GNU Linux-libre 5.10.215-gnu1
[releases.git] / fs / btrfs / extent_io.c
1 // SPDX-License-Identifier: GPL-2.0
2
3 #include <linux/bitops.h>
4 #include <linux/slab.h>
5 #include <linux/bio.h>
6 #include <linux/mm.h>
7 #include <linux/pagemap.h>
8 #include <linux/page-flags.h>
9 #include <linux/spinlock.h>
10 #include <linux/blkdev.h>
11 #include <linux/swap.h>
12 #include <linux/writeback.h>
13 #include <linux/pagevec.h>
14 #include <linux/prefetch.h>
15 #include <linux/cleancache.h>
16 #include "extent_io.h"
17 #include "extent-io-tree.h"
18 #include "extent_map.h"
19 #include "ctree.h"
20 #include "btrfs_inode.h"
21 #include "volumes.h"
22 #include "check-integrity.h"
23 #include "locking.h"
24 #include "rcu-string.h"
25 #include "backref.h"
26 #include "disk-io.h"
27
28 static struct kmem_cache *extent_state_cache;
29 static struct kmem_cache *extent_buffer_cache;
30 static struct bio_set btrfs_bioset;
31
32 static inline bool extent_state_in_tree(const struct extent_state *state)
33 {
34         return !RB_EMPTY_NODE(&state->rb_node);
35 }
36
37 #ifdef CONFIG_BTRFS_DEBUG
38 static LIST_HEAD(states);
39 static DEFINE_SPINLOCK(leak_lock);
40
41 static inline void btrfs_leak_debug_add(spinlock_t *lock,
42                                         struct list_head *new,
43                                         struct list_head *head)
44 {
45         unsigned long flags;
46
47         spin_lock_irqsave(lock, flags);
48         list_add(new, head);
49         spin_unlock_irqrestore(lock, flags);
50 }
51
52 static inline void btrfs_leak_debug_del(spinlock_t *lock,
53                                         struct list_head *entry)
54 {
55         unsigned long flags;
56
57         spin_lock_irqsave(lock, flags);
58         list_del(entry);
59         spin_unlock_irqrestore(lock, flags);
60 }
61
62 void btrfs_extent_buffer_leak_debug_check(struct btrfs_fs_info *fs_info)
63 {
64         struct extent_buffer *eb;
65         unsigned long flags;
66
67         /*
68          * If we didn't get into open_ctree our allocated_ebs will not be
69          * initialized, so just skip this.
70          */
71         if (!fs_info->allocated_ebs.next)
72                 return;
73
74         spin_lock_irqsave(&fs_info->eb_leak_lock, flags);
75         while (!list_empty(&fs_info->allocated_ebs)) {
76                 eb = list_first_entry(&fs_info->allocated_ebs,
77                                       struct extent_buffer, leak_list);
78                 pr_err(
79         "BTRFS: buffer leak start %llu len %lu refs %d bflags %lu owner %llu\n",
80                        eb->start, eb->len, atomic_read(&eb->refs), eb->bflags,
81                        btrfs_header_owner(eb));
82                 list_del(&eb->leak_list);
83                 kmem_cache_free(extent_buffer_cache, eb);
84         }
85         spin_unlock_irqrestore(&fs_info->eb_leak_lock, flags);
86 }
87
88 static inline void btrfs_extent_state_leak_debug_check(void)
89 {
90         struct extent_state *state;
91
92         while (!list_empty(&states)) {
93                 state = list_entry(states.next, struct extent_state, leak_list);
94                 pr_err("BTRFS: state leak: start %llu end %llu state %u in tree %d refs %d\n",
95                        state->start, state->end, state->state,
96                        extent_state_in_tree(state),
97                        refcount_read(&state->refs));
98                 list_del(&state->leak_list);
99                 kmem_cache_free(extent_state_cache, state);
100         }
101 }
102
103 #define btrfs_debug_check_extent_io_range(tree, start, end)             \
104         __btrfs_debug_check_extent_io_range(__func__, (tree), (start), (end))
105 static inline void __btrfs_debug_check_extent_io_range(const char *caller,
106                 struct extent_io_tree *tree, u64 start, u64 end)
107 {
108         struct inode *inode = tree->private_data;
109         u64 isize;
110
111         if (!inode || !is_data_inode(inode))
112                 return;
113
114         isize = i_size_read(inode);
115         if (end >= PAGE_SIZE && (end % 2) == 0 && end != isize - 1) {
116                 btrfs_debug_rl(BTRFS_I(inode)->root->fs_info,
117                     "%s: ino %llu isize %llu odd range [%llu,%llu]",
118                         caller, btrfs_ino(BTRFS_I(inode)), isize, start, end);
119         }
120 }
121 #else
122 #define btrfs_leak_debug_add(lock, new, head)   do {} while (0)
123 #define btrfs_leak_debug_del(lock, entry)       do {} while (0)
124 #define btrfs_extent_state_leak_debug_check()   do {} while (0)
125 #define btrfs_debug_check_extent_io_range(c, s, e)      do {} while (0)
126 #endif
127
128 struct tree_entry {
129         u64 start;
130         u64 end;
131         struct rb_node rb_node;
132 };
133
134 struct extent_page_data {
135         struct bio *bio;
136         /* tells writepage not to lock the state bits for this range
137          * it still does the unlocking
138          */
139         unsigned int extent_locked:1;
140
141         /* tells the submit_bio code to use REQ_SYNC */
142         unsigned int sync_io:1;
143 };
144
145 static int add_extent_changeset(struct extent_state *state, unsigned bits,
146                                  struct extent_changeset *changeset,
147                                  int set)
148 {
149         int ret;
150
151         if (!changeset)
152                 return 0;
153         if (set && (state->state & bits) == bits)
154                 return 0;
155         if (!set && (state->state & bits) == 0)
156                 return 0;
157         changeset->bytes_changed += state->end - state->start + 1;
158         ret = ulist_add(&changeset->range_changed, state->start, state->end,
159                         GFP_ATOMIC);
160         return ret;
161 }
162
163 int __must_check submit_one_bio(struct bio *bio, int mirror_num,
164                                 unsigned long bio_flags)
165 {
166         blk_status_t ret = 0;
167         struct extent_io_tree *tree = bio->bi_private;
168
169         bio->bi_private = NULL;
170
171         if (is_data_inode(tree->private_data))
172                 ret = btrfs_submit_data_bio(tree->private_data, bio, mirror_num,
173                                             bio_flags);
174         else
175                 ret = btrfs_submit_metadata_bio(tree->private_data, bio,
176                                                 mirror_num, bio_flags);
177
178         return blk_status_to_errno(ret);
179 }
180
181 /* Cleanup unsubmitted bios */
182 static void end_write_bio(struct extent_page_data *epd, int ret)
183 {
184         if (epd->bio) {
185                 epd->bio->bi_status = errno_to_blk_status(ret);
186                 bio_endio(epd->bio);
187                 epd->bio = NULL;
188         }
189 }
190
191 /*
192  * Submit bio from extent page data via submit_one_bio
193  *
194  * Return 0 if everything is OK.
195  * Return <0 for error.
196  */
197 static int __must_check flush_write_bio(struct extent_page_data *epd)
198 {
199         int ret = 0;
200
201         if (epd->bio) {
202                 ret = submit_one_bio(epd->bio, 0, 0);
203                 /*
204                  * Clean up of epd->bio is handled by its endio function.
205                  * And endio is either triggered by successful bio execution
206                  * or the error handler of submit bio hook.
207                  * So at this point, no matter what happened, we don't need
208                  * to clean up epd->bio.
209                  */
210                 epd->bio = NULL;
211         }
212         return ret;
213 }
214
215 int __init extent_state_cache_init(void)
216 {
217         extent_state_cache = kmem_cache_create("btrfs_extent_state",
218                         sizeof(struct extent_state), 0,
219                         SLAB_MEM_SPREAD, NULL);
220         if (!extent_state_cache)
221                 return -ENOMEM;
222         return 0;
223 }
224
225 int __init extent_io_init(void)
226 {
227         extent_buffer_cache = kmem_cache_create("btrfs_extent_buffer",
228                         sizeof(struct extent_buffer), 0,
229                         SLAB_MEM_SPREAD, NULL);
230         if (!extent_buffer_cache)
231                 return -ENOMEM;
232
233         if (bioset_init(&btrfs_bioset, BIO_POOL_SIZE,
234                         offsetof(struct btrfs_io_bio, bio),
235                         BIOSET_NEED_BVECS))
236                 goto free_buffer_cache;
237
238         if (bioset_integrity_create(&btrfs_bioset, BIO_POOL_SIZE))
239                 goto free_bioset;
240
241         return 0;
242
243 free_bioset:
244         bioset_exit(&btrfs_bioset);
245
246 free_buffer_cache:
247         kmem_cache_destroy(extent_buffer_cache);
248         extent_buffer_cache = NULL;
249         return -ENOMEM;
250 }
251
252 void __cold extent_state_cache_exit(void)
253 {
254         btrfs_extent_state_leak_debug_check();
255         kmem_cache_destroy(extent_state_cache);
256 }
257
258 void __cold extent_io_exit(void)
259 {
260         /*
261          * Make sure all delayed rcu free are flushed before we
262          * destroy caches.
263          */
264         rcu_barrier();
265         kmem_cache_destroy(extent_buffer_cache);
266         bioset_exit(&btrfs_bioset);
267 }
268
269 /*
270  * For the file_extent_tree, we want to hold the inode lock when we lookup and
271  * update the disk_i_size, but lockdep will complain because our io_tree we hold
272  * the tree lock and get the inode lock when setting delalloc.  These two things
273  * are unrelated, so make a class for the file_extent_tree so we don't get the
274  * two locking patterns mixed up.
275  */
276 static struct lock_class_key file_extent_tree_class;
277
278 void extent_io_tree_init(struct btrfs_fs_info *fs_info,
279                          struct extent_io_tree *tree, unsigned int owner,
280                          void *private_data)
281 {
282         tree->fs_info = fs_info;
283         tree->state = RB_ROOT;
284         tree->dirty_bytes = 0;
285         spin_lock_init(&tree->lock);
286         tree->private_data = private_data;
287         tree->owner = owner;
288         if (owner == IO_TREE_INODE_FILE_EXTENT)
289                 lockdep_set_class(&tree->lock, &file_extent_tree_class);
290 }
291
292 void extent_io_tree_release(struct extent_io_tree *tree)
293 {
294         spin_lock(&tree->lock);
295         /*
296          * Do a single barrier for the waitqueue_active check here, the state
297          * of the waitqueue should not change once extent_io_tree_release is
298          * called.
299          */
300         smp_mb();
301         while (!RB_EMPTY_ROOT(&tree->state)) {
302                 struct rb_node *node;
303                 struct extent_state *state;
304
305                 node = rb_first(&tree->state);
306                 state = rb_entry(node, struct extent_state, rb_node);
307                 rb_erase(&state->rb_node, &tree->state);
308                 RB_CLEAR_NODE(&state->rb_node);
309                 /*
310                  * btree io trees aren't supposed to have tasks waiting for
311                  * changes in the flags of extent states ever.
312                  */
313                 ASSERT(!waitqueue_active(&state->wq));
314                 free_extent_state(state);
315
316                 cond_resched_lock(&tree->lock);
317         }
318         spin_unlock(&tree->lock);
319 }
320
321 static struct extent_state *alloc_extent_state(gfp_t mask)
322 {
323         struct extent_state *state;
324
325         /*
326          * The given mask might be not appropriate for the slab allocator,
327          * drop the unsupported bits
328          */
329         mask &= ~(__GFP_DMA32|__GFP_HIGHMEM);
330         state = kmem_cache_alloc(extent_state_cache, mask);
331         if (!state)
332                 return state;
333         state->state = 0;
334         state->failrec = NULL;
335         RB_CLEAR_NODE(&state->rb_node);
336         btrfs_leak_debug_add(&leak_lock, &state->leak_list, &states);
337         refcount_set(&state->refs, 1);
338         init_waitqueue_head(&state->wq);
339         trace_alloc_extent_state(state, mask, _RET_IP_);
340         return state;
341 }
342
343 void free_extent_state(struct extent_state *state)
344 {
345         if (!state)
346                 return;
347         if (refcount_dec_and_test(&state->refs)) {
348                 WARN_ON(extent_state_in_tree(state));
349                 btrfs_leak_debug_del(&leak_lock, &state->leak_list);
350                 trace_free_extent_state(state, _RET_IP_);
351                 kmem_cache_free(extent_state_cache, state);
352         }
353 }
354
355 static struct rb_node *tree_insert(struct rb_root *root,
356                                    struct rb_node *search_start,
357                                    u64 offset,
358                                    struct rb_node *node,
359                                    struct rb_node ***p_in,
360                                    struct rb_node **parent_in)
361 {
362         struct rb_node **p;
363         struct rb_node *parent = NULL;
364         struct tree_entry *entry;
365
366         if (p_in && parent_in) {
367                 p = *p_in;
368                 parent = *parent_in;
369                 goto do_insert;
370         }
371
372         p = search_start ? &search_start : &root->rb_node;
373         while (*p) {
374                 parent = *p;
375                 entry = rb_entry(parent, struct tree_entry, rb_node);
376
377                 if (offset < entry->start)
378                         p = &(*p)->rb_left;
379                 else if (offset > entry->end)
380                         p = &(*p)->rb_right;
381                 else
382                         return parent;
383         }
384
385 do_insert:
386         rb_link_node(node, parent, p);
387         rb_insert_color(node, root);
388         return NULL;
389 }
390
391 /**
392  * __etree_search - searche @tree for an entry that contains @offset. Such
393  * entry would have entry->start <= offset && entry->end >= offset.
394  *
395  * @tree - the tree to search
396  * @offset - offset that should fall within an entry in @tree
397  * @next_ret - pointer to the first entry whose range ends after @offset
398  * @prev - pointer to the first entry whose range begins before @offset
399  * @p_ret - pointer where new node should be anchored (used when inserting an
400  *          entry in the tree)
401  * @parent_ret - points to entry which would have been the parent of the entry,
402  *               containing @offset
403  *
404  * This function returns a pointer to the entry that contains @offset byte
405  * address. If no such entry exists, then NULL is returned and the other
406  * pointer arguments to the function are filled, otherwise the found entry is
407  * returned and other pointers are left untouched.
408  */
409 static struct rb_node *__etree_search(struct extent_io_tree *tree, u64 offset,
410                                       struct rb_node **next_ret,
411                                       struct rb_node **prev_ret,
412                                       struct rb_node ***p_ret,
413                                       struct rb_node **parent_ret)
414 {
415         struct rb_root *root = &tree->state;
416         struct rb_node **n = &root->rb_node;
417         struct rb_node *prev = NULL;
418         struct rb_node *orig_prev = NULL;
419         struct tree_entry *entry;
420         struct tree_entry *prev_entry = NULL;
421
422         while (*n) {
423                 prev = *n;
424                 entry = rb_entry(prev, struct tree_entry, rb_node);
425                 prev_entry = entry;
426
427                 if (offset < entry->start)
428                         n = &(*n)->rb_left;
429                 else if (offset > entry->end)
430                         n = &(*n)->rb_right;
431                 else
432                         return *n;
433         }
434
435         if (p_ret)
436                 *p_ret = n;
437         if (parent_ret)
438                 *parent_ret = prev;
439
440         if (next_ret) {
441                 orig_prev = prev;
442                 while (prev && offset > prev_entry->end) {
443                         prev = rb_next(prev);
444                         prev_entry = rb_entry(prev, struct tree_entry, rb_node);
445                 }
446                 *next_ret = prev;
447                 prev = orig_prev;
448         }
449
450         if (prev_ret) {
451                 prev_entry = rb_entry(prev, struct tree_entry, rb_node);
452                 while (prev && offset < prev_entry->start) {
453                         prev = rb_prev(prev);
454                         prev_entry = rb_entry(prev, struct tree_entry, rb_node);
455                 }
456                 *prev_ret = prev;
457         }
458         return NULL;
459 }
460
461 static inline struct rb_node *
462 tree_search_for_insert(struct extent_io_tree *tree,
463                        u64 offset,
464                        struct rb_node ***p_ret,
465                        struct rb_node **parent_ret)
466 {
467         struct rb_node *next= NULL;
468         struct rb_node *ret;
469
470         ret = __etree_search(tree, offset, &next, NULL, p_ret, parent_ret);
471         if (!ret)
472                 return next;
473         return ret;
474 }
475
476 static inline struct rb_node *tree_search(struct extent_io_tree *tree,
477                                           u64 offset)
478 {
479         return tree_search_for_insert(tree, offset, NULL, NULL);
480 }
481
482 /*
483  * utility function to look for merge candidates inside a given range.
484  * Any extents with matching state are merged together into a single
485  * extent in the tree.  Extents with EXTENT_IO in their state field
486  * are not merged because the end_io handlers need to be able to do
487  * operations on them without sleeping (or doing allocations/splits).
488  *
489  * This should be called with the tree lock held.
490  */
491 static void merge_state(struct extent_io_tree *tree,
492                         struct extent_state *state)
493 {
494         struct extent_state *other;
495         struct rb_node *other_node;
496
497         if (state->state & (EXTENT_LOCKED | EXTENT_BOUNDARY))
498                 return;
499
500         other_node = rb_prev(&state->rb_node);
501         if (other_node) {
502                 other = rb_entry(other_node, struct extent_state, rb_node);
503                 if (other->end == state->start - 1 &&
504                     other->state == state->state) {
505                         if (tree->private_data &&
506                             is_data_inode(tree->private_data))
507                                 btrfs_merge_delalloc_extent(tree->private_data,
508                                                             state, other);
509                         state->start = other->start;
510                         rb_erase(&other->rb_node, &tree->state);
511                         RB_CLEAR_NODE(&other->rb_node);
512                         free_extent_state(other);
513                 }
514         }
515         other_node = rb_next(&state->rb_node);
516         if (other_node) {
517                 other = rb_entry(other_node, struct extent_state, rb_node);
518                 if (other->start == state->end + 1 &&
519                     other->state == state->state) {
520                         if (tree->private_data &&
521                             is_data_inode(tree->private_data))
522                                 btrfs_merge_delalloc_extent(tree->private_data,
523                                                             state, other);
524                         state->end = other->end;
525                         rb_erase(&other->rb_node, &tree->state);
526                         RB_CLEAR_NODE(&other->rb_node);
527                         free_extent_state(other);
528                 }
529         }
530 }
531
532 static void set_state_bits(struct extent_io_tree *tree,
533                            struct extent_state *state, unsigned *bits,
534                            struct extent_changeset *changeset);
535
536 /*
537  * insert an extent_state struct into the tree.  'bits' are set on the
538  * struct before it is inserted.
539  *
540  * This may return -EEXIST if the extent is already there, in which case the
541  * state struct is freed.
542  *
543  * The tree lock is not taken internally.  This is a utility function and
544  * probably isn't what you want to call (see set/clear_extent_bit).
545  */
546 static int insert_state(struct extent_io_tree *tree,
547                         struct extent_state *state, u64 start, u64 end,
548                         struct rb_node ***p,
549                         struct rb_node **parent,
550                         unsigned *bits, struct extent_changeset *changeset)
551 {
552         struct rb_node *node;
553
554         if (end < start) {
555                 btrfs_err(tree->fs_info,
556                         "insert state: end < start %llu %llu", end, start);
557                 WARN_ON(1);
558         }
559         state->start = start;
560         state->end = end;
561
562         set_state_bits(tree, state, bits, changeset);
563
564         node = tree_insert(&tree->state, NULL, end, &state->rb_node, p, parent);
565         if (node) {
566                 struct extent_state *found;
567                 found = rb_entry(node, struct extent_state, rb_node);
568                 btrfs_err(tree->fs_info,
569                        "found node %llu %llu on insert of %llu %llu",
570                        found->start, found->end, start, end);
571                 return -EEXIST;
572         }
573         merge_state(tree, state);
574         return 0;
575 }
576
577 /*
578  * split a given extent state struct in two, inserting the preallocated
579  * struct 'prealloc' as the newly created second half.  'split' indicates an
580  * offset inside 'orig' where it should be split.
581  *
582  * Before calling,
583  * the tree has 'orig' at [orig->start, orig->end].  After calling, there
584  * are two extent state structs in the tree:
585  * prealloc: [orig->start, split - 1]
586  * orig: [ split, orig->end ]
587  *
588  * The tree locks are not taken by this function. They need to be held
589  * by the caller.
590  */
591 static int split_state(struct extent_io_tree *tree, struct extent_state *orig,
592                        struct extent_state *prealloc, u64 split)
593 {
594         struct rb_node *node;
595
596         if (tree->private_data && is_data_inode(tree->private_data))
597                 btrfs_split_delalloc_extent(tree->private_data, orig, split);
598
599         prealloc->start = orig->start;
600         prealloc->end = split - 1;
601         prealloc->state = orig->state;
602         orig->start = split;
603
604         node = tree_insert(&tree->state, &orig->rb_node, prealloc->end,
605                            &prealloc->rb_node, NULL, NULL);
606         if (node) {
607                 free_extent_state(prealloc);
608                 return -EEXIST;
609         }
610         return 0;
611 }
612
613 static struct extent_state *next_state(struct extent_state *state)
614 {
615         struct rb_node *next = rb_next(&state->rb_node);
616         if (next)
617                 return rb_entry(next, struct extent_state, rb_node);
618         else
619                 return NULL;
620 }
621
622 /*
623  * utility function to clear some bits in an extent state struct.
624  * it will optionally wake up anyone waiting on this state (wake == 1).
625  *
626  * If no bits are set on the state struct after clearing things, the
627  * struct is freed and removed from the tree
628  */
629 static struct extent_state *clear_state_bit(struct extent_io_tree *tree,
630                                             struct extent_state *state,
631                                             unsigned *bits, int wake,
632                                             struct extent_changeset *changeset)
633 {
634         struct extent_state *next;
635         unsigned bits_to_clear = *bits & ~EXTENT_CTLBITS;
636         int ret;
637
638         if ((bits_to_clear & EXTENT_DIRTY) && (state->state & EXTENT_DIRTY)) {
639                 u64 range = state->end - state->start + 1;
640                 WARN_ON(range > tree->dirty_bytes);
641                 tree->dirty_bytes -= range;
642         }
643
644         if (tree->private_data && is_data_inode(tree->private_data))
645                 btrfs_clear_delalloc_extent(tree->private_data, state, bits);
646
647         ret = add_extent_changeset(state, bits_to_clear, changeset, 0);
648         BUG_ON(ret < 0);
649         state->state &= ~bits_to_clear;
650         if (wake)
651                 wake_up(&state->wq);
652         if (state->state == 0) {
653                 next = next_state(state);
654                 if (extent_state_in_tree(state)) {
655                         rb_erase(&state->rb_node, &tree->state);
656                         RB_CLEAR_NODE(&state->rb_node);
657                         free_extent_state(state);
658                 } else {
659                         WARN_ON(1);
660                 }
661         } else {
662                 merge_state(tree, state);
663                 next = next_state(state);
664         }
665         return next;
666 }
667
668 static struct extent_state *
669 alloc_extent_state_atomic(struct extent_state *prealloc)
670 {
671         if (!prealloc)
672                 prealloc = alloc_extent_state(GFP_ATOMIC);
673
674         return prealloc;
675 }
676
677 static void extent_io_tree_panic(struct extent_io_tree *tree, int err)
678 {
679         btrfs_panic(tree->fs_info, err,
680         "locking error: extent tree was modified by another thread while locked");
681 }
682
683 /*
684  * clear some bits on a range in the tree.  This may require splitting
685  * or inserting elements in the tree, so the gfp mask is used to
686  * indicate which allocations or sleeping are allowed.
687  *
688  * pass 'wake' == 1 to kick any sleepers, and 'delete' == 1 to remove
689  * the given range from the tree regardless of state (ie for truncate).
690  *
691  * the range [start, end] is inclusive.
692  *
693  * This takes the tree lock, and returns 0 on success and < 0 on error.
694  */
695 int __clear_extent_bit(struct extent_io_tree *tree, u64 start, u64 end,
696                               unsigned bits, int wake, int delete,
697                               struct extent_state **cached_state,
698                               gfp_t mask, struct extent_changeset *changeset)
699 {
700         struct extent_state *state;
701         struct extent_state *cached;
702         struct extent_state *prealloc = NULL;
703         struct rb_node *node;
704         u64 last_end;
705         int err;
706         int clear = 0;
707
708         btrfs_debug_check_extent_io_range(tree, start, end);
709         trace_btrfs_clear_extent_bit(tree, start, end - start + 1, bits);
710
711         if (bits & EXTENT_DELALLOC)
712                 bits |= EXTENT_NORESERVE;
713
714         if (delete)
715                 bits |= ~EXTENT_CTLBITS;
716
717         if (bits & (EXTENT_LOCKED | EXTENT_BOUNDARY))
718                 clear = 1;
719 again:
720         if (!prealloc && gfpflags_allow_blocking(mask)) {
721                 /*
722                  * Don't care for allocation failure here because we might end
723                  * up not needing the pre-allocated extent state at all, which
724                  * is the case if we only have in the tree extent states that
725                  * cover our input range and don't cover too any other range.
726                  * If we end up needing a new extent state we allocate it later.
727                  */
728                 prealloc = alloc_extent_state(mask);
729         }
730
731         spin_lock(&tree->lock);
732         if (cached_state) {
733                 cached = *cached_state;
734
735                 if (clear) {
736                         *cached_state = NULL;
737                         cached_state = NULL;
738                 }
739
740                 if (cached && extent_state_in_tree(cached) &&
741                     cached->start <= start && cached->end > start) {
742                         if (clear)
743                                 refcount_dec(&cached->refs);
744                         state = cached;
745                         goto hit_next;
746                 }
747                 if (clear)
748                         free_extent_state(cached);
749         }
750         /*
751          * this search will find the extents that end after
752          * our range starts
753          */
754         node = tree_search(tree, start);
755         if (!node)
756                 goto out;
757         state = rb_entry(node, struct extent_state, rb_node);
758 hit_next:
759         if (state->start > end)
760                 goto out;
761         WARN_ON(state->end < start);
762         last_end = state->end;
763
764         /* the state doesn't have the wanted bits, go ahead */
765         if (!(state->state & bits)) {
766                 state = next_state(state);
767                 goto next;
768         }
769
770         /*
771          *     | ---- desired range ---- |
772          *  | state | or
773          *  | ------------- state -------------- |
774          *
775          * We need to split the extent we found, and may flip
776          * bits on second half.
777          *
778          * If the extent we found extends past our range, we
779          * just split and search again.  It'll get split again
780          * the next time though.
781          *
782          * If the extent we found is inside our range, we clear
783          * the desired bit on it.
784          */
785
786         if (state->start < start) {
787                 prealloc = alloc_extent_state_atomic(prealloc);
788                 BUG_ON(!prealloc);
789                 err = split_state(tree, state, prealloc, start);
790                 if (err)
791                         extent_io_tree_panic(tree, err);
792
793                 prealloc = NULL;
794                 if (err)
795                         goto out;
796                 if (state->end <= end) {
797                         state = clear_state_bit(tree, state, &bits, wake,
798                                                 changeset);
799                         goto next;
800                 }
801                 goto search_again;
802         }
803         /*
804          * | ---- desired range ---- |
805          *                        | state |
806          * We need to split the extent, and clear the bit
807          * on the first half
808          */
809         if (state->start <= end && state->end > end) {
810                 prealloc = alloc_extent_state_atomic(prealloc);
811                 BUG_ON(!prealloc);
812                 err = split_state(tree, state, prealloc, end + 1);
813                 if (err)
814                         extent_io_tree_panic(tree, err);
815
816                 if (wake)
817                         wake_up(&state->wq);
818
819                 clear_state_bit(tree, prealloc, &bits, wake, changeset);
820
821                 prealloc = NULL;
822                 goto out;
823         }
824
825         state = clear_state_bit(tree, state, &bits, wake, changeset);
826 next:
827         if (last_end == (u64)-1)
828                 goto out;
829         start = last_end + 1;
830         if (start <= end && state && !need_resched())
831                 goto hit_next;
832
833 search_again:
834         if (start > end)
835                 goto out;
836         spin_unlock(&tree->lock);
837         if (gfpflags_allow_blocking(mask))
838                 cond_resched();
839         goto again;
840
841 out:
842         spin_unlock(&tree->lock);
843         if (prealloc)
844                 free_extent_state(prealloc);
845
846         return 0;
847
848 }
849
850 static void wait_on_state(struct extent_io_tree *tree,
851                           struct extent_state *state)
852                 __releases(tree->lock)
853                 __acquires(tree->lock)
854 {
855         DEFINE_WAIT(wait);
856         prepare_to_wait(&state->wq, &wait, TASK_UNINTERRUPTIBLE);
857         spin_unlock(&tree->lock);
858         schedule();
859         spin_lock(&tree->lock);
860         finish_wait(&state->wq, &wait);
861 }
862
863 /*
864  * waits for one or more bits to clear on a range in the state tree.
865  * The range [start, end] is inclusive.
866  * The tree lock is taken by this function
867  */
868 static void wait_extent_bit(struct extent_io_tree *tree, u64 start, u64 end,
869                             unsigned long bits)
870 {
871         struct extent_state *state;
872         struct rb_node *node;
873
874         btrfs_debug_check_extent_io_range(tree, start, end);
875
876         spin_lock(&tree->lock);
877 again:
878         while (1) {
879                 /*
880                  * this search will find all the extents that end after
881                  * our range starts
882                  */
883                 node = tree_search(tree, start);
884 process_node:
885                 if (!node)
886                         break;
887
888                 state = rb_entry(node, struct extent_state, rb_node);
889
890                 if (state->start > end)
891                         goto out;
892
893                 if (state->state & bits) {
894                         start = state->start;
895                         refcount_inc(&state->refs);
896                         wait_on_state(tree, state);
897                         free_extent_state(state);
898                         goto again;
899                 }
900                 start = state->end + 1;
901
902                 if (start > end)
903                         break;
904
905                 if (!cond_resched_lock(&tree->lock)) {
906                         node = rb_next(node);
907                         goto process_node;
908                 }
909         }
910 out:
911         spin_unlock(&tree->lock);
912 }
913
914 static void set_state_bits(struct extent_io_tree *tree,
915                            struct extent_state *state,
916                            unsigned *bits, struct extent_changeset *changeset)
917 {
918         unsigned bits_to_set = *bits & ~EXTENT_CTLBITS;
919         int ret;
920
921         if (tree->private_data && is_data_inode(tree->private_data))
922                 btrfs_set_delalloc_extent(tree->private_data, state, bits);
923
924         if ((bits_to_set & EXTENT_DIRTY) && !(state->state & EXTENT_DIRTY)) {
925                 u64 range = state->end - state->start + 1;
926                 tree->dirty_bytes += range;
927         }
928         ret = add_extent_changeset(state, bits_to_set, changeset, 1);
929         BUG_ON(ret < 0);
930         state->state |= bits_to_set;
931 }
932
933 static void cache_state_if_flags(struct extent_state *state,
934                                  struct extent_state **cached_ptr,
935                                  unsigned flags)
936 {
937         if (cached_ptr && !(*cached_ptr)) {
938                 if (!flags || (state->state & flags)) {
939                         *cached_ptr = state;
940                         refcount_inc(&state->refs);
941                 }
942         }
943 }
944
945 static void cache_state(struct extent_state *state,
946                         struct extent_state **cached_ptr)
947 {
948         return cache_state_if_flags(state, cached_ptr,
949                                     EXTENT_LOCKED | EXTENT_BOUNDARY);
950 }
951
952 /*
953  * set some bits on a range in the tree.  This may require allocations or
954  * sleeping, so the gfp mask is used to indicate what is allowed.
955  *
956  * If any of the exclusive bits are set, this will fail with -EEXIST if some
957  * part of the range already has the desired bits set.  The start of the
958  * existing range is returned in failed_start in this case.
959  *
960  * [start, end] is inclusive This takes the tree lock.
961  */
962
963 static int __must_check
964 __set_extent_bit(struct extent_io_tree *tree, u64 start, u64 end,
965                  unsigned bits, unsigned exclusive_bits,
966                  u64 *failed_start, struct extent_state **cached_state,
967                  gfp_t mask, struct extent_changeset *changeset)
968 {
969         struct extent_state *state;
970         struct extent_state *prealloc = NULL;
971         struct rb_node *node;
972         struct rb_node **p;
973         struct rb_node *parent;
974         int err = 0;
975         u64 last_start;
976         u64 last_end;
977
978         btrfs_debug_check_extent_io_range(tree, start, end);
979         trace_btrfs_set_extent_bit(tree, start, end - start + 1, bits);
980
981 again:
982         if (!prealloc && gfpflags_allow_blocking(mask)) {
983                 /*
984                  * Don't care for allocation failure here because we might end
985                  * up not needing the pre-allocated extent state at all, which
986                  * is the case if we only have in the tree extent states that
987                  * cover our input range and don't cover too any other range.
988                  * If we end up needing a new extent state we allocate it later.
989                  */
990                 prealloc = alloc_extent_state(mask);
991         }
992
993         spin_lock(&tree->lock);
994         if (cached_state && *cached_state) {
995                 state = *cached_state;
996                 if (state->start <= start && state->end > start &&
997                     extent_state_in_tree(state)) {
998                         node = &state->rb_node;
999                         goto hit_next;
1000                 }
1001         }
1002         /*
1003          * this search will find all the extents that end after
1004          * our range starts.
1005          */
1006         node = tree_search_for_insert(tree, start, &p, &parent);
1007         if (!node) {
1008                 prealloc = alloc_extent_state_atomic(prealloc);
1009                 BUG_ON(!prealloc);
1010                 err = insert_state(tree, prealloc, start, end,
1011                                    &p, &parent, &bits, changeset);
1012                 if (err)
1013                         extent_io_tree_panic(tree, err);
1014
1015                 cache_state(prealloc, cached_state);
1016                 prealloc = NULL;
1017                 goto out;
1018         }
1019         state = rb_entry(node, struct extent_state, rb_node);
1020 hit_next:
1021         last_start = state->start;
1022         last_end = state->end;
1023
1024         /*
1025          * | ---- desired range ---- |
1026          * | state |
1027          *
1028          * Just lock what we found and keep going
1029          */
1030         if (state->start == start && state->end <= end) {
1031                 if (state->state & exclusive_bits) {
1032                         *failed_start = state->start;
1033                         err = -EEXIST;
1034                         goto out;
1035                 }
1036
1037                 set_state_bits(tree, state, &bits, changeset);
1038                 cache_state(state, cached_state);
1039                 merge_state(tree, state);
1040                 if (last_end == (u64)-1)
1041                         goto out;
1042                 start = last_end + 1;
1043                 state = next_state(state);
1044                 if (start < end && state && state->start == start &&
1045                     !need_resched())
1046                         goto hit_next;
1047                 goto search_again;
1048         }
1049
1050         /*
1051          *     | ---- desired range ---- |
1052          * | state |
1053          *   or
1054          * | ------------- state -------------- |
1055          *
1056          * We need to split the extent we found, and may flip bits on
1057          * second half.
1058          *
1059          * If the extent we found extends past our
1060          * range, we just split and search again.  It'll get split
1061          * again the next time though.
1062          *
1063          * If the extent we found is inside our range, we set the
1064          * desired bit on it.
1065          */
1066         if (state->start < start) {
1067                 if (state->state & exclusive_bits) {
1068                         *failed_start = start;
1069                         err = -EEXIST;
1070                         goto out;
1071                 }
1072
1073                 /*
1074                  * If this extent already has all the bits we want set, then
1075                  * skip it, not necessary to split it or do anything with it.
1076                  */
1077                 if ((state->state & bits) == bits) {
1078                         start = state->end + 1;
1079                         cache_state(state, cached_state);
1080                         goto search_again;
1081                 }
1082
1083                 prealloc = alloc_extent_state_atomic(prealloc);
1084                 BUG_ON(!prealloc);
1085                 err = split_state(tree, state, prealloc, start);
1086                 if (err)
1087                         extent_io_tree_panic(tree, err);
1088
1089                 prealloc = NULL;
1090                 if (err)
1091                         goto out;
1092                 if (state->end <= end) {
1093                         set_state_bits(tree, state, &bits, changeset);
1094                         cache_state(state, cached_state);
1095                         merge_state(tree, state);
1096                         if (last_end == (u64)-1)
1097                                 goto out;
1098                         start = last_end + 1;
1099                         state = next_state(state);
1100                         if (start < end && state && state->start == start &&
1101                             !need_resched())
1102                                 goto hit_next;
1103                 }
1104                 goto search_again;
1105         }
1106         /*
1107          * | ---- desired range ---- |
1108          *     | state | or               | state |
1109          *
1110          * There's a hole, we need to insert something in it and
1111          * ignore the extent we found.
1112          */
1113         if (state->start > start) {
1114                 u64 this_end;
1115                 if (end < last_start)
1116                         this_end = end;
1117                 else
1118                         this_end = last_start - 1;
1119
1120                 prealloc = alloc_extent_state_atomic(prealloc);
1121                 BUG_ON(!prealloc);
1122
1123                 /*
1124                  * Avoid to free 'prealloc' if it can be merged with
1125                  * the later extent.
1126                  */
1127                 err = insert_state(tree, prealloc, start, this_end,
1128                                    NULL, NULL, &bits, changeset);
1129                 if (err)
1130                         extent_io_tree_panic(tree, err);
1131
1132                 cache_state(prealloc, cached_state);
1133                 prealloc = NULL;
1134                 start = this_end + 1;
1135                 goto search_again;
1136         }
1137         /*
1138          * | ---- desired range ---- |
1139          *                        | state |
1140          * We need to split the extent, and set the bit
1141          * on the first half
1142          */
1143         if (state->start <= end && state->end > end) {
1144                 if (state->state & exclusive_bits) {
1145                         *failed_start = start;
1146                         err = -EEXIST;
1147                         goto out;
1148                 }
1149
1150                 prealloc = alloc_extent_state_atomic(prealloc);
1151                 BUG_ON(!prealloc);
1152                 err = split_state(tree, state, prealloc, end + 1);
1153                 if (err)
1154                         extent_io_tree_panic(tree, err);
1155
1156                 set_state_bits(tree, prealloc, &bits, changeset);
1157                 cache_state(prealloc, cached_state);
1158                 merge_state(tree, prealloc);
1159                 prealloc = NULL;
1160                 goto out;
1161         }
1162
1163 search_again:
1164         if (start > end)
1165                 goto out;
1166         spin_unlock(&tree->lock);
1167         if (gfpflags_allow_blocking(mask))
1168                 cond_resched();
1169         goto again;
1170
1171 out:
1172         spin_unlock(&tree->lock);
1173         if (prealloc)
1174                 free_extent_state(prealloc);
1175
1176         return err;
1177
1178 }
1179
1180 int set_extent_bit(struct extent_io_tree *tree, u64 start, u64 end,
1181                    unsigned bits, u64 * failed_start,
1182                    struct extent_state **cached_state, gfp_t mask)
1183 {
1184         return __set_extent_bit(tree, start, end, bits, 0, failed_start,
1185                                 cached_state, mask, NULL);
1186 }
1187
1188
1189 /**
1190  * convert_extent_bit - convert all bits in a given range from one bit to
1191  *                      another
1192  * @tree:       the io tree to search
1193  * @start:      the start offset in bytes
1194  * @end:        the end offset in bytes (inclusive)
1195  * @bits:       the bits to set in this range
1196  * @clear_bits: the bits to clear in this range
1197  * @cached_state:       state that we're going to cache
1198  *
1199  * This will go through and set bits for the given range.  If any states exist
1200  * already in this range they are set with the given bit and cleared of the
1201  * clear_bits.  This is only meant to be used by things that are mergeable, ie
1202  * converting from say DELALLOC to DIRTY.  This is not meant to be used with
1203  * boundary bits like LOCK.
1204  *
1205  * All allocations are done with GFP_NOFS.
1206  */
1207 int convert_extent_bit(struct extent_io_tree *tree, u64 start, u64 end,
1208                        unsigned bits, unsigned clear_bits,
1209                        struct extent_state **cached_state)
1210 {
1211         struct extent_state *state;
1212         struct extent_state *prealloc = NULL;
1213         struct rb_node *node;
1214         struct rb_node **p;
1215         struct rb_node *parent;
1216         int err = 0;
1217         u64 last_start;
1218         u64 last_end;
1219         bool first_iteration = true;
1220
1221         btrfs_debug_check_extent_io_range(tree, start, end);
1222         trace_btrfs_convert_extent_bit(tree, start, end - start + 1, bits,
1223                                        clear_bits);
1224
1225 again:
1226         if (!prealloc) {
1227                 /*
1228                  * Best effort, don't worry if extent state allocation fails
1229                  * here for the first iteration. We might have a cached state
1230                  * that matches exactly the target range, in which case no
1231                  * extent state allocations are needed. We'll only know this
1232                  * after locking the tree.
1233                  */
1234                 prealloc = alloc_extent_state(GFP_NOFS);
1235                 if (!prealloc && !first_iteration)
1236                         return -ENOMEM;
1237         }
1238
1239         spin_lock(&tree->lock);
1240         if (cached_state && *cached_state) {
1241                 state = *cached_state;
1242                 if (state->start <= start && state->end > start &&
1243                     extent_state_in_tree(state)) {
1244                         node = &state->rb_node;
1245                         goto hit_next;
1246                 }
1247         }
1248
1249         /*
1250          * this search will find all the extents that end after
1251          * our range starts.
1252          */
1253         node = tree_search_for_insert(tree, start, &p, &parent);
1254         if (!node) {
1255                 prealloc = alloc_extent_state_atomic(prealloc);
1256                 if (!prealloc) {
1257                         err = -ENOMEM;
1258                         goto out;
1259                 }
1260                 err = insert_state(tree, prealloc, start, end,
1261                                    &p, &parent, &bits, NULL);
1262                 if (err)
1263                         extent_io_tree_panic(tree, err);
1264                 cache_state(prealloc, cached_state);
1265                 prealloc = NULL;
1266                 goto out;
1267         }
1268         state = rb_entry(node, struct extent_state, rb_node);
1269 hit_next:
1270         last_start = state->start;
1271         last_end = state->end;
1272
1273         /*
1274          * | ---- desired range ---- |
1275          * | state |
1276          *
1277          * Just lock what we found and keep going
1278          */
1279         if (state->start == start && state->end <= end) {
1280                 set_state_bits(tree, state, &bits, NULL);
1281                 cache_state(state, cached_state);
1282                 state = clear_state_bit(tree, state, &clear_bits, 0, NULL);
1283                 if (last_end == (u64)-1)
1284                         goto out;
1285                 start = last_end + 1;
1286                 if (start < end && state && state->start == start &&
1287                     !need_resched())
1288                         goto hit_next;
1289                 goto search_again;
1290         }
1291
1292         /*
1293          *     | ---- desired range ---- |
1294          * | state |
1295          *   or
1296          * | ------------- state -------------- |
1297          *
1298          * We need to split the extent we found, and may flip bits on
1299          * second half.
1300          *
1301          * If the extent we found extends past our
1302          * range, we just split and search again.  It'll get split
1303          * again the next time though.
1304          *
1305          * If the extent we found is inside our range, we set the
1306          * desired bit on it.
1307          */
1308         if (state->start < start) {
1309                 prealloc = alloc_extent_state_atomic(prealloc);
1310                 if (!prealloc) {
1311                         err = -ENOMEM;
1312                         goto out;
1313                 }
1314                 err = split_state(tree, state, prealloc, start);
1315                 if (err)
1316                         extent_io_tree_panic(tree, err);
1317                 prealloc = NULL;
1318                 if (err)
1319                         goto out;
1320                 if (state->end <= end) {
1321                         set_state_bits(tree, state, &bits, NULL);
1322                         cache_state(state, cached_state);
1323                         state = clear_state_bit(tree, state, &clear_bits, 0,
1324                                                 NULL);
1325                         if (last_end == (u64)-1)
1326                                 goto out;
1327                         start = last_end + 1;
1328                         if (start < end && state && state->start == start &&
1329                             !need_resched())
1330                                 goto hit_next;
1331                 }
1332                 goto search_again;
1333         }
1334         /*
1335          * | ---- desired range ---- |
1336          *     | state | or               | state |
1337          *
1338          * There's a hole, we need to insert something in it and
1339          * ignore the extent we found.
1340          */
1341         if (state->start > start) {
1342                 u64 this_end;
1343                 if (end < last_start)
1344                         this_end = end;
1345                 else
1346                         this_end = last_start - 1;
1347
1348                 prealloc = alloc_extent_state_atomic(prealloc);
1349                 if (!prealloc) {
1350                         err = -ENOMEM;
1351                         goto out;
1352                 }
1353
1354                 /*
1355                  * Avoid to free 'prealloc' if it can be merged with
1356                  * the later extent.
1357                  */
1358                 err = insert_state(tree, prealloc, start, this_end,
1359                                    NULL, NULL, &bits, NULL);
1360                 if (err)
1361                         extent_io_tree_panic(tree, err);
1362                 cache_state(prealloc, cached_state);
1363                 prealloc = NULL;
1364                 start = this_end + 1;
1365                 goto search_again;
1366         }
1367         /*
1368          * | ---- desired range ---- |
1369          *                        | state |
1370          * We need to split the extent, and set the bit
1371          * on the first half
1372          */
1373         if (state->start <= end && state->end > end) {
1374                 prealloc = alloc_extent_state_atomic(prealloc);
1375                 if (!prealloc) {
1376                         err = -ENOMEM;
1377                         goto out;
1378                 }
1379
1380                 err = split_state(tree, state, prealloc, end + 1);
1381                 if (err)
1382                         extent_io_tree_panic(tree, err);
1383
1384                 set_state_bits(tree, prealloc, &bits, NULL);
1385                 cache_state(prealloc, cached_state);
1386                 clear_state_bit(tree, prealloc, &clear_bits, 0, NULL);
1387                 prealloc = NULL;
1388                 goto out;
1389         }
1390
1391 search_again:
1392         if (start > end)
1393                 goto out;
1394         spin_unlock(&tree->lock);
1395         cond_resched();
1396         first_iteration = false;
1397         goto again;
1398
1399 out:
1400         spin_unlock(&tree->lock);
1401         if (prealloc)
1402                 free_extent_state(prealloc);
1403
1404         return err;
1405 }
1406
1407 /* wrappers around set/clear extent bit */
1408 int set_record_extent_bits(struct extent_io_tree *tree, u64 start, u64 end,
1409                            unsigned bits, struct extent_changeset *changeset)
1410 {
1411         /*
1412          * We don't support EXTENT_LOCKED yet, as current changeset will
1413          * record any bits changed, so for EXTENT_LOCKED case, it will
1414          * either fail with -EEXIST or changeset will record the whole
1415          * range.
1416          */
1417         BUG_ON(bits & EXTENT_LOCKED);
1418
1419         return __set_extent_bit(tree, start, end, bits, 0, NULL, NULL, GFP_NOFS,
1420                                 changeset);
1421 }
1422
1423 int set_extent_bits_nowait(struct extent_io_tree *tree, u64 start, u64 end,
1424                            unsigned bits)
1425 {
1426         return __set_extent_bit(tree, start, end, bits, 0, NULL, NULL,
1427                                 GFP_NOWAIT, NULL);
1428 }
1429
1430 int clear_extent_bit(struct extent_io_tree *tree, u64 start, u64 end,
1431                      unsigned bits, int wake, int delete,
1432                      struct extent_state **cached)
1433 {
1434         return __clear_extent_bit(tree, start, end, bits, wake, delete,
1435                                   cached, GFP_NOFS, NULL);
1436 }
1437
1438 int clear_record_extent_bits(struct extent_io_tree *tree, u64 start, u64 end,
1439                 unsigned bits, struct extent_changeset *changeset)
1440 {
1441         /*
1442          * Don't support EXTENT_LOCKED case, same reason as
1443          * set_record_extent_bits().
1444          */
1445         BUG_ON(bits & EXTENT_LOCKED);
1446
1447         return __clear_extent_bit(tree, start, end, bits, 0, 0, NULL, GFP_NOFS,
1448                                   changeset);
1449 }
1450
1451 /*
1452  * either insert or lock state struct between start and end use mask to tell
1453  * us if waiting is desired.
1454  */
1455 int lock_extent_bits(struct extent_io_tree *tree, u64 start, u64 end,
1456                      struct extent_state **cached_state)
1457 {
1458         int err;
1459         u64 failed_start;
1460
1461         while (1) {
1462                 err = __set_extent_bit(tree, start, end, EXTENT_LOCKED,
1463                                        EXTENT_LOCKED, &failed_start,
1464                                        cached_state, GFP_NOFS, NULL);
1465                 if (err == -EEXIST) {
1466                         wait_extent_bit(tree, failed_start, end, EXTENT_LOCKED);
1467                         start = failed_start;
1468                 } else
1469                         break;
1470                 WARN_ON(start > end);
1471         }
1472         return err;
1473 }
1474
1475 int try_lock_extent(struct extent_io_tree *tree, u64 start, u64 end)
1476 {
1477         int err;
1478         u64 failed_start;
1479
1480         err = __set_extent_bit(tree, start, end, EXTENT_LOCKED, EXTENT_LOCKED,
1481                                &failed_start, NULL, GFP_NOFS, NULL);
1482         if (err == -EEXIST) {
1483                 if (failed_start > start)
1484                         clear_extent_bit(tree, start, failed_start - 1,
1485                                          EXTENT_LOCKED, 1, 0, NULL);
1486                 return 0;
1487         }
1488         return 1;
1489 }
1490
1491 void extent_range_clear_dirty_for_io(struct inode *inode, u64 start, u64 end)
1492 {
1493         unsigned long index = start >> PAGE_SHIFT;
1494         unsigned long end_index = end >> PAGE_SHIFT;
1495         struct page *page;
1496
1497         while (index <= end_index) {
1498                 page = find_get_page(inode->i_mapping, index);
1499                 BUG_ON(!page); /* Pages should be in the extent_io_tree */
1500                 clear_page_dirty_for_io(page);
1501                 put_page(page);
1502                 index++;
1503         }
1504 }
1505
1506 void extent_range_redirty_for_io(struct inode *inode, u64 start, u64 end)
1507 {
1508         unsigned long index = start >> PAGE_SHIFT;
1509         unsigned long end_index = end >> PAGE_SHIFT;
1510         struct page *page;
1511
1512         while (index <= end_index) {
1513                 page = find_get_page(inode->i_mapping, index);
1514                 BUG_ON(!page); /* Pages should be in the extent_io_tree */
1515                 __set_page_dirty_nobuffers(page);
1516                 account_page_redirty(page);
1517                 put_page(page);
1518                 index++;
1519         }
1520 }
1521
1522 /* find the first state struct with 'bits' set after 'start', and
1523  * return it.  tree->lock must be held.  NULL will returned if
1524  * nothing was found after 'start'
1525  */
1526 static struct extent_state *
1527 find_first_extent_bit_state(struct extent_io_tree *tree,
1528                             u64 start, unsigned bits)
1529 {
1530         struct rb_node *node;
1531         struct extent_state *state;
1532
1533         /*
1534          * this search will find all the extents that end after
1535          * our range starts.
1536          */
1537         node = tree_search(tree, start);
1538         if (!node)
1539                 goto out;
1540
1541         while (1) {
1542                 state = rb_entry(node, struct extent_state, rb_node);
1543                 if (state->end >= start && (state->state & bits))
1544                         return state;
1545
1546                 node = rb_next(node);
1547                 if (!node)
1548                         break;
1549         }
1550 out:
1551         return NULL;
1552 }
1553
1554 /*
1555  * find the first offset in the io tree with 'bits' set. zero is
1556  * returned if we find something, and *start_ret and *end_ret are
1557  * set to reflect the state struct that was found.
1558  *
1559  * If nothing was found, 1 is returned. If found something, return 0.
1560  */
1561 int find_first_extent_bit(struct extent_io_tree *tree, u64 start,
1562                           u64 *start_ret, u64 *end_ret, unsigned bits,
1563                           struct extent_state **cached_state)
1564 {
1565         struct extent_state *state;
1566         int ret = 1;
1567
1568         spin_lock(&tree->lock);
1569         if (cached_state && *cached_state) {
1570                 state = *cached_state;
1571                 if (state->end == start - 1 && extent_state_in_tree(state)) {
1572                         while ((state = next_state(state)) != NULL) {
1573                                 if (state->state & bits)
1574                                         goto got_it;
1575                         }
1576                         free_extent_state(*cached_state);
1577                         *cached_state = NULL;
1578                         goto out;
1579                 }
1580                 free_extent_state(*cached_state);
1581                 *cached_state = NULL;
1582         }
1583
1584         state = find_first_extent_bit_state(tree, start, bits);
1585 got_it:
1586         if (state) {
1587                 cache_state_if_flags(state, cached_state, 0);
1588                 *start_ret = state->start;
1589                 *end_ret = state->end;
1590                 ret = 0;
1591         }
1592 out:
1593         spin_unlock(&tree->lock);
1594         return ret;
1595 }
1596
1597 /**
1598  * find_contiguous_extent_bit: find a contiguous area of bits
1599  * @tree - io tree to check
1600  * @start - offset to start the search from
1601  * @start_ret - the first offset we found with the bits set
1602  * @end_ret - the final contiguous range of the bits that were set
1603  * @bits - bits to look for
1604  *
1605  * set_extent_bit and clear_extent_bit can temporarily split contiguous ranges
1606  * to set bits appropriately, and then merge them again.  During this time it
1607  * will drop the tree->lock, so use this helper if you want to find the actual
1608  * contiguous area for given bits.  We will search to the first bit we find, and
1609  * then walk down the tree until we find a non-contiguous area.  The area
1610  * returned will be the full contiguous area with the bits set.
1611  */
1612 int find_contiguous_extent_bit(struct extent_io_tree *tree, u64 start,
1613                                u64 *start_ret, u64 *end_ret, unsigned bits)
1614 {
1615         struct extent_state *state;
1616         int ret = 1;
1617
1618         spin_lock(&tree->lock);
1619         state = find_first_extent_bit_state(tree, start, bits);
1620         if (state) {
1621                 *start_ret = state->start;
1622                 *end_ret = state->end;
1623                 while ((state = next_state(state)) != NULL) {
1624                         if (state->start > (*end_ret + 1))
1625                                 break;
1626                         *end_ret = state->end;
1627                 }
1628                 ret = 0;
1629         }
1630         spin_unlock(&tree->lock);
1631         return ret;
1632 }
1633
1634 /**
1635  * find_first_clear_extent_bit - find the first range that has @bits not set.
1636  * This range could start before @start.
1637  *
1638  * @tree - the tree to search
1639  * @start - the offset at/after which the found extent should start
1640  * @start_ret - records the beginning of the range
1641  * @end_ret - records the end of the range (inclusive)
1642  * @bits - the set of bits which must be unset
1643  *
1644  * Since unallocated range is also considered one which doesn't have the bits
1645  * set it's possible that @end_ret contains -1, this happens in case the range
1646  * spans (last_range_end, end of device]. In this case it's up to the caller to
1647  * trim @end_ret to the appropriate size.
1648  */
1649 void find_first_clear_extent_bit(struct extent_io_tree *tree, u64 start,
1650                                  u64 *start_ret, u64 *end_ret, unsigned bits)
1651 {
1652         struct extent_state *state;
1653         struct rb_node *node, *prev = NULL, *next;
1654
1655         spin_lock(&tree->lock);
1656
1657         /* Find first extent with bits cleared */
1658         while (1) {
1659                 node = __etree_search(tree, start, &next, &prev, NULL, NULL);
1660                 if (!node && !next && !prev) {
1661                         /*
1662                          * Tree is completely empty, send full range and let
1663                          * caller deal with it
1664                          */
1665                         *start_ret = 0;
1666                         *end_ret = -1;
1667                         goto out;
1668                 } else if (!node && !next) {
1669                         /*
1670                          * We are past the last allocated chunk, set start at
1671                          * the end of the last extent.
1672                          */
1673                         state = rb_entry(prev, struct extent_state, rb_node);
1674                         *start_ret = state->end + 1;
1675                         *end_ret = -1;
1676                         goto out;
1677                 } else if (!node) {
1678                         node = next;
1679                 }
1680                 /*
1681                  * At this point 'node' either contains 'start' or start is
1682                  * before 'node'
1683                  */
1684                 state = rb_entry(node, struct extent_state, rb_node);
1685
1686                 if (in_range(start, state->start, state->end - state->start + 1)) {
1687                         if (state->state & bits) {
1688                                 /*
1689                                  * |--range with bits sets--|
1690                                  *    |
1691                                  *    start
1692                                  */
1693                                 start = state->end + 1;
1694                         } else {
1695                                 /*
1696                                  * 'start' falls within a range that doesn't
1697                                  * have the bits set, so take its start as
1698                                  * the beginning of the desired range
1699                                  *
1700                                  * |--range with bits cleared----|
1701                                  *      |
1702                                  *      start
1703                                  */
1704                                 *start_ret = state->start;
1705                                 break;
1706                         }
1707                 } else {
1708                         /*
1709                          * |---prev range---|---hole/unset---|---node range---|
1710                          *                          |
1711                          *                        start
1712                          *
1713                          *                        or
1714                          *
1715                          * |---hole/unset--||--first node--|
1716                          * 0   |
1717                          *    start
1718                          */
1719                         if (prev) {
1720                                 state = rb_entry(prev, struct extent_state,
1721                                                  rb_node);
1722                                 *start_ret = state->end + 1;
1723                         } else {
1724                                 *start_ret = 0;
1725                         }
1726                         break;
1727                 }
1728         }
1729
1730         /*
1731          * Find the longest stretch from start until an entry which has the
1732          * bits set
1733          */
1734         while (1) {
1735                 state = rb_entry(node, struct extent_state, rb_node);
1736                 if (state->end >= start && !(state->state & bits)) {
1737                         *end_ret = state->end;
1738                 } else {
1739                         *end_ret = state->start - 1;
1740                         break;
1741                 }
1742
1743                 node = rb_next(node);
1744                 if (!node)
1745                         break;
1746         }
1747 out:
1748         spin_unlock(&tree->lock);
1749 }
1750
1751 /*
1752  * find a contiguous range of bytes in the file marked as delalloc, not
1753  * more than 'max_bytes'.  start and end are used to return the range,
1754  *
1755  * true is returned if we find something, false if nothing was in the tree
1756  */
1757 bool btrfs_find_delalloc_range(struct extent_io_tree *tree, u64 *start,
1758                                u64 *end, u64 max_bytes,
1759                                struct extent_state **cached_state)
1760 {
1761         struct rb_node *node;
1762         struct extent_state *state;
1763         u64 cur_start = *start;
1764         bool found = false;
1765         u64 total_bytes = 0;
1766
1767         spin_lock(&tree->lock);
1768
1769         /*
1770          * this search will find all the extents that end after
1771          * our range starts.
1772          */
1773         node = tree_search(tree, cur_start);
1774         if (!node) {
1775                 *end = (u64)-1;
1776                 goto out;
1777         }
1778
1779         while (1) {
1780                 state = rb_entry(node, struct extent_state, rb_node);
1781                 if (found && (state->start != cur_start ||
1782                               (state->state & EXTENT_BOUNDARY))) {
1783                         goto out;
1784                 }
1785                 if (!(state->state & EXTENT_DELALLOC)) {
1786                         if (!found)
1787                                 *end = state->end;
1788                         goto out;
1789                 }
1790                 if (!found) {
1791                         *start = state->start;
1792                         *cached_state = state;
1793                         refcount_inc(&state->refs);
1794                 }
1795                 found = true;
1796                 *end = state->end;
1797                 cur_start = state->end + 1;
1798                 node = rb_next(node);
1799                 total_bytes += state->end - state->start + 1;
1800                 if (total_bytes >= max_bytes)
1801                         break;
1802                 if (!node)
1803                         break;
1804         }
1805 out:
1806         spin_unlock(&tree->lock);
1807         return found;
1808 }
1809
1810 static int __process_pages_contig(struct address_space *mapping,
1811                                   struct page *locked_page,
1812                                   pgoff_t start_index, pgoff_t end_index,
1813                                   unsigned long page_ops, pgoff_t *index_ret);
1814
1815 static noinline void __unlock_for_delalloc(struct inode *inode,
1816                                            struct page *locked_page,
1817                                            u64 start, u64 end)
1818 {
1819         unsigned long index = start >> PAGE_SHIFT;
1820         unsigned long end_index = end >> PAGE_SHIFT;
1821
1822         ASSERT(locked_page);
1823         if (index == locked_page->index && end_index == index)
1824                 return;
1825
1826         __process_pages_contig(inode->i_mapping, locked_page, index, end_index,
1827                                PAGE_UNLOCK, NULL);
1828 }
1829
1830 static noinline int lock_delalloc_pages(struct inode *inode,
1831                                         struct page *locked_page,
1832                                         u64 delalloc_start,
1833                                         u64 delalloc_end)
1834 {
1835         unsigned long index = delalloc_start >> PAGE_SHIFT;
1836         unsigned long index_ret = index;
1837         unsigned long end_index = delalloc_end >> PAGE_SHIFT;
1838         int ret;
1839
1840         ASSERT(locked_page);
1841         if (index == locked_page->index && index == end_index)
1842                 return 0;
1843
1844         ret = __process_pages_contig(inode->i_mapping, locked_page, index,
1845                                      end_index, PAGE_LOCK, &index_ret);
1846         if (ret == -EAGAIN)
1847                 __unlock_for_delalloc(inode, locked_page, delalloc_start,
1848                                       (u64)index_ret << PAGE_SHIFT);
1849         return ret;
1850 }
1851
1852 /*
1853  * Find and lock a contiguous range of bytes in the file marked as delalloc, no
1854  * more than @max_bytes.  @Start and @end are used to return the range,
1855  *
1856  * Return: true if we find something
1857  *         false if nothing was in the tree
1858  */
1859 EXPORT_FOR_TESTS
1860 noinline_for_stack bool find_lock_delalloc_range(struct inode *inode,
1861                                     struct page *locked_page, u64 *start,
1862                                     u64 *end)
1863 {
1864         struct extent_io_tree *tree = &BTRFS_I(inode)->io_tree;
1865         u64 max_bytes = BTRFS_MAX_EXTENT_SIZE;
1866         u64 delalloc_start;
1867         u64 delalloc_end;
1868         bool found;
1869         struct extent_state *cached_state = NULL;
1870         int ret;
1871         int loops = 0;
1872
1873 again:
1874         /* step one, find a bunch of delalloc bytes starting at start */
1875         delalloc_start = *start;
1876         delalloc_end = 0;
1877         found = btrfs_find_delalloc_range(tree, &delalloc_start, &delalloc_end,
1878                                           max_bytes, &cached_state);
1879         if (!found || delalloc_end <= *start) {
1880                 *start = delalloc_start;
1881                 *end = delalloc_end;
1882                 free_extent_state(cached_state);
1883                 return false;
1884         }
1885
1886         /*
1887          * start comes from the offset of locked_page.  We have to lock
1888          * pages in order, so we can't process delalloc bytes before
1889          * locked_page
1890          */
1891         if (delalloc_start < *start)
1892                 delalloc_start = *start;
1893
1894         /*
1895          * make sure to limit the number of pages we try to lock down
1896          */
1897         if (delalloc_end + 1 - delalloc_start > max_bytes)
1898                 delalloc_end = delalloc_start + max_bytes - 1;
1899
1900         /* step two, lock all the pages after the page that has start */
1901         ret = lock_delalloc_pages(inode, locked_page,
1902                                   delalloc_start, delalloc_end);
1903         ASSERT(!ret || ret == -EAGAIN);
1904         if (ret == -EAGAIN) {
1905                 /* some of the pages are gone, lets avoid looping by
1906                  * shortening the size of the delalloc range we're searching
1907                  */
1908                 free_extent_state(cached_state);
1909                 cached_state = NULL;
1910                 if (!loops) {
1911                         max_bytes = PAGE_SIZE;
1912                         loops = 1;
1913                         goto again;
1914                 } else {
1915                         found = false;
1916                         goto out_failed;
1917                 }
1918         }
1919
1920         /* step three, lock the state bits for the whole range */
1921         lock_extent_bits(tree, delalloc_start, delalloc_end, &cached_state);
1922
1923         /* then test to make sure it is all still delalloc */
1924         ret = test_range_bit(tree, delalloc_start, delalloc_end,
1925                              EXTENT_DELALLOC, 1, cached_state);
1926         if (!ret) {
1927                 unlock_extent_cached(tree, delalloc_start, delalloc_end,
1928                                      &cached_state);
1929                 __unlock_for_delalloc(inode, locked_page,
1930                               delalloc_start, delalloc_end);
1931                 cond_resched();
1932                 goto again;
1933         }
1934         free_extent_state(cached_state);
1935         *start = delalloc_start;
1936         *end = delalloc_end;
1937 out_failed:
1938         return found;
1939 }
1940
1941 static int __process_pages_contig(struct address_space *mapping,
1942                                   struct page *locked_page,
1943                                   pgoff_t start_index, pgoff_t end_index,
1944                                   unsigned long page_ops, pgoff_t *index_ret)
1945 {
1946         unsigned long nr_pages = end_index - start_index + 1;
1947         unsigned long pages_locked = 0;
1948         pgoff_t index = start_index;
1949         struct page *pages[16];
1950         unsigned ret;
1951         int err = 0;
1952         int i;
1953
1954         if (page_ops & PAGE_LOCK) {
1955                 ASSERT(page_ops == PAGE_LOCK);
1956                 ASSERT(index_ret && *index_ret == start_index);
1957         }
1958
1959         if ((page_ops & PAGE_SET_ERROR) && nr_pages > 0)
1960                 mapping_set_error(mapping, -EIO);
1961
1962         while (nr_pages > 0) {
1963                 ret = find_get_pages_contig(mapping, index,
1964                                      min_t(unsigned long,
1965                                      nr_pages, ARRAY_SIZE(pages)), pages);
1966                 if (ret == 0) {
1967                         /*
1968                          * Only if we're going to lock these pages,
1969                          * can we find nothing at @index.
1970                          */
1971                         ASSERT(page_ops & PAGE_LOCK);
1972                         err = -EAGAIN;
1973                         goto out;
1974                 }
1975
1976                 for (i = 0; i < ret; i++) {
1977                         if (page_ops & PAGE_SET_PRIVATE2)
1978                                 SetPagePrivate2(pages[i]);
1979
1980                         if (locked_page && pages[i] == locked_page) {
1981                                 put_page(pages[i]);
1982                                 pages_locked++;
1983                                 continue;
1984                         }
1985                         if (page_ops & PAGE_CLEAR_DIRTY)
1986                                 clear_page_dirty_for_io(pages[i]);
1987                         if (page_ops & PAGE_SET_WRITEBACK)
1988                                 set_page_writeback(pages[i]);
1989                         if (page_ops & PAGE_SET_ERROR)
1990                                 SetPageError(pages[i]);
1991                         if (page_ops & PAGE_END_WRITEBACK)
1992                                 end_page_writeback(pages[i]);
1993                         if (page_ops & PAGE_UNLOCK)
1994                                 unlock_page(pages[i]);
1995                         if (page_ops & PAGE_LOCK) {
1996                                 lock_page(pages[i]);
1997                                 if (!PageDirty(pages[i]) ||
1998                                     pages[i]->mapping != mapping) {
1999                                         unlock_page(pages[i]);
2000                                         for (; i < ret; i++)
2001                                                 put_page(pages[i]);
2002                                         err = -EAGAIN;
2003                                         goto out;
2004                                 }
2005                         }
2006                         put_page(pages[i]);
2007                         pages_locked++;
2008                 }
2009                 nr_pages -= ret;
2010                 index += ret;
2011                 cond_resched();
2012         }
2013 out:
2014         if (err && index_ret)
2015                 *index_ret = start_index + pages_locked - 1;
2016         return err;
2017 }
2018
2019 void extent_clear_unlock_delalloc(struct btrfs_inode *inode, u64 start, u64 end,
2020                                   struct page *locked_page,
2021                                   unsigned clear_bits,
2022                                   unsigned long page_ops)
2023 {
2024         clear_extent_bit(&inode->io_tree, start, end, clear_bits, 1, 0, NULL);
2025
2026         __process_pages_contig(inode->vfs_inode.i_mapping, locked_page,
2027                                start >> PAGE_SHIFT, end >> PAGE_SHIFT,
2028                                page_ops, NULL);
2029 }
2030
2031 /*
2032  * count the number of bytes in the tree that have a given bit(s)
2033  * set.  This can be fairly slow, except for EXTENT_DIRTY which is
2034  * cached.  The total number found is returned.
2035  */
2036 u64 count_range_bits(struct extent_io_tree *tree,
2037                      u64 *start, u64 search_end, u64 max_bytes,
2038                      unsigned bits, int contig)
2039 {
2040         struct rb_node *node;
2041         struct extent_state *state;
2042         u64 cur_start = *start;
2043         u64 total_bytes = 0;
2044         u64 last = 0;
2045         int found = 0;
2046
2047         if (WARN_ON(search_end <= cur_start))
2048                 return 0;
2049
2050         spin_lock(&tree->lock);
2051         if (cur_start == 0 && bits == EXTENT_DIRTY) {
2052                 total_bytes = tree->dirty_bytes;
2053                 goto out;
2054         }
2055         /*
2056          * this search will find all the extents that end after
2057          * our range starts.
2058          */
2059         node = tree_search(tree, cur_start);
2060         if (!node)
2061                 goto out;
2062
2063         while (1) {
2064                 state = rb_entry(node, struct extent_state, rb_node);
2065                 if (state->start > search_end)
2066                         break;
2067                 if (contig && found && state->start > last + 1)
2068                         break;
2069                 if (state->end >= cur_start && (state->state & bits) == bits) {
2070                         total_bytes += min(search_end, state->end) + 1 -
2071                                        max(cur_start, state->start);
2072                         if (total_bytes >= max_bytes)
2073                                 break;
2074                         if (!found) {
2075                                 *start = max(cur_start, state->start);
2076                                 found = 1;
2077                         }
2078                         last = state->end;
2079                 } else if (contig && found) {
2080                         break;
2081                 }
2082                 node = rb_next(node);
2083                 if (!node)
2084                         break;
2085         }
2086 out:
2087         spin_unlock(&tree->lock);
2088         return total_bytes;
2089 }
2090
2091 /*
2092  * set the private field for a given byte offset in the tree.  If there isn't
2093  * an extent_state there already, this does nothing.
2094  */
2095 int set_state_failrec(struct extent_io_tree *tree, u64 start,
2096                       struct io_failure_record *failrec)
2097 {
2098         struct rb_node *node;
2099         struct extent_state *state;
2100         int ret = 0;
2101
2102         spin_lock(&tree->lock);
2103         /*
2104          * this search will find all the extents that end after
2105          * our range starts.
2106          */
2107         node = tree_search(tree, start);
2108         if (!node) {
2109                 ret = -ENOENT;
2110                 goto out;
2111         }
2112         state = rb_entry(node, struct extent_state, rb_node);
2113         if (state->start != start) {
2114                 ret = -ENOENT;
2115                 goto out;
2116         }
2117         state->failrec = failrec;
2118 out:
2119         spin_unlock(&tree->lock);
2120         return ret;
2121 }
2122
2123 struct io_failure_record *get_state_failrec(struct extent_io_tree *tree, u64 start)
2124 {
2125         struct rb_node *node;
2126         struct extent_state *state;
2127         struct io_failure_record *failrec;
2128
2129         spin_lock(&tree->lock);
2130         /*
2131          * this search will find all the extents that end after
2132          * our range starts.
2133          */
2134         node = tree_search(tree, start);
2135         if (!node) {
2136                 failrec = ERR_PTR(-ENOENT);
2137                 goto out;
2138         }
2139         state = rb_entry(node, struct extent_state, rb_node);
2140         if (state->start != start) {
2141                 failrec = ERR_PTR(-ENOENT);
2142                 goto out;
2143         }
2144
2145         failrec = state->failrec;
2146 out:
2147         spin_unlock(&tree->lock);
2148         return failrec;
2149 }
2150
2151 /*
2152  * searches a range in the state tree for a given mask.
2153  * If 'filled' == 1, this returns 1 only if every extent in the tree
2154  * has the bits set.  Otherwise, 1 is returned if any bit in the
2155  * range is found set.
2156  */
2157 int test_range_bit(struct extent_io_tree *tree, u64 start, u64 end,
2158                    unsigned bits, int filled, struct extent_state *cached)
2159 {
2160         struct extent_state *state = NULL;
2161         struct rb_node *node;
2162         int bitset = 0;
2163
2164         spin_lock(&tree->lock);
2165         if (cached && extent_state_in_tree(cached) && cached->start <= start &&
2166             cached->end > start)
2167                 node = &cached->rb_node;
2168         else
2169                 node = tree_search(tree, start);
2170         while (node && start <= end) {
2171                 state = rb_entry(node, struct extent_state, rb_node);
2172
2173                 if (filled && state->start > start) {
2174                         bitset = 0;
2175                         break;
2176                 }
2177
2178                 if (state->start > end)
2179                         break;
2180
2181                 if (state->state & bits) {
2182                         bitset = 1;
2183                         if (!filled)
2184                                 break;
2185                 } else if (filled) {
2186                         bitset = 0;
2187                         break;
2188                 }
2189
2190                 if (state->end == (u64)-1)
2191                         break;
2192
2193                 start = state->end + 1;
2194                 if (start > end)
2195                         break;
2196                 node = rb_next(node);
2197                 if (!node) {
2198                         if (filled)
2199                                 bitset = 0;
2200                         break;
2201                 }
2202         }
2203         spin_unlock(&tree->lock);
2204         return bitset;
2205 }
2206
2207 /*
2208  * helper function to set a given page up to date if all the
2209  * extents in the tree for that page are up to date
2210  */
2211 static void check_page_uptodate(struct extent_io_tree *tree, struct page *page)
2212 {
2213         u64 start = page_offset(page);
2214         u64 end = start + PAGE_SIZE - 1;
2215         if (test_range_bit(tree, start, end, EXTENT_UPTODATE, 1, NULL))
2216                 SetPageUptodate(page);
2217 }
2218
2219 int free_io_failure(struct extent_io_tree *failure_tree,
2220                     struct extent_io_tree *io_tree,
2221                     struct io_failure_record *rec)
2222 {
2223         int ret;
2224         int err = 0;
2225
2226         set_state_failrec(failure_tree, rec->start, NULL);
2227         ret = clear_extent_bits(failure_tree, rec->start,
2228                                 rec->start + rec->len - 1,
2229                                 EXTENT_LOCKED | EXTENT_DIRTY);
2230         if (ret)
2231                 err = ret;
2232
2233         ret = clear_extent_bits(io_tree, rec->start,
2234                                 rec->start + rec->len - 1,
2235                                 EXTENT_DAMAGED);
2236         if (ret && !err)
2237                 err = ret;
2238
2239         kfree(rec);
2240         return err;
2241 }
2242
2243 /*
2244  * this bypasses the standard btrfs submit functions deliberately, as
2245  * the standard behavior is to write all copies in a raid setup. here we only
2246  * want to write the one bad copy. so we do the mapping for ourselves and issue
2247  * submit_bio directly.
2248  * to avoid any synchronization issues, wait for the data after writing, which
2249  * actually prevents the read that triggered the error from finishing.
2250  * currently, there can be no more than two copies of every data bit. thus,
2251  * exactly one rewrite is required.
2252  */
2253 int repair_io_failure(struct btrfs_fs_info *fs_info, u64 ino, u64 start,
2254                       u64 length, u64 logical, struct page *page,
2255                       unsigned int pg_offset, int mirror_num)
2256 {
2257         struct bio *bio;
2258         struct btrfs_device *dev;
2259         u64 map_length = 0;
2260         u64 sector;
2261         struct btrfs_bio *bbio = NULL;
2262         int ret;
2263
2264         ASSERT(!(fs_info->sb->s_flags & SB_RDONLY));
2265         BUG_ON(!mirror_num);
2266
2267         bio = btrfs_io_bio_alloc(1);
2268         bio->bi_iter.bi_size = 0;
2269         map_length = length;
2270
2271         /*
2272          * Avoid races with device replace and make sure our bbio has devices
2273          * associated to its stripes that don't go away while we are doing the
2274          * read repair operation.
2275          */
2276         btrfs_bio_counter_inc_blocked(fs_info);
2277         if (btrfs_is_parity_mirror(fs_info, logical, length)) {
2278                 /*
2279                  * Note that we don't use BTRFS_MAP_WRITE because it's supposed
2280                  * to update all raid stripes, but here we just want to correct
2281                  * bad stripe, thus BTRFS_MAP_READ is abused to only get the bad
2282                  * stripe's dev and sector.
2283                  */
2284                 ret = btrfs_map_block(fs_info, BTRFS_MAP_READ, logical,
2285                                       &map_length, &bbio, 0);
2286                 if (ret) {
2287                         btrfs_bio_counter_dec(fs_info);
2288                         bio_put(bio);
2289                         return -EIO;
2290                 }
2291                 ASSERT(bbio->mirror_num == 1);
2292         } else {
2293                 ret = btrfs_map_block(fs_info, BTRFS_MAP_WRITE, logical,
2294                                       &map_length, &bbio, mirror_num);
2295                 if (ret) {
2296                         btrfs_bio_counter_dec(fs_info);
2297                         bio_put(bio);
2298                         return -EIO;
2299                 }
2300                 BUG_ON(mirror_num != bbio->mirror_num);
2301         }
2302
2303         sector = bbio->stripes[bbio->mirror_num - 1].physical >> 9;
2304         bio->bi_iter.bi_sector = sector;
2305         dev = bbio->stripes[bbio->mirror_num - 1].dev;
2306         btrfs_put_bbio(bbio);
2307         if (!dev || !dev->bdev ||
2308             !test_bit(BTRFS_DEV_STATE_WRITEABLE, &dev->dev_state)) {
2309                 btrfs_bio_counter_dec(fs_info);
2310                 bio_put(bio);
2311                 return -EIO;
2312         }
2313         bio_set_dev(bio, dev->bdev);
2314         bio->bi_opf = REQ_OP_WRITE | REQ_SYNC;
2315         bio_add_page(bio, page, length, pg_offset);
2316
2317         if (btrfsic_submit_bio_wait(bio)) {
2318                 /* try to remap that extent elsewhere? */
2319                 btrfs_bio_counter_dec(fs_info);
2320                 bio_put(bio);
2321                 btrfs_dev_stat_inc_and_print(dev, BTRFS_DEV_STAT_WRITE_ERRS);
2322                 return -EIO;
2323         }
2324
2325         btrfs_info_rl_in_rcu(fs_info,
2326                 "read error corrected: ino %llu off %llu (dev %s sector %llu)",
2327                                   ino, start,
2328                                   rcu_str_deref(dev->name), sector);
2329         btrfs_bio_counter_dec(fs_info);
2330         bio_put(bio);
2331         return 0;
2332 }
2333
2334 int btrfs_repair_eb_io_failure(const struct extent_buffer *eb, int mirror_num)
2335 {
2336         struct btrfs_fs_info *fs_info = eb->fs_info;
2337         u64 start = eb->start;
2338         int i, num_pages = num_extent_pages(eb);
2339         int ret = 0;
2340
2341         if (sb_rdonly(fs_info->sb))
2342                 return -EROFS;
2343
2344         for (i = 0; i < num_pages; i++) {
2345                 struct page *p = eb->pages[i];
2346
2347                 ret = repair_io_failure(fs_info, 0, start, PAGE_SIZE, start, p,
2348                                         start - page_offset(p), mirror_num);
2349                 if (ret)
2350                         break;
2351                 start += PAGE_SIZE;
2352         }
2353
2354         return ret;
2355 }
2356
2357 /*
2358  * each time an IO finishes, we do a fast check in the IO failure tree
2359  * to see if we need to process or clean up an io_failure_record
2360  */
2361 int clean_io_failure(struct btrfs_fs_info *fs_info,
2362                      struct extent_io_tree *failure_tree,
2363                      struct extent_io_tree *io_tree, u64 start,
2364                      struct page *page, u64 ino, unsigned int pg_offset)
2365 {
2366         u64 private;
2367         struct io_failure_record *failrec;
2368         struct extent_state *state;
2369         int num_copies;
2370         int ret;
2371
2372         private = 0;
2373         ret = count_range_bits(failure_tree, &private, (u64)-1, 1,
2374                                EXTENT_DIRTY, 0);
2375         if (!ret)
2376                 return 0;
2377
2378         failrec = get_state_failrec(failure_tree, start);
2379         if (IS_ERR(failrec))
2380                 return 0;
2381
2382         BUG_ON(!failrec->this_mirror);
2383
2384         if (failrec->in_validation) {
2385                 /* there was no real error, just free the record */
2386                 btrfs_debug(fs_info,
2387                         "clean_io_failure: freeing dummy error at %llu",
2388                         failrec->start);
2389                 goto out;
2390         }
2391         if (sb_rdonly(fs_info->sb))
2392                 goto out;
2393
2394         spin_lock(&io_tree->lock);
2395         state = find_first_extent_bit_state(io_tree,
2396                                             failrec->start,
2397                                             EXTENT_LOCKED);
2398         spin_unlock(&io_tree->lock);
2399
2400         if (state && state->start <= failrec->start &&
2401             state->end >= failrec->start + failrec->len - 1) {
2402                 num_copies = btrfs_num_copies(fs_info, failrec->logical,
2403                                               failrec->len);
2404                 if (num_copies > 1)  {
2405                         repair_io_failure(fs_info, ino, start, failrec->len,
2406                                           failrec->logical, page, pg_offset,
2407                                           failrec->failed_mirror);
2408                 }
2409         }
2410
2411 out:
2412         free_io_failure(failure_tree, io_tree, failrec);
2413
2414         return 0;
2415 }
2416
2417 /*
2418  * Can be called when
2419  * - hold extent lock
2420  * - under ordered extent
2421  * - the inode is freeing
2422  */
2423 void btrfs_free_io_failure_record(struct btrfs_inode *inode, u64 start, u64 end)
2424 {
2425         struct extent_io_tree *failure_tree = &inode->io_failure_tree;
2426         struct io_failure_record *failrec;
2427         struct extent_state *state, *next;
2428
2429         if (RB_EMPTY_ROOT(&failure_tree->state))
2430                 return;
2431
2432         spin_lock(&failure_tree->lock);
2433         state = find_first_extent_bit_state(failure_tree, start, EXTENT_DIRTY);
2434         while (state) {
2435                 if (state->start > end)
2436                         break;
2437
2438                 ASSERT(state->end <= end);
2439
2440                 next = next_state(state);
2441
2442                 failrec = state->failrec;
2443                 free_extent_state(state);
2444                 kfree(failrec);
2445
2446                 state = next;
2447         }
2448         spin_unlock(&failure_tree->lock);
2449 }
2450
2451 static struct io_failure_record *btrfs_get_io_failure_record(struct inode *inode,
2452                                                              u64 start, u64 end)
2453 {
2454         struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
2455         struct io_failure_record *failrec;
2456         struct extent_map *em;
2457         struct extent_io_tree *failure_tree = &BTRFS_I(inode)->io_failure_tree;
2458         struct extent_io_tree *tree = &BTRFS_I(inode)->io_tree;
2459         struct extent_map_tree *em_tree = &BTRFS_I(inode)->extent_tree;
2460         int ret;
2461         u64 logical;
2462
2463         failrec = get_state_failrec(failure_tree, start);
2464         if (!IS_ERR(failrec)) {
2465                 btrfs_debug(fs_info,
2466                         "Get IO Failure Record: (found) logical=%llu, start=%llu, len=%llu, validation=%d",
2467                         failrec->logical, failrec->start, failrec->len,
2468                         failrec->in_validation);
2469                 /*
2470                  * when data can be on disk more than twice, add to failrec here
2471                  * (e.g. with a list for failed_mirror) to make
2472                  * clean_io_failure() clean all those errors at once.
2473                  */
2474
2475                 return failrec;
2476         }
2477
2478         failrec = kzalloc(sizeof(*failrec), GFP_NOFS);
2479         if (!failrec)
2480                 return ERR_PTR(-ENOMEM);
2481
2482         failrec->start = start;
2483         failrec->len = end - start + 1;
2484         failrec->this_mirror = 0;
2485         failrec->bio_flags = 0;
2486         failrec->in_validation = 0;
2487
2488         read_lock(&em_tree->lock);
2489         em = lookup_extent_mapping(em_tree, start, failrec->len);
2490         if (!em) {
2491                 read_unlock(&em_tree->lock);
2492                 kfree(failrec);
2493                 return ERR_PTR(-EIO);
2494         }
2495
2496         if (em->start > start || em->start + em->len <= start) {
2497                 free_extent_map(em);
2498                 em = NULL;
2499         }
2500         read_unlock(&em_tree->lock);
2501         if (!em) {
2502                 kfree(failrec);
2503                 return ERR_PTR(-EIO);
2504         }
2505
2506         logical = start - em->start;
2507         logical = em->block_start + logical;
2508         if (test_bit(EXTENT_FLAG_COMPRESSED, &em->flags)) {
2509                 logical = em->block_start;
2510                 failrec->bio_flags = EXTENT_BIO_COMPRESSED;
2511                 extent_set_compress_type(&failrec->bio_flags, em->compress_type);
2512         }
2513
2514         btrfs_debug(fs_info,
2515                     "Get IO Failure Record: (new) logical=%llu, start=%llu, len=%llu",
2516                     logical, start, failrec->len);
2517
2518         failrec->logical = logical;
2519         free_extent_map(em);
2520
2521         /* Set the bits in the private failure tree */
2522         ret = set_extent_bits(failure_tree, start, end,
2523                               EXTENT_LOCKED | EXTENT_DIRTY);
2524         if (ret >= 0) {
2525                 ret = set_state_failrec(failure_tree, start, failrec);
2526                 /* Set the bits in the inode's tree */
2527                 ret = set_extent_bits(tree, start, end, EXTENT_DAMAGED);
2528         } else if (ret < 0) {
2529                 kfree(failrec);
2530                 return ERR_PTR(ret);
2531         }
2532
2533         return failrec;
2534 }
2535
2536 static bool btrfs_check_repairable(struct inode *inode, bool needs_validation,
2537                                    struct io_failure_record *failrec,
2538                                    int failed_mirror)
2539 {
2540         struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
2541         int num_copies;
2542
2543         num_copies = btrfs_num_copies(fs_info, failrec->logical, failrec->len);
2544         if (num_copies == 1) {
2545                 /*
2546                  * we only have a single copy of the data, so don't bother with
2547                  * all the retry and error correction code that follows. no
2548                  * matter what the error is, it is very likely to persist.
2549                  */
2550                 btrfs_debug(fs_info,
2551                         "Check Repairable: cannot repair, num_copies=%d, next_mirror %d, failed_mirror %d",
2552                         num_copies, failrec->this_mirror, failed_mirror);
2553                 return false;
2554         }
2555
2556         /*
2557          * there are two premises:
2558          *      a) deliver good data to the caller
2559          *      b) correct the bad sectors on disk
2560          */
2561         if (needs_validation) {
2562                 /*
2563                  * to fulfill b), we need to know the exact failing sectors, as
2564                  * we don't want to rewrite any more than the failed ones. thus,
2565                  * we need separate read requests for the failed bio
2566                  *
2567                  * if the following BUG_ON triggers, our validation request got
2568                  * merged. we need separate requests for our algorithm to work.
2569                  */
2570                 BUG_ON(failrec->in_validation);
2571                 failrec->in_validation = 1;
2572                 failrec->this_mirror = failed_mirror;
2573         } else {
2574                 /*
2575                  * we're ready to fulfill a) and b) alongside. get a good copy
2576                  * of the failed sector and if we succeed, we have setup
2577                  * everything for repair_io_failure to do the rest for us.
2578                  */
2579                 if (failrec->in_validation) {
2580                         BUG_ON(failrec->this_mirror != failed_mirror);
2581                         failrec->in_validation = 0;
2582                         failrec->this_mirror = 0;
2583                 }
2584                 failrec->failed_mirror = failed_mirror;
2585                 failrec->this_mirror++;
2586                 if (failrec->this_mirror == failed_mirror)
2587                         failrec->this_mirror++;
2588         }
2589
2590         if (failrec->this_mirror > num_copies) {
2591                 btrfs_debug(fs_info,
2592                         "Check Repairable: (fail) num_copies=%d, next_mirror %d, failed_mirror %d",
2593                         num_copies, failrec->this_mirror, failed_mirror);
2594                 return false;
2595         }
2596
2597         return true;
2598 }
2599
2600 static bool btrfs_io_needs_validation(struct inode *inode, struct bio *bio)
2601 {
2602         u64 len = 0;
2603         const u32 blocksize = inode->i_sb->s_blocksize;
2604
2605         /*
2606          * If bi_status is BLK_STS_OK, then this was a checksum error, not an
2607          * I/O error. In this case, we already know exactly which sector was
2608          * bad, so we don't need to validate.
2609          */
2610         if (bio->bi_status == BLK_STS_OK)
2611                 return false;
2612
2613         /*
2614          * We need to validate each sector individually if the failed I/O was
2615          * for multiple sectors.
2616          *
2617          * There are a few possible bios that can end up here:
2618          * 1. A buffered read bio, which is not cloned.
2619          * 2. A direct I/O read bio, which is cloned.
2620          * 3. A (buffered or direct) repair bio, which is not cloned.
2621          *
2622          * For cloned bios (case 2), we can get the size from
2623          * btrfs_io_bio->iter; for non-cloned bios (cases 1 and 3), we can get
2624          * it from the bvecs.
2625          */
2626         if (bio_flagged(bio, BIO_CLONED)) {
2627                 if (btrfs_io_bio(bio)->iter.bi_size > blocksize)
2628                         return true;
2629         } else {
2630                 struct bio_vec *bvec;
2631                 int i;
2632
2633                 bio_for_each_bvec_all(bvec, bio, i) {
2634                         len += bvec->bv_len;
2635                         if (len > blocksize)
2636                                 return true;
2637                 }
2638         }
2639         return false;
2640 }
2641
2642 blk_status_t btrfs_submit_read_repair(struct inode *inode,
2643                                       struct bio *failed_bio, u64 phy_offset,
2644                                       struct page *page, unsigned int pgoff,
2645                                       u64 start, u64 end, int failed_mirror,
2646                                       submit_bio_hook_t *submit_bio_hook)
2647 {
2648         struct io_failure_record *failrec;
2649         struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
2650         struct extent_io_tree *tree = &BTRFS_I(inode)->io_tree;
2651         struct extent_io_tree *failure_tree = &BTRFS_I(inode)->io_failure_tree;
2652         struct btrfs_io_bio *failed_io_bio = btrfs_io_bio(failed_bio);
2653         const int icsum = phy_offset >> inode->i_sb->s_blocksize_bits;
2654         bool need_validation;
2655         struct bio *repair_bio;
2656         struct btrfs_io_bio *repair_io_bio;
2657         blk_status_t status;
2658
2659         btrfs_debug(fs_info,
2660                    "repair read error: read error at %llu", start);
2661
2662         BUG_ON(bio_op(failed_bio) == REQ_OP_WRITE);
2663
2664         failrec = btrfs_get_io_failure_record(inode, start, end);
2665         if (IS_ERR(failrec))
2666                 return errno_to_blk_status(PTR_ERR(failrec));
2667
2668         need_validation = btrfs_io_needs_validation(inode, failed_bio);
2669
2670         if (!btrfs_check_repairable(inode, need_validation, failrec,
2671                                     failed_mirror)) {
2672                 free_io_failure(failure_tree, tree, failrec);
2673                 return BLK_STS_IOERR;
2674         }
2675
2676         repair_bio = btrfs_io_bio_alloc(1);
2677         repair_io_bio = btrfs_io_bio(repair_bio);
2678         repair_bio->bi_opf = REQ_OP_READ;
2679         if (need_validation)
2680                 repair_bio->bi_opf |= REQ_FAILFAST_DEV;
2681         repair_bio->bi_end_io = failed_bio->bi_end_io;
2682         repair_bio->bi_iter.bi_sector = failrec->logical >> 9;
2683         repair_bio->bi_private = failed_bio->bi_private;
2684
2685         if (failed_io_bio->csum) {
2686                 const u16 csum_size = btrfs_super_csum_size(fs_info->super_copy);
2687
2688                 repair_io_bio->csum = repair_io_bio->csum_inline;
2689                 memcpy(repair_io_bio->csum,
2690                        failed_io_bio->csum + csum_size * icsum, csum_size);
2691         }
2692
2693         bio_add_page(repair_bio, page, failrec->len, pgoff);
2694         repair_io_bio->logical = failrec->start;
2695         repair_io_bio->iter = repair_bio->bi_iter;
2696
2697         btrfs_debug(btrfs_sb(inode->i_sb),
2698 "repair read error: submitting new read to mirror %d, in_validation=%d",
2699                     failrec->this_mirror, failrec->in_validation);
2700
2701         status = submit_bio_hook(inode, repair_bio, failrec->this_mirror,
2702                                  failrec->bio_flags);
2703         if (status) {
2704                 free_io_failure(failure_tree, tree, failrec);
2705                 bio_put(repair_bio);
2706         }
2707         return status;
2708 }
2709
2710 /* lots and lots of room for performance fixes in the end_bio funcs */
2711
2712 void end_extent_writepage(struct page *page, int err, u64 start, u64 end)
2713 {
2714         int uptodate = (err == 0);
2715         int ret = 0;
2716
2717         btrfs_writepage_endio_finish_ordered(page, start, end, uptodate);
2718
2719         if (!uptodate) {
2720                 ClearPageUptodate(page);
2721                 SetPageError(page);
2722                 ret = err < 0 ? err : -EIO;
2723                 mapping_set_error(page->mapping, ret);
2724         }
2725 }
2726
2727 /*
2728  * after a writepage IO is done, we need to:
2729  * clear the uptodate bits on error
2730  * clear the writeback bits in the extent tree for this IO
2731  * end_page_writeback if the page has no more pending IO
2732  *
2733  * Scheduling is not allowed, so the extent state tree is expected
2734  * to have one and only one object corresponding to this IO.
2735  */
2736 static void end_bio_extent_writepage(struct bio *bio)
2737 {
2738         int error = blk_status_to_errno(bio->bi_status);
2739         struct bio_vec *bvec;
2740         u64 start;
2741         u64 end;
2742         struct bvec_iter_all iter_all;
2743
2744         ASSERT(!bio_flagged(bio, BIO_CLONED));
2745         bio_for_each_segment_all(bvec, bio, iter_all) {
2746                 struct page *page = bvec->bv_page;
2747                 struct inode *inode = page->mapping->host;
2748                 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
2749
2750                 /* We always issue full-page reads, but if some block
2751                  * in a page fails to read, blk_update_request() will
2752                  * advance bv_offset and adjust bv_len to compensate.
2753                  * Print a warning for nonzero offsets, and an error
2754                  * if they don't add up to a full page.  */
2755                 if (bvec->bv_offset || bvec->bv_len != PAGE_SIZE) {
2756                         if (bvec->bv_offset + bvec->bv_len != PAGE_SIZE)
2757                                 btrfs_err(fs_info,
2758                                    "partial page write in btrfs with offset %u and length %u",
2759                                         bvec->bv_offset, bvec->bv_len);
2760                         else
2761                                 btrfs_info(fs_info,
2762                                    "incomplete page write in btrfs with offset %u and length %u",
2763                                         bvec->bv_offset, bvec->bv_len);
2764                 }
2765
2766                 start = page_offset(page);
2767                 end = start + bvec->bv_offset + bvec->bv_len - 1;
2768
2769                 end_extent_writepage(page, error, start, end);
2770                 end_page_writeback(page);
2771         }
2772
2773         bio_put(bio);
2774 }
2775
2776 static void
2777 endio_readpage_release_extent(struct extent_io_tree *tree, u64 start, u64 len,
2778                               int uptodate)
2779 {
2780         struct extent_state *cached = NULL;
2781         u64 end = start + len - 1;
2782
2783         if (uptodate && tree->track_uptodate)
2784                 set_extent_uptodate(tree, start, end, &cached, GFP_ATOMIC);
2785         unlock_extent_cached_atomic(tree, start, end, &cached);
2786 }
2787
2788 /*
2789  * after a readpage IO is done, we need to:
2790  * clear the uptodate bits on error
2791  * set the uptodate bits if things worked
2792  * set the page up to date if all extents in the tree are uptodate
2793  * clear the lock bit in the extent tree
2794  * unlock the page if there are no other extents locked for it
2795  *
2796  * Scheduling is not allowed, so the extent state tree is expected
2797  * to have one and only one object corresponding to this IO.
2798  */
2799 static void end_bio_extent_readpage(struct bio *bio)
2800 {
2801         struct bio_vec *bvec;
2802         int uptodate = !bio->bi_status;
2803         struct btrfs_io_bio *io_bio = btrfs_io_bio(bio);
2804         struct extent_io_tree *tree, *failure_tree;
2805         u64 offset = 0;
2806         u64 start;
2807         u64 end;
2808         u64 len;
2809         u64 extent_start = 0;
2810         u64 extent_len = 0;
2811         int mirror;
2812         int ret;
2813         struct bvec_iter_all iter_all;
2814
2815         ASSERT(!bio_flagged(bio, BIO_CLONED));
2816         bio_for_each_segment_all(bvec, bio, iter_all) {
2817                 struct page *page = bvec->bv_page;
2818                 struct inode *inode = page->mapping->host;
2819                 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
2820
2821                 btrfs_debug(fs_info,
2822                         "end_bio_extent_readpage: bi_sector=%llu, err=%d, mirror=%u",
2823                         (u64)bio->bi_iter.bi_sector, bio->bi_status,
2824                         io_bio->mirror_num);
2825                 tree = &BTRFS_I(inode)->io_tree;
2826                 failure_tree = &BTRFS_I(inode)->io_failure_tree;
2827
2828                 /* We always issue full-page reads, but if some block
2829                  * in a page fails to read, blk_update_request() will
2830                  * advance bv_offset and adjust bv_len to compensate.
2831                  * Print a warning for nonzero offsets, and an error
2832                  * if they don't add up to a full page.  */
2833                 if (bvec->bv_offset || bvec->bv_len != PAGE_SIZE) {
2834                         if (bvec->bv_offset + bvec->bv_len != PAGE_SIZE)
2835                                 btrfs_err(fs_info,
2836                                         "partial page read in btrfs with offset %u and length %u",
2837                                         bvec->bv_offset, bvec->bv_len);
2838                         else
2839                                 btrfs_info(fs_info,
2840                                         "incomplete page read in btrfs with offset %u and length %u",
2841                                         bvec->bv_offset, bvec->bv_len);
2842                 }
2843
2844                 start = page_offset(page);
2845                 end = start + bvec->bv_offset + bvec->bv_len - 1;
2846                 len = bvec->bv_len;
2847
2848                 mirror = io_bio->mirror_num;
2849                 if (likely(uptodate)) {
2850                         if (is_data_inode(inode))
2851                                 ret = btrfs_verify_data_csum(io_bio, offset, page,
2852                                                              start, end, mirror);
2853                         else
2854                                 ret = btrfs_validate_metadata_buffer(io_bio,
2855                                         offset, page, start, end, mirror);
2856                         if (ret)
2857                                 uptodate = 0;
2858                         else
2859                                 clean_io_failure(BTRFS_I(inode)->root->fs_info,
2860                                                  failure_tree, tree, start,
2861                                                  page,
2862                                                  btrfs_ino(BTRFS_I(inode)), 0);
2863                 }
2864
2865                 if (likely(uptodate))
2866                         goto readpage_ok;
2867
2868                 if (is_data_inode(inode)) {
2869
2870                         /*
2871                          * The generic bio_readpage_error handles errors the
2872                          * following way: If possible, new read requests are
2873                          * created and submitted and will end up in
2874                          * end_bio_extent_readpage as well (if we're lucky,
2875                          * not in the !uptodate case). In that case it returns
2876                          * 0 and we just go on with the next page in our bio.
2877                          * If it can't handle the error it will return -EIO and
2878                          * we remain responsible for that page.
2879                          */
2880                         if (!btrfs_submit_read_repair(inode, bio, offset, page,
2881                                                 start - page_offset(page),
2882                                                 start, end, mirror,
2883                                                 btrfs_submit_data_bio)) {
2884                                 uptodate = !bio->bi_status;
2885                                 offset += len;
2886                                 continue;
2887                         }
2888                 } else {
2889                         struct extent_buffer *eb;
2890
2891                         eb = (struct extent_buffer *)page->private;
2892                         set_bit(EXTENT_BUFFER_READ_ERR, &eb->bflags);
2893                         eb->read_mirror = mirror;
2894                         atomic_dec(&eb->io_pages);
2895                         if (test_and_clear_bit(EXTENT_BUFFER_READAHEAD,
2896                                                &eb->bflags))
2897                                 btree_readahead_hook(eb, -EIO);
2898                 }
2899 readpage_ok:
2900                 if (likely(uptodate)) {
2901                         loff_t i_size = i_size_read(inode);
2902                         pgoff_t end_index = i_size >> PAGE_SHIFT;
2903                         unsigned off;
2904
2905                         /* Zero out the end if this page straddles i_size */
2906                         off = offset_in_page(i_size);
2907                         if (page->index == end_index && off)
2908                                 zero_user_segment(page, off, PAGE_SIZE);
2909                         SetPageUptodate(page);
2910                 } else {
2911                         ClearPageUptodate(page);
2912                         SetPageError(page);
2913                 }
2914                 unlock_page(page);
2915                 offset += len;
2916
2917                 if (unlikely(!uptodate)) {
2918                         if (extent_len) {
2919                                 endio_readpage_release_extent(tree,
2920                                                               extent_start,
2921                                                               extent_len, 1);
2922                                 extent_start = 0;
2923                                 extent_len = 0;
2924                         }
2925                         endio_readpage_release_extent(tree, start,
2926                                                       end - start + 1, 0);
2927                 } else if (!extent_len) {
2928                         extent_start = start;
2929                         extent_len = end + 1 - start;
2930                 } else if (extent_start + extent_len == start) {
2931                         extent_len += end + 1 - start;
2932                 } else {
2933                         endio_readpage_release_extent(tree, extent_start,
2934                                                       extent_len, uptodate);
2935                         extent_start = start;
2936                         extent_len = end + 1 - start;
2937                 }
2938         }
2939
2940         if (extent_len)
2941                 endio_readpage_release_extent(tree, extent_start, extent_len,
2942                                               uptodate);
2943         btrfs_io_bio_free_csum(io_bio);
2944         bio_put(bio);
2945 }
2946
2947 /*
2948  * Initialize the members up to but not including 'bio'. Use after allocating a
2949  * new bio by bio_alloc_bioset as it does not initialize the bytes outside of
2950  * 'bio' because use of __GFP_ZERO is not supported.
2951  */
2952 static inline void btrfs_io_bio_init(struct btrfs_io_bio *btrfs_bio)
2953 {
2954         memset(btrfs_bio, 0, offsetof(struct btrfs_io_bio, bio));
2955 }
2956
2957 /*
2958  * The following helpers allocate a bio. As it's backed by a bioset, it'll
2959  * never fail.  We're returning a bio right now but you can call btrfs_io_bio
2960  * for the appropriate container_of magic
2961  */
2962 struct bio *btrfs_bio_alloc(u64 first_byte)
2963 {
2964         struct bio *bio;
2965
2966         bio = bio_alloc_bioset(GFP_NOFS, BIO_MAX_PAGES, &btrfs_bioset);
2967         bio->bi_iter.bi_sector = first_byte >> 9;
2968         btrfs_io_bio_init(btrfs_io_bio(bio));
2969         return bio;
2970 }
2971
2972 struct bio *btrfs_bio_clone(struct bio *bio)
2973 {
2974         struct btrfs_io_bio *btrfs_bio;
2975         struct bio *new;
2976
2977         /* Bio allocation backed by a bioset does not fail */
2978         new = bio_clone_fast(bio, GFP_NOFS, &btrfs_bioset);
2979         btrfs_bio = btrfs_io_bio(new);
2980         btrfs_io_bio_init(btrfs_bio);
2981         btrfs_bio->iter = bio->bi_iter;
2982         return new;
2983 }
2984
2985 struct bio *btrfs_io_bio_alloc(unsigned int nr_iovecs)
2986 {
2987         struct bio *bio;
2988
2989         /* Bio allocation backed by a bioset does not fail */
2990         bio = bio_alloc_bioset(GFP_NOFS, nr_iovecs, &btrfs_bioset);
2991         btrfs_io_bio_init(btrfs_io_bio(bio));
2992         return bio;
2993 }
2994
2995 struct bio *btrfs_bio_clone_partial(struct bio *orig, int offset, int size)
2996 {
2997         struct bio *bio;
2998         struct btrfs_io_bio *btrfs_bio;
2999
3000         /* this will never fail when it's backed by a bioset */
3001         bio = bio_clone_fast(orig, GFP_NOFS, &btrfs_bioset);
3002         ASSERT(bio);
3003
3004         btrfs_bio = btrfs_io_bio(bio);
3005         btrfs_io_bio_init(btrfs_bio);
3006
3007         bio_trim(bio, offset >> 9, size >> 9);
3008         btrfs_bio->iter = bio->bi_iter;
3009         return bio;
3010 }
3011
3012 /*
3013  * @opf:        bio REQ_OP_* and REQ_* flags as one value
3014  * @wbc:        optional writeback control for io accounting
3015  * @page:       page to add to the bio
3016  * @pg_offset:  offset of the new bio or to check whether we are adding
3017  *              a contiguous page to the previous one
3018  * @size:       portion of page that we want to write
3019  * @offset:     starting offset in the page
3020  * @bio_ret:    must be valid pointer, newly allocated bio will be stored there
3021  * @end_io_func:     end_io callback for new bio
3022  * @mirror_num:      desired mirror to read/write
3023  * @prev_bio_flags:  flags of previous bio to see if we can merge the current one
3024  * @bio_flags:  flags of the current bio to see if we can merge them
3025  */
3026 static int submit_extent_page(unsigned int opf,
3027                               struct writeback_control *wbc,
3028                               struct page *page, u64 offset,
3029                               size_t size, unsigned long pg_offset,
3030                               struct bio **bio_ret,
3031                               bio_end_io_t end_io_func,
3032                               int mirror_num,
3033                               unsigned long prev_bio_flags,
3034                               unsigned long bio_flags,
3035                               bool force_bio_submit)
3036 {
3037         int ret = 0;
3038         struct bio *bio;
3039         size_t page_size = min_t(size_t, size, PAGE_SIZE);
3040         sector_t sector = offset >> 9;
3041         struct extent_io_tree *tree = &BTRFS_I(page->mapping->host)->io_tree;
3042
3043         ASSERT(bio_ret);
3044
3045         if (*bio_ret) {
3046                 bool contig;
3047                 bool can_merge = true;
3048
3049                 bio = *bio_ret;
3050                 if (prev_bio_flags & EXTENT_BIO_COMPRESSED)
3051                         contig = bio->bi_iter.bi_sector == sector;
3052                 else
3053                         contig = bio_end_sector(bio) == sector;
3054
3055                 if (btrfs_bio_fits_in_stripe(page, page_size, bio, bio_flags))
3056                         can_merge = false;
3057
3058                 if (prev_bio_flags != bio_flags || !contig || !can_merge ||
3059                     force_bio_submit ||
3060                     bio_add_page(bio, page, page_size, pg_offset) < page_size) {
3061                         ret = submit_one_bio(bio, mirror_num, prev_bio_flags);
3062                         if (ret < 0) {
3063                                 *bio_ret = NULL;
3064                                 return ret;
3065                         }
3066                         bio = NULL;
3067                 } else {
3068                         if (wbc)
3069                                 wbc_account_cgroup_owner(wbc, page, page_size);
3070                         return 0;
3071                 }
3072         }
3073
3074         bio = btrfs_bio_alloc(offset);
3075         bio_add_page(bio, page, page_size, pg_offset);
3076         bio->bi_end_io = end_io_func;
3077         bio->bi_private = tree;
3078         bio->bi_write_hint = page->mapping->host->i_write_hint;
3079         bio->bi_opf = opf;
3080         if (wbc) {
3081                 struct block_device *bdev;
3082
3083                 bdev = BTRFS_I(page->mapping->host)->root->fs_info->fs_devices->latest_bdev;
3084                 bio_set_dev(bio, bdev);
3085                 wbc_init_bio(wbc, bio);
3086                 wbc_account_cgroup_owner(wbc, page, page_size);
3087         }
3088
3089         *bio_ret = bio;
3090
3091         return ret;
3092 }
3093
3094 static void attach_extent_buffer_page(struct extent_buffer *eb,
3095                                       struct page *page)
3096 {
3097         if (!PagePrivate(page))
3098                 attach_page_private(page, eb);
3099         else
3100                 WARN_ON(page->private != (unsigned long)eb);
3101 }
3102
3103 void set_page_extent_mapped(struct page *page)
3104 {
3105         if (!PagePrivate(page))
3106                 attach_page_private(page, (void *)EXTENT_PAGE_PRIVATE);
3107 }
3108
3109 static struct extent_map *
3110 __get_extent_map(struct inode *inode, struct page *page, size_t pg_offset,
3111                  u64 start, u64 len, struct extent_map **em_cached)
3112 {
3113         struct extent_map *em;
3114
3115         if (em_cached && *em_cached) {
3116                 em = *em_cached;
3117                 if (extent_map_in_tree(em) && start >= em->start &&
3118                     start < extent_map_end(em)) {
3119                         refcount_inc(&em->refs);
3120                         return em;
3121                 }
3122
3123                 free_extent_map(em);
3124                 *em_cached = NULL;
3125         }
3126
3127         em = btrfs_get_extent(BTRFS_I(inode), page, pg_offset, start, len);
3128         if (em_cached && !IS_ERR_OR_NULL(em)) {
3129                 BUG_ON(*em_cached);
3130                 refcount_inc(&em->refs);
3131                 *em_cached = em;
3132         }
3133         return em;
3134 }
3135 /*
3136  * basic readpage implementation.  Locked extent state structs are inserted
3137  * into the tree that are removed when the IO is done (by the end_io
3138  * handlers)
3139  * XXX JDM: This needs looking at to ensure proper page locking
3140  * return 0 on success, otherwise return error
3141  */
3142 int btrfs_do_readpage(struct page *page, struct extent_map **em_cached,
3143                       struct bio **bio, unsigned long *bio_flags,
3144                       unsigned int read_flags, u64 *prev_em_start)
3145 {
3146         struct inode *inode = page->mapping->host;
3147         u64 start = page_offset(page);
3148         const u64 end = start + PAGE_SIZE - 1;
3149         u64 cur = start;
3150         u64 extent_offset;
3151         u64 last_byte = i_size_read(inode);
3152         u64 block_start;
3153         u64 cur_end;
3154         struct extent_map *em;
3155         int ret = 0;
3156         int nr = 0;
3157         size_t pg_offset = 0;
3158         size_t iosize;
3159         size_t disk_io_size;
3160         size_t blocksize = inode->i_sb->s_blocksize;
3161         unsigned long this_bio_flag = 0;
3162         struct extent_io_tree *tree = &BTRFS_I(inode)->io_tree;
3163
3164         set_page_extent_mapped(page);
3165
3166         if (!PageUptodate(page)) {
3167                 if (cleancache_get_page(page) == 0) {
3168                         BUG_ON(blocksize != PAGE_SIZE);
3169                         unlock_extent(tree, start, end);
3170                         goto out;
3171                 }
3172         }
3173
3174         if (page->index == last_byte >> PAGE_SHIFT) {
3175                 char *userpage;
3176                 size_t zero_offset = offset_in_page(last_byte);
3177
3178                 if (zero_offset) {
3179                         iosize = PAGE_SIZE - zero_offset;
3180                         userpage = kmap_atomic(page);
3181                         memset(userpage + zero_offset, 0, iosize);
3182                         flush_dcache_page(page);
3183                         kunmap_atomic(userpage);
3184                 }
3185         }
3186         while (cur <= end) {
3187                 bool force_bio_submit = false;
3188                 u64 offset;
3189
3190                 if (cur >= last_byte) {
3191                         char *userpage;
3192                         struct extent_state *cached = NULL;
3193
3194                         iosize = PAGE_SIZE - pg_offset;
3195                         userpage = kmap_atomic(page);
3196                         memset(userpage + pg_offset, 0, iosize);
3197                         flush_dcache_page(page);
3198                         kunmap_atomic(userpage);
3199                         set_extent_uptodate(tree, cur, cur + iosize - 1,
3200                                             &cached, GFP_NOFS);
3201                         unlock_extent_cached(tree, cur,
3202                                              cur + iosize - 1, &cached);
3203                         break;
3204                 }
3205                 em = __get_extent_map(inode, page, pg_offset, cur,
3206                                       end - cur + 1, em_cached);
3207                 if (IS_ERR_OR_NULL(em)) {
3208                         SetPageError(page);
3209                         unlock_extent(tree, cur, end);
3210                         break;
3211                 }
3212                 extent_offset = cur - em->start;
3213                 BUG_ON(extent_map_end(em) <= cur);
3214                 BUG_ON(end < cur);
3215
3216                 if (test_bit(EXTENT_FLAG_COMPRESSED, &em->flags)) {
3217                         this_bio_flag |= EXTENT_BIO_COMPRESSED;
3218                         extent_set_compress_type(&this_bio_flag,
3219                                                  em->compress_type);
3220                 }
3221
3222                 iosize = min(extent_map_end(em) - cur, end - cur + 1);
3223                 cur_end = min(extent_map_end(em) - 1, end);
3224                 iosize = ALIGN(iosize, blocksize);
3225                 if (this_bio_flag & EXTENT_BIO_COMPRESSED) {
3226                         disk_io_size = em->block_len;
3227                         offset = em->block_start;
3228                 } else {
3229                         offset = em->block_start + extent_offset;
3230                         disk_io_size = iosize;
3231                 }
3232                 block_start = em->block_start;
3233                 if (test_bit(EXTENT_FLAG_PREALLOC, &em->flags))
3234                         block_start = EXTENT_MAP_HOLE;
3235
3236                 /*
3237                  * If we have a file range that points to a compressed extent
3238                  * and it's followed by a consecutive file range that points
3239                  * to the same compressed extent (possibly with a different
3240                  * offset and/or length, so it either points to the whole extent
3241                  * or only part of it), we must make sure we do not submit a
3242                  * single bio to populate the pages for the 2 ranges because
3243                  * this makes the compressed extent read zero out the pages
3244                  * belonging to the 2nd range. Imagine the following scenario:
3245                  *
3246                  *  File layout
3247                  *  [0 - 8K]                     [8K - 24K]
3248                  *    |                               |
3249                  *    |                               |
3250                  * points to extent X,         points to extent X,
3251                  * offset 4K, length of 8K     offset 0, length 16K
3252                  *
3253                  * [extent X, compressed length = 4K uncompressed length = 16K]
3254                  *
3255                  * If the bio to read the compressed extent covers both ranges,
3256                  * it will decompress extent X into the pages belonging to the
3257                  * first range and then it will stop, zeroing out the remaining
3258                  * pages that belong to the other range that points to extent X.
3259                  * So here we make sure we submit 2 bios, one for the first
3260                  * range and another one for the third range. Both will target
3261                  * the same physical extent from disk, but we can't currently
3262                  * make the compressed bio endio callback populate the pages
3263                  * for both ranges because each compressed bio is tightly
3264                  * coupled with a single extent map, and each range can have
3265                  * an extent map with a different offset value relative to the
3266                  * uncompressed data of our extent and different lengths. This
3267                  * is a corner case so we prioritize correctness over
3268                  * non-optimal behavior (submitting 2 bios for the same extent).
3269                  */
3270                 if (test_bit(EXTENT_FLAG_COMPRESSED, &em->flags) &&
3271                     prev_em_start && *prev_em_start != (u64)-1 &&
3272                     *prev_em_start != em->start)
3273                         force_bio_submit = true;
3274
3275                 if (prev_em_start)
3276                         *prev_em_start = em->start;
3277
3278                 free_extent_map(em);
3279                 em = NULL;
3280
3281                 /* we've found a hole, just zero and go on */
3282                 if (block_start == EXTENT_MAP_HOLE) {
3283                         char *userpage;
3284                         struct extent_state *cached = NULL;
3285
3286                         userpage = kmap_atomic(page);
3287                         memset(userpage + pg_offset, 0, iosize);
3288                         flush_dcache_page(page);
3289                         kunmap_atomic(userpage);
3290
3291                         set_extent_uptodate(tree, cur, cur + iosize - 1,
3292                                             &cached, GFP_NOFS);
3293                         unlock_extent_cached(tree, cur,
3294                                              cur + iosize - 1, &cached);
3295                         cur = cur + iosize;
3296                         pg_offset += iosize;
3297                         continue;
3298                 }
3299                 /* the get_extent function already copied into the page */
3300                 if (test_range_bit(tree, cur, cur_end,
3301                                    EXTENT_UPTODATE, 1, NULL)) {
3302                         check_page_uptodate(tree, page);
3303                         unlock_extent(tree, cur, cur + iosize - 1);
3304                         cur = cur + iosize;
3305                         pg_offset += iosize;
3306                         continue;
3307                 }
3308                 /* we have an inline extent but it didn't get marked up
3309                  * to date.  Error out
3310                  */
3311                 if (block_start == EXTENT_MAP_INLINE) {
3312                         SetPageError(page);
3313                         unlock_extent(tree, cur, cur + iosize - 1);
3314                         cur = cur + iosize;
3315                         pg_offset += iosize;
3316                         continue;
3317                 }
3318
3319                 ret = submit_extent_page(REQ_OP_READ | read_flags, NULL,
3320                                          page, offset, disk_io_size,
3321                                          pg_offset, bio,
3322                                          end_bio_extent_readpage, 0,
3323                                          *bio_flags,
3324                                          this_bio_flag,
3325                                          force_bio_submit);
3326                 if (!ret) {
3327                         nr++;
3328                         *bio_flags = this_bio_flag;
3329                 } else {
3330                         SetPageError(page);
3331                         unlock_extent(tree, cur, cur + iosize - 1);
3332                         goto out;
3333                 }
3334                 cur = cur + iosize;
3335                 pg_offset += iosize;
3336         }
3337 out:
3338         if (!nr) {
3339                 if (!PageError(page))
3340                         SetPageUptodate(page);
3341                 unlock_page(page);
3342         }
3343         return ret;
3344 }
3345
3346 static inline void contiguous_readpages(struct page *pages[], int nr_pages,
3347                                              u64 start, u64 end,
3348                                              struct extent_map **em_cached,
3349                                              struct bio **bio,
3350                                              unsigned long *bio_flags,
3351                                              u64 *prev_em_start)
3352 {
3353         struct btrfs_inode *inode = BTRFS_I(pages[0]->mapping->host);
3354         int index;
3355
3356         btrfs_lock_and_flush_ordered_range(inode, start, end, NULL);
3357
3358         for (index = 0; index < nr_pages; index++) {
3359                 btrfs_do_readpage(pages[index], em_cached, bio, bio_flags,
3360                                   REQ_RAHEAD, prev_em_start);
3361                 put_page(pages[index]);
3362         }
3363 }
3364
3365 static void update_nr_written(struct writeback_control *wbc,
3366                               unsigned long nr_written)
3367 {
3368         wbc->nr_to_write -= nr_written;
3369 }
3370
3371 /*
3372  * helper for __extent_writepage, doing all of the delayed allocation setup.
3373  *
3374  * This returns 1 if btrfs_run_delalloc_range function did all the work required
3375  * to write the page (copy into inline extent).  In this case the IO has
3376  * been started and the page is already unlocked.
3377  *
3378  * This returns 0 if all went well (page still locked)
3379  * This returns < 0 if there were errors (page still locked)
3380  */
3381 static noinline_for_stack int writepage_delalloc(struct btrfs_inode *inode,
3382                 struct page *page, struct writeback_control *wbc,
3383                 u64 delalloc_start, unsigned long *nr_written)
3384 {
3385         u64 page_end = delalloc_start + PAGE_SIZE - 1;
3386         bool found;
3387         u64 delalloc_to_write = 0;
3388         u64 delalloc_end = 0;
3389         int ret;
3390         int page_started = 0;
3391
3392
3393         while (delalloc_end < page_end) {
3394                 found = find_lock_delalloc_range(&inode->vfs_inode, page,
3395                                                &delalloc_start,
3396                                                &delalloc_end);
3397                 if (!found) {
3398                         delalloc_start = delalloc_end + 1;
3399                         continue;
3400                 }
3401                 ret = btrfs_run_delalloc_range(inode, page, delalloc_start,
3402                                 delalloc_end, &page_started, nr_written, wbc);
3403                 if (ret) {
3404                         SetPageError(page);
3405                         /*
3406                          * btrfs_run_delalloc_range should return < 0 for error
3407                          * but just in case, we use > 0 here meaning the IO is
3408                          * started, so we don't want to return > 0 unless
3409                          * things are going well.
3410                          */
3411                         return ret < 0 ? ret : -EIO;
3412                 }
3413                 /*
3414                  * delalloc_end is already one less than the total length, so
3415                  * we don't subtract one from PAGE_SIZE
3416                  */
3417                 delalloc_to_write += (delalloc_end - delalloc_start +
3418                                       PAGE_SIZE) >> PAGE_SHIFT;
3419                 delalloc_start = delalloc_end + 1;
3420         }
3421         if (wbc->nr_to_write < delalloc_to_write) {
3422                 int thresh = 8192;
3423
3424                 if (delalloc_to_write < thresh * 2)
3425                         thresh = delalloc_to_write;
3426                 wbc->nr_to_write = min_t(u64, delalloc_to_write,
3427                                          thresh);
3428         }
3429
3430         /* did the fill delalloc function already unlock and start
3431          * the IO?
3432          */
3433         if (page_started) {
3434                 /*
3435                  * we've unlocked the page, so we can't update
3436                  * the mapping's writeback index, just update
3437                  * nr_to_write.
3438                  */
3439                 wbc->nr_to_write -= *nr_written;
3440                 return 1;
3441         }
3442
3443         return 0;
3444 }
3445
3446 /*
3447  * helper for __extent_writepage.  This calls the writepage start hooks,
3448  * and does the loop to map the page into extents and bios.
3449  *
3450  * We return 1 if the IO is started and the page is unlocked,
3451  * 0 if all went well (page still locked)
3452  * < 0 if there were errors (page still locked)
3453  */
3454 static noinline_for_stack int __extent_writepage_io(struct btrfs_inode *inode,
3455                                  struct page *page,
3456                                  struct writeback_control *wbc,
3457                                  struct extent_page_data *epd,
3458                                  loff_t i_size,
3459                                  unsigned long nr_written,
3460                                  int *nr_ret)
3461 {
3462         struct extent_io_tree *tree = &inode->io_tree;
3463         u64 start = page_offset(page);
3464         u64 page_end = start + PAGE_SIZE - 1;
3465         u64 end;
3466         u64 cur = start;
3467         u64 extent_offset;
3468         u64 block_start;
3469         u64 iosize;
3470         struct extent_map *em;
3471         size_t pg_offset = 0;
3472         size_t blocksize;
3473         int ret = 0;
3474         int nr = 0;
3475         const unsigned int write_flags = wbc_to_write_flags(wbc);
3476         bool compressed;
3477
3478         ret = btrfs_writepage_cow_fixup(page, start, page_end);
3479         if (ret) {
3480                 /* Fixup worker will requeue */
3481                 redirty_page_for_writepage(wbc, page);
3482                 update_nr_written(wbc, nr_written);
3483                 unlock_page(page);
3484                 return 1;
3485         }
3486
3487         /*
3488          * we don't want to touch the inode after unlocking the page,
3489          * so we update the mapping writeback index now
3490          */
3491         update_nr_written(wbc, nr_written + 1);
3492
3493         end = page_end;
3494         blocksize = inode->vfs_inode.i_sb->s_blocksize;
3495
3496         while (cur <= end) {
3497                 u64 em_end;
3498                 u64 offset;
3499
3500                 if (cur >= i_size) {
3501                         btrfs_writepage_endio_finish_ordered(page, cur,
3502                                                              page_end, 1);
3503                         break;
3504                 }
3505                 em = btrfs_get_extent(inode, NULL, 0, cur, end - cur + 1);
3506                 if (IS_ERR_OR_NULL(em)) {
3507                         SetPageError(page);
3508                         ret = PTR_ERR_OR_ZERO(em);
3509                         break;
3510                 }
3511
3512                 extent_offset = cur - em->start;
3513                 em_end = extent_map_end(em);
3514                 BUG_ON(em_end <= cur);
3515                 BUG_ON(end < cur);
3516                 iosize = min(em_end - cur, end - cur + 1);
3517                 iosize = ALIGN(iosize, blocksize);
3518                 offset = em->block_start + extent_offset;
3519                 block_start = em->block_start;
3520                 compressed = test_bit(EXTENT_FLAG_COMPRESSED, &em->flags);
3521                 free_extent_map(em);
3522                 em = NULL;
3523
3524                 /*
3525                  * compressed and inline extents are written through other
3526                  * paths in the FS
3527                  */
3528                 if (compressed || block_start == EXTENT_MAP_HOLE ||
3529                     block_start == EXTENT_MAP_INLINE) {
3530                         if (compressed)
3531                                 nr++;
3532                         else
3533                                 btrfs_writepage_endio_finish_ordered(page, cur,
3534                                                         cur + iosize - 1, 1);
3535                         cur += iosize;
3536                         pg_offset += iosize;
3537                         continue;
3538                 }
3539
3540                 btrfs_set_range_writeback(tree, cur, cur + iosize - 1);
3541                 if (!PageWriteback(page)) {
3542                         btrfs_err(inode->root->fs_info,
3543                                    "page %lu not writeback, cur %llu end %llu",
3544                                page->index, cur, end);
3545                 }
3546
3547                 ret = submit_extent_page(REQ_OP_WRITE | write_flags, wbc,
3548                                          page, offset, iosize, pg_offset,
3549                                          &epd->bio,
3550                                          end_bio_extent_writepage,
3551                                          0, 0, 0, false);
3552                 if (ret) {
3553                         SetPageError(page);
3554                         if (PageWriteback(page))
3555                                 end_page_writeback(page);
3556                 }
3557
3558                 cur = cur + iosize;
3559                 pg_offset += iosize;
3560                 nr++;
3561         }
3562         *nr_ret = nr;
3563         return ret;
3564 }
3565
3566 /*
3567  * the writepage semantics are similar to regular writepage.  extent
3568  * records are inserted to lock ranges in the tree, and as dirty areas
3569  * are found, they are marked writeback.  Then the lock bits are removed
3570  * and the end_io handler clears the writeback ranges
3571  *
3572  * Return 0 if everything goes well.
3573  * Return <0 for error.
3574  */
3575 static int __extent_writepage(struct page *page, struct writeback_control *wbc,
3576                               struct extent_page_data *epd)
3577 {
3578         struct inode *inode = page->mapping->host;
3579         u64 start = page_offset(page);
3580         u64 page_end = start + PAGE_SIZE - 1;
3581         int ret;
3582         int nr = 0;
3583         size_t pg_offset;
3584         loff_t i_size = i_size_read(inode);
3585         unsigned long end_index = i_size >> PAGE_SHIFT;
3586         unsigned long nr_written = 0;
3587
3588         trace___extent_writepage(page, inode, wbc);
3589
3590         WARN_ON(!PageLocked(page));
3591
3592         ClearPageError(page);
3593
3594         pg_offset = offset_in_page(i_size);
3595         if (page->index > end_index ||
3596            (page->index == end_index && !pg_offset)) {
3597                 page->mapping->a_ops->invalidatepage(page, 0, PAGE_SIZE);
3598                 unlock_page(page);
3599                 return 0;
3600         }
3601
3602         if (page->index == end_index) {
3603                 char *userpage;
3604
3605                 userpage = kmap_atomic(page);
3606                 memset(userpage + pg_offset, 0,
3607                        PAGE_SIZE - pg_offset);
3608                 kunmap_atomic(userpage);
3609                 flush_dcache_page(page);
3610         }
3611
3612         set_page_extent_mapped(page);
3613
3614         if (!epd->extent_locked) {
3615                 ret = writepage_delalloc(BTRFS_I(inode), page, wbc, start,
3616                                          &nr_written);
3617                 if (ret == 1)
3618                         return 0;
3619                 if (ret)
3620                         goto done;
3621         }
3622
3623         ret = __extent_writepage_io(BTRFS_I(inode), page, wbc, epd, i_size,
3624                                     nr_written, &nr);
3625         if (ret == 1)
3626                 return 0;
3627
3628 done:
3629         if (nr == 0) {
3630                 /* make sure the mapping tag for page dirty gets cleared */
3631                 set_page_writeback(page);
3632                 end_page_writeback(page);
3633         }
3634         if (PageError(page)) {
3635                 ret = ret < 0 ? ret : -EIO;
3636                 end_extent_writepage(page, ret, start, page_end);
3637         }
3638         unlock_page(page);
3639         ASSERT(ret <= 0);
3640         return ret;
3641 }
3642
3643 void wait_on_extent_buffer_writeback(struct extent_buffer *eb)
3644 {
3645         wait_on_bit_io(&eb->bflags, EXTENT_BUFFER_WRITEBACK,
3646                        TASK_UNINTERRUPTIBLE);
3647 }
3648
3649 static void end_extent_buffer_writeback(struct extent_buffer *eb)
3650 {
3651         clear_bit(EXTENT_BUFFER_WRITEBACK, &eb->bflags);
3652         smp_mb__after_atomic();
3653         wake_up_bit(&eb->bflags, EXTENT_BUFFER_WRITEBACK);
3654 }
3655
3656 /*
3657  * Lock eb pages and flush the bio if we can't the locks
3658  *
3659  * Return  0 if nothing went wrong
3660  * Return >0 is same as 0, except bio is not submitted
3661  * Return <0 if something went wrong, no page is locked
3662  */
3663 static noinline_for_stack int lock_extent_buffer_for_io(struct extent_buffer *eb,
3664                           struct extent_page_data *epd)
3665 {
3666         struct btrfs_fs_info *fs_info = eb->fs_info;
3667         int i, num_pages, failed_page_nr;
3668         int flush = 0;
3669         int ret = 0;
3670
3671         if (!btrfs_try_tree_write_lock(eb)) {
3672                 ret = flush_write_bio(epd);
3673                 if (ret < 0)
3674                         return ret;
3675                 flush = 1;
3676                 btrfs_tree_lock(eb);
3677         }
3678
3679         if (test_bit(EXTENT_BUFFER_WRITEBACK, &eb->bflags)) {
3680                 btrfs_tree_unlock(eb);
3681                 if (!epd->sync_io)
3682                         return 0;
3683                 if (!flush) {
3684                         ret = flush_write_bio(epd);
3685                         if (ret < 0)
3686                                 return ret;
3687                         flush = 1;
3688                 }
3689                 while (1) {
3690                         wait_on_extent_buffer_writeback(eb);
3691                         btrfs_tree_lock(eb);
3692                         if (!test_bit(EXTENT_BUFFER_WRITEBACK, &eb->bflags))
3693                                 break;
3694                         btrfs_tree_unlock(eb);
3695                 }
3696         }
3697
3698         /*
3699          * We need to do this to prevent races in people who check if the eb is
3700          * under IO since we can end up having no IO bits set for a short period
3701          * of time.
3702          */
3703         spin_lock(&eb->refs_lock);
3704         if (test_and_clear_bit(EXTENT_BUFFER_DIRTY, &eb->bflags)) {
3705                 set_bit(EXTENT_BUFFER_WRITEBACK, &eb->bflags);
3706                 spin_unlock(&eb->refs_lock);
3707                 btrfs_set_header_flag(eb, BTRFS_HEADER_FLAG_WRITTEN);
3708                 percpu_counter_add_batch(&fs_info->dirty_metadata_bytes,
3709                                          -eb->len,
3710                                          fs_info->dirty_metadata_batch);
3711                 ret = 1;
3712         } else {
3713                 spin_unlock(&eb->refs_lock);
3714         }
3715
3716         btrfs_tree_unlock(eb);
3717
3718         if (!ret)
3719                 return ret;
3720
3721         num_pages = num_extent_pages(eb);
3722         for (i = 0; i < num_pages; i++) {
3723                 struct page *p = eb->pages[i];
3724
3725                 if (!trylock_page(p)) {
3726                         if (!flush) {
3727                                 int err;
3728
3729                                 err = flush_write_bio(epd);
3730                                 if (err < 0) {
3731                                         ret = err;
3732                                         failed_page_nr = i;
3733                                         goto err_unlock;
3734                                 }
3735                                 flush = 1;
3736                         }
3737                         lock_page(p);
3738                 }
3739         }
3740
3741         return ret;
3742 err_unlock:
3743         /* Unlock already locked pages */
3744         for (i = 0; i < failed_page_nr; i++)
3745                 unlock_page(eb->pages[i]);
3746         /*
3747          * Clear EXTENT_BUFFER_WRITEBACK and wake up anyone waiting on it.
3748          * Also set back EXTENT_BUFFER_DIRTY so future attempts to this eb can
3749          * be made and undo everything done before.
3750          */
3751         btrfs_tree_lock(eb);
3752         spin_lock(&eb->refs_lock);
3753         set_bit(EXTENT_BUFFER_DIRTY, &eb->bflags);
3754         end_extent_buffer_writeback(eb);
3755         spin_unlock(&eb->refs_lock);
3756         percpu_counter_add_batch(&fs_info->dirty_metadata_bytes, eb->len,
3757                                  fs_info->dirty_metadata_batch);
3758         btrfs_clear_header_flag(eb, BTRFS_HEADER_FLAG_WRITTEN);
3759         btrfs_tree_unlock(eb);
3760         return ret;
3761 }
3762
3763 static void set_btree_ioerr(struct page *page)
3764 {
3765         struct extent_buffer *eb = (struct extent_buffer *)page->private;
3766         struct btrfs_fs_info *fs_info;
3767
3768         SetPageError(page);
3769         if (test_and_set_bit(EXTENT_BUFFER_WRITE_ERR, &eb->bflags))
3770                 return;
3771
3772         /*
3773          * A read may stumble upon this buffer later, make sure that it gets an
3774          * error and knows there was an error.
3775          */
3776         clear_bit(EXTENT_BUFFER_UPTODATE, &eb->bflags);
3777
3778         /*
3779          * If we error out, we should add back the dirty_metadata_bytes
3780          * to make it consistent.
3781          */
3782         fs_info = eb->fs_info;
3783         percpu_counter_add_batch(&fs_info->dirty_metadata_bytes,
3784                                  eb->len, fs_info->dirty_metadata_batch);
3785
3786         /*
3787          * If writeback for a btree extent that doesn't belong to a log tree
3788          * failed, increment the counter transaction->eb_write_errors.
3789          * We do this because while the transaction is running and before it's
3790          * committing (when we call filemap_fdata[write|wait]_range against
3791          * the btree inode), we might have
3792          * btree_inode->i_mapping->a_ops->writepages() called by the VM - if it
3793          * returns an error or an error happens during writeback, when we're
3794          * committing the transaction we wouldn't know about it, since the pages
3795          * can be no longer dirty nor marked anymore for writeback (if a
3796          * subsequent modification to the extent buffer didn't happen before the
3797          * transaction commit), which makes filemap_fdata[write|wait]_range not
3798          * able to find the pages tagged with SetPageError at transaction
3799          * commit time. So if this happens we must abort the transaction,
3800          * otherwise we commit a super block with btree roots that point to
3801          * btree nodes/leafs whose content on disk is invalid - either garbage
3802          * or the content of some node/leaf from a past generation that got
3803          * cowed or deleted and is no longer valid.
3804          *
3805          * Note: setting AS_EIO/AS_ENOSPC in the btree inode's i_mapping would
3806          * not be enough - we need to distinguish between log tree extents vs
3807          * non-log tree extents, and the next filemap_fdatawait_range() call
3808          * will catch and clear such errors in the mapping - and that call might
3809          * be from a log sync and not from a transaction commit. Also, checking
3810          * for the eb flag EXTENT_BUFFER_WRITE_ERR at transaction commit time is
3811          * not done and would not be reliable - the eb might have been released
3812          * from memory and reading it back again means that flag would not be
3813          * set (since it's a runtime flag, not persisted on disk).
3814          *
3815          * Using the flags below in the btree inode also makes us achieve the
3816          * goal of AS_EIO/AS_ENOSPC when writepages() returns success, started
3817          * writeback for all dirty pages and before filemap_fdatawait_range()
3818          * is called, the writeback for all dirty pages had already finished
3819          * with errors - because we were not using AS_EIO/AS_ENOSPC,
3820          * filemap_fdatawait_range() would return success, as it could not know
3821          * that writeback errors happened (the pages were no longer tagged for
3822          * writeback).
3823          */
3824         switch (eb->log_index) {
3825         case -1:
3826                 set_bit(BTRFS_FS_BTREE_ERR, &eb->fs_info->flags);
3827                 break;
3828         case 0:
3829                 set_bit(BTRFS_FS_LOG1_ERR, &eb->fs_info->flags);
3830                 break;
3831         case 1:
3832                 set_bit(BTRFS_FS_LOG2_ERR, &eb->fs_info->flags);
3833                 break;
3834         default:
3835                 BUG(); /* unexpected, logic error */
3836         }
3837 }
3838
3839 static void end_bio_extent_buffer_writepage(struct bio *bio)
3840 {
3841         struct bio_vec *bvec;
3842         struct extent_buffer *eb;
3843         int done;
3844         struct bvec_iter_all iter_all;
3845
3846         ASSERT(!bio_flagged(bio, BIO_CLONED));
3847         bio_for_each_segment_all(bvec, bio, iter_all) {
3848                 struct page *page = bvec->bv_page;
3849
3850                 eb = (struct extent_buffer *)page->private;
3851                 BUG_ON(!eb);
3852                 done = atomic_dec_and_test(&eb->io_pages);
3853
3854                 if (bio->bi_status ||
3855                     test_bit(EXTENT_BUFFER_WRITE_ERR, &eb->bflags)) {
3856                         ClearPageUptodate(page);
3857                         set_btree_ioerr(page);
3858                 }
3859
3860                 end_page_writeback(page);
3861
3862                 if (!done)
3863                         continue;
3864
3865                 end_extent_buffer_writeback(eb);
3866         }
3867
3868         bio_put(bio);
3869 }
3870
3871 static noinline_for_stack int write_one_eb(struct extent_buffer *eb,
3872                         struct writeback_control *wbc,
3873                         struct extent_page_data *epd)
3874 {
3875         u64 offset = eb->start;
3876         u32 nritems;
3877         int i, num_pages;
3878         unsigned long start, end;
3879         unsigned int write_flags = wbc_to_write_flags(wbc) | REQ_META;
3880         int ret = 0;
3881
3882         clear_bit(EXTENT_BUFFER_WRITE_ERR, &eb->bflags);
3883         num_pages = num_extent_pages(eb);
3884         atomic_set(&eb->io_pages, num_pages);
3885
3886         /* set btree blocks beyond nritems with 0 to avoid stale content. */
3887         nritems = btrfs_header_nritems(eb);
3888         if (btrfs_header_level(eb) > 0) {
3889                 end = btrfs_node_key_ptr_offset(nritems);
3890
3891                 memzero_extent_buffer(eb, end, eb->len - end);
3892         } else {
3893                 /*
3894                  * leaf:
3895                  * header 0 1 2 .. N ... data_N .. data_2 data_1 data_0
3896                  */
3897                 start = btrfs_item_nr_offset(nritems);
3898                 end = BTRFS_LEAF_DATA_OFFSET + leaf_data_end(eb);
3899                 memzero_extent_buffer(eb, start, end - start);
3900         }
3901
3902         for (i = 0; i < num_pages; i++) {
3903                 struct page *p = eb->pages[i];
3904
3905                 clear_page_dirty_for_io(p);
3906                 set_page_writeback(p);
3907                 ret = submit_extent_page(REQ_OP_WRITE | write_flags, wbc,
3908                                          p, offset, PAGE_SIZE, 0,
3909                                          &epd->bio,
3910                                          end_bio_extent_buffer_writepage,
3911                                          0, 0, 0, false);
3912                 if (ret) {
3913                         set_btree_ioerr(p);
3914                         if (PageWriteback(p))
3915                                 end_page_writeback(p);
3916                         if (atomic_sub_and_test(num_pages - i, &eb->io_pages))
3917                                 end_extent_buffer_writeback(eb);
3918                         ret = -EIO;
3919                         break;
3920                 }
3921                 offset += PAGE_SIZE;
3922                 update_nr_written(wbc, 1);
3923                 unlock_page(p);
3924         }
3925
3926         if (unlikely(ret)) {
3927                 for (; i < num_pages; i++) {
3928                         struct page *p = eb->pages[i];
3929                         clear_page_dirty_for_io(p);
3930                         unlock_page(p);
3931                 }
3932         }
3933
3934         return ret;
3935 }
3936
3937 int btree_write_cache_pages(struct address_space *mapping,
3938                                    struct writeback_control *wbc)
3939 {
3940         struct extent_buffer *eb, *prev_eb = NULL;
3941         struct extent_page_data epd = {
3942                 .bio = NULL,
3943                 .extent_locked = 0,
3944                 .sync_io = wbc->sync_mode == WB_SYNC_ALL,
3945         };
3946         struct btrfs_fs_info *fs_info = BTRFS_I(mapping->host)->root->fs_info;
3947         int ret = 0;
3948         int done = 0;
3949         int nr_to_write_done = 0;
3950         struct pagevec pvec;
3951         int nr_pages;
3952         pgoff_t index;
3953         pgoff_t end;            /* Inclusive */
3954         int scanned = 0;
3955         xa_mark_t tag;
3956
3957         pagevec_init(&pvec);
3958         if (wbc->range_cyclic) {
3959                 index = mapping->writeback_index; /* Start from prev offset */
3960                 end = -1;
3961                 /*
3962                  * Start from the beginning does not need to cycle over the
3963                  * range, mark it as scanned.
3964                  */
3965                 scanned = (index == 0);
3966         } else {
3967                 index = wbc->range_start >> PAGE_SHIFT;
3968                 end = wbc->range_end >> PAGE_SHIFT;
3969                 scanned = 1;
3970         }
3971         if (wbc->sync_mode == WB_SYNC_ALL)
3972                 tag = PAGECACHE_TAG_TOWRITE;
3973         else
3974                 tag = PAGECACHE_TAG_DIRTY;
3975 retry:
3976         if (wbc->sync_mode == WB_SYNC_ALL)
3977                 tag_pages_for_writeback(mapping, index, end);
3978         while (!done && !nr_to_write_done && (index <= end) &&
3979                (nr_pages = pagevec_lookup_range_tag(&pvec, mapping, &index, end,
3980                         tag))) {
3981                 unsigned i;
3982
3983                 for (i = 0; i < nr_pages; i++) {
3984                         struct page *page = pvec.pages[i];
3985
3986                         if (!PagePrivate(page))
3987                                 continue;
3988
3989                         spin_lock(&mapping->private_lock);
3990                         if (!PagePrivate(page)) {
3991                                 spin_unlock(&mapping->private_lock);
3992                                 continue;
3993                         }
3994
3995                         eb = (struct extent_buffer *)page->private;
3996
3997                         /*
3998                          * Shouldn't happen and normally this would be a BUG_ON
3999                          * but no sense in crashing the users box for something
4000                          * we can survive anyway.
4001                          */
4002                         if (WARN_ON(!eb)) {
4003                                 spin_unlock(&mapping->private_lock);
4004                                 continue;
4005                         }
4006
4007                         if (eb == prev_eb) {
4008                                 spin_unlock(&mapping->private_lock);
4009                                 continue;
4010                         }
4011
4012                         ret = atomic_inc_not_zero(&eb->refs);
4013                         spin_unlock(&mapping->private_lock);
4014                         if (!ret)
4015                                 continue;
4016
4017                         prev_eb = eb;
4018                         ret = lock_extent_buffer_for_io(eb, &epd);
4019                         if (!ret) {
4020                                 free_extent_buffer(eb);
4021                                 continue;
4022                         } else if (ret < 0) {
4023                                 done = 1;
4024                                 free_extent_buffer(eb);
4025                                 break;
4026                         }
4027
4028                         ret = write_one_eb(eb, wbc, &epd);
4029                         if (ret) {
4030                                 done = 1;
4031                                 free_extent_buffer(eb);
4032                                 break;
4033                         }
4034                         free_extent_buffer(eb);
4035
4036                         /*
4037                          * The filesystem may choose to bump up nr_to_write.
4038                          * We have to make sure to honor the new nr_to_write
4039                          * at any time.
4040                          */
4041                         nr_to_write_done = (wbc->sync_mode == WB_SYNC_NONE &&
4042                                             wbc->nr_to_write <= 0);
4043                 }
4044                 pagevec_release(&pvec);
4045                 cond_resched();
4046         }
4047         if (!scanned && !done) {
4048                 /*
4049                  * We hit the last page and there is more work to be done: wrap
4050                  * back to the start of the file
4051                  */
4052                 scanned = 1;
4053                 index = 0;
4054                 goto retry;
4055         }
4056         ASSERT(ret <= 0);
4057         if (ret < 0) {
4058                 end_write_bio(&epd, ret);
4059                 return ret;
4060         }
4061         /*
4062          * If something went wrong, don't allow any metadata write bio to be
4063          * submitted.
4064          *
4065          * This would prevent use-after-free if we had dirty pages not
4066          * cleaned up, which can still happen by fuzzed images.
4067          *
4068          * - Bad extent tree
4069          *   Allowing existing tree block to be allocated for other trees.
4070          *
4071          * - Log tree operations
4072          *   Exiting tree blocks get allocated to log tree, bumps its
4073          *   generation, then get cleaned in tree re-balance.
4074          *   Such tree block will not be written back, since it's clean,
4075          *   thus no WRITTEN flag set.
4076          *   And after log writes back, this tree block is not traced by
4077          *   any dirty extent_io_tree.
4078          *
4079          * - Offending tree block gets re-dirtied from its original owner
4080          *   Since it has bumped generation, no WRITTEN flag, it can be
4081          *   reused without COWing. This tree block will not be traced
4082          *   by btrfs_transaction::dirty_pages.
4083          *
4084          *   Now such dirty tree block will not be cleaned by any dirty
4085          *   extent io tree. Thus we don't want to submit such wild eb
4086          *   if the fs already has error.
4087          */
4088         if (!test_bit(BTRFS_FS_STATE_ERROR, &fs_info->fs_state)) {
4089                 ret = flush_write_bio(&epd);
4090         } else {
4091                 ret = -EROFS;
4092                 end_write_bio(&epd, ret);
4093         }
4094         return ret;
4095 }
4096
4097 /**
4098  * write_cache_pages - walk the list of dirty pages of the given address space and write all of them.
4099  * @mapping: address space structure to write
4100  * @wbc: subtract the number of written pages from *@wbc->nr_to_write
4101  * @data: data passed to __extent_writepage function
4102  *
4103  * If a page is already under I/O, write_cache_pages() skips it, even
4104  * if it's dirty.  This is desirable behaviour for memory-cleaning writeback,
4105  * but it is INCORRECT for data-integrity system calls such as fsync().  fsync()
4106  * and msync() need to guarantee that all the data which was dirty at the time
4107  * the call was made get new I/O started against them.  If wbc->sync_mode is
4108  * WB_SYNC_ALL then we were called for data integrity and we must wait for
4109  * existing IO to complete.
4110  */
4111 static int extent_write_cache_pages(struct address_space *mapping,
4112                              struct writeback_control *wbc,
4113                              struct extent_page_data *epd)
4114 {
4115         struct inode *inode = mapping->host;
4116         int ret = 0;
4117         int done = 0;
4118         int nr_to_write_done = 0;
4119         struct pagevec pvec;
4120         int nr_pages;
4121         pgoff_t index;
4122         pgoff_t end;            /* Inclusive */
4123         pgoff_t done_index;
4124         int range_whole = 0;
4125         int scanned = 0;
4126         xa_mark_t tag;
4127
4128         /*
4129          * We have to hold onto the inode so that ordered extents can do their
4130          * work when the IO finishes.  The alternative to this is failing to add
4131          * an ordered extent if the igrab() fails there and that is a huge pain
4132          * to deal with, so instead just hold onto the inode throughout the
4133          * writepages operation.  If it fails here we are freeing up the inode
4134          * anyway and we'd rather not waste our time writing out stuff that is
4135          * going to be truncated anyway.
4136          */
4137         if (!igrab(inode))
4138                 return 0;
4139
4140         pagevec_init(&pvec);
4141         if (wbc->range_cyclic) {
4142                 index = mapping->writeback_index; /* Start from prev offset */
4143                 end = -1;
4144                 /*
4145                  * Start from the beginning does not need to cycle over the
4146                  * range, mark it as scanned.
4147                  */
4148                 scanned = (index == 0);
4149         } else {
4150                 index = wbc->range_start >> PAGE_SHIFT;
4151                 end = wbc->range_end >> PAGE_SHIFT;
4152                 if (wbc->range_start == 0 && wbc->range_end == LLONG_MAX)
4153                         range_whole = 1;
4154                 scanned = 1;
4155         }
4156
4157         /*
4158          * We do the tagged writepage as long as the snapshot flush bit is set
4159          * and we are the first one who do the filemap_flush() on this inode.
4160          *
4161          * The nr_to_write == LONG_MAX is needed to make sure other flushers do
4162          * not race in and drop the bit.
4163          */
4164         if (range_whole && wbc->nr_to_write == LONG_MAX &&
4165             test_and_clear_bit(BTRFS_INODE_SNAPSHOT_FLUSH,
4166                                &BTRFS_I(inode)->runtime_flags))
4167                 wbc->tagged_writepages = 1;
4168
4169         if (wbc->sync_mode == WB_SYNC_ALL || wbc->tagged_writepages)
4170                 tag = PAGECACHE_TAG_TOWRITE;
4171         else
4172                 tag = PAGECACHE_TAG_DIRTY;
4173 retry:
4174         if (wbc->sync_mode == WB_SYNC_ALL || wbc->tagged_writepages)
4175                 tag_pages_for_writeback(mapping, index, end);
4176         done_index = index;
4177         while (!done && !nr_to_write_done && (index <= end) &&
4178                         (nr_pages = pagevec_lookup_range_tag(&pvec, mapping,
4179                                                 &index, end, tag))) {
4180                 unsigned i;
4181
4182                 for (i = 0; i < nr_pages; i++) {
4183                         struct page *page = pvec.pages[i];
4184
4185                         done_index = page->index + 1;
4186                         /*
4187                          * At this point we hold neither the i_pages lock nor
4188                          * the page lock: the page may be truncated or
4189                          * invalidated (changing page->mapping to NULL),
4190                          * or even swizzled back from swapper_space to
4191                          * tmpfs file mapping
4192                          */
4193                         if (!trylock_page(page)) {
4194                                 ret = flush_write_bio(epd);
4195                                 BUG_ON(ret < 0);
4196                                 lock_page(page);
4197                         }
4198
4199                         if (unlikely(page->mapping != mapping)) {
4200                                 unlock_page(page);
4201                                 continue;
4202                         }
4203
4204                         if (wbc->sync_mode != WB_SYNC_NONE) {
4205                                 if (PageWriteback(page)) {
4206                                         ret = flush_write_bio(epd);
4207                                         BUG_ON(ret < 0);
4208                                 }
4209                                 wait_on_page_writeback(page);
4210                         }
4211
4212                         if (PageWriteback(page) ||
4213                             !clear_page_dirty_for_io(page)) {
4214                                 unlock_page(page);
4215                                 continue;
4216                         }
4217
4218                         ret = __extent_writepage(page, wbc, epd);
4219                         if (ret < 0) {
4220                                 done = 1;
4221                                 break;
4222                         }
4223
4224                         /*
4225                          * the filesystem may choose to bump up nr_to_write.
4226                          * We have to make sure to honor the new nr_to_write
4227                          * at any time
4228                          */
4229                         nr_to_write_done = wbc->nr_to_write <= 0;
4230                 }
4231                 pagevec_release(&pvec);
4232                 cond_resched();
4233         }
4234         if (!scanned && !done) {
4235                 /*
4236                  * We hit the last page and there is more work to be done: wrap
4237                  * back to the start of the file
4238                  */
4239                 scanned = 1;
4240                 index = 0;
4241
4242                 /*
4243                  * If we're looping we could run into a page that is locked by a
4244                  * writer and that writer could be waiting on writeback for a
4245                  * page in our current bio, and thus deadlock, so flush the
4246                  * write bio here.
4247                  */
4248                 ret = flush_write_bio(epd);
4249                 if (!ret)
4250                         goto retry;
4251         }
4252
4253         if (wbc->range_cyclic || (wbc->nr_to_write > 0 && range_whole))
4254                 mapping->writeback_index = done_index;
4255
4256         btrfs_add_delayed_iput(inode);
4257         return ret;
4258 }
4259
4260 int extent_write_full_page(struct page *page, struct writeback_control *wbc)
4261 {
4262         int ret;
4263         struct extent_page_data epd = {
4264                 .bio = NULL,
4265                 .extent_locked = 0,
4266                 .sync_io = wbc->sync_mode == WB_SYNC_ALL,
4267         };
4268
4269         ret = __extent_writepage(page, wbc, &epd);
4270         ASSERT(ret <= 0);
4271         if (ret < 0) {
4272                 end_write_bio(&epd, ret);
4273                 return ret;
4274         }
4275
4276         ret = flush_write_bio(&epd);
4277         ASSERT(ret <= 0);
4278         return ret;
4279 }
4280
4281 int extent_write_locked_range(struct inode *inode, u64 start, u64 end,
4282                               int mode)
4283 {
4284         int ret = 0;
4285         struct address_space *mapping = inode->i_mapping;
4286         struct page *page;
4287         unsigned long nr_pages = (end - start + PAGE_SIZE) >>
4288                 PAGE_SHIFT;
4289
4290         struct extent_page_data epd = {
4291                 .bio = NULL,
4292                 .extent_locked = 1,
4293                 .sync_io = mode == WB_SYNC_ALL,
4294         };
4295         struct writeback_control wbc_writepages = {
4296                 .sync_mode      = mode,
4297                 .nr_to_write    = nr_pages * 2,
4298                 .range_start    = start,
4299                 .range_end      = end + 1,
4300                 /* We're called from an async helper function */
4301                 .punt_to_cgroup = 1,
4302                 .no_cgroup_owner = 1,
4303         };
4304
4305         wbc_attach_fdatawrite_inode(&wbc_writepages, inode);
4306         while (start <= end) {
4307                 page = find_get_page(mapping, start >> PAGE_SHIFT);
4308                 if (clear_page_dirty_for_io(page))
4309                         ret = __extent_writepage(page, &wbc_writepages, &epd);
4310                 else {
4311                         btrfs_writepage_endio_finish_ordered(page, start,
4312                                                     start + PAGE_SIZE - 1, 1);
4313                         unlock_page(page);
4314                 }
4315                 put_page(page);
4316                 start += PAGE_SIZE;
4317         }
4318
4319         ASSERT(ret <= 0);
4320         if (ret == 0)
4321                 ret = flush_write_bio(&epd);
4322         else
4323                 end_write_bio(&epd, ret);
4324
4325         wbc_detach_inode(&wbc_writepages);
4326         return ret;
4327 }
4328
4329 int extent_writepages(struct address_space *mapping,
4330                       struct writeback_control *wbc)
4331 {
4332         int ret = 0;
4333         struct extent_page_data epd = {
4334                 .bio = NULL,
4335                 .extent_locked = 0,
4336                 .sync_io = wbc->sync_mode == WB_SYNC_ALL,
4337         };
4338
4339         ret = extent_write_cache_pages(mapping, wbc, &epd);
4340         ASSERT(ret <= 0);
4341         if (ret < 0) {
4342                 end_write_bio(&epd, ret);
4343                 return ret;
4344         }
4345         ret = flush_write_bio(&epd);
4346         return ret;
4347 }
4348
4349 void extent_readahead(struct readahead_control *rac)
4350 {
4351         struct bio *bio = NULL;
4352         unsigned long bio_flags = 0;
4353         struct page *pagepool[16];
4354         struct extent_map *em_cached = NULL;
4355         u64 prev_em_start = (u64)-1;
4356         int nr;
4357
4358         while ((nr = readahead_page_batch(rac, pagepool))) {
4359                 u64 contig_start = page_offset(pagepool[0]);
4360                 u64 contig_end = page_offset(pagepool[nr - 1]) + PAGE_SIZE - 1;
4361
4362                 ASSERT(contig_start + nr * PAGE_SIZE - 1 == contig_end);
4363
4364                 contiguous_readpages(pagepool, nr, contig_start, contig_end,
4365                                 &em_cached, &bio, &bio_flags, &prev_em_start);
4366         }
4367
4368         if (em_cached)
4369                 free_extent_map(em_cached);
4370
4371         if (bio) {
4372                 if (submit_one_bio(bio, 0, bio_flags))
4373                         return;
4374         }
4375 }
4376
4377 /*
4378  * basic invalidatepage code, this waits on any locked or writeback
4379  * ranges corresponding to the page, and then deletes any extent state
4380  * records from the tree
4381  */
4382 int extent_invalidatepage(struct extent_io_tree *tree,
4383                           struct page *page, unsigned long offset)
4384 {
4385         struct extent_state *cached_state = NULL;
4386         u64 start = page_offset(page);
4387         u64 end = start + PAGE_SIZE - 1;
4388         size_t blocksize = page->mapping->host->i_sb->s_blocksize;
4389
4390         start += ALIGN(offset, blocksize);
4391         if (start > end)
4392                 return 0;
4393
4394         lock_extent_bits(tree, start, end, &cached_state);
4395         wait_on_page_writeback(page);
4396         clear_extent_bit(tree, start, end, EXTENT_LOCKED | EXTENT_DELALLOC |
4397                          EXTENT_DO_ACCOUNTING, 1, 1, &cached_state);
4398         return 0;
4399 }
4400
4401 /*
4402  * a helper for releasepage, this tests for areas of the page that
4403  * are locked or under IO and drops the related state bits if it is safe
4404  * to drop the page.
4405  */
4406 static int try_release_extent_state(struct extent_io_tree *tree,
4407                                     struct page *page, gfp_t mask)
4408 {
4409         u64 start = page_offset(page);
4410         u64 end = start + PAGE_SIZE - 1;
4411         int ret = 1;
4412
4413         if (test_range_bit(tree, start, end, EXTENT_LOCKED, 0, NULL)) {
4414                 ret = 0;
4415         } else {
4416                 /*
4417                  * at this point we can safely clear everything except the
4418                  * locked bit and the nodatasum bit
4419                  */
4420                 ret = __clear_extent_bit(tree, start, end,
4421                                  ~(EXTENT_LOCKED | EXTENT_NODATASUM),
4422                                  0, 0, NULL, mask, NULL);
4423
4424                 /* if clear_extent_bit failed for enomem reasons,
4425                  * we can't allow the release to continue.
4426                  */
4427                 if (ret < 0)
4428                         ret = 0;
4429                 else
4430                         ret = 1;
4431         }
4432         return ret;
4433 }
4434
4435 /*
4436  * a helper for releasepage.  As long as there are no locked extents
4437  * in the range corresponding to the page, both state records and extent
4438  * map records are removed
4439  */
4440 int try_release_extent_mapping(struct page *page, gfp_t mask)
4441 {
4442         struct extent_map *em;
4443         u64 start = page_offset(page);
4444         u64 end = start + PAGE_SIZE - 1;
4445         struct btrfs_inode *btrfs_inode = BTRFS_I(page->mapping->host);
4446         struct extent_io_tree *tree = &btrfs_inode->io_tree;
4447         struct extent_map_tree *map = &btrfs_inode->extent_tree;
4448
4449         if (gfpflags_allow_blocking(mask) &&
4450             page->mapping->host->i_size > SZ_16M) {
4451                 u64 len;
4452                 while (start <= end) {
4453                         struct btrfs_fs_info *fs_info;
4454                         u64 cur_gen;
4455
4456                         len = end - start + 1;
4457                         write_lock(&map->lock);
4458                         em = lookup_extent_mapping(map, start, len);
4459                         if (!em) {
4460                                 write_unlock(&map->lock);
4461                                 break;
4462                         }
4463                         if (test_bit(EXTENT_FLAG_PINNED, &em->flags) ||
4464                             em->start != start) {
4465                                 write_unlock(&map->lock);
4466                                 free_extent_map(em);
4467                                 break;
4468                         }
4469                         if (test_range_bit(tree, em->start,
4470                                            extent_map_end(em) - 1,
4471                                            EXTENT_LOCKED, 0, NULL))
4472                                 goto next;
4473                         /*
4474                          * If it's not in the list of modified extents, used
4475                          * by a fast fsync, we can remove it. If it's being
4476                          * logged we can safely remove it since fsync took an
4477                          * extra reference on the em.
4478                          */
4479                         if (list_empty(&em->list) ||
4480                             test_bit(EXTENT_FLAG_LOGGING, &em->flags))
4481                                 goto remove_em;
4482                         /*
4483                          * If it's in the list of modified extents, remove it
4484                          * only if its generation is older then the current one,
4485                          * in which case we don't need it for a fast fsync.
4486                          * Otherwise don't remove it, we could be racing with an
4487                          * ongoing fast fsync that could miss the new extent.
4488                          */
4489                         fs_info = btrfs_inode->root->fs_info;
4490                         spin_lock(&fs_info->trans_lock);
4491                         cur_gen = fs_info->generation;
4492                         spin_unlock(&fs_info->trans_lock);
4493                         if (em->generation >= cur_gen)
4494                                 goto next;
4495 remove_em:
4496                         /*
4497                          * We only remove extent maps that are not in the list of
4498                          * modified extents or that are in the list but with a
4499                          * generation lower then the current generation, so there
4500                          * is no need to set the full fsync flag on the inode (it
4501                          * hurts the fsync performance for workloads with a data
4502                          * size that exceeds or is close to the system's memory).
4503                          */
4504                         remove_extent_mapping(map, em);
4505                         /* once for the rb tree */
4506                         free_extent_map(em);
4507 next:
4508                         start = extent_map_end(em);
4509                         write_unlock(&map->lock);
4510
4511                         /* once for us */
4512                         free_extent_map(em);
4513
4514                         cond_resched(); /* Allow large-extent preemption. */
4515                 }
4516         }
4517         return try_release_extent_state(tree, page, mask);
4518 }
4519
4520 /*
4521  * helper function for fiemap, which doesn't want to see any holes.
4522  * This maps until we find something past 'last'
4523  */
4524 static struct extent_map *get_extent_skip_holes(struct btrfs_inode *inode,
4525                                                 u64 offset, u64 last)
4526 {
4527         u64 sectorsize = btrfs_inode_sectorsize(inode);
4528         struct extent_map *em;
4529         u64 len;
4530
4531         if (offset >= last)
4532                 return NULL;
4533
4534         while (1) {
4535                 len = last - offset;
4536                 if (len == 0)
4537                         break;
4538                 len = ALIGN(len, sectorsize);
4539                 em = btrfs_get_extent_fiemap(inode, offset, len);
4540                 if (IS_ERR_OR_NULL(em))
4541                         return em;
4542
4543                 /* if this isn't a hole return it */
4544                 if (em->block_start != EXTENT_MAP_HOLE)
4545                         return em;
4546
4547                 /* this is a hole, advance to the next extent */
4548                 offset = extent_map_end(em);
4549                 free_extent_map(em);
4550                 if (offset >= last)
4551                         break;
4552         }
4553         return NULL;
4554 }
4555
4556 /*
4557  * To cache previous fiemap extent
4558  *
4559  * Will be used for merging fiemap extent
4560  */
4561 struct fiemap_cache {
4562         u64 offset;
4563         u64 phys;
4564         u64 len;
4565         u32 flags;
4566         bool cached;
4567 };
4568
4569 /*
4570  * Helper to submit fiemap extent.
4571  *
4572  * Will try to merge current fiemap extent specified by @offset, @phys,
4573  * @len and @flags with cached one.
4574  * And only when we fails to merge, cached one will be submitted as
4575  * fiemap extent.
4576  *
4577  * Return value is the same as fiemap_fill_next_extent().
4578  */
4579 static int emit_fiemap_extent(struct fiemap_extent_info *fieinfo,
4580                                 struct fiemap_cache *cache,
4581                                 u64 offset, u64 phys, u64 len, u32 flags)
4582 {
4583         int ret = 0;
4584
4585         if (!cache->cached)
4586                 goto assign;
4587
4588         /*
4589          * Sanity check, extent_fiemap() should have ensured that new
4590          * fiemap extent won't overlap with cached one.
4591          * Not recoverable.
4592          *
4593          * NOTE: Physical address can overlap, due to compression
4594          */
4595         if (cache->offset + cache->len > offset) {
4596                 WARN_ON(1);
4597                 return -EINVAL;
4598         }
4599
4600         /*
4601          * Only merges fiemap extents if
4602          * 1) Their logical addresses are continuous
4603          *
4604          * 2) Their physical addresses are continuous
4605          *    So truly compressed (physical size smaller than logical size)
4606          *    extents won't get merged with each other
4607          *
4608          * 3) Share same flags except FIEMAP_EXTENT_LAST
4609          *    So regular extent won't get merged with prealloc extent
4610          */
4611         if (cache->offset + cache->len  == offset &&
4612             cache->phys + cache->len == phys  &&
4613             (cache->flags & ~FIEMAP_EXTENT_LAST) ==
4614                         (flags & ~FIEMAP_EXTENT_LAST)) {
4615                 cache->len += len;
4616                 cache->flags |= flags;
4617                 goto try_submit_last;
4618         }
4619
4620         /* Not mergeable, need to submit cached one */
4621         ret = fiemap_fill_next_extent(fieinfo, cache->offset, cache->phys,
4622                                       cache->len, cache->flags);
4623         cache->cached = false;
4624         if (ret)
4625                 return ret;
4626 assign:
4627         cache->cached = true;
4628         cache->offset = offset;
4629         cache->phys = phys;
4630         cache->len = len;
4631         cache->flags = flags;
4632 try_submit_last:
4633         if (cache->flags & FIEMAP_EXTENT_LAST) {
4634                 ret = fiemap_fill_next_extent(fieinfo, cache->offset,
4635                                 cache->phys, cache->len, cache->flags);
4636                 cache->cached = false;
4637         }
4638         return ret;
4639 }
4640
4641 /*
4642  * Emit last fiemap cache
4643  *
4644  * The last fiemap cache may still be cached in the following case:
4645  * 0                  4k                    8k
4646  * |<- Fiemap range ->|
4647  * |<------------  First extent ----------->|
4648  *
4649  * In this case, the first extent range will be cached but not emitted.
4650  * So we must emit it before ending extent_fiemap().
4651  */
4652 static int emit_last_fiemap_cache(struct fiemap_extent_info *fieinfo,
4653                                   struct fiemap_cache *cache)
4654 {
4655         int ret;
4656
4657         if (!cache->cached)
4658                 return 0;
4659
4660         ret = fiemap_fill_next_extent(fieinfo, cache->offset, cache->phys,
4661                                       cache->len, cache->flags);
4662         cache->cached = false;
4663         if (ret > 0)
4664                 ret = 0;
4665         return ret;
4666 }
4667
4668 int extent_fiemap(struct btrfs_inode *inode, struct fiemap_extent_info *fieinfo,
4669                   u64 start, u64 len)
4670 {
4671         int ret = 0;
4672         u64 off;
4673         u64 max = start + len;
4674         u32 flags = 0;
4675         u32 found_type;
4676         u64 last;
4677         u64 last_for_get_extent = 0;
4678         u64 disko = 0;
4679         u64 isize = i_size_read(&inode->vfs_inode);
4680         struct btrfs_key found_key;
4681         struct extent_map *em = NULL;
4682         struct extent_state *cached_state = NULL;
4683         struct btrfs_path *path;
4684         struct btrfs_root *root = inode->root;
4685         struct fiemap_cache cache = { 0 };
4686         struct ulist *roots;
4687         struct ulist *tmp_ulist;
4688         int end = 0;
4689         u64 em_start = 0;
4690         u64 em_len = 0;
4691         u64 em_end = 0;
4692
4693         if (len == 0)
4694                 return -EINVAL;
4695
4696         path = btrfs_alloc_path();
4697         if (!path)
4698                 return -ENOMEM;
4699         path->leave_spinning = 1;
4700
4701         roots = ulist_alloc(GFP_KERNEL);
4702         tmp_ulist = ulist_alloc(GFP_KERNEL);
4703         if (!roots || !tmp_ulist) {
4704                 ret = -ENOMEM;
4705                 goto out_free_ulist;
4706         }
4707
4708         /*
4709          * We can't initialize that to 'start' as this could miss extents due
4710          * to extent item merging
4711          */
4712         off = 0;
4713         start = round_down(start, btrfs_inode_sectorsize(inode));
4714         len = round_up(max, btrfs_inode_sectorsize(inode)) - start;
4715
4716         /*
4717          * lookup the last file extent.  We're not using i_size here
4718          * because there might be preallocation past i_size
4719          */
4720         ret = btrfs_lookup_file_extent(NULL, root, path, btrfs_ino(inode), -1,
4721                                        0);
4722         if (ret < 0) {
4723                 goto out_free_ulist;
4724         } else {
4725                 WARN_ON(!ret);
4726                 if (ret == 1)
4727                         ret = 0;
4728         }
4729
4730         path->slots[0]--;
4731         btrfs_item_key_to_cpu(path->nodes[0], &found_key, path->slots[0]);
4732         found_type = found_key.type;
4733
4734         /* No extents, but there might be delalloc bits */
4735         if (found_key.objectid != btrfs_ino(inode) ||
4736             found_type != BTRFS_EXTENT_DATA_KEY) {
4737                 /* have to trust i_size as the end */
4738                 last = (u64)-1;
4739                 last_for_get_extent = isize;
4740         } else {
4741                 /*
4742                  * remember the start of the last extent.  There are a
4743                  * bunch of different factors that go into the length of the
4744                  * extent, so its much less complex to remember where it started
4745                  */
4746                 last = found_key.offset;
4747                 last_for_get_extent = last + 1;
4748         }
4749         btrfs_release_path(path);
4750
4751         /*
4752          * we might have some extents allocated but more delalloc past those
4753          * extents.  so, we trust isize unless the start of the last extent is
4754          * beyond isize
4755          */
4756         if (last < isize) {
4757                 last = (u64)-1;
4758                 last_for_get_extent = isize;
4759         }
4760
4761         lock_extent_bits(&inode->io_tree, start, start + len - 1,
4762                          &cached_state);
4763
4764         em = get_extent_skip_holes(inode, start, last_for_get_extent);
4765         if (!em)
4766                 goto out;
4767         if (IS_ERR(em)) {
4768                 ret = PTR_ERR(em);
4769                 goto out;
4770         }
4771
4772         while (!end) {
4773                 u64 offset_in_extent = 0;
4774
4775                 /* break if the extent we found is outside the range */
4776                 if (em->start >= max || extent_map_end(em) < off)
4777                         break;
4778
4779                 /*
4780                  * get_extent may return an extent that starts before our
4781                  * requested range.  We have to make sure the ranges
4782                  * we return to fiemap always move forward and don't
4783                  * overlap, so adjust the offsets here
4784                  */
4785                 em_start = max(em->start, off);
4786
4787                 /*
4788                  * record the offset from the start of the extent
4789                  * for adjusting the disk offset below.  Only do this if the
4790                  * extent isn't compressed since our in ram offset may be past
4791                  * what we have actually allocated on disk.
4792                  */
4793                 if (!test_bit(EXTENT_FLAG_COMPRESSED, &em->flags))
4794                         offset_in_extent = em_start - em->start;
4795                 em_end = extent_map_end(em);
4796                 em_len = em_end - em_start;
4797                 flags = 0;
4798                 if (em->block_start < EXTENT_MAP_LAST_BYTE)
4799                         disko = em->block_start + offset_in_extent;
4800                 else
4801                         disko = 0;
4802
4803                 /*
4804                  * bump off for our next call to get_extent
4805                  */
4806                 off = extent_map_end(em);
4807                 if (off >= max)
4808                         end = 1;
4809
4810                 if (em->block_start == EXTENT_MAP_LAST_BYTE) {
4811                         end = 1;
4812                         flags |= FIEMAP_EXTENT_LAST;
4813                 } else if (em->block_start == EXTENT_MAP_INLINE) {
4814                         flags |= (FIEMAP_EXTENT_DATA_INLINE |
4815                                   FIEMAP_EXTENT_NOT_ALIGNED);
4816                 } else if (em->block_start == EXTENT_MAP_DELALLOC) {
4817                         flags |= (FIEMAP_EXTENT_DELALLOC |
4818                                   FIEMAP_EXTENT_UNKNOWN);
4819                 } else if (fieinfo->fi_extents_max) {
4820                         u64 bytenr = em->block_start -
4821                                 (em->start - em->orig_start);
4822
4823                         /*
4824                          * As btrfs supports shared space, this information
4825                          * can be exported to userspace tools via
4826                          * flag FIEMAP_EXTENT_SHARED.  If fi_extents_max == 0
4827                          * then we're just getting a count and we can skip the
4828                          * lookup stuff.
4829                          */
4830                         ret = btrfs_check_shared(root, btrfs_ino(inode),
4831                                                  bytenr, roots, tmp_ulist);
4832                         if (ret < 0)
4833                                 goto out_free;
4834                         if (ret)
4835                                 flags |= FIEMAP_EXTENT_SHARED;
4836                         ret = 0;
4837                 }
4838                 if (test_bit(EXTENT_FLAG_COMPRESSED, &em->flags))
4839                         flags |= FIEMAP_EXTENT_ENCODED;
4840                 if (test_bit(EXTENT_FLAG_PREALLOC, &em->flags))
4841                         flags |= FIEMAP_EXTENT_UNWRITTEN;
4842
4843                 free_extent_map(em);
4844                 em = NULL;
4845                 if ((em_start >= last) || em_len == (u64)-1 ||
4846                    (last == (u64)-1 && isize <= em_end)) {
4847                         flags |= FIEMAP_EXTENT_LAST;
4848                         end = 1;
4849                 }
4850
4851                 /* now scan forward to see if this is really the last extent. */
4852                 em = get_extent_skip_holes(inode, off, last_for_get_extent);
4853                 if (IS_ERR(em)) {
4854                         ret = PTR_ERR(em);
4855                         goto out;
4856                 }
4857                 if (!em) {
4858                         flags |= FIEMAP_EXTENT_LAST;
4859                         end = 1;
4860                 }
4861                 ret = emit_fiemap_extent(fieinfo, &cache, em_start, disko,
4862                                            em_len, flags);
4863                 if (ret) {
4864                         if (ret == 1)
4865                                 ret = 0;
4866                         goto out_free;
4867                 }
4868         }
4869 out_free:
4870         if (!ret)
4871                 ret = emit_last_fiemap_cache(fieinfo, &cache);
4872         free_extent_map(em);
4873 out:
4874         unlock_extent_cached(&inode->io_tree, start, start + len - 1,
4875                              &cached_state);
4876
4877 out_free_ulist:
4878         btrfs_free_path(path);
4879         ulist_free(roots);
4880         ulist_free(tmp_ulist);
4881         return ret;
4882 }
4883
4884 static void __free_extent_buffer(struct extent_buffer *eb)
4885 {
4886         kmem_cache_free(extent_buffer_cache, eb);
4887 }
4888
4889 int extent_buffer_under_io(const struct extent_buffer *eb)
4890 {
4891         return (atomic_read(&eb->io_pages) ||
4892                 test_bit(EXTENT_BUFFER_WRITEBACK, &eb->bflags) ||
4893                 test_bit(EXTENT_BUFFER_DIRTY, &eb->bflags));
4894 }
4895
4896 /*
4897  * Release all pages attached to the extent buffer.
4898  */
4899 static void btrfs_release_extent_buffer_pages(struct extent_buffer *eb)
4900 {
4901         int i;
4902         int num_pages;
4903         int mapped = !test_bit(EXTENT_BUFFER_UNMAPPED, &eb->bflags);
4904
4905         BUG_ON(extent_buffer_under_io(eb));
4906
4907         num_pages = num_extent_pages(eb);
4908         for (i = 0; i < num_pages; i++) {
4909                 struct page *page = eb->pages[i];
4910
4911                 if (!page)
4912                         continue;
4913                 if (mapped)
4914                         spin_lock(&page->mapping->private_lock);
4915                 /*
4916                  * We do this since we'll remove the pages after we've
4917                  * removed the eb from the radix tree, so we could race
4918                  * and have this page now attached to the new eb.  So
4919                  * only clear page_private if it's still connected to
4920                  * this eb.
4921                  */
4922                 if (PagePrivate(page) &&
4923                     page->private == (unsigned long)eb) {
4924                         BUG_ON(test_bit(EXTENT_BUFFER_DIRTY, &eb->bflags));
4925                         BUG_ON(PageDirty(page));
4926                         BUG_ON(PageWriteback(page));
4927                         /*
4928                          * We need to make sure we haven't be attached
4929                          * to a new eb.
4930                          */
4931                         detach_page_private(page);
4932                 }
4933
4934                 if (mapped)
4935                         spin_unlock(&page->mapping->private_lock);
4936
4937                 /* One for when we allocated the page */
4938                 put_page(page);
4939         }
4940 }
4941
4942 /*
4943  * Helper for releasing the extent buffer.
4944  */
4945 static inline void btrfs_release_extent_buffer(struct extent_buffer *eb)
4946 {
4947         btrfs_release_extent_buffer_pages(eb);
4948         btrfs_leak_debug_del(&eb->fs_info->eb_leak_lock, &eb->leak_list);
4949         __free_extent_buffer(eb);
4950 }
4951
4952 static struct extent_buffer *
4953 __alloc_extent_buffer(struct btrfs_fs_info *fs_info, u64 start,
4954                       unsigned long len)
4955 {
4956         struct extent_buffer *eb = NULL;
4957
4958         eb = kmem_cache_zalloc(extent_buffer_cache, GFP_NOFS|__GFP_NOFAIL);
4959         eb->start = start;
4960         eb->len = len;
4961         eb->fs_info = fs_info;
4962         eb->bflags = 0;
4963         rwlock_init(&eb->lock);
4964         atomic_set(&eb->blocking_readers, 0);
4965         eb->blocking_writers = 0;
4966         eb->lock_recursed = false;
4967         init_waitqueue_head(&eb->write_lock_wq);
4968         init_waitqueue_head(&eb->read_lock_wq);
4969
4970         btrfs_leak_debug_add(&fs_info->eb_leak_lock, &eb->leak_list,
4971                              &fs_info->allocated_ebs);
4972
4973         spin_lock_init(&eb->refs_lock);
4974         atomic_set(&eb->refs, 1);
4975         atomic_set(&eb->io_pages, 0);
4976
4977         /*
4978          * Sanity checks, currently the maximum is 64k covered by 16x 4k pages
4979          */
4980         BUILD_BUG_ON(BTRFS_MAX_METADATA_BLOCKSIZE
4981                 > MAX_INLINE_EXTENT_BUFFER_SIZE);
4982         BUG_ON(len > MAX_INLINE_EXTENT_BUFFER_SIZE);
4983
4984 #ifdef CONFIG_BTRFS_DEBUG
4985         eb->spinning_writers = 0;
4986         atomic_set(&eb->spinning_readers, 0);
4987         atomic_set(&eb->read_locks, 0);
4988         eb->write_locks = 0;
4989 #endif
4990
4991         return eb;
4992 }
4993
4994 struct extent_buffer *btrfs_clone_extent_buffer(const struct extent_buffer *src)
4995 {
4996         int i;
4997         struct page *p;
4998         struct extent_buffer *new;
4999         int num_pages = num_extent_pages(src);
5000
5001         new = __alloc_extent_buffer(src->fs_info, src->start, src->len);
5002         if (new == NULL)
5003                 return NULL;
5004
5005         for (i = 0; i < num_pages; i++) {
5006                 p = alloc_page(GFP_NOFS);
5007                 if (!p) {
5008                         btrfs_release_extent_buffer(new);
5009                         return NULL;
5010                 }
5011                 attach_extent_buffer_page(new, p);
5012                 WARN_ON(PageDirty(p));
5013                 SetPageUptodate(p);
5014                 new->pages[i] = p;
5015                 copy_page(page_address(p), page_address(src->pages[i]));
5016         }
5017
5018         set_bit(EXTENT_BUFFER_UPTODATE, &new->bflags);
5019         set_bit(EXTENT_BUFFER_UNMAPPED, &new->bflags);
5020
5021         return new;
5022 }
5023
5024 struct extent_buffer *__alloc_dummy_extent_buffer(struct btrfs_fs_info *fs_info,
5025                                                   u64 start, unsigned long len)
5026 {
5027         struct extent_buffer *eb;
5028         int num_pages;
5029         int i;
5030
5031         eb = __alloc_extent_buffer(fs_info, start, len);
5032         if (!eb)
5033                 return NULL;
5034
5035         num_pages = num_extent_pages(eb);
5036         for (i = 0; i < num_pages; i++) {
5037                 eb->pages[i] = alloc_page(GFP_NOFS);
5038                 if (!eb->pages[i])
5039                         goto err;
5040         }
5041         set_extent_buffer_uptodate(eb);
5042         btrfs_set_header_nritems(eb, 0);
5043         set_bit(EXTENT_BUFFER_UNMAPPED, &eb->bflags);
5044
5045         return eb;
5046 err:
5047         for (; i > 0; i--)
5048                 __free_page(eb->pages[i - 1]);
5049         __free_extent_buffer(eb);
5050         return NULL;
5051 }
5052
5053 struct extent_buffer *alloc_dummy_extent_buffer(struct btrfs_fs_info *fs_info,
5054                                                 u64 start)
5055 {
5056         return __alloc_dummy_extent_buffer(fs_info, start, fs_info->nodesize);
5057 }
5058
5059 static void check_buffer_tree_ref(struct extent_buffer *eb)
5060 {
5061         int refs;
5062         /*
5063          * The TREE_REF bit is first set when the extent_buffer is added
5064          * to the radix tree. It is also reset, if unset, when a new reference
5065          * is created by find_extent_buffer.
5066          *
5067          * It is only cleared in two cases: freeing the last non-tree
5068          * reference to the extent_buffer when its STALE bit is set or
5069          * calling releasepage when the tree reference is the only reference.
5070          *
5071          * In both cases, care is taken to ensure that the extent_buffer's
5072          * pages are not under io. However, releasepage can be concurrently
5073          * called with creating new references, which is prone to race
5074          * conditions between the calls to check_buffer_tree_ref in those
5075          * codepaths and clearing TREE_REF in try_release_extent_buffer.
5076          *
5077          * The actual lifetime of the extent_buffer in the radix tree is
5078          * adequately protected by the refcount, but the TREE_REF bit and
5079          * its corresponding reference are not. To protect against this
5080          * class of races, we call check_buffer_tree_ref from the codepaths
5081          * which trigger io after they set eb->io_pages. Note that once io is
5082          * initiated, TREE_REF can no longer be cleared, so that is the
5083          * moment at which any such race is best fixed.
5084          */
5085         refs = atomic_read(&eb->refs);
5086         if (refs >= 2 && test_bit(EXTENT_BUFFER_TREE_REF, &eb->bflags))
5087                 return;
5088
5089         spin_lock(&eb->refs_lock);
5090         if (!test_and_set_bit(EXTENT_BUFFER_TREE_REF, &eb->bflags))
5091                 atomic_inc(&eb->refs);
5092         spin_unlock(&eb->refs_lock);
5093 }
5094
5095 static void mark_extent_buffer_accessed(struct extent_buffer *eb,
5096                 struct page *accessed)
5097 {
5098         int num_pages, i;
5099
5100         check_buffer_tree_ref(eb);
5101
5102         num_pages = num_extent_pages(eb);
5103         for (i = 0; i < num_pages; i++) {
5104                 struct page *p = eb->pages[i];
5105
5106                 if (p != accessed)
5107                         mark_page_accessed(p);
5108         }
5109 }
5110
5111 struct extent_buffer *find_extent_buffer(struct btrfs_fs_info *fs_info,
5112                                          u64 start)
5113 {
5114         struct extent_buffer *eb;
5115
5116         rcu_read_lock();
5117         eb = radix_tree_lookup(&fs_info->buffer_radix,
5118                                start >> PAGE_SHIFT);
5119         if (eb && atomic_inc_not_zero(&eb->refs)) {
5120                 rcu_read_unlock();
5121                 /*
5122                  * Lock our eb's refs_lock to avoid races with
5123                  * free_extent_buffer. When we get our eb it might be flagged
5124                  * with EXTENT_BUFFER_STALE and another task running
5125                  * free_extent_buffer might have seen that flag set,
5126                  * eb->refs == 2, that the buffer isn't under IO (dirty and
5127                  * writeback flags not set) and it's still in the tree (flag
5128                  * EXTENT_BUFFER_TREE_REF set), therefore being in the process
5129                  * of decrementing the extent buffer's reference count twice.
5130                  * So here we could race and increment the eb's reference count,
5131                  * clear its stale flag, mark it as dirty and drop our reference
5132                  * before the other task finishes executing free_extent_buffer,
5133                  * which would later result in an attempt to free an extent
5134                  * buffer that is dirty.
5135                  */
5136                 if (test_bit(EXTENT_BUFFER_STALE, &eb->bflags)) {
5137                         spin_lock(&eb->refs_lock);
5138                         spin_unlock(&eb->refs_lock);
5139                 }
5140                 mark_extent_buffer_accessed(eb, NULL);
5141                 return eb;
5142         }
5143         rcu_read_unlock();
5144
5145         return NULL;
5146 }
5147
5148 #ifdef CONFIG_BTRFS_FS_RUN_SANITY_TESTS
5149 struct extent_buffer *alloc_test_extent_buffer(struct btrfs_fs_info *fs_info,
5150                                         u64 start)
5151 {
5152         struct extent_buffer *eb, *exists = NULL;
5153         int ret;
5154
5155         eb = find_extent_buffer(fs_info, start);
5156         if (eb)
5157                 return eb;
5158         eb = alloc_dummy_extent_buffer(fs_info, start);
5159         if (!eb)
5160                 return ERR_PTR(-ENOMEM);
5161         eb->fs_info = fs_info;
5162 again:
5163         ret = radix_tree_preload(GFP_NOFS);
5164         if (ret) {
5165                 exists = ERR_PTR(ret);
5166                 goto free_eb;
5167         }
5168         spin_lock(&fs_info->buffer_lock);
5169         ret = radix_tree_insert(&fs_info->buffer_radix,
5170                                 start >> PAGE_SHIFT, eb);
5171         spin_unlock(&fs_info->buffer_lock);
5172         radix_tree_preload_end();
5173         if (ret == -EEXIST) {
5174                 exists = find_extent_buffer(fs_info, start);
5175                 if (exists)
5176                         goto free_eb;
5177                 else
5178                         goto again;
5179         }
5180         check_buffer_tree_ref(eb);
5181         set_bit(EXTENT_BUFFER_IN_TREE, &eb->bflags);
5182
5183         return eb;
5184 free_eb:
5185         btrfs_release_extent_buffer(eb);
5186         return exists;
5187 }
5188 #endif
5189
5190 struct extent_buffer *alloc_extent_buffer(struct btrfs_fs_info *fs_info,
5191                                           u64 start)
5192 {
5193         unsigned long len = fs_info->nodesize;
5194         int num_pages;
5195         int i;
5196         unsigned long index = start >> PAGE_SHIFT;
5197         struct extent_buffer *eb;
5198         struct extent_buffer *exists = NULL;
5199         struct page *p;
5200         struct address_space *mapping = fs_info->btree_inode->i_mapping;
5201         int uptodate = 1;
5202         int ret;
5203
5204         if (!IS_ALIGNED(start, fs_info->sectorsize)) {
5205                 btrfs_err(fs_info, "bad tree block start %llu", start);
5206                 return ERR_PTR(-EINVAL);
5207         }
5208
5209         eb = find_extent_buffer(fs_info, start);
5210         if (eb)
5211                 return eb;
5212
5213         eb = __alloc_extent_buffer(fs_info, start, len);
5214         if (!eb)
5215                 return ERR_PTR(-ENOMEM);
5216
5217         num_pages = num_extent_pages(eb);
5218         for (i = 0; i < num_pages; i++, index++) {
5219                 p = find_or_create_page(mapping, index, GFP_NOFS|__GFP_NOFAIL);
5220                 if (!p) {
5221                         exists = ERR_PTR(-ENOMEM);
5222                         goto free_eb;
5223                 }
5224
5225                 spin_lock(&mapping->private_lock);
5226                 if (PagePrivate(p)) {
5227                         /*
5228                          * We could have already allocated an eb for this page
5229                          * and attached one so lets see if we can get a ref on
5230                          * the existing eb, and if we can we know it's good and
5231                          * we can just return that one, else we know we can just
5232                          * overwrite page->private.
5233                          */
5234                         exists = (struct extent_buffer *)p->private;
5235                         if (atomic_inc_not_zero(&exists->refs)) {
5236                                 spin_unlock(&mapping->private_lock);
5237                                 unlock_page(p);
5238                                 put_page(p);
5239                                 mark_extent_buffer_accessed(exists, p);
5240                                 goto free_eb;
5241                         }
5242                         exists = NULL;
5243
5244                         /*
5245                          * Do this so attach doesn't complain and we need to
5246                          * drop the ref the old guy had.
5247                          */
5248                         ClearPagePrivate(p);
5249                         WARN_ON(PageDirty(p));
5250                         put_page(p);
5251                 }
5252                 attach_extent_buffer_page(eb, p);
5253                 spin_unlock(&mapping->private_lock);
5254                 WARN_ON(PageDirty(p));
5255                 eb->pages[i] = p;
5256                 if (!PageUptodate(p))
5257                         uptodate = 0;
5258
5259                 /*
5260                  * We can't unlock the pages just yet since the extent buffer
5261                  * hasn't been properly inserted in the radix tree, this
5262                  * opens a race with btree_releasepage which can free a page
5263                  * while we are still filling in all pages for the buffer and
5264                  * we could crash.
5265                  */
5266         }
5267         if (uptodate)
5268                 set_bit(EXTENT_BUFFER_UPTODATE, &eb->bflags);
5269 again:
5270         ret = radix_tree_preload(GFP_NOFS);
5271         if (ret) {
5272                 exists = ERR_PTR(ret);
5273                 goto free_eb;
5274         }
5275
5276         spin_lock(&fs_info->buffer_lock);
5277         ret = radix_tree_insert(&fs_info->buffer_radix,
5278                                 start >> PAGE_SHIFT, eb);
5279         spin_unlock(&fs_info->buffer_lock);
5280         radix_tree_preload_end();
5281         if (ret == -EEXIST) {
5282                 exists = find_extent_buffer(fs_info, start);
5283                 if (exists)
5284                         goto free_eb;
5285                 else
5286                         goto again;
5287         }
5288         /* add one reference for the tree */
5289         check_buffer_tree_ref(eb);
5290         set_bit(EXTENT_BUFFER_IN_TREE, &eb->bflags);
5291
5292         /*
5293          * Now it's safe to unlock the pages because any calls to
5294          * btree_releasepage will correctly detect that a page belongs to a
5295          * live buffer and won't free them prematurely.
5296          */
5297         for (i = 0; i < num_pages; i++)
5298                 unlock_page(eb->pages[i]);
5299         return eb;
5300
5301 free_eb:
5302         WARN_ON(!atomic_dec_and_test(&eb->refs));
5303         for (i = 0; i < num_pages; i++) {
5304                 if (eb->pages[i])
5305                         unlock_page(eb->pages[i]);
5306         }
5307
5308         btrfs_release_extent_buffer(eb);
5309         return exists;
5310 }
5311
5312 static inline void btrfs_release_extent_buffer_rcu(struct rcu_head *head)
5313 {
5314         struct extent_buffer *eb =
5315                         container_of(head, struct extent_buffer, rcu_head);
5316
5317         __free_extent_buffer(eb);
5318 }
5319
5320 static int release_extent_buffer(struct extent_buffer *eb)
5321         __releases(&eb->refs_lock)
5322 {
5323         lockdep_assert_held(&eb->refs_lock);
5324
5325         WARN_ON(atomic_read(&eb->refs) == 0);
5326         if (atomic_dec_and_test(&eb->refs)) {
5327                 if (test_and_clear_bit(EXTENT_BUFFER_IN_TREE, &eb->bflags)) {
5328                         struct btrfs_fs_info *fs_info = eb->fs_info;
5329
5330                         spin_unlock(&eb->refs_lock);
5331
5332                         spin_lock(&fs_info->buffer_lock);
5333                         radix_tree_delete(&fs_info->buffer_radix,
5334                                           eb->start >> PAGE_SHIFT);
5335                         spin_unlock(&fs_info->buffer_lock);
5336                 } else {
5337                         spin_unlock(&eb->refs_lock);
5338                 }
5339
5340                 btrfs_leak_debug_del(&eb->fs_info->eb_leak_lock, &eb->leak_list);
5341                 /* Should be safe to release our pages at this point */
5342                 btrfs_release_extent_buffer_pages(eb);
5343 #ifdef CONFIG_BTRFS_FS_RUN_SANITY_TESTS
5344                 if (unlikely(test_bit(EXTENT_BUFFER_UNMAPPED, &eb->bflags))) {
5345                         __free_extent_buffer(eb);
5346                         return 1;
5347                 }
5348 #endif
5349                 call_rcu(&eb->rcu_head, btrfs_release_extent_buffer_rcu);
5350                 return 1;
5351         }
5352         spin_unlock(&eb->refs_lock);
5353
5354         return 0;
5355 }
5356
5357 void free_extent_buffer(struct extent_buffer *eb)
5358 {
5359         int refs;
5360         int old;
5361         if (!eb)
5362                 return;
5363
5364         while (1) {
5365                 refs = atomic_read(&eb->refs);
5366                 if ((!test_bit(EXTENT_BUFFER_UNMAPPED, &eb->bflags) && refs <= 3)
5367                     || (test_bit(EXTENT_BUFFER_UNMAPPED, &eb->bflags) &&
5368                         refs == 1))
5369                         break;
5370                 old = atomic_cmpxchg(&eb->refs, refs, refs - 1);
5371                 if (old == refs)
5372                         return;
5373         }
5374
5375         spin_lock(&eb->refs_lock);
5376         if (atomic_read(&eb->refs) == 2 &&
5377             test_bit(EXTENT_BUFFER_STALE, &eb->bflags) &&
5378             !extent_buffer_under_io(eb) &&
5379             test_and_clear_bit(EXTENT_BUFFER_TREE_REF, &eb->bflags))
5380                 atomic_dec(&eb->refs);
5381
5382         /*
5383          * I know this is terrible, but it's temporary until we stop tracking
5384          * the uptodate bits and such for the extent buffers.
5385          */
5386         release_extent_buffer(eb);
5387 }
5388
5389 void free_extent_buffer_stale(struct extent_buffer *eb)
5390 {
5391         if (!eb)
5392                 return;
5393
5394         spin_lock(&eb->refs_lock);
5395         set_bit(EXTENT_BUFFER_STALE, &eb->bflags);
5396
5397         if (atomic_read(&eb->refs) == 2 && !extent_buffer_under_io(eb) &&
5398             test_and_clear_bit(EXTENT_BUFFER_TREE_REF, &eb->bflags))
5399                 atomic_dec(&eb->refs);
5400         release_extent_buffer(eb);
5401 }
5402
5403 void clear_extent_buffer_dirty(const struct extent_buffer *eb)
5404 {
5405         int i;
5406         int num_pages;
5407         struct page *page;
5408
5409         num_pages = num_extent_pages(eb);
5410
5411         for (i = 0; i < num_pages; i++) {
5412                 page = eb->pages[i];
5413                 if (!PageDirty(page))
5414                         continue;
5415
5416                 lock_page(page);
5417                 WARN_ON(!PagePrivate(page));
5418
5419                 clear_page_dirty_for_io(page);
5420                 xa_lock_irq(&page->mapping->i_pages);
5421                 if (!PageDirty(page))
5422                         __xa_clear_mark(&page->mapping->i_pages,
5423                                         page_index(page), PAGECACHE_TAG_DIRTY);
5424                 xa_unlock_irq(&page->mapping->i_pages);
5425                 ClearPageError(page);
5426                 unlock_page(page);
5427         }
5428         WARN_ON(atomic_read(&eb->refs) == 0);
5429 }
5430
5431 bool set_extent_buffer_dirty(struct extent_buffer *eb)
5432 {
5433         int i;
5434         int num_pages;
5435         bool was_dirty;
5436
5437         check_buffer_tree_ref(eb);
5438
5439         was_dirty = test_and_set_bit(EXTENT_BUFFER_DIRTY, &eb->bflags);
5440
5441         num_pages = num_extent_pages(eb);
5442         WARN_ON(atomic_read(&eb->refs) == 0);
5443         WARN_ON(!test_bit(EXTENT_BUFFER_TREE_REF, &eb->bflags));
5444
5445         if (!was_dirty)
5446                 for (i = 0; i < num_pages; i++)
5447                         set_page_dirty(eb->pages[i]);
5448
5449 #ifdef CONFIG_BTRFS_DEBUG
5450         for (i = 0; i < num_pages; i++)
5451                 ASSERT(PageDirty(eb->pages[i]));
5452 #endif
5453
5454         return was_dirty;
5455 }
5456
5457 void clear_extent_buffer_uptodate(struct extent_buffer *eb)
5458 {
5459         int i;
5460         struct page *page;
5461         int num_pages;
5462
5463         clear_bit(EXTENT_BUFFER_UPTODATE, &eb->bflags);
5464         num_pages = num_extent_pages(eb);
5465         for (i = 0; i < num_pages; i++) {
5466                 page = eb->pages[i];
5467                 if (page)
5468                         ClearPageUptodate(page);
5469         }
5470 }
5471
5472 void set_extent_buffer_uptodate(struct extent_buffer *eb)
5473 {
5474         int i;
5475         struct page *page;
5476         int num_pages;
5477
5478         set_bit(EXTENT_BUFFER_UPTODATE, &eb->bflags);
5479         num_pages = num_extent_pages(eb);
5480         for (i = 0; i < num_pages; i++) {
5481                 page = eb->pages[i];
5482                 SetPageUptodate(page);
5483         }
5484 }
5485
5486 int read_extent_buffer_pages(struct extent_buffer *eb, int wait, int mirror_num)
5487 {
5488         int i;
5489         struct page *page;
5490         int err;
5491         int ret = 0;
5492         int locked_pages = 0;
5493         int all_uptodate = 1;
5494         int num_pages;
5495         unsigned long num_reads = 0;
5496         struct bio *bio = NULL;
5497         unsigned long bio_flags = 0;
5498
5499         if (test_bit(EXTENT_BUFFER_UPTODATE, &eb->bflags))
5500                 return 0;
5501
5502         num_pages = num_extent_pages(eb);
5503         for (i = 0; i < num_pages; i++) {
5504                 page = eb->pages[i];
5505                 if (wait == WAIT_NONE) {
5506                         if (!trylock_page(page))
5507                                 goto unlock_exit;
5508                 } else {
5509                         lock_page(page);
5510                 }
5511                 locked_pages++;
5512         }
5513         /*
5514          * We need to firstly lock all pages to make sure that
5515          * the uptodate bit of our pages won't be affected by
5516          * clear_extent_buffer_uptodate().
5517          */
5518         for (i = 0; i < num_pages; i++) {
5519                 page = eb->pages[i];
5520                 if (!PageUptodate(page)) {
5521                         num_reads++;
5522                         all_uptodate = 0;
5523                 }
5524         }
5525
5526         if (all_uptodate) {
5527                 set_bit(EXTENT_BUFFER_UPTODATE, &eb->bflags);
5528                 goto unlock_exit;
5529         }
5530
5531         clear_bit(EXTENT_BUFFER_READ_ERR, &eb->bflags);
5532         eb->read_mirror = 0;
5533         atomic_set(&eb->io_pages, num_reads);
5534         /*
5535          * It is possible for releasepage to clear the TREE_REF bit before we
5536          * set io_pages. See check_buffer_tree_ref for a more detailed comment.
5537          */
5538         check_buffer_tree_ref(eb);
5539         for (i = 0; i < num_pages; i++) {
5540                 page = eb->pages[i];
5541
5542                 if (!PageUptodate(page)) {
5543                         if (ret) {
5544                                 atomic_dec(&eb->io_pages);
5545                                 unlock_page(page);
5546                                 continue;
5547                         }
5548
5549                         ClearPageError(page);
5550                         err = submit_extent_page(REQ_OP_READ | REQ_META, NULL,
5551                                          page, page_offset(page), PAGE_SIZE, 0,
5552                                          &bio, end_bio_extent_readpage,
5553                                          mirror_num, 0, 0, false);
5554                         if (err) {
5555                                 /*
5556                                  * We failed to submit the bio so it's the
5557                                  * caller's responsibility to perform cleanup
5558                                  * i.e unlock page/set error bit.
5559                                  */
5560                                 ret = err;
5561                                 SetPageError(page);
5562                                 unlock_page(page);
5563                                 atomic_dec(&eb->io_pages);
5564                         }
5565                 } else {
5566                         unlock_page(page);
5567                 }
5568         }
5569
5570         if (bio) {
5571                 err = submit_one_bio(bio, mirror_num, bio_flags);
5572                 if (err)
5573                         return err;
5574         }
5575
5576         if (ret || wait != WAIT_COMPLETE)
5577                 return ret;
5578
5579         for (i = 0; i < num_pages; i++) {
5580                 page = eb->pages[i];
5581                 wait_on_page_locked(page);
5582                 if (!PageUptodate(page))
5583                         ret = -EIO;
5584         }
5585
5586         return ret;
5587
5588 unlock_exit:
5589         while (locked_pages > 0) {
5590                 locked_pages--;
5591                 page = eb->pages[locked_pages];
5592                 unlock_page(page);
5593         }
5594         return ret;
5595 }
5596
5597 static bool report_eb_range(const struct extent_buffer *eb, unsigned long start,
5598                             unsigned long len)
5599 {
5600         btrfs_warn(eb->fs_info,
5601                 "access to eb bytenr %llu len %lu out of range start %lu len %lu",
5602                 eb->start, eb->len, start, len);
5603         WARN_ON(IS_ENABLED(CONFIG_BTRFS_DEBUG));
5604
5605         return true;
5606 }
5607
5608 /*
5609  * Check if the [start, start + len) range is valid before reading/writing
5610  * the eb.
5611  * NOTE: @start and @len are offset inside the eb, not logical address.
5612  *
5613  * Caller should not touch the dst/src memory if this function returns error.
5614  */
5615 static inline int check_eb_range(const struct extent_buffer *eb,
5616                                  unsigned long start, unsigned long len)
5617 {
5618         unsigned long offset;
5619
5620         /* start, start + len should not go beyond eb->len nor overflow */
5621         if (unlikely(check_add_overflow(start, len, &offset) || offset > eb->len))
5622                 return report_eb_range(eb, start, len);
5623
5624         return false;
5625 }
5626
5627 void read_extent_buffer(const struct extent_buffer *eb, void *dstv,
5628                         unsigned long start, unsigned long len)
5629 {
5630         size_t cur;
5631         size_t offset;
5632         struct page *page;
5633         char *kaddr;
5634         char *dst = (char *)dstv;
5635         unsigned long i = start >> PAGE_SHIFT;
5636
5637         if (check_eb_range(eb, start, len)) {
5638                 /*
5639                  * Invalid range hit, reset the memory, so callers won't get
5640                  * some random garbage for their uninitialzed memory.
5641                  */
5642                 memset(dstv, 0, len);
5643                 return;
5644         }
5645
5646         offset = offset_in_page(start);
5647
5648         while (len > 0) {
5649                 page = eb->pages[i];
5650
5651                 cur = min(len, (PAGE_SIZE - offset));
5652                 kaddr = page_address(page);
5653                 memcpy(dst, kaddr + offset, cur);
5654
5655                 dst += cur;
5656                 len -= cur;
5657                 offset = 0;
5658                 i++;
5659         }
5660 }
5661
5662 int read_extent_buffer_to_user_nofault(const struct extent_buffer *eb,
5663                                        void __user *dstv,
5664                                        unsigned long start, unsigned long len)
5665 {
5666         size_t cur;
5667         size_t offset;
5668         struct page *page;
5669         char *kaddr;
5670         char __user *dst = (char __user *)dstv;
5671         unsigned long i = start >> PAGE_SHIFT;
5672         int ret = 0;
5673
5674         WARN_ON(start > eb->len);
5675         WARN_ON(start + len > eb->start + eb->len);
5676
5677         offset = offset_in_page(start);
5678
5679         while (len > 0) {
5680                 page = eb->pages[i];
5681
5682                 cur = min(len, (PAGE_SIZE - offset));
5683                 kaddr = page_address(page);
5684                 if (copy_to_user_nofault(dst, kaddr + offset, cur)) {
5685                         ret = -EFAULT;
5686                         break;
5687                 }
5688
5689                 dst += cur;
5690                 len -= cur;
5691                 offset = 0;
5692                 i++;
5693         }
5694
5695         return ret;
5696 }
5697
5698 int memcmp_extent_buffer(const struct extent_buffer *eb, const void *ptrv,
5699                          unsigned long start, unsigned long len)
5700 {
5701         size_t cur;
5702         size_t offset;
5703         struct page *page;
5704         char *kaddr;
5705         char *ptr = (char *)ptrv;
5706         unsigned long i = start >> PAGE_SHIFT;
5707         int ret = 0;
5708
5709         if (check_eb_range(eb, start, len))
5710                 return -EINVAL;
5711
5712         offset = offset_in_page(start);
5713
5714         while (len > 0) {
5715                 page = eb->pages[i];
5716
5717                 cur = min(len, (PAGE_SIZE - offset));
5718
5719                 kaddr = page_address(page);
5720                 ret = memcmp(ptr, kaddr + offset, cur);
5721                 if (ret)
5722                         break;
5723
5724                 ptr += cur;
5725                 len -= cur;
5726                 offset = 0;
5727                 i++;
5728         }
5729         return ret;
5730 }
5731
5732 void write_extent_buffer_chunk_tree_uuid(const struct extent_buffer *eb,
5733                 const void *srcv)
5734 {
5735         char *kaddr;
5736
5737         WARN_ON(!PageUptodate(eb->pages[0]));
5738         kaddr = page_address(eb->pages[0]);
5739         memcpy(kaddr + offsetof(struct btrfs_header, chunk_tree_uuid), srcv,
5740                         BTRFS_FSID_SIZE);
5741 }
5742
5743 void write_extent_buffer_fsid(const struct extent_buffer *eb, const void *srcv)
5744 {
5745         char *kaddr;
5746
5747         WARN_ON(!PageUptodate(eb->pages[0]));
5748         kaddr = page_address(eb->pages[0]);
5749         memcpy(kaddr + offsetof(struct btrfs_header, fsid), srcv,
5750                         BTRFS_FSID_SIZE);
5751 }
5752
5753 void write_extent_buffer(const struct extent_buffer *eb, const void *srcv,
5754                          unsigned long start, unsigned long len)
5755 {
5756         size_t cur;
5757         size_t offset;
5758         struct page *page;
5759         char *kaddr;
5760         char *src = (char *)srcv;
5761         unsigned long i = start >> PAGE_SHIFT;
5762
5763         if (check_eb_range(eb, start, len))
5764                 return;
5765
5766         offset = offset_in_page(start);
5767
5768         while (len > 0) {
5769                 page = eb->pages[i];
5770                 WARN_ON(!PageUptodate(page));
5771
5772                 cur = min(len, PAGE_SIZE - offset);
5773                 kaddr = page_address(page);
5774                 memcpy(kaddr + offset, src, cur);
5775
5776                 src += cur;
5777                 len -= cur;
5778                 offset = 0;
5779                 i++;
5780         }
5781 }
5782
5783 void memzero_extent_buffer(const struct extent_buffer *eb, unsigned long start,
5784                 unsigned long len)
5785 {
5786         size_t cur;
5787         size_t offset;
5788         struct page *page;
5789         char *kaddr;
5790         unsigned long i = start >> PAGE_SHIFT;
5791
5792         if (check_eb_range(eb, start, len))
5793                 return;
5794
5795         offset = offset_in_page(start);
5796
5797         while (len > 0) {
5798                 page = eb->pages[i];
5799                 WARN_ON(!PageUptodate(page));
5800
5801                 cur = min(len, PAGE_SIZE - offset);
5802                 kaddr = page_address(page);
5803                 memset(kaddr + offset, 0, cur);
5804
5805                 len -= cur;
5806                 offset = 0;
5807                 i++;
5808         }
5809 }
5810
5811 void copy_extent_buffer_full(const struct extent_buffer *dst,
5812                              const struct extent_buffer *src)
5813 {
5814         int i;
5815         int num_pages;
5816
5817         ASSERT(dst->len == src->len);
5818
5819         num_pages = num_extent_pages(dst);
5820         for (i = 0; i < num_pages; i++)
5821                 copy_page(page_address(dst->pages[i]),
5822                                 page_address(src->pages[i]));
5823 }
5824
5825 void copy_extent_buffer(const struct extent_buffer *dst,
5826                         const struct extent_buffer *src,
5827                         unsigned long dst_offset, unsigned long src_offset,
5828                         unsigned long len)
5829 {
5830         u64 dst_len = dst->len;
5831         size_t cur;
5832         size_t offset;
5833         struct page *page;
5834         char *kaddr;
5835         unsigned long i = dst_offset >> PAGE_SHIFT;
5836
5837         if (check_eb_range(dst, dst_offset, len) ||
5838             check_eb_range(src, src_offset, len))
5839                 return;
5840
5841         WARN_ON(src->len != dst_len);
5842
5843         offset = offset_in_page(dst_offset);
5844
5845         while (len > 0) {
5846                 page = dst->pages[i];
5847                 WARN_ON(!PageUptodate(page));
5848
5849                 cur = min(len, (unsigned long)(PAGE_SIZE - offset));
5850
5851                 kaddr = page_address(page);
5852                 read_extent_buffer(src, kaddr + offset, src_offset, cur);
5853
5854                 src_offset += cur;
5855                 len -= cur;
5856                 offset = 0;
5857                 i++;
5858         }
5859 }
5860
5861 /*
5862  * eb_bitmap_offset() - calculate the page and offset of the byte containing the
5863  * given bit number
5864  * @eb: the extent buffer
5865  * @start: offset of the bitmap item in the extent buffer
5866  * @nr: bit number
5867  * @page_index: return index of the page in the extent buffer that contains the
5868  * given bit number
5869  * @page_offset: return offset into the page given by page_index
5870  *
5871  * This helper hides the ugliness of finding the byte in an extent buffer which
5872  * contains a given bit.
5873  */
5874 static inline void eb_bitmap_offset(const struct extent_buffer *eb,
5875                                     unsigned long start, unsigned long nr,
5876                                     unsigned long *page_index,
5877                                     size_t *page_offset)
5878 {
5879         size_t byte_offset = BIT_BYTE(nr);
5880         size_t offset;
5881
5882         /*
5883          * The byte we want is the offset of the extent buffer + the offset of
5884          * the bitmap item in the extent buffer + the offset of the byte in the
5885          * bitmap item.
5886          */
5887         offset = start + byte_offset;
5888
5889         *page_index = offset >> PAGE_SHIFT;
5890         *page_offset = offset_in_page(offset);
5891 }
5892
5893 /**
5894  * extent_buffer_test_bit - determine whether a bit in a bitmap item is set
5895  * @eb: the extent buffer
5896  * @start: offset of the bitmap item in the extent buffer
5897  * @nr: bit number to test
5898  */
5899 int extent_buffer_test_bit(const struct extent_buffer *eb, unsigned long start,
5900                            unsigned long nr)
5901 {
5902         u8 *kaddr;
5903         struct page *page;
5904         unsigned long i;
5905         size_t offset;
5906
5907         eb_bitmap_offset(eb, start, nr, &i, &offset);
5908         page = eb->pages[i];
5909         WARN_ON(!PageUptodate(page));
5910         kaddr = page_address(page);
5911         return 1U & (kaddr[offset] >> (nr & (BITS_PER_BYTE - 1)));
5912 }
5913
5914 /**
5915  * extent_buffer_bitmap_set - set an area of a bitmap
5916  * @eb: the extent buffer
5917  * @start: offset of the bitmap item in the extent buffer
5918  * @pos: bit number of the first bit
5919  * @len: number of bits to set
5920  */
5921 void extent_buffer_bitmap_set(const struct extent_buffer *eb, unsigned long start,
5922                               unsigned long pos, unsigned long len)
5923 {
5924         u8 *kaddr;
5925         struct page *page;
5926         unsigned long i;
5927         size_t offset;
5928         const unsigned int size = pos + len;
5929         int bits_to_set = BITS_PER_BYTE - (pos % BITS_PER_BYTE);
5930         u8 mask_to_set = BITMAP_FIRST_BYTE_MASK(pos);
5931
5932         eb_bitmap_offset(eb, start, pos, &i, &offset);
5933         page = eb->pages[i];
5934         WARN_ON(!PageUptodate(page));
5935         kaddr = page_address(page);
5936
5937         while (len >= bits_to_set) {
5938                 kaddr[offset] |= mask_to_set;
5939                 len -= bits_to_set;
5940                 bits_to_set = BITS_PER_BYTE;
5941                 mask_to_set = ~0;
5942                 if (++offset >= PAGE_SIZE && len > 0) {
5943                         offset = 0;
5944                         page = eb->pages[++i];
5945                         WARN_ON(!PageUptodate(page));
5946                         kaddr = page_address(page);
5947                 }
5948         }
5949         if (len) {
5950                 mask_to_set &= BITMAP_LAST_BYTE_MASK(size);
5951                 kaddr[offset] |= mask_to_set;
5952         }
5953 }
5954
5955
5956 /**
5957  * extent_buffer_bitmap_clear - clear an area of a bitmap
5958  * @eb: the extent buffer
5959  * @start: offset of the bitmap item in the extent buffer
5960  * @pos: bit number of the first bit
5961  * @len: number of bits to clear
5962  */
5963 void extent_buffer_bitmap_clear(const struct extent_buffer *eb,
5964                                 unsigned long start, unsigned long pos,
5965                                 unsigned long len)
5966 {
5967         u8 *kaddr;
5968         struct page *page;
5969         unsigned long i;
5970         size_t offset;
5971         const unsigned int size = pos + len;
5972         int bits_to_clear = BITS_PER_BYTE - (pos % BITS_PER_BYTE);
5973         u8 mask_to_clear = BITMAP_FIRST_BYTE_MASK(pos);
5974
5975         eb_bitmap_offset(eb, start, pos, &i, &offset);
5976         page = eb->pages[i];
5977         WARN_ON(!PageUptodate(page));
5978         kaddr = page_address(page);
5979
5980         while (len >= bits_to_clear) {
5981                 kaddr[offset] &= ~mask_to_clear;
5982                 len -= bits_to_clear;
5983                 bits_to_clear = BITS_PER_BYTE;
5984                 mask_to_clear = ~0;
5985                 if (++offset >= PAGE_SIZE && len > 0) {
5986                         offset = 0;
5987                         page = eb->pages[++i];
5988                         WARN_ON(!PageUptodate(page));
5989                         kaddr = page_address(page);
5990                 }
5991         }
5992         if (len) {
5993                 mask_to_clear &= BITMAP_LAST_BYTE_MASK(size);
5994                 kaddr[offset] &= ~mask_to_clear;
5995         }
5996 }
5997
5998 static inline bool areas_overlap(unsigned long src, unsigned long dst, unsigned long len)
5999 {
6000         unsigned long distance = (src > dst) ? src - dst : dst - src;
6001         return distance < len;
6002 }
6003
6004 static void copy_pages(struct page *dst_page, struct page *src_page,
6005                        unsigned long dst_off, unsigned long src_off,
6006                        unsigned long len)
6007 {
6008         char *dst_kaddr = page_address(dst_page);
6009         char *src_kaddr;
6010         int must_memmove = 0;
6011
6012         if (dst_page != src_page) {
6013                 src_kaddr = page_address(src_page);
6014         } else {
6015                 src_kaddr = dst_kaddr;
6016                 if (areas_overlap(src_off, dst_off, len))
6017                         must_memmove = 1;
6018         }
6019
6020         if (must_memmove)
6021                 memmove(dst_kaddr + dst_off, src_kaddr + src_off, len);
6022         else
6023                 memcpy(dst_kaddr + dst_off, src_kaddr + src_off, len);
6024 }
6025
6026 void memcpy_extent_buffer(const struct extent_buffer *dst,
6027                           unsigned long dst_offset, unsigned long src_offset,
6028                           unsigned long len)
6029 {
6030         size_t cur;
6031         size_t dst_off_in_page;
6032         size_t src_off_in_page;
6033         unsigned long dst_i;
6034         unsigned long src_i;
6035
6036         if (check_eb_range(dst, dst_offset, len) ||
6037             check_eb_range(dst, src_offset, len))
6038                 return;
6039
6040         while (len > 0) {
6041                 dst_off_in_page = offset_in_page(dst_offset);
6042                 src_off_in_page = offset_in_page(src_offset);
6043
6044                 dst_i = dst_offset >> PAGE_SHIFT;
6045                 src_i = src_offset >> PAGE_SHIFT;
6046
6047                 cur = min(len, (unsigned long)(PAGE_SIZE -
6048                                                src_off_in_page));
6049                 cur = min_t(unsigned long, cur,
6050                         (unsigned long)(PAGE_SIZE - dst_off_in_page));
6051
6052                 copy_pages(dst->pages[dst_i], dst->pages[src_i],
6053                            dst_off_in_page, src_off_in_page, cur);
6054
6055                 src_offset += cur;
6056                 dst_offset += cur;
6057                 len -= cur;
6058         }
6059 }
6060
6061 void memmove_extent_buffer(const struct extent_buffer *dst,
6062                            unsigned long dst_offset, unsigned long src_offset,
6063                            unsigned long len)
6064 {
6065         size_t cur;
6066         size_t dst_off_in_page;
6067         size_t src_off_in_page;
6068         unsigned long dst_end = dst_offset + len - 1;
6069         unsigned long src_end = src_offset + len - 1;
6070         unsigned long dst_i;
6071         unsigned long src_i;
6072
6073         if (check_eb_range(dst, dst_offset, len) ||
6074             check_eb_range(dst, src_offset, len))
6075                 return;
6076         if (dst_offset < src_offset) {
6077                 memcpy_extent_buffer(dst, dst_offset, src_offset, len);
6078                 return;
6079         }
6080         while (len > 0) {
6081                 dst_i = dst_end >> PAGE_SHIFT;
6082                 src_i = src_end >> PAGE_SHIFT;
6083
6084                 dst_off_in_page = offset_in_page(dst_end);
6085                 src_off_in_page = offset_in_page(src_end);
6086
6087                 cur = min_t(unsigned long, len, src_off_in_page + 1);
6088                 cur = min(cur, dst_off_in_page + 1);
6089                 copy_pages(dst->pages[dst_i], dst->pages[src_i],
6090                            dst_off_in_page - cur + 1,
6091                            src_off_in_page - cur + 1, cur);
6092
6093                 dst_end -= cur;
6094                 src_end -= cur;
6095                 len -= cur;
6096         }
6097 }
6098
6099 int try_release_extent_buffer(struct page *page)
6100 {
6101         struct extent_buffer *eb;
6102
6103         /*
6104          * We need to make sure nobody is attaching this page to an eb right
6105          * now.
6106          */
6107         spin_lock(&page->mapping->private_lock);
6108         if (!PagePrivate(page)) {
6109                 spin_unlock(&page->mapping->private_lock);
6110                 return 1;
6111         }
6112
6113         eb = (struct extent_buffer *)page->private;
6114         BUG_ON(!eb);
6115
6116         /*
6117          * This is a little awful but should be ok, we need to make sure that
6118          * the eb doesn't disappear out from under us while we're looking at
6119          * this page.
6120          */
6121         spin_lock(&eb->refs_lock);
6122         if (atomic_read(&eb->refs) != 1 || extent_buffer_under_io(eb)) {
6123                 spin_unlock(&eb->refs_lock);
6124                 spin_unlock(&page->mapping->private_lock);
6125                 return 0;
6126         }
6127         spin_unlock(&page->mapping->private_lock);
6128
6129         /*
6130          * If tree ref isn't set then we know the ref on this eb is a real ref,
6131          * so just return, this page will likely be freed soon anyway.
6132          */
6133         if (!test_and_clear_bit(EXTENT_BUFFER_TREE_REF, &eb->bflags)) {
6134                 spin_unlock(&eb->refs_lock);
6135                 return 0;
6136         }
6137
6138         return release_extent_buffer(eb);
6139 }