation. */
2791         if (scrub_dev->fs_devices != fs_info->fs_devices)
2792                 gen = scrub_dev->generation;
2793         else
2794                 gen = btrfs_get_last_trans_committed(fs_info);
2795
2796         for (i = 0; i < BTRFS_SUPER_MIRROR_MAX; i++) {
2797                 bytenr = btrfs_sb_offset(i);
2798                 if (bytenr + BTRFS_SUPER_INFO_SIZE >
2799                     scrub_dev->commit_total_bytes)
2800                         break;
2801                 if (!btrfs_check_super_location(scrub_dev, bytenr))
2802                         continue;
2803
2804                 ret = scrub_one_super(sctx, scrub_dev, page, bytenr, gen);
2805                 if (ret) {
2806                         spin_lock(&sctx->stat_lock);
2807                         sctx->stat.super_errors++;
2808                         spin_unlock(&sctx->stat_lock);
2809                 }
2810         }
2811         __free_page(page);
2812         return 0;
2813 }
2814
2815 static void scrub_workers_put(struct btrfs_fs_info *fs_info)
2816 {
2817         if (refcount_dec_and_mutex_lock(&fs_info->scrub_workers_refcnt,
2818                                         &fs_info->scrub_lock)) {
2819                 struct workqueue_struct *scrub_workers = fs_info->scrub_workers;
2820
2821                 fs_info->scrub_workers = NULL;
2822                 mutex_unlock(&fs_info->scrub_lock);
2823
2824                 if (scrub_workers)
2825                         destroy_workqueue(scrub_workers);
2826         }
2827 }
2828
2829 /*
2830  * get a reference count on fs_info->scrub_workers. start worker if necessary
2831  */
2832 static noinline_for_stack int scrub_workers_get(struct btrfs_fs_info *fs_info)
2833 {
2834         struct workqueue_struct *scrub_workers = NULL;
2835         unsigned int flags = WQ_FREEZABLE | WQ_UNBOUND;
2836         int max_active = fs_info->thread_pool_size;
2837         int ret = -ENOMEM;
2838
2839         if (refcount_inc_not_zero(&fs_info->scrub_workers_refcnt))
2840                 return 0;
2841
2842         scrub_workers = alloc_workqueue("btrfs-scrub", flags, max_active);
2843         if (!scrub_workers)
2844                 return -ENOMEM;
2845
2846         mutex_lock(&fs_info->scrub_lock);
2847         if (refcount_read(&fs_info->scrub_workers_refcnt) == 0) {
2848                 ASSERT(fs_info->scrub_workers == NULL);
2849                 fs_info->scrub_workers = scrub_workers;
2850                 refcount_set(&fs_info->scrub_workers_refcnt, 1);
2851                 mutex_unlock(&fs_info->scrub_lock);
2852                 return 0;
2853         }
2854         /* Other thread raced in and created the workers for us */
2855         refcount_inc(&fs_info->scrub_workers_refcnt);
2856         mutex_unlock(&fs_info->scrub_lock);
2857
2858         ret = 0;
2859
2860         destroy_workqueue(scrub_workers);
2861         return ret;
2862 }
2863
2864 int btrfs_scrub_dev(struct btrfs_fs_info *fs_info, u64 devid, u64 start,
2865                     u64 end, struct btrfs_scrub_progress *progress,
2866                     int readonly, int is_dev_replace)
2867 {
2868         struct btrfs_dev_lookup_args args = { .devid = devid };
2869         struct scrub_ctx *sctx;
2870         int ret;
2871         struct btrfs_device *dev;
2872         unsigned int nofs_flag;
2873         bool need_commit = false;
2874
2875         if (btrfs_fs_closing(fs_info))
2876                 return -EAGAIN;
2877
2878         /* At mount time we have ensured nodesize is in the range of [4K, 64K]. */
2879         ASSERT(fs_info->nodesize <= BTRFS_STRIPE_LEN);
2880
2881         /*
2882          * SCRUB_MAX_SECTORS_PER_BLOCK is calculated using the largest possible
2883          * value (max nodesize / min sectorsize), thus nodesize should always
2884          * be fine.
2885          */
2886         ASSERT(fs_info->nodesize <=
2887                SCRUB_MAX_SECTORS_PER_BLOCK << fs_info->sectorsize_bits);
2888
2889         /* Allocate outside of device_list_mutex */
2890         sctx = scrub_setup_ctx(fs_info, is_dev_replace);
2891         if (IS_ERR(sctx))
2892                 return PTR_ERR(sctx);
2893
2894         ret = scrub_workers_get(fs_info);
2895         if (ret)
2896                 goto out_free_ctx;
2897
2898         mutex_lock(&fs_info->fs_devices->device_list_mutex);
2899         dev = btrfs_find_device(fs_info->fs_devices, &args);
2900         if (!dev || (test_bit(BTRFS_DEV_STATE_MISSING, &dev->dev_state) &&
2901                      !is_dev_replace)) {
2902                 mutex_unlock(&fs_info->fs_devices->device_list_mutex);
2903                 ret = -ENODEV;
2904                 goto out;
2905         }
2906
2907         if (!is_dev_replace && !readonly &&
2908             !test_bit(BTRFS_DEV_STATE_WRITEABLE, &dev->dev_state)) {
2909                 mutex_unlock(&fs_info->fs_devices->device_list_mutex);
2910                 btrfs_err_in_rcu(fs_info,
2911                         "scrub on devid %llu: filesystem on %s is not writable",
2912                                  devid, btrfs_dev_name(dev));
2913                 ret = -EROFS;
2914                 goto out;
2915         }
2916
2917         mutex_lock(&fs_info->scrub_lock);
2918         if (!test_bit(BTRFS_DEV_STATE_IN_FS_METADATA, &dev->dev_state) ||
2919             test_bit(BTRFS_DEV_STATE_REPLACE_TGT, &dev->dev_state)) {
2920                 mutex_unlock(&fs_info->scrub_lock);
2921                 mutex_unlock(&fs_info->fs_devices->device_list_mutex);
2922                 ret = -EIO;
2923                 goto out;
2924         }
2925
2926         down_read(&fs_info->dev_replace.rwsem);
2927         if (dev->scrub_ctx ||
2928             (!is_dev_replace &&
2929              btrfs_dev_replace_is_ongoing(&fs_info->dev_replace))) {
2930                 up_read(&fs_info->dev_replace.rwsem);
2931                 mutex_unlock(&fs_info->scrub_lock);
2932                 mutex_unlock(&fs_info->fs_devices->device_list_mutex);
2933                 ret = -EINPROGRESS;
2934                 goto out;
2935         }
2936         up_read(&fs_info->dev_replace.rwsem);
2937
2938         sctx->readonly = readonly;
2939         dev->scrub_ctx = sctx;
2940         mutex_unlock(&fs_info->fs_devices->device_list_mutex);
2941
2942         /*
2943          * checking @scrub_pause_req here, we can avoid
2944          * race between committing transaction and scrubbing.
2945          */
2946         __scrub_blocked_if_needed(fs_info);
2947         atomic_inc(&fs_info->scrubs_running);
2948         mutex_unlock(&fs_info->scrub_lock);
2949
2950         /*
2951          * In order to avoid deadlock with reclaim when there is a transaction
2952          * trying to pause scrub, make sure we use GFP_NOFS for all the
2953          * allocations done at btrfs_scrub_sectors() and scrub_sectors_for_parity()
2954          * invoked by our callees. The pausing request is done when the
2955          * transaction commit starts, and it blocks the transaction until scrub
2956          * is paused (done at specific points at scrub_stripe() or right above
2957          * before incrementing fs_info->scrubs_running).
2958          */
2959         nofs_flag = memalloc_nofs_save();
2960         if (!is_dev_replace) {
2961                 u64 old_super_errors;
2962
2963                 spin_lock(&sctx->stat_lock);
2964                 old_super_errors = sctx->stat.super_errors;
2965                 spin_unlock(&sctx->stat_lock);
2966
2967                 btrfs_info(fs_info, "scrub: started on devid %llu", devid);
2968                 /*
2969                  * by holding device list mutex, we can
2970                  * kick off writing super in log tree sync.
2971                  */
2972                 mutex_lock(&fs_info->fs_devices->device_list_mutex);
2973                 ret = scrub_supers(sctx, dev);
2974                 mutex_unlock(&fs_info->fs_devices->device_list_mutex);
2975
2976                 spin_lock(&sctx->stat_lock);
2977                 /*
2978                  * Super block errors found, but we can not commit transaction
2979                  * at current context, since btrfs_commit_transaction() needs
2980                  * to pause the current running scrub (hold by ourselves).
2981                  */
2982                 if (sctx->stat.super_errors > old_super_errors && !sctx->readonly)
2983                         need_commit = true;
2984                 spin_unlock(&sctx->stat_lock);
2985         }
2986
2987         if (!ret)
2988                 ret = scrub_enumerate_chunks(sctx, dev, start, end);
2989         memalloc_nofs_restore(nofs_flag);
2990
2991         atomic_dec(&fs_info->scrubs_running);
2992         wake_up(&fs_info->scrub_pause_wait);
2993
2994         if (progress)
2995                 memcpy(progress, &sctx->stat, sizeof(*progress));
2996
2997         if (!is_dev_replace)
2998                 btrfs_info(fs_info, "scrub: %s on devid %llu with status: %d",
2999                         ret ? "not finished" : "finished", devid, ret);
3000
3001         mutex_lock(&fs_info->scrub_lock);
3002         dev->scrub_ctx = NULL;
3003         mutex_unlock(&fs_info->scrub_lock);
3004
3005         scrub_workers_put(fs_info);
3006         scrub_put_ctx(sctx);
3007
3008         /*
3009          * We found some super block errors before, now try to force a
3010          * transaction commit, as scrub has finished.
3011          */
3012         if (need_commit) {
3013                 struct btrfs_trans_handle *trans;
3014
3015                 trans = btrfs_start_transaction(fs_info->tree_root, 0);
3016                 if (IS_ERR(trans)) {
3017                         ret = PTR_ERR(trans);
3018                         btrfs_err(fs_info,
3019         "scrub: failed to start transaction to fix super block errors: %d", ret);
3020                         return ret;
3021                 }
3022                 ret = btrfs_commit_transaction(trans);
3023                 if (ret < 0)
3024                         btrfs_err(fs_info,
3025         "scrub: failed to commit transaction to fix super block errors: %d", ret);
3026         }
3027         return ret;
3028 out:
3029         scrub_workers_put(fs_info);
3030 out_free_ctx:
3031         scrub_free_ctx(sctx);
3032
3033         return ret;
3034 }
3035
3036 void btrfs_scrub_pause(struct btrfs_fs_info *fs_info)
3037 {
3038         mutex_lock(&fs_info->scrub_lock);
3039         atomic_inc(&fs_info->scrub_pause_req);
3040         while (atomic_read(&fs_info->scrubs_paused) !=
3041                atomic_read(&fs_info->scrubs_running)) {
3042                 mutex_unlock(&fs_info->scrub_lock);
3043                 wait_event(fs_info->scrub_pause_wait,
3044                            atomic_read(&fs_info->scrubs_paused) ==
3045                            atomic_read(&fs_info->scrubs_running));
3046                 mutex_lock(&fs_info->scrub_lock);
3047         }
3048         mutex_unlock(&fs_info->scrub_lock);
3049 }
3050
3051 void btrfs_scrub_continue(struct btrfs_fs_info *fs_info)
3052 {
3053         atomic_dec(&fs_info->scrub_pause_req);
3054         wake_up(&fs_info->scrub_pause_wait);
3055 }
3056
3057 int btrfs_scrub_cancel(struct btrfs_fs_info *fs_info)
3058 {
3059         mutex_lock(&fs_info->scrub_lock);
3060         if (!atomic_read(&fs_info->scrubs_running)) {
3061                 mutex_unlock(&fs_info->scrub_lock);
3062                 return -ENOTCONN;
3063         }
3064
3065         atomic_inc(&fs_info->scrub_cancel_req);
3066         while (atomic_read(&fs_info->scrubs_running)) {
3067                 mutex_unlock(&fs_info->scrub_lock);
3068                 wait_event(fs_info->scrub_pause_wait,
3069                            atomic_read(&fs_info->scrubs_running) == 0);
3070                 mutex_lock(&fs_info->scrub_lock);
3071         }
3072         atomic_dec(&fs_info->scrub_cancel_req);
3073         mutex_unlock(&fs_info->scrub_lock);
3074
3075         return 0;
3076 }
3077
3078 int btrfs_scrub_cancel_dev(struct btrfs_device *dev)
3079 {
3080         struct btrfs_fs_info *fs_info = dev->fs_info;
3081         struct scrub_ctx *sctx;
3082
3083         mutex_lock(&fs_info->scrub_lock);
3084         sctx = dev->scrub_ctx;
3085         if (!sctx) {
3086                 mutex_unlock(&fs_info->scrub_lock);
3087                 return -ENOTCONN;
3088         }
3089         atomic_inc(&sctx->cancel_req);
3090         while (dev->scrub_ctx) {
3091                 mutex_unlock(&fs_info->scrub_lock);
3092                 wait_event(fs_info->scrub_pause_wait,
3093                            dev->scrub_ctx == NULL);
3094                 mutex_lock(&fs_info->scrub_lock);
3095         }
3096         mutex_unlock(&fs_info->scrub_lock);
3097
3098         return 0;
3099 }
3100
3101 int btrfs_scrub_progress(struct btrfs_fs_info *fs_info, u64 devid,
3102                          struct btrfs_scrub_progress *progress)
3103 {
3104         struct btrfs_dev_lookup_args args = { .devid = devid };
3105         struct btrfs_device *dev;
3106         struct scrub_ctx *sctx = NULL;
3107
3108         mutex_lock(&fs_info->fs_devices->device_list_mutex);
3109         dev = btrfs_find_device(fs_info->fs_devices, &args);
3110         if (dev)
3111                 sctx = dev->scrub_ctx;
3112         if (sctx)
3113                 memcpy(progress, &sctx->stat, sizeof(*progress));
3114         mutex_unlock(&fs_info->fs_devices->device_list_mutex);
3115
3116         return dev ? (sctx ? 0 : -ENOTCONN) : -ENODEV;
3117 }