2 * Copyright (C) 2011 STRATO. All rights reserved.
4 * This program is free software; you can redistribute it and/or
5 * modify it under the terms of the GNU General Public
6 * License v2 as published by the Free Software Foundation.
8 * This program is distributed in the hope that it will be useful,
9 * but WITHOUT ANY WARRANTY; without even the implied warranty of
10 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
11 * General Public License for more details.
13 * You should have received a copy of the GNU General Public
14 * License along with this program; if not, write to the
15 * Free Software Foundation, Inc., 59 Temple Place - Suite 330,
16 * Boston, MA 021110-1307, USA.
19 #include <linux/sched.h>
20 #include <linux/pagemap.h>
21 #include <linux/writeback.h>
22 #include <linux/blkdev.h>
23 #include <linux/rbtree.h>
24 #include <linux/slab.h>
25 #include <linux/workqueue.h>
29 #include "transaction.h"
30 #include "dev-replace.h"
35 * This is the implementation for the generic read ahead framework.
37 * To trigger a readahead, btrfs_reada_add must be called. It will start
38 * a read ahead for the given range [start, end) on tree root. The returned
39 * handle can either be used to wait on the readahead to finish
40 * (btrfs_reada_wait), or to send it to the background (btrfs_reada_detach).
42 * The read ahead works as follows:
43 * On btrfs_reada_add, the root of the tree is inserted into a radix_tree.
44 * reada_start_machine will then search for extents to prefetch and trigger
45 * some reads. When a read finishes for a node, all contained node/leaf
46 * pointers that lie in the given range will also be enqueued. The reads will
47 * be triggered in sequential order, thus giving a big win over a naive
48 * enumeration. It will also make use of multi-device layouts. Each disk
49 * will have its on read pointer and all disks will by utilized in parallel.
50 * Also will no two disks read both sides of a mirror simultaneously, as this
51 * would waste seeking capacity. Instead both disks will read different parts
53 * Any number of readaheads can be started in parallel. The read order will be
54 * determined globally, i.e. 2 parallel readaheads will normally finish faster
55 * than the 2 started one after another.
58 #define MAX_IN_FLIGHT 6
61 struct list_head list;
62 struct reada_control *rc;
70 struct list_head extctl;
73 struct reada_zone *zones[BTRFS_MAX_MIRRORS];
82 struct list_head list;
85 struct btrfs_device *device;
86 struct btrfs_device *devs[BTRFS_MAX_MIRRORS]; /* full list, incl
92 struct reada_machine_work {
93 struct btrfs_work work;
94 struct btrfs_fs_info *fs_info;
97 static void reada_extent_put(struct btrfs_fs_info *, struct reada_extent *);
98 static void reada_control_release(struct kref *kref);
99 static void reada_zone_release(struct kref *kref);
100 static void reada_start_machine(struct btrfs_fs_info *fs_info);
101 static void __reada_start_machine(struct btrfs_fs_info *fs_info);
103 static int reada_add_block(struct reada_control *rc, u64 logical,
104 struct btrfs_key *top, u64 generation);
107 /* in case of err, eb might be NULL */
108 static void __readahead_hook(struct btrfs_fs_info *fs_info,
109 struct reada_extent *re, struct extent_buffer *eb,
117 struct list_head list;
120 level = btrfs_header_level(eb);
122 spin_lock(&re->lock);
124 * just take the full list from the extent. afterwards we
125 * don't need the lock anymore
127 list_replace_init(&re->extctl, &list);
129 spin_unlock(&re->lock);
132 * this is the error case, the extent buffer has not been
133 * read correctly. We won't access anything from it and
134 * just cleanup our data structures. Effectively this will
135 * cut the branch below this node from read ahead.
141 * FIXME: currently we just set nritems to 0 if this is a leaf,
142 * effectively ignoring the content. In a next step we could
143 * trigger more readahead depending from the content, e.g.
144 * fetch the checksums for the extents in the leaf.
149 nritems = btrfs_header_nritems(eb);
150 generation = btrfs_header_generation(eb);
151 for (i = 0; i < nritems; i++) {
152 struct reada_extctl *rec;
154 struct btrfs_key key;
155 struct btrfs_key next_key;
157 btrfs_node_key_to_cpu(eb, &key, i);
159 btrfs_node_key_to_cpu(eb, &next_key, i + 1);
162 bytenr = btrfs_node_blockptr(eb, i);
163 n_gen = btrfs_node_ptr_generation(eb, i);
165 list_for_each_entry(rec, &list, list) {
166 struct reada_control *rc = rec->rc;
169 * if the generation doesn't match, just ignore this
170 * extctl. This will probably cut off a branch from
171 * prefetch. Alternatively one could start a new (sub-)
172 * prefetch for this branch, starting again from root.
173 * FIXME: move the generation check out of this loop
176 if (rec->generation != generation) {
178 "generation mismatch for (%llu,%d,%llu) %llu != %llu",
179 key.objectid, key.type, key.offset,
180 rec->generation, generation);
183 if (rec->generation == generation &&
184 btrfs_comp_cpu_keys(&key, &rc->key_end) < 0 &&
185 btrfs_comp_cpu_keys(&next_key, &rc->key_start) > 0)
186 reada_add_block(rc, bytenr, &next_key, n_gen);
192 * free extctl records
194 while (!list_empty(&list)) {
195 struct reada_control *rc;
196 struct reada_extctl *rec;
198 rec = list_first_entry(&list, struct reada_extctl, list);
199 list_del(&rec->list);
203 kref_get(&rc->refcnt);
204 if (atomic_dec_and_test(&rc->elems)) {
205 kref_put(&rc->refcnt, reada_control_release);
208 kref_put(&rc->refcnt, reada_control_release);
210 reada_extent_put(fs_info, re); /* one ref for each entry */
217 * start is passed separately in case eb in NULL, which may be the case with
220 int btree_readahead_hook(struct btrfs_fs_info *fs_info,
221 struct extent_buffer *eb, u64 start, int err)
224 struct reada_extent *re;
227 spin_lock(&fs_info->reada_lock);
228 re = radix_tree_lookup(&fs_info->reada_tree,
229 start >> PAGE_SHIFT);
232 spin_unlock(&fs_info->reada_lock);
238 __readahead_hook(fs_info, re, eb, start, err);
239 reada_extent_put(fs_info, re); /* our ref */
242 reada_start_machine(fs_info);
246 static struct reada_zone *reada_find_zone(struct btrfs_fs_info *fs_info,
247 struct btrfs_device *dev, u64 logical,
248 struct btrfs_bio *bbio)
251 struct reada_zone *zone;
252 struct btrfs_block_group_cache *cache = NULL;
258 spin_lock(&fs_info->reada_lock);
259 ret = radix_tree_gang_lookup(&dev->reada_zones, (void **)&zone,
260 logical >> PAGE_SHIFT, 1);
261 if (ret == 1 && logical >= zone->start && logical <= zone->end) {
262 kref_get(&zone->refcnt);
263 spin_unlock(&fs_info->reada_lock);
267 spin_unlock(&fs_info->reada_lock);
269 cache = btrfs_lookup_block_group(fs_info, logical);
273 start = cache->key.objectid;
274 end = start + cache->key.offset - 1;
275 btrfs_put_block_group(cache);
277 zone = kzalloc(sizeof(*zone), GFP_KERNEL);
283 INIT_LIST_HEAD(&zone->list);
284 spin_lock_init(&zone->lock);
286 kref_init(&zone->refcnt);
288 zone->device = dev; /* our device always sits at index 0 */
289 for (i = 0; i < bbio->num_stripes; ++i) {
290 /* bounds have already been checked */
291 zone->devs[i] = bbio->stripes[i].dev;
293 zone->ndevs = bbio->num_stripes;
295 spin_lock(&fs_info->reada_lock);
296 ret = radix_tree_insert(&dev->reada_zones,
297 (unsigned long)(zone->end >> PAGE_SHIFT),
300 if (ret == -EEXIST) {
302 ret = radix_tree_gang_lookup(&dev->reada_zones, (void **)&zone,
303 logical >> PAGE_SHIFT, 1);
304 if (ret == 1 && logical >= zone->start && logical <= zone->end)
305 kref_get(&zone->refcnt);
309 spin_unlock(&fs_info->reada_lock);
314 static struct reada_extent *reada_find_extent(struct btrfs_root *root,
316 struct btrfs_key *top)
319 struct reada_extent *re = NULL;
320 struct reada_extent *re_exist = NULL;
321 struct btrfs_fs_info *fs_info = root->fs_info;
322 struct btrfs_bio *bbio = NULL;
323 struct btrfs_device *dev;
324 struct btrfs_device *prev_dev;
329 unsigned long index = logical >> PAGE_SHIFT;
330 int dev_replace_is_ongoing;
333 spin_lock(&fs_info->reada_lock);
334 re = radix_tree_lookup(&fs_info->reada_tree, index);
337 spin_unlock(&fs_info->reada_lock);
342 re = kzalloc(sizeof(*re), GFP_KERNEL);
346 blocksize = root->nodesize;
347 re->logical = logical;
349 INIT_LIST_HEAD(&re->extctl);
350 spin_lock_init(&re->lock);
357 ret = btrfs_map_block(fs_info, REQ_GET_READ_MIRRORS, logical, &length,
359 if (ret || !bbio || length < blocksize)
362 if (bbio->num_stripes > BTRFS_MAX_MIRRORS) {
363 btrfs_err(root->fs_info,
364 "readahead: more than %d copies not supported",
369 real_stripes = bbio->num_stripes - bbio->num_tgtdevs;
370 for (nzones = 0; nzones < real_stripes; ++nzones) {
371 struct reada_zone *zone;
373 dev = bbio->stripes[nzones].dev;
375 /* cannot read ahead on missing device. */
379 zone = reada_find_zone(fs_info, dev, logical, bbio);
383 re->zones[re->nzones++] = zone;
384 spin_lock(&zone->lock);
386 kref_get(&zone->refcnt);
388 spin_unlock(&zone->lock);
389 spin_lock(&fs_info->reada_lock);
390 kref_put(&zone->refcnt, reada_zone_release);
391 spin_unlock(&fs_info->reada_lock);
393 if (re->nzones == 0) {
394 /* not a single zone found, error and out */
398 /* insert extent in reada_tree + all per-device trees, all or nothing */
399 btrfs_dev_replace_lock(&fs_info->dev_replace, 0);
400 spin_lock(&fs_info->reada_lock);
401 ret = radix_tree_insert(&fs_info->reada_tree, index, re);
402 if (ret == -EEXIST) {
403 re_exist = radix_tree_lookup(&fs_info->reada_tree, index);
406 spin_unlock(&fs_info->reada_lock);
407 btrfs_dev_replace_unlock(&fs_info->dev_replace, 0);
411 spin_unlock(&fs_info->reada_lock);
412 btrfs_dev_replace_unlock(&fs_info->dev_replace, 0);
416 dev_replace_is_ongoing = btrfs_dev_replace_is_ongoing(
417 &fs_info->dev_replace);
418 for (nzones = 0; nzones < re->nzones; ++nzones) {
419 dev = re->zones[nzones]->device;
421 if (dev == prev_dev) {
423 * in case of DUP, just add the first zone. As both
424 * are on the same device, there's nothing to gain
426 * Also, it wouldn't work, as the tree is per device
427 * and adding would fail with EEXIST
434 if (dev_replace_is_ongoing &&
435 dev == fs_info->dev_replace.tgtdev) {
437 * as this device is selected for reading only as
438 * a last resort, skip it for read ahead.
443 ret = radix_tree_insert(&dev->reada_extents, index, re);
445 while (--nzones >= 0) {
446 dev = re->zones[nzones]->device;
448 /* ignore whether the entry was inserted */
449 radix_tree_delete(&dev->reada_extents, index);
451 BUG_ON(fs_info == NULL);
452 radix_tree_delete(&fs_info->reada_tree, index);
453 spin_unlock(&fs_info->reada_lock);
454 btrfs_dev_replace_unlock(&fs_info->dev_replace, 0);
460 radix_tree_delete(&fs_info->reada_tree, index);
461 spin_unlock(&fs_info->reada_lock);
462 btrfs_dev_replace_unlock(&fs_info->dev_replace, 0);
467 btrfs_put_bbio(bbio);
471 for (nzones = 0; nzones < re->nzones; ++nzones) {
472 struct reada_zone *zone;
474 zone = re->zones[nzones];
475 kref_get(&zone->refcnt);
476 spin_lock(&zone->lock);
478 if (zone->elems == 0) {
480 * no fs_info->reada_lock needed, as this can't be
483 kref_put(&zone->refcnt, reada_zone_release);
485 spin_unlock(&zone->lock);
487 spin_lock(&fs_info->reada_lock);
488 kref_put(&zone->refcnt, reada_zone_release);
489 spin_unlock(&fs_info->reada_lock);
491 btrfs_put_bbio(bbio);
496 static void reada_extent_put(struct btrfs_fs_info *fs_info,
497 struct reada_extent *re)
500 unsigned long index = re->logical >> PAGE_SHIFT;
502 spin_lock(&fs_info->reada_lock);
504 spin_unlock(&fs_info->reada_lock);
508 radix_tree_delete(&fs_info->reada_tree, index);
509 for (i = 0; i < re->nzones; ++i) {
510 struct reada_zone *zone = re->zones[i];
512 radix_tree_delete(&zone->device->reada_extents, index);
515 spin_unlock(&fs_info->reada_lock);
517 for (i = 0; i < re->nzones; ++i) {
518 struct reada_zone *zone = re->zones[i];
520 kref_get(&zone->refcnt);
521 spin_lock(&zone->lock);
523 if (zone->elems == 0) {
524 /* no fs_info->reada_lock needed, as this can't be
526 kref_put(&zone->refcnt, reada_zone_release);
528 spin_unlock(&zone->lock);
530 spin_lock(&fs_info->reada_lock);
531 kref_put(&zone->refcnt, reada_zone_release);
532 spin_unlock(&fs_info->reada_lock);
538 static void reada_zone_release(struct kref *kref)
540 struct reada_zone *zone = container_of(kref, struct reada_zone, refcnt);
542 radix_tree_delete(&zone->device->reada_zones,
543 zone->end >> PAGE_SHIFT);
548 static void reada_control_release(struct kref *kref)
550 struct reada_control *rc = container_of(kref, struct reada_control,
556 static int reada_add_block(struct reada_control *rc, u64 logical,
557 struct btrfs_key *top, u64 generation)
559 struct btrfs_root *root = rc->root;
560 struct reada_extent *re;
561 struct reada_extctl *rec;
563 re = reada_find_extent(root, logical, top); /* takes one ref */
567 rec = kzalloc(sizeof(*rec), GFP_KERNEL);
569 reada_extent_put(root->fs_info, re);
574 rec->generation = generation;
575 atomic_inc(&rc->elems);
577 spin_lock(&re->lock);
578 list_add_tail(&rec->list, &re->extctl);
579 spin_unlock(&re->lock);
581 /* leave the ref on the extent */
587 * called with fs_info->reada_lock held
589 static void reada_peer_zones_set_lock(struct reada_zone *zone, int lock)
592 unsigned long index = zone->end >> PAGE_SHIFT;
594 for (i = 0; i < zone->ndevs; ++i) {
595 struct reada_zone *peer;
596 peer = radix_tree_lookup(&zone->devs[i]->reada_zones, index);
597 if (peer && peer->device != zone->device)
603 * called with fs_info->reada_lock held
605 static int reada_pick_zone(struct btrfs_device *dev)
607 struct reada_zone *top_zone = NULL;
608 struct reada_zone *top_locked_zone = NULL;
610 u64 top_locked_elems = 0;
611 unsigned long index = 0;
614 if (dev->reada_curr_zone) {
615 reada_peer_zones_set_lock(dev->reada_curr_zone, 0);
616 kref_put(&dev->reada_curr_zone->refcnt, reada_zone_release);
617 dev->reada_curr_zone = NULL;
619 /* pick the zone with the most elements */
621 struct reada_zone *zone;
623 ret = radix_tree_gang_lookup(&dev->reada_zones,
624 (void **)&zone, index, 1);
627 index = (zone->end >> PAGE_SHIFT) + 1;
629 if (zone->elems > top_locked_elems) {
630 top_locked_elems = zone->elems;
631 top_locked_zone = zone;
634 if (zone->elems > top_elems) {
635 top_elems = zone->elems;
641 dev->reada_curr_zone = top_zone;
642 else if (top_locked_zone)
643 dev->reada_curr_zone = top_locked_zone;
647 dev->reada_next = dev->reada_curr_zone->start;
648 kref_get(&dev->reada_curr_zone->refcnt);
649 reada_peer_zones_set_lock(dev->reada_curr_zone, 1);
654 static int reada_start_machine_dev(struct btrfs_fs_info *fs_info,
655 struct btrfs_device *dev)
657 struct reada_extent *re = NULL;
659 struct extent_buffer *eb = NULL;
664 spin_lock(&fs_info->reada_lock);
665 if (dev->reada_curr_zone == NULL) {
666 ret = reada_pick_zone(dev);
668 spin_unlock(&fs_info->reada_lock);
673 * FIXME currently we issue the reads one extent at a time. If we have
674 * a contiguous block of extents, we could also coagulate them or use
675 * plugging to speed things up
677 ret = radix_tree_gang_lookup(&dev->reada_extents, (void **)&re,
678 dev->reada_next >> PAGE_SHIFT, 1);
679 if (ret == 0 || re->logical > dev->reada_curr_zone->end) {
680 ret = reada_pick_zone(dev);
682 spin_unlock(&fs_info->reada_lock);
686 ret = radix_tree_gang_lookup(&dev->reada_extents, (void **)&re,
687 dev->reada_next >> PAGE_SHIFT, 1);
690 spin_unlock(&fs_info->reada_lock);
693 dev->reada_next = re->logical + fs_info->tree_root->nodesize;
696 spin_unlock(&fs_info->reada_lock);
698 spin_lock(&re->lock);
699 if (re->scheduled || list_empty(&re->extctl)) {
700 spin_unlock(&re->lock);
701 reada_extent_put(fs_info, re);
705 spin_unlock(&re->lock);
710 for (i = 0; i < re->nzones; ++i) {
711 if (re->zones[i]->device == dev) {
716 logical = re->logical;
718 atomic_inc(&dev->reada_in_flight);
719 ret = reada_tree_block_flagged(fs_info->extent_root, logical,
722 __readahead_hook(fs_info, re, NULL, logical, ret);
724 __readahead_hook(fs_info, re, eb, eb->start, ret);
727 free_extent_buffer(eb);
729 atomic_dec(&dev->reada_in_flight);
730 reada_extent_put(fs_info, re);
736 static void reada_start_machine_worker(struct btrfs_work *work)
738 struct reada_machine_work *rmw;
741 rmw = container_of(work, struct reada_machine_work, work);
743 old_ioprio = IOPRIO_PRIO_VALUE(task_nice_ioclass(current),
744 task_nice_ioprio(current));
745 set_task_ioprio(current, BTRFS_IOPRIO_READA);
746 __reada_start_machine(rmw->fs_info);
747 set_task_ioprio(current, old_ioprio);
749 atomic_dec(&rmw->fs_info->reada_works_cnt);
754 static void __reada_start_machine(struct btrfs_fs_info *fs_info)
756 struct btrfs_device *device;
757 struct btrfs_fs_devices *fs_devices = fs_info->fs_devices;
765 mutex_lock(&fs_devices->device_list_mutex);
766 list_for_each_entry(device, &fs_devices->devices, dev_list) {
767 if (atomic_read(&device->reada_in_flight) <
769 enqueued += reada_start_machine_dev(fs_info,
772 mutex_unlock(&fs_devices->device_list_mutex);
774 } while (enqueued && total < 10000);
775 if (fs_devices->seed) {
776 fs_devices = fs_devices->seed;
784 * If everything is already in the cache, this is effectively single
785 * threaded. To a) not hold the caller for too long and b) to utilize
786 * more cores, we broke the loop above after 10000 iterations and now
787 * enqueue to workers to finish it. This will distribute the load to
790 for (i = 0; i < 2; ++i) {
791 reada_start_machine(fs_info);
792 if (atomic_read(&fs_info->reada_works_cnt) >
793 BTRFS_MAX_MIRRORS * 2)
798 static void reada_start_machine(struct btrfs_fs_info *fs_info)
800 struct reada_machine_work *rmw;
802 rmw = kzalloc(sizeof(*rmw), GFP_KERNEL);
804 /* FIXME we cannot handle this properly right now */
807 btrfs_init_work(&rmw->work, btrfs_readahead_helper,
808 reada_start_machine_worker, NULL, NULL);
809 rmw->fs_info = fs_info;
811 btrfs_queue_work(fs_info->readahead_workers, &rmw->work);
812 atomic_inc(&fs_info->reada_works_cnt);
816 static void dump_devs(struct btrfs_fs_info *fs_info, int all)
818 struct btrfs_device *device;
819 struct btrfs_fs_devices *fs_devices = fs_info->fs_devices;
826 spin_lock(&fs_info->reada_lock);
827 list_for_each_entry(device, &fs_devices->devices, dev_list) {
828 btrfs_debug(fs_info, "dev %lld has %d in flight", device->devid,
829 atomic_read(&device->reada_in_flight));
832 struct reada_zone *zone;
833 ret = radix_tree_gang_lookup(&device->reada_zones,
834 (void **)&zone, index, 1);
837 pr_debug(" zone %llu-%llu elems %llu locked %d devs",
838 zone->start, zone->end, zone->elems,
840 for (j = 0; j < zone->ndevs; ++j) {
842 zone->devs[j]->devid);
844 if (device->reada_curr_zone == zone)
845 pr_cont(" curr off %llu",
846 device->reada_next - zone->start);
848 index = (zone->end >> PAGE_SHIFT) + 1;
853 struct reada_extent *re = NULL;
855 ret = radix_tree_gang_lookup(&device->reada_extents,
856 (void **)&re, index, 1);
859 pr_debug(" re: logical %llu size %u empty %d scheduled %d",
860 re->logical, fs_info->tree_root->nodesize,
861 list_empty(&re->extctl), re->scheduled);
863 for (i = 0; i < re->nzones; ++i) {
864 pr_cont(" zone %llu-%llu devs",
867 for (j = 0; j < re->zones[i]->ndevs; ++j) {
869 re->zones[i]->devs[j]->devid);
873 index = (re->logical >> PAGE_SHIFT) + 1;
882 struct reada_extent *re = NULL;
884 ret = radix_tree_gang_lookup(&fs_info->reada_tree, (void **)&re,
888 if (!re->scheduled) {
889 index = (re->logical >> PAGE_SHIFT) + 1;
892 pr_debug("re: logical %llu size %u list empty %d scheduled %d",
893 re->logical, fs_info->tree_root->nodesize,
894 list_empty(&re->extctl), re->scheduled);
895 for (i = 0; i < re->nzones; ++i) {
896 pr_cont(" zone %llu-%llu devs",
899 for (j = 0; j < re->zones[i]->ndevs; ++j) {
901 re->zones[i]->devs[j]->devid);
905 index = (re->logical >> PAGE_SHIFT) + 1;
907 spin_unlock(&fs_info->reada_lock);
914 struct reada_control *btrfs_reada_add(struct btrfs_root *root,
915 struct btrfs_key *key_start, struct btrfs_key *key_end)
917 struct reada_control *rc;
921 struct extent_buffer *node;
922 static struct btrfs_key max_key = {
928 rc = kzalloc(sizeof(*rc), GFP_KERNEL);
930 return ERR_PTR(-ENOMEM);
933 rc->key_start = *key_start;
934 rc->key_end = *key_end;
935 atomic_set(&rc->elems, 0);
936 init_waitqueue_head(&rc->wait);
937 kref_init(&rc->refcnt);
938 kref_get(&rc->refcnt); /* one ref for having elements */
940 node = btrfs_root_node(root);
942 generation = btrfs_header_generation(node);
943 free_extent_buffer(node);
945 ret = reada_add_block(rc, start, &max_key, generation);
951 reada_start_machine(root->fs_info);
957 int btrfs_reada_wait(void *handle)
959 struct reada_control *rc = handle;
960 struct btrfs_fs_info *fs_info = rc->root->fs_info;
962 while (atomic_read(&rc->elems)) {
963 if (!atomic_read(&fs_info->reada_works_cnt))
964 reada_start_machine(fs_info);
965 wait_event_timeout(rc->wait, atomic_read(&rc->elems) == 0,
967 dump_devs(rc->root->fs_info,
968 atomic_read(&rc->elems) < 10 ? 1 : 0);
971 dump_devs(rc->root->fs_info, atomic_read(&rc->elems) < 10 ? 1 : 0);
973 kref_put(&rc->refcnt, reada_control_release);
978 int btrfs_reada_wait(void *handle)
980 struct reada_control *rc = handle;
981 struct btrfs_fs_info *fs_info = rc->root->fs_info;
983 while (atomic_read(&rc->elems)) {
984 if (!atomic_read(&fs_info->reada_works_cnt))
985 reada_start_machine(fs_info);
986 wait_event_timeout(rc->wait, atomic_read(&rc->elems) == 0,
990 kref_put(&rc->refcnt, reada_control_release);
996 void btrfs_reada_detach(void *handle)
998 struct reada_control *rc = handle;
1000 kref_put(&rc->refcnt, reada_control_release);