2 * Copyright (C) 2007 Oracle. All rights reserved.
4 * This program is free software; you can redistribute it and/or
5 * modify it under the terms of the GNU General Public
6 * License v2 as published by the Free Software Foundation.
8 * This program is distributed in the hope that it will be useful,
9 * but WITHOUT ANY WARRANTY; without even the implied warranty of
10 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
11 * General Public License for more details.
13 * You should have received a copy of the GNU General Public
14 * License along with this program; if not, write to the
15 * Free Software Foundation, Inc., 59 Temple Place - Suite 330,
16 * Boston, MA 021110-1307, USA.
19 #include <linux/delay.h>
20 #include <linux/kthread.h>
21 #include <linux/pagemap.h>
25 #include "free-space-cache.h"
26 #include "inode-map.h"
27 #include "transaction.h"
29 static int caching_kthread(void *data)
31 struct btrfs_root *root = data;
32 struct btrfs_fs_info *fs_info = root->fs_info;
33 struct btrfs_free_space_ctl *ctl = root->free_ino_ctl;
35 struct btrfs_path *path;
36 struct extent_buffer *leaf;
41 if (!btrfs_test_opt(root->fs_info, INODE_MAP_CACHE))
44 path = btrfs_alloc_path();
48 /* Since the commit root is read-only, we can safely skip locking. */
49 path->skip_locking = 1;
50 path->search_commit_root = 1;
51 path->reada = READA_FORWARD;
53 key.objectid = BTRFS_FIRST_FREE_OBJECTID;
55 key.type = BTRFS_INODE_ITEM_KEY;
57 /* need to make sure the commit_root doesn't disappear */
58 down_read(&fs_info->commit_root_sem);
60 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
65 if (btrfs_fs_closing(fs_info))
68 leaf = path->nodes[0];
69 slot = path->slots[0];
70 if (slot >= btrfs_header_nritems(leaf)) {
71 ret = btrfs_next_leaf(root, path);
78 btrfs_transaction_in_commit(fs_info)) {
79 leaf = path->nodes[0];
81 if (WARN_ON(btrfs_header_nritems(leaf) == 0))
85 * Save the key so we can advances forward
88 btrfs_item_key_to_cpu(leaf, &key, 0);
89 btrfs_release_path(path);
90 root->ino_cache_progress = last;
91 up_read(&fs_info->commit_root_sem);
98 btrfs_item_key_to_cpu(leaf, &key, slot);
100 if (key.type != BTRFS_INODE_ITEM_KEY)
103 if (key.objectid >= root->highest_objectid)
106 if (last != (u64)-1 && last + 1 != key.objectid) {
107 __btrfs_add_free_space(fs_info, ctl, last + 1,
108 key.objectid - last - 1);
109 wake_up(&root->ino_cache_wait);
117 if (last < root->highest_objectid - 1) {
118 __btrfs_add_free_space(fs_info, ctl, last + 1,
119 root->highest_objectid - last - 1);
122 spin_lock(&root->ino_cache_lock);
123 root->ino_cache_state = BTRFS_CACHE_FINISHED;
124 spin_unlock(&root->ino_cache_lock);
126 root->ino_cache_progress = (u64)-1;
127 btrfs_unpin_free_ino(root);
129 wake_up(&root->ino_cache_wait);
130 up_read(&fs_info->commit_root_sem);
132 btrfs_free_path(path);
137 static void start_caching(struct btrfs_root *root)
139 struct btrfs_fs_info *fs_info = root->fs_info;
140 struct btrfs_free_space_ctl *ctl = root->free_ino_ctl;
141 struct task_struct *tsk;
145 if (!btrfs_test_opt(fs_info, INODE_MAP_CACHE))
148 spin_lock(&root->ino_cache_lock);
149 if (root->ino_cache_state != BTRFS_CACHE_NO) {
150 spin_unlock(&root->ino_cache_lock);
154 root->ino_cache_state = BTRFS_CACHE_STARTED;
155 spin_unlock(&root->ino_cache_lock);
157 ret = load_free_ino_cache(fs_info, root);
159 spin_lock(&root->ino_cache_lock);
160 root->ino_cache_state = BTRFS_CACHE_FINISHED;
161 spin_unlock(&root->ino_cache_lock);
162 wake_up(&root->ino_cache_wait);
167 * It can be quite time-consuming to fill the cache by searching
168 * through the extent tree, and this can keep ino allocation path
169 * waiting. Therefore at start we quickly find out the highest
170 * inode number and we know we can use inode numbers which fall in
171 * [highest_ino + 1, BTRFS_LAST_FREE_OBJECTID].
173 ret = btrfs_find_free_objectid(root, &objectid);
174 if (!ret && objectid <= BTRFS_LAST_FREE_OBJECTID) {
175 __btrfs_add_free_space(fs_info, ctl, objectid,
176 BTRFS_LAST_FREE_OBJECTID - objectid + 1);
179 tsk = kthread_run(caching_kthread, root, "btrfs-ino-cache-%llu",
180 root->root_key.objectid);
182 btrfs_warn(fs_info, "failed to start inode caching task");
183 btrfs_clear_pending_and_info(fs_info, INODE_MAP_CACHE,
184 "disabling inode map caching");
188 int btrfs_find_free_ino(struct btrfs_root *root, u64 *objectid)
190 if (!btrfs_test_opt(root->fs_info, INODE_MAP_CACHE))
191 return btrfs_find_free_objectid(root, objectid);
194 *objectid = btrfs_find_ino_for_alloc(root);
201 wait_event(root->ino_cache_wait,
202 root->ino_cache_state == BTRFS_CACHE_FINISHED ||
203 root->free_ino_ctl->free_space > 0);
205 if (root->ino_cache_state == BTRFS_CACHE_FINISHED &&
206 root->free_ino_ctl->free_space == 0)
212 void btrfs_return_ino(struct btrfs_root *root, u64 objectid)
214 struct btrfs_fs_info *fs_info = root->fs_info;
215 struct btrfs_free_space_ctl *pinned = root->free_ino_pinned;
217 if (!btrfs_test_opt(fs_info, INODE_MAP_CACHE))
220 if (root->ino_cache_state == BTRFS_CACHE_FINISHED) {
221 __btrfs_add_free_space(fs_info, pinned, objectid, 1);
223 down_write(&fs_info->commit_root_sem);
224 spin_lock(&root->ino_cache_lock);
225 if (root->ino_cache_state == BTRFS_CACHE_FINISHED) {
226 spin_unlock(&root->ino_cache_lock);
227 up_write(&fs_info->commit_root_sem);
230 spin_unlock(&root->ino_cache_lock);
234 __btrfs_add_free_space(fs_info, pinned, objectid, 1);
236 up_write(&fs_info->commit_root_sem);
241 * When a transaction is committed, we'll move those inode numbers which are
242 * smaller than root->ino_cache_progress from pinned tree to free_ino tree, and
243 * others will just be dropped, because the commit root we were searching has
246 * Must be called with root->fs_info->commit_root_sem held
248 void btrfs_unpin_free_ino(struct btrfs_root *root)
250 struct btrfs_free_space_ctl *ctl = root->free_ino_ctl;
251 struct rb_root *rbroot = &root->free_ino_pinned->free_space_offset;
252 spinlock_t *rbroot_lock = &root->free_ino_pinned->tree_lock;
253 struct btrfs_free_space *info;
257 if (!btrfs_test_opt(root->fs_info, INODE_MAP_CACHE))
261 bool add_to_ctl = true;
263 spin_lock(rbroot_lock);
264 n = rb_first(rbroot);
266 spin_unlock(rbroot_lock);
270 info = rb_entry(n, struct btrfs_free_space, offset_index);
271 BUG_ON(info->bitmap); /* Logic error */
273 if (info->offset > root->ino_cache_progress)
275 else if (info->offset + info->bytes > root->ino_cache_progress)
276 count = root->ino_cache_progress - info->offset + 1;
280 rb_erase(&info->offset_index, rbroot);
281 spin_unlock(rbroot_lock);
283 __btrfs_add_free_space(root->fs_info, ctl,
284 info->offset, count);
285 kmem_cache_free(btrfs_free_space_cachep, info);
289 #define INIT_THRESHOLD ((SZ_32K / 2) / sizeof(struct btrfs_free_space))
290 #define INODES_PER_BITMAP (PAGE_SIZE * 8)
293 * The goal is to keep the memory used by the free_ino tree won't
294 * exceed the memory if we use bitmaps only.
296 static void recalculate_thresholds(struct btrfs_free_space_ctl *ctl)
298 struct btrfs_free_space *info;
303 n = rb_last(&ctl->free_space_offset);
305 ctl->extents_thresh = INIT_THRESHOLD;
308 info = rb_entry(n, struct btrfs_free_space, offset_index);
311 * Find the maximum inode number in the filesystem. Note we
312 * ignore the fact that this can be a bitmap, because we are
313 * not doing precise calculation.
315 max_ino = info->bytes - 1;
317 max_bitmaps = ALIGN(max_ino, INODES_PER_BITMAP) / INODES_PER_BITMAP;
318 if (max_bitmaps <= ctl->total_bitmaps) {
319 ctl->extents_thresh = 0;
323 ctl->extents_thresh = (max_bitmaps - ctl->total_bitmaps) *
324 PAGE_SIZE / sizeof(*info);
328 * We don't fall back to bitmap, if we are below the extents threshold
329 * or this chunk of inode numbers is a big one.
331 static bool use_bitmap(struct btrfs_free_space_ctl *ctl,
332 struct btrfs_free_space *info)
334 if (ctl->free_extents < ctl->extents_thresh ||
335 info->bytes > INODES_PER_BITMAP / 10)
341 static const struct btrfs_free_space_op free_ino_op = {
342 .recalc_thresholds = recalculate_thresholds,
343 .use_bitmap = use_bitmap,
346 static void pinned_recalc_thresholds(struct btrfs_free_space_ctl *ctl)
350 static bool pinned_use_bitmap(struct btrfs_free_space_ctl *ctl,
351 struct btrfs_free_space *info)
354 * We always use extents for two reasons:
356 * - The pinned tree is only used during the process of caching
358 * - Make code simpler. See btrfs_unpin_free_ino().
363 static const struct btrfs_free_space_op pinned_free_ino_op = {
364 .recalc_thresholds = pinned_recalc_thresholds,
365 .use_bitmap = pinned_use_bitmap,
368 void btrfs_init_free_ino_ctl(struct btrfs_root *root)
370 struct btrfs_free_space_ctl *ctl = root->free_ino_ctl;
371 struct btrfs_free_space_ctl *pinned = root->free_ino_pinned;
373 spin_lock_init(&ctl->tree_lock);
377 ctl->op = &free_ino_op;
378 INIT_LIST_HEAD(&ctl->trimming_ranges);
379 mutex_init(&ctl->cache_writeout_mutex);
382 * Initially we allow to use 16K of ram to cache chunks of
383 * inode numbers before we resort to bitmaps. This is somewhat
384 * arbitrary, but it will be adjusted in runtime.
386 ctl->extents_thresh = INIT_THRESHOLD;
388 spin_lock_init(&pinned->tree_lock);
391 pinned->private = NULL;
392 pinned->extents_thresh = 0;
393 pinned->op = &pinned_free_ino_op;
396 int btrfs_save_ino_cache(struct btrfs_root *root,
397 struct btrfs_trans_handle *trans)
399 struct btrfs_free_space_ctl *ctl = root->free_ino_ctl;
400 struct btrfs_path *path;
402 struct btrfs_block_rsv *rsv;
409 /* only fs tree and subvol/snap needs ino cache */
410 if (root->root_key.objectid != BTRFS_FS_TREE_OBJECTID &&
411 (root->root_key.objectid < BTRFS_FIRST_FREE_OBJECTID ||
412 root->root_key.objectid > BTRFS_LAST_FREE_OBJECTID))
415 /* Don't save inode cache if we are deleting this root */
416 if (btrfs_root_refs(&root->root_item) == 0)
419 if (!btrfs_test_opt(root->fs_info, INODE_MAP_CACHE))
422 path = btrfs_alloc_path();
426 rsv = trans->block_rsv;
427 trans->block_rsv = &root->fs_info->trans_block_rsv;
429 num_bytes = trans->bytes_reserved;
431 * 1 item for inode item insertion if need
432 * 4 items for inode item update (in the worst case)
433 * 1 items for slack space if we need do truncation
434 * 1 item for free space object
435 * 3 items for pre-allocation
437 trans->bytes_reserved = btrfs_calc_trans_metadata_size(root, 10);
438 ret = btrfs_block_rsv_add(root, trans->block_rsv,
439 trans->bytes_reserved,
440 BTRFS_RESERVE_NO_FLUSH);
443 trace_btrfs_space_reservation(root->fs_info, "ino_cache",
444 trans->transid, trans->bytes_reserved, 1);
446 inode = lookup_free_ino_inode(root, path);
447 if (IS_ERR(inode) && (PTR_ERR(inode) != -ENOENT || retry)) {
448 ret = PTR_ERR(inode);
453 BUG_ON(retry); /* Logic error */
456 ret = create_free_ino_inode(root, trans, path);
462 BTRFS_I(inode)->generation = 0;
463 ret = btrfs_update_inode(trans, root, inode);
465 btrfs_abort_transaction(trans, ret);
469 if (i_size_read(inode) > 0) {
470 ret = btrfs_truncate_free_space_cache(root, trans, NULL, inode);
473 btrfs_abort_transaction(trans, ret);
478 spin_lock(&root->ino_cache_lock);
479 if (root->ino_cache_state != BTRFS_CACHE_FINISHED) {
481 spin_unlock(&root->ino_cache_lock);
484 spin_unlock(&root->ino_cache_lock);
486 spin_lock(&ctl->tree_lock);
487 prealloc = sizeof(struct btrfs_free_space) * ctl->free_extents;
488 prealloc = ALIGN(prealloc, PAGE_SIZE);
489 prealloc += ctl->total_bitmaps * PAGE_SIZE;
490 spin_unlock(&ctl->tree_lock);
492 /* Just to make sure we have enough space */
493 prealloc += 8 * PAGE_SIZE;
495 ret = btrfs_delalloc_reserve_space(inode, 0, prealloc);
499 ret = btrfs_prealloc_file_range_trans(inode, trans, 0, 0, prealloc,
500 prealloc, prealloc, &alloc_hint);
502 btrfs_delalloc_release_metadata(inode, prealloc);
506 ret = btrfs_write_out_ino_cache(root, trans, path, inode);
510 trace_btrfs_space_reservation(root->fs_info, "ino_cache",
511 trans->transid, trans->bytes_reserved, 0);
512 btrfs_block_rsv_release(root, trans->block_rsv, trans->bytes_reserved);
514 trans->block_rsv = rsv;
515 trans->bytes_reserved = num_bytes;
517 btrfs_free_path(path);
521 int btrfs_find_highest_objectid(struct btrfs_root *root, u64 *objectid)
523 struct btrfs_path *path;
525 struct extent_buffer *l;
526 struct btrfs_key search_key;
527 struct btrfs_key found_key;
530 path = btrfs_alloc_path();
534 search_key.objectid = BTRFS_LAST_FREE_OBJECTID;
535 search_key.type = -1;
536 search_key.offset = (u64)-1;
537 ret = btrfs_search_slot(NULL, root, &search_key, path, 0, 0);
540 BUG_ON(ret == 0); /* Corruption */
541 if (path->slots[0] > 0) {
542 slot = path->slots[0] - 1;
544 btrfs_item_key_to_cpu(l, &found_key, slot);
545 *objectid = max_t(u64, found_key.objectid,
546 BTRFS_FIRST_FREE_OBJECTID - 1);
548 *objectid = BTRFS_FIRST_FREE_OBJECTID - 1;
552 btrfs_free_path(path);
556 int btrfs_find_free_objectid(struct btrfs_root *root, u64 *objectid)
559 mutex_lock(&root->objectid_mutex);
561 if (unlikely(root->highest_objectid >= BTRFS_LAST_FREE_OBJECTID)) {
562 btrfs_warn(root->fs_info,
563 "the objectid of root %llu reaches its highest value",
564 root->root_key.objectid);
569 *objectid = ++root->highest_objectid;
572 mutex_unlock(&root->objectid_mutex);