GNU Linux-libre 4.14.328-gnu1
[releases.git] / fs / btrfs / ordered-data.c
1 /*
2  * Copyright (C) 2007 Oracle.  All rights reserved.
3  *
4  * This program is free software; you can redistribute it and/or
5  * modify it under the terms of the GNU General Public
6  * License v2 as published by the Free Software Foundation.
7  *
8  * This program is distributed in the hope that it will be useful,
9  * but WITHOUT ANY WARRANTY; without even the implied warranty of
10  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
11  * General Public License for more details.
12  *
13  * You should have received a copy of the GNU General Public
14  * License along with this program; if not, write to the
15  * Free Software Foundation, Inc., 59 Temple Place - Suite 330,
16  * Boston, MA 021110-1307, USA.
17  */
18
19 #include <linux/slab.h>
20 #include <linux/blkdev.h>
21 #include <linux/writeback.h>
22 #include <linux/pagevec.h>
23 #include "ctree.h"
24 #include "transaction.h"
25 #include "btrfs_inode.h"
26 #include "extent_io.h"
27 #include "disk-io.h"
28 #include "compression.h"
29
30 static struct kmem_cache *btrfs_ordered_extent_cache;
31
32 static u64 entry_end(struct btrfs_ordered_extent *entry)
33 {
34         if (entry->file_offset + entry->len < entry->file_offset)
35                 return (u64)-1;
36         return entry->file_offset + entry->len;
37 }
38
39 /* returns NULL if the insertion worked, or it returns the node it did find
40  * in the tree
41  */
42 static struct rb_node *tree_insert(struct rb_root *root, u64 file_offset,
43                                    struct rb_node *node)
44 {
45         struct rb_node **p = &root->rb_node;
46         struct rb_node *parent = NULL;
47         struct btrfs_ordered_extent *entry;
48
49         while (*p) {
50                 parent = *p;
51                 entry = rb_entry(parent, struct btrfs_ordered_extent, rb_node);
52
53                 if (file_offset < entry->file_offset)
54                         p = &(*p)->rb_left;
55                 else if (file_offset >= entry_end(entry))
56                         p = &(*p)->rb_right;
57                 else
58                         return parent;
59         }
60
61         rb_link_node(node, parent, p);
62         rb_insert_color(node, root);
63         return NULL;
64 }
65
66 static void ordered_data_tree_panic(struct inode *inode, int errno,
67                                                u64 offset)
68 {
69         struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
70         btrfs_panic(fs_info, errno,
71                     "Inconsistency in ordered tree at offset %llu", offset);
72 }
73
74 /*
75  * look for a given offset in the tree, and if it can't be found return the
76  * first lesser offset
77  */
78 static struct rb_node *__tree_search(struct rb_root *root, u64 file_offset,
79                                      struct rb_node **prev_ret)
80 {
81         struct rb_node *n = root->rb_node;
82         struct rb_node *prev = NULL;
83         struct rb_node *test;
84         struct btrfs_ordered_extent *entry;
85         struct btrfs_ordered_extent *prev_entry = NULL;
86
87         while (n) {
88                 entry = rb_entry(n, struct btrfs_ordered_extent, rb_node);
89                 prev = n;
90                 prev_entry = entry;
91
92                 if (file_offset < entry->file_offset)
93                         n = n->rb_left;
94                 else if (file_offset >= entry_end(entry))
95                         n = n->rb_right;
96                 else
97                         return n;
98         }
99         if (!prev_ret)
100                 return NULL;
101
102         while (prev && file_offset >= entry_end(prev_entry)) {
103                 test = rb_next(prev);
104                 if (!test)
105                         break;
106                 prev_entry = rb_entry(test, struct btrfs_ordered_extent,
107                                       rb_node);
108                 if (file_offset < entry_end(prev_entry))
109                         break;
110
111                 prev = test;
112         }
113         if (prev)
114                 prev_entry = rb_entry(prev, struct btrfs_ordered_extent,
115                                       rb_node);
116         while (prev && file_offset < entry_end(prev_entry)) {
117                 test = rb_prev(prev);
118                 if (!test)
119                         break;
120                 prev_entry = rb_entry(test, struct btrfs_ordered_extent,
121                                       rb_node);
122                 prev = test;
123         }
124         *prev_ret = prev;
125         return NULL;
126 }
127
128 /*
129  * helper to check if a given offset is inside a given entry
130  */
131 static int offset_in_entry(struct btrfs_ordered_extent *entry, u64 file_offset)
132 {
133         if (file_offset < entry->file_offset ||
134             entry->file_offset + entry->len <= file_offset)
135                 return 0;
136         return 1;
137 }
138
139 static int range_overlaps(struct btrfs_ordered_extent *entry, u64 file_offset,
140                           u64 len)
141 {
142         if (file_offset + len <= entry->file_offset ||
143             entry->file_offset + entry->len <= file_offset)
144                 return 0;
145         return 1;
146 }
147
148 /*
149  * look find the first ordered struct that has this offset, otherwise
150  * the first one less than this offset
151  */
152 static inline struct rb_node *tree_search(struct btrfs_ordered_inode_tree *tree,
153                                           u64 file_offset)
154 {
155         struct rb_root *root = &tree->tree;
156         struct rb_node *prev = NULL;
157         struct rb_node *ret;
158         struct btrfs_ordered_extent *entry;
159
160         if (tree->last) {
161                 entry = rb_entry(tree->last, struct btrfs_ordered_extent,
162                                  rb_node);
163                 if (offset_in_entry(entry, file_offset))
164                         return tree->last;
165         }
166         ret = __tree_search(root, file_offset, &prev);
167         if (!ret)
168                 ret = prev;
169         if (ret)
170                 tree->last = ret;
171         return ret;
172 }
173
174 /* allocate and add a new ordered_extent into the per-inode tree.
175  * file_offset is the logical offset in the file
176  *
177  * start is the disk block number of an extent already reserved in the
178  * extent allocation tree
179  *
180  * len is the length of the extent
181  *
182  * The tree is given a single reference on the ordered extent that was
183  * inserted.
184  */
185 static int __btrfs_add_ordered_extent(struct inode *inode, u64 file_offset,
186                                       u64 start, u64 len, u64 disk_len,
187                                       int type, int dio, int compress_type)
188 {
189         struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
190         struct btrfs_root *root = BTRFS_I(inode)->root;
191         struct btrfs_ordered_inode_tree *tree;
192         struct rb_node *node;
193         struct btrfs_ordered_extent *entry;
194
195         tree = &BTRFS_I(inode)->ordered_tree;
196         entry = kmem_cache_zalloc(btrfs_ordered_extent_cache, GFP_NOFS);
197         if (!entry)
198                 return -ENOMEM;
199
200         entry->file_offset = file_offset;
201         entry->start = start;
202         entry->len = len;
203         entry->disk_len = disk_len;
204         entry->bytes_left = len;
205         entry->inode = igrab(inode);
206         entry->compress_type = compress_type;
207         entry->truncated_len = (u64)-1;
208         if (type != BTRFS_ORDERED_IO_DONE && type != BTRFS_ORDERED_COMPLETE)
209                 set_bit(type, &entry->flags);
210
211         if (dio)
212                 set_bit(BTRFS_ORDERED_DIRECT, &entry->flags);
213
214         /* one ref for the tree */
215         refcount_set(&entry->refs, 1);
216         init_waitqueue_head(&entry->wait);
217         INIT_LIST_HEAD(&entry->list);
218         INIT_LIST_HEAD(&entry->root_extent_list);
219         INIT_LIST_HEAD(&entry->work_list);
220         init_completion(&entry->completion);
221         INIT_LIST_HEAD(&entry->log_list);
222         INIT_LIST_HEAD(&entry->trans_list);
223
224         trace_btrfs_ordered_extent_add(inode, entry);
225
226         spin_lock_irq(&tree->lock);
227         node = tree_insert(&tree->tree, file_offset,
228                            &entry->rb_node);
229         if (node)
230                 ordered_data_tree_panic(inode, -EEXIST, file_offset);
231         spin_unlock_irq(&tree->lock);
232
233         spin_lock(&root->ordered_extent_lock);
234         list_add_tail(&entry->root_extent_list,
235                       &root->ordered_extents);
236         root->nr_ordered_extents++;
237         if (root->nr_ordered_extents == 1) {
238                 spin_lock(&fs_info->ordered_root_lock);
239                 BUG_ON(!list_empty(&root->ordered_root));
240                 list_add_tail(&root->ordered_root, &fs_info->ordered_roots);
241                 spin_unlock(&fs_info->ordered_root_lock);
242         }
243         spin_unlock(&root->ordered_extent_lock);
244
245         return 0;
246 }
247
248 int btrfs_add_ordered_extent(struct inode *inode, u64 file_offset,
249                              u64 start, u64 len, u64 disk_len, int type)
250 {
251         return __btrfs_add_ordered_extent(inode, file_offset, start, len,
252                                           disk_len, type, 0,
253                                           BTRFS_COMPRESS_NONE);
254 }
255
256 int btrfs_add_ordered_extent_dio(struct inode *inode, u64 file_offset,
257                                  u64 start, u64 len, u64 disk_len, int type)
258 {
259         return __btrfs_add_ordered_extent(inode, file_offset, start, len,
260                                           disk_len, type, 1,
261                                           BTRFS_COMPRESS_NONE);
262 }
263
264 int btrfs_add_ordered_extent_compress(struct inode *inode, u64 file_offset,
265                                       u64 start, u64 len, u64 disk_len,
266                                       int type, int compress_type)
267 {
268         return __btrfs_add_ordered_extent(inode, file_offset, start, len,
269                                           disk_len, type, 0,
270                                           compress_type);
271 }
272
273 /*
274  * Add a struct btrfs_ordered_sum into the list of checksums to be inserted
275  * when an ordered extent is finished.  If the list covers more than one
276  * ordered extent, it is split across multiples.
277  */
278 void btrfs_add_ordered_sum(struct inode *inode,
279                            struct btrfs_ordered_extent *entry,
280                            struct btrfs_ordered_sum *sum)
281 {
282         struct btrfs_ordered_inode_tree *tree;
283
284         tree = &BTRFS_I(inode)->ordered_tree;
285         spin_lock_irq(&tree->lock);
286         list_add_tail(&sum->list, &entry->list);
287         spin_unlock_irq(&tree->lock);
288 }
289
290 /*
291  * this is used to account for finished IO across a given range
292  * of the file.  The IO may span ordered extents.  If
293  * a given ordered_extent is completely done, 1 is returned, otherwise
294  * 0.
295  *
296  * test_and_set_bit on a flag in the struct btrfs_ordered_extent is used
297  * to make sure this function only returns 1 once for a given ordered extent.
298  *
299  * file_offset is updated to one byte past the range that is recorded as
300  * complete.  This allows you to walk forward in the file.
301  */
302 int btrfs_dec_test_first_ordered_pending(struct inode *inode,
303                                    struct btrfs_ordered_extent **cached,
304                                    u64 *file_offset, u64 io_size, int uptodate)
305 {
306         struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
307         struct btrfs_ordered_inode_tree *tree;
308         struct rb_node *node;
309         struct btrfs_ordered_extent *entry = NULL;
310         int ret;
311         unsigned long flags;
312         u64 dec_end;
313         u64 dec_start;
314         u64 to_dec;
315
316         tree = &BTRFS_I(inode)->ordered_tree;
317         spin_lock_irqsave(&tree->lock, flags);
318         node = tree_search(tree, *file_offset);
319         if (!node) {
320                 ret = 1;
321                 goto out;
322         }
323
324         entry = rb_entry(node, struct btrfs_ordered_extent, rb_node);
325         if (!offset_in_entry(entry, *file_offset)) {
326                 ret = 1;
327                 goto out;
328         }
329
330         dec_start = max(*file_offset, entry->file_offset);
331         dec_end = min(*file_offset + io_size, entry->file_offset +
332                       entry->len);
333         *file_offset = dec_end;
334         if (dec_start > dec_end) {
335                 btrfs_crit(fs_info, "bad ordering dec_start %llu end %llu",
336                            dec_start, dec_end);
337         }
338         to_dec = dec_end - dec_start;
339         if (to_dec > entry->bytes_left) {
340                 btrfs_crit(fs_info,
341                            "bad ordered accounting left %llu size %llu",
342                            entry->bytes_left, to_dec);
343         }
344         entry->bytes_left -= to_dec;
345         if (!uptodate)
346                 set_bit(BTRFS_ORDERED_IOERR, &entry->flags);
347
348         if (entry->bytes_left == 0) {
349                 ret = test_and_set_bit(BTRFS_ORDERED_IO_DONE, &entry->flags);
350                 /*
351                  * Implicit memory barrier after test_and_set_bit
352                  */
353                 if (waitqueue_active(&entry->wait))
354                         wake_up(&entry->wait);
355         } else {
356                 ret = 1;
357         }
358 out:
359         if (!ret && cached && entry) {
360                 *cached = entry;
361                 refcount_inc(&entry->refs);
362         }
363         spin_unlock_irqrestore(&tree->lock, flags);
364         return ret == 0;
365 }
366
367 /*
368  * this is used to account for finished IO across a given range
369  * of the file.  The IO should not span ordered extents.  If
370  * a given ordered_extent is completely done, 1 is returned, otherwise
371  * 0.
372  *
373  * test_and_set_bit on a flag in the struct btrfs_ordered_extent is used
374  * to make sure this function only returns 1 once for a given ordered extent.
375  */
376 int btrfs_dec_test_ordered_pending(struct inode *inode,
377                                    struct btrfs_ordered_extent **cached,
378                                    u64 file_offset, u64 io_size, int uptodate)
379 {
380         struct btrfs_ordered_inode_tree *tree;
381         struct rb_node *node;
382         struct btrfs_ordered_extent *entry = NULL;
383         unsigned long flags;
384         int ret;
385
386         tree = &BTRFS_I(inode)->ordered_tree;
387         spin_lock_irqsave(&tree->lock, flags);
388         if (cached && *cached) {
389                 entry = *cached;
390                 goto have_entry;
391         }
392
393         node = tree_search(tree, file_offset);
394         if (!node) {
395                 ret = 1;
396                 goto out;
397         }
398
399         entry = rb_entry(node, struct btrfs_ordered_extent, rb_node);
400 have_entry:
401         if (!offset_in_entry(entry, file_offset)) {
402                 ret = 1;
403                 goto out;
404         }
405
406         if (io_size > entry->bytes_left) {
407                 btrfs_crit(BTRFS_I(inode)->root->fs_info,
408                            "bad ordered accounting left %llu size %llu",
409                        entry->bytes_left, io_size);
410         }
411         entry->bytes_left -= io_size;
412         if (!uptodate)
413                 set_bit(BTRFS_ORDERED_IOERR, &entry->flags);
414
415         if (entry->bytes_left == 0) {
416                 ret = test_and_set_bit(BTRFS_ORDERED_IO_DONE, &entry->flags);
417                 /*
418                  * Implicit memory barrier after test_and_set_bit
419                  */
420                 if (waitqueue_active(&entry->wait))
421                         wake_up(&entry->wait);
422         } else {
423                 ret = 1;
424         }
425 out:
426         if (!ret && cached && entry) {
427                 *cached = entry;
428                 refcount_inc(&entry->refs);
429         }
430         spin_unlock_irqrestore(&tree->lock, flags);
431         return ret == 0;
432 }
433
434 /* Needs to either be called under a log transaction or the log_mutex */
435 void btrfs_get_logged_extents(struct btrfs_inode *inode,
436                               struct list_head *logged_list,
437                               const loff_t start,
438                               const loff_t end)
439 {
440         struct btrfs_ordered_inode_tree *tree;
441         struct btrfs_ordered_extent *ordered;
442         struct rb_node *n;
443         struct rb_node *prev;
444
445         tree = &inode->ordered_tree;
446         spin_lock_irq(&tree->lock);
447         n = __tree_search(&tree->tree, end, &prev);
448         if (!n)
449                 n = prev;
450         for (; n; n = rb_prev(n)) {
451                 ordered = rb_entry(n, struct btrfs_ordered_extent, rb_node);
452                 if (ordered->file_offset > end)
453                         continue;
454                 if (entry_end(ordered) <= start)
455                         break;
456                 if (test_and_set_bit(BTRFS_ORDERED_LOGGED, &ordered->flags))
457                         continue;
458                 list_add(&ordered->log_list, logged_list);
459                 refcount_inc(&ordered->refs);
460         }
461         spin_unlock_irq(&tree->lock);
462 }
463
464 void btrfs_put_logged_extents(struct list_head *logged_list)
465 {
466         struct btrfs_ordered_extent *ordered;
467
468         while (!list_empty(logged_list)) {
469                 ordered = list_first_entry(logged_list,
470                                            struct btrfs_ordered_extent,
471                                            log_list);
472                 list_del_init(&ordered->log_list);
473                 btrfs_put_ordered_extent(ordered);
474         }
475 }
476
477 void btrfs_submit_logged_extents(struct list_head *logged_list,
478                                  struct btrfs_root *log)
479 {
480         int index = log->log_transid % 2;
481
482         spin_lock_irq(&log->log_extents_lock[index]);
483         list_splice_tail(logged_list, &log->logged_list[index]);
484         spin_unlock_irq(&log->log_extents_lock[index]);
485 }
486
487 void btrfs_wait_logged_extents(struct btrfs_trans_handle *trans,
488                                struct btrfs_root *log, u64 transid)
489 {
490         struct btrfs_ordered_extent *ordered;
491         int index = transid % 2;
492
493         spin_lock_irq(&log->log_extents_lock[index]);
494         while (!list_empty(&log->logged_list[index])) {
495                 struct inode *inode;
496                 ordered = list_first_entry(&log->logged_list[index],
497                                            struct btrfs_ordered_extent,
498                                            log_list);
499                 list_del_init(&ordered->log_list);
500                 inode = ordered->inode;
501                 spin_unlock_irq(&log->log_extents_lock[index]);
502
503                 if (!test_bit(BTRFS_ORDERED_IO_DONE, &ordered->flags) &&
504                     !test_bit(BTRFS_ORDERED_DIRECT, &ordered->flags)) {
505                         u64 start = ordered->file_offset;
506                         u64 end = ordered->file_offset + ordered->len - 1;
507
508                         WARN_ON(!inode);
509                         filemap_fdatawrite_range(inode->i_mapping, start, end);
510                 }
511                 wait_event(ordered->wait, test_bit(BTRFS_ORDERED_IO_DONE,
512                                                    &ordered->flags));
513
514                 /*
515                  * In order to keep us from losing our ordered extent
516                  * information when committing the transaction we have to make
517                  * sure that any logged extents are completed when we go to
518                  * commit the transaction.  To do this we simply increase the
519                  * current transactions pending_ordered counter and decrement it
520                  * when the ordered extent completes.
521                  */
522                 if (!test_bit(BTRFS_ORDERED_COMPLETE, &ordered->flags)) {
523                         struct btrfs_ordered_inode_tree *tree;
524
525                         tree = &BTRFS_I(inode)->ordered_tree;
526                         spin_lock_irq(&tree->lock);
527                         if (!test_bit(BTRFS_ORDERED_COMPLETE, &ordered->flags)) {
528                                 set_bit(BTRFS_ORDERED_PENDING, &ordered->flags);
529                                 atomic_inc(&trans->transaction->pending_ordered);
530                         }
531                         spin_unlock_irq(&tree->lock);
532                 }
533                 btrfs_put_ordered_extent(ordered);
534                 spin_lock_irq(&log->log_extents_lock[index]);
535         }
536         spin_unlock_irq(&log->log_extents_lock[index]);
537 }
538
539 void btrfs_free_logged_extents(struct btrfs_root *log, u64 transid)
540 {
541         struct btrfs_ordered_extent *ordered;
542         int index = transid % 2;
543
544         spin_lock_irq(&log->log_extents_lock[index]);
545         while (!list_empty(&log->logged_list[index])) {
546                 ordered = list_first_entry(&log->logged_list[index],
547                                            struct btrfs_ordered_extent,
548                                            log_list);
549                 list_del_init(&ordered->log_list);
550                 spin_unlock_irq(&log->log_extents_lock[index]);
551                 btrfs_put_ordered_extent(ordered);
552                 spin_lock_irq(&log->log_extents_lock[index]);
553         }
554         spin_unlock_irq(&log->log_extents_lock[index]);
555 }
556
557 /*
558  * used to drop a reference on an ordered extent.  This will free
559  * the extent if the last reference is dropped
560  */
561 void btrfs_put_ordered_extent(struct btrfs_ordered_extent *entry)
562 {
563         struct list_head *cur;
564         struct btrfs_ordered_sum *sum;
565
566         trace_btrfs_ordered_extent_put(entry->inode, entry);
567
568         if (refcount_dec_and_test(&entry->refs)) {
569                 ASSERT(list_empty(&entry->log_list));
570                 ASSERT(list_empty(&entry->trans_list));
571                 ASSERT(list_empty(&entry->root_extent_list));
572                 ASSERT(RB_EMPTY_NODE(&entry->rb_node));
573                 if (entry->inode)
574                         btrfs_add_delayed_iput(entry->inode);
575                 while (!list_empty(&entry->list)) {
576                         cur = entry->list.next;
577                         sum = list_entry(cur, struct btrfs_ordered_sum, list);
578                         list_del(&sum->list);
579                         kfree(sum);
580                 }
581                 kmem_cache_free(btrfs_ordered_extent_cache, entry);
582         }
583 }
584
585 /*
586  * remove an ordered extent from the tree.  No references are dropped
587  * and waiters are woken up.
588  */
589 void btrfs_remove_ordered_extent(struct inode *inode,
590                                  struct btrfs_ordered_extent *entry)
591 {
592         struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
593         struct btrfs_ordered_inode_tree *tree;
594         struct btrfs_root *root = BTRFS_I(inode)->root;
595         struct rb_node *node;
596         bool dec_pending_ordered = false;
597
598         tree = &BTRFS_I(inode)->ordered_tree;
599         spin_lock_irq(&tree->lock);
600         node = &entry->rb_node;
601         rb_erase(node, &tree->tree);
602         RB_CLEAR_NODE(node);
603         if (tree->last == node)
604                 tree->last = NULL;
605         set_bit(BTRFS_ORDERED_COMPLETE, &entry->flags);
606         if (test_and_clear_bit(BTRFS_ORDERED_PENDING, &entry->flags))
607                 dec_pending_ordered = true;
608         spin_unlock_irq(&tree->lock);
609
610         /*
611          * The current running transaction is waiting on us, we need to let it
612          * know that we're complete and wake it up.
613          */
614         if (dec_pending_ordered) {
615                 struct btrfs_transaction *trans;
616
617                 /*
618                  * The checks for trans are just a formality, it should be set,
619                  * but if it isn't we don't want to deref/assert under the spin
620                  * lock, so be nice and check if trans is set, but ASSERT() so
621                  * if it isn't set a developer will notice.
622                  */
623                 spin_lock(&fs_info->trans_lock);
624                 trans = fs_info->running_transaction;
625                 if (trans)
626                         refcount_inc(&trans->use_count);
627                 spin_unlock(&fs_info->trans_lock);
628
629                 ASSERT(trans);
630                 if (trans) {
631                         if (atomic_dec_and_test(&trans->pending_ordered))
632                                 wake_up(&trans->pending_wait);
633                         btrfs_put_transaction(trans);
634                 }
635         }
636
637         spin_lock(&root->ordered_extent_lock);
638         list_del_init(&entry->root_extent_list);
639         root->nr_ordered_extents--;
640
641         trace_btrfs_ordered_extent_remove(inode, entry);
642
643         if (!root->nr_ordered_extents) {
644                 spin_lock(&fs_info->ordered_root_lock);
645                 BUG_ON(list_empty(&root->ordered_root));
646                 list_del_init(&root->ordered_root);
647                 spin_unlock(&fs_info->ordered_root_lock);
648         }
649         spin_unlock(&root->ordered_extent_lock);
650         wake_up(&entry->wait);
651 }
652
653 static void btrfs_run_ordered_extent_work(struct btrfs_work *work)
654 {
655         struct btrfs_ordered_extent *ordered;
656
657         ordered = container_of(work, struct btrfs_ordered_extent, flush_work);
658         btrfs_start_ordered_extent(ordered->inode, ordered, 1);
659         complete(&ordered->completion);
660 }
661
662 /*
663  * wait for all the ordered extents in a root.  This is done when balancing
664  * space between drives.
665  */
666 u64 btrfs_wait_ordered_extents(struct btrfs_root *root, u64 nr,
667                                const u64 range_start, const u64 range_len)
668 {
669         struct btrfs_fs_info *fs_info = root->fs_info;
670         LIST_HEAD(splice);
671         LIST_HEAD(skipped);
672         LIST_HEAD(works);
673         struct btrfs_ordered_extent *ordered, *next;
674         u64 count = 0;
675         const u64 range_end = range_start + range_len;
676
677         mutex_lock(&root->ordered_extent_mutex);
678         spin_lock(&root->ordered_extent_lock);
679         list_splice_init(&root->ordered_extents, &splice);
680         while (!list_empty(&splice) && nr) {
681                 ordered = list_first_entry(&splice, struct btrfs_ordered_extent,
682                                            root_extent_list);
683
684                 if (range_end <= ordered->start ||
685                     ordered->start + ordered->disk_len <= range_start) {
686                         list_move_tail(&ordered->root_extent_list, &skipped);
687                         cond_resched_lock(&root->ordered_extent_lock);
688                         continue;
689                 }
690
691                 list_move_tail(&ordered->root_extent_list,
692                                &root->ordered_extents);
693                 refcount_inc(&ordered->refs);
694                 spin_unlock(&root->ordered_extent_lock);
695
696                 btrfs_init_work(&ordered->flush_work,
697                                 btrfs_flush_delalloc_helper,
698                                 btrfs_run_ordered_extent_work, NULL, NULL);
699                 list_add_tail(&ordered->work_list, &works);
700                 btrfs_queue_work(fs_info->flush_workers, &ordered->flush_work);
701
702                 cond_resched();
703                 spin_lock(&root->ordered_extent_lock);
704                 if (nr != U64_MAX)
705                         nr--;
706                 count++;
707         }
708         list_splice_tail(&skipped, &root->ordered_extents);
709         list_splice_tail(&splice, &root->ordered_extents);
710         spin_unlock(&root->ordered_extent_lock);
711
712         list_for_each_entry_safe(ordered, next, &works, work_list) {
713                 list_del_init(&ordered->work_list);
714                 wait_for_completion(&ordered->completion);
715                 btrfs_put_ordered_extent(ordered);
716                 cond_resched();
717         }
718         mutex_unlock(&root->ordered_extent_mutex);
719
720         return count;
721 }
722
723 u64 btrfs_wait_ordered_roots(struct btrfs_fs_info *fs_info, u64 nr,
724                              const u64 range_start, const u64 range_len)
725 {
726         struct btrfs_root *root;
727         struct list_head splice;
728         u64 total_done = 0;
729         u64 done;
730
731         INIT_LIST_HEAD(&splice);
732
733         mutex_lock(&fs_info->ordered_operations_mutex);
734         spin_lock(&fs_info->ordered_root_lock);
735         list_splice_init(&fs_info->ordered_roots, &splice);
736         while (!list_empty(&splice) && nr) {
737                 root = list_first_entry(&splice, struct btrfs_root,
738                                         ordered_root);
739                 root = btrfs_grab_fs_root(root);
740                 BUG_ON(!root);
741                 list_move_tail(&root->ordered_root,
742                                &fs_info->ordered_roots);
743                 spin_unlock(&fs_info->ordered_root_lock);
744
745                 done = btrfs_wait_ordered_extents(root, nr,
746                                                   range_start, range_len);
747                 btrfs_put_fs_root(root);
748                 total_done += done;
749
750                 spin_lock(&fs_info->ordered_root_lock);
751                 if (nr != U64_MAX) {
752                         nr -= done;
753                 }
754         }
755         list_splice_tail(&splice, &fs_info->ordered_roots);
756         spin_unlock(&fs_info->ordered_root_lock);
757         mutex_unlock(&fs_info->ordered_operations_mutex);
758
759         return total_done;
760 }
761
762 /*
763  * Used to start IO or wait for a given ordered extent to finish.
764  *
765  * If wait is one, this effectively waits on page writeback for all the pages
766  * in the extent, and it waits on the io completion code to insert
767  * metadata into the btree corresponding to the extent
768  */
769 void btrfs_start_ordered_extent(struct inode *inode,
770                                        struct btrfs_ordered_extent *entry,
771                                        int wait)
772 {
773         u64 start = entry->file_offset;
774         u64 end = start + entry->len - 1;
775
776         trace_btrfs_ordered_extent_start(inode, entry);
777
778         /*
779          * pages in the range can be dirty, clean or writeback.  We
780          * start IO on any dirty ones so the wait doesn't stall waiting
781          * for the flusher thread to find them
782          */
783         if (!test_bit(BTRFS_ORDERED_DIRECT, &entry->flags))
784                 filemap_fdatawrite_range(inode->i_mapping, start, end);
785         if (wait) {
786                 wait_event(entry->wait, test_bit(BTRFS_ORDERED_COMPLETE,
787                                                  &entry->flags));
788         }
789 }
790
791 /*
792  * Used to wait on ordered extents across a large range of bytes.
793  */
794 int btrfs_wait_ordered_range(struct inode *inode, u64 start, u64 len)
795 {
796         int ret = 0;
797         int ret_wb = 0;
798         u64 end;
799         u64 orig_end;
800         struct btrfs_ordered_extent *ordered;
801
802         if (start + len < start) {
803                 orig_end = INT_LIMIT(loff_t);
804         } else {
805                 orig_end = start + len - 1;
806                 if (orig_end > INT_LIMIT(loff_t))
807                         orig_end = INT_LIMIT(loff_t);
808         }
809
810         /* start IO across the range first to instantiate any delalloc
811          * extents
812          */
813         ret = btrfs_fdatawrite_range(inode, start, orig_end);
814         if (ret)
815                 return ret;
816
817         /*
818          * If we have a writeback error don't return immediately. Wait first
819          * for any ordered extents that haven't completed yet. This is to make
820          * sure no one can dirty the same page ranges and call writepages()
821          * before the ordered extents complete - to avoid failures (-EEXIST)
822          * when adding the new ordered extents to the ordered tree.
823          */
824         ret_wb = filemap_fdatawait_range(inode->i_mapping, start, orig_end);
825
826         end = orig_end;
827         while (1) {
828                 ordered = btrfs_lookup_first_ordered_extent(inode, end);
829                 if (!ordered)
830                         break;
831                 if (ordered->file_offset > orig_end) {
832                         btrfs_put_ordered_extent(ordered);
833                         break;
834                 }
835                 if (ordered->file_offset + ordered->len <= start) {
836                         btrfs_put_ordered_extent(ordered);
837                         break;
838                 }
839                 btrfs_start_ordered_extent(inode, ordered, 1);
840                 end = ordered->file_offset;
841                 /*
842                  * If the ordered extent had an error save the error but don't
843                  * exit without waiting first for all other ordered extents in
844                  * the range to complete.
845                  */
846                 if (test_bit(BTRFS_ORDERED_IOERR, &ordered->flags))
847                         ret = -EIO;
848                 btrfs_put_ordered_extent(ordered);
849                 if (end == 0 || end == start)
850                         break;
851                 end--;
852         }
853         return ret_wb ? ret_wb : ret;
854 }
855
856 /*
857  * find an ordered extent corresponding to file_offset.  return NULL if
858  * nothing is found, otherwise take a reference on the extent and return it
859  */
860 struct btrfs_ordered_extent *btrfs_lookup_ordered_extent(struct inode *inode,
861                                                          u64 file_offset)
862 {
863         struct btrfs_ordered_inode_tree *tree;
864         struct rb_node *node;
865         struct btrfs_ordered_extent *entry = NULL;
866
867         tree = &BTRFS_I(inode)->ordered_tree;
868         spin_lock_irq(&tree->lock);
869         node = tree_search(tree, file_offset);
870         if (!node)
871                 goto out;
872
873         entry = rb_entry(node, struct btrfs_ordered_extent, rb_node);
874         if (!offset_in_entry(entry, file_offset))
875                 entry = NULL;
876         if (entry)
877                 refcount_inc(&entry->refs);
878 out:
879         spin_unlock_irq(&tree->lock);
880         return entry;
881 }
882
883 /* Since the DIO code tries to lock a wide area we need to look for any ordered
884  * extents that exist in the range, rather than just the start of the range.
885  */
886 struct btrfs_ordered_extent *btrfs_lookup_ordered_range(
887                 struct btrfs_inode *inode, u64 file_offset, u64 len)
888 {
889         struct btrfs_ordered_inode_tree *tree;
890         struct rb_node *node;
891         struct btrfs_ordered_extent *entry = NULL;
892
893         tree = &inode->ordered_tree;
894         spin_lock_irq(&tree->lock);
895         node = tree_search(tree, file_offset);
896         if (!node) {
897                 node = tree_search(tree, file_offset + len);
898                 if (!node)
899                         goto out;
900         }
901
902         while (1) {
903                 entry = rb_entry(node, struct btrfs_ordered_extent, rb_node);
904                 if (range_overlaps(entry, file_offset, len))
905                         break;
906
907                 if (entry->file_offset >= file_offset + len) {
908                         entry = NULL;
909                         break;
910                 }
911                 entry = NULL;
912                 node = rb_next(node);
913                 if (!node)
914                         break;
915         }
916 out:
917         if (entry)
918                 refcount_inc(&entry->refs);
919         spin_unlock_irq(&tree->lock);
920         return entry;
921 }
922
923 bool btrfs_have_ordered_extents_in_range(struct inode *inode,
924                                          u64 file_offset,
925                                          u64 len)
926 {
927         struct btrfs_ordered_extent *oe;
928
929         oe = btrfs_lookup_ordered_range(BTRFS_I(inode), file_offset, len);
930         if (oe) {
931                 btrfs_put_ordered_extent(oe);
932                 return true;
933         }
934         return false;
935 }
936
937 /*
938  * lookup and return any extent before 'file_offset'.  NULL is returned
939  * if none is found
940  */
941 struct btrfs_ordered_extent *
942 btrfs_lookup_first_ordered_extent(struct inode *inode, u64 file_offset)
943 {
944         struct btrfs_ordered_inode_tree *tree;
945         struct rb_node *node;
946         struct btrfs_ordered_extent *entry = NULL;
947
948         tree = &BTRFS_I(inode)->ordered_tree;
949         spin_lock_irq(&tree->lock);
950         node = tree_search(tree, file_offset);
951         if (!node)
952                 goto out;
953
954         entry = rb_entry(node, struct btrfs_ordered_extent, rb_node);
955         refcount_inc(&entry->refs);
956 out:
957         spin_unlock_irq(&tree->lock);
958         return entry;
959 }
960
961 /*
962  * After an extent is done, call this to conditionally update the on disk
963  * i_size.  i_size is updated to cover any fully written part of the file.
964  */
965 int btrfs_ordered_update_i_size(struct inode *inode, u64 offset,
966                                 struct btrfs_ordered_extent *ordered)
967 {
968         struct btrfs_ordered_inode_tree *tree = &BTRFS_I(inode)->ordered_tree;
969         u64 disk_i_size;
970         u64 new_i_size;
971         u64 i_size = i_size_read(inode);
972         struct rb_node *node;
973         struct rb_node *prev = NULL;
974         struct btrfs_ordered_extent *test;
975         int ret = 1;
976         u64 orig_offset = offset;
977
978         spin_lock_irq(&tree->lock);
979         if (ordered) {
980                 offset = entry_end(ordered);
981                 if (test_bit(BTRFS_ORDERED_TRUNCATED, &ordered->flags))
982                         offset = min(offset,
983                                      ordered->file_offset +
984                                      ordered->truncated_len);
985         } else {
986                 offset = ALIGN(offset, btrfs_inode_sectorsize(inode));
987         }
988         disk_i_size = BTRFS_I(inode)->disk_i_size;
989
990         /*
991          * truncate file.
992          * If ordered is not NULL, then this is called from endio and
993          * disk_i_size will be updated by either truncate itself or any
994          * in-flight IOs which are inside the disk_i_size.
995          *
996          * Because btrfs_setsize() may set i_size with disk_i_size if truncate
997          * fails somehow, we need to make sure we have a precise disk_i_size by
998          * updating it as usual.
999          *
1000          */
1001         if (!ordered && disk_i_size > i_size) {
1002                 BTRFS_I(inode)->disk_i_size = orig_offset;
1003                 ret = 0;
1004                 goto out;
1005         }
1006
1007         /*
1008          * if the disk i_size is already at the inode->i_size, or
1009          * this ordered extent is inside the disk i_size, we're done
1010          */
1011         if (disk_i_size == i_size)
1012                 goto out;
1013
1014         /*
1015          * We still need to update disk_i_size if outstanding_isize is greater
1016          * than disk_i_size.
1017          */
1018         if (offset <= disk_i_size &&
1019             (!ordered || ordered->outstanding_isize <= disk_i_size))
1020                 goto out;
1021
1022         /*
1023          * walk backward from this ordered extent to disk_i_size.
1024          * if we find an ordered extent then we can't update disk i_size
1025          * yet
1026          */
1027         if (ordered) {
1028                 node = rb_prev(&ordered->rb_node);
1029         } else {
1030                 prev = tree_search(tree, offset);
1031                 /*
1032                  * we insert file extents without involving ordered struct,
1033                  * so there should be no ordered struct cover this offset
1034                  */
1035                 if (prev) {
1036                         test = rb_entry(prev, struct btrfs_ordered_extent,
1037                                         rb_node);
1038                         BUG_ON(offset_in_entry(test, offset));
1039                 }
1040                 node = prev;
1041         }
1042         for (; node; node = rb_prev(node)) {
1043                 test = rb_entry(node, struct btrfs_ordered_extent, rb_node);
1044
1045                 /* We treat this entry as if it doesn't exist */
1046                 if (test_bit(BTRFS_ORDERED_UPDATED_ISIZE, &test->flags))
1047                         continue;
1048
1049                 if (entry_end(test) <= disk_i_size)
1050                         break;
1051                 if (test->file_offset >= i_size)
1052                         break;
1053
1054                 /*
1055                  * We don't update disk_i_size now, so record this undealt
1056                  * i_size. Or we will not know the real i_size.
1057                  */
1058                 if (test->outstanding_isize < offset)
1059                         test->outstanding_isize = offset;
1060                 if (ordered &&
1061                     ordered->outstanding_isize > test->outstanding_isize)
1062                         test->outstanding_isize = ordered->outstanding_isize;
1063                 goto out;
1064         }
1065         new_i_size = min_t(u64, offset, i_size);
1066
1067         /*
1068          * Some ordered extents may completed before the current one, and
1069          * we hold the real i_size in ->outstanding_isize.
1070          */
1071         if (ordered && ordered->outstanding_isize > new_i_size)
1072                 new_i_size = min_t(u64, ordered->outstanding_isize, i_size);
1073         BTRFS_I(inode)->disk_i_size = new_i_size;
1074         ret = 0;
1075 out:
1076         /*
1077          * We need to do this because we can't remove ordered extents until
1078          * after the i_disk_size has been updated and then the inode has been
1079          * updated to reflect the change, so we need to tell anybody who finds
1080          * this ordered extent that we've already done all the real work, we
1081          * just haven't completed all the other work.
1082          */
1083         if (ordered)
1084                 set_bit(BTRFS_ORDERED_UPDATED_ISIZE, &ordered->flags);
1085         spin_unlock_irq(&tree->lock);
1086         return ret;
1087 }
1088
1089 /*
1090  * search the ordered extents for one corresponding to 'offset' and
1091  * try to find a checksum.  This is used because we allow pages to
1092  * be reclaimed before their checksum is actually put into the btree
1093  */
1094 int btrfs_find_ordered_sum(struct inode *inode, u64 offset, u64 disk_bytenr,
1095                            u32 *sum, int len)
1096 {
1097         struct btrfs_ordered_sum *ordered_sum;
1098         struct btrfs_ordered_extent *ordered;
1099         struct btrfs_ordered_inode_tree *tree = &BTRFS_I(inode)->ordered_tree;
1100         unsigned long num_sectors;
1101         unsigned long i;
1102         u32 sectorsize = btrfs_inode_sectorsize(inode);
1103         int index = 0;
1104
1105         ordered = btrfs_lookup_ordered_extent(inode, offset);
1106         if (!ordered)
1107                 return 0;
1108
1109         spin_lock_irq(&tree->lock);
1110         list_for_each_entry_reverse(ordered_sum, &ordered->list, list) {
1111                 if (disk_bytenr >= ordered_sum->bytenr &&
1112                     disk_bytenr < ordered_sum->bytenr + ordered_sum->len) {
1113                         i = (disk_bytenr - ordered_sum->bytenr) >>
1114                             inode->i_sb->s_blocksize_bits;
1115                         num_sectors = ordered_sum->len >>
1116                                       inode->i_sb->s_blocksize_bits;
1117                         num_sectors = min_t(int, len - index, num_sectors - i);
1118                         memcpy(sum + index, ordered_sum->sums + i,
1119                                num_sectors);
1120
1121                         index += (int)num_sectors;
1122                         if (index == len)
1123                                 goto out;
1124                         disk_bytenr += num_sectors * sectorsize;
1125                 }
1126         }
1127 out:
1128         spin_unlock_irq(&tree->lock);
1129         btrfs_put_ordered_extent(ordered);
1130         return index;
1131 }
1132
1133 int __init ordered_data_init(void)
1134 {
1135         btrfs_ordered_extent_cache = kmem_cache_create("btrfs_ordered_extent",
1136                                      sizeof(struct btrfs_ordered_extent), 0,
1137                                      SLAB_MEM_SPREAD,
1138                                      NULL);
1139         if (!btrfs_ordered_extent_cache)
1140                 return -ENOMEM;
1141
1142         return 0;
1143 }
1144
1145 void ordered_data_exit(void)
1146 {
1147         kmem_cache_destroy(btrfs_ordered_extent_cache);
1148 }