2 * Copyright (C) 2008 Red Hat. All rights reserved.
4 * This program is free software; you can redistribute it and/or
5 * modify it under the terms of the GNU General Public
6 * License v2 as published by the Free Software Foundation.
8 * This program is distributed in the hope that it will be useful,
9 * but WITHOUT ANY WARRANTY; without even the implied warranty of
10 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
11 * General Public License for more details.
13 * You should have received a copy of the GNU General Public
14 * License along with this program; if not, write to the
15 * Free Software Foundation, Inc., 59 Temple Place - Suite 330,
16 * Boston, MA 021110-1307, USA.
19 #include <linux/pagemap.h>
20 #include <linux/sched.h>
21 #include <linux/slab.h>
22 #include <linux/math64.h>
23 #include <linux/ratelimit.h>
25 #include "free-space-cache.h"
26 #include "transaction.h"
28 #include "extent_io.h"
29 #include "inode-map.h"
32 #define BITS_PER_BITMAP (PAGE_SIZE * 8UL)
33 #define MAX_CACHE_BYTES_PER_GIG SZ_32K
35 struct btrfs_trim_range {
38 struct list_head list;
41 static int link_free_space(struct btrfs_free_space_ctl *ctl,
42 struct btrfs_free_space *info);
43 static void unlink_free_space(struct btrfs_free_space_ctl *ctl,
44 struct btrfs_free_space *info);
46 static struct inode *__lookup_free_space_inode(struct btrfs_root *root,
47 struct btrfs_path *path,
51 struct btrfs_key location;
52 struct btrfs_disk_key disk_key;
53 struct btrfs_free_space_header *header;
54 struct extent_buffer *leaf;
55 struct inode *inode = NULL;
58 key.objectid = BTRFS_FREE_SPACE_OBJECTID;
62 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
66 btrfs_release_path(path);
67 return ERR_PTR(-ENOENT);
70 leaf = path->nodes[0];
71 header = btrfs_item_ptr(leaf, path->slots[0],
72 struct btrfs_free_space_header);
73 btrfs_free_space_key(leaf, header, &disk_key);
74 btrfs_disk_key_to_cpu(&location, &disk_key);
75 btrfs_release_path(path);
77 inode = btrfs_iget(root->fs_info->sb, &location, root, NULL);
79 return ERR_PTR(-ENOENT);
82 if (is_bad_inode(inode)) {
84 return ERR_PTR(-ENOENT);
87 mapping_set_gfp_mask(inode->i_mapping,
88 mapping_gfp_constraint(inode->i_mapping,
89 ~(__GFP_FS | __GFP_HIGHMEM)));
94 struct inode *lookup_free_space_inode(struct btrfs_root *root,
95 struct btrfs_block_group_cache
96 *block_group, struct btrfs_path *path)
98 struct inode *inode = NULL;
99 u32 flags = BTRFS_INODE_NODATASUM | BTRFS_INODE_NODATACOW;
101 spin_lock(&block_group->lock);
102 if (block_group->inode)
103 inode = igrab(block_group->inode);
104 spin_unlock(&block_group->lock);
108 inode = __lookup_free_space_inode(root, path,
109 block_group->key.objectid);
113 spin_lock(&block_group->lock);
114 if (!((BTRFS_I(inode)->flags & flags) == flags)) {
115 btrfs_info(root->fs_info,
116 "Old style space inode found, converting.");
117 BTRFS_I(inode)->flags |= BTRFS_INODE_NODATASUM |
118 BTRFS_INODE_NODATACOW;
119 block_group->disk_cache_state = BTRFS_DC_CLEAR;
122 if (!block_group->iref) {
123 block_group->inode = igrab(inode);
124 block_group->iref = 1;
126 spin_unlock(&block_group->lock);
131 static int __create_free_space_inode(struct btrfs_root *root,
132 struct btrfs_trans_handle *trans,
133 struct btrfs_path *path,
136 struct btrfs_key key;
137 struct btrfs_disk_key disk_key;
138 struct btrfs_free_space_header *header;
139 struct btrfs_inode_item *inode_item;
140 struct extent_buffer *leaf;
141 u64 flags = BTRFS_INODE_NOCOMPRESS | BTRFS_INODE_PREALLOC;
144 ret = btrfs_insert_empty_inode(trans, root, path, ino);
148 /* We inline crc's for the free disk space cache */
149 if (ino != BTRFS_FREE_INO_OBJECTID)
150 flags |= BTRFS_INODE_NODATASUM | BTRFS_INODE_NODATACOW;
152 leaf = path->nodes[0];
153 inode_item = btrfs_item_ptr(leaf, path->slots[0],
154 struct btrfs_inode_item);
155 btrfs_item_key(leaf, &disk_key, path->slots[0]);
156 memset_extent_buffer(leaf, 0, (unsigned long)inode_item,
157 sizeof(*inode_item));
158 btrfs_set_inode_generation(leaf, inode_item, trans->transid);
159 btrfs_set_inode_size(leaf, inode_item, 0);
160 btrfs_set_inode_nbytes(leaf, inode_item, 0);
161 btrfs_set_inode_uid(leaf, inode_item, 0);
162 btrfs_set_inode_gid(leaf, inode_item, 0);
163 btrfs_set_inode_mode(leaf, inode_item, S_IFREG | 0600);
164 btrfs_set_inode_flags(leaf, inode_item, flags);
165 btrfs_set_inode_nlink(leaf, inode_item, 1);
166 btrfs_set_inode_transid(leaf, inode_item, trans->transid);
167 btrfs_set_inode_block_group(leaf, inode_item, offset);
168 btrfs_mark_buffer_dirty(leaf);
169 btrfs_release_path(path);
171 key.objectid = BTRFS_FREE_SPACE_OBJECTID;
174 ret = btrfs_insert_empty_item(trans, root, path, &key,
175 sizeof(struct btrfs_free_space_header));
177 btrfs_release_path(path);
181 leaf = path->nodes[0];
182 header = btrfs_item_ptr(leaf, path->slots[0],
183 struct btrfs_free_space_header);
184 memset_extent_buffer(leaf, 0, (unsigned long)header, sizeof(*header));
185 btrfs_set_free_space_key(leaf, header, &disk_key);
186 btrfs_mark_buffer_dirty(leaf);
187 btrfs_release_path(path);
192 int create_free_space_inode(struct btrfs_root *root,
193 struct btrfs_trans_handle *trans,
194 struct btrfs_block_group_cache *block_group,
195 struct btrfs_path *path)
200 ret = btrfs_find_free_objectid(root, &ino);
204 return __create_free_space_inode(root, trans, path, ino,
205 block_group->key.objectid);
208 int btrfs_check_trunc_cache_free_space(struct btrfs_root *root,
209 struct btrfs_block_rsv *rsv)
214 /* 1 for slack space, 1 for updating the inode */
215 needed_bytes = btrfs_calc_trunc_metadata_size(root, 1) +
216 btrfs_calc_trans_metadata_size(root, 1);
218 spin_lock(&rsv->lock);
219 if (rsv->reserved < needed_bytes)
223 spin_unlock(&rsv->lock);
227 int btrfs_truncate_free_space_cache(struct btrfs_root *root,
228 struct btrfs_trans_handle *trans,
229 struct btrfs_block_group_cache *block_group,
233 struct btrfs_path *path = btrfs_alloc_path();
243 mutex_lock(&trans->transaction->cache_write_mutex);
244 if (!list_empty(&block_group->io_list)) {
245 list_del_init(&block_group->io_list);
247 btrfs_wait_cache_io(root, trans, block_group,
248 &block_group->io_ctl, path,
249 block_group->key.objectid);
250 btrfs_put_block_group(block_group);
254 * now that we've truncated the cache away, its no longer
257 spin_lock(&block_group->lock);
258 block_group->disk_cache_state = BTRFS_DC_CLEAR;
259 spin_unlock(&block_group->lock);
261 btrfs_free_path(path);
263 btrfs_i_size_write(inode, 0);
264 truncate_pagecache(inode, 0);
267 * We don't need an orphan item because truncating the free space cache
268 * will never be split across transactions.
269 * We don't need to check for -EAGAIN because we're a free space
272 ret = btrfs_truncate_inode_items(trans, root, inode,
273 0, BTRFS_EXTENT_DATA_KEY);
277 ret = btrfs_update_inode(trans, root, inode);
281 mutex_unlock(&trans->transaction->cache_write_mutex);
283 btrfs_abort_transaction(trans, ret);
288 static int readahead_cache(struct inode *inode)
290 struct file_ra_state *ra;
291 unsigned long last_index;
293 ra = kzalloc(sizeof(*ra), GFP_NOFS);
297 file_ra_state_init(ra, inode->i_mapping);
298 last_index = (i_size_read(inode) - 1) >> PAGE_SHIFT;
300 page_cache_sync_readahead(inode->i_mapping, ra, NULL, 0, last_index);
307 static int io_ctl_init(struct btrfs_io_ctl *io_ctl, struct inode *inode,
308 struct btrfs_root *root, int write)
313 num_pages = DIV_ROUND_UP(i_size_read(inode), PAGE_SIZE);
315 if (btrfs_ino(inode) != BTRFS_FREE_INO_OBJECTID)
318 /* Make sure we can fit our crcs into the first page */
319 if (write && check_crcs &&
320 (num_pages * sizeof(u32)) >= PAGE_SIZE)
323 memset(io_ctl, 0, sizeof(struct btrfs_io_ctl));
325 io_ctl->pages = kcalloc(num_pages, sizeof(struct page *), GFP_NOFS);
329 io_ctl->num_pages = num_pages;
331 io_ctl->check_crcs = check_crcs;
332 io_ctl->inode = inode;
337 static void io_ctl_free(struct btrfs_io_ctl *io_ctl)
339 kfree(io_ctl->pages);
340 io_ctl->pages = NULL;
343 static void io_ctl_unmap_page(struct btrfs_io_ctl *io_ctl)
351 static void io_ctl_map_page(struct btrfs_io_ctl *io_ctl, int clear)
353 ASSERT(io_ctl->index < io_ctl->num_pages);
354 io_ctl->page = io_ctl->pages[io_ctl->index++];
355 io_ctl->cur = page_address(io_ctl->page);
356 io_ctl->orig = io_ctl->cur;
357 io_ctl->size = PAGE_SIZE;
359 memset(io_ctl->cur, 0, PAGE_SIZE);
362 static void io_ctl_drop_pages(struct btrfs_io_ctl *io_ctl)
366 io_ctl_unmap_page(io_ctl);
368 for (i = 0; i < io_ctl->num_pages; i++) {
369 if (io_ctl->pages[i]) {
370 ClearPageChecked(io_ctl->pages[i]);
371 unlock_page(io_ctl->pages[i]);
372 put_page(io_ctl->pages[i]);
377 static int io_ctl_prepare_pages(struct btrfs_io_ctl *io_ctl, struct inode *inode,
381 gfp_t mask = btrfs_alloc_write_mask(inode->i_mapping);
384 for (i = 0; i < io_ctl->num_pages; i++) {
385 page = find_or_create_page(inode->i_mapping, i, mask);
387 io_ctl_drop_pages(io_ctl);
390 io_ctl->pages[i] = page;
391 if (uptodate && !PageUptodate(page)) {
392 btrfs_readpage(NULL, page);
394 if (page->mapping != inode->i_mapping) {
395 btrfs_err(BTRFS_I(inode)->root->fs_info,
396 "free space cache page truncated");
397 io_ctl_drop_pages(io_ctl);
400 if (!PageUptodate(page)) {
401 btrfs_err(BTRFS_I(inode)->root->fs_info,
402 "error reading free space cache");
403 io_ctl_drop_pages(io_ctl);
409 for (i = 0; i < io_ctl->num_pages; i++) {
410 clear_page_dirty_for_io(io_ctl->pages[i]);
411 set_page_extent_mapped(io_ctl->pages[i]);
417 static void io_ctl_set_generation(struct btrfs_io_ctl *io_ctl, u64 generation)
421 io_ctl_map_page(io_ctl, 1);
424 * Skip the csum areas. If we don't check crcs then we just have a
425 * 64bit chunk at the front of the first page.
427 if (io_ctl->check_crcs) {
428 io_ctl->cur += (sizeof(u32) * io_ctl->num_pages);
429 io_ctl->size -= sizeof(u64) + (sizeof(u32) * io_ctl->num_pages);
431 io_ctl->cur += sizeof(u64);
432 io_ctl->size -= sizeof(u64) * 2;
436 *val = cpu_to_le64(generation);
437 io_ctl->cur += sizeof(u64);
440 static int io_ctl_check_generation(struct btrfs_io_ctl *io_ctl, u64 generation)
445 * Skip the crc area. If we don't check crcs then we just have a 64bit
446 * chunk at the front of the first page.
448 if (io_ctl->check_crcs) {
449 io_ctl->cur += sizeof(u32) * io_ctl->num_pages;
450 io_ctl->size -= sizeof(u64) +
451 (sizeof(u32) * io_ctl->num_pages);
453 io_ctl->cur += sizeof(u64);
454 io_ctl->size -= sizeof(u64) * 2;
458 if (le64_to_cpu(*gen) != generation) {
459 btrfs_err_rl(io_ctl->root->fs_info,
460 "space cache generation (%llu) does not match inode (%llu)",
462 io_ctl_unmap_page(io_ctl);
465 io_ctl->cur += sizeof(u64);
469 static void io_ctl_set_crc(struct btrfs_io_ctl *io_ctl, int index)
475 if (!io_ctl->check_crcs) {
476 io_ctl_unmap_page(io_ctl);
481 offset = sizeof(u32) * io_ctl->num_pages;
483 crc = btrfs_csum_data(io_ctl->orig + offset, crc,
485 btrfs_csum_final(crc, (char *)&crc);
486 io_ctl_unmap_page(io_ctl);
487 tmp = page_address(io_ctl->pages[0]);
492 static int io_ctl_check_crc(struct btrfs_io_ctl *io_ctl, int index)
498 if (!io_ctl->check_crcs) {
499 io_ctl_map_page(io_ctl, 0);
504 offset = sizeof(u32) * io_ctl->num_pages;
506 tmp = page_address(io_ctl->pages[0]);
510 io_ctl_map_page(io_ctl, 0);
511 crc = btrfs_csum_data(io_ctl->orig + offset, crc,
513 btrfs_csum_final(crc, (char *)&crc);
515 btrfs_err_rl(io_ctl->root->fs_info,
516 "csum mismatch on free space cache");
517 io_ctl_unmap_page(io_ctl);
524 static int io_ctl_add_entry(struct btrfs_io_ctl *io_ctl, u64 offset, u64 bytes,
527 struct btrfs_free_space_entry *entry;
533 entry->offset = cpu_to_le64(offset);
534 entry->bytes = cpu_to_le64(bytes);
535 entry->type = (bitmap) ? BTRFS_FREE_SPACE_BITMAP :
536 BTRFS_FREE_SPACE_EXTENT;
537 io_ctl->cur += sizeof(struct btrfs_free_space_entry);
538 io_ctl->size -= sizeof(struct btrfs_free_space_entry);
540 if (io_ctl->size >= sizeof(struct btrfs_free_space_entry))
543 io_ctl_set_crc(io_ctl, io_ctl->index - 1);
545 /* No more pages to map */
546 if (io_ctl->index >= io_ctl->num_pages)
549 /* map the next page */
550 io_ctl_map_page(io_ctl, 1);
554 static int io_ctl_add_bitmap(struct btrfs_io_ctl *io_ctl, void *bitmap)
560 * If we aren't at the start of the current page, unmap this one and
561 * map the next one if there is any left.
563 if (io_ctl->cur != io_ctl->orig) {
564 io_ctl_set_crc(io_ctl, io_ctl->index - 1);
565 if (io_ctl->index >= io_ctl->num_pages)
567 io_ctl_map_page(io_ctl, 0);
570 memcpy(io_ctl->cur, bitmap, PAGE_SIZE);
571 io_ctl_set_crc(io_ctl, io_ctl->index - 1);
572 if (io_ctl->index < io_ctl->num_pages)
573 io_ctl_map_page(io_ctl, 0);
577 static void io_ctl_zero_remaining_pages(struct btrfs_io_ctl *io_ctl)
580 * If we're not on the boundary we know we've modified the page and we
581 * need to crc the page.
583 if (io_ctl->cur != io_ctl->orig)
584 io_ctl_set_crc(io_ctl, io_ctl->index - 1);
586 io_ctl_unmap_page(io_ctl);
588 while (io_ctl->index < io_ctl->num_pages) {
589 io_ctl_map_page(io_ctl, 1);
590 io_ctl_set_crc(io_ctl, io_ctl->index - 1);
594 static int io_ctl_read_entry(struct btrfs_io_ctl *io_ctl,
595 struct btrfs_free_space *entry, u8 *type)
597 struct btrfs_free_space_entry *e;
601 ret = io_ctl_check_crc(io_ctl, io_ctl->index);
607 entry->offset = le64_to_cpu(e->offset);
608 entry->bytes = le64_to_cpu(e->bytes);
610 io_ctl->cur += sizeof(struct btrfs_free_space_entry);
611 io_ctl->size -= sizeof(struct btrfs_free_space_entry);
613 if (io_ctl->size >= sizeof(struct btrfs_free_space_entry))
616 io_ctl_unmap_page(io_ctl);
621 static int io_ctl_read_bitmap(struct btrfs_io_ctl *io_ctl,
622 struct btrfs_free_space *entry)
626 ret = io_ctl_check_crc(io_ctl, io_ctl->index);
630 memcpy(entry->bitmap, io_ctl->cur, PAGE_SIZE);
631 io_ctl_unmap_page(io_ctl);
637 * Since we attach pinned extents after the fact we can have contiguous sections
638 * of free space that are split up in entries. This poses a problem with the
639 * tree logging stuff since it could have allocated across what appears to be 2
640 * entries since we would have merged the entries when adding the pinned extents
641 * back to the free space cache. So run through the space cache that we just
642 * loaded and merge contiguous entries. This will make the log replay stuff not
643 * blow up and it will make for nicer allocator behavior.
645 static void merge_space_tree(struct btrfs_free_space_ctl *ctl)
647 struct btrfs_free_space *e, *prev = NULL;
651 spin_lock(&ctl->tree_lock);
652 for (n = rb_first(&ctl->free_space_offset); n; n = rb_next(n)) {
653 e = rb_entry(n, struct btrfs_free_space, offset_index);
656 if (e->bitmap || prev->bitmap)
658 if (prev->offset + prev->bytes == e->offset) {
659 unlink_free_space(ctl, prev);
660 unlink_free_space(ctl, e);
661 prev->bytes += e->bytes;
662 kmem_cache_free(btrfs_free_space_cachep, e);
663 link_free_space(ctl, prev);
665 spin_unlock(&ctl->tree_lock);
671 spin_unlock(&ctl->tree_lock);
674 static int __load_free_space_cache(struct btrfs_root *root, struct inode *inode,
675 struct btrfs_free_space_ctl *ctl,
676 struct btrfs_path *path, u64 offset)
678 struct btrfs_free_space_header *header;
679 struct extent_buffer *leaf;
680 struct btrfs_io_ctl io_ctl;
681 struct btrfs_key key;
682 struct btrfs_free_space *e, *n;
690 /* Nothing in the space cache, goodbye */
691 if (!i_size_read(inode))
694 key.objectid = BTRFS_FREE_SPACE_OBJECTID;
698 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
702 btrfs_release_path(path);
708 leaf = path->nodes[0];
709 header = btrfs_item_ptr(leaf, path->slots[0],
710 struct btrfs_free_space_header);
711 num_entries = btrfs_free_space_entries(leaf, header);
712 num_bitmaps = btrfs_free_space_bitmaps(leaf, header);
713 generation = btrfs_free_space_generation(leaf, header);
714 btrfs_release_path(path);
716 if (!BTRFS_I(inode)->generation) {
717 btrfs_info(root->fs_info,
718 "The free space cache file (%llu) is invalid. skip it\n",
723 if (BTRFS_I(inode)->generation != generation) {
724 btrfs_err(root->fs_info,
725 "free space inode generation (%llu) did not match free space cache generation (%llu)",
726 BTRFS_I(inode)->generation, generation);
733 ret = io_ctl_init(&io_ctl, inode, root, 0);
737 ret = readahead_cache(inode);
741 ret = io_ctl_prepare_pages(&io_ctl, inode, 1);
745 ret = io_ctl_check_crc(&io_ctl, 0);
749 ret = io_ctl_check_generation(&io_ctl, generation);
753 while (num_entries) {
754 e = kmem_cache_zalloc(btrfs_free_space_cachep,
761 ret = io_ctl_read_entry(&io_ctl, e, &type);
763 kmem_cache_free(btrfs_free_space_cachep, e);
769 kmem_cache_free(btrfs_free_space_cachep, e);
773 if (type == BTRFS_FREE_SPACE_EXTENT) {
774 spin_lock(&ctl->tree_lock);
775 ret = link_free_space(ctl, e);
776 spin_unlock(&ctl->tree_lock);
778 btrfs_err(root->fs_info,
779 "Duplicate entries in free space cache, dumping");
780 kmem_cache_free(btrfs_free_space_cachep, e);
786 e->bitmap = kzalloc(PAGE_SIZE, GFP_NOFS);
790 btrfs_free_space_cachep, e);
793 spin_lock(&ctl->tree_lock);
794 ret = link_free_space(ctl, e);
795 ctl->total_bitmaps++;
796 ctl->op->recalc_thresholds(ctl);
797 spin_unlock(&ctl->tree_lock);
799 btrfs_err(root->fs_info,
800 "Duplicate entries in free space cache, dumping");
801 kmem_cache_free(btrfs_free_space_cachep, e);
804 list_add_tail(&e->list, &bitmaps);
810 io_ctl_unmap_page(&io_ctl);
813 * We add the bitmaps at the end of the entries in order that
814 * the bitmap entries are added to the cache.
816 list_for_each_entry_safe(e, n, &bitmaps, list) {
817 list_del_init(&e->list);
818 ret = io_ctl_read_bitmap(&io_ctl, e);
823 io_ctl_drop_pages(&io_ctl);
824 merge_space_tree(ctl);
827 io_ctl_free(&io_ctl);
830 io_ctl_drop_pages(&io_ctl);
831 __btrfs_remove_free_space_cache(ctl);
835 int load_free_space_cache(struct btrfs_fs_info *fs_info,
836 struct btrfs_block_group_cache *block_group)
838 struct btrfs_free_space_ctl *ctl = block_group->free_space_ctl;
839 struct btrfs_root *root = fs_info->tree_root;
841 struct btrfs_path *path;
844 u64 used = btrfs_block_group_used(&block_group->item);
847 * If this block group has been marked to be cleared for one reason or
848 * another then we can't trust the on disk cache, so just return.
850 spin_lock(&block_group->lock);
851 if (block_group->disk_cache_state != BTRFS_DC_WRITTEN) {
852 spin_unlock(&block_group->lock);
855 spin_unlock(&block_group->lock);
857 path = btrfs_alloc_path();
860 path->search_commit_root = 1;
861 path->skip_locking = 1;
863 inode = lookup_free_space_inode(root, block_group, path);
865 btrfs_free_path(path);
869 /* We may have converted the inode and made the cache invalid. */
870 spin_lock(&block_group->lock);
871 if (block_group->disk_cache_state != BTRFS_DC_WRITTEN) {
872 spin_unlock(&block_group->lock);
873 btrfs_free_path(path);
876 spin_unlock(&block_group->lock);
878 ret = __load_free_space_cache(fs_info->tree_root, inode, ctl,
879 path, block_group->key.objectid);
880 btrfs_free_path(path);
884 spin_lock(&ctl->tree_lock);
885 matched = (ctl->free_space == (block_group->key.offset - used -
886 block_group->bytes_super));
887 spin_unlock(&ctl->tree_lock);
890 __btrfs_remove_free_space_cache(ctl);
892 "block group %llu has wrong amount of free space",
893 block_group->key.objectid);
898 /* This cache is bogus, make sure it gets cleared */
899 spin_lock(&block_group->lock);
900 block_group->disk_cache_state = BTRFS_DC_CLEAR;
901 spin_unlock(&block_group->lock);
905 "failed to load free space cache for block group %llu, rebuilding it now",
906 block_group->key.objectid);
913 static noinline_for_stack
914 int write_cache_extent_entries(struct btrfs_io_ctl *io_ctl,
915 struct btrfs_free_space_ctl *ctl,
916 struct btrfs_block_group_cache *block_group,
917 int *entries, int *bitmaps,
918 struct list_head *bitmap_list)
921 struct btrfs_free_cluster *cluster = NULL;
922 struct btrfs_free_cluster *cluster_locked = NULL;
923 struct rb_node *node = rb_first(&ctl->free_space_offset);
924 struct btrfs_trim_range *trim_entry;
926 /* Get the cluster for this block_group if it exists */
927 if (block_group && !list_empty(&block_group->cluster_list)) {
928 cluster = list_entry(block_group->cluster_list.next,
929 struct btrfs_free_cluster,
933 if (!node && cluster) {
934 cluster_locked = cluster;
935 spin_lock(&cluster_locked->lock);
936 node = rb_first(&cluster->root);
940 /* Write out the extent entries */
942 struct btrfs_free_space *e;
944 e = rb_entry(node, struct btrfs_free_space, offset_index);
947 ret = io_ctl_add_entry(io_ctl, e->offset, e->bytes,
953 list_add_tail(&e->list, bitmap_list);
956 node = rb_next(node);
957 if (!node && cluster) {
958 node = rb_first(&cluster->root);
959 cluster_locked = cluster;
960 spin_lock(&cluster_locked->lock);
964 if (cluster_locked) {
965 spin_unlock(&cluster_locked->lock);
966 cluster_locked = NULL;
970 * Make sure we don't miss any range that was removed from our rbtree
971 * because trimming is running. Otherwise after a umount+mount (or crash
972 * after committing the transaction) we would leak free space and get
973 * an inconsistent free space cache report from fsck.
975 list_for_each_entry(trim_entry, &ctl->trimming_ranges, list) {
976 ret = io_ctl_add_entry(io_ctl, trim_entry->start,
977 trim_entry->bytes, NULL);
986 spin_unlock(&cluster_locked->lock);
990 static noinline_for_stack int
991 update_cache_item(struct btrfs_trans_handle *trans,
992 struct btrfs_root *root,
994 struct btrfs_path *path, u64 offset,
995 int entries, int bitmaps)
997 struct btrfs_key key;
998 struct btrfs_free_space_header *header;
999 struct extent_buffer *leaf;
1002 key.objectid = BTRFS_FREE_SPACE_OBJECTID;
1003 key.offset = offset;
1006 ret = btrfs_search_slot(trans, root, &key, path, 0, 1);
1008 clear_extent_bit(&BTRFS_I(inode)->io_tree, 0, inode->i_size - 1,
1009 EXTENT_DIRTY | EXTENT_DELALLOC, 0, 0, NULL,
1013 leaf = path->nodes[0];
1015 struct btrfs_key found_key;
1016 ASSERT(path->slots[0]);
1018 btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]);
1019 if (found_key.objectid != BTRFS_FREE_SPACE_OBJECTID ||
1020 found_key.offset != offset) {
1021 clear_extent_bit(&BTRFS_I(inode)->io_tree, 0,
1023 EXTENT_DIRTY | EXTENT_DELALLOC, 0, 0,
1025 btrfs_release_path(path);
1030 BTRFS_I(inode)->generation = trans->transid;
1031 header = btrfs_item_ptr(leaf, path->slots[0],
1032 struct btrfs_free_space_header);
1033 btrfs_set_free_space_entries(leaf, header, entries);
1034 btrfs_set_free_space_bitmaps(leaf, header, bitmaps);
1035 btrfs_set_free_space_generation(leaf, header, trans->transid);
1036 btrfs_mark_buffer_dirty(leaf);
1037 btrfs_release_path(path);
1045 static noinline_for_stack int
1046 write_pinned_extent_entries(struct btrfs_root *root,
1047 struct btrfs_block_group_cache *block_group,
1048 struct btrfs_io_ctl *io_ctl,
1051 u64 start, extent_start, extent_end, len;
1052 struct extent_io_tree *unpin = NULL;
1059 * We want to add any pinned extents to our free space cache
1060 * so we don't leak the space
1062 * We shouldn't have switched the pinned extents yet so this is the
1065 unpin = root->fs_info->pinned_extents;
1067 start = block_group->key.objectid;
1069 while (start < block_group->key.objectid + block_group->key.offset) {
1070 ret = find_first_extent_bit(unpin, start,
1071 &extent_start, &extent_end,
1072 EXTENT_DIRTY, NULL);
1076 /* This pinned extent is out of our range */
1077 if (extent_start >= block_group->key.objectid +
1078 block_group->key.offset)
1081 extent_start = max(extent_start, start);
1082 extent_end = min(block_group->key.objectid +
1083 block_group->key.offset, extent_end + 1);
1084 len = extent_end - extent_start;
1087 ret = io_ctl_add_entry(io_ctl, extent_start, len, NULL);
1097 static noinline_for_stack int
1098 write_bitmap_entries(struct btrfs_io_ctl *io_ctl, struct list_head *bitmap_list)
1100 struct btrfs_free_space *entry, *next;
1103 /* Write out the bitmaps */
1104 list_for_each_entry_safe(entry, next, bitmap_list, list) {
1105 ret = io_ctl_add_bitmap(io_ctl, entry->bitmap);
1108 list_del_init(&entry->list);
1114 static int flush_dirty_cache(struct inode *inode)
1118 ret = btrfs_wait_ordered_range(inode, 0, (u64)-1);
1120 clear_extent_bit(&BTRFS_I(inode)->io_tree, 0, inode->i_size - 1,
1121 EXTENT_DIRTY | EXTENT_DELALLOC, 0, 0, NULL,
1127 static void noinline_for_stack
1128 cleanup_bitmap_list(struct list_head *bitmap_list)
1130 struct btrfs_free_space *entry, *next;
1132 list_for_each_entry_safe(entry, next, bitmap_list, list)
1133 list_del_init(&entry->list);
1136 static void noinline_for_stack
1137 cleanup_write_cache_enospc(struct inode *inode,
1138 struct btrfs_io_ctl *io_ctl,
1139 struct extent_state **cached_state,
1140 struct list_head *bitmap_list)
1142 io_ctl_drop_pages(io_ctl);
1143 unlock_extent_cached(&BTRFS_I(inode)->io_tree, 0,
1144 i_size_read(inode) - 1, cached_state,
1148 int btrfs_wait_cache_io(struct btrfs_root *root,
1149 struct btrfs_trans_handle *trans,
1150 struct btrfs_block_group_cache *block_group,
1151 struct btrfs_io_ctl *io_ctl,
1152 struct btrfs_path *path, u64 offset)
1155 struct inode *inode = io_ctl->inode;
1161 root = root->fs_info->tree_root;
1163 /* Flush the dirty pages in the cache file. */
1164 ret = flush_dirty_cache(inode);
1168 /* Update the cache item to tell everyone this cache file is valid. */
1169 ret = update_cache_item(trans, root, inode, path, offset,
1170 io_ctl->entries, io_ctl->bitmaps);
1173 invalidate_inode_pages2(inode->i_mapping);
1174 BTRFS_I(inode)->generation = 0;
1177 btrfs_err(root->fs_info,
1178 "failed to write free space cache for block group %llu",
1179 block_group->key.objectid);
1183 btrfs_update_inode(trans, root, inode);
1186 /* the dirty list is protected by the dirty_bgs_lock */
1187 spin_lock(&trans->transaction->dirty_bgs_lock);
1189 /* the disk_cache_state is protected by the block group lock */
1190 spin_lock(&block_group->lock);
1193 * only mark this as written if we didn't get put back on
1194 * the dirty list while waiting for IO. Otherwise our
1195 * cache state won't be right, and we won't get written again
1197 if (!ret && list_empty(&block_group->dirty_list))
1198 block_group->disk_cache_state = BTRFS_DC_WRITTEN;
1200 block_group->disk_cache_state = BTRFS_DC_ERROR;
1202 spin_unlock(&block_group->lock);
1203 spin_unlock(&trans->transaction->dirty_bgs_lock);
1204 io_ctl->inode = NULL;
1213 * __btrfs_write_out_cache - write out cached info to an inode
1214 * @root - the root the inode belongs to
1215 * @ctl - the free space cache we are going to write out
1216 * @block_group - the block_group for this cache if it belongs to a block_group
1217 * @trans - the trans handle
1218 * @path - the path to use
1219 * @offset - the offset for the key we'll insert
1221 * This function writes out a free space cache struct to disk for quick recovery
1222 * on mount. This will return 0 if it was successful in writing the cache out,
1223 * or an errno if it was not.
1225 static int __btrfs_write_out_cache(struct btrfs_root *root, struct inode *inode,
1226 struct btrfs_free_space_ctl *ctl,
1227 struct btrfs_block_group_cache *block_group,
1228 struct btrfs_io_ctl *io_ctl,
1229 struct btrfs_trans_handle *trans,
1230 struct btrfs_path *path, u64 offset)
1232 struct extent_state *cached_state = NULL;
1233 LIST_HEAD(bitmap_list);
1239 if (!i_size_read(inode))
1242 WARN_ON(io_ctl->pages);
1243 ret = io_ctl_init(io_ctl, inode, root, 1);
1247 if (block_group && (block_group->flags & BTRFS_BLOCK_GROUP_DATA)) {
1248 down_write(&block_group->data_rwsem);
1249 spin_lock(&block_group->lock);
1250 if (block_group->delalloc_bytes) {
1251 block_group->disk_cache_state = BTRFS_DC_WRITTEN;
1252 spin_unlock(&block_group->lock);
1253 up_write(&block_group->data_rwsem);
1254 BTRFS_I(inode)->generation = 0;
1259 spin_unlock(&block_group->lock);
1262 /* Lock all pages first so we can lock the extent safely. */
1263 ret = io_ctl_prepare_pages(io_ctl, inode, 0);
1267 lock_extent_bits(&BTRFS_I(inode)->io_tree, 0, i_size_read(inode) - 1,
1270 io_ctl_set_generation(io_ctl, trans->transid);
1272 mutex_lock(&ctl->cache_writeout_mutex);
1273 /* Write out the extent entries in the free space cache */
1274 spin_lock(&ctl->tree_lock);
1275 ret = write_cache_extent_entries(io_ctl, ctl,
1276 block_group, &entries, &bitmaps,
1279 goto out_nospc_locked;
1282 * Some spaces that are freed in the current transaction are pinned,
1283 * they will be added into free space cache after the transaction is
1284 * committed, we shouldn't lose them.
1286 * If this changes while we are working we'll get added back to
1287 * the dirty list and redo it. No locking needed
1289 ret = write_pinned_extent_entries(root, block_group, io_ctl, &entries);
1291 goto out_nospc_locked;
1294 * At last, we write out all the bitmaps and keep cache_writeout_mutex
1295 * locked while doing it because a concurrent trim can be manipulating
1296 * or freeing the bitmap.
1298 ret = write_bitmap_entries(io_ctl, &bitmap_list);
1299 spin_unlock(&ctl->tree_lock);
1300 mutex_unlock(&ctl->cache_writeout_mutex);
1304 /* Zero out the rest of the pages just to make sure */
1305 io_ctl_zero_remaining_pages(io_ctl);
1307 /* Everything is written out, now we dirty the pages in the file. */
1308 ret = btrfs_dirty_pages(root, inode, io_ctl->pages, io_ctl->num_pages,
1309 0, i_size_read(inode), &cached_state);
1313 if (block_group && (block_group->flags & BTRFS_BLOCK_GROUP_DATA))
1314 up_write(&block_group->data_rwsem);
1316 * Release the pages and unlock the extent, we will flush
1319 io_ctl_drop_pages(io_ctl);
1320 io_ctl_free(io_ctl);
1322 unlock_extent_cached(&BTRFS_I(inode)->io_tree, 0,
1323 i_size_read(inode) - 1, &cached_state, GFP_NOFS);
1326 * at this point the pages are under IO and we're happy,
1327 * The caller is responsible for waiting on them and updating the
1328 * the cache and the inode
1330 io_ctl->entries = entries;
1331 io_ctl->bitmaps = bitmaps;
1333 ret = btrfs_fdatawrite_range(inode, 0, (u64)-1);
1340 io_ctl->inode = NULL;
1341 io_ctl_free(io_ctl);
1343 invalidate_inode_pages2(inode->i_mapping);
1344 BTRFS_I(inode)->generation = 0;
1346 btrfs_update_inode(trans, root, inode);
1352 cleanup_bitmap_list(&bitmap_list);
1353 spin_unlock(&ctl->tree_lock);
1354 mutex_unlock(&ctl->cache_writeout_mutex);
1357 cleanup_write_cache_enospc(inode, io_ctl, &cached_state, &bitmap_list);
1360 if (block_group && (block_group->flags & BTRFS_BLOCK_GROUP_DATA))
1361 up_write(&block_group->data_rwsem);
1366 int btrfs_write_out_cache(struct btrfs_root *root,
1367 struct btrfs_trans_handle *trans,
1368 struct btrfs_block_group_cache *block_group,
1369 struct btrfs_path *path)
1371 struct btrfs_free_space_ctl *ctl = block_group->free_space_ctl;
1372 struct inode *inode;
1375 root = root->fs_info->tree_root;
1377 spin_lock(&block_group->lock);
1378 if (block_group->disk_cache_state < BTRFS_DC_SETUP) {
1379 spin_unlock(&block_group->lock);
1382 spin_unlock(&block_group->lock);
1384 inode = lookup_free_space_inode(root, block_group, path);
1388 ret = __btrfs_write_out_cache(root, inode, ctl, block_group,
1389 &block_group->io_ctl, trans,
1390 path, block_group->key.objectid);
1393 btrfs_err(root->fs_info,
1394 "failed to write free space cache for block group %llu",
1395 block_group->key.objectid);
1397 spin_lock(&block_group->lock);
1398 block_group->disk_cache_state = BTRFS_DC_ERROR;
1399 spin_unlock(&block_group->lock);
1401 block_group->io_ctl.inode = NULL;
1406 * if ret == 0 the caller is expected to call btrfs_wait_cache_io
1407 * to wait for IO and put the inode
1413 static inline unsigned long offset_to_bit(u64 bitmap_start, u32 unit,
1416 ASSERT(offset >= bitmap_start);
1417 offset -= bitmap_start;
1418 return (unsigned long)(div_u64(offset, unit));
1421 static inline unsigned long bytes_to_bits(u64 bytes, u32 unit)
1423 return (unsigned long)(div_u64(bytes, unit));
1426 static inline u64 offset_to_bitmap(struct btrfs_free_space_ctl *ctl,
1430 u64 bytes_per_bitmap;
1432 bytes_per_bitmap = BITS_PER_BITMAP * ctl->unit;
1433 bitmap_start = offset - ctl->start;
1434 bitmap_start = div64_u64(bitmap_start, bytes_per_bitmap);
1435 bitmap_start *= bytes_per_bitmap;
1436 bitmap_start += ctl->start;
1438 return bitmap_start;
1441 static int tree_insert_offset(struct rb_root *root, u64 offset,
1442 struct rb_node *node, int bitmap)
1444 struct rb_node **p = &root->rb_node;
1445 struct rb_node *parent = NULL;
1446 struct btrfs_free_space *info;
1450 info = rb_entry(parent, struct btrfs_free_space, offset_index);
1452 if (offset < info->offset) {
1454 } else if (offset > info->offset) {
1455 p = &(*p)->rb_right;
1458 * we could have a bitmap entry and an extent entry
1459 * share the same offset. If this is the case, we want
1460 * the extent entry to always be found first if we do a
1461 * linear search through the tree, since we want to have
1462 * the quickest allocation time, and allocating from an
1463 * extent is faster than allocating from a bitmap. So
1464 * if we're inserting a bitmap and we find an entry at
1465 * this offset, we want to go right, or after this entry
1466 * logically. If we are inserting an extent and we've
1467 * found a bitmap, we want to go left, or before
1475 p = &(*p)->rb_right;
1477 if (!info->bitmap) {
1486 rb_link_node(node, parent, p);
1487 rb_insert_color(node, root);
1493 * searches the tree for the given offset.
1495 * fuzzy - If this is set, then we are trying to make an allocation, and we just
1496 * want a section that has at least bytes size and comes at or after the given
1499 static struct btrfs_free_space *
1500 tree_search_offset(struct btrfs_free_space_ctl *ctl,
1501 u64 offset, int bitmap_only, int fuzzy)
1503 struct rb_node *n = ctl->free_space_offset.rb_node;
1504 struct btrfs_free_space *entry, *prev = NULL;
1506 /* find entry that is closest to the 'offset' */
1513 entry = rb_entry(n, struct btrfs_free_space, offset_index);
1516 if (offset < entry->offset)
1518 else if (offset > entry->offset)
1531 * bitmap entry and extent entry may share same offset,
1532 * in that case, bitmap entry comes after extent entry.
1537 entry = rb_entry(n, struct btrfs_free_space, offset_index);
1538 if (entry->offset != offset)
1541 WARN_ON(!entry->bitmap);
1544 if (entry->bitmap) {
1546 * if previous extent entry covers the offset,
1547 * we should return it instead of the bitmap entry
1549 n = rb_prev(&entry->offset_index);
1551 prev = rb_entry(n, struct btrfs_free_space,
1553 if (!prev->bitmap &&
1554 prev->offset + prev->bytes > offset)
1564 /* find last entry before the 'offset' */
1566 if (entry->offset > offset) {
1567 n = rb_prev(&entry->offset_index);
1569 entry = rb_entry(n, struct btrfs_free_space,
1571 ASSERT(entry->offset <= offset);
1580 if (entry->bitmap) {
1581 n = rb_prev(&entry->offset_index);
1583 prev = rb_entry(n, struct btrfs_free_space,
1585 if (!prev->bitmap &&
1586 prev->offset + prev->bytes > offset)
1589 if (entry->offset + BITS_PER_BITMAP * ctl->unit > offset)
1591 } else if (entry->offset + entry->bytes > offset)
1598 if (entry->bitmap) {
1599 if (entry->offset + BITS_PER_BITMAP *
1603 if (entry->offset + entry->bytes > offset)
1607 n = rb_next(&entry->offset_index);
1610 entry = rb_entry(n, struct btrfs_free_space, offset_index);
1616 __unlink_free_space(struct btrfs_free_space_ctl *ctl,
1617 struct btrfs_free_space *info)
1619 rb_erase(&info->offset_index, &ctl->free_space_offset);
1620 ctl->free_extents--;
1623 static void unlink_free_space(struct btrfs_free_space_ctl *ctl,
1624 struct btrfs_free_space *info)
1626 __unlink_free_space(ctl, info);
1627 ctl->free_space -= info->bytes;
1630 static int link_free_space(struct btrfs_free_space_ctl *ctl,
1631 struct btrfs_free_space *info)
1635 ASSERT(info->bytes || info->bitmap);
1636 ret = tree_insert_offset(&ctl->free_space_offset, info->offset,
1637 &info->offset_index, (info->bitmap != NULL));
1641 ctl->free_space += info->bytes;
1642 ctl->free_extents++;
1646 static void recalculate_thresholds(struct btrfs_free_space_ctl *ctl)
1648 struct btrfs_block_group_cache *block_group = ctl->private;
1652 u64 size = block_group->key.offset;
1653 u64 bytes_per_bg = BITS_PER_BITMAP * ctl->unit;
1654 u64 max_bitmaps = div64_u64(size + bytes_per_bg - 1, bytes_per_bg);
1656 max_bitmaps = max_t(u64, max_bitmaps, 1);
1658 ASSERT(ctl->total_bitmaps <= max_bitmaps);
1661 * The goal is to keep the total amount of memory used per 1gb of space
1662 * at or below 32k, so we need to adjust how much memory we allow to be
1663 * used by extent based free space tracking
1666 max_bytes = MAX_CACHE_BYTES_PER_GIG;
1668 max_bytes = MAX_CACHE_BYTES_PER_GIG * div_u64(size, SZ_1G);
1671 * we want to account for 1 more bitmap than what we have so we can make
1672 * sure we don't go over our overall goal of MAX_CACHE_BYTES_PER_GIG as
1673 * we add more bitmaps.
1675 bitmap_bytes = (ctl->total_bitmaps + 1) * ctl->unit;
1677 if (bitmap_bytes >= max_bytes) {
1678 ctl->extents_thresh = 0;
1683 * we want the extent entry threshold to always be at most 1/2 the max
1684 * bytes we can have, or whatever is less than that.
1686 extent_bytes = max_bytes - bitmap_bytes;
1687 extent_bytes = min_t(u64, extent_bytes, max_bytes >> 1);
1689 ctl->extents_thresh =
1690 div_u64(extent_bytes, sizeof(struct btrfs_free_space));
1693 static inline void __bitmap_clear_bits(struct btrfs_free_space_ctl *ctl,
1694 struct btrfs_free_space *info,
1695 u64 offset, u64 bytes)
1697 unsigned long start, count;
1699 start = offset_to_bit(info->offset, ctl->unit, offset);
1700 count = bytes_to_bits(bytes, ctl->unit);
1701 ASSERT(start + count <= BITS_PER_BITMAP);
1703 bitmap_clear(info->bitmap, start, count);
1705 info->bytes -= bytes;
1706 if (info->max_extent_size > ctl->unit)
1707 info->max_extent_size = 0;
1710 static void bitmap_clear_bits(struct btrfs_free_space_ctl *ctl,
1711 struct btrfs_free_space *info, u64 offset,
1714 __bitmap_clear_bits(ctl, info, offset, bytes);
1715 ctl->free_space -= bytes;
1718 static void bitmap_set_bits(struct btrfs_free_space_ctl *ctl,
1719 struct btrfs_free_space *info, u64 offset,
1722 unsigned long start, count;
1724 start = offset_to_bit(info->offset, ctl->unit, offset);
1725 count = bytes_to_bits(bytes, ctl->unit);
1726 ASSERT(start + count <= BITS_PER_BITMAP);
1728 bitmap_set(info->bitmap, start, count);
1730 info->bytes += bytes;
1731 ctl->free_space += bytes;
1735 * If we can not find suitable extent, we will use bytes to record
1736 * the size of the max extent.
1738 static int search_bitmap(struct btrfs_free_space_ctl *ctl,
1739 struct btrfs_free_space *bitmap_info, u64 *offset,
1740 u64 *bytes, bool for_alloc)
1742 unsigned long found_bits = 0;
1743 unsigned long max_bits = 0;
1744 unsigned long bits, i;
1745 unsigned long next_zero;
1746 unsigned long extent_bits;
1749 * Skip searching the bitmap if we don't have a contiguous section that
1750 * is large enough for this allocation.
1753 bitmap_info->max_extent_size &&
1754 bitmap_info->max_extent_size < *bytes) {
1755 *bytes = bitmap_info->max_extent_size;
1759 i = offset_to_bit(bitmap_info->offset, ctl->unit,
1760 max_t(u64, *offset, bitmap_info->offset));
1761 bits = bytes_to_bits(*bytes, ctl->unit);
1763 for_each_set_bit_from(i, bitmap_info->bitmap, BITS_PER_BITMAP) {
1764 if (for_alloc && bits == 1) {
1768 next_zero = find_next_zero_bit(bitmap_info->bitmap,
1769 BITS_PER_BITMAP, i);
1770 extent_bits = next_zero - i;
1771 if (extent_bits >= bits) {
1772 found_bits = extent_bits;
1774 } else if (extent_bits > max_bits) {
1775 max_bits = extent_bits;
1781 *offset = (u64)(i * ctl->unit) + bitmap_info->offset;
1782 *bytes = (u64)(found_bits) * ctl->unit;
1786 *bytes = (u64)(max_bits) * ctl->unit;
1787 bitmap_info->max_extent_size = *bytes;
1791 static inline u64 get_max_extent_size(struct btrfs_free_space *entry)
1794 return entry->max_extent_size;
1795 return entry->bytes;
1798 /* Cache the size of the max extent in bytes */
1799 static struct btrfs_free_space *
1800 find_free_space(struct btrfs_free_space_ctl *ctl, u64 *offset, u64 *bytes,
1801 unsigned long align, u64 *max_extent_size)
1803 struct btrfs_free_space *entry;
1804 struct rb_node *node;
1809 if (!ctl->free_space_offset.rb_node)
1812 entry = tree_search_offset(ctl, offset_to_bitmap(ctl, *offset), 0, 1);
1816 for (node = &entry->offset_index; node; node = rb_next(node)) {
1817 entry = rb_entry(node, struct btrfs_free_space, offset_index);
1818 if (entry->bytes < *bytes) {
1819 *max_extent_size = max(get_max_extent_size(entry),
1824 /* make sure the space returned is big enough
1825 * to match our requested alignment
1827 if (*bytes >= align) {
1828 tmp = entry->offset - ctl->start + align - 1;
1829 tmp = div64_u64(tmp, align);
1830 tmp = tmp * align + ctl->start;
1831 align_off = tmp - entry->offset;
1834 tmp = entry->offset;
1837 if (entry->bytes < *bytes + align_off) {
1838 *max_extent_size = max(get_max_extent_size(entry),
1843 if (entry->bitmap) {
1846 ret = search_bitmap(ctl, entry, &tmp, &size, true);
1853 max(get_max_extent_size(entry),
1860 *bytes = entry->bytes - align_off;
1867 static void add_new_bitmap(struct btrfs_free_space_ctl *ctl,
1868 struct btrfs_free_space *info, u64 offset)
1870 info->offset = offset_to_bitmap(ctl, offset);
1872 INIT_LIST_HEAD(&info->list);
1873 link_free_space(ctl, info);
1874 ctl->total_bitmaps++;
1876 ctl->op->recalc_thresholds(ctl);
1879 static void free_bitmap(struct btrfs_free_space_ctl *ctl,
1880 struct btrfs_free_space *bitmap_info)
1882 unlink_free_space(ctl, bitmap_info);
1883 kfree(bitmap_info->bitmap);
1884 kmem_cache_free(btrfs_free_space_cachep, bitmap_info);
1885 ctl->total_bitmaps--;
1886 ctl->op->recalc_thresholds(ctl);
1889 static noinline int remove_from_bitmap(struct btrfs_free_space_ctl *ctl,
1890 struct btrfs_free_space *bitmap_info,
1891 u64 *offset, u64 *bytes)
1894 u64 search_start, search_bytes;
1898 end = bitmap_info->offset + (u64)(BITS_PER_BITMAP * ctl->unit) - 1;
1901 * We need to search for bits in this bitmap. We could only cover some
1902 * of the extent in this bitmap thanks to how we add space, so we need
1903 * to search for as much as it as we can and clear that amount, and then
1904 * go searching for the next bit.
1906 search_start = *offset;
1907 search_bytes = ctl->unit;
1908 search_bytes = min(search_bytes, end - search_start + 1);
1909 ret = search_bitmap(ctl, bitmap_info, &search_start, &search_bytes,
1911 if (ret < 0 || search_start != *offset)
1914 /* We may have found more bits than what we need */
1915 search_bytes = min(search_bytes, *bytes);
1917 /* Cannot clear past the end of the bitmap */
1918 search_bytes = min(search_bytes, end - search_start + 1);
1920 bitmap_clear_bits(ctl, bitmap_info, search_start, search_bytes);
1921 *offset += search_bytes;
1922 *bytes -= search_bytes;
1925 struct rb_node *next = rb_next(&bitmap_info->offset_index);
1926 if (!bitmap_info->bytes)
1927 free_bitmap(ctl, bitmap_info);
1930 * no entry after this bitmap, but we still have bytes to
1931 * remove, so something has gone wrong.
1936 bitmap_info = rb_entry(next, struct btrfs_free_space,
1940 * if the next entry isn't a bitmap we need to return to let the
1941 * extent stuff do its work.
1943 if (!bitmap_info->bitmap)
1947 * Ok the next item is a bitmap, but it may not actually hold
1948 * the information for the rest of this free space stuff, so
1949 * look for it, and if we don't find it return so we can try
1950 * everything over again.
1952 search_start = *offset;
1953 search_bytes = ctl->unit;
1954 ret = search_bitmap(ctl, bitmap_info, &search_start,
1955 &search_bytes, false);
1956 if (ret < 0 || search_start != *offset)
1960 } else if (!bitmap_info->bytes)
1961 free_bitmap(ctl, bitmap_info);
1966 static u64 add_bytes_to_bitmap(struct btrfs_free_space_ctl *ctl,
1967 struct btrfs_free_space *info, u64 offset,
1970 u64 bytes_to_set = 0;
1973 end = info->offset + (u64)(BITS_PER_BITMAP * ctl->unit);
1975 bytes_to_set = min(end - offset, bytes);
1977 bitmap_set_bits(ctl, info, offset, bytes_to_set);
1980 * We set some bytes, we have no idea what the max extent size is
1983 info->max_extent_size = 0;
1985 return bytes_to_set;
1989 static bool use_bitmap(struct btrfs_free_space_ctl *ctl,
1990 struct btrfs_free_space *info)
1992 struct btrfs_block_group_cache *block_group = ctl->private;
1993 bool forced = false;
1995 #ifdef CONFIG_BTRFS_DEBUG
1996 if (btrfs_should_fragment_free_space(block_group->fs_info->extent_root,
2002 * If we are below the extents threshold then we can add this as an
2003 * extent, and don't have to deal with the bitmap
2005 if (!forced && ctl->free_extents < ctl->extents_thresh) {
2007 * If this block group has some small extents we don't want to
2008 * use up all of our free slots in the cache with them, we want
2009 * to reserve them to larger extents, however if we have plenty
2010 * of cache left then go ahead an dadd them, no sense in adding
2011 * the overhead of a bitmap if we don't have to.
2013 if (info->bytes <= block_group->sectorsize * 4) {
2014 if (ctl->free_extents * 2 <= ctl->extents_thresh)
2022 * The original block groups from mkfs can be really small, like 8
2023 * megabytes, so don't bother with a bitmap for those entries. However
2024 * some block groups can be smaller than what a bitmap would cover but
2025 * are still large enough that they could overflow the 32k memory limit,
2026 * so allow those block groups to still be allowed to have a bitmap
2029 if (((BITS_PER_BITMAP * ctl->unit) >> 1) > block_group->key.offset)
2035 static const struct btrfs_free_space_op free_space_op = {
2036 .recalc_thresholds = recalculate_thresholds,
2037 .use_bitmap = use_bitmap,
2040 static int insert_into_bitmap(struct btrfs_free_space_ctl *ctl,
2041 struct btrfs_free_space *info)
2043 struct btrfs_free_space *bitmap_info;
2044 struct btrfs_block_group_cache *block_group = NULL;
2046 u64 bytes, offset, bytes_added;
2049 bytes = info->bytes;
2050 offset = info->offset;
2052 if (!ctl->op->use_bitmap(ctl, info))
2055 if (ctl->op == &free_space_op)
2056 block_group = ctl->private;
2059 * Since we link bitmaps right into the cluster we need to see if we
2060 * have a cluster here, and if so and it has our bitmap we need to add
2061 * the free space to that bitmap.
2063 if (block_group && !list_empty(&block_group->cluster_list)) {
2064 struct btrfs_free_cluster *cluster;
2065 struct rb_node *node;
2066 struct btrfs_free_space *entry;
2068 cluster = list_entry(block_group->cluster_list.next,
2069 struct btrfs_free_cluster,
2071 spin_lock(&cluster->lock);
2072 node = rb_first(&cluster->root);
2074 spin_unlock(&cluster->lock);
2075 goto no_cluster_bitmap;
2078 entry = rb_entry(node, struct btrfs_free_space, offset_index);
2079 if (!entry->bitmap) {
2080 spin_unlock(&cluster->lock);
2081 goto no_cluster_bitmap;
2084 if (entry->offset == offset_to_bitmap(ctl, offset)) {
2085 bytes_added = add_bytes_to_bitmap(ctl, entry,
2087 bytes -= bytes_added;
2088 offset += bytes_added;
2090 spin_unlock(&cluster->lock);
2098 bitmap_info = tree_search_offset(ctl, offset_to_bitmap(ctl, offset),
2105 bytes_added = add_bytes_to_bitmap(ctl, bitmap_info, offset, bytes);
2106 bytes -= bytes_added;
2107 offset += bytes_added;
2117 if (info && info->bitmap) {
2118 add_new_bitmap(ctl, info, offset);
2123 spin_unlock(&ctl->tree_lock);
2125 /* no pre-allocated info, allocate a new one */
2127 info = kmem_cache_zalloc(btrfs_free_space_cachep,
2130 spin_lock(&ctl->tree_lock);
2136 /* allocate the bitmap */
2137 info->bitmap = kzalloc(PAGE_SIZE, GFP_NOFS);
2138 spin_lock(&ctl->tree_lock);
2139 if (!info->bitmap) {
2149 kfree(info->bitmap);
2150 kmem_cache_free(btrfs_free_space_cachep, info);
2156 static bool try_merge_free_space(struct btrfs_free_space_ctl *ctl,
2157 struct btrfs_free_space *info, bool update_stat)
2159 struct btrfs_free_space *left_info = NULL;
2160 struct btrfs_free_space *right_info;
2161 bool merged = false;
2162 u64 offset = info->offset;
2163 u64 bytes = info->bytes;
2166 * first we want to see if there is free space adjacent to the range we
2167 * are adding, if there is remove that struct and add a new one to
2168 * cover the entire range
2170 right_info = tree_search_offset(ctl, offset + bytes, 0, 0);
2171 if (right_info && rb_prev(&right_info->offset_index))
2172 left_info = rb_entry(rb_prev(&right_info->offset_index),
2173 struct btrfs_free_space, offset_index);
2174 else if (!right_info)
2175 left_info = tree_search_offset(ctl, offset - 1, 0, 0);
2177 if (right_info && !right_info->bitmap) {
2179 unlink_free_space(ctl, right_info);
2181 __unlink_free_space(ctl, right_info);
2182 info->bytes += right_info->bytes;
2183 kmem_cache_free(btrfs_free_space_cachep, right_info);
2187 if (left_info && !left_info->bitmap &&
2188 left_info->offset + left_info->bytes == offset) {
2190 unlink_free_space(ctl, left_info);
2192 __unlink_free_space(ctl, left_info);
2193 info->offset = left_info->offset;
2194 info->bytes += left_info->bytes;
2195 kmem_cache_free(btrfs_free_space_cachep, left_info);
2202 static bool steal_from_bitmap_to_end(struct btrfs_free_space_ctl *ctl,
2203 struct btrfs_free_space *info,
2206 struct btrfs_free_space *bitmap;
2209 const u64 end = info->offset + info->bytes;
2210 const u64 bitmap_offset = offset_to_bitmap(ctl, end);
2213 bitmap = tree_search_offset(ctl, bitmap_offset, 1, 0);
2217 i = offset_to_bit(bitmap->offset, ctl->unit, end);
2218 j = find_next_zero_bit(bitmap->bitmap, BITS_PER_BITMAP, i);
2221 bytes = (j - i) * ctl->unit;
2222 info->bytes += bytes;
2225 bitmap_clear_bits(ctl, bitmap, end, bytes);
2227 __bitmap_clear_bits(ctl, bitmap, end, bytes);
2230 free_bitmap(ctl, bitmap);
2235 static bool steal_from_bitmap_to_front(struct btrfs_free_space_ctl *ctl,
2236 struct btrfs_free_space *info,
2239 struct btrfs_free_space *bitmap;
2243 unsigned long prev_j;
2246 bitmap_offset = offset_to_bitmap(ctl, info->offset);
2247 /* If we're on a boundary, try the previous logical bitmap. */
2248 if (bitmap_offset == info->offset) {
2249 if (info->offset == 0)
2251 bitmap_offset = offset_to_bitmap(ctl, info->offset - 1);
2254 bitmap = tree_search_offset(ctl, bitmap_offset, 1, 0);
2258 i = offset_to_bit(bitmap->offset, ctl->unit, info->offset) - 1;
2260 prev_j = (unsigned long)-1;
2261 for_each_clear_bit_from(j, bitmap->bitmap, BITS_PER_BITMAP) {
2269 if (prev_j == (unsigned long)-1)
2270 bytes = (i + 1) * ctl->unit;
2272 bytes = (i - prev_j) * ctl->unit;
2274 info->offset -= bytes;
2275 info->bytes += bytes;
2278 bitmap_clear_bits(ctl, bitmap, info->offset, bytes);
2280 __bitmap_clear_bits(ctl, bitmap, info->offset, bytes);
2283 free_bitmap(ctl, bitmap);
2289 * We prefer always to allocate from extent entries, both for clustered and
2290 * non-clustered allocation requests. So when attempting to add a new extent
2291 * entry, try to see if there's adjacent free space in bitmap entries, and if
2292 * there is, migrate that space from the bitmaps to the extent.
2293 * Like this we get better chances of satisfying space allocation requests
2294 * because we attempt to satisfy them based on a single cache entry, and never
2295 * on 2 or more entries - even if the entries represent a contiguous free space
2296 * region (e.g. 1 extent entry + 1 bitmap entry starting where the extent entry
2299 static void steal_from_bitmap(struct btrfs_free_space_ctl *ctl,
2300 struct btrfs_free_space *info,
2304 * Only work with disconnected entries, as we can change their offset,
2305 * and must be extent entries.
2307 ASSERT(!info->bitmap);
2308 ASSERT(RB_EMPTY_NODE(&info->offset_index));
2310 if (ctl->total_bitmaps > 0) {
2312 bool stole_front = false;
2314 stole_end = steal_from_bitmap_to_end(ctl, info, update_stat);
2315 if (ctl->total_bitmaps > 0)
2316 stole_front = steal_from_bitmap_to_front(ctl, info,
2319 if (stole_end || stole_front)
2320 try_merge_free_space(ctl, info, update_stat);
2324 int __btrfs_add_free_space(struct btrfs_fs_info *fs_info,
2325 struct btrfs_free_space_ctl *ctl,
2326 u64 offset, u64 bytes)
2328 struct btrfs_free_space *info;
2331 info = kmem_cache_zalloc(btrfs_free_space_cachep, GFP_NOFS);
2335 info->offset = offset;
2336 info->bytes = bytes;
2337 RB_CLEAR_NODE(&info->offset_index);
2339 spin_lock(&ctl->tree_lock);
2341 if (try_merge_free_space(ctl, info, true))
2345 * There was no extent directly to the left or right of this new
2346 * extent then we know we're going to have to allocate a new extent, so
2347 * before we do that see if we need to drop this into a bitmap
2349 ret = insert_into_bitmap(ctl, info);
2358 * Only steal free space from adjacent bitmaps if we're sure we're not
2359 * going to add the new free space to existing bitmap entries - because
2360 * that would mean unnecessary work that would be reverted. Therefore
2361 * attempt to steal space from bitmaps if we're adding an extent entry.
2363 steal_from_bitmap(ctl, info, true);
2365 ret = link_free_space(ctl, info);
2367 kmem_cache_free(btrfs_free_space_cachep, info);
2369 spin_unlock(&ctl->tree_lock);
2372 btrfs_crit(fs_info, "unable to add free space :%d", ret);
2373 ASSERT(ret != -EEXIST);
2379 int btrfs_remove_free_space(struct btrfs_block_group_cache *block_group,
2380 u64 offset, u64 bytes)
2382 struct btrfs_free_space_ctl *ctl = block_group->free_space_ctl;
2383 struct btrfs_free_space *info;
2385 bool re_search = false;
2387 spin_lock(&ctl->tree_lock);
2394 info = tree_search_offset(ctl, offset, 0, 0);
2397 * oops didn't find an extent that matched the space we wanted
2398 * to remove, look for a bitmap instead
2400 info = tree_search_offset(ctl, offset_to_bitmap(ctl, offset),
2404 * If we found a partial bit of our free space in a
2405 * bitmap but then couldn't find the other part this may
2406 * be a problem, so WARN about it.
2414 if (!info->bitmap) {
2415 unlink_free_space(ctl, info);
2416 if (offset == info->offset) {
2417 u64 to_free = min(bytes, info->bytes);
2419 info->bytes -= to_free;
2420 info->offset += to_free;
2422 ret = link_free_space(ctl, info);
2425 kmem_cache_free(btrfs_free_space_cachep, info);
2432 u64 old_end = info->bytes + info->offset;
2434 info->bytes = offset - info->offset;
2435 ret = link_free_space(ctl, info);
2440 /* Not enough bytes in this entry to satisfy us */
2441 if (old_end < offset + bytes) {
2442 bytes -= old_end - offset;
2445 } else if (old_end == offset + bytes) {
2449 spin_unlock(&ctl->tree_lock);
2451 ret = btrfs_add_free_space(block_group, offset + bytes,
2452 old_end - (offset + bytes));
2458 ret = remove_from_bitmap(ctl, info, &offset, &bytes);
2459 if (ret == -EAGAIN) {
2464 spin_unlock(&ctl->tree_lock);
2469 void btrfs_dump_free_space(struct btrfs_block_group_cache *block_group,
2472 struct btrfs_free_space_ctl *ctl = block_group->free_space_ctl;
2473 struct btrfs_free_space *info;
2477 spin_lock(&ctl->tree_lock);
2478 for (n = rb_first(&ctl->free_space_offset); n; n = rb_next(n)) {
2479 info = rb_entry(n, struct btrfs_free_space, offset_index);
2480 if (info->bytes >= bytes && !block_group->ro)
2482 btrfs_crit(block_group->fs_info,
2483 "entry offset %llu, bytes %llu, bitmap %s",
2484 info->offset, info->bytes,
2485 (info->bitmap) ? "yes" : "no");
2487 spin_unlock(&ctl->tree_lock);
2488 btrfs_info(block_group->fs_info, "block group has cluster?: %s",
2489 list_empty(&block_group->cluster_list) ? "no" : "yes");
2490 btrfs_info(block_group->fs_info,
2491 "%d blocks of free space at or bigger than bytes is", count);
2494 void btrfs_init_free_space_ctl(struct btrfs_block_group_cache *block_group)
2496 struct btrfs_free_space_ctl *ctl = block_group->free_space_ctl;
2498 spin_lock_init(&ctl->tree_lock);
2499 ctl->unit = block_group->sectorsize;
2500 ctl->start = block_group->key.objectid;
2501 ctl->private = block_group;
2502 ctl->op = &free_space_op;
2503 INIT_LIST_HEAD(&ctl->trimming_ranges);
2504 mutex_init(&ctl->cache_writeout_mutex);
2507 * we only want to have 32k of ram per block group for keeping
2508 * track of free space, and if we pass 1/2 of that we want to
2509 * start converting things over to using bitmaps
2511 ctl->extents_thresh = (SZ_32K / 2) / sizeof(struct btrfs_free_space);
2515 * for a given cluster, put all of its extents back into the free
2516 * space cache. If the block group passed doesn't match the block group
2517 * pointed to by the cluster, someone else raced in and freed the
2518 * cluster already. In that case, we just return without changing anything
2521 __btrfs_return_cluster_to_free_space(
2522 struct btrfs_block_group_cache *block_group,
2523 struct btrfs_free_cluster *cluster)
2525 struct btrfs_free_space_ctl *ctl = block_group->free_space_ctl;
2526 struct btrfs_free_space *entry;
2527 struct rb_node *node;
2529 spin_lock(&cluster->lock);
2530 if (cluster->block_group != block_group)
2533 cluster->block_group = NULL;
2534 cluster->window_start = 0;
2535 list_del_init(&cluster->block_group_list);
2537 node = rb_first(&cluster->root);
2541 entry = rb_entry(node, struct btrfs_free_space, offset_index);
2542 node = rb_next(&entry->offset_index);
2543 rb_erase(&entry->offset_index, &cluster->root);
2544 RB_CLEAR_NODE(&entry->offset_index);
2546 bitmap = (entry->bitmap != NULL);
2548 try_merge_free_space(ctl, entry, false);
2549 steal_from_bitmap(ctl, entry, false);
2551 tree_insert_offset(&ctl->free_space_offset,
2552 entry->offset, &entry->offset_index, bitmap);
2554 cluster->root = RB_ROOT;
2557 spin_unlock(&cluster->lock);
2558 btrfs_put_block_group(block_group);
2562 static void __btrfs_remove_free_space_cache_locked(
2563 struct btrfs_free_space_ctl *ctl)
2565 struct btrfs_free_space *info;
2566 struct rb_node *node;
2568 while ((node = rb_last(&ctl->free_space_offset)) != NULL) {
2569 info = rb_entry(node, struct btrfs_free_space, offset_index);
2570 if (!info->bitmap) {
2571 unlink_free_space(ctl, info);
2572 kmem_cache_free(btrfs_free_space_cachep, info);
2574 free_bitmap(ctl, info);
2577 cond_resched_lock(&ctl->tree_lock);
2581 void __btrfs_remove_free_space_cache(struct btrfs_free_space_ctl *ctl)
2583 spin_lock(&ctl->tree_lock);
2584 __btrfs_remove_free_space_cache_locked(ctl);
2585 spin_unlock(&ctl->tree_lock);
2588 void btrfs_remove_free_space_cache(struct btrfs_block_group_cache *block_group)
2590 struct btrfs_free_space_ctl *ctl = block_group->free_space_ctl;
2591 struct btrfs_free_cluster *cluster;
2592 struct list_head *head;
2594 spin_lock(&ctl->tree_lock);
2595 while ((head = block_group->cluster_list.next) !=
2596 &block_group->cluster_list) {
2597 cluster = list_entry(head, struct btrfs_free_cluster,
2600 WARN_ON(cluster->block_group != block_group);
2601 __btrfs_return_cluster_to_free_space(block_group, cluster);
2603 cond_resched_lock(&ctl->tree_lock);
2605 __btrfs_remove_free_space_cache_locked(ctl);
2606 spin_unlock(&ctl->tree_lock);
2610 u64 btrfs_find_space_for_alloc(struct btrfs_block_group_cache *block_group,
2611 u64 offset, u64 bytes, u64 empty_size,
2612 u64 *max_extent_size)
2614 struct btrfs_free_space_ctl *ctl = block_group->free_space_ctl;
2615 struct btrfs_free_space *entry = NULL;
2616 u64 bytes_search = bytes + empty_size;
2619 u64 align_gap_len = 0;
2621 spin_lock(&ctl->tree_lock);
2622 entry = find_free_space(ctl, &offset, &bytes_search,
2623 block_group->full_stripe_len, max_extent_size);
2628 if (entry->bitmap) {
2629 bitmap_clear_bits(ctl, entry, offset, bytes);
2631 free_bitmap(ctl, entry);
2633 unlink_free_space(ctl, entry);
2634 align_gap_len = offset - entry->offset;
2635 align_gap = entry->offset;
2637 entry->offset = offset + bytes;
2638 WARN_ON(entry->bytes < bytes + align_gap_len);
2640 entry->bytes -= bytes + align_gap_len;
2642 kmem_cache_free(btrfs_free_space_cachep, entry);
2644 link_free_space(ctl, entry);
2647 spin_unlock(&ctl->tree_lock);
2650 __btrfs_add_free_space(block_group->fs_info, ctl,
2651 align_gap, align_gap_len);
2656 * given a cluster, put all of its extents back into the free space
2657 * cache. If a block group is passed, this function will only free
2658 * a cluster that belongs to the passed block group.
2660 * Otherwise, it'll get a reference on the block group pointed to by the
2661 * cluster and remove the cluster from it.
2663 int btrfs_return_cluster_to_free_space(
2664 struct btrfs_block_group_cache *block_group,
2665 struct btrfs_free_cluster *cluster)
2667 struct btrfs_free_space_ctl *ctl;
2670 /* first, get a safe pointer to the block group */
2671 spin_lock(&cluster->lock);
2673 block_group = cluster->block_group;
2675 spin_unlock(&cluster->lock);
2678 } else if (cluster->block_group != block_group) {
2679 /* someone else has already freed it don't redo their work */
2680 spin_unlock(&cluster->lock);
2683 atomic_inc(&block_group->count);
2684 spin_unlock(&cluster->lock);
2686 ctl = block_group->free_space_ctl;
2688 /* now return any extents the cluster had on it */
2689 spin_lock(&ctl->tree_lock);
2690 ret = __btrfs_return_cluster_to_free_space(block_group, cluster);
2691 spin_unlock(&ctl->tree_lock);
2693 /* finally drop our ref */
2694 btrfs_put_block_group(block_group);
2698 static u64 btrfs_alloc_from_bitmap(struct btrfs_block_group_cache *block_group,
2699 struct btrfs_free_cluster *cluster,
2700 struct btrfs_free_space *entry,
2701 u64 bytes, u64 min_start,
2702 u64 *max_extent_size)
2704 struct btrfs_free_space_ctl *ctl = block_group->free_space_ctl;
2706 u64 search_start = cluster->window_start;
2707 u64 search_bytes = bytes;
2710 search_start = min_start;
2711 search_bytes = bytes;
2713 err = search_bitmap(ctl, entry, &search_start, &search_bytes, true);
2715 *max_extent_size = max(get_max_extent_size(entry),
2721 __bitmap_clear_bits(ctl, entry, ret, bytes);
2727 * given a cluster, try to allocate 'bytes' from it, returns 0
2728 * if it couldn't find anything suitably large, or a logical disk offset
2729 * if things worked out
2731 u64 btrfs_alloc_from_cluster(struct btrfs_block_group_cache *block_group,
2732 struct btrfs_free_cluster *cluster, u64 bytes,
2733 u64 min_start, u64 *max_extent_size)
2735 struct btrfs_free_space_ctl *ctl = block_group->free_space_ctl;
2736 struct btrfs_free_space *entry = NULL;
2737 struct rb_node *node;
2740 spin_lock(&cluster->lock);
2741 if (bytes > cluster->max_size)
2744 if (cluster->block_group != block_group)
2747 node = rb_first(&cluster->root);
2751 entry = rb_entry(node, struct btrfs_free_space, offset_index);
2753 if (entry->bytes < bytes)
2754 *max_extent_size = max(get_max_extent_size(entry),
2757 if (entry->bytes < bytes ||
2758 (!entry->bitmap && entry->offset < min_start)) {
2759 node = rb_next(&entry->offset_index);
2762 entry = rb_entry(node, struct btrfs_free_space,
2767 if (entry->bitmap) {
2768 ret = btrfs_alloc_from_bitmap(block_group,
2769 cluster, entry, bytes,
2770 cluster->window_start,
2773 node = rb_next(&entry->offset_index);
2776 entry = rb_entry(node, struct btrfs_free_space,
2780 cluster->window_start += bytes;
2782 ret = entry->offset;
2784 entry->offset += bytes;
2785 entry->bytes -= bytes;
2788 if (entry->bytes == 0)
2789 rb_erase(&entry->offset_index, &cluster->root);
2793 spin_unlock(&cluster->lock);
2798 spin_lock(&ctl->tree_lock);
2800 ctl->free_space -= bytes;
2801 if (entry->bytes == 0) {
2802 ctl->free_extents--;
2803 if (entry->bitmap) {
2804 kfree(entry->bitmap);
2805 ctl->total_bitmaps--;
2806 ctl->op->recalc_thresholds(ctl);
2808 kmem_cache_free(btrfs_free_space_cachep, entry);
2811 spin_unlock(&ctl->tree_lock);
2816 static int btrfs_bitmap_cluster(struct btrfs_block_group_cache *block_group,
2817 struct btrfs_free_space *entry,
2818 struct btrfs_free_cluster *cluster,
2819 u64 offset, u64 bytes,
2820 u64 cont1_bytes, u64 min_bytes)
2822 struct btrfs_free_space_ctl *ctl = block_group->free_space_ctl;
2823 unsigned long next_zero;
2825 unsigned long want_bits;
2826 unsigned long min_bits;
2827 unsigned long found_bits;
2828 unsigned long max_bits = 0;
2829 unsigned long start = 0;
2830 unsigned long total_found = 0;
2833 i = offset_to_bit(entry->offset, ctl->unit,
2834 max_t(u64, offset, entry->offset));
2835 want_bits = bytes_to_bits(bytes, ctl->unit);
2836 min_bits = bytes_to_bits(min_bytes, ctl->unit);
2839 * Don't bother looking for a cluster in this bitmap if it's heavily
2842 if (entry->max_extent_size &&
2843 entry->max_extent_size < cont1_bytes)
2847 for_each_set_bit_from(i, entry->bitmap, BITS_PER_BITMAP) {
2848 next_zero = find_next_zero_bit(entry->bitmap,
2849 BITS_PER_BITMAP, i);
2850 if (next_zero - i >= min_bits) {
2851 found_bits = next_zero - i;
2852 if (found_bits > max_bits)
2853 max_bits = found_bits;
2856 if (next_zero - i > max_bits)
2857 max_bits = next_zero - i;
2862 entry->max_extent_size = (u64)max_bits * ctl->unit;
2868 cluster->max_size = 0;
2871 total_found += found_bits;
2873 if (cluster->max_size < found_bits * ctl->unit)
2874 cluster->max_size = found_bits * ctl->unit;
2876 if (total_found < want_bits || cluster->max_size < cont1_bytes) {
2881 cluster->window_start = start * ctl->unit + entry->offset;
2882 rb_erase(&entry->offset_index, &ctl->free_space_offset);
2883 ret = tree_insert_offset(&cluster->root, entry->offset,
2884 &entry->offset_index, 1);
2885 ASSERT(!ret); /* -EEXIST; Logic error */
2887 trace_btrfs_setup_cluster(block_group, cluster,
2888 total_found * ctl->unit, 1);
2893 * This searches the block group for just extents to fill the cluster with.
2894 * Try to find a cluster with at least bytes total bytes, at least one
2895 * extent of cont1_bytes, and other clusters of at least min_bytes.
2898 setup_cluster_no_bitmap(struct btrfs_block_group_cache *block_group,
2899 struct btrfs_free_cluster *cluster,
2900 struct list_head *bitmaps, u64 offset, u64 bytes,
2901 u64 cont1_bytes, u64 min_bytes)
2903 struct btrfs_free_space_ctl *ctl = block_group->free_space_ctl;
2904 struct btrfs_free_space *first = NULL;
2905 struct btrfs_free_space *entry = NULL;
2906 struct btrfs_free_space *last;
2907 struct rb_node *node;
2912 entry = tree_search_offset(ctl, offset, 0, 1);
2917 * We don't want bitmaps, so just move along until we find a normal
2920 while (entry->bitmap || entry->bytes < min_bytes) {
2921 if (entry->bitmap && list_empty(&entry->list))
2922 list_add_tail(&entry->list, bitmaps);
2923 node = rb_next(&entry->offset_index);
2926 entry = rb_entry(node, struct btrfs_free_space, offset_index);
2929 window_free = entry->bytes;
2930 max_extent = entry->bytes;
2934 for (node = rb_next(&entry->offset_index); node;
2935 node = rb_next(&entry->offset_index)) {
2936 entry = rb_entry(node, struct btrfs_free_space, offset_index);
2938 if (entry->bitmap) {
2939 if (list_empty(&entry->list))
2940 list_add_tail(&entry->list, bitmaps);
2944 if (entry->bytes < min_bytes)
2948 window_free += entry->bytes;
2949 if (entry->bytes > max_extent)
2950 max_extent = entry->bytes;
2953 if (window_free < bytes || max_extent < cont1_bytes)
2956 cluster->window_start = first->offset;
2958 node = &first->offset_index;
2961 * now we've found our entries, pull them out of the free space
2962 * cache and put them into the cluster rbtree
2967 entry = rb_entry(node, struct btrfs_free_space, offset_index);
2968 node = rb_next(&entry->offset_index);
2969 if (entry->bitmap || entry->bytes < min_bytes)
2972 rb_erase(&entry->offset_index, &ctl->free_space_offset);
2973 ret = tree_insert_offset(&cluster->root, entry->offset,
2974 &entry->offset_index, 0);
2975 total_size += entry->bytes;
2976 ASSERT(!ret); /* -EEXIST; Logic error */
2977 } while (node && entry != last);
2979 cluster->max_size = max_extent;
2980 trace_btrfs_setup_cluster(block_group, cluster, total_size, 0);
2985 * This specifically looks for bitmaps that may work in the cluster, we assume
2986 * that we have already failed to find extents that will work.
2989 setup_cluster_bitmap(struct btrfs_block_group_cache *block_group,
2990 struct btrfs_free_cluster *cluster,
2991 struct list_head *bitmaps, u64 offset, u64 bytes,
2992 u64 cont1_bytes, u64 min_bytes)
2994 struct btrfs_free_space_ctl *ctl = block_group->free_space_ctl;
2995 struct btrfs_free_space *entry = NULL;
2997 u64 bitmap_offset = offset_to_bitmap(ctl, offset);
2999 if (ctl->total_bitmaps == 0)
3003 * The bitmap that covers offset won't be in the list unless offset
3004 * is just its start offset.
3006 if (!list_empty(bitmaps))
3007 entry = list_first_entry(bitmaps, struct btrfs_free_space, list);
3009 if (!entry || entry->offset != bitmap_offset) {
3010 entry = tree_search_offset(ctl, bitmap_offset, 1, 0);
3011 if (entry && list_empty(&entry->list))
3012 list_add(&entry->list, bitmaps);
3015 list_for_each_entry(entry, bitmaps, list) {
3016 if (entry->bytes < bytes)
3018 ret = btrfs_bitmap_cluster(block_group, entry, cluster, offset,
3019 bytes, cont1_bytes, min_bytes);
3025 * The bitmaps list has all the bitmaps that record free space
3026 * starting after offset, so no more search is required.
3032 * here we try to find a cluster of blocks in a block group. The goal
3033 * is to find at least bytes+empty_size.
3034 * We might not find them all in one contiguous area.
3036 * returns zero and sets up cluster if things worked out, otherwise
3037 * it returns -enospc
3039 int btrfs_find_space_cluster(struct btrfs_root *root,
3040 struct btrfs_block_group_cache *block_group,
3041 struct btrfs_free_cluster *cluster,
3042 u64 offset, u64 bytes, u64 empty_size)
3044 struct btrfs_free_space_ctl *ctl = block_group->free_space_ctl;
3045 struct btrfs_free_space *entry, *tmp;
3052 * Choose the minimum extent size we'll require for this
3053 * cluster. For SSD_SPREAD, don't allow any fragmentation.
3054 * For metadata, allow allocates with smaller extents. For
3055 * data, keep it dense.
3057 if (btrfs_test_opt(root->fs_info, SSD_SPREAD)) {
3058 cont1_bytes = min_bytes = bytes + empty_size;
3059 } else if (block_group->flags & BTRFS_BLOCK_GROUP_METADATA) {
3060 cont1_bytes = bytes;
3061 min_bytes = block_group->sectorsize;
3063 cont1_bytes = max(bytes, (bytes + empty_size) >> 2);
3064 min_bytes = block_group->sectorsize;
3067 spin_lock(&ctl->tree_lock);
3070 * If we know we don't have enough space to make a cluster don't even
3071 * bother doing all the work to try and find one.
3073 if (ctl->free_space < bytes) {
3074 spin_unlock(&ctl->tree_lock);
3078 spin_lock(&cluster->lock);
3080 /* someone already found a cluster, hooray */
3081 if (cluster->block_group) {
3086 trace_btrfs_find_cluster(block_group, offset, bytes, empty_size,
3089 ret = setup_cluster_no_bitmap(block_group, cluster, &bitmaps, offset,
3091 cont1_bytes, min_bytes);
3093 ret = setup_cluster_bitmap(block_group, cluster, &bitmaps,
3094 offset, bytes + empty_size,
3095 cont1_bytes, min_bytes);
3097 /* Clear our temporary list */
3098 list_for_each_entry_safe(entry, tmp, &bitmaps, list)
3099 list_del_init(&entry->list);
3102 atomic_inc(&block_group->count);
3103 list_add_tail(&cluster->block_group_list,
3104 &block_group->cluster_list);
3105 cluster->block_group = block_group;
3107 trace_btrfs_failed_cluster_setup(block_group);
3110 spin_unlock(&cluster->lock);
3111 spin_unlock(&ctl->tree_lock);
3117 * simple code to zero out a cluster
3119 void btrfs_init_free_cluster(struct btrfs_free_cluster *cluster)
3121 spin_lock_init(&cluster->lock);
3122 spin_lock_init(&cluster->refill_lock);
3123 cluster->root = RB_ROOT;
3124 cluster->max_size = 0;
3125 cluster->fragmented = false;
3126 INIT_LIST_HEAD(&cluster->block_group_list);
3127 cluster->block_group = NULL;
3130 static int do_trimming(struct btrfs_block_group_cache *block_group,
3131 u64 *total_trimmed, u64 start, u64 bytes,
3132 u64 reserved_start, u64 reserved_bytes,
3133 struct btrfs_trim_range *trim_entry)
3135 struct btrfs_space_info *space_info = block_group->space_info;
3136 struct btrfs_fs_info *fs_info = block_group->fs_info;
3137 struct btrfs_free_space_ctl *ctl = block_group->free_space_ctl;
3142 spin_lock(&space_info->lock);
3143 spin_lock(&block_group->lock);
3144 if (!block_group->ro) {
3145 block_group->reserved += reserved_bytes;
3146 space_info->bytes_reserved += reserved_bytes;
3149 spin_unlock(&block_group->lock);
3150 spin_unlock(&space_info->lock);
3152 ret = btrfs_discard_extent(fs_info->extent_root,
3153 start, bytes, &trimmed);
3155 *total_trimmed += trimmed;
3157 mutex_lock(&ctl->cache_writeout_mutex);
3158 btrfs_add_free_space(block_group, reserved_start, reserved_bytes);
3159 list_del(&trim_entry->list);
3160 mutex_unlock(&ctl->cache_writeout_mutex);
3163 spin_lock(&space_info->lock);
3164 spin_lock(&block_group->lock);
3165 if (block_group->ro)
3166 space_info->bytes_readonly += reserved_bytes;
3167 block_group->reserved -= reserved_bytes;
3168 space_info->bytes_reserved -= reserved_bytes;
3169 spin_unlock(&space_info->lock);
3170 spin_unlock(&block_group->lock);
3176 static int trim_no_bitmap(struct btrfs_block_group_cache *block_group,
3177 u64 *total_trimmed, u64 start, u64 end, u64 minlen)
3179 struct btrfs_free_space_ctl *ctl = block_group->free_space_ctl;
3180 struct btrfs_free_space *entry;
3181 struct rb_node *node;
3187 while (start < end) {
3188 struct btrfs_trim_range trim_entry;
3190 mutex_lock(&ctl->cache_writeout_mutex);
3191 spin_lock(&ctl->tree_lock);
3193 if (ctl->free_space < minlen) {
3194 spin_unlock(&ctl->tree_lock);
3195 mutex_unlock(&ctl->cache_writeout_mutex);
3199 entry = tree_search_offset(ctl, start, 0, 1);
3201 spin_unlock(&ctl->tree_lock);
3202 mutex_unlock(&ctl->cache_writeout_mutex);
3207 while (entry->bitmap) {
3208 node = rb_next(&entry->offset_index);
3210 spin_unlock(&ctl->tree_lock);
3211 mutex_unlock(&ctl->cache_writeout_mutex);
3214 entry = rb_entry(node, struct btrfs_free_space,
3218 if (entry->offset >= end) {
3219 spin_unlock(&ctl->tree_lock);
3220 mutex_unlock(&ctl->cache_writeout_mutex);
3224 extent_start = entry->offset;
3225 extent_bytes = entry->bytes;
3226 start = max(start, extent_start);
3227 bytes = min(extent_start + extent_bytes, end) - start;
3228 if (bytes < minlen) {
3229 spin_unlock(&ctl->tree_lock);
3230 mutex_unlock(&ctl->cache_writeout_mutex);
3234 unlink_free_space(ctl, entry);
3235 kmem_cache_free(btrfs_free_space_cachep, entry);
3237 spin_unlock(&ctl->tree_lock);
3238 trim_entry.start = extent_start;
3239 trim_entry.bytes = extent_bytes;
3240 list_add_tail(&trim_entry.list, &ctl->trimming_ranges);
3241 mutex_unlock(&ctl->cache_writeout_mutex);
3243 ret = do_trimming(block_group, total_trimmed, start, bytes,
3244 extent_start, extent_bytes, &trim_entry);
3250 if (fatal_signal_pending(current)) {
3261 static int trim_bitmaps(struct btrfs_block_group_cache *block_group,
3262 u64 *total_trimmed, u64 start, u64 end, u64 minlen)
3264 struct btrfs_free_space_ctl *ctl = block_group->free_space_ctl;
3265 struct btrfs_free_space *entry;
3269 u64 offset = offset_to_bitmap(ctl, start);
3271 while (offset < end) {
3272 bool next_bitmap = false;
3273 struct btrfs_trim_range trim_entry;
3275 mutex_lock(&ctl->cache_writeout_mutex);
3276 spin_lock(&ctl->tree_lock);
3278 if (ctl->free_space < minlen) {
3279 spin_unlock(&ctl->tree_lock);
3280 mutex_unlock(&ctl->cache_writeout_mutex);
3284 entry = tree_search_offset(ctl, offset, 1, 0);
3286 spin_unlock(&ctl->tree_lock);
3287 mutex_unlock(&ctl->cache_writeout_mutex);
3293 ret2 = search_bitmap(ctl, entry, &start, &bytes, false);
3294 if (ret2 || start >= end) {
3295 spin_unlock(&ctl->tree_lock);
3296 mutex_unlock(&ctl->cache_writeout_mutex);
3301 bytes = min(bytes, end - start);
3302 if (bytes < minlen) {
3303 spin_unlock(&ctl->tree_lock);
3304 mutex_unlock(&ctl->cache_writeout_mutex);
3308 bitmap_clear_bits(ctl, entry, start, bytes);
3309 if (entry->bytes == 0)
3310 free_bitmap(ctl, entry);
3312 spin_unlock(&ctl->tree_lock);
3313 trim_entry.start = start;
3314 trim_entry.bytes = bytes;
3315 list_add_tail(&trim_entry.list, &ctl->trimming_ranges);
3316 mutex_unlock(&ctl->cache_writeout_mutex);
3318 ret = do_trimming(block_group, total_trimmed, start, bytes,
3319 start, bytes, &trim_entry);
3324 offset += BITS_PER_BITMAP * ctl->unit;
3327 if (start >= offset + BITS_PER_BITMAP * ctl->unit)
3328 offset += BITS_PER_BITMAP * ctl->unit;
3331 if (fatal_signal_pending(current)) {
3342 void btrfs_get_block_group_trimming(struct btrfs_block_group_cache *cache)
3344 atomic_inc(&cache->trimming);
3347 void btrfs_put_block_group_trimming(struct btrfs_block_group_cache *block_group)
3349 struct extent_map_tree *em_tree;
3350 struct extent_map *em;
3353 spin_lock(&block_group->lock);
3354 cleanup = (atomic_dec_and_test(&block_group->trimming) &&
3355 block_group->removed);
3356 spin_unlock(&block_group->lock);
3359 lock_chunks(block_group->fs_info->chunk_root);
3360 em_tree = &block_group->fs_info->mapping_tree.map_tree;
3361 write_lock(&em_tree->lock);
3362 em = lookup_extent_mapping(em_tree, block_group->key.objectid,
3364 BUG_ON(!em); /* logic error, can't happen */
3366 * remove_extent_mapping() will delete us from the pinned_chunks
3367 * list, which is protected by the chunk mutex.
3369 remove_extent_mapping(em_tree, em);
3370 write_unlock(&em_tree->lock);
3371 unlock_chunks(block_group->fs_info->chunk_root);
3373 /* once for us and once for the tree */
3374 free_extent_map(em);
3375 free_extent_map(em);
3378 * We've left one free space entry and other tasks trimming
3379 * this block group have left 1 entry each one. Free them.
3381 __btrfs_remove_free_space_cache(block_group->free_space_ctl);
3385 int btrfs_trim_block_group(struct btrfs_block_group_cache *block_group,
3386 u64 *trimmed, u64 start, u64 end, u64 minlen)
3392 spin_lock(&block_group->lock);
3393 if (block_group->removed) {
3394 spin_unlock(&block_group->lock);
3397 btrfs_get_block_group_trimming(block_group);
3398 spin_unlock(&block_group->lock);
3400 ret = trim_no_bitmap(block_group, trimmed, start, end, minlen);
3404 ret = trim_bitmaps(block_group, trimmed, start, end, minlen);
3406 btrfs_put_block_group_trimming(block_group);
3411 * Find the left-most item in the cache tree, and then return the
3412 * smallest inode number in the item.
3414 * Note: the returned inode number may not be the smallest one in
3415 * the tree, if the left-most item is a bitmap.
3417 u64 btrfs_find_ino_for_alloc(struct btrfs_root *fs_root)
3419 struct btrfs_free_space_ctl *ctl = fs_root->free_ino_ctl;
3420 struct btrfs_free_space *entry = NULL;
3423 spin_lock(&ctl->tree_lock);
3425 if (RB_EMPTY_ROOT(&ctl->free_space_offset))
3428 entry = rb_entry(rb_first(&ctl->free_space_offset),
3429 struct btrfs_free_space, offset_index);
3431 if (!entry->bitmap) {
3432 ino = entry->offset;
3434 unlink_free_space(ctl, entry);
3438 kmem_cache_free(btrfs_free_space_cachep, entry);
3440 link_free_space(ctl, entry);
3446 ret = search_bitmap(ctl, entry, &offset, &count, true);
3447 /* Logic error; Should be empty if it can't find anything */
3451 bitmap_clear_bits(ctl, entry, offset, 1);
3452 if (entry->bytes == 0)
3453 free_bitmap(ctl, entry);
3456 spin_unlock(&ctl->tree_lock);
3461 struct inode *lookup_free_ino_inode(struct btrfs_root *root,
3462 struct btrfs_path *path)
3464 struct inode *inode = NULL;
3466 spin_lock(&root->ino_cache_lock);
3467 if (root->ino_cache_inode)
3468 inode = igrab(root->ino_cache_inode);
3469 spin_unlock(&root->ino_cache_lock);
3473 inode = __lookup_free_space_inode(root, path, 0);
3477 spin_lock(&root->ino_cache_lock);
3478 if (!btrfs_fs_closing(root->fs_info))
3479 root->ino_cache_inode = igrab(inode);
3480 spin_unlock(&root->ino_cache_lock);
3485 int create_free_ino_inode(struct btrfs_root *root,
3486 struct btrfs_trans_handle *trans,
3487 struct btrfs_path *path)
3489 return __create_free_space_inode(root, trans, path,
3490 BTRFS_FREE_INO_OBJECTID, 0);
3493 int load_free_ino_cache(struct btrfs_fs_info *fs_info, struct btrfs_root *root)
3495 struct btrfs_free_space_ctl *ctl = root->free_ino_ctl;
3496 struct btrfs_path *path;
3497 struct inode *inode;
3499 u64 root_gen = btrfs_root_generation(&root->root_item);
3501 if (!btrfs_test_opt(root->fs_info, INODE_MAP_CACHE))
3505 * If we're unmounting then just return, since this does a search on the
3506 * normal root and not the commit root and we could deadlock.
3508 if (btrfs_fs_closing(fs_info))
3511 path = btrfs_alloc_path();
3515 inode = lookup_free_ino_inode(root, path);
3519 if (root_gen != BTRFS_I(inode)->generation)
3522 ret = __load_free_space_cache(root, inode, ctl, path, 0);
3526 "failed to load free ino cache for root %llu",
3527 root->root_key.objectid);
3531 btrfs_free_path(path);
3535 int btrfs_write_out_ino_cache(struct btrfs_root *root,
3536 struct btrfs_trans_handle *trans,
3537 struct btrfs_path *path,
3538 struct inode *inode)
3540 struct btrfs_free_space_ctl *ctl = root->free_ino_ctl;
3542 struct btrfs_io_ctl io_ctl;
3543 bool release_metadata = true;
3545 if (!btrfs_test_opt(root->fs_info, INODE_MAP_CACHE))
3548 memset(&io_ctl, 0, sizeof(io_ctl));
3549 ret = __btrfs_write_out_cache(root, inode, ctl, NULL, &io_ctl,
3553 * At this point writepages() didn't error out, so our metadata
3554 * reservation is released when the writeback finishes, at
3555 * inode.c:btrfs_finish_ordered_io(), regardless of it finishing
3556 * with or without an error.
3558 release_metadata = false;
3559 ret = btrfs_wait_cache_io(root, trans, NULL, &io_ctl, path, 0);
3563 if (release_metadata)
3564 btrfs_delalloc_release_metadata(inode, inode->i_size);
3566 btrfs_err(root->fs_info,
3567 "failed to write free ino cache for root %llu",
3568 root->root_key.objectid);
3575 #ifdef CONFIG_BTRFS_FS_RUN_SANITY_TESTS
3577 * Use this if you need to make a bitmap or extent entry specifically, it
3578 * doesn't do any of the merging that add_free_space does, this acts a lot like
3579 * how the free space cache loading stuff works, so you can get really weird
3582 int test_add_free_space_entry(struct btrfs_block_group_cache *cache,
3583 u64 offset, u64 bytes, bool bitmap)
3585 struct btrfs_free_space_ctl *ctl = cache->free_space_ctl;
3586 struct btrfs_free_space *info = NULL, *bitmap_info;
3593 info = kmem_cache_zalloc(btrfs_free_space_cachep, GFP_NOFS);
3599 spin_lock(&ctl->tree_lock);
3600 info->offset = offset;
3601 info->bytes = bytes;
3602 info->max_extent_size = 0;
3603 ret = link_free_space(ctl, info);
3604 spin_unlock(&ctl->tree_lock);
3606 kmem_cache_free(btrfs_free_space_cachep, info);
3611 map = kzalloc(PAGE_SIZE, GFP_NOFS);
3613 kmem_cache_free(btrfs_free_space_cachep, info);
3618 spin_lock(&ctl->tree_lock);
3619 bitmap_info = tree_search_offset(ctl, offset_to_bitmap(ctl, offset),
3624 add_new_bitmap(ctl, info, offset);
3629 bytes_added = add_bytes_to_bitmap(ctl, bitmap_info, offset, bytes);
3631 bytes -= bytes_added;
3632 offset += bytes_added;
3633 spin_unlock(&ctl->tree_lock);
3639 kmem_cache_free(btrfs_free_space_cachep, info);
3646 * Checks to see if the given range is in the free space cache. This is really
3647 * just used to check the absence of space, so if there is free space in the
3648 * range at all we will return 1.
3650 int test_check_exists(struct btrfs_block_group_cache *cache,
3651 u64 offset, u64 bytes)
3653 struct btrfs_free_space_ctl *ctl = cache->free_space_ctl;
3654 struct btrfs_free_space *info;
3657 spin_lock(&ctl->tree_lock);
3658 info = tree_search_offset(ctl, offset, 0, 0);
3660 info = tree_search_offset(ctl, offset_to_bitmap(ctl, offset),
3668 u64 bit_off, bit_bytes;
3670 struct btrfs_free_space *tmp;
3673 bit_bytes = ctl->unit;
3674 ret = search_bitmap(ctl, info, &bit_off, &bit_bytes, false);
3676 if (bit_off == offset) {
3679 } else if (bit_off > offset &&
3680 offset + bytes > bit_off) {
3686 n = rb_prev(&info->offset_index);
3688 tmp = rb_entry(n, struct btrfs_free_space,
3690 if (tmp->offset + tmp->bytes < offset)
3692 if (offset + bytes < tmp->offset) {
3693 n = rb_prev(&tmp->offset_index);
3700 n = rb_next(&info->offset_index);
3702 tmp = rb_entry(n, struct btrfs_free_space,
3704 if (offset + bytes < tmp->offset)
3706 if (tmp->offset + tmp->bytes < offset) {
3707 n = rb_next(&tmp->offset_index);
3718 if (info->offset == offset) {
3723 if (offset > info->offset && offset < info->offset + info->bytes)
3726 spin_unlock(&ctl->tree_lock);
3729 #endif /* CONFIG_BTRFS_FS_RUN_SANITY_TESTS */