GNU Linux-libre 6.9-gnu
[releases.git] / fs / btrfs / file-item.c
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * Copyright (C) 2007 Oracle.  All rights reserved.
4  */
5
6 #include <linux/bio.h>
7 #include <linux/slab.h>
8 #include <linux/pagemap.h>
9 #include <linux/highmem.h>
10 #include <linux/sched/mm.h>
11 #include <crypto/hash.h>
12 #include "messages.h"
13 #include "ctree.h"
14 #include "disk-io.h"
15 #include "transaction.h"
16 #include "bio.h"
17 #include "compression.h"
18 #include "fs.h"
19 #include "accessors.h"
20 #include "file-item.h"
21
22 #define __MAX_CSUM_ITEMS(r, size) ((unsigned long)(((BTRFS_LEAF_DATA_SIZE(r) - \
23                                    sizeof(struct btrfs_item) * 2) / \
24                                   size) - 1))
25
26 #define MAX_CSUM_ITEMS(r, size) (min_t(u32, __MAX_CSUM_ITEMS(r, size), \
27                                        PAGE_SIZE))
28
29 /*
30  * Set inode's size according to filesystem options.
31  *
32  * @inode:      inode we want to update the disk_i_size for
33  * @new_i_size: i_size we want to set to, 0 if we use i_size
34  *
35  * With NO_HOLES set this simply sets the disk_is_size to whatever i_size_read()
36  * returns as it is perfectly fine with a file that has holes without hole file
37  * extent items.
38  *
39  * However without NO_HOLES we need to only return the area that is contiguous
40  * from the 0 offset of the file.  Otherwise we could end up adjust i_size up
41  * to an extent that has a gap in between.
42  *
43  * Finally new_i_size should only be set in the case of truncate where we're not
44  * ready to use i_size_read() as the limiter yet.
45  */
46 void btrfs_inode_safe_disk_i_size_write(struct btrfs_inode *inode, u64 new_i_size)
47 {
48         struct btrfs_fs_info *fs_info = inode->root->fs_info;
49         u64 start, end, i_size;
50         int ret;
51
52         spin_lock(&inode->lock);
53         i_size = new_i_size ?: i_size_read(&inode->vfs_inode);
54         if (btrfs_fs_incompat(fs_info, NO_HOLES)) {
55                 inode->disk_i_size = i_size;
56                 goto out_unlock;
57         }
58
59         ret = find_contiguous_extent_bit(inode->file_extent_tree, 0, &start,
60                                          &end, EXTENT_DIRTY);
61         if (!ret && start == 0)
62                 i_size = min(i_size, end + 1);
63         else
64                 i_size = 0;
65         inode->disk_i_size = i_size;
66 out_unlock:
67         spin_unlock(&inode->lock);
68 }
69
70 /*
71  * Mark range within a file as having a new extent inserted.
72  *
73  * @inode: inode being modified
74  * @start: start file offset of the file extent we've inserted
75  * @len:   logical length of the file extent item
76  *
77  * Call when we are inserting a new file extent where there was none before.
78  * Does not need to call this in the case where we're replacing an existing file
79  * extent, however if not sure it's fine to call this multiple times.
80  *
81  * The start and len must match the file extent item, so thus must be sectorsize
82  * aligned.
83  */
84 int btrfs_inode_set_file_extent_range(struct btrfs_inode *inode, u64 start,
85                                       u64 len)
86 {
87         if (len == 0)
88                 return 0;
89
90         ASSERT(IS_ALIGNED(start + len, inode->root->fs_info->sectorsize));
91
92         if (btrfs_fs_incompat(inode->root->fs_info, NO_HOLES))
93                 return 0;
94         return set_extent_bit(inode->file_extent_tree, start, start + len - 1,
95                               EXTENT_DIRTY, NULL);
96 }
97
98 /*
99  * Mark an inode range as not having a backing extent.
100  *
101  * @inode: inode being modified
102  * @start: start file offset of the file extent we've inserted
103  * @len:   logical length of the file extent item
104  *
105  * Called when we drop a file extent, for example when we truncate.  Doesn't
106  * need to be called for cases where we're replacing a file extent, like when
107  * we've COWed a file extent.
108  *
109  * The start and len must match the file extent item, so thus must be sectorsize
110  * aligned.
111  */
112 int btrfs_inode_clear_file_extent_range(struct btrfs_inode *inode, u64 start,
113                                         u64 len)
114 {
115         if (len == 0)
116                 return 0;
117
118         ASSERT(IS_ALIGNED(start + len, inode->root->fs_info->sectorsize) ||
119                len == (u64)-1);
120
121         if (btrfs_fs_incompat(inode->root->fs_info, NO_HOLES))
122                 return 0;
123         return clear_extent_bit(inode->file_extent_tree, start,
124                                 start + len - 1, EXTENT_DIRTY, NULL);
125 }
126
127 static size_t bytes_to_csum_size(const struct btrfs_fs_info *fs_info, u32 bytes)
128 {
129         ASSERT(IS_ALIGNED(bytes, fs_info->sectorsize));
130
131         return (bytes >> fs_info->sectorsize_bits) * fs_info->csum_size;
132 }
133
134 static size_t csum_size_to_bytes(const struct btrfs_fs_info *fs_info, u32 csum_size)
135 {
136         ASSERT(IS_ALIGNED(csum_size, fs_info->csum_size));
137
138         return (csum_size / fs_info->csum_size) << fs_info->sectorsize_bits;
139 }
140
141 static inline u32 max_ordered_sum_bytes(const struct btrfs_fs_info *fs_info)
142 {
143         u32 max_csum_size = round_down(PAGE_SIZE - sizeof(struct btrfs_ordered_sum),
144                                        fs_info->csum_size);
145
146         return csum_size_to_bytes(fs_info, max_csum_size);
147 }
148
149 /*
150  * Calculate the total size needed to allocate for an ordered sum structure
151  * spanning @bytes in the file.
152  */
153 static int btrfs_ordered_sum_size(struct btrfs_fs_info *fs_info, unsigned long bytes)
154 {
155         return sizeof(struct btrfs_ordered_sum) + bytes_to_csum_size(fs_info, bytes);
156 }
157
158 int btrfs_insert_hole_extent(struct btrfs_trans_handle *trans,
159                              struct btrfs_root *root,
160                              u64 objectid, u64 pos, u64 num_bytes)
161 {
162         int ret = 0;
163         struct btrfs_file_extent_item *item;
164         struct btrfs_key file_key;
165         struct btrfs_path *path;
166         struct extent_buffer *leaf;
167
168         path = btrfs_alloc_path();
169         if (!path)
170                 return -ENOMEM;
171         file_key.objectid = objectid;
172         file_key.offset = pos;
173         file_key.type = BTRFS_EXTENT_DATA_KEY;
174
175         ret = btrfs_insert_empty_item(trans, root, path, &file_key,
176                                       sizeof(*item));
177         if (ret < 0)
178                 goto out;
179         leaf = path->nodes[0];
180         item = btrfs_item_ptr(leaf, path->slots[0],
181                               struct btrfs_file_extent_item);
182         btrfs_set_file_extent_disk_bytenr(leaf, item, 0);
183         btrfs_set_file_extent_disk_num_bytes(leaf, item, 0);
184         btrfs_set_file_extent_offset(leaf, item, 0);
185         btrfs_set_file_extent_num_bytes(leaf, item, num_bytes);
186         btrfs_set_file_extent_ram_bytes(leaf, item, num_bytes);
187         btrfs_set_file_extent_generation(leaf, item, trans->transid);
188         btrfs_set_file_extent_type(leaf, item, BTRFS_FILE_EXTENT_REG);
189         btrfs_set_file_extent_compression(leaf, item, 0);
190         btrfs_set_file_extent_encryption(leaf, item, 0);
191         btrfs_set_file_extent_other_encoding(leaf, item, 0);
192
193         btrfs_mark_buffer_dirty(trans, leaf);
194 out:
195         btrfs_free_path(path);
196         return ret;
197 }
198
199 static struct btrfs_csum_item *
200 btrfs_lookup_csum(struct btrfs_trans_handle *trans,
201                   struct btrfs_root *root,
202                   struct btrfs_path *path,
203                   u64 bytenr, int cow)
204 {
205         struct btrfs_fs_info *fs_info = root->fs_info;
206         int ret;
207         struct btrfs_key file_key;
208         struct btrfs_key found_key;
209         struct btrfs_csum_item *item;
210         struct extent_buffer *leaf;
211         u64 csum_offset = 0;
212         const u32 csum_size = fs_info->csum_size;
213         int csums_in_item;
214
215         file_key.objectid = BTRFS_EXTENT_CSUM_OBJECTID;
216         file_key.offset = bytenr;
217         file_key.type = BTRFS_EXTENT_CSUM_KEY;
218         ret = btrfs_search_slot(trans, root, &file_key, path, 0, cow);
219         if (ret < 0)
220                 goto fail;
221         leaf = path->nodes[0];
222         if (ret > 0) {
223                 ret = 1;
224                 if (path->slots[0] == 0)
225                         goto fail;
226                 path->slots[0]--;
227                 btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]);
228                 if (found_key.type != BTRFS_EXTENT_CSUM_KEY)
229                         goto fail;
230
231                 csum_offset = (bytenr - found_key.offset) >>
232                                 fs_info->sectorsize_bits;
233                 csums_in_item = btrfs_item_size(leaf, path->slots[0]);
234                 csums_in_item /= csum_size;
235
236                 if (csum_offset == csums_in_item) {
237                         ret = -EFBIG;
238                         goto fail;
239                 } else if (csum_offset > csums_in_item) {
240                         goto fail;
241                 }
242         }
243         item = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_csum_item);
244         item = (struct btrfs_csum_item *)((unsigned char *)item +
245                                           csum_offset * csum_size);
246         return item;
247 fail:
248         if (ret > 0)
249                 ret = -ENOENT;
250         return ERR_PTR(ret);
251 }
252
253 int btrfs_lookup_file_extent(struct btrfs_trans_handle *trans,
254                              struct btrfs_root *root,
255                              struct btrfs_path *path, u64 objectid,
256                              u64 offset, int mod)
257 {
258         struct btrfs_key file_key;
259         int ins_len = mod < 0 ? -1 : 0;
260         int cow = mod != 0;
261
262         file_key.objectid = objectid;
263         file_key.offset = offset;
264         file_key.type = BTRFS_EXTENT_DATA_KEY;
265
266         return btrfs_search_slot(trans, root, &file_key, path, ins_len, cow);
267 }
268
269 /*
270  * Find checksums for logical bytenr range [disk_bytenr, disk_bytenr + len) and
271  * store the result to @dst.
272  *
273  * Return >0 for the number of sectors we found.
274  * Return 0 for the range [disk_bytenr, disk_bytenr + sectorsize) has no csum
275  * for it. Caller may want to try next sector until one range is hit.
276  * Return <0 for fatal error.
277  */
278 static int search_csum_tree(struct btrfs_fs_info *fs_info,
279                             struct btrfs_path *path, u64 disk_bytenr,
280                             u64 len, u8 *dst)
281 {
282         struct btrfs_root *csum_root;
283         struct btrfs_csum_item *item = NULL;
284         struct btrfs_key key;
285         const u32 sectorsize = fs_info->sectorsize;
286         const u32 csum_size = fs_info->csum_size;
287         u32 itemsize;
288         int ret;
289         u64 csum_start;
290         u64 csum_len;
291
292         ASSERT(IS_ALIGNED(disk_bytenr, sectorsize) &&
293                IS_ALIGNED(len, sectorsize));
294
295         /* Check if the current csum item covers disk_bytenr */
296         if (path->nodes[0]) {
297                 item = btrfs_item_ptr(path->nodes[0], path->slots[0],
298                                       struct btrfs_csum_item);
299                 btrfs_item_key_to_cpu(path->nodes[0], &key, path->slots[0]);
300                 itemsize = btrfs_item_size(path->nodes[0], path->slots[0]);
301
302                 csum_start = key.offset;
303                 csum_len = (itemsize / csum_size) * sectorsize;
304
305                 if (in_range(disk_bytenr, csum_start, csum_len))
306                         goto found;
307         }
308
309         /* Current item doesn't contain the desired range, search again */
310         btrfs_release_path(path);
311         csum_root = btrfs_csum_root(fs_info, disk_bytenr);
312         item = btrfs_lookup_csum(NULL, csum_root, path, disk_bytenr, 0);
313         if (IS_ERR(item)) {
314                 ret = PTR_ERR(item);
315                 goto out;
316         }
317         btrfs_item_key_to_cpu(path->nodes[0], &key, path->slots[0]);
318         itemsize = btrfs_item_size(path->nodes[0], path->slots[0]);
319
320         csum_start = key.offset;
321         csum_len = (itemsize / csum_size) * sectorsize;
322         ASSERT(in_range(disk_bytenr, csum_start, csum_len));
323
324 found:
325         ret = (min(csum_start + csum_len, disk_bytenr + len) -
326                    disk_bytenr) >> fs_info->sectorsize_bits;
327         read_extent_buffer(path->nodes[0], dst, (unsigned long)item,
328                         ret * csum_size);
329 out:
330         if (ret == -ENOENT || ret == -EFBIG)
331                 ret = 0;
332         return ret;
333 }
334
335 /*
336  * Lookup the checksum for the read bio in csum tree.
337  *
338  * Return: BLK_STS_RESOURCE if allocating memory fails, BLK_STS_OK otherwise.
339  */
340 blk_status_t btrfs_lookup_bio_sums(struct btrfs_bio *bbio)
341 {
342         struct btrfs_inode *inode = bbio->inode;
343         struct btrfs_fs_info *fs_info = inode->root->fs_info;
344         struct bio *bio = &bbio->bio;
345         struct btrfs_path *path;
346         const u32 sectorsize = fs_info->sectorsize;
347         const u32 csum_size = fs_info->csum_size;
348         u32 orig_len = bio->bi_iter.bi_size;
349         u64 orig_disk_bytenr = bio->bi_iter.bi_sector << SECTOR_SHIFT;
350         const unsigned int nblocks = orig_len >> fs_info->sectorsize_bits;
351         blk_status_t ret = BLK_STS_OK;
352         u32 bio_offset = 0;
353
354         if ((inode->flags & BTRFS_INODE_NODATASUM) ||
355             test_bit(BTRFS_FS_STATE_NO_CSUMS, &fs_info->fs_state))
356                 return BLK_STS_OK;
357
358         /*
359          * This function is only called for read bio.
360          *
361          * This means two things:
362          * - All our csums should only be in csum tree
363          *   No ordered extents csums, as ordered extents are only for write
364          *   path.
365          * - No need to bother any other info from bvec
366          *   Since we're looking up csums, the only important info is the
367          *   disk_bytenr and the length, which can be extracted from bi_iter
368          *   directly.
369          */
370         ASSERT(bio_op(bio) == REQ_OP_READ);
371         path = btrfs_alloc_path();
372         if (!path)
373                 return BLK_STS_RESOURCE;
374
375         if (nblocks * csum_size > BTRFS_BIO_INLINE_CSUM_SIZE) {
376                 bbio->csum = kmalloc_array(nblocks, csum_size, GFP_NOFS);
377                 if (!bbio->csum) {
378                         btrfs_free_path(path);
379                         return BLK_STS_RESOURCE;
380                 }
381         } else {
382                 bbio->csum = bbio->csum_inline;
383         }
384
385         /*
386          * If requested number of sectors is larger than one leaf can contain,
387          * kick the readahead for csum tree.
388          */
389         if (nblocks > fs_info->csums_per_leaf)
390                 path->reada = READA_FORWARD;
391
392         /*
393          * the free space stuff is only read when it hasn't been
394          * updated in the current transaction.  So, we can safely
395          * read from the commit root and sidestep a nasty deadlock
396          * between reading the free space cache and updating the csum tree.
397          */
398         if (btrfs_is_free_space_inode(inode)) {
399                 path->search_commit_root = 1;
400                 path->skip_locking = 1;
401         }
402
403         while (bio_offset < orig_len) {
404                 int count;
405                 u64 cur_disk_bytenr = orig_disk_bytenr + bio_offset;
406                 u8 *csum_dst = bbio->csum +
407                         (bio_offset >> fs_info->sectorsize_bits) * csum_size;
408
409                 count = search_csum_tree(fs_info, path, cur_disk_bytenr,
410                                          orig_len - bio_offset, csum_dst);
411                 if (count < 0) {
412                         ret = errno_to_blk_status(count);
413                         if (bbio->csum != bbio->csum_inline)
414                                 kfree(bbio->csum);
415                         bbio->csum = NULL;
416                         break;
417                 }
418
419                 /*
420                  * We didn't find a csum for this range.  We need to make sure
421                  * we complain loudly about this, because we are not NODATASUM.
422                  *
423                  * However for the DATA_RELOC inode we could potentially be
424                  * relocating data extents for a NODATASUM inode, so the inode
425                  * itself won't be marked with NODATASUM, but the extent we're
426                  * copying is in fact NODATASUM.  If we don't find a csum we
427                  * assume this is the case.
428                  */
429                 if (count == 0) {
430                         memset(csum_dst, 0, csum_size);
431                         count = 1;
432
433                         if (inode->root->root_key.objectid ==
434                             BTRFS_DATA_RELOC_TREE_OBJECTID) {
435                                 u64 file_offset = bbio->file_offset + bio_offset;
436
437                                 set_extent_bit(&inode->io_tree, file_offset,
438                                                file_offset + sectorsize - 1,
439                                                EXTENT_NODATASUM, NULL);
440                         } else {
441                                 btrfs_warn_rl(fs_info,
442                         "csum hole found for disk bytenr range [%llu, %llu)",
443                                 cur_disk_bytenr, cur_disk_bytenr + sectorsize);
444                         }
445                 }
446                 bio_offset += count * sectorsize;
447         }
448
449         btrfs_free_path(path);
450         return ret;
451 }
452
453 int btrfs_lookup_csums_list(struct btrfs_root *root, u64 start, u64 end,
454                             struct list_head *list, int search_commit,
455                             bool nowait)
456 {
457         struct btrfs_fs_info *fs_info = root->fs_info;
458         struct btrfs_key key;
459         struct btrfs_path *path;
460         struct extent_buffer *leaf;
461         struct btrfs_ordered_sum *sums;
462         struct btrfs_csum_item *item;
463         LIST_HEAD(tmplist);
464         int ret;
465
466         ASSERT(IS_ALIGNED(start, fs_info->sectorsize) &&
467                IS_ALIGNED(end + 1, fs_info->sectorsize));
468
469         path = btrfs_alloc_path();
470         if (!path)
471                 return -ENOMEM;
472
473         path->nowait = nowait;
474         if (search_commit) {
475                 path->skip_locking = 1;
476                 path->reada = READA_FORWARD;
477                 path->search_commit_root = 1;
478         }
479
480         key.objectid = BTRFS_EXTENT_CSUM_OBJECTID;
481         key.offset = start;
482         key.type = BTRFS_EXTENT_CSUM_KEY;
483
484         ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
485         if (ret < 0)
486                 goto fail;
487         if (ret > 0 && path->slots[0] > 0) {
488                 leaf = path->nodes[0];
489                 btrfs_item_key_to_cpu(leaf, &key, path->slots[0] - 1);
490
491                 /*
492                  * There are two cases we can hit here for the previous csum
493                  * item:
494                  *
495                  *              |<- search range ->|
496                  *      |<- csum item ->|
497                  *
498                  * Or
499                  *                              |<- search range ->|
500                  *      |<- csum item ->|
501                  *
502                  * Check if the previous csum item covers the leading part of
503                  * the search range.  If so we have to start from previous csum
504                  * item.
505                  */
506                 if (key.objectid == BTRFS_EXTENT_CSUM_OBJECTID &&
507                     key.type == BTRFS_EXTENT_CSUM_KEY) {
508                         if (bytes_to_csum_size(fs_info, start - key.offset) <
509                             btrfs_item_size(leaf, path->slots[0] - 1))
510                                 path->slots[0]--;
511                 }
512         }
513
514         while (start <= end) {
515                 u64 csum_end;
516
517                 leaf = path->nodes[0];
518                 if (path->slots[0] >= btrfs_header_nritems(leaf)) {
519                         ret = btrfs_next_leaf(root, path);
520                         if (ret < 0)
521                                 goto fail;
522                         if (ret > 0)
523                                 break;
524                         leaf = path->nodes[0];
525                 }
526
527                 btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
528                 if (key.objectid != BTRFS_EXTENT_CSUM_OBJECTID ||
529                     key.type != BTRFS_EXTENT_CSUM_KEY ||
530                     key.offset > end)
531                         break;
532
533                 if (key.offset > start)
534                         start = key.offset;
535
536                 csum_end = key.offset + csum_size_to_bytes(fs_info,
537                                         btrfs_item_size(leaf, path->slots[0]));
538                 if (csum_end <= start) {
539                         path->slots[0]++;
540                         continue;
541                 }
542
543                 csum_end = min(csum_end, end + 1);
544                 item = btrfs_item_ptr(path->nodes[0], path->slots[0],
545                                       struct btrfs_csum_item);
546                 while (start < csum_end) {
547                         unsigned long offset;
548                         size_t size;
549
550                         size = min_t(size_t, csum_end - start,
551                                      max_ordered_sum_bytes(fs_info));
552                         sums = kzalloc(btrfs_ordered_sum_size(fs_info, size),
553                                        GFP_NOFS);
554                         if (!sums) {
555                                 ret = -ENOMEM;
556                                 goto fail;
557                         }
558
559                         sums->logical = start;
560                         sums->len = size;
561
562                         offset = bytes_to_csum_size(fs_info, start - key.offset);
563
564                         read_extent_buffer(path->nodes[0],
565                                            sums->sums,
566                                            ((unsigned long)item) + offset,
567                                            bytes_to_csum_size(fs_info, size));
568
569                         start += size;
570                         list_add_tail(&sums->list, &tmplist);
571                 }
572                 path->slots[0]++;
573         }
574         ret = 0;
575 fail:
576         while (ret < 0 && !list_empty(&tmplist)) {
577                 sums = list_entry(tmplist.next, struct btrfs_ordered_sum, list);
578                 list_del(&sums->list);
579                 kfree(sums);
580         }
581         list_splice_tail(&tmplist, list);
582
583         btrfs_free_path(path);
584         return ret;
585 }
586
587 /*
588  * Do the same work as btrfs_lookup_csums_list(), the difference is in how
589  * we return the result.
590  *
591  * This version will set the corresponding bits in @csum_bitmap to represent
592  * that there is a csum found.
593  * Each bit represents a sector. Thus caller should ensure @csum_buf passed
594  * in is large enough to contain all csums.
595  */
596 int btrfs_lookup_csums_bitmap(struct btrfs_root *root, struct btrfs_path *path,
597                               u64 start, u64 end, u8 *csum_buf,
598                               unsigned long *csum_bitmap)
599 {
600         struct btrfs_fs_info *fs_info = root->fs_info;
601         struct btrfs_key key;
602         struct extent_buffer *leaf;
603         struct btrfs_csum_item *item;
604         const u64 orig_start = start;
605         bool free_path = false;
606         int ret;
607
608         ASSERT(IS_ALIGNED(start, fs_info->sectorsize) &&
609                IS_ALIGNED(end + 1, fs_info->sectorsize));
610
611         if (!path) {
612                 path = btrfs_alloc_path();
613                 if (!path)
614                         return -ENOMEM;
615                 free_path = true;
616         }
617
618         /* Check if we can reuse the previous path. */
619         if (path->nodes[0]) {
620                 btrfs_item_key_to_cpu(path->nodes[0], &key, path->slots[0]);
621
622                 if (key.objectid == BTRFS_EXTENT_CSUM_OBJECTID &&
623                     key.type == BTRFS_EXTENT_CSUM_KEY &&
624                     key.offset <= start)
625                         goto search_forward;
626                 btrfs_release_path(path);
627         }
628
629         key.objectid = BTRFS_EXTENT_CSUM_OBJECTID;
630         key.type = BTRFS_EXTENT_CSUM_KEY;
631         key.offset = start;
632
633         ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
634         if (ret < 0)
635                 goto fail;
636         if (ret > 0 && path->slots[0] > 0) {
637                 leaf = path->nodes[0];
638                 btrfs_item_key_to_cpu(leaf, &key, path->slots[0] - 1);
639
640                 /*
641                  * There are two cases we can hit here for the previous csum
642                  * item:
643                  *
644                  *              |<- search range ->|
645                  *      |<- csum item ->|
646                  *
647                  * Or
648                  *                              |<- search range ->|
649                  *      |<- csum item ->|
650                  *
651                  * Check if the previous csum item covers the leading part of
652                  * the search range.  If so we have to start from previous csum
653                  * item.
654                  */
655                 if (key.objectid == BTRFS_EXTENT_CSUM_OBJECTID &&
656                     key.type == BTRFS_EXTENT_CSUM_KEY) {
657                         if (bytes_to_csum_size(fs_info, start - key.offset) <
658                             btrfs_item_size(leaf, path->slots[0] - 1))
659                                 path->slots[0]--;
660                 }
661         }
662
663 search_forward:
664         while (start <= end) {
665                 u64 csum_end;
666
667                 leaf = path->nodes[0];
668                 if (path->slots[0] >= btrfs_header_nritems(leaf)) {
669                         ret = btrfs_next_leaf(root, path);
670                         if (ret < 0)
671                                 goto fail;
672                         if (ret > 0)
673                                 break;
674                         leaf = path->nodes[0];
675                 }
676
677                 btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
678                 if (key.objectid != BTRFS_EXTENT_CSUM_OBJECTID ||
679                     key.type != BTRFS_EXTENT_CSUM_KEY ||
680                     key.offset > end)
681                         break;
682
683                 if (key.offset > start)
684                         start = key.offset;
685
686                 csum_end = key.offset + csum_size_to_bytes(fs_info,
687                                         btrfs_item_size(leaf, path->slots[0]));
688                 if (csum_end <= start) {
689                         path->slots[0]++;
690                         continue;
691                 }
692
693                 csum_end = min(csum_end, end + 1);
694                 item = btrfs_item_ptr(path->nodes[0], path->slots[0],
695                                       struct btrfs_csum_item);
696                 while (start < csum_end) {
697                         unsigned long offset;
698                         size_t size;
699                         u8 *csum_dest = csum_buf + bytes_to_csum_size(fs_info,
700                                                 start - orig_start);
701
702                         size = min_t(size_t, csum_end - start, end + 1 - start);
703
704                         offset = bytes_to_csum_size(fs_info, start - key.offset);
705
706                         read_extent_buffer(path->nodes[0], csum_dest,
707                                            ((unsigned long)item) + offset,
708                                            bytes_to_csum_size(fs_info, size));
709
710                         bitmap_set(csum_bitmap,
711                                 (start - orig_start) >> fs_info->sectorsize_bits,
712                                 size >> fs_info->sectorsize_bits);
713
714                         start += size;
715                 }
716                 path->slots[0]++;
717         }
718         ret = 0;
719 fail:
720         if (free_path)
721                 btrfs_free_path(path);
722         return ret;
723 }
724
725 /*
726  * Calculate checksums of the data contained inside a bio.
727  */
728 blk_status_t btrfs_csum_one_bio(struct btrfs_bio *bbio)
729 {
730         struct btrfs_ordered_extent *ordered = bbio->ordered;
731         struct btrfs_inode *inode = bbio->inode;
732         struct btrfs_fs_info *fs_info = inode->root->fs_info;
733         SHASH_DESC_ON_STACK(shash, fs_info->csum_shash);
734         struct bio *bio = &bbio->bio;
735         struct btrfs_ordered_sum *sums;
736         char *data;
737         struct bvec_iter iter;
738         struct bio_vec bvec;
739         int index;
740         unsigned int blockcount;
741         int i;
742         unsigned nofs_flag;
743
744         nofs_flag = memalloc_nofs_save();
745         sums = kvzalloc(btrfs_ordered_sum_size(fs_info, bio->bi_iter.bi_size),
746                        GFP_KERNEL);
747         memalloc_nofs_restore(nofs_flag);
748
749         if (!sums)
750                 return BLK_STS_RESOURCE;
751
752         sums->len = bio->bi_iter.bi_size;
753         INIT_LIST_HEAD(&sums->list);
754
755         sums->logical = bio->bi_iter.bi_sector << SECTOR_SHIFT;
756         index = 0;
757
758         shash->tfm = fs_info->csum_shash;
759
760         bio_for_each_segment(bvec, bio, iter) {
761                 blockcount = BTRFS_BYTES_TO_BLKS(fs_info,
762                                                  bvec.bv_len + fs_info->sectorsize
763                                                  - 1);
764
765                 for (i = 0; i < blockcount; i++) {
766                         data = bvec_kmap_local(&bvec);
767                         crypto_shash_digest(shash,
768                                             data + (i * fs_info->sectorsize),
769                                             fs_info->sectorsize,
770                                             sums->sums + index);
771                         kunmap_local(data);
772                         index += fs_info->csum_size;
773                 }
774
775         }
776
777         bbio->sums = sums;
778         btrfs_add_ordered_sum(ordered, sums);
779         return 0;
780 }
781
782 /*
783  * Nodatasum I/O on zoned file systems still requires an btrfs_ordered_sum to
784  * record the updated logical address on Zone Append completion.
785  * Allocate just the structure with an empty sums array here for that case.
786  */
787 blk_status_t btrfs_alloc_dummy_sum(struct btrfs_bio *bbio)
788 {
789         bbio->sums = kmalloc(sizeof(*bbio->sums), GFP_NOFS);
790         if (!bbio->sums)
791                 return BLK_STS_RESOURCE;
792         bbio->sums->len = bbio->bio.bi_iter.bi_size;
793         bbio->sums->logical = bbio->bio.bi_iter.bi_sector << SECTOR_SHIFT;
794         btrfs_add_ordered_sum(bbio->ordered, bbio->sums);
795         return 0;
796 }
797
798 /*
799  * Remove one checksum overlapping a range.
800  *
801  * This expects the key to describe the csum pointed to by the path, and it
802  * expects the csum to overlap the range [bytenr, len]
803  *
804  * The csum should not be entirely contained in the range and the range should
805  * not be entirely contained in the csum.
806  *
807  * This calls btrfs_truncate_item with the correct args based on the overlap,
808  * and fixes up the key as required.
809  */
810 static noinline void truncate_one_csum(struct btrfs_trans_handle *trans,
811                                        struct btrfs_path *path,
812                                        struct btrfs_key *key,
813                                        u64 bytenr, u64 len)
814 {
815         struct btrfs_fs_info *fs_info = trans->fs_info;
816         struct extent_buffer *leaf;
817         const u32 csum_size = fs_info->csum_size;
818         u64 csum_end;
819         u64 end_byte = bytenr + len;
820         u32 blocksize_bits = fs_info->sectorsize_bits;
821
822         leaf = path->nodes[0];
823         csum_end = btrfs_item_size(leaf, path->slots[0]) / csum_size;
824         csum_end <<= blocksize_bits;
825         csum_end += key->offset;
826
827         if (key->offset < bytenr && csum_end <= end_byte) {
828                 /*
829                  *         [ bytenr - len ]
830                  *         [   ]
831                  *   [csum     ]
832                  *   A simple truncate off the end of the item
833                  */
834                 u32 new_size = (bytenr - key->offset) >> blocksize_bits;
835                 new_size *= csum_size;
836                 btrfs_truncate_item(trans, path, new_size, 1);
837         } else if (key->offset >= bytenr && csum_end > end_byte &&
838                    end_byte > key->offset) {
839                 /*
840                  *         [ bytenr - len ]
841                  *                 [ ]
842                  *                 [csum     ]
843                  * we need to truncate from the beginning of the csum
844                  */
845                 u32 new_size = (csum_end - end_byte) >> blocksize_bits;
846                 new_size *= csum_size;
847
848                 btrfs_truncate_item(trans, path, new_size, 0);
849
850                 key->offset = end_byte;
851                 btrfs_set_item_key_safe(trans, path, key);
852         } else {
853                 BUG();
854         }
855 }
856
857 /*
858  * Delete the csum items from the csum tree for a given range of bytes.
859  */
860 int btrfs_del_csums(struct btrfs_trans_handle *trans,
861                     struct btrfs_root *root, u64 bytenr, u64 len)
862 {
863         struct btrfs_fs_info *fs_info = trans->fs_info;
864         struct btrfs_path *path;
865         struct btrfs_key key;
866         u64 end_byte = bytenr + len;
867         u64 csum_end;
868         struct extent_buffer *leaf;
869         int ret = 0;
870         const u32 csum_size = fs_info->csum_size;
871         u32 blocksize_bits = fs_info->sectorsize_bits;
872
873         ASSERT(root->root_key.objectid == BTRFS_CSUM_TREE_OBJECTID ||
874                root->root_key.objectid == BTRFS_TREE_LOG_OBJECTID);
875
876         path = btrfs_alloc_path();
877         if (!path)
878                 return -ENOMEM;
879
880         while (1) {
881                 key.objectid = BTRFS_EXTENT_CSUM_OBJECTID;
882                 key.offset = end_byte - 1;
883                 key.type = BTRFS_EXTENT_CSUM_KEY;
884
885                 ret = btrfs_search_slot(trans, root, &key, path, -1, 1);
886                 if (ret > 0) {
887                         ret = 0;
888                         if (path->slots[0] == 0)
889                                 break;
890                         path->slots[0]--;
891                 } else if (ret < 0) {
892                         break;
893                 }
894
895                 leaf = path->nodes[0];
896                 btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
897
898                 if (key.objectid != BTRFS_EXTENT_CSUM_OBJECTID ||
899                     key.type != BTRFS_EXTENT_CSUM_KEY) {
900                         break;
901                 }
902
903                 if (key.offset >= end_byte)
904                         break;
905
906                 csum_end = btrfs_item_size(leaf, path->slots[0]) / csum_size;
907                 csum_end <<= blocksize_bits;
908                 csum_end += key.offset;
909
910                 /* this csum ends before we start, we're done */
911                 if (csum_end <= bytenr)
912                         break;
913
914                 /* delete the entire item, it is inside our range */
915                 if (key.offset >= bytenr && csum_end <= end_byte) {
916                         int del_nr = 1;
917
918                         /*
919                          * Check how many csum items preceding this one in this
920                          * leaf correspond to our range and then delete them all
921                          * at once.
922                          */
923                         if (key.offset > bytenr && path->slots[0] > 0) {
924                                 int slot = path->slots[0] - 1;
925
926                                 while (slot >= 0) {
927                                         struct btrfs_key pk;
928
929                                         btrfs_item_key_to_cpu(leaf, &pk, slot);
930                                         if (pk.offset < bytenr ||
931                                             pk.type != BTRFS_EXTENT_CSUM_KEY ||
932                                             pk.objectid !=
933                                             BTRFS_EXTENT_CSUM_OBJECTID)
934                                                 break;
935                                         path->slots[0] = slot;
936                                         del_nr++;
937                                         key.offset = pk.offset;
938                                         slot--;
939                                 }
940                         }
941                         ret = btrfs_del_items(trans, root, path,
942                                               path->slots[0], del_nr);
943                         if (ret)
944                                 break;
945                         if (key.offset == bytenr)
946                                 break;
947                 } else if (key.offset < bytenr && csum_end > end_byte) {
948                         unsigned long offset;
949                         unsigned long shift_len;
950                         unsigned long item_offset;
951                         /*
952                          *        [ bytenr - len ]
953                          *     [csum                ]
954                          *
955                          * Our bytes are in the middle of the csum,
956                          * we need to split this item and insert a new one.
957                          *
958                          * But we can't drop the path because the
959                          * csum could change, get removed, extended etc.
960                          *
961                          * The trick here is the max size of a csum item leaves
962                          * enough room in the tree block for a single
963                          * item header.  So, we split the item in place,
964                          * adding a new header pointing to the existing
965                          * bytes.  Then we loop around again and we have
966                          * a nicely formed csum item that we can neatly
967                          * truncate.
968                          */
969                         offset = (bytenr - key.offset) >> blocksize_bits;
970                         offset *= csum_size;
971
972                         shift_len = (len >> blocksize_bits) * csum_size;
973
974                         item_offset = btrfs_item_ptr_offset(leaf,
975                                                             path->slots[0]);
976
977                         memzero_extent_buffer(leaf, item_offset + offset,
978                                              shift_len);
979                         key.offset = bytenr;
980
981                         /*
982                          * btrfs_split_item returns -EAGAIN when the
983                          * item changed size or key
984                          */
985                         ret = btrfs_split_item(trans, root, path, &key, offset);
986                         if (ret && ret != -EAGAIN) {
987                                 btrfs_abort_transaction(trans, ret);
988                                 break;
989                         }
990                         ret = 0;
991
992                         key.offset = end_byte - 1;
993                 } else {
994                         truncate_one_csum(trans, path, &key, bytenr, len);
995                         if (key.offset < bytenr)
996                                 break;
997                 }
998                 btrfs_release_path(path);
999         }
1000         btrfs_free_path(path);
1001         return ret;
1002 }
1003
1004 static int find_next_csum_offset(struct btrfs_root *root,
1005                                  struct btrfs_path *path,
1006                                  u64 *next_offset)
1007 {
1008         const u32 nritems = btrfs_header_nritems(path->nodes[0]);
1009         struct btrfs_key found_key;
1010         int slot = path->slots[0] + 1;
1011         int ret;
1012
1013         if (nritems == 0 || slot >= nritems) {
1014                 ret = btrfs_next_leaf(root, path);
1015                 if (ret < 0) {
1016                         return ret;
1017                 } else if (ret > 0) {
1018                         *next_offset = (u64)-1;
1019                         return 0;
1020                 }
1021                 slot = path->slots[0];
1022         }
1023
1024         btrfs_item_key_to_cpu(path->nodes[0], &found_key, slot);
1025
1026         if (found_key.objectid != BTRFS_EXTENT_CSUM_OBJECTID ||
1027             found_key.type != BTRFS_EXTENT_CSUM_KEY)
1028                 *next_offset = (u64)-1;
1029         else
1030                 *next_offset = found_key.offset;
1031
1032         return 0;
1033 }
1034
1035 int btrfs_csum_file_blocks(struct btrfs_trans_handle *trans,
1036                            struct btrfs_root *root,
1037                            struct btrfs_ordered_sum *sums)
1038 {
1039         struct btrfs_fs_info *fs_info = root->fs_info;
1040         struct btrfs_key file_key;
1041         struct btrfs_key found_key;
1042         struct btrfs_path *path;
1043         struct btrfs_csum_item *item;
1044         struct btrfs_csum_item *item_end;
1045         struct extent_buffer *leaf = NULL;
1046         u64 next_offset;
1047         u64 total_bytes = 0;
1048         u64 csum_offset;
1049         u64 bytenr;
1050         u32 ins_size;
1051         int index = 0;
1052         int found_next;
1053         int ret;
1054         const u32 csum_size = fs_info->csum_size;
1055
1056         path = btrfs_alloc_path();
1057         if (!path)
1058                 return -ENOMEM;
1059 again:
1060         next_offset = (u64)-1;
1061         found_next = 0;
1062         bytenr = sums->logical + total_bytes;
1063         file_key.objectid = BTRFS_EXTENT_CSUM_OBJECTID;
1064         file_key.offset = bytenr;
1065         file_key.type = BTRFS_EXTENT_CSUM_KEY;
1066
1067         item = btrfs_lookup_csum(trans, root, path, bytenr, 1);
1068         if (!IS_ERR(item)) {
1069                 ret = 0;
1070                 leaf = path->nodes[0];
1071                 item_end = btrfs_item_ptr(leaf, path->slots[0],
1072                                           struct btrfs_csum_item);
1073                 item_end = (struct btrfs_csum_item *)((char *)item_end +
1074                            btrfs_item_size(leaf, path->slots[0]));
1075                 goto found;
1076         }
1077         ret = PTR_ERR(item);
1078         if (ret != -EFBIG && ret != -ENOENT)
1079                 goto out;
1080
1081         if (ret == -EFBIG) {
1082                 u32 item_size;
1083                 /* we found one, but it isn't big enough yet */
1084                 leaf = path->nodes[0];
1085                 item_size = btrfs_item_size(leaf, path->slots[0]);
1086                 if ((item_size / csum_size) >=
1087                     MAX_CSUM_ITEMS(fs_info, csum_size)) {
1088                         /* already at max size, make a new one */
1089                         goto insert;
1090                 }
1091         } else {
1092                 /* We didn't find a csum item, insert one. */
1093                 ret = find_next_csum_offset(root, path, &next_offset);
1094                 if (ret < 0)
1095                         goto out;
1096                 found_next = 1;
1097                 goto insert;
1098         }
1099
1100         /*
1101          * At this point, we know the tree has a checksum item that ends at an
1102          * offset matching the start of the checksum range we want to insert.
1103          * We try to extend that item as much as possible and then add as many
1104          * checksums to it as they fit.
1105          *
1106          * First check if the leaf has enough free space for at least one
1107          * checksum. If it has go directly to the item extension code, otherwise
1108          * release the path and do a search for insertion before the extension.
1109          */
1110         if (btrfs_leaf_free_space(leaf) >= csum_size) {
1111                 btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]);
1112                 csum_offset = (bytenr - found_key.offset) >>
1113                         fs_info->sectorsize_bits;
1114                 goto extend_csum;
1115         }
1116
1117         btrfs_release_path(path);
1118         path->search_for_extension = 1;
1119         ret = btrfs_search_slot(trans, root, &file_key, path,
1120                                 csum_size, 1);
1121         path->search_for_extension = 0;
1122         if (ret < 0)
1123                 goto out;
1124
1125         if (ret > 0) {
1126                 if (path->slots[0] == 0)
1127                         goto insert;
1128                 path->slots[0]--;
1129         }
1130
1131         leaf = path->nodes[0];
1132         btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]);
1133         csum_offset = (bytenr - found_key.offset) >> fs_info->sectorsize_bits;
1134
1135         if (found_key.type != BTRFS_EXTENT_CSUM_KEY ||
1136             found_key.objectid != BTRFS_EXTENT_CSUM_OBJECTID ||
1137             csum_offset >= MAX_CSUM_ITEMS(fs_info, csum_size)) {
1138                 goto insert;
1139         }
1140
1141 extend_csum:
1142         if (csum_offset == btrfs_item_size(leaf, path->slots[0]) /
1143             csum_size) {
1144                 int extend_nr;
1145                 u64 tmp;
1146                 u32 diff;
1147
1148                 tmp = sums->len - total_bytes;
1149                 tmp >>= fs_info->sectorsize_bits;
1150                 WARN_ON(tmp < 1);
1151                 extend_nr = max_t(int, 1, tmp);
1152
1153                 /*
1154                  * A log tree can already have checksum items with a subset of
1155                  * the checksums we are trying to log. This can happen after
1156                  * doing a sequence of partial writes into prealloc extents and
1157                  * fsyncs in between, with a full fsync logging a larger subrange
1158                  * of an extent for which a previous fast fsync logged a smaller
1159                  * subrange. And this happens in particular due to merging file
1160                  * extent items when we complete an ordered extent for a range
1161                  * covered by a prealloc extent - this is done at
1162                  * btrfs_mark_extent_written().
1163                  *
1164                  * So if we try to extend the previous checksum item, which has
1165                  * a range that ends at the start of the range we want to insert,
1166                  * make sure we don't extend beyond the start offset of the next
1167                  * checksum item. If we are at the last item in the leaf, then
1168                  * forget the optimization of extending and add a new checksum
1169                  * item - it is not worth the complexity of releasing the path,
1170                  * getting the first key for the next leaf, repeat the btree
1171                  * search, etc, because log trees are temporary anyway and it
1172                  * would only save a few bytes of leaf space.
1173                  */
1174                 if (root->root_key.objectid == BTRFS_TREE_LOG_OBJECTID) {
1175                         if (path->slots[0] + 1 >=
1176                             btrfs_header_nritems(path->nodes[0])) {
1177                                 ret = find_next_csum_offset(root, path, &next_offset);
1178                                 if (ret < 0)
1179                                         goto out;
1180                                 found_next = 1;
1181                                 goto insert;
1182                         }
1183
1184                         ret = find_next_csum_offset(root, path, &next_offset);
1185                         if (ret < 0)
1186                                 goto out;
1187
1188                         tmp = (next_offset - bytenr) >> fs_info->sectorsize_bits;
1189                         if (tmp <= INT_MAX)
1190                                 extend_nr = min_t(int, extend_nr, tmp);
1191                 }
1192
1193                 diff = (csum_offset + extend_nr) * csum_size;
1194                 diff = min(diff,
1195                            MAX_CSUM_ITEMS(fs_info, csum_size) * csum_size);
1196
1197                 diff = diff - btrfs_item_size(leaf, path->slots[0]);
1198                 diff = min_t(u32, btrfs_leaf_free_space(leaf), diff);
1199                 diff /= csum_size;
1200                 diff *= csum_size;
1201
1202                 btrfs_extend_item(trans, path, diff);
1203                 ret = 0;
1204                 goto csum;
1205         }
1206
1207 insert:
1208         btrfs_release_path(path);
1209         csum_offset = 0;
1210         if (found_next) {
1211                 u64 tmp;
1212
1213                 tmp = sums->len - total_bytes;
1214                 tmp >>= fs_info->sectorsize_bits;
1215                 tmp = min(tmp, (next_offset - file_key.offset) >>
1216                                          fs_info->sectorsize_bits);
1217
1218                 tmp = max_t(u64, 1, tmp);
1219                 tmp = min_t(u64, tmp, MAX_CSUM_ITEMS(fs_info, csum_size));
1220                 ins_size = csum_size * tmp;
1221         } else {
1222                 ins_size = csum_size;
1223         }
1224         ret = btrfs_insert_empty_item(trans, root, path, &file_key,
1225                                       ins_size);
1226         if (ret < 0)
1227                 goto out;
1228         leaf = path->nodes[0];
1229 csum:
1230         item = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_csum_item);
1231         item_end = (struct btrfs_csum_item *)((unsigned char *)item +
1232                                       btrfs_item_size(leaf, path->slots[0]));
1233         item = (struct btrfs_csum_item *)((unsigned char *)item +
1234                                           csum_offset * csum_size);
1235 found:
1236         ins_size = (u32)(sums->len - total_bytes) >> fs_info->sectorsize_bits;
1237         ins_size *= csum_size;
1238         ins_size = min_t(u32, (unsigned long)item_end - (unsigned long)item,
1239                               ins_size);
1240         write_extent_buffer(leaf, sums->sums + index, (unsigned long)item,
1241                             ins_size);
1242
1243         index += ins_size;
1244         ins_size /= csum_size;
1245         total_bytes += ins_size * fs_info->sectorsize;
1246
1247         btrfs_mark_buffer_dirty(trans, path->nodes[0]);
1248         if (total_bytes < sums->len) {
1249                 btrfs_release_path(path);
1250                 cond_resched();
1251                 goto again;
1252         }
1253 out:
1254         btrfs_free_path(path);
1255         return ret;
1256 }
1257
1258 void btrfs_extent_item_to_extent_map(struct btrfs_inode *inode,
1259                                      const struct btrfs_path *path,
1260                                      struct btrfs_file_extent_item *fi,
1261                                      struct extent_map *em)
1262 {
1263         struct btrfs_fs_info *fs_info = inode->root->fs_info;
1264         struct btrfs_root *root = inode->root;
1265         struct extent_buffer *leaf = path->nodes[0];
1266         const int slot = path->slots[0];
1267         struct btrfs_key key;
1268         u64 extent_start, extent_end;
1269         u64 bytenr;
1270         u8 type = btrfs_file_extent_type(leaf, fi);
1271         int compress_type = btrfs_file_extent_compression(leaf, fi);
1272
1273         btrfs_item_key_to_cpu(leaf, &key, slot);
1274         extent_start = key.offset;
1275         extent_end = btrfs_file_extent_end(path);
1276         em->ram_bytes = btrfs_file_extent_ram_bytes(leaf, fi);
1277         em->generation = btrfs_file_extent_generation(leaf, fi);
1278         if (type == BTRFS_FILE_EXTENT_REG ||
1279             type == BTRFS_FILE_EXTENT_PREALLOC) {
1280                 em->start = extent_start;
1281                 em->len = extent_end - extent_start;
1282                 em->orig_start = extent_start -
1283                         btrfs_file_extent_offset(leaf, fi);
1284                 em->orig_block_len = btrfs_file_extent_disk_num_bytes(leaf, fi);
1285                 bytenr = btrfs_file_extent_disk_bytenr(leaf, fi);
1286                 if (bytenr == 0) {
1287                         em->block_start = EXTENT_MAP_HOLE;
1288                         return;
1289                 }
1290                 if (compress_type != BTRFS_COMPRESS_NONE) {
1291                         extent_map_set_compression(em, compress_type);
1292                         em->block_start = bytenr;
1293                         em->block_len = em->orig_block_len;
1294                 } else {
1295                         bytenr += btrfs_file_extent_offset(leaf, fi);
1296                         em->block_start = bytenr;
1297                         em->block_len = em->len;
1298                         if (type == BTRFS_FILE_EXTENT_PREALLOC)
1299                                 em->flags |= EXTENT_FLAG_PREALLOC;
1300                 }
1301         } else if (type == BTRFS_FILE_EXTENT_INLINE) {
1302                 em->block_start = EXTENT_MAP_INLINE;
1303                 em->start = extent_start;
1304                 em->len = extent_end - extent_start;
1305                 /*
1306                  * Initialize orig_start and block_len with the same values
1307                  * as in inode.c:btrfs_get_extent().
1308                  */
1309                 em->orig_start = EXTENT_MAP_HOLE;
1310                 em->block_len = (u64)-1;
1311                 extent_map_set_compression(em, compress_type);
1312         } else {
1313                 btrfs_err(fs_info,
1314                           "unknown file extent item type %d, inode %llu, offset %llu, "
1315                           "root %llu", type, btrfs_ino(inode), extent_start,
1316                           root->root_key.objectid);
1317         }
1318 }
1319
1320 /*
1321  * Returns the end offset (non inclusive) of the file extent item the given path
1322  * points to. If it points to an inline extent, the returned offset is rounded
1323  * up to the sector size.
1324  */
1325 u64 btrfs_file_extent_end(const struct btrfs_path *path)
1326 {
1327         const struct extent_buffer *leaf = path->nodes[0];
1328         const int slot = path->slots[0];
1329         struct btrfs_file_extent_item *fi;
1330         struct btrfs_key key;
1331         u64 end;
1332
1333         btrfs_item_key_to_cpu(leaf, &key, slot);
1334         ASSERT(key.type == BTRFS_EXTENT_DATA_KEY);
1335         fi = btrfs_item_ptr(leaf, slot, struct btrfs_file_extent_item);
1336
1337         if (btrfs_file_extent_type(leaf, fi) == BTRFS_FILE_EXTENT_INLINE) {
1338                 end = btrfs_file_extent_ram_bytes(leaf, fi);
1339                 end = ALIGN(key.offset + end, leaf->fs_info->sectorsize);
1340         } else {
1341                 end = key.offset + btrfs_file_extent_num_bytes(leaf, fi);
1342         }
1343
1344         return end;
1345 }