GNU Linux-libre 6.8.9-gnu
[releases.git] / fs / btrfs / reflink.c
1 // SPDX-License-Identifier: GPL-2.0
2
3 #include <linux/blkdev.h>
4 #include <linux/iversion.h>
5 #include "ctree.h"
6 #include "fs.h"
7 #include "messages.h"
8 #include "compression.h"
9 #include "delalloc-space.h"
10 #include "disk-io.h"
11 #include "reflink.h"
12 #include "transaction.h"
13 #include "subpage.h"
14 #include "accessors.h"
15 #include "file-item.h"
16 #include "file.h"
17 #include "super.h"
18
19 #define BTRFS_MAX_DEDUPE_LEN    SZ_16M
20
21 static int clone_finish_inode_update(struct btrfs_trans_handle *trans,
22                                      struct inode *inode,
23                                      u64 endoff,
24                                      const u64 destoff,
25                                      const u64 olen,
26                                      int no_time_update)
27 {
28         int ret;
29
30         inode_inc_iversion(inode);
31         if (!no_time_update) {
32                 inode_set_mtime_to_ts(inode, inode_set_ctime_current(inode));
33         }
34         /*
35          * We round up to the block size at eof when determining which
36          * extents to clone above, but shouldn't round up the file size.
37          */
38         if (endoff > destoff + olen)
39                 endoff = destoff + olen;
40         if (endoff > inode->i_size) {
41                 i_size_write(inode, endoff);
42                 btrfs_inode_safe_disk_i_size_write(BTRFS_I(inode), 0);
43         }
44
45         ret = btrfs_update_inode(trans, BTRFS_I(inode));
46         if (ret) {
47                 btrfs_abort_transaction(trans, ret);
48                 btrfs_end_transaction(trans);
49                 goto out;
50         }
51         ret = btrfs_end_transaction(trans);
52 out:
53         return ret;
54 }
55
56 static int copy_inline_to_page(struct btrfs_inode *inode,
57                                const u64 file_offset,
58                                char *inline_data,
59                                const u64 size,
60                                const u64 datal,
61                                const u8 comp_type)
62 {
63         struct btrfs_fs_info *fs_info = inode->root->fs_info;
64         const u32 block_size = fs_info->sectorsize;
65         const u64 range_end = file_offset + block_size - 1;
66         const size_t inline_size = size - btrfs_file_extent_calc_inline_size(0);
67         char *data_start = inline_data + btrfs_file_extent_calc_inline_size(0);
68         struct extent_changeset *data_reserved = NULL;
69         struct page *page = NULL;
70         struct address_space *mapping = inode->vfs_inode.i_mapping;
71         int ret;
72
73         ASSERT(IS_ALIGNED(file_offset, block_size));
74
75         /*
76          * We have flushed and locked the ranges of the source and destination
77          * inodes, we also have locked the inodes, so we are safe to do a
78          * reservation here. Also we must not do the reservation while holding
79          * a transaction open, otherwise we would deadlock.
80          */
81         ret = btrfs_delalloc_reserve_space(inode, &data_reserved, file_offset,
82                                            block_size);
83         if (ret)
84                 goto out;
85
86         page = find_or_create_page(mapping, file_offset >> PAGE_SHIFT,
87                                    btrfs_alloc_write_mask(mapping));
88         if (!page) {
89                 ret = -ENOMEM;
90                 goto out_unlock;
91         }
92
93         ret = set_page_extent_mapped(page);
94         if (ret < 0)
95                 goto out_unlock;
96
97         clear_extent_bit(&inode->io_tree, file_offset, range_end,
98                          EXTENT_DELALLOC | EXTENT_DO_ACCOUNTING | EXTENT_DEFRAG,
99                          NULL);
100         ret = btrfs_set_extent_delalloc(inode, file_offset, range_end, 0, NULL);
101         if (ret)
102                 goto out_unlock;
103
104         /*
105          * After dirtying the page our caller will need to start a transaction,
106          * and if we are low on metadata free space, that can cause flushing of
107          * delalloc for all inodes in order to get metadata space released.
108          * However we are holding the range locked for the whole duration of
109          * the clone/dedupe operation, so we may deadlock if that happens and no
110          * other task releases enough space. So mark this inode as not being
111          * possible to flush to avoid such deadlock. We will clear that flag
112          * when we finish cloning all extents, since a transaction is started
113          * after finding each extent to clone.
114          */
115         set_bit(BTRFS_INODE_NO_DELALLOC_FLUSH, &inode->runtime_flags);
116
117         if (comp_type == BTRFS_COMPRESS_NONE) {
118                 memcpy_to_page(page, offset_in_page(file_offset), data_start,
119                                datal);
120         } else {
121                 ret = btrfs_decompress(comp_type, data_start, page,
122                                        offset_in_page(file_offset),
123                                        inline_size, datal);
124                 if (ret)
125                         goto out_unlock;
126                 flush_dcache_page(page);
127         }
128
129         /*
130          * If our inline data is smaller then the block/page size, then the
131          * remaining of the block/page is equivalent to zeroes. We had something
132          * like the following done:
133          *
134          * $ xfs_io -f -c "pwrite -S 0xab 0 500" file
135          * $ sync  # (or fsync)
136          * $ xfs_io -c "falloc 0 4K" file
137          * $ xfs_io -c "pwrite -S 0xcd 4K 4K"
138          *
139          * So what's in the range [500, 4095] corresponds to zeroes.
140          */
141         if (datal < block_size)
142                 memzero_page(page, datal, block_size - datal);
143
144         btrfs_folio_set_uptodate(fs_info, page_folio(page), file_offset, block_size);
145         btrfs_folio_clear_checked(fs_info, page_folio(page), file_offset, block_size);
146         btrfs_folio_set_dirty(fs_info, page_folio(page), file_offset, block_size);
147 out_unlock:
148         if (page) {
149                 unlock_page(page);
150                 put_page(page);
151         }
152         if (ret)
153                 btrfs_delalloc_release_space(inode, data_reserved, file_offset,
154                                              block_size, true);
155         btrfs_delalloc_release_extents(inode, block_size);
156 out:
157         extent_changeset_free(data_reserved);
158
159         return ret;
160 }
161
162 /*
163  * Deal with cloning of inline extents. We try to copy the inline extent from
164  * the source inode to destination inode when possible. When not possible we
165  * copy the inline extent's data into the respective page of the inode.
166  */
167 static int clone_copy_inline_extent(struct inode *dst,
168                                     struct btrfs_path *path,
169                                     struct btrfs_key *new_key,
170                                     const u64 drop_start,
171                                     const u64 datal,
172                                     const u64 size,
173                                     const u8 comp_type,
174                                     char *inline_data,
175                                     struct btrfs_trans_handle **trans_out)
176 {
177         struct btrfs_fs_info *fs_info = inode_to_fs_info(dst);
178         struct btrfs_root *root = BTRFS_I(dst)->root;
179         const u64 aligned_end = ALIGN(new_key->offset + datal,
180                                       fs_info->sectorsize);
181         struct btrfs_trans_handle *trans = NULL;
182         struct btrfs_drop_extents_args drop_args = { 0 };
183         int ret;
184         struct btrfs_key key;
185
186         if (new_key->offset > 0) {
187                 ret = copy_inline_to_page(BTRFS_I(dst), new_key->offset,
188                                           inline_data, size, datal, comp_type);
189                 goto out;
190         }
191
192         key.objectid = btrfs_ino(BTRFS_I(dst));
193         key.type = BTRFS_EXTENT_DATA_KEY;
194         key.offset = 0;
195         ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
196         if (ret < 0) {
197                 return ret;
198         } else if (ret > 0) {
199                 if (path->slots[0] >= btrfs_header_nritems(path->nodes[0])) {
200                         ret = btrfs_next_leaf(root, path);
201                         if (ret < 0)
202                                 return ret;
203                         else if (ret > 0)
204                                 goto copy_inline_extent;
205                 }
206                 btrfs_item_key_to_cpu(path->nodes[0], &key, path->slots[0]);
207                 if (key.objectid == btrfs_ino(BTRFS_I(dst)) &&
208                     key.type == BTRFS_EXTENT_DATA_KEY) {
209                         /*
210                          * There's an implicit hole at file offset 0, copy the
211                          * inline extent's data to the page.
212                          */
213                         ASSERT(key.offset > 0);
214                         goto copy_to_page;
215                 }
216         } else if (i_size_read(dst) <= datal) {
217                 struct btrfs_file_extent_item *ei;
218
219                 ei = btrfs_item_ptr(path->nodes[0], path->slots[0],
220                                     struct btrfs_file_extent_item);
221                 /*
222                  * If it's an inline extent replace it with the source inline
223                  * extent, otherwise copy the source inline extent data into
224                  * the respective page at the destination inode.
225                  */
226                 if (btrfs_file_extent_type(path->nodes[0], ei) ==
227                     BTRFS_FILE_EXTENT_INLINE)
228                         goto copy_inline_extent;
229
230                 goto copy_to_page;
231         }
232
233 copy_inline_extent:
234         /*
235          * We have no extent items, or we have an extent at offset 0 which may
236          * or may not be inlined. All these cases are dealt the same way.
237          */
238         if (i_size_read(dst) > datal) {
239                 /*
240                  * At the destination offset 0 we have either a hole, a regular
241                  * extent or an inline extent larger then the one we want to
242                  * clone. Deal with all these cases by copying the inline extent
243                  * data into the respective page at the destination inode.
244                  */
245                 goto copy_to_page;
246         }
247
248         /*
249          * Release path before starting a new transaction so we don't hold locks
250          * that would confuse lockdep.
251          */
252         btrfs_release_path(path);
253         /*
254          * If we end up here it means were copy the inline extent into a leaf
255          * of the destination inode. We know we will drop or adjust at most one
256          * extent item in the destination root.
257          *
258          * 1 unit - adjusting old extent (we may have to split it)
259          * 1 unit - add new extent
260          * 1 unit - inode update
261          */
262         trans = btrfs_start_transaction(root, 3);
263         if (IS_ERR(trans)) {
264                 ret = PTR_ERR(trans);
265                 trans = NULL;
266                 goto out;
267         }
268         drop_args.path = path;
269         drop_args.start = drop_start;
270         drop_args.end = aligned_end;
271         drop_args.drop_cache = true;
272         ret = btrfs_drop_extents(trans, root, BTRFS_I(dst), &drop_args);
273         if (ret)
274                 goto out;
275         ret = btrfs_insert_empty_item(trans, root, path, new_key, size);
276         if (ret)
277                 goto out;
278
279         write_extent_buffer(path->nodes[0], inline_data,
280                             btrfs_item_ptr_offset(path->nodes[0],
281                                                   path->slots[0]),
282                             size);
283         btrfs_update_inode_bytes(BTRFS_I(dst), datal, drop_args.bytes_found);
284         btrfs_set_inode_full_sync(BTRFS_I(dst));
285         ret = btrfs_inode_set_file_extent_range(BTRFS_I(dst), 0, aligned_end);
286 out:
287         if (!ret && !trans) {
288                 /*
289                  * No transaction here means we copied the inline extent into a
290                  * page of the destination inode.
291                  *
292                  * 1 unit to update inode item
293                  */
294                 trans = btrfs_start_transaction(root, 1);
295                 if (IS_ERR(trans)) {
296                         ret = PTR_ERR(trans);
297                         trans = NULL;
298                 }
299         }
300         if (ret && trans) {
301                 btrfs_abort_transaction(trans, ret);
302                 btrfs_end_transaction(trans);
303         }
304         if (!ret)
305                 *trans_out = trans;
306
307         return ret;
308
309 copy_to_page:
310         /*
311          * Release our path because we don't need it anymore and also because
312          * copy_inline_to_page() needs to reserve data and metadata, which may
313          * need to flush delalloc when we are low on available space and
314          * therefore cause a deadlock if writeback of an inline extent needs to
315          * write to the same leaf or an ordered extent completion needs to write
316          * to the same leaf.
317          */
318         btrfs_release_path(path);
319
320         ret = copy_inline_to_page(BTRFS_I(dst), new_key->offset,
321                                   inline_data, size, datal, comp_type);
322         goto out;
323 }
324
325 /*
326  * Clone a range from inode file to another.
327  *
328  * @src:             Inode to clone from
329  * @inode:           Inode to clone to
330  * @off:             Offset within source to start clone from
331  * @olen:            Original length, passed by user, of range to clone
332  * @olen_aligned:    Block-aligned value of olen
333  * @destoff:         Offset within @inode to start clone
334  * @no_time_update:  Whether to update mtime/ctime on the target inode
335  */
336 static int btrfs_clone(struct inode *src, struct inode *inode,
337                        const u64 off, const u64 olen, const u64 olen_aligned,
338                        const u64 destoff, int no_time_update)
339 {
340         struct btrfs_fs_info *fs_info = inode_to_fs_info(inode);
341         struct btrfs_path *path = NULL;
342         struct extent_buffer *leaf;
343         struct btrfs_trans_handle *trans;
344         char *buf = NULL;
345         struct btrfs_key key;
346         u32 nritems;
347         int slot;
348         int ret;
349         const u64 len = olen_aligned;
350         u64 last_dest_end = destoff;
351         u64 prev_extent_end = off;
352
353         ret = -ENOMEM;
354         buf = kvmalloc(fs_info->nodesize, GFP_KERNEL);
355         if (!buf)
356                 return ret;
357
358         path = btrfs_alloc_path();
359         if (!path) {
360                 kvfree(buf);
361                 return ret;
362         }
363
364         path->reada = READA_FORWARD;
365         /* Clone data */
366         key.objectid = btrfs_ino(BTRFS_I(src));
367         key.type = BTRFS_EXTENT_DATA_KEY;
368         key.offset = off;
369
370         while (1) {
371                 struct btrfs_file_extent_item *extent;
372                 u64 extent_gen;
373                 int type;
374                 u32 size;
375                 struct btrfs_key new_key;
376                 u64 disko = 0, diskl = 0;
377                 u64 datao = 0, datal = 0;
378                 u8 comp;
379                 u64 drop_start;
380
381                 /* Note the key will change type as we walk through the tree */
382                 ret = btrfs_search_slot(NULL, BTRFS_I(src)->root, &key, path,
383                                 0, 0);
384                 if (ret < 0)
385                         goto out;
386                 /*
387                  * First search, if no extent item that starts at offset off was
388                  * found but the previous item is an extent item, it's possible
389                  * it might overlap our target range, therefore process it.
390                  */
391                 if (key.offset == off && ret > 0 && path->slots[0] > 0) {
392                         btrfs_item_key_to_cpu(path->nodes[0], &key,
393                                               path->slots[0] - 1);
394                         if (key.type == BTRFS_EXTENT_DATA_KEY)
395                                 path->slots[0]--;
396                 }
397
398                 nritems = btrfs_header_nritems(path->nodes[0]);
399 process_slot:
400                 if (path->slots[0] >= nritems) {
401                         ret = btrfs_next_leaf(BTRFS_I(src)->root, path);
402                         if (ret < 0)
403                                 goto out;
404                         if (ret > 0)
405                                 break;
406                         nritems = btrfs_header_nritems(path->nodes[0]);
407                 }
408                 leaf = path->nodes[0];
409                 slot = path->slots[0];
410
411                 btrfs_item_key_to_cpu(leaf, &key, slot);
412                 if (key.type > BTRFS_EXTENT_DATA_KEY ||
413                     key.objectid != btrfs_ino(BTRFS_I(src)))
414                         break;
415
416                 ASSERT(key.type == BTRFS_EXTENT_DATA_KEY);
417
418                 extent = btrfs_item_ptr(leaf, slot,
419                                         struct btrfs_file_extent_item);
420                 extent_gen = btrfs_file_extent_generation(leaf, extent);
421                 comp = btrfs_file_extent_compression(leaf, extent);
422                 type = btrfs_file_extent_type(leaf, extent);
423                 if (type == BTRFS_FILE_EXTENT_REG ||
424                     type == BTRFS_FILE_EXTENT_PREALLOC) {
425                         disko = btrfs_file_extent_disk_bytenr(leaf, extent);
426                         diskl = btrfs_file_extent_disk_num_bytes(leaf, extent);
427                         datao = btrfs_file_extent_offset(leaf, extent);
428                         datal = btrfs_file_extent_num_bytes(leaf, extent);
429                 } else if (type == BTRFS_FILE_EXTENT_INLINE) {
430                         /* Take upper bound, may be compressed */
431                         datal = btrfs_file_extent_ram_bytes(leaf, extent);
432                 }
433
434                 /*
435                  * The first search might have left us at an extent item that
436                  * ends before our target range's start, can happen if we have
437                  * holes and NO_HOLES feature enabled.
438                  *
439                  * Subsequent searches may leave us on a file range we have
440                  * processed before - this happens due to a race with ordered
441                  * extent completion for a file range that is outside our source
442                  * range, but that range was part of a file extent item that
443                  * also covered a leading part of our source range.
444                  */
445                 if (key.offset + datal <= prev_extent_end) {
446                         path->slots[0]++;
447                         goto process_slot;
448                 } else if (key.offset >= off + len) {
449                         break;
450                 }
451
452                 prev_extent_end = key.offset + datal;
453                 size = btrfs_item_size(leaf, slot);
454                 read_extent_buffer(leaf, buf, btrfs_item_ptr_offset(leaf, slot),
455                                    size);
456
457                 btrfs_release_path(path);
458
459                 memcpy(&new_key, &key, sizeof(new_key));
460                 new_key.objectid = btrfs_ino(BTRFS_I(inode));
461                 if (off <= key.offset)
462                         new_key.offset = key.offset + destoff - off;
463                 else
464                         new_key.offset = destoff;
465
466                 /*
467                  * Deal with a hole that doesn't have an extent item that
468                  * represents it (NO_HOLES feature enabled).
469                  * This hole is either in the middle of the cloning range or at
470                  * the beginning (fully overlaps it or partially overlaps it).
471                  */
472                 if (new_key.offset != last_dest_end)
473                         drop_start = last_dest_end;
474                 else
475                         drop_start = new_key.offset;
476
477                 if (type == BTRFS_FILE_EXTENT_REG ||
478                     type == BTRFS_FILE_EXTENT_PREALLOC) {
479                         struct btrfs_replace_extent_info clone_info;
480
481                         /*
482                          *    a  | --- range to clone ---|  b
483                          * | ------------- extent ------------- |
484                          */
485
486                         /* Subtract range b */
487                         if (key.offset + datal > off + len)
488                                 datal = off + len - key.offset;
489
490                         /* Subtract range a */
491                         if (off > key.offset) {
492                                 datao += off - key.offset;
493                                 datal -= off - key.offset;
494                         }
495
496                         clone_info.disk_offset = disko;
497                         clone_info.disk_len = diskl;
498                         clone_info.data_offset = datao;
499                         clone_info.data_len = datal;
500                         clone_info.file_offset = new_key.offset;
501                         clone_info.extent_buf = buf;
502                         clone_info.is_new_extent = false;
503                         clone_info.update_times = !no_time_update;
504                         ret = btrfs_replace_file_extents(BTRFS_I(inode), path,
505                                         drop_start, new_key.offset + datal - 1,
506                                         &clone_info, &trans);
507                         if (ret)
508                                 goto out;
509                 } else {
510                         ASSERT(type == BTRFS_FILE_EXTENT_INLINE);
511                         /*
512                          * Inline extents always have to start at file offset 0
513                          * and can never be bigger then the sector size. We can
514                          * never clone only parts of an inline extent, since all
515                          * reflink operations must start at a sector size aligned
516                          * offset, and the length must be aligned too or end at
517                          * the i_size (which implies the whole inlined data).
518                          */
519                         ASSERT(key.offset == 0);
520                         ASSERT(datal <= fs_info->sectorsize);
521                         if (WARN_ON(type != BTRFS_FILE_EXTENT_INLINE) ||
522                             WARN_ON(key.offset != 0) ||
523                             WARN_ON(datal > fs_info->sectorsize)) {
524                                 ret = -EUCLEAN;
525                                 goto out;
526                         }
527
528                         ret = clone_copy_inline_extent(inode, path, &new_key,
529                                                        drop_start, datal, size,
530                                                        comp, buf, &trans);
531                         if (ret)
532                                 goto out;
533                 }
534
535                 btrfs_release_path(path);
536
537                 /*
538                  * Whenever we share an extent we update the last_reflink_trans
539                  * of each inode to the current transaction. This is needed to
540                  * make sure fsync does not log multiple checksum items with
541                  * overlapping ranges (because some extent items might refer
542                  * only to sections of the original extent). For the destination
543                  * inode we do this regardless of the generation of the extents
544                  * or even if they are inline extents or explicit holes, to make
545                  * sure a full fsync does not skip them. For the source inode,
546                  * we only need to update last_reflink_trans in case it's a new
547                  * extent that is not a hole or an inline extent, to deal with
548                  * the checksums problem on fsync.
549                  */
550                 if (extent_gen == trans->transid && disko > 0)
551                         BTRFS_I(src)->last_reflink_trans = trans->transid;
552
553                 BTRFS_I(inode)->last_reflink_trans = trans->transid;
554
555                 last_dest_end = ALIGN(new_key.offset + datal,
556                                       fs_info->sectorsize);
557                 ret = clone_finish_inode_update(trans, inode, last_dest_end,
558                                                 destoff, olen, no_time_update);
559                 if (ret)
560                         goto out;
561                 if (new_key.offset + datal >= destoff + len)
562                         break;
563
564                 btrfs_release_path(path);
565                 key.offset = prev_extent_end;
566
567                 if (fatal_signal_pending(current)) {
568                         ret = -EINTR;
569                         goto out;
570                 }
571
572                 cond_resched();
573         }
574         ret = 0;
575
576         if (last_dest_end < destoff + len) {
577                 /*
578                  * We have an implicit hole that fully or partially overlaps our
579                  * cloning range at its end. This means that we either have the
580                  * NO_HOLES feature enabled or the implicit hole happened due to
581                  * mixing buffered and direct IO writes against this file.
582                  */
583                 btrfs_release_path(path);
584
585                 /*
586                  * When using NO_HOLES and we are cloning a range that covers
587                  * only a hole (no extents) into a range beyond the current
588                  * i_size, punching a hole in the target range will not create
589                  * an extent map defining a hole, because the range starts at or
590                  * beyond current i_size. If the file previously had an i_size
591                  * greater than the new i_size set by this clone operation, we
592                  * need to make sure the next fsync is a full fsync, so that it
593                  * detects and logs a hole covering a range from the current
594                  * i_size to the new i_size. If the clone range covers extents,
595                  * besides a hole, then we know the full sync flag was already
596                  * set by previous calls to btrfs_replace_file_extents() that
597                  * replaced file extent items.
598                  */
599                 if (last_dest_end >= i_size_read(inode))
600                         btrfs_set_inode_full_sync(BTRFS_I(inode));
601
602                 ret = btrfs_replace_file_extents(BTRFS_I(inode), path,
603                                 last_dest_end, destoff + len - 1, NULL, &trans);
604                 if (ret)
605                         goto out;
606
607                 ret = clone_finish_inode_update(trans, inode, destoff + len,
608                                                 destoff, olen, no_time_update);
609         }
610
611 out:
612         btrfs_free_path(path);
613         kvfree(buf);
614         clear_bit(BTRFS_INODE_NO_DELALLOC_FLUSH, &BTRFS_I(inode)->runtime_flags);
615
616         return ret;
617 }
618
619 static void btrfs_double_extent_unlock(struct inode *inode1, u64 loff1,
620                                        struct inode *inode2, u64 loff2, u64 len)
621 {
622         unlock_extent(&BTRFS_I(inode1)->io_tree, loff1, loff1 + len - 1, NULL);
623         unlock_extent(&BTRFS_I(inode2)->io_tree, loff2, loff2 + len - 1, NULL);
624 }
625
626 static void btrfs_double_extent_lock(struct inode *inode1, u64 loff1,
627                                      struct inode *inode2, u64 loff2, u64 len)
628 {
629         u64 range1_end = loff1 + len - 1;
630         u64 range2_end = loff2 + len - 1;
631
632         if (inode1 < inode2) {
633                 swap(inode1, inode2);
634                 swap(loff1, loff2);
635                 swap(range1_end, range2_end);
636         } else if (inode1 == inode2 && loff2 < loff1) {
637                 swap(loff1, loff2);
638                 swap(range1_end, range2_end);
639         }
640
641         lock_extent(&BTRFS_I(inode1)->io_tree, loff1, range1_end, NULL);
642         lock_extent(&BTRFS_I(inode2)->io_tree, loff2, range2_end, NULL);
643
644         btrfs_assert_inode_range_clean(BTRFS_I(inode1), loff1, range1_end);
645         btrfs_assert_inode_range_clean(BTRFS_I(inode2), loff2, range2_end);
646 }
647
648 static void btrfs_double_mmap_lock(struct inode *inode1, struct inode *inode2)
649 {
650         if (inode1 < inode2)
651                 swap(inode1, inode2);
652         down_write(&BTRFS_I(inode1)->i_mmap_lock);
653         down_write_nested(&BTRFS_I(inode2)->i_mmap_lock, SINGLE_DEPTH_NESTING);
654 }
655
656 static void btrfs_double_mmap_unlock(struct inode *inode1, struct inode *inode2)
657 {
658         up_write(&BTRFS_I(inode1)->i_mmap_lock);
659         up_write(&BTRFS_I(inode2)->i_mmap_lock);
660 }
661
662 static int btrfs_extent_same_range(struct inode *src, u64 loff, u64 len,
663                                    struct inode *dst, u64 dst_loff)
664 {
665         struct btrfs_fs_info *fs_info = BTRFS_I(src)->root->fs_info;
666         const u64 bs = fs_info->sectorsize;
667         int ret;
668
669         /*
670          * Lock destination range to serialize with concurrent readahead() and
671          * source range to serialize with relocation.
672          */
673         btrfs_double_extent_lock(src, loff, dst, dst_loff, len);
674         ret = btrfs_clone(src, dst, loff, len, ALIGN(len, bs), dst_loff, 1);
675         btrfs_double_extent_unlock(src, loff, dst, dst_loff, len);
676
677         btrfs_btree_balance_dirty(fs_info);
678
679         return ret;
680 }
681
682 static int btrfs_extent_same(struct inode *src, u64 loff, u64 olen,
683                              struct inode *dst, u64 dst_loff)
684 {
685         int ret = 0;
686         u64 i, tail_len, chunk_count;
687         struct btrfs_root *root_dst = BTRFS_I(dst)->root;
688
689         spin_lock(&root_dst->root_item_lock);
690         if (root_dst->send_in_progress) {
691                 btrfs_warn_rl(root_dst->fs_info,
692 "cannot deduplicate to root %llu while send operations are using it (%d in progress)",
693                               root_dst->root_key.objectid,
694                               root_dst->send_in_progress);
695                 spin_unlock(&root_dst->root_item_lock);
696                 return -EAGAIN;
697         }
698         root_dst->dedupe_in_progress++;
699         spin_unlock(&root_dst->root_item_lock);
700
701         tail_len = olen % BTRFS_MAX_DEDUPE_LEN;
702         chunk_count = div_u64(olen, BTRFS_MAX_DEDUPE_LEN);
703
704         for (i = 0; i < chunk_count; i++) {
705                 ret = btrfs_extent_same_range(src, loff, BTRFS_MAX_DEDUPE_LEN,
706                                               dst, dst_loff);
707                 if (ret)
708                         goto out;
709
710                 loff += BTRFS_MAX_DEDUPE_LEN;
711                 dst_loff += BTRFS_MAX_DEDUPE_LEN;
712         }
713
714         if (tail_len > 0)
715                 ret = btrfs_extent_same_range(src, loff, tail_len, dst, dst_loff);
716 out:
717         spin_lock(&root_dst->root_item_lock);
718         root_dst->dedupe_in_progress--;
719         spin_unlock(&root_dst->root_item_lock);
720
721         return ret;
722 }
723
724 static noinline int btrfs_clone_files(struct file *file, struct file *file_src,
725                                         u64 off, u64 olen, u64 destoff)
726 {
727         struct inode *inode = file_inode(file);
728         struct inode *src = file_inode(file_src);
729         struct btrfs_fs_info *fs_info = inode_to_fs_info(inode);
730         int ret;
731         int wb_ret;
732         u64 len = olen;
733         u64 bs = fs_info->sectorsize;
734
735         /*
736          * VFS's generic_remap_file_range_prep() protects us from cloning the
737          * eof block into the middle of a file, which would result in corruption
738          * if the file size is not blocksize aligned. So we don't need to check
739          * for that case here.
740          */
741         if (off + len == src->i_size)
742                 len = ALIGN(src->i_size, bs) - off;
743
744         if (destoff > inode->i_size) {
745                 const u64 wb_start = ALIGN_DOWN(inode->i_size, bs);
746
747                 ret = btrfs_cont_expand(BTRFS_I(inode), inode->i_size, destoff);
748                 if (ret)
749                         return ret;
750                 /*
751                  * We may have truncated the last block if the inode's size is
752                  * not sector size aligned, so we need to wait for writeback to
753                  * complete before proceeding further, otherwise we can race
754                  * with cloning and attempt to increment a reference to an
755                  * extent that no longer exists (writeback completed right after
756                  * we found the previous extent covering eof and before we
757                  * attempted to increment its reference count).
758                  */
759                 ret = btrfs_wait_ordered_range(inode, wb_start,
760                                                destoff - wb_start);
761                 if (ret)
762                         return ret;
763         }
764
765         /*
766          * Lock destination range to serialize with concurrent readahead() and
767          * source range to serialize with relocation.
768          */
769         btrfs_double_extent_lock(src, off, inode, destoff, len);
770         ret = btrfs_clone(src, inode, off, olen, len, destoff, 0);
771         btrfs_double_extent_unlock(src, off, inode, destoff, len);
772
773         /*
774          * We may have copied an inline extent into a page of the destination
775          * range, so wait for writeback to complete before truncating pages
776          * from the page cache. This is a rare case.
777          */
778         wb_ret = btrfs_wait_ordered_range(inode, destoff, len);
779         ret = ret ? ret : wb_ret;
780         /*
781          * Truncate page cache pages so that future reads will see the cloned
782          * data immediately and not the previous data.
783          */
784         truncate_inode_pages_range(&inode->i_data,
785                                 round_down(destoff, PAGE_SIZE),
786                                 round_up(destoff + len, PAGE_SIZE) - 1);
787
788         btrfs_btree_balance_dirty(fs_info);
789
790         return ret;
791 }
792
793 static int btrfs_remap_file_range_prep(struct file *file_in, loff_t pos_in,
794                                        struct file *file_out, loff_t pos_out,
795                                        loff_t *len, unsigned int remap_flags)
796 {
797         struct inode *inode_in = file_inode(file_in);
798         struct inode *inode_out = file_inode(file_out);
799         u64 bs = BTRFS_I(inode_out)->root->fs_info->sectorsize;
800         u64 wb_len;
801         int ret;
802
803         if (!(remap_flags & REMAP_FILE_DEDUP)) {
804                 struct btrfs_root *root_out = BTRFS_I(inode_out)->root;
805
806                 if (btrfs_root_readonly(root_out))
807                         return -EROFS;
808
809                 ASSERT(inode_in->i_sb == inode_out->i_sb);
810         }
811
812         /* Don't make the dst file partly checksummed */
813         if ((BTRFS_I(inode_in)->flags & BTRFS_INODE_NODATASUM) !=
814             (BTRFS_I(inode_out)->flags & BTRFS_INODE_NODATASUM)) {
815                 return -EINVAL;
816         }
817
818         /*
819          * Now that the inodes are locked, we need to start writeback ourselves
820          * and can not rely on the writeback from the VFS's generic helper
821          * generic_remap_file_range_prep() because:
822          *
823          * 1) For compression we must call filemap_fdatawrite_range() range
824          *    twice (btrfs_fdatawrite_range() does it for us), and the generic
825          *    helper only calls it once;
826          *
827          * 2) filemap_fdatawrite_range(), called by the generic helper only
828          *    waits for the writeback to complete, i.e. for IO to be done, and
829          *    not for the ordered extents to complete. We need to wait for them
830          *    to complete so that new file extent items are in the fs tree.
831          */
832         if (*len == 0 && !(remap_flags & REMAP_FILE_DEDUP))
833                 wb_len = ALIGN(inode_in->i_size, bs) - ALIGN_DOWN(pos_in, bs);
834         else
835                 wb_len = ALIGN(*len, bs);
836
837         /*
838          * Workaround to make sure NOCOW buffered write reach disk as NOCOW.
839          *
840          * Btrfs' back references do not have a block level granularity, they
841          * work at the whole extent level.
842          * NOCOW buffered write without data space reserved may not be able
843          * to fall back to CoW due to lack of data space, thus could cause
844          * data loss.
845          *
846          * Here we take a shortcut by flushing the whole inode, so that all
847          * nocow write should reach disk as nocow before we increase the
848          * reference of the extent. We could do better by only flushing NOCOW
849          * data, but that needs extra accounting.
850          *
851          * Also we don't need to check ASYNC_EXTENT, as async extent will be
852          * CoWed anyway, not affecting nocow part.
853          */
854         ret = filemap_flush(inode_in->i_mapping);
855         if (ret < 0)
856                 return ret;
857
858         ret = btrfs_wait_ordered_range(inode_in, ALIGN_DOWN(pos_in, bs),
859                                        wb_len);
860         if (ret < 0)
861                 return ret;
862         ret = btrfs_wait_ordered_range(inode_out, ALIGN_DOWN(pos_out, bs),
863                                        wb_len);
864         if (ret < 0)
865                 return ret;
866
867         return generic_remap_file_range_prep(file_in, pos_in, file_out, pos_out,
868                                             len, remap_flags);
869 }
870
871 static bool file_sync_write(const struct file *file)
872 {
873         if (file->f_flags & (__O_SYNC | O_DSYNC))
874                 return true;
875         if (IS_SYNC(file_inode(file)))
876                 return true;
877
878         return false;
879 }
880
881 loff_t btrfs_remap_file_range(struct file *src_file, loff_t off,
882                 struct file *dst_file, loff_t destoff, loff_t len,
883                 unsigned int remap_flags)
884 {
885         struct inode *src_inode = file_inode(src_file);
886         struct inode *dst_inode = file_inode(dst_file);
887         bool same_inode = dst_inode == src_inode;
888         int ret;
889
890         if (remap_flags & ~(REMAP_FILE_DEDUP | REMAP_FILE_ADVISORY))
891                 return -EINVAL;
892
893         if (same_inode) {
894                 btrfs_inode_lock(BTRFS_I(src_inode), BTRFS_ILOCK_MMAP);
895         } else {
896                 lock_two_nondirectories(src_inode, dst_inode);
897                 btrfs_double_mmap_lock(src_inode, dst_inode);
898         }
899
900         ret = btrfs_remap_file_range_prep(src_file, off, dst_file, destoff,
901                                           &len, remap_flags);
902         if (ret < 0 || len == 0)
903                 goto out_unlock;
904
905         if (remap_flags & REMAP_FILE_DEDUP)
906                 ret = btrfs_extent_same(src_inode, off, len, dst_inode, destoff);
907         else
908                 ret = btrfs_clone_files(dst_file, src_file, off, len, destoff);
909
910 out_unlock:
911         if (same_inode) {
912                 btrfs_inode_unlock(BTRFS_I(src_inode), BTRFS_ILOCK_MMAP);
913         } else {
914                 btrfs_double_mmap_unlock(src_inode, dst_inode);
915                 unlock_two_nondirectories(src_inode, dst_inode);
916         }
917
918         /*
919          * If either the source or the destination file was opened with O_SYNC,
920          * O_DSYNC or has the S_SYNC attribute, fsync both the destination and
921          * source files/ranges, so that after a successful return (0) followed
922          * by a power failure results in the reflinked data to be readable from
923          * both files/ranges.
924          */
925         if (ret == 0 && len > 0 &&
926             (file_sync_write(src_file) || file_sync_write(dst_file))) {
927                 ret = btrfs_sync_file(src_file, off, off + len - 1, 0);
928                 if (ret == 0)
929                         ret = btrfs_sync_file(dst_file, destoff,
930                                               destoff + len - 1, 0);
931         }
932
933         return ret < 0 ? ret : len;
934 }