1 // SPDX-License-Identifier: GPL-2.0
3 * Copyright (C) 2007 Oracle. All rights reserved.
6 #include <linux/sched.h>
7 #include <linux/sched/signal.h>
8 #include <linux/pagemap.h>
9 #include <linux/writeback.h>
10 #include <linux/blkdev.h>
11 #include <linux/sort.h>
12 #include <linux/rcupdate.h>
13 #include <linux/kthread.h>
14 #include <linux/slab.h>
15 #include <linux/ratelimit.h>
16 #include <linux/percpu_counter.h>
17 #include <linux/lockdep.h>
18 #include <linux/crc32c.h>
21 #include "print-tree.h"
25 #include "free-space-cache.h"
26 #include "free-space-tree.h"
30 #include "ref-verify.h"
32 #undef SCRAMBLE_DELAYED_REFS
35 * control flags for do_chunk_alloc's force field
36 * CHUNK_ALLOC_NO_FORCE means to only allocate a chunk
37 * if we really need one.
39 * CHUNK_ALLOC_LIMITED means to only try and allocate one
40 * if we have very few chunks already allocated. This is
41 * used as part of the clustering code to help make sure
42 * we have a good pool of storage to cluster in, without
43 * filling the FS with empty chunks
45 * CHUNK_ALLOC_FORCE means it must try to allocate one
49 CHUNK_ALLOC_NO_FORCE = 0,
50 CHUNK_ALLOC_LIMITED = 1,
51 CHUNK_ALLOC_FORCE = 2,
54 static int __btrfs_free_extent(struct btrfs_trans_handle *trans,
55 struct btrfs_delayed_ref_node *node, u64 parent,
56 u64 root_objectid, u64 owner_objectid,
57 u64 owner_offset, int refs_to_drop,
58 struct btrfs_delayed_extent_op *extra_op);
59 static void __run_delayed_extent_op(struct btrfs_delayed_extent_op *extent_op,
60 struct extent_buffer *leaf,
61 struct btrfs_extent_item *ei);
62 static int alloc_reserved_file_extent(struct btrfs_trans_handle *trans,
63 u64 parent, u64 root_objectid,
64 u64 flags, u64 owner, u64 offset,
65 struct btrfs_key *ins, int ref_mod);
66 static int alloc_reserved_tree_block(struct btrfs_trans_handle *trans,
67 struct btrfs_delayed_ref_node *node,
68 struct btrfs_delayed_extent_op *extent_op);
69 static int do_chunk_alloc(struct btrfs_trans_handle *trans, u64 flags,
71 static int find_next_key(struct btrfs_path *path, int level,
72 struct btrfs_key *key);
73 static void dump_space_info(struct btrfs_fs_info *fs_info,
74 struct btrfs_space_info *info, u64 bytes,
75 int dump_block_groups);
76 static int block_rsv_use_bytes(struct btrfs_block_rsv *block_rsv,
78 static void space_info_add_new_bytes(struct btrfs_fs_info *fs_info,
79 struct btrfs_space_info *space_info,
81 static void space_info_add_old_bytes(struct btrfs_fs_info *fs_info,
82 struct btrfs_space_info *space_info,
86 block_group_cache_done(struct btrfs_block_group_cache *cache)
89 return cache->cached == BTRFS_CACHE_FINISHED ||
90 cache->cached == BTRFS_CACHE_ERROR;
93 static int block_group_bits(struct btrfs_block_group_cache *cache, u64 bits)
95 return (cache->flags & bits) == bits;
98 void btrfs_get_block_group(struct btrfs_block_group_cache *cache)
100 atomic_inc(&cache->count);
103 void btrfs_put_block_group(struct btrfs_block_group_cache *cache)
105 if (atomic_dec_and_test(&cache->count)) {
106 WARN_ON(cache->pinned > 0);
107 WARN_ON(cache->reserved > 0);
110 * If not empty, someone is still holding mutex of
111 * full_stripe_lock, which can only be released by caller.
112 * And it will definitely cause use-after-free when caller
113 * tries to release full stripe lock.
115 * No better way to resolve, but only to warn.
117 WARN_ON(!RB_EMPTY_ROOT(&cache->full_stripe_locks_root.root));
118 kfree(cache->free_space_ctl);
124 * this adds the block group to the fs_info rb tree for the block group
127 static int btrfs_add_block_group_cache(struct btrfs_fs_info *info,
128 struct btrfs_block_group_cache *block_group)
131 struct rb_node *parent = NULL;
132 struct btrfs_block_group_cache *cache;
134 spin_lock(&info->block_group_cache_lock);
135 p = &info->block_group_cache_tree.rb_node;
139 cache = rb_entry(parent, struct btrfs_block_group_cache,
141 if (block_group->key.objectid < cache->key.objectid) {
143 } else if (block_group->key.objectid > cache->key.objectid) {
146 spin_unlock(&info->block_group_cache_lock);
151 rb_link_node(&block_group->cache_node, parent, p);
152 rb_insert_color(&block_group->cache_node,
153 &info->block_group_cache_tree);
155 if (info->first_logical_byte > block_group->key.objectid)
156 info->first_logical_byte = block_group->key.objectid;
158 spin_unlock(&info->block_group_cache_lock);
164 * This will return the block group at or after bytenr if contains is 0, else
165 * it will return the block group that contains the bytenr
167 static struct btrfs_block_group_cache *
168 block_group_cache_tree_search(struct btrfs_fs_info *info, u64 bytenr,
171 struct btrfs_block_group_cache *cache, *ret = NULL;
175 spin_lock(&info->block_group_cache_lock);
176 n = info->block_group_cache_tree.rb_node;
179 cache = rb_entry(n, struct btrfs_block_group_cache,
181 end = cache->key.objectid + cache->key.offset - 1;
182 start = cache->key.objectid;
184 if (bytenr < start) {
185 if (!contains && (!ret || start < ret->key.objectid))
188 } else if (bytenr > start) {
189 if (contains && bytenr <= end) {
200 btrfs_get_block_group(ret);
201 if (bytenr == 0 && info->first_logical_byte > ret->key.objectid)
202 info->first_logical_byte = ret->key.objectid;
204 spin_unlock(&info->block_group_cache_lock);
209 static int add_excluded_extent(struct btrfs_fs_info *fs_info,
210 u64 start, u64 num_bytes)
212 u64 end = start + num_bytes - 1;
213 set_extent_bits(&fs_info->freed_extents[0],
214 start, end, EXTENT_UPTODATE);
215 set_extent_bits(&fs_info->freed_extents[1],
216 start, end, EXTENT_UPTODATE);
220 static void free_excluded_extents(struct btrfs_block_group_cache *cache)
222 struct btrfs_fs_info *fs_info = cache->fs_info;
225 start = cache->key.objectid;
226 end = start + cache->key.offset - 1;
228 clear_extent_bits(&fs_info->freed_extents[0],
229 start, end, EXTENT_UPTODATE);
230 clear_extent_bits(&fs_info->freed_extents[1],
231 start, end, EXTENT_UPTODATE);
234 static int exclude_super_stripes(struct btrfs_block_group_cache *cache)
236 struct btrfs_fs_info *fs_info = cache->fs_info;
242 if (cache->key.objectid < BTRFS_SUPER_INFO_OFFSET) {
243 stripe_len = BTRFS_SUPER_INFO_OFFSET - cache->key.objectid;
244 cache->bytes_super += stripe_len;
245 ret = add_excluded_extent(fs_info, cache->key.objectid,
251 for (i = 0; i < BTRFS_SUPER_MIRROR_MAX; i++) {
252 bytenr = btrfs_sb_offset(i);
253 ret = btrfs_rmap_block(fs_info, cache->key.objectid,
254 bytenr, &logical, &nr, &stripe_len);
261 if (logical[nr] > cache->key.objectid +
265 if (logical[nr] + stripe_len <= cache->key.objectid)
269 if (start < cache->key.objectid) {
270 start = cache->key.objectid;
271 len = (logical[nr] + stripe_len) - start;
273 len = min_t(u64, stripe_len,
274 cache->key.objectid +
275 cache->key.offset - start);
278 cache->bytes_super += len;
279 ret = add_excluded_extent(fs_info, start, len);
291 static struct btrfs_caching_control *
292 get_caching_control(struct btrfs_block_group_cache *cache)
294 struct btrfs_caching_control *ctl;
296 spin_lock(&cache->lock);
297 if (!cache->caching_ctl) {
298 spin_unlock(&cache->lock);
302 ctl = cache->caching_ctl;
303 refcount_inc(&ctl->count);
304 spin_unlock(&cache->lock);
308 static void put_caching_control(struct btrfs_caching_control *ctl)
310 if (refcount_dec_and_test(&ctl->count))
314 #ifdef CONFIG_BTRFS_DEBUG
315 static void fragment_free_space(struct btrfs_block_group_cache *block_group)
317 struct btrfs_fs_info *fs_info = block_group->fs_info;
318 u64 start = block_group->key.objectid;
319 u64 len = block_group->key.offset;
320 u64 chunk = block_group->flags & BTRFS_BLOCK_GROUP_METADATA ?
321 fs_info->nodesize : fs_info->sectorsize;
322 u64 step = chunk << 1;
324 while (len > chunk) {
325 btrfs_remove_free_space(block_group, start, chunk);
336 * this is only called by cache_block_group, since we could have freed extents
337 * we need to check the pinned_extents for any extents that can't be used yet
338 * since their free space will be released as soon as the transaction commits.
340 u64 add_new_free_space(struct btrfs_block_group_cache *block_group,
343 struct btrfs_fs_info *info = block_group->fs_info;
344 u64 extent_start, extent_end, size, total_added = 0;
347 while (start < end) {
348 ret = find_first_extent_bit(info->pinned_extents, start,
349 &extent_start, &extent_end,
350 EXTENT_DIRTY | EXTENT_UPTODATE,
355 if (extent_start <= start) {
356 start = extent_end + 1;
357 } else if (extent_start > start && extent_start < end) {
358 size = extent_start - start;
360 ret = btrfs_add_free_space(block_group, start,
362 BUG_ON(ret); /* -ENOMEM or logic error */
363 start = extent_end + 1;
372 ret = btrfs_add_free_space(block_group, start, size);
373 BUG_ON(ret); /* -ENOMEM or logic error */
379 static int load_extent_tree_free(struct btrfs_caching_control *caching_ctl)
381 struct btrfs_block_group_cache *block_group = caching_ctl->block_group;
382 struct btrfs_fs_info *fs_info = block_group->fs_info;
383 struct btrfs_root *extent_root = fs_info->extent_root;
384 struct btrfs_path *path;
385 struct extent_buffer *leaf;
386 struct btrfs_key key;
393 path = btrfs_alloc_path();
397 last = max_t(u64, block_group->key.objectid, BTRFS_SUPER_INFO_OFFSET);
399 #ifdef CONFIG_BTRFS_DEBUG
401 * If we're fragmenting we don't want to make anybody think we can
402 * allocate from this block group until we've had a chance to fragment
405 if (btrfs_should_fragment_free_space(block_group))
409 * We don't want to deadlock with somebody trying to allocate a new
410 * extent for the extent root while also trying to search the extent
411 * root to add free space. So we skip locking and search the commit
412 * root, since its read-only
414 path->skip_locking = 1;
415 path->search_commit_root = 1;
416 path->reada = READA_FORWARD;
420 key.type = BTRFS_EXTENT_ITEM_KEY;
423 ret = btrfs_search_slot(NULL, extent_root, &key, path, 0, 0);
427 leaf = path->nodes[0];
428 nritems = btrfs_header_nritems(leaf);
431 if (btrfs_fs_closing(fs_info) > 1) {
436 if (path->slots[0] < nritems) {
437 btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
439 ret = find_next_key(path, 0, &key);
443 if (need_resched() ||
444 rwsem_is_contended(&fs_info->commit_root_sem)) {
446 caching_ctl->progress = last;
447 btrfs_release_path(path);
448 up_read(&fs_info->commit_root_sem);
449 mutex_unlock(&caching_ctl->mutex);
451 mutex_lock(&caching_ctl->mutex);
452 down_read(&fs_info->commit_root_sem);
456 ret = btrfs_next_leaf(extent_root, path);
461 leaf = path->nodes[0];
462 nritems = btrfs_header_nritems(leaf);
466 if (key.objectid < last) {
469 key.type = BTRFS_EXTENT_ITEM_KEY;
472 caching_ctl->progress = last;
473 btrfs_release_path(path);
477 if (key.objectid < block_group->key.objectid) {
482 if (key.objectid >= block_group->key.objectid +
483 block_group->key.offset)
486 if (key.type == BTRFS_EXTENT_ITEM_KEY ||
487 key.type == BTRFS_METADATA_ITEM_KEY) {
488 total_found += add_new_free_space(block_group, last,
490 if (key.type == BTRFS_METADATA_ITEM_KEY)
491 last = key.objectid +
494 last = key.objectid + key.offset;
496 if (total_found > CACHING_CTL_WAKE_UP) {
499 wake_up(&caching_ctl->wait);
506 total_found += add_new_free_space(block_group, last,
507 block_group->key.objectid +
508 block_group->key.offset);
509 caching_ctl->progress = (u64)-1;
512 btrfs_free_path(path);
516 static noinline void caching_thread(struct btrfs_work *work)
518 struct btrfs_block_group_cache *block_group;
519 struct btrfs_fs_info *fs_info;
520 struct btrfs_caching_control *caching_ctl;
523 caching_ctl = container_of(work, struct btrfs_caching_control, work);
524 block_group = caching_ctl->block_group;
525 fs_info = block_group->fs_info;
527 mutex_lock(&caching_ctl->mutex);
528 down_read(&fs_info->commit_root_sem);
530 if (btrfs_fs_compat_ro(fs_info, FREE_SPACE_TREE))
531 ret = load_free_space_tree(caching_ctl);
533 ret = load_extent_tree_free(caching_ctl);
535 spin_lock(&block_group->lock);
536 block_group->caching_ctl = NULL;
537 block_group->cached = ret ? BTRFS_CACHE_ERROR : BTRFS_CACHE_FINISHED;
538 spin_unlock(&block_group->lock);
540 #ifdef CONFIG_BTRFS_DEBUG
541 if (btrfs_should_fragment_free_space(block_group)) {
544 spin_lock(&block_group->space_info->lock);
545 spin_lock(&block_group->lock);
546 bytes_used = block_group->key.offset -
547 btrfs_block_group_used(&block_group->item);
548 block_group->space_info->bytes_used += bytes_used >> 1;
549 spin_unlock(&block_group->lock);
550 spin_unlock(&block_group->space_info->lock);
551 fragment_free_space(block_group);
555 caching_ctl->progress = (u64)-1;
557 up_read(&fs_info->commit_root_sem);
558 free_excluded_extents(block_group);
559 mutex_unlock(&caching_ctl->mutex);
561 wake_up(&caching_ctl->wait);
563 put_caching_control(caching_ctl);
564 btrfs_put_block_group(block_group);
567 static int cache_block_group(struct btrfs_block_group_cache *cache,
571 struct btrfs_fs_info *fs_info = cache->fs_info;
572 struct btrfs_caching_control *caching_ctl;
575 caching_ctl = kzalloc(sizeof(*caching_ctl), GFP_NOFS);
579 INIT_LIST_HEAD(&caching_ctl->list);
580 mutex_init(&caching_ctl->mutex);
581 init_waitqueue_head(&caching_ctl->wait);
582 caching_ctl->block_group = cache;
583 caching_ctl->progress = cache->key.objectid;
584 refcount_set(&caching_ctl->count, 1);
585 btrfs_init_work(&caching_ctl->work, btrfs_cache_helper,
586 caching_thread, NULL, NULL);
588 spin_lock(&cache->lock);
590 * This should be a rare occasion, but this could happen I think in the
591 * case where one thread starts to load the space cache info, and then
592 * some other thread starts a transaction commit which tries to do an
593 * allocation while the other thread is still loading the space cache
594 * info. The previous loop should have kept us from choosing this block
595 * group, but if we've moved to the state where we will wait on caching
596 * block groups we need to first check if we're doing a fast load here,
597 * so we can wait for it to finish, otherwise we could end up allocating
598 * from a block group who's cache gets evicted for one reason or
601 while (cache->cached == BTRFS_CACHE_FAST) {
602 struct btrfs_caching_control *ctl;
604 ctl = cache->caching_ctl;
605 refcount_inc(&ctl->count);
606 prepare_to_wait(&ctl->wait, &wait, TASK_UNINTERRUPTIBLE);
607 spin_unlock(&cache->lock);
611 finish_wait(&ctl->wait, &wait);
612 put_caching_control(ctl);
613 spin_lock(&cache->lock);
616 if (cache->cached != BTRFS_CACHE_NO) {
617 spin_unlock(&cache->lock);
621 WARN_ON(cache->caching_ctl);
622 cache->caching_ctl = caching_ctl;
623 cache->cached = BTRFS_CACHE_FAST;
624 spin_unlock(&cache->lock);
626 if (btrfs_test_opt(fs_info, SPACE_CACHE)) {
627 mutex_lock(&caching_ctl->mutex);
628 ret = load_free_space_cache(fs_info, cache);
630 spin_lock(&cache->lock);
632 cache->caching_ctl = NULL;
633 cache->cached = BTRFS_CACHE_FINISHED;
634 cache->last_byte_to_unpin = (u64)-1;
635 caching_ctl->progress = (u64)-1;
637 if (load_cache_only) {
638 cache->caching_ctl = NULL;
639 cache->cached = BTRFS_CACHE_NO;
641 cache->cached = BTRFS_CACHE_STARTED;
642 cache->has_caching_ctl = 1;
645 spin_unlock(&cache->lock);
646 #ifdef CONFIG_BTRFS_DEBUG
648 btrfs_should_fragment_free_space(cache)) {
651 spin_lock(&cache->space_info->lock);
652 spin_lock(&cache->lock);
653 bytes_used = cache->key.offset -
654 btrfs_block_group_used(&cache->item);
655 cache->space_info->bytes_used += bytes_used >> 1;
656 spin_unlock(&cache->lock);
657 spin_unlock(&cache->space_info->lock);
658 fragment_free_space(cache);
661 mutex_unlock(&caching_ctl->mutex);
663 wake_up(&caching_ctl->wait);
665 put_caching_control(caching_ctl);
666 free_excluded_extents(cache);
671 * We're either using the free space tree or no caching at all.
672 * Set cached to the appropriate value and wakeup any waiters.
674 spin_lock(&cache->lock);
675 if (load_cache_only) {
676 cache->caching_ctl = NULL;
677 cache->cached = BTRFS_CACHE_NO;
679 cache->cached = BTRFS_CACHE_STARTED;
680 cache->has_caching_ctl = 1;
682 spin_unlock(&cache->lock);
683 wake_up(&caching_ctl->wait);
686 if (load_cache_only) {
687 put_caching_control(caching_ctl);
691 down_write(&fs_info->commit_root_sem);
692 refcount_inc(&caching_ctl->count);
693 list_add_tail(&caching_ctl->list, &fs_info->caching_block_groups);
694 up_write(&fs_info->commit_root_sem);
696 btrfs_get_block_group(cache);
698 btrfs_queue_work(fs_info->caching_workers, &caching_ctl->work);
704 * return the block group that starts at or after bytenr
706 static struct btrfs_block_group_cache *
707 btrfs_lookup_first_block_group(struct btrfs_fs_info *info, u64 bytenr)
709 return block_group_cache_tree_search(info, bytenr, 0);
713 * return the block group that contains the given bytenr
715 struct btrfs_block_group_cache *btrfs_lookup_block_group(
716 struct btrfs_fs_info *info,
719 return block_group_cache_tree_search(info, bytenr, 1);
722 static struct btrfs_space_info *__find_space_info(struct btrfs_fs_info *info,
725 struct list_head *head = &info->space_info;
726 struct btrfs_space_info *found;
728 flags &= BTRFS_BLOCK_GROUP_TYPE_MASK;
731 list_for_each_entry_rcu(found, head, list) {
732 if (found->flags & flags) {
741 static void add_pinned_bytes(struct btrfs_fs_info *fs_info, s64 num_bytes,
742 bool metadata, u64 root_objectid)
744 struct btrfs_space_info *space_info;
748 if (root_objectid == BTRFS_CHUNK_TREE_OBJECTID)
749 flags = BTRFS_BLOCK_GROUP_SYSTEM;
751 flags = BTRFS_BLOCK_GROUP_METADATA;
753 flags = BTRFS_BLOCK_GROUP_DATA;
756 space_info = __find_space_info(fs_info, flags);
758 percpu_counter_add_batch(&space_info->total_bytes_pinned, num_bytes,
759 BTRFS_TOTAL_BYTES_PINNED_BATCH);
763 * after adding space to the filesystem, we need to clear the full flags
764 * on all the space infos.
766 void btrfs_clear_space_info_full(struct btrfs_fs_info *info)
768 struct list_head *head = &info->space_info;
769 struct btrfs_space_info *found;
772 list_for_each_entry_rcu(found, head, list)
777 /* simple helper to search for an existing data extent at a given offset */
778 int btrfs_lookup_data_extent(struct btrfs_fs_info *fs_info, u64 start, u64 len)
781 struct btrfs_key key;
782 struct btrfs_path *path;
784 path = btrfs_alloc_path();
788 key.objectid = start;
790 key.type = BTRFS_EXTENT_ITEM_KEY;
791 ret = btrfs_search_slot(NULL, fs_info->extent_root, &key, path, 0, 0);
792 btrfs_free_path(path);
797 * helper function to lookup reference count and flags of a tree block.
799 * the head node for delayed ref is used to store the sum of all the
800 * reference count modifications queued up in the rbtree. the head
801 * node may also store the extent flags to set. This way you can check
802 * to see what the reference count and extent flags would be if all of
803 * the delayed refs are not processed.
805 int btrfs_lookup_extent_info(struct btrfs_trans_handle *trans,
806 struct btrfs_fs_info *fs_info, u64 bytenr,
807 u64 offset, int metadata, u64 *refs, u64 *flags)
809 struct btrfs_delayed_ref_head *head;
810 struct btrfs_delayed_ref_root *delayed_refs;
811 struct btrfs_path *path;
812 struct btrfs_extent_item *ei;
813 struct extent_buffer *leaf;
814 struct btrfs_key key;
821 * If we don't have skinny metadata, don't bother doing anything
824 if (metadata && !btrfs_fs_incompat(fs_info, SKINNY_METADATA)) {
825 offset = fs_info->nodesize;
829 path = btrfs_alloc_path();
834 path->skip_locking = 1;
835 path->search_commit_root = 1;
839 key.objectid = bytenr;
842 key.type = BTRFS_METADATA_ITEM_KEY;
844 key.type = BTRFS_EXTENT_ITEM_KEY;
846 ret = btrfs_search_slot(trans, fs_info->extent_root, &key, path, 0, 0);
850 if (ret > 0 && metadata && key.type == BTRFS_METADATA_ITEM_KEY) {
851 if (path->slots[0]) {
853 btrfs_item_key_to_cpu(path->nodes[0], &key,
855 if (key.objectid == bytenr &&
856 key.type == BTRFS_EXTENT_ITEM_KEY &&
857 key.offset == fs_info->nodesize)
863 leaf = path->nodes[0];
864 item_size = btrfs_item_size_nr(leaf, path->slots[0]);
865 if (item_size >= sizeof(*ei)) {
866 ei = btrfs_item_ptr(leaf, path->slots[0],
867 struct btrfs_extent_item);
868 num_refs = btrfs_extent_refs(leaf, ei);
869 extent_flags = btrfs_extent_flags(leaf, ei);
872 btrfs_print_v0_err(fs_info);
874 btrfs_abort_transaction(trans, ret);
876 btrfs_handle_fs_error(fs_info, ret, NULL);
881 BUG_ON(num_refs == 0);
891 delayed_refs = &trans->transaction->delayed_refs;
892 spin_lock(&delayed_refs->lock);
893 head = btrfs_find_delayed_ref_head(delayed_refs, bytenr);
895 if (!mutex_trylock(&head->mutex)) {
896 refcount_inc(&head->refs);
897 spin_unlock(&delayed_refs->lock);
899 btrfs_release_path(path);
902 * Mutex was contended, block until it's released and try
905 mutex_lock(&head->mutex);
906 mutex_unlock(&head->mutex);
907 btrfs_put_delayed_ref_head(head);
910 spin_lock(&head->lock);
911 if (head->extent_op && head->extent_op->update_flags)
912 extent_flags |= head->extent_op->flags_to_set;
914 BUG_ON(num_refs == 0);
916 num_refs += head->ref_mod;
917 spin_unlock(&head->lock);
918 mutex_unlock(&head->mutex);
920 spin_unlock(&delayed_refs->lock);
922 WARN_ON(num_refs == 0);
926 *flags = extent_flags;
928 btrfs_free_path(path);
933 * Back reference rules. Back refs have three main goals:
935 * 1) differentiate between all holders of references to an extent so that
936 * when a reference is dropped we can make sure it was a valid reference
937 * before freeing the extent.
939 * 2) Provide enough information to quickly find the holders of an extent
940 * if we notice a given block is corrupted or bad.
942 * 3) Make it easy to migrate blocks for FS shrinking or storage pool
943 * maintenance. This is actually the same as #2, but with a slightly
944 * different use case.
946 * There are two kinds of back refs. The implicit back refs is optimized
947 * for pointers in non-shared tree blocks. For a given pointer in a block,
948 * back refs of this kind provide information about the block's owner tree
949 * and the pointer's key. These information allow us to find the block by
950 * b-tree searching. The full back refs is for pointers in tree blocks not
951 * referenced by their owner trees. The location of tree block is recorded
952 * in the back refs. Actually the full back refs is generic, and can be
953 * used in all cases the implicit back refs is used. The major shortcoming
954 * of the full back refs is its overhead. Every time a tree block gets
955 * COWed, we have to update back refs entry for all pointers in it.
957 * For a newly allocated tree block, we use implicit back refs for
958 * pointers in it. This means most tree related operations only involve
959 * implicit back refs. For a tree block created in old transaction, the
960 * only way to drop a reference to it is COW it. So we can detect the
961 * event that tree block loses its owner tree's reference and do the
962 * back refs conversion.
964 * When a tree block is COWed through a tree, there are four cases:
966 * The reference count of the block is one and the tree is the block's
967 * owner tree. Nothing to do in this case.
969 * The reference count of the block is one and the tree is not the
970 * block's owner tree. In this case, full back refs is used for pointers
971 * in the block. Remove these full back refs, add implicit back refs for
972 * every pointers in the new block.
974 * The reference count of the block is greater than one and the tree is
975 * the block's owner tree. In this case, implicit back refs is used for
976 * pointers in the block. Add full back refs for every pointers in the
977 * block, increase lower level extents' reference counts. The original
978 * implicit back refs are entailed to the new block.
980 * The reference count of the block is greater than one and the tree is
981 * not the block's owner tree. Add implicit back refs for every pointer in
982 * the new block, increase lower level extents' reference count.
984 * Back Reference Key composing:
986 * The key objectid corresponds to the first byte in the extent,
987 * The key type is used to differentiate between types of back refs.
988 * There are different meanings of the key offset for different types
991 * File extents can be referenced by:
993 * - multiple snapshots, subvolumes, or different generations in one subvol
994 * - different files inside a single subvolume
995 * - different offsets inside a file (bookend extents in file.c)
997 * The extent ref structure for the implicit back refs has fields for:
999 * - Objectid of the subvolume root
1000 * - objectid of the file holding the reference
1001 * - original offset in the file
1002 * - how many bookend extents
1004 * The key offset for the implicit back refs is hash of the first
1007 * The extent ref structure for the full back refs has field for:
1009 * - number of pointers in the tree leaf
1011 * The key offset for the implicit back refs is the first byte of
1014 * When a file extent is allocated, The implicit back refs is used.
1015 * the fields are filled in:
1017 * (root_key.objectid, inode objectid, offset in file, 1)
1019 * When a file extent is removed file truncation, we find the
1020 * corresponding implicit back refs and check the following fields:
1022 * (btrfs_header_owner(leaf), inode objectid, offset in file)
1024 * Btree extents can be referenced by:
1026 * - Different subvolumes
1028 * Both the implicit back refs and the full back refs for tree blocks
1029 * only consist of key. The key offset for the implicit back refs is
1030 * objectid of block's owner tree. The key offset for the full back refs
1031 * is the first byte of parent block.
1033 * When implicit back refs is used, information about the lowest key and
1034 * level of the tree block are required. These information are stored in
1035 * tree block info structure.
1039 * is_data == BTRFS_REF_TYPE_BLOCK, tree block type is required,
1040 * is_data == BTRFS_REF_TYPE_DATA, data type is requried,
1041 * is_data == BTRFS_REF_TYPE_ANY, either type is OK.
1043 int btrfs_get_extent_inline_ref_type(const struct extent_buffer *eb,
1044 struct btrfs_extent_inline_ref *iref,
1045 enum btrfs_inline_ref_type is_data)
1047 int type = btrfs_extent_inline_ref_type(eb, iref);
1048 u64 offset = btrfs_extent_inline_ref_offset(eb, iref);
1050 if (type == BTRFS_TREE_BLOCK_REF_KEY ||
1051 type == BTRFS_SHARED_BLOCK_REF_KEY ||
1052 type == BTRFS_SHARED_DATA_REF_KEY ||
1053 type == BTRFS_EXTENT_DATA_REF_KEY) {
1054 if (is_data == BTRFS_REF_TYPE_BLOCK) {
1055 if (type == BTRFS_TREE_BLOCK_REF_KEY)
1057 if (type == BTRFS_SHARED_BLOCK_REF_KEY) {
1058 ASSERT(eb->fs_info);
1060 * Every shared one has parent tree block,
1061 * which must be aligned to sector size.
1064 IS_ALIGNED(offset, eb->fs_info->sectorsize))
1067 } else if (is_data == BTRFS_REF_TYPE_DATA) {
1068 if (type == BTRFS_EXTENT_DATA_REF_KEY)
1070 if (type == BTRFS_SHARED_DATA_REF_KEY) {
1071 ASSERT(eb->fs_info);
1073 * Every shared one has parent tree block,
1074 * which must be aligned to sector size.
1077 IS_ALIGNED(offset, eb->fs_info->sectorsize))
1081 ASSERT(is_data == BTRFS_REF_TYPE_ANY);
1086 btrfs_print_leaf((struct extent_buffer *)eb);
1087 btrfs_err(eb->fs_info,
1088 "eb %llu iref 0x%lx invalid extent inline ref type %d",
1089 eb->start, (unsigned long)iref, type);
1092 return BTRFS_REF_TYPE_INVALID;
1095 static u64 hash_extent_data_ref(u64 root_objectid, u64 owner, u64 offset)
1097 u32 high_crc = ~(u32)0;
1098 u32 low_crc = ~(u32)0;
1101 lenum = cpu_to_le64(root_objectid);
1102 high_crc = crc32c(high_crc, &lenum, sizeof(lenum));
1103 lenum = cpu_to_le64(owner);
1104 low_crc = crc32c(low_crc, &lenum, sizeof(lenum));
1105 lenum = cpu_to_le64(offset);
1106 low_crc = crc32c(low_crc, &lenum, sizeof(lenum));
1108 return ((u64)high_crc << 31) ^ (u64)low_crc;
1111 static u64 hash_extent_data_ref_item(struct extent_buffer *leaf,
1112 struct btrfs_extent_data_ref *ref)
1114 return hash_extent_data_ref(btrfs_extent_data_ref_root(leaf, ref),
1115 btrfs_extent_data_ref_objectid(leaf, ref),
1116 btrfs_extent_data_ref_offset(leaf, ref));
1119 static int match_extent_data_ref(struct extent_buffer *leaf,
1120 struct btrfs_extent_data_ref *ref,
1121 u64 root_objectid, u64 owner, u64 offset)
1123 if (btrfs_extent_data_ref_root(leaf, ref) != root_objectid ||
1124 btrfs_extent_data_ref_objectid(leaf, ref) != owner ||
1125 btrfs_extent_data_ref_offset(leaf, ref) != offset)
1130 static noinline int lookup_extent_data_ref(struct btrfs_trans_handle *trans,
1131 struct btrfs_path *path,
1132 u64 bytenr, u64 parent,
1134 u64 owner, u64 offset)
1136 struct btrfs_root *root = trans->fs_info->extent_root;
1137 struct btrfs_key key;
1138 struct btrfs_extent_data_ref *ref;
1139 struct extent_buffer *leaf;
1145 key.objectid = bytenr;
1147 key.type = BTRFS_SHARED_DATA_REF_KEY;
1148 key.offset = parent;
1150 key.type = BTRFS_EXTENT_DATA_REF_KEY;
1151 key.offset = hash_extent_data_ref(root_objectid,
1156 ret = btrfs_search_slot(trans, root, &key, path, -1, 1);
1168 leaf = path->nodes[0];
1169 nritems = btrfs_header_nritems(leaf);
1171 if (path->slots[0] >= nritems) {
1172 ret = btrfs_next_leaf(root, path);
1178 leaf = path->nodes[0];
1179 nritems = btrfs_header_nritems(leaf);
1183 btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
1184 if (key.objectid != bytenr ||
1185 key.type != BTRFS_EXTENT_DATA_REF_KEY)
1188 ref = btrfs_item_ptr(leaf, path->slots[0],
1189 struct btrfs_extent_data_ref);
1191 if (match_extent_data_ref(leaf, ref, root_objectid,
1194 btrfs_release_path(path);
1206 static noinline int insert_extent_data_ref(struct btrfs_trans_handle *trans,
1207 struct btrfs_path *path,
1208 u64 bytenr, u64 parent,
1209 u64 root_objectid, u64 owner,
1210 u64 offset, int refs_to_add)
1212 struct btrfs_root *root = trans->fs_info->extent_root;
1213 struct btrfs_key key;
1214 struct extent_buffer *leaf;
1219 key.objectid = bytenr;
1221 key.type = BTRFS_SHARED_DATA_REF_KEY;
1222 key.offset = parent;
1223 size = sizeof(struct btrfs_shared_data_ref);
1225 key.type = BTRFS_EXTENT_DATA_REF_KEY;
1226 key.offset = hash_extent_data_ref(root_objectid,
1228 size = sizeof(struct btrfs_extent_data_ref);
1231 ret = btrfs_insert_empty_item(trans, root, path, &key, size);
1232 if (ret && ret != -EEXIST)
1235 leaf = path->nodes[0];
1237 struct btrfs_shared_data_ref *ref;
1238 ref = btrfs_item_ptr(leaf, path->slots[0],
1239 struct btrfs_shared_data_ref);
1241 btrfs_set_shared_data_ref_count(leaf, ref, refs_to_add);
1243 num_refs = btrfs_shared_data_ref_count(leaf, ref);
1244 num_refs += refs_to_add;
1245 btrfs_set_shared_data_ref_count(leaf, ref, num_refs);
1248 struct btrfs_extent_data_ref *ref;
1249 while (ret == -EEXIST) {
1250 ref = btrfs_item_ptr(leaf, path->slots[0],
1251 struct btrfs_extent_data_ref);
1252 if (match_extent_data_ref(leaf, ref, root_objectid,
1255 btrfs_release_path(path);
1257 ret = btrfs_insert_empty_item(trans, root, path, &key,
1259 if (ret && ret != -EEXIST)
1262 leaf = path->nodes[0];
1264 ref = btrfs_item_ptr(leaf, path->slots[0],
1265 struct btrfs_extent_data_ref);
1267 btrfs_set_extent_data_ref_root(leaf, ref,
1269 btrfs_set_extent_data_ref_objectid(leaf, ref, owner);
1270 btrfs_set_extent_data_ref_offset(leaf, ref, offset);
1271 btrfs_set_extent_data_ref_count(leaf, ref, refs_to_add);
1273 num_refs = btrfs_extent_data_ref_count(leaf, ref);
1274 num_refs += refs_to_add;
1275 btrfs_set_extent_data_ref_count(leaf, ref, num_refs);
1278 btrfs_mark_buffer_dirty(leaf);
1281 btrfs_release_path(path);
1285 static noinline int remove_extent_data_ref(struct btrfs_trans_handle *trans,
1286 struct btrfs_path *path,
1287 int refs_to_drop, int *last_ref)
1289 struct btrfs_key key;
1290 struct btrfs_extent_data_ref *ref1 = NULL;
1291 struct btrfs_shared_data_ref *ref2 = NULL;
1292 struct extent_buffer *leaf;
1296 leaf = path->nodes[0];
1297 btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
1299 if (key.type == BTRFS_EXTENT_DATA_REF_KEY) {
1300 ref1 = btrfs_item_ptr(leaf, path->slots[0],
1301 struct btrfs_extent_data_ref);
1302 num_refs = btrfs_extent_data_ref_count(leaf, ref1);
1303 } else if (key.type == BTRFS_SHARED_DATA_REF_KEY) {
1304 ref2 = btrfs_item_ptr(leaf, path->slots[0],
1305 struct btrfs_shared_data_ref);
1306 num_refs = btrfs_shared_data_ref_count(leaf, ref2);
1307 } else if (unlikely(key.type == BTRFS_EXTENT_REF_V0_KEY)) {
1308 btrfs_print_v0_err(trans->fs_info);
1309 btrfs_abort_transaction(trans, -EINVAL);
1315 BUG_ON(num_refs < refs_to_drop);
1316 num_refs -= refs_to_drop;
1318 if (num_refs == 0) {
1319 ret = btrfs_del_item(trans, trans->fs_info->extent_root, path);
1322 if (key.type == BTRFS_EXTENT_DATA_REF_KEY)
1323 btrfs_set_extent_data_ref_count(leaf, ref1, num_refs);
1324 else if (key.type == BTRFS_SHARED_DATA_REF_KEY)
1325 btrfs_set_shared_data_ref_count(leaf, ref2, num_refs);
1326 btrfs_mark_buffer_dirty(leaf);
1331 static noinline u32 extent_data_ref_count(struct btrfs_path *path,
1332 struct btrfs_extent_inline_ref *iref)
1334 struct btrfs_key key;
1335 struct extent_buffer *leaf;
1336 struct btrfs_extent_data_ref *ref1;
1337 struct btrfs_shared_data_ref *ref2;
1341 leaf = path->nodes[0];
1342 btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
1344 BUG_ON(key.type == BTRFS_EXTENT_REF_V0_KEY);
1347 * If type is invalid, we should have bailed out earlier than
1350 type = btrfs_get_extent_inline_ref_type(leaf, iref, BTRFS_REF_TYPE_DATA);
1351 ASSERT(type != BTRFS_REF_TYPE_INVALID);
1352 if (type == BTRFS_EXTENT_DATA_REF_KEY) {
1353 ref1 = (struct btrfs_extent_data_ref *)(&iref->offset);
1354 num_refs = btrfs_extent_data_ref_count(leaf, ref1);
1356 ref2 = (struct btrfs_shared_data_ref *)(iref + 1);
1357 num_refs = btrfs_shared_data_ref_count(leaf, ref2);
1359 } else if (key.type == BTRFS_EXTENT_DATA_REF_KEY) {
1360 ref1 = btrfs_item_ptr(leaf, path->slots[0],
1361 struct btrfs_extent_data_ref);
1362 num_refs = btrfs_extent_data_ref_count(leaf, ref1);
1363 } else if (key.type == BTRFS_SHARED_DATA_REF_KEY) {
1364 ref2 = btrfs_item_ptr(leaf, path->slots[0],
1365 struct btrfs_shared_data_ref);
1366 num_refs = btrfs_shared_data_ref_count(leaf, ref2);
1373 static noinline int lookup_tree_block_ref(struct btrfs_trans_handle *trans,
1374 struct btrfs_path *path,
1375 u64 bytenr, u64 parent,
1378 struct btrfs_root *root = trans->fs_info->extent_root;
1379 struct btrfs_key key;
1382 key.objectid = bytenr;
1384 key.type = BTRFS_SHARED_BLOCK_REF_KEY;
1385 key.offset = parent;
1387 key.type = BTRFS_TREE_BLOCK_REF_KEY;
1388 key.offset = root_objectid;
1391 ret = btrfs_search_slot(trans, root, &key, path, -1, 1);
1397 static noinline int insert_tree_block_ref(struct btrfs_trans_handle *trans,
1398 struct btrfs_path *path,
1399 u64 bytenr, u64 parent,
1402 struct btrfs_key key;
1405 key.objectid = bytenr;
1407 key.type = BTRFS_SHARED_BLOCK_REF_KEY;
1408 key.offset = parent;
1410 key.type = BTRFS_TREE_BLOCK_REF_KEY;
1411 key.offset = root_objectid;
1414 ret = btrfs_insert_empty_item(trans, trans->fs_info->extent_root,
1416 btrfs_release_path(path);
1420 static inline int extent_ref_type(u64 parent, u64 owner)
1423 if (owner < BTRFS_FIRST_FREE_OBJECTID) {
1425 type = BTRFS_SHARED_BLOCK_REF_KEY;
1427 type = BTRFS_TREE_BLOCK_REF_KEY;
1430 type = BTRFS_SHARED_DATA_REF_KEY;
1432 type = BTRFS_EXTENT_DATA_REF_KEY;
1437 static int find_next_key(struct btrfs_path *path, int level,
1438 struct btrfs_key *key)
1441 for (; level < BTRFS_MAX_LEVEL; level++) {
1442 if (!path->nodes[level])
1444 if (path->slots[level] + 1 >=
1445 btrfs_header_nritems(path->nodes[level]))
1448 btrfs_item_key_to_cpu(path->nodes[level], key,
1449 path->slots[level] + 1);
1451 btrfs_node_key_to_cpu(path->nodes[level], key,
1452 path->slots[level] + 1);
1459 * look for inline back ref. if back ref is found, *ref_ret is set
1460 * to the address of inline back ref, and 0 is returned.
1462 * if back ref isn't found, *ref_ret is set to the address where it
1463 * should be inserted, and -ENOENT is returned.
1465 * if insert is true and there are too many inline back refs, the path
1466 * points to the extent item, and -EAGAIN is returned.
1468 * NOTE: inline back refs are ordered in the same way that back ref
1469 * items in the tree are ordered.
1471 static noinline_for_stack
1472 int lookup_inline_extent_backref(struct btrfs_trans_handle *trans,
1473 struct btrfs_path *path,
1474 struct btrfs_extent_inline_ref **ref_ret,
1475 u64 bytenr, u64 num_bytes,
1476 u64 parent, u64 root_objectid,
1477 u64 owner, u64 offset, int insert)
1479 struct btrfs_fs_info *fs_info = trans->fs_info;
1480 struct btrfs_root *root = fs_info->extent_root;
1481 struct btrfs_key key;
1482 struct extent_buffer *leaf;
1483 struct btrfs_extent_item *ei;
1484 struct btrfs_extent_inline_ref *iref;
1494 bool skinny_metadata = btrfs_fs_incompat(fs_info, SKINNY_METADATA);
1497 key.objectid = bytenr;
1498 key.type = BTRFS_EXTENT_ITEM_KEY;
1499 key.offset = num_bytes;
1501 want = extent_ref_type(parent, owner);
1503 extra_size = btrfs_extent_inline_ref_size(want);
1504 path->keep_locks = 1;
1509 * Owner is our level, so we can just add one to get the level for the
1510 * block we are interested in.
1512 if (skinny_metadata && owner < BTRFS_FIRST_FREE_OBJECTID) {
1513 key.type = BTRFS_METADATA_ITEM_KEY;
1518 ret = btrfs_search_slot(trans, root, &key, path, extra_size, 1);
1525 * We may be a newly converted file system which still has the old fat
1526 * extent entries for metadata, so try and see if we have one of those.
1528 if (ret > 0 && skinny_metadata) {
1529 skinny_metadata = false;
1530 if (path->slots[0]) {
1532 btrfs_item_key_to_cpu(path->nodes[0], &key,
1534 if (key.objectid == bytenr &&
1535 key.type == BTRFS_EXTENT_ITEM_KEY &&
1536 key.offset == num_bytes)
1540 key.objectid = bytenr;
1541 key.type = BTRFS_EXTENT_ITEM_KEY;
1542 key.offset = num_bytes;
1543 btrfs_release_path(path);
1548 if (ret && !insert) {
1551 } else if (WARN_ON(ret)) {
1556 leaf = path->nodes[0];
1557 item_size = btrfs_item_size_nr(leaf, path->slots[0]);
1558 if (unlikely(item_size < sizeof(*ei))) {
1560 btrfs_print_v0_err(fs_info);
1561 btrfs_abort_transaction(trans, err);
1565 ei = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_extent_item);
1566 flags = btrfs_extent_flags(leaf, ei);
1568 ptr = (unsigned long)(ei + 1);
1569 end = (unsigned long)ei + item_size;
1571 if (flags & BTRFS_EXTENT_FLAG_TREE_BLOCK && !skinny_metadata) {
1572 ptr += sizeof(struct btrfs_tree_block_info);
1576 if (owner >= BTRFS_FIRST_FREE_OBJECTID)
1577 needed = BTRFS_REF_TYPE_DATA;
1579 needed = BTRFS_REF_TYPE_BLOCK;
1587 iref = (struct btrfs_extent_inline_ref *)ptr;
1588 type = btrfs_get_extent_inline_ref_type(leaf, iref, needed);
1589 if (type == BTRFS_REF_TYPE_INVALID) {
1597 ptr += btrfs_extent_inline_ref_size(type);
1601 if (type == BTRFS_EXTENT_DATA_REF_KEY) {
1602 struct btrfs_extent_data_ref *dref;
1603 dref = (struct btrfs_extent_data_ref *)(&iref->offset);
1604 if (match_extent_data_ref(leaf, dref, root_objectid,
1609 if (hash_extent_data_ref_item(leaf, dref) <
1610 hash_extent_data_ref(root_objectid, owner, offset))
1614 ref_offset = btrfs_extent_inline_ref_offset(leaf, iref);
1616 if (parent == ref_offset) {
1620 if (ref_offset < parent)
1623 if (root_objectid == ref_offset) {
1627 if (ref_offset < root_objectid)
1631 ptr += btrfs_extent_inline_ref_size(type);
1633 if (err == -ENOENT && insert) {
1634 if (item_size + extra_size >=
1635 BTRFS_MAX_EXTENT_ITEM_SIZE(root)) {
1640 * To add new inline back ref, we have to make sure
1641 * there is no corresponding back ref item.
1642 * For simplicity, we just do not add new inline back
1643 * ref if there is any kind of item for this block
1645 if (find_next_key(path, 0, &key) == 0 &&
1646 key.objectid == bytenr &&
1647 key.type < BTRFS_BLOCK_GROUP_ITEM_KEY) {
1652 *ref_ret = (struct btrfs_extent_inline_ref *)ptr;
1655 path->keep_locks = 0;
1656 btrfs_unlock_up_safe(path, 1);
1662 * helper to add new inline back ref
1664 static noinline_for_stack
1665 void setup_inline_extent_backref(struct btrfs_fs_info *fs_info,
1666 struct btrfs_path *path,
1667 struct btrfs_extent_inline_ref *iref,
1668 u64 parent, u64 root_objectid,
1669 u64 owner, u64 offset, int refs_to_add,
1670 struct btrfs_delayed_extent_op *extent_op)
1672 struct extent_buffer *leaf;
1673 struct btrfs_extent_item *ei;
1676 unsigned long item_offset;
1681 leaf = path->nodes[0];
1682 ei = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_extent_item);
1683 item_offset = (unsigned long)iref - (unsigned long)ei;
1685 type = extent_ref_type(parent, owner);
1686 size = btrfs_extent_inline_ref_size(type);
1688 btrfs_extend_item(fs_info, path, size);
1690 ei = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_extent_item);
1691 refs = btrfs_extent_refs(leaf, ei);
1692 refs += refs_to_add;
1693 btrfs_set_extent_refs(leaf, ei, refs);
1695 __run_delayed_extent_op(extent_op, leaf, ei);
1697 ptr = (unsigned long)ei + item_offset;
1698 end = (unsigned long)ei + btrfs_item_size_nr(leaf, path->slots[0]);
1699 if (ptr < end - size)
1700 memmove_extent_buffer(leaf, ptr + size, ptr,
1703 iref = (struct btrfs_extent_inline_ref *)ptr;
1704 btrfs_set_extent_inline_ref_type(leaf, iref, type);
1705 if (type == BTRFS_EXTENT_DATA_REF_KEY) {
1706 struct btrfs_extent_data_ref *dref;
1707 dref = (struct btrfs_extent_data_ref *)(&iref->offset);
1708 btrfs_set_extent_data_ref_root(leaf, dref, root_objectid);
1709 btrfs_set_extent_data_ref_objectid(leaf, dref, owner);
1710 btrfs_set_extent_data_ref_offset(leaf, dref, offset);
1711 btrfs_set_extent_data_ref_count(leaf, dref, refs_to_add);
1712 } else if (type == BTRFS_SHARED_DATA_REF_KEY) {
1713 struct btrfs_shared_data_ref *sref;
1714 sref = (struct btrfs_shared_data_ref *)(iref + 1);
1715 btrfs_set_shared_data_ref_count(leaf, sref, refs_to_add);
1716 btrfs_set_extent_inline_ref_offset(leaf, iref, parent);
1717 } else if (type == BTRFS_SHARED_BLOCK_REF_KEY) {
1718 btrfs_set_extent_inline_ref_offset(leaf, iref, parent);
1720 btrfs_set_extent_inline_ref_offset(leaf, iref, root_objectid);
1722 btrfs_mark_buffer_dirty(leaf);
1725 static int lookup_extent_backref(struct btrfs_trans_handle *trans,
1726 struct btrfs_path *path,
1727 struct btrfs_extent_inline_ref **ref_ret,
1728 u64 bytenr, u64 num_bytes, u64 parent,
1729 u64 root_objectid, u64 owner, u64 offset)
1733 ret = lookup_inline_extent_backref(trans, path, ref_ret, bytenr,
1734 num_bytes, parent, root_objectid,
1739 btrfs_release_path(path);
1742 if (owner < BTRFS_FIRST_FREE_OBJECTID) {
1743 ret = lookup_tree_block_ref(trans, path, bytenr, parent,
1746 ret = lookup_extent_data_ref(trans, path, bytenr, parent,
1747 root_objectid, owner, offset);
1753 * helper to update/remove inline back ref
1755 static noinline_for_stack
1756 void update_inline_extent_backref(struct btrfs_path *path,
1757 struct btrfs_extent_inline_ref *iref,
1759 struct btrfs_delayed_extent_op *extent_op,
1762 struct extent_buffer *leaf = path->nodes[0];
1763 struct btrfs_fs_info *fs_info = leaf->fs_info;
1764 struct btrfs_extent_item *ei;
1765 struct btrfs_extent_data_ref *dref = NULL;
1766 struct btrfs_shared_data_ref *sref = NULL;
1774 ei = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_extent_item);
1775 refs = btrfs_extent_refs(leaf, ei);
1776 WARN_ON(refs_to_mod < 0 && refs + refs_to_mod <= 0);
1777 refs += refs_to_mod;
1778 btrfs_set_extent_refs(leaf, ei, refs);
1780 __run_delayed_extent_op(extent_op, leaf, ei);
1783 * If type is invalid, we should have bailed out after
1784 * lookup_inline_extent_backref().
1786 type = btrfs_get_extent_inline_ref_type(leaf, iref, BTRFS_REF_TYPE_ANY);
1787 ASSERT(type != BTRFS_REF_TYPE_INVALID);
1789 if (type == BTRFS_EXTENT_DATA_REF_KEY) {
1790 dref = (struct btrfs_extent_data_ref *)(&iref->offset);
1791 refs = btrfs_extent_data_ref_count(leaf, dref);
1792 } else if (type == BTRFS_SHARED_DATA_REF_KEY) {
1793 sref = (struct btrfs_shared_data_ref *)(iref + 1);
1794 refs = btrfs_shared_data_ref_count(leaf, sref);
1797 BUG_ON(refs_to_mod != -1);
1800 BUG_ON(refs_to_mod < 0 && refs < -refs_to_mod);
1801 refs += refs_to_mod;
1804 if (type == BTRFS_EXTENT_DATA_REF_KEY)
1805 btrfs_set_extent_data_ref_count(leaf, dref, refs);
1807 btrfs_set_shared_data_ref_count(leaf, sref, refs);
1810 size = btrfs_extent_inline_ref_size(type);
1811 item_size = btrfs_item_size_nr(leaf, path->slots[0]);
1812 ptr = (unsigned long)iref;
1813 end = (unsigned long)ei + item_size;
1814 if (ptr + size < end)
1815 memmove_extent_buffer(leaf, ptr, ptr + size,
1818 btrfs_truncate_item(fs_info, path, item_size, 1);
1820 btrfs_mark_buffer_dirty(leaf);
1823 static noinline_for_stack
1824 int insert_inline_extent_backref(struct btrfs_trans_handle *trans,
1825 struct btrfs_path *path,
1826 u64 bytenr, u64 num_bytes, u64 parent,
1827 u64 root_objectid, u64 owner,
1828 u64 offset, int refs_to_add,
1829 struct btrfs_delayed_extent_op *extent_op)
1831 struct btrfs_extent_inline_ref *iref;
1834 ret = lookup_inline_extent_backref(trans, path, &iref, bytenr,
1835 num_bytes, parent, root_objectid,
1838 BUG_ON(owner < BTRFS_FIRST_FREE_OBJECTID);
1839 update_inline_extent_backref(path, iref, refs_to_add,
1841 } else if (ret == -ENOENT) {
1842 setup_inline_extent_backref(trans->fs_info, path, iref, parent,
1843 root_objectid, owner, offset,
1844 refs_to_add, extent_op);
1850 static int insert_extent_backref(struct btrfs_trans_handle *trans,
1851 struct btrfs_path *path,
1852 u64 bytenr, u64 parent, u64 root_objectid,
1853 u64 owner, u64 offset, int refs_to_add)
1856 if (owner < BTRFS_FIRST_FREE_OBJECTID) {
1857 BUG_ON(refs_to_add != 1);
1858 ret = insert_tree_block_ref(trans, path, bytenr, parent,
1861 ret = insert_extent_data_ref(trans, path, bytenr, parent,
1862 root_objectid, owner, offset,
1868 static int remove_extent_backref(struct btrfs_trans_handle *trans,
1869 struct btrfs_path *path,
1870 struct btrfs_extent_inline_ref *iref,
1871 int refs_to_drop, int is_data, int *last_ref)
1875 BUG_ON(!is_data && refs_to_drop != 1);
1877 update_inline_extent_backref(path, iref, -refs_to_drop, NULL,
1879 } else if (is_data) {
1880 ret = remove_extent_data_ref(trans, path, refs_to_drop,
1884 ret = btrfs_del_item(trans, trans->fs_info->extent_root, path);
1889 #define in_range(b, first, len) ((b) >= (first) && (b) < (first) + (len))
1890 static int btrfs_issue_discard(struct block_device *bdev, u64 start, u64 len,
1891 u64 *discarded_bytes)
1894 u64 bytes_left, end;
1895 u64 aligned_start = ALIGN(start, 1 << 9);
1897 if (WARN_ON(start != aligned_start)) {
1898 len -= aligned_start - start;
1899 len = round_down(len, 1 << 9);
1900 start = aligned_start;
1903 *discarded_bytes = 0;
1911 /* Skip any superblocks on this device. */
1912 for (j = 0; j < BTRFS_SUPER_MIRROR_MAX; j++) {
1913 u64 sb_start = btrfs_sb_offset(j);
1914 u64 sb_end = sb_start + BTRFS_SUPER_INFO_SIZE;
1915 u64 size = sb_start - start;
1917 if (!in_range(sb_start, start, bytes_left) &&
1918 !in_range(sb_end, start, bytes_left) &&
1919 !in_range(start, sb_start, BTRFS_SUPER_INFO_SIZE))
1923 * Superblock spans beginning of range. Adjust start and
1926 if (sb_start <= start) {
1927 start += sb_end - start;
1932 bytes_left = end - start;
1937 ret = blkdev_issue_discard(bdev, start >> 9, size >> 9,
1940 *discarded_bytes += size;
1941 else if (ret != -EOPNOTSUPP)
1950 bytes_left = end - start;
1954 ret = blkdev_issue_discard(bdev, start >> 9, bytes_left >> 9,
1957 *discarded_bytes += bytes_left;
1962 int btrfs_discard_extent(struct btrfs_fs_info *fs_info, u64 bytenr,
1963 u64 num_bytes, u64 *actual_bytes)
1966 u64 discarded_bytes = 0;
1967 struct btrfs_bio *bbio = NULL;
1971 * Avoid races with device replace and make sure our bbio has devices
1972 * associated to its stripes that don't go away while we are discarding.
1974 btrfs_bio_counter_inc_blocked(fs_info);
1975 /* Tell the block device(s) that the sectors can be discarded */
1976 ret = btrfs_map_block(fs_info, BTRFS_MAP_DISCARD, bytenr, &num_bytes,
1978 /* Error condition is -ENOMEM */
1980 struct btrfs_bio_stripe *stripe = bbio->stripes;
1984 for (i = 0; i < bbio->num_stripes; i++, stripe++) {
1986 struct request_queue *req_q;
1987 struct btrfs_device *device = stripe->dev;
1989 if (!device->bdev) {
1990 ASSERT(btrfs_test_opt(fs_info, DEGRADED));
1993 req_q = bdev_get_queue(device->bdev);
1994 if (!blk_queue_discard(req_q))
1997 if (!test_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state))
2000 ret = btrfs_issue_discard(device->bdev,
2005 discarded_bytes += bytes;
2006 else if (ret != -EOPNOTSUPP)
2007 break; /* Logic errors or -ENOMEM, or -EIO but I don't know how that could happen JDM */
2010 * Just in case we get back EOPNOTSUPP for some reason,
2011 * just ignore the return value so we don't screw up
2012 * people calling discard_extent.
2016 btrfs_put_bbio(bbio);
2018 btrfs_bio_counter_dec(fs_info);
2021 *actual_bytes = discarded_bytes;
2024 if (ret == -EOPNOTSUPP)
2029 /* Can return -ENOMEM */
2030 int btrfs_inc_extent_ref(struct btrfs_trans_handle *trans,
2031 struct btrfs_root *root,
2032 u64 bytenr, u64 num_bytes, u64 parent,
2033 u64 root_objectid, u64 owner, u64 offset)
2035 struct btrfs_fs_info *fs_info = root->fs_info;
2036 int old_ref_mod, new_ref_mod;
2039 BUG_ON(owner < BTRFS_FIRST_FREE_OBJECTID &&
2040 root_objectid == BTRFS_TREE_LOG_OBJECTID);
2042 btrfs_ref_tree_mod(root, bytenr, num_bytes, parent, root_objectid,
2043 owner, offset, BTRFS_ADD_DELAYED_REF);
2045 if (owner < BTRFS_FIRST_FREE_OBJECTID) {
2046 ret = btrfs_add_delayed_tree_ref(trans, bytenr,
2048 root_objectid, (int)owner,
2049 BTRFS_ADD_DELAYED_REF, NULL,
2050 &old_ref_mod, &new_ref_mod);
2052 ret = btrfs_add_delayed_data_ref(trans, bytenr,
2054 root_objectid, owner, offset,
2055 0, BTRFS_ADD_DELAYED_REF,
2056 &old_ref_mod, &new_ref_mod);
2059 if (ret == 0 && old_ref_mod < 0 && new_ref_mod >= 0) {
2060 bool metadata = owner < BTRFS_FIRST_FREE_OBJECTID;
2062 add_pinned_bytes(fs_info, -num_bytes, metadata, root_objectid);
2069 * __btrfs_inc_extent_ref - insert backreference for a given extent
2071 * @trans: Handle of transaction
2073 * @node: The delayed ref node used to get the bytenr/length for
2074 * extent whose references are incremented.
2076 * @parent: If this is a shared extent (BTRFS_SHARED_DATA_REF_KEY/
2077 * BTRFS_SHARED_BLOCK_REF_KEY) then it holds the logical
2078 * bytenr of the parent block. Since new extents are always
2079 * created with indirect references, this will only be the case
2080 * when relocating a shared extent. In that case, root_objectid
2081 * will be BTRFS_TREE_RELOC_OBJECTID. Otheriwse, parent must
2084 * @root_objectid: The id of the root where this modification has originated,
2085 * this can be either one of the well-known metadata trees or
2086 * the subvolume id which references this extent.
2088 * @owner: For data extents it is the inode number of the owning file.
2089 * For metadata extents this parameter holds the level in the
2090 * tree of the extent.
2092 * @offset: For metadata extents the offset is ignored and is currently
2093 * always passed as 0. For data extents it is the fileoffset
2094 * this extent belongs to.
2096 * @refs_to_add Number of references to add
2098 * @extent_op Pointer to a structure, holding information necessary when
2099 * updating a tree block's flags
2102 static int __btrfs_inc_extent_ref(struct btrfs_trans_handle *trans,
2103 struct btrfs_delayed_ref_node *node,
2104 u64 parent, u64 root_objectid,
2105 u64 owner, u64 offset, int refs_to_add,
2106 struct btrfs_delayed_extent_op *extent_op)
2108 struct btrfs_path *path;
2109 struct extent_buffer *leaf;
2110 struct btrfs_extent_item *item;
2111 struct btrfs_key key;
2112 u64 bytenr = node->bytenr;
2113 u64 num_bytes = node->num_bytes;
2117 path = btrfs_alloc_path();
2121 path->reada = READA_FORWARD;
2122 path->leave_spinning = 1;
2123 /* this will setup the path even if it fails to insert the back ref */
2124 ret = insert_inline_extent_backref(trans, path, bytenr, num_bytes,
2125 parent, root_objectid, owner,
2126 offset, refs_to_add, extent_op);
2127 if ((ret < 0 && ret != -EAGAIN) || !ret)
2131 * Ok we had -EAGAIN which means we didn't have space to insert and
2132 * inline extent ref, so just update the reference count and add a
2135 leaf = path->nodes[0];
2136 btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
2137 item = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_extent_item);
2138 refs = btrfs_extent_refs(leaf, item);
2139 btrfs_set_extent_refs(leaf, item, refs + refs_to_add);
2141 __run_delayed_extent_op(extent_op, leaf, item);
2143 btrfs_mark_buffer_dirty(leaf);
2144 btrfs_release_path(path);
2146 path->reada = READA_FORWARD;
2147 path->leave_spinning = 1;
2148 /* now insert the actual backref */
2149 ret = insert_extent_backref(trans, path, bytenr, parent, root_objectid,
2150 owner, offset, refs_to_add);
2152 btrfs_abort_transaction(trans, ret);
2154 btrfs_free_path(path);
2158 static int run_delayed_data_ref(struct btrfs_trans_handle *trans,
2159 struct btrfs_delayed_ref_node *node,
2160 struct btrfs_delayed_extent_op *extent_op,
2161 int insert_reserved)
2164 struct btrfs_delayed_data_ref *ref;
2165 struct btrfs_key ins;
2170 ins.objectid = node->bytenr;
2171 ins.offset = node->num_bytes;
2172 ins.type = BTRFS_EXTENT_ITEM_KEY;
2174 ref = btrfs_delayed_node_to_data_ref(node);
2175 trace_run_delayed_data_ref(trans->fs_info, node, ref, node->action);
2177 if (node->type == BTRFS_SHARED_DATA_REF_KEY)
2178 parent = ref->parent;
2179 ref_root = ref->root;
2181 if (node->action == BTRFS_ADD_DELAYED_REF && insert_reserved) {
2183 flags |= extent_op->flags_to_set;
2184 ret = alloc_reserved_file_extent(trans, parent, ref_root,
2185 flags, ref->objectid,
2188 } else if (node->action == BTRFS_ADD_DELAYED_REF) {
2189 ret = __btrfs_inc_extent_ref(trans, node, parent, ref_root,
2190 ref->objectid, ref->offset,
2191 node->ref_mod, extent_op);
2192 } else if (node->action == BTRFS_DROP_DELAYED_REF) {
2193 ret = __btrfs_free_extent(trans, node, parent,
2194 ref_root, ref->objectid,
2195 ref->offset, node->ref_mod,
2203 static void __run_delayed_extent_op(struct btrfs_delayed_extent_op *extent_op,
2204 struct extent_buffer *leaf,
2205 struct btrfs_extent_item *ei)
2207 u64 flags = btrfs_extent_flags(leaf, ei);
2208 if (extent_op->update_flags) {
2209 flags |= extent_op->flags_to_set;
2210 btrfs_set_extent_flags(leaf, ei, flags);
2213 if (extent_op->update_key) {
2214 struct btrfs_tree_block_info *bi;
2215 BUG_ON(!(flags & BTRFS_EXTENT_FLAG_TREE_BLOCK));
2216 bi = (struct btrfs_tree_block_info *)(ei + 1);
2217 btrfs_set_tree_block_key(leaf, bi, &extent_op->key);
2221 static int run_delayed_extent_op(struct btrfs_trans_handle *trans,
2222 struct btrfs_delayed_ref_head *head,
2223 struct btrfs_delayed_extent_op *extent_op)
2225 struct btrfs_fs_info *fs_info = trans->fs_info;
2226 struct btrfs_key key;
2227 struct btrfs_path *path;
2228 struct btrfs_extent_item *ei;
2229 struct extent_buffer *leaf;
2233 int metadata = !extent_op->is_data;
2238 if (metadata && !btrfs_fs_incompat(fs_info, SKINNY_METADATA))
2241 path = btrfs_alloc_path();
2245 key.objectid = head->bytenr;
2248 key.type = BTRFS_METADATA_ITEM_KEY;
2249 key.offset = extent_op->level;
2251 key.type = BTRFS_EXTENT_ITEM_KEY;
2252 key.offset = head->num_bytes;
2256 path->reada = READA_FORWARD;
2257 path->leave_spinning = 1;
2258 ret = btrfs_search_slot(trans, fs_info->extent_root, &key, path, 0, 1);
2265 if (path->slots[0] > 0) {
2267 btrfs_item_key_to_cpu(path->nodes[0], &key,
2269 if (key.objectid == head->bytenr &&
2270 key.type == BTRFS_EXTENT_ITEM_KEY &&
2271 key.offset == head->num_bytes)
2275 btrfs_release_path(path);
2278 key.objectid = head->bytenr;
2279 key.offset = head->num_bytes;
2280 key.type = BTRFS_EXTENT_ITEM_KEY;
2289 leaf = path->nodes[0];
2290 item_size = btrfs_item_size_nr(leaf, path->slots[0]);
2292 if (unlikely(item_size < sizeof(*ei))) {
2294 btrfs_print_v0_err(fs_info);
2295 btrfs_abort_transaction(trans, err);
2299 ei = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_extent_item);
2300 __run_delayed_extent_op(extent_op, leaf, ei);
2302 btrfs_mark_buffer_dirty(leaf);
2304 btrfs_free_path(path);
2308 static int run_delayed_tree_ref(struct btrfs_trans_handle *trans,
2309 struct btrfs_delayed_ref_node *node,
2310 struct btrfs_delayed_extent_op *extent_op,
2311 int insert_reserved)
2314 struct btrfs_delayed_tree_ref *ref;
2318 ref = btrfs_delayed_node_to_tree_ref(node);
2319 trace_run_delayed_tree_ref(trans->fs_info, node, ref, node->action);
2321 if (node->type == BTRFS_SHARED_BLOCK_REF_KEY)
2322 parent = ref->parent;
2323 ref_root = ref->root;
2325 if (node->ref_mod != 1) {
2326 btrfs_err(trans->fs_info,
2327 "btree block(%llu) has %d references rather than 1: action %d ref_root %llu parent %llu",
2328 node->bytenr, node->ref_mod, node->action, ref_root,
2332 if (node->action == BTRFS_ADD_DELAYED_REF && insert_reserved) {
2333 BUG_ON(!extent_op || !extent_op->update_flags);
2334 ret = alloc_reserved_tree_block(trans, node, extent_op);
2335 } else if (node->action == BTRFS_ADD_DELAYED_REF) {
2336 ret = __btrfs_inc_extent_ref(trans, node, parent, ref_root,
2337 ref->level, 0, 1, extent_op);
2338 } else if (node->action == BTRFS_DROP_DELAYED_REF) {
2339 ret = __btrfs_free_extent(trans, node, parent, ref_root,
2340 ref->level, 0, 1, extent_op);
2347 /* helper function to actually process a single delayed ref entry */
2348 static int run_one_delayed_ref(struct btrfs_trans_handle *trans,
2349 struct btrfs_delayed_ref_node *node,
2350 struct btrfs_delayed_extent_op *extent_op,
2351 int insert_reserved)
2355 if (trans->aborted) {
2356 if (insert_reserved)
2357 btrfs_pin_extent(trans->fs_info, node->bytenr,
2358 node->num_bytes, 1);
2362 if (node->type == BTRFS_TREE_BLOCK_REF_KEY ||
2363 node->type == BTRFS_SHARED_BLOCK_REF_KEY)
2364 ret = run_delayed_tree_ref(trans, node, extent_op,
2366 else if (node->type == BTRFS_EXTENT_DATA_REF_KEY ||
2367 node->type == BTRFS_SHARED_DATA_REF_KEY)
2368 ret = run_delayed_data_ref(trans, node, extent_op,
2372 if (ret && insert_reserved)
2373 btrfs_pin_extent(trans->fs_info, node->bytenr,
2374 node->num_bytes, 1);
2378 static inline struct btrfs_delayed_ref_node *
2379 select_delayed_ref(struct btrfs_delayed_ref_head *head)
2381 struct btrfs_delayed_ref_node *ref;
2383 if (RB_EMPTY_ROOT(&head->ref_tree))
2387 * Select a delayed ref of type BTRFS_ADD_DELAYED_REF first.
2388 * This is to prevent a ref count from going down to zero, which deletes
2389 * the extent item from the extent tree, when there still are references
2390 * to add, which would fail because they would not find the extent item.
2392 if (!list_empty(&head->ref_add_list))
2393 return list_first_entry(&head->ref_add_list,
2394 struct btrfs_delayed_ref_node, add_list);
2396 ref = rb_entry(rb_first(&head->ref_tree),
2397 struct btrfs_delayed_ref_node, ref_node);
2398 ASSERT(list_empty(&ref->add_list));
2402 static void unselect_delayed_ref_head(struct btrfs_delayed_ref_root *delayed_refs,
2403 struct btrfs_delayed_ref_head *head)
2405 spin_lock(&delayed_refs->lock);
2406 head->processing = 0;
2407 delayed_refs->num_heads_ready++;
2408 spin_unlock(&delayed_refs->lock);
2409 btrfs_delayed_ref_unlock(head);
2412 static int cleanup_extent_op(struct btrfs_trans_handle *trans,
2413 struct btrfs_delayed_ref_head *head)
2415 struct btrfs_delayed_extent_op *extent_op = head->extent_op;
2420 head->extent_op = NULL;
2421 if (head->must_insert_reserved) {
2422 btrfs_free_delayed_extent_op(extent_op);
2425 spin_unlock(&head->lock);
2426 ret = run_delayed_extent_op(trans, head, extent_op);
2427 btrfs_free_delayed_extent_op(extent_op);
2428 return ret ? ret : 1;
2431 static int cleanup_ref_head(struct btrfs_trans_handle *trans,
2432 struct btrfs_delayed_ref_head *head)
2435 struct btrfs_fs_info *fs_info = trans->fs_info;
2436 struct btrfs_delayed_ref_root *delayed_refs;
2439 delayed_refs = &trans->transaction->delayed_refs;
2441 ret = cleanup_extent_op(trans, head);
2443 unselect_delayed_ref_head(delayed_refs, head);
2444 btrfs_debug(fs_info, "run_delayed_extent_op returned %d", ret);
2451 * Need to drop our head ref lock and re-acquire the delayed ref lock
2452 * and then re-check to make sure nobody got added.
2454 spin_unlock(&head->lock);
2455 spin_lock(&delayed_refs->lock);
2456 spin_lock(&head->lock);
2457 if (!RB_EMPTY_ROOT(&head->ref_tree) || head->extent_op) {
2458 spin_unlock(&head->lock);
2459 spin_unlock(&delayed_refs->lock);
2462 delayed_refs->num_heads--;
2463 rb_erase(&head->href_node, &delayed_refs->href_root);
2464 RB_CLEAR_NODE(&head->href_node);
2465 spin_unlock(&head->lock);
2466 spin_unlock(&delayed_refs->lock);
2467 atomic_dec(&delayed_refs->num_entries);
2469 trace_run_delayed_ref_head(fs_info, head, 0);
2471 if (head->total_ref_mod < 0) {
2472 struct btrfs_space_info *space_info;
2476 flags = BTRFS_BLOCK_GROUP_DATA;
2477 else if (head->is_system)
2478 flags = BTRFS_BLOCK_GROUP_SYSTEM;
2480 flags = BTRFS_BLOCK_GROUP_METADATA;
2481 space_info = __find_space_info(fs_info, flags);
2483 percpu_counter_add_batch(&space_info->total_bytes_pinned,
2485 BTRFS_TOTAL_BYTES_PINNED_BATCH);
2487 if (head->is_data) {
2488 spin_lock(&delayed_refs->lock);
2489 delayed_refs->pending_csums -= head->num_bytes;
2490 spin_unlock(&delayed_refs->lock);
2494 if (head->must_insert_reserved) {
2495 btrfs_pin_extent(fs_info, head->bytenr,
2496 head->num_bytes, 1);
2497 if (head->is_data) {
2498 ret = btrfs_del_csums(trans, fs_info->csum_root,
2499 head->bytenr, head->num_bytes);
2503 /* Also free its reserved qgroup space */
2504 btrfs_qgroup_free_delayed_ref(fs_info, head->qgroup_ref_root,
2505 head->qgroup_reserved);
2506 btrfs_delayed_ref_unlock(head);
2507 btrfs_put_delayed_ref_head(head);
2512 * Returns 0 on success or if called with an already aborted transaction.
2513 * Returns -ENOMEM or -EIO on failure and will abort the transaction.
2515 static noinline int __btrfs_run_delayed_refs(struct btrfs_trans_handle *trans,
2518 struct btrfs_fs_info *fs_info = trans->fs_info;
2519 struct btrfs_delayed_ref_root *delayed_refs;
2520 struct btrfs_delayed_ref_node *ref;
2521 struct btrfs_delayed_ref_head *locked_ref = NULL;
2522 struct btrfs_delayed_extent_op *extent_op;
2523 ktime_t start = ktime_get();
2525 unsigned long count = 0;
2526 unsigned long actual_count = 0;
2527 int must_insert_reserved = 0;
2529 delayed_refs = &trans->transaction->delayed_refs;
2535 spin_lock(&delayed_refs->lock);
2536 locked_ref = btrfs_select_ref_head(trans);
2538 spin_unlock(&delayed_refs->lock);
2542 /* grab the lock that says we are going to process
2543 * all the refs for this head */
2544 ret = btrfs_delayed_ref_lock(trans, locked_ref);
2545 spin_unlock(&delayed_refs->lock);
2547 * we may have dropped the spin lock to get the head
2548 * mutex lock, and that might have given someone else
2549 * time to free the head. If that's true, it has been
2550 * removed from our list and we can move on.
2552 if (ret == -EAGAIN) {
2560 * We need to try and merge add/drops of the same ref since we
2561 * can run into issues with relocate dropping the implicit ref
2562 * and then it being added back again before the drop can
2563 * finish. If we merged anything we need to re-loop so we can
2565 * Or we can get node references of the same type that weren't
2566 * merged when created due to bumps in the tree mod seq, and
2567 * we need to merge them to prevent adding an inline extent
2568 * backref before dropping it (triggering a BUG_ON at
2569 * insert_inline_extent_backref()).
2571 spin_lock(&locked_ref->lock);
2572 btrfs_merge_delayed_refs(trans, delayed_refs, locked_ref);
2574 ref = select_delayed_ref(locked_ref);
2576 if (ref && ref->seq &&
2577 btrfs_check_delayed_seq(fs_info, ref->seq)) {
2578 spin_unlock(&locked_ref->lock);
2579 unselect_delayed_ref_head(delayed_refs, locked_ref);
2587 * We're done processing refs in this ref_head, clean everything
2588 * up and move on to the next ref_head.
2591 ret = cleanup_ref_head(trans, locked_ref);
2593 /* We dropped our lock, we need to loop. */
2606 rb_erase(&ref->ref_node, &locked_ref->ref_tree);
2607 RB_CLEAR_NODE(&ref->ref_node);
2608 if (!list_empty(&ref->add_list))
2609 list_del(&ref->add_list);
2611 * When we play the delayed ref, also correct the ref_mod on
2614 switch (ref->action) {
2615 case BTRFS_ADD_DELAYED_REF:
2616 case BTRFS_ADD_DELAYED_EXTENT:
2617 locked_ref->ref_mod -= ref->ref_mod;
2619 case BTRFS_DROP_DELAYED_REF:
2620 locked_ref->ref_mod += ref->ref_mod;
2625 atomic_dec(&delayed_refs->num_entries);
2628 * Record the must-insert_reserved flag before we drop the spin
2631 must_insert_reserved = locked_ref->must_insert_reserved;
2632 locked_ref->must_insert_reserved = 0;
2634 extent_op = locked_ref->extent_op;
2635 locked_ref->extent_op = NULL;
2636 spin_unlock(&locked_ref->lock);
2638 ret = run_one_delayed_ref(trans, ref, extent_op,
2639 must_insert_reserved);
2641 btrfs_free_delayed_extent_op(extent_op);
2643 unselect_delayed_ref_head(delayed_refs, locked_ref);
2644 btrfs_put_delayed_ref(ref);
2645 btrfs_debug(fs_info, "run_one_delayed_ref returned %d",
2650 btrfs_put_delayed_ref(ref);
2656 * We don't want to include ref heads since we can have empty ref heads
2657 * and those will drastically skew our runtime down since we just do
2658 * accounting, no actual extent tree updates.
2660 if (actual_count > 0) {
2661 u64 runtime = ktime_to_ns(ktime_sub(ktime_get(), start));
2665 * We weigh the current average higher than our current runtime
2666 * to avoid large swings in the average.
2668 spin_lock(&delayed_refs->lock);
2669 avg = fs_info->avg_delayed_ref_runtime * 3 + runtime;
2670 fs_info->avg_delayed_ref_runtime = avg >> 2; /* div by 4 */
2671 spin_unlock(&delayed_refs->lock);
2676 #ifdef SCRAMBLE_DELAYED_REFS
2678 * Normally delayed refs get processed in ascending bytenr order. This
2679 * correlates in most cases to the order added. To expose dependencies on this
2680 * order, we start to process the tree in the middle instead of the beginning
2682 static u64 find_middle(struct rb_root *root)
2684 struct rb_node *n = root->rb_node;
2685 struct btrfs_delayed_ref_node *entry;
2688 u64 first = 0, last = 0;
2692 entry = rb_entry(n, struct btrfs_delayed_ref_node, rb_node);
2693 first = entry->bytenr;
2697 entry = rb_entry(n, struct btrfs_delayed_ref_node, rb_node);
2698 last = entry->bytenr;
2703 entry = rb_entry(n, struct btrfs_delayed_ref_node, rb_node);
2704 WARN_ON(!entry->in_tree);
2706 middle = entry->bytenr;
2719 static inline u64 heads_to_leaves(struct btrfs_fs_info *fs_info, u64 heads)
2723 num_bytes = heads * (sizeof(struct btrfs_extent_item) +
2724 sizeof(struct btrfs_extent_inline_ref));
2725 if (!btrfs_fs_incompat(fs_info, SKINNY_METADATA))
2726 num_bytes += heads * sizeof(struct btrfs_tree_block_info);
2729 * We don't ever fill up leaves all the way so multiply by 2 just to be
2730 * closer to what we're really going to want to use.
2732 return div_u64(num_bytes, BTRFS_LEAF_DATA_SIZE(fs_info));
2736 * Takes the number of bytes to be csumm'ed and figures out how many leaves it
2737 * would require to store the csums for that many bytes.
2739 u64 btrfs_csum_bytes_to_leaves(struct btrfs_fs_info *fs_info, u64 csum_bytes)
2742 u64 num_csums_per_leaf;
2745 csum_size = BTRFS_MAX_ITEM_SIZE(fs_info);
2746 num_csums_per_leaf = div64_u64(csum_size,
2747 (u64)btrfs_super_csum_size(fs_info->super_copy));
2748 num_csums = div64_u64(csum_bytes, fs_info->sectorsize);
2749 num_csums += num_csums_per_leaf - 1;
2750 num_csums = div64_u64(num_csums, num_csums_per_leaf);
2754 int btrfs_check_space_for_delayed_refs(struct btrfs_trans_handle *trans,
2755 struct btrfs_fs_info *fs_info)
2757 struct btrfs_block_rsv *global_rsv;
2758 u64 num_heads = trans->transaction->delayed_refs.num_heads_ready;
2759 u64 csum_bytes = trans->transaction->delayed_refs.pending_csums;
2760 unsigned int num_dirty_bgs = trans->transaction->num_dirty_bgs;
2761 u64 num_bytes, num_dirty_bgs_bytes;
2764 num_bytes = btrfs_calc_trans_metadata_size(fs_info, 1);
2765 num_heads = heads_to_leaves(fs_info, num_heads);
2767 num_bytes += (num_heads - 1) * fs_info->nodesize;
2769 num_bytes += btrfs_csum_bytes_to_leaves(fs_info, csum_bytes) *
2771 num_dirty_bgs_bytes = btrfs_calc_trans_metadata_size(fs_info,
2773 global_rsv = &fs_info->global_block_rsv;
2776 * If we can't allocate any more chunks lets make sure we have _lots_ of
2777 * wiggle room since running delayed refs can create more delayed refs.
2779 if (global_rsv->space_info->full) {
2780 num_dirty_bgs_bytes <<= 1;
2784 spin_lock(&global_rsv->lock);
2785 if (global_rsv->reserved <= num_bytes + num_dirty_bgs_bytes)
2787 spin_unlock(&global_rsv->lock);
2791 int btrfs_should_throttle_delayed_refs(struct btrfs_trans_handle *trans,
2792 struct btrfs_fs_info *fs_info)
2795 atomic_read(&trans->transaction->delayed_refs.num_entries);
2800 avg_runtime = fs_info->avg_delayed_ref_runtime;
2801 val = num_entries * avg_runtime;
2802 if (val >= NSEC_PER_SEC)
2804 if (val >= NSEC_PER_SEC / 2)
2807 return btrfs_check_space_for_delayed_refs(trans, fs_info);
2810 struct async_delayed_refs {
2811 struct btrfs_root *root;
2816 struct completion wait;
2817 struct btrfs_work work;
2820 static inline struct async_delayed_refs *
2821 to_async_delayed_refs(struct btrfs_work *work)
2823 return container_of(work, struct async_delayed_refs, work);
2826 static void delayed_ref_async_start(struct btrfs_work *work)
2828 struct async_delayed_refs *async = to_async_delayed_refs(work);
2829 struct btrfs_trans_handle *trans;
2830 struct btrfs_fs_info *fs_info = async->root->fs_info;
2833 /* if the commit is already started, we don't need to wait here */
2834 if (btrfs_transaction_blocked(fs_info))
2837 trans = btrfs_join_transaction(async->root);
2838 if (IS_ERR(trans)) {
2839 async->error = PTR_ERR(trans);
2844 * trans->sync means that when we call end_transaction, we won't
2845 * wait on delayed refs
2849 /* Don't bother flushing if we got into a different transaction */
2850 if (trans->transid > async->transid)
2853 ret = btrfs_run_delayed_refs(trans, async->count);
2857 ret = btrfs_end_transaction(trans);
2858 if (ret && !async->error)
2862 complete(&async->wait);
2867 int btrfs_async_run_delayed_refs(struct btrfs_fs_info *fs_info,
2868 unsigned long count, u64 transid, int wait)
2870 struct async_delayed_refs *async;
2873 async = kmalloc(sizeof(*async), GFP_NOFS);
2877 async->root = fs_info->tree_root;
2878 async->count = count;
2880 async->transid = transid;
2885 init_completion(&async->wait);
2887 btrfs_init_work(&async->work, btrfs_extent_refs_helper,
2888 delayed_ref_async_start, NULL, NULL);
2890 btrfs_queue_work(fs_info->extent_workers, &async->work);
2893 wait_for_completion(&async->wait);
2902 * this starts processing the delayed reference count updates and
2903 * extent insertions we have queued up so far. count can be
2904 * 0, which means to process everything in the tree at the start
2905 * of the run (but not newly added entries), or it can be some target
2906 * number you'd like to process.
2908 * Returns 0 on success or if called with an aborted transaction
2909 * Returns <0 on error and aborts the transaction
2911 int btrfs_run_delayed_refs(struct btrfs_trans_handle *trans,
2912 unsigned long count)
2914 struct btrfs_fs_info *fs_info = trans->fs_info;
2915 struct rb_node *node;
2916 struct btrfs_delayed_ref_root *delayed_refs;
2917 struct btrfs_delayed_ref_head *head;
2919 int run_all = count == (unsigned long)-1;
2921 /* We'll clean this up in btrfs_cleanup_transaction */
2925 if (test_bit(BTRFS_FS_CREATING_FREE_SPACE_TREE, &fs_info->flags))
2928 delayed_refs = &trans->transaction->delayed_refs;
2930 count = atomic_read(&delayed_refs->num_entries) * 2;
2933 #ifdef SCRAMBLE_DELAYED_REFS
2934 delayed_refs->run_delayed_start = find_middle(&delayed_refs->root);
2936 ret = __btrfs_run_delayed_refs(trans, count);
2938 btrfs_abort_transaction(trans, ret);
2943 if (!list_empty(&trans->new_bgs))
2944 btrfs_create_pending_block_groups(trans);
2946 spin_lock(&delayed_refs->lock);
2947 node = rb_first(&delayed_refs->href_root);
2949 spin_unlock(&delayed_refs->lock);
2952 head = rb_entry(node, struct btrfs_delayed_ref_head,
2954 refcount_inc(&head->refs);
2955 spin_unlock(&delayed_refs->lock);
2957 /* Mutex was contended, block until it's released and retry. */
2958 mutex_lock(&head->mutex);
2959 mutex_unlock(&head->mutex);
2961 btrfs_put_delayed_ref_head(head);
2969 int btrfs_set_disk_extent_flags(struct btrfs_trans_handle *trans,
2970 struct btrfs_fs_info *fs_info,
2971 u64 bytenr, u64 num_bytes, u64 flags,
2972 int level, int is_data)
2974 struct btrfs_delayed_extent_op *extent_op;
2977 extent_op = btrfs_alloc_delayed_extent_op();
2981 extent_op->flags_to_set = flags;
2982 extent_op->update_flags = true;
2983 extent_op->update_key = false;
2984 extent_op->is_data = is_data ? true : false;
2985 extent_op->level = level;
2987 ret = btrfs_add_delayed_extent_op(fs_info, trans, bytenr,
2988 num_bytes, extent_op);
2990 btrfs_free_delayed_extent_op(extent_op);
2994 static noinline int check_delayed_ref(struct btrfs_root *root,
2995 struct btrfs_path *path,
2996 u64 objectid, u64 offset, u64 bytenr)
2998 struct btrfs_delayed_ref_head *head;
2999 struct btrfs_delayed_ref_node *ref;
3000 struct btrfs_delayed_data_ref *data_ref;
3001 struct btrfs_delayed_ref_root *delayed_refs;
3002 struct btrfs_transaction *cur_trans;
3003 struct rb_node *node;
3006 spin_lock(&root->fs_info->trans_lock);
3007 cur_trans = root->fs_info->running_transaction;
3009 refcount_inc(&cur_trans->use_count);
3010 spin_unlock(&root->fs_info->trans_lock);
3014 delayed_refs = &cur_trans->delayed_refs;
3015 spin_lock(&delayed_refs->lock);
3016 head = btrfs_find_delayed_ref_head(delayed_refs, bytenr);
3018 spin_unlock(&delayed_refs->lock);
3019 btrfs_put_transaction(cur_trans);
3023 if (!mutex_trylock(&head->mutex)) {
3024 refcount_inc(&head->refs);
3025 spin_unlock(&delayed_refs->lock);
3027 btrfs_release_path(path);
3030 * Mutex was contended, block until it's released and let
3033 mutex_lock(&head->mutex);
3034 mutex_unlock(&head->mutex);
3035 btrfs_put_delayed_ref_head(head);
3036 btrfs_put_transaction(cur_trans);
3039 spin_unlock(&delayed_refs->lock);
3041 spin_lock(&head->lock);
3043 * XXX: We should replace this with a proper search function in the
3046 for (node = rb_first(&head->ref_tree); node; node = rb_next(node)) {
3047 ref = rb_entry(node, struct btrfs_delayed_ref_node, ref_node);
3048 /* If it's a shared ref we know a cross reference exists */
3049 if (ref->type != BTRFS_EXTENT_DATA_REF_KEY) {
3054 data_ref = btrfs_delayed_node_to_data_ref(ref);
3057 * If our ref doesn't match the one we're currently looking at
3058 * then we have a cross reference.
3060 if (data_ref->root != root->root_key.objectid ||
3061 data_ref->objectid != objectid ||
3062 data_ref->offset != offset) {
3067 spin_unlock(&head->lock);
3068 mutex_unlock(&head->mutex);
3069 btrfs_put_transaction(cur_trans);
3073 static noinline int check_committed_ref(struct btrfs_root *root,
3074 struct btrfs_path *path,
3075 u64 objectid, u64 offset, u64 bytenr)
3077 struct btrfs_fs_info *fs_info = root->fs_info;
3078 struct btrfs_root *extent_root = fs_info->extent_root;
3079 struct extent_buffer *leaf;
3080 struct btrfs_extent_data_ref *ref;
3081 struct btrfs_extent_inline_ref *iref;
3082 struct btrfs_extent_item *ei;
3083 struct btrfs_key key;
3088 key.objectid = bytenr;
3089 key.offset = (u64)-1;
3090 key.type = BTRFS_EXTENT_ITEM_KEY;
3092 ret = btrfs_search_slot(NULL, extent_root, &key, path, 0, 0);
3095 BUG_ON(ret == 0); /* Corruption */
3098 if (path->slots[0] == 0)
3102 leaf = path->nodes[0];
3103 btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
3105 if (key.objectid != bytenr || key.type != BTRFS_EXTENT_ITEM_KEY)
3109 item_size = btrfs_item_size_nr(leaf, path->slots[0]);
3110 ei = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_extent_item);
3112 if (item_size != sizeof(*ei) +
3113 btrfs_extent_inline_ref_size(BTRFS_EXTENT_DATA_REF_KEY))
3116 if (btrfs_extent_generation(leaf, ei) <=
3117 btrfs_root_last_snapshot(&root->root_item))
3120 iref = (struct btrfs_extent_inline_ref *)(ei + 1);
3122 type = btrfs_get_extent_inline_ref_type(leaf, iref, BTRFS_REF_TYPE_DATA);
3123 if (type != BTRFS_EXTENT_DATA_REF_KEY)
3126 ref = (struct btrfs_extent_data_ref *)(&iref->offset);
3127 if (btrfs_extent_refs(leaf, ei) !=
3128 btrfs_extent_data_ref_count(leaf, ref) ||
3129 btrfs_extent_data_ref_root(leaf, ref) !=
3130 root->root_key.objectid ||
3131 btrfs_extent_data_ref_objectid(leaf, ref) != objectid ||
3132 btrfs_extent_data_ref_offset(leaf, ref) != offset)
3140 int btrfs_cross_ref_exist(struct btrfs_root *root, u64 objectid, u64 offset,
3143 struct btrfs_path *path;
3147 path = btrfs_alloc_path();
3152 ret = check_committed_ref(root, path, objectid,
3154 if (ret && ret != -ENOENT)
3157 ret2 = check_delayed_ref(root, path, objectid,
3159 } while (ret2 == -EAGAIN);
3161 if (ret2 && ret2 != -ENOENT) {
3166 if (ret != -ENOENT || ret2 != -ENOENT)
3169 btrfs_free_path(path);
3170 if (root->root_key.objectid == BTRFS_DATA_RELOC_TREE_OBJECTID)
3175 static int __btrfs_mod_ref(struct btrfs_trans_handle *trans,
3176 struct btrfs_root *root,
3177 struct extent_buffer *buf,
3178 int full_backref, int inc)
3180 struct btrfs_fs_info *fs_info = root->fs_info;
3186 struct btrfs_key key;
3187 struct btrfs_file_extent_item *fi;
3191 int (*process_func)(struct btrfs_trans_handle *,
3192 struct btrfs_root *,
3193 u64, u64, u64, u64, u64, u64);
3196 if (btrfs_is_testing(fs_info))
3199 ref_root = btrfs_header_owner(buf);
3200 nritems = btrfs_header_nritems(buf);
3201 level = btrfs_header_level(buf);
3203 if (!test_bit(BTRFS_ROOT_REF_COWS, &root->state) && level == 0)
3207 process_func = btrfs_inc_extent_ref;
3209 process_func = btrfs_free_extent;
3212 parent = buf->start;
3216 for (i = 0; i < nritems; i++) {
3218 btrfs_item_key_to_cpu(buf, &key, i);
3219 if (key.type != BTRFS_EXTENT_DATA_KEY)
3221 fi = btrfs_item_ptr(buf, i,
3222 struct btrfs_file_extent_item);
3223 if (btrfs_file_extent_type(buf, fi) ==
3224 BTRFS_FILE_EXTENT_INLINE)
3226 bytenr = btrfs_file_extent_disk_bytenr(buf, fi);
3230 num_bytes = btrfs_file_extent_disk_num_bytes(buf, fi);
3231 key.offset -= btrfs_file_extent_offset(buf, fi);
3232 ret = process_func(trans, root, bytenr, num_bytes,
3233 parent, ref_root, key.objectid,
3238 bytenr = btrfs_node_blockptr(buf, i);
3239 num_bytes = fs_info->nodesize;
3240 ret = process_func(trans, root, bytenr, num_bytes,
3241 parent, ref_root, level - 1, 0);
3251 int btrfs_inc_ref(struct btrfs_trans_handle *trans, struct btrfs_root *root,
3252 struct extent_buffer *buf, int full_backref)
3254 return __btrfs_mod_ref(trans, root, buf, full_backref, 1);
3257 int btrfs_dec_ref(struct btrfs_trans_handle *trans, struct btrfs_root *root,
3258 struct extent_buffer *buf, int full_backref)
3260 return __btrfs_mod_ref(trans, root, buf, full_backref, 0);
3263 static int write_one_cache_group(struct btrfs_trans_handle *trans,
3264 struct btrfs_fs_info *fs_info,
3265 struct btrfs_path *path,
3266 struct btrfs_block_group_cache *cache)
3269 struct btrfs_root *extent_root = fs_info->extent_root;
3271 struct extent_buffer *leaf;
3273 ret = btrfs_search_slot(trans, extent_root, &cache->key, path, 0, 1);
3280 leaf = path->nodes[0];
3281 bi = btrfs_item_ptr_offset(leaf, path->slots[0]);
3282 write_extent_buffer(leaf, &cache->item, bi, sizeof(cache->item));
3283 btrfs_mark_buffer_dirty(leaf);
3285 btrfs_release_path(path);
3290 static struct btrfs_block_group_cache *
3291 next_block_group(struct btrfs_fs_info *fs_info,
3292 struct btrfs_block_group_cache *cache)
3294 struct rb_node *node;
3296 spin_lock(&fs_info->block_group_cache_lock);
3298 /* If our block group was removed, we need a full search. */
3299 if (RB_EMPTY_NODE(&cache->cache_node)) {
3300 const u64 next_bytenr = cache->key.objectid + cache->key.offset;
3302 spin_unlock(&fs_info->block_group_cache_lock);
3303 btrfs_put_block_group(cache);
3304 cache = btrfs_lookup_first_block_group(fs_info, next_bytenr); return cache;
3306 node = rb_next(&cache->cache_node);
3307 btrfs_put_block_group(cache);
3309 cache = rb_entry(node, struct btrfs_block_group_cache,
3311 btrfs_get_block_group(cache);
3314 spin_unlock(&fs_info->block_group_cache_lock);
3318 static int cache_save_setup(struct btrfs_block_group_cache *block_group,
3319 struct btrfs_trans_handle *trans,
3320 struct btrfs_path *path)
3322 struct btrfs_fs_info *fs_info = block_group->fs_info;
3323 struct btrfs_root *root = fs_info->tree_root;
3324 struct inode *inode = NULL;
3325 struct extent_changeset *data_reserved = NULL;
3327 int dcs = BTRFS_DC_ERROR;
3333 * If this block group is smaller than 100 megs don't bother caching the
3336 if (block_group->key.offset < (100 * SZ_1M)) {
3337 spin_lock(&block_group->lock);
3338 block_group->disk_cache_state = BTRFS_DC_WRITTEN;
3339 spin_unlock(&block_group->lock);
3346 inode = lookup_free_space_inode(fs_info, block_group, path);
3347 if (IS_ERR(inode) && PTR_ERR(inode) != -ENOENT) {
3348 ret = PTR_ERR(inode);
3349 btrfs_release_path(path);
3353 if (IS_ERR(inode)) {
3357 if (block_group->ro)
3360 ret = create_free_space_inode(fs_info, trans, block_group,
3368 * We want to set the generation to 0, that way if anything goes wrong
3369 * from here on out we know not to trust this cache when we load up next
3372 BTRFS_I(inode)->generation = 0;
3373 ret = btrfs_update_inode(trans, root, inode);
3376 * So theoretically we could recover from this, simply set the
3377 * super cache generation to 0 so we know to invalidate the
3378 * cache, but then we'd have to keep track of the block groups
3379 * that fail this way so we know we _have_ to reset this cache
3380 * before the next commit or risk reading stale cache. So to
3381 * limit our exposure to horrible edge cases lets just abort the
3382 * transaction, this only happens in really bad situations
3385 btrfs_abort_transaction(trans, ret);
3390 /* We've already setup this transaction, go ahead and exit */
3391 if (block_group->cache_generation == trans->transid &&
3392 i_size_read(inode)) {
3393 dcs = BTRFS_DC_SETUP;
3397 if (i_size_read(inode) > 0) {
3398 ret = btrfs_check_trunc_cache_free_space(fs_info,
3399 &fs_info->global_block_rsv);
3403 ret = btrfs_truncate_free_space_cache(trans, NULL, inode);
3408 spin_lock(&block_group->lock);
3409 if (block_group->cached != BTRFS_CACHE_FINISHED ||
3410 !btrfs_test_opt(fs_info, SPACE_CACHE)) {
3412 * don't bother trying to write stuff out _if_
3413 * a) we're not cached,
3414 * b) we're with nospace_cache mount option,
3415 * c) we're with v2 space_cache (FREE_SPACE_TREE).
3417 dcs = BTRFS_DC_WRITTEN;
3418 spin_unlock(&block_group->lock);
3421 spin_unlock(&block_group->lock);
3424 * We hit an ENOSPC when setting up the cache in this transaction, just
3425 * skip doing the setup, we've already cleared the cache so we're safe.
3427 if (test_bit(BTRFS_TRANS_CACHE_ENOSPC, &trans->transaction->flags)) {
3433 * Try to preallocate enough space based on how big the block group is.
3434 * Keep in mind this has to include any pinned space which could end up
3435 * taking up quite a bit since it's not folded into the other space
3438 num_pages = div_u64(block_group->key.offset, SZ_256M);
3443 num_pages *= PAGE_SIZE;
3445 ret = btrfs_check_data_free_space(inode, &data_reserved, 0, num_pages);
3449 ret = btrfs_prealloc_file_range_trans(inode, trans, 0, 0, num_pages,
3450 num_pages, num_pages,
3453 * Our cache requires contiguous chunks so that we don't modify a bunch
3454 * of metadata or split extents when writing the cache out, which means
3455 * we can enospc if we are heavily fragmented in addition to just normal
3456 * out of space conditions. So if we hit this just skip setting up any
3457 * other block groups for this transaction, maybe we'll unpin enough
3458 * space the next time around.
3461 dcs = BTRFS_DC_SETUP;
3462 else if (ret == -ENOSPC)
3463 set_bit(BTRFS_TRANS_CACHE_ENOSPC, &trans->transaction->flags);
3468 btrfs_release_path(path);
3470 spin_lock(&block_group->lock);
3471 if (!ret && dcs == BTRFS_DC_SETUP)
3472 block_group->cache_generation = trans->transid;
3473 block_group->disk_cache_state = dcs;
3474 spin_unlock(&block_group->lock);
3476 extent_changeset_free(data_reserved);
3480 int btrfs_setup_space_cache(struct btrfs_trans_handle *trans,
3481 struct btrfs_fs_info *fs_info)
3483 struct btrfs_block_group_cache *cache, *tmp;
3484 struct btrfs_transaction *cur_trans = trans->transaction;
3485 struct btrfs_path *path;
3487 if (list_empty(&cur_trans->dirty_bgs) ||
3488 !btrfs_test_opt(fs_info, SPACE_CACHE))
3491 path = btrfs_alloc_path();
3495 /* Could add new block groups, use _safe just in case */
3496 list_for_each_entry_safe(cache, tmp, &cur_trans->dirty_bgs,
3498 if (cache->disk_cache_state == BTRFS_DC_CLEAR)
3499 cache_save_setup(cache, trans, path);
3502 btrfs_free_path(path);
3507 * transaction commit does final block group cache writeback during a
3508 * critical section where nothing is allowed to change the FS. This is
3509 * required in order for the cache to actually match the block group,
3510 * but can introduce a lot of latency into the commit.
3512 * So, btrfs_start_dirty_block_groups is here to kick off block group
3513 * cache IO. There's a chance we'll have to redo some of it if the
3514 * block group changes again during the commit, but it greatly reduces
3515 * the commit latency by getting rid of the easy block groups while
3516 * we're still allowing others to join the commit.
3518 int btrfs_start_dirty_block_groups(struct btrfs_trans_handle *trans)
3520 struct btrfs_fs_info *fs_info = trans->fs_info;
3521 struct btrfs_block_group_cache *cache;
3522 struct btrfs_transaction *cur_trans = trans->transaction;
3525 struct btrfs_path *path = NULL;
3527 struct list_head *io = &cur_trans->io_bgs;
3528 int num_started = 0;
3531 spin_lock(&cur_trans->dirty_bgs_lock);
3532 if (list_empty(&cur_trans->dirty_bgs)) {
3533 spin_unlock(&cur_trans->dirty_bgs_lock);
3536 list_splice_init(&cur_trans->dirty_bgs, &dirty);
3537 spin_unlock(&cur_trans->dirty_bgs_lock);
3541 * make sure all the block groups on our dirty list actually
3544 btrfs_create_pending_block_groups(trans);
3547 path = btrfs_alloc_path();
3553 * cache_write_mutex is here only to save us from balance or automatic
3554 * removal of empty block groups deleting this block group while we are
3555 * writing out the cache
3557 mutex_lock(&trans->transaction->cache_write_mutex);
3558 while (!list_empty(&dirty)) {
3559 cache = list_first_entry(&dirty,
3560 struct btrfs_block_group_cache,
3563 * this can happen if something re-dirties a block
3564 * group that is already under IO. Just wait for it to
3565 * finish and then do it all again
3567 if (!list_empty(&cache->io_list)) {
3568 list_del_init(&cache->io_list);
3569 btrfs_wait_cache_io(trans, cache, path);
3570 btrfs_put_block_group(cache);
3575 * btrfs_wait_cache_io uses the cache->dirty_list to decide
3576 * if it should update the cache_state. Don't delete
3577 * until after we wait.
3579 * Since we're not running in the commit critical section
3580 * we need the dirty_bgs_lock to protect from update_block_group
3582 spin_lock(&cur_trans->dirty_bgs_lock);
3583 list_del_init(&cache->dirty_list);
3584 spin_unlock(&cur_trans->dirty_bgs_lock);
3588 cache_save_setup(cache, trans, path);
3590 if (cache->disk_cache_state == BTRFS_DC_SETUP) {
3591 cache->io_ctl.inode = NULL;
3592 ret = btrfs_write_out_cache(fs_info, trans,
3594 if (ret == 0 && cache->io_ctl.inode) {
3599 * The cache_write_mutex is protecting the
3600 * io_list, also refer to the definition of
3601 * btrfs_transaction::io_bgs for more details
3603 list_add_tail(&cache->io_list, io);
3606 * if we failed to write the cache, the
3607 * generation will be bad and life goes on
3613 ret = write_one_cache_group(trans, fs_info,
3616 * Our block group might still be attached to the list
3617 * of new block groups in the transaction handle of some
3618 * other task (struct btrfs_trans_handle->new_bgs). This
3619 * means its block group item isn't yet in the extent
3620 * tree. If this happens ignore the error, as we will
3621 * try again later in the critical section of the
3622 * transaction commit.
3624 if (ret == -ENOENT) {
3626 spin_lock(&cur_trans->dirty_bgs_lock);
3627 if (list_empty(&cache->dirty_list)) {
3628 list_add_tail(&cache->dirty_list,
3629 &cur_trans->dirty_bgs);
3630 btrfs_get_block_group(cache);
3632 spin_unlock(&cur_trans->dirty_bgs_lock);
3634 btrfs_abort_transaction(trans, ret);
3638 /* if its not on the io list, we need to put the block group */
3640 btrfs_put_block_group(cache);
3646 * Avoid blocking other tasks for too long. It might even save
3647 * us from writing caches for block groups that are going to be
3650 mutex_unlock(&trans->transaction->cache_write_mutex);
3651 mutex_lock(&trans->transaction->cache_write_mutex);
3653 mutex_unlock(&trans->transaction->cache_write_mutex);
3656 * go through delayed refs for all the stuff we've just kicked off
3657 * and then loop back (just once)
3659 ret = btrfs_run_delayed_refs(trans, 0);
3660 if (!ret && loops == 0) {
3662 spin_lock(&cur_trans->dirty_bgs_lock);
3663 list_splice_init(&cur_trans->dirty_bgs, &dirty);
3665 * dirty_bgs_lock protects us from concurrent block group
3666 * deletes too (not just cache_write_mutex).
3668 if (!list_empty(&dirty)) {
3669 spin_unlock(&cur_trans->dirty_bgs_lock);
3672 spin_unlock(&cur_trans->dirty_bgs_lock);
3673 } else if (ret < 0) {
3674 btrfs_cleanup_dirty_bgs(cur_trans, fs_info);
3677 btrfs_free_path(path);
3681 int btrfs_write_dirty_block_groups(struct btrfs_trans_handle *trans,
3682 struct btrfs_fs_info *fs_info)
3684 struct btrfs_block_group_cache *cache;
3685 struct btrfs_transaction *cur_trans = trans->transaction;
3688 struct btrfs_path *path;
3689 struct list_head *io = &cur_trans->io_bgs;
3690 int num_started = 0;
3692 path = btrfs_alloc_path();
3697 * Even though we are in the critical section of the transaction commit,
3698 * we can still have concurrent tasks adding elements to this
3699 * transaction's list of dirty block groups. These tasks correspond to
3700 * endio free space workers started when writeback finishes for a
3701 * space cache, which run inode.c:btrfs_finish_ordered_io(), and can
3702 * allocate new block groups as a result of COWing nodes of the root
3703 * tree when updating the free space inode. The writeback for the space
3704 * caches is triggered by an earlier call to
3705 * btrfs_start_dirty_block_groups() and iterations of the following
3707 * Also we want to do the cache_save_setup first and then run the
3708 * delayed refs to make sure we have the best chance at doing this all
3711 spin_lock(&cur_trans->dirty_bgs_lock);
3712 while (!list_empty(&cur_trans->dirty_bgs)) {
3713 cache = list_first_entry(&cur_trans->dirty_bgs,
3714 struct btrfs_block_group_cache,
3718 * this can happen if cache_save_setup re-dirties a block
3719 * group that is already under IO. Just wait for it to
3720 * finish and then do it all again
3722 if (!list_empty(&cache->io_list)) {
3723 spin_unlock(&cur_trans->dirty_bgs_lock);
3724 list_del_init(&cache->io_list);
3725 btrfs_wait_cache_io(trans, cache, path);
3726 btrfs_put_block_group(cache);
3727 spin_lock(&cur_trans->dirty_bgs_lock);
3731 * don't remove from the dirty list until after we've waited
3734 list_del_init(&cache->dirty_list);
3735 spin_unlock(&cur_trans->dirty_bgs_lock);
3738 cache_save_setup(cache, trans, path);
3741 ret = btrfs_run_delayed_refs(trans,
3742 (unsigned long) -1);
3744 if (!ret && cache->disk_cache_state == BTRFS_DC_SETUP) {
3745 cache->io_ctl.inode = NULL;
3746 ret = btrfs_write_out_cache(fs_info, trans,
3748 if (ret == 0 && cache->io_ctl.inode) {
3751 list_add_tail(&cache->io_list, io);
3754 * if we failed to write the cache, the
3755 * generation will be bad and life goes on
3761 ret = write_one_cache_group(trans, fs_info,
3764 * One of the free space endio workers might have
3765 * created a new block group while updating a free space
3766 * cache's inode (at inode.c:btrfs_finish_ordered_io())
3767 * and hasn't released its transaction handle yet, in
3768 * which case the new block group is still attached to
3769 * its transaction handle and its creation has not
3770 * finished yet (no block group item in the extent tree
3771 * yet, etc). If this is the case, wait for all free
3772 * space endio workers to finish and retry. This is a
3773 * a very rare case so no need for a more efficient and
3776 if (ret == -ENOENT) {
3777 wait_event(cur_trans->writer_wait,
3778 atomic_read(&cur_trans->num_writers) == 1);
3779 ret = write_one_cache_group(trans, fs_info,
3783 btrfs_abort_transaction(trans, ret);
3786 /* if its not on the io list, we need to put the block group */
3788 btrfs_put_block_group(cache);
3789 spin_lock(&cur_trans->dirty_bgs_lock);
3791 spin_unlock(&cur_trans->dirty_bgs_lock);
3794 * Refer to the definition of io_bgs member for details why it's safe
3795 * to use it without any locking
3797 while (!list_empty(io)) {
3798 cache = list_first_entry(io, struct btrfs_block_group_cache,
3800 list_del_init(&cache->io_list);
3801 btrfs_wait_cache_io(trans, cache, path);
3802 btrfs_put_block_group(cache);
3805 btrfs_free_path(path);
3809 int btrfs_extent_readonly(struct btrfs_fs_info *fs_info, u64 bytenr)
3811 struct btrfs_block_group_cache *block_group;
3814 block_group = btrfs_lookup_block_group(fs_info, bytenr);
3815 if (!block_group || block_group->ro)
3818 btrfs_put_block_group(block_group);
3822 bool btrfs_inc_nocow_writers(struct btrfs_fs_info *fs_info, u64 bytenr)
3824 struct btrfs_block_group_cache *bg;
3827 bg = btrfs_lookup_block_group(fs_info, bytenr);
3831 spin_lock(&bg->lock);
3835 atomic_inc(&bg->nocow_writers);
3836 spin_unlock(&bg->lock);
3838 /* no put on block group, done by btrfs_dec_nocow_writers */
3840 btrfs_put_block_group(bg);
3846 void btrfs_dec_nocow_writers(struct btrfs_fs_info *fs_info, u64 bytenr)
3848 struct btrfs_block_group_cache *bg;
3850 bg = btrfs_lookup_block_group(fs_info, bytenr);
3852 if (atomic_dec_and_test(&bg->nocow_writers))
3853 wake_up_var(&bg->nocow_writers);
3855 * Once for our lookup and once for the lookup done by a previous call
3856 * to btrfs_inc_nocow_writers()
3858 btrfs_put_block_group(bg);
3859 btrfs_put_block_group(bg);
3862 void btrfs_wait_nocow_writers(struct btrfs_block_group_cache *bg)
3864 wait_var_event(&bg->nocow_writers, !atomic_read(&bg->nocow_writers));
3867 static const char *alloc_name(u64 flags)
3870 case BTRFS_BLOCK_GROUP_METADATA|BTRFS_BLOCK_GROUP_DATA:
3872 case BTRFS_BLOCK_GROUP_METADATA:
3874 case BTRFS_BLOCK_GROUP_DATA:
3876 case BTRFS_BLOCK_GROUP_SYSTEM:
3880 return "invalid-combination";
3884 static int create_space_info(struct btrfs_fs_info *info, u64 flags)
3887 struct btrfs_space_info *space_info;
3891 space_info = kzalloc(sizeof(*space_info), GFP_NOFS);
3895 ret = percpu_counter_init(&space_info->total_bytes_pinned, 0,
3902 for (i = 0; i < BTRFS_NR_RAID_TYPES; i++)
3903 INIT_LIST_HEAD(&space_info->block_groups[i]);
3904 init_rwsem(&space_info->groups_sem);
3905 spin_lock_init(&space_info->lock);
3906 space_info->flags = flags & BTRFS_BLOCK_GROUP_TYPE_MASK;
3907 space_info->force_alloc = CHUNK_ALLOC_NO_FORCE;
3908 init_waitqueue_head(&space_info->wait);
3909 INIT_LIST_HEAD(&space_info->ro_bgs);
3910 INIT_LIST_HEAD(&space_info->tickets);
3911 INIT_LIST_HEAD(&space_info->priority_tickets);
3913 ret = kobject_init_and_add(&space_info->kobj, &space_info_ktype,
3914 info->space_info_kobj, "%s",
3915 alloc_name(space_info->flags));
3917 kobject_put(&space_info->kobj);
3921 list_add_rcu(&space_info->list, &info->space_info);
3922 if (flags & BTRFS_BLOCK_GROUP_DATA)
3923 info->data_sinfo = space_info;
3928 static void update_space_info(struct btrfs_fs_info *info, u64 flags,
3929 u64 total_bytes, u64 bytes_used,
3931 struct btrfs_space_info **space_info)
3933 struct btrfs_space_info *found;
3936 factor = btrfs_bg_type_to_factor(flags);
3938 found = __find_space_info(info, flags);
3940 spin_lock(&found->lock);
3941 found->total_bytes += total_bytes;
3942 found->disk_total += total_bytes * factor;
3943 found->bytes_used += bytes_used;
3944 found->disk_used += bytes_used * factor;
3945 found->bytes_readonly += bytes_readonly;
3946 if (total_bytes > 0)
3948 space_info_add_new_bytes(info, found, total_bytes -
3949 bytes_used - bytes_readonly);
3950 spin_unlock(&found->lock);
3951 *space_info = found;
3954 static void set_avail_alloc_bits(struct btrfs_fs_info *fs_info, u64 flags)
3956 u64 extra_flags = chunk_to_extended(flags) &
3957 BTRFS_EXTENDED_PROFILE_MASK;
3959 write_seqlock(&fs_info->profiles_lock);
3960 if (flags & BTRFS_BLOCK_GROUP_DATA)
3961 fs_info->avail_data_alloc_bits |= extra_flags;
3962 if (flags & BTRFS_BLOCK_GROUP_METADATA)
3963 fs_info->avail_metadata_alloc_bits |= extra_flags;
3964 if (flags & BTRFS_BLOCK_GROUP_SYSTEM)
3965 fs_info->avail_system_alloc_bits |= extra_flags;
3966 write_sequnlock(&fs_info->profiles_lock);
3970 * returns target flags in extended format or 0 if restripe for this
3971 * chunk_type is not in progress
3973 * should be called with balance_lock held
3975 static u64 get_restripe_target(struct btrfs_fs_info *fs_info, u64 flags)
3977 struct btrfs_balance_control *bctl = fs_info->balance_ctl;
3983 if (flags & BTRFS_BLOCK_GROUP_DATA &&
3984 bctl->data.flags & BTRFS_BALANCE_ARGS_CONVERT) {
3985 target = BTRFS_BLOCK_GROUP_DATA | bctl->data.target;
3986 } else if (flags & BTRFS_BLOCK_GROUP_SYSTEM &&
3987 bctl->sys.flags & BTRFS_BALANCE_ARGS_CONVERT) {
3988 target = BTRFS_BLOCK_GROUP_SYSTEM | bctl->sys.target;
3989 } else if (flags & BTRFS_BLOCK_GROUP_METADATA &&
3990 bctl->meta.flags & BTRFS_BALANCE_ARGS_CONVERT) {
3991 target = BTRFS_BLOCK_GROUP_METADATA | bctl->meta.target;
3998 * @flags: available profiles in extended format (see ctree.h)
4000 * Returns reduced profile in chunk format. If profile changing is in
4001 * progress (either running or paused) picks the target profile (if it's
4002 * already available), otherwise falls back to plain reducing.
4004 static u64 btrfs_reduce_alloc_profile(struct btrfs_fs_info *fs_info, u64 flags)
4006 u64 num_devices = fs_info->fs_devices->rw_devices;
4012 * see if restripe for this chunk_type is in progress, if so
4013 * try to reduce to the target profile
4015 spin_lock(&fs_info->balance_lock);
4016 target = get_restripe_target(fs_info, flags);
4018 /* pick target profile only if it's already available */
4019 if ((flags & target) & BTRFS_EXTENDED_PROFILE_MASK) {
4020 spin_unlock(&fs_info->balance_lock);
4021 return extended_to_chunk(target);
4024 spin_unlock(&fs_info->balance_lock);
4026 /* First, mask out the RAID levels which aren't possible */
4027 for (raid_type = 0; raid_type < BTRFS_NR_RAID_TYPES; raid_type++) {
4028 if (num_devices >= btrfs_raid_array[raid_type].devs_min)
4029 allowed |= btrfs_raid_array[raid_type].bg_flag;
4033 if (allowed & BTRFS_BLOCK_GROUP_RAID6)
4034 allowed = BTRFS_BLOCK_GROUP_RAID6;
4035 else if (allowed & BTRFS_BLOCK_GROUP_RAID5)
4036 allowed = BTRFS_BLOCK_GROUP_RAID5;
4037 else if (allowed & BTRFS_BLOCK_GROUP_RAID10)
4038 allowed = BTRFS_BLOCK_GROUP_RAID10;
4039 else if (allowed & BTRFS_BLOCK_GROUP_RAID1)
4040 allowed = BTRFS_BLOCK_GROUP_RAID1;
4041 else if (allowed & BTRFS_BLOCK_GROUP_RAID0)
4042 allowed = BTRFS_BLOCK_GROUP_RAID0;
4044 flags &= ~BTRFS_BLOCK_GROUP_PROFILE_MASK;
4046 return extended_to_chunk(flags | allowed);
4049 static u64 get_alloc_profile(struct btrfs_fs_info *fs_info, u64 orig_flags)
4056 seq = read_seqbegin(&fs_info->profiles_lock);
4058 if (flags & BTRFS_BLOCK_GROUP_DATA)
4059 flags |= fs_info->avail_data_alloc_bits;
4060 else if (flags & BTRFS_BLOCK_GROUP_SYSTEM)
4061 flags |= fs_info->avail_system_alloc_bits;
4062 else if (flags & BTRFS_BLOCK_GROUP_METADATA)
4063 flags |= fs_info->avail_metadata_alloc_bits;
4064 } while (read_seqretry(&fs_info->profiles_lock, seq));
4066 return btrfs_reduce_alloc_profile(fs_info, flags);
4069 static u64 get_alloc_profile_by_root(struct btrfs_root *root, int data)
4071 struct btrfs_fs_info *fs_info = root->fs_info;
4076 flags = BTRFS_BLOCK_GROUP_DATA;
4077 else if (root == fs_info->chunk_root)
4078 flags = BTRFS_BLOCK_GROUP_SYSTEM;
4080 flags = BTRFS_BLOCK_GROUP_METADATA;
4082 ret = get_alloc_profile(fs_info, flags);
4086 u64 btrfs_data_alloc_profile(struct btrfs_fs_info *fs_info)
4088 return get_alloc_profile(fs_info, BTRFS_BLOCK_GROUP_DATA);
4091 u64 btrfs_metadata_alloc_profile(struct btrfs_fs_info *fs_info)
4093 return get_alloc_profile(fs_info, BTRFS_BLOCK_GROUP_METADATA);
4096 u64 btrfs_system_alloc_profile(struct btrfs_fs_info *fs_info)
4098 return get_alloc_profile(fs_info, BTRFS_BLOCK_GROUP_SYSTEM);
4101 static u64 btrfs_space_info_used(struct btrfs_space_info *s_info,
4102 bool may_use_included)
4105 return s_info->bytes_used + s_info->bytes_reserved +
4106 s_info->bytes_pinned + s_info->bytes_readonly +
4107 (may_use_included ? s_info->bytes_may_use : 0);
4110 int btrfs_alloc_data_chunk_ondemand(struct btrfs_inode *inode, u64 bytes)
4112 struct btrfs_root *root = inode->root;
4113 struct btrfs_fs_info *fs_info = root->fs_info;
4114 struct btrfs_space_info *data_sinfo = fs_info->data_sinfo;
4117 int need_commit = 2;
4118 int have_pinned_space;
4120 /* make sure bytes are sectorsize aligned */
4121 bytes = ALIGN(bytes, fs_info->sectorsize);
4123 if (btrfs_is_free_space_inode(inode)) {
4125 ASSERT(current->journal_info);
4129 /* make sure we have enough space to handle the data first */
4130 spin_lock(&data_sinfo->lock);
4131 used = btrfs_space_info_used(data_sinfo, true);
4133 if (used + bytes > data_sinfo->total_bytes) {
4134 struct btrfs_trans_handle *trans;
4137 * if we don't have enough free bytes in this space then we need
4138 * to alloc a new chunk.
4140 if (!data_sinfo->full) {
4143 data_sinfo->force_alloc = CHUNK_ALLOC_FORCE;
4144 spin_unlock(&data_sinfo->lock);
4146 alloc_target = btrfs_data_alloc_profile(fs_info);
4148 * It is ugly that we don't call nolock join
4149 * transaction for the free space inode case here.
4150 * But it is safe because we only do the data space
4151 * reservation for the free space cache in the
4152 * transaction context, the common join transaction
4153 * just increase the counter of the current transaction
4154 * handler, doesn't try to acquire the trans_lock of
4157 trans = btrfs_join_transaction(root);
4159 return PTR_ERR(trans);
4161 ret = do_chunk_alloc(trans, alloc_target,
4162 CHUNK_ALLOC_NO_FORCE);
4163 btrfs_end_transaction(trans);
4168 have_pinned_space = 1;
4177 * If we don't have enough pinned space to deal with this
4178 * allocation, and no removed chunk in current transaction,
4179 * don't bother committing the transaction.
4181 have_pinned_space = __percpu_counter_compare(
4182 &data_sinfo->total_bytes_pinned,
4183 used + bytes - data_sinfo->total_bytes,
4184 BTRFS_TOTAL_BYTES_PINNED_BATCH);
4185 spin_unlock(&data_sinfo->lock);
4187 /* commit the current transaction and try again */
4192 if (need_commit > 0) {
4193 btrfs_start_delalloc_roots(fs_info, -1);
4194 btrfs_wait_ordered_roots(fs_info, U64_MAX, 0,
4198 trans = btrfs_join_transaction(root);
4200 return PTR_ERR(trans);
4201 if (have_pinned_space >= 0 ||
4202 test_bit(BTRFS_TRANS_HAVE_FREE_BGS,
4203 &trans->transaction->flags) ||
4205 ret = btrfs_commit_transaction(trans);
4209 * The cleaner kthread might still be doing iput
4210 * operations. Wait for it to finish so that
4211 * more space is released.
4213 mutex_lock(&fs_info->cleaner_delayed_iput_mutex);
4214 mutex_unlock(&fs_info->cleaner_delayed_iput_mutex);
4217 btrfs_end_transaction(trans);
4221 trace_btrfs_space_reservation(fs_info,
4222 "space_info:enospc",
4223 data_sinfo->flags, bytes, 1);
4226 data_sinfo->bytes_may_use += bytes;
4227 trace_btrfs_space_reservation(fs_info, "space_info",
4228 data_sinfo->flags, bytes, 1);
4229 spin_unlock(&data_sinfo->lock);
4234 int btrfs_check_data_free_space(struct inode *inode,
4235 struct extent_changeset **reserved, u64 start, u64 len)
4237 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
4240 /* align the range */
4241 len = round_up(start + len, fs_info->sectorsize) -
4242 round_down(start, fs_info->sectorsize);
4243 start = round_down(start, fs_info->sectorsize);
4245 ret = btrfs_alloc_data_chunk_ondemand(BTRFS_I(inode), len);
4249 /* Use new btrfs_qgroup_reserve_data to reserve precious data space. */
4250 ret = btrfs_qgroup_reserve_data(inode, reserved, start, len);
4252 btrfs_free_reserved_data_space_noquota(inode, start, len);
4259 * Called if we need to clear a data reservation for this inode
4260 * Normally in a error case.
4262 * This one will *NOT* use accurate qgroup reserved space API, just for case
4263 * which we can't sleep and is sure it won't affect qgroup reserved space.
4264 * Like clear_bit_hook().
4266 void btrfs_free_reserved_data_space_noquota(struct inode *inode, u64 start,
4269 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
4270 struct btrfs_space_info *data_sinfo;
4272 /* Make sure the range is aligned to sectorsize */
4273 len = round_up(start + len, fs_info->sectorsize) -
4274 round_down(start, fs_info->sectorsize);
4275 start = round_down(start, fs_info->sectorsize);
4277 data_sinfo = fs_info->data_sinfo;
4278 spin_lock(&data_sinfo->lock);
4279 if (WARN_ON(data_sinfo->bytes_may_use < len))
4280 data_sinfo->bytes_may_use = 0;
4282 data_sinfo->bytes_may_use -= len;
4283 trace_btrfs_space_reservation(fs_info, "space_info",
4284 data_sinfo->flags, len, 0);
4285 spin_unlock(&data_sinfo->lock);
4289 * Called if we need to clear a data reservation for this inode
4290 * Normally in a error case.
4292 * This one will handle the per-inode data rsv map for accurate reserved
4295 void btrfs_free_reserved_data_space(struct inode *inode,
4296 struct extent_changeset *reserved, u64 start, u64 len)
4298 struct btrfs_root *root = BTRFS_I(inode)->root;
4300 /* Make sure the range is aligned to sectorsize */
4301 len = round_up(start + len, root->fs_info->sectorsize) -
4302 round_down(start, root->fs_info->sectorsize);
4303 start = round_down(start, root->fs_info->sectorsize);
4305 btrfs_free_reserved_data_space_noquota(inode, start, len);
4306 btrfs_qgroup_free_data(inode, reserved, start, len);
4309 static void force_metadata_allocation(struct btrfs_fs_info *info)
4311 struct list_head *head = &info->space_info;
4312 struct btrfs_space_info *found;
4315 list_for_each_entry_rcu(found, head, list) {
4316 if (found->flags & BTRFS_BLOCK_GROUP_METADATA)
4317 found->force_alloc = CHUNK_ALLOC_FORCE;
4322 static inline u64 calc_global_rsv_need_space(struct btrfs_block_rsv *global)
4324 return (global->size << 1);
4327 static int should_alloc_chunk(struct btrfs_fs_info *fs_info,
4328 struct btrfs_space_info *sinfo, int force)
4330 struct btrfs_block_rsv *global_rsv = &fs_info->global_block_rsv;
4331 u64 bytes_used = btrfs_space_info_used(sinfo, false);
4334 if (force == CHUNK_ALLOC_FORCE)
4338 * We need to take into account the global rsv because for all intents
4339 * and purposes it's used space. Don't worry about locking the
4340 * global_rsv, it doesn't change except when the transaction commits.
4342 if (sinfo->flags & BTRFS_BLOCK_GROUP_METADATA)
4343 bytes_used += calc_global_rsv_need_space(global_rsv);
4346 * in limited mode, we want to have some free space up to
4347 * about 1% of the FS size.
4349 if (force == CHUNK_ALLOC_LIMITED) {
4350 thresh = btrfs_super_total_bytes(fs_info->super_copy);
4351 thresh = max_t(u64, SZ_64M, div_factor_fine(thresh, 1));
4353 if (sinfo->total_bytes - bytes_used < thresh)
4357 if (bytes_used + SZ_2M < div_factor(sinfo->total_bytes, 8))
4362 static u64 get_profile_num_devs(struct btrfs_fs_info *fs_info, u64 type)
4366 if (type & (BTRFS_BLOCK_GROUP_RAID10 |
4367 BTRFS_BLOCK_GROUP_RAID0 |
4368 BTRFS_BLOCK_GROUP_RAID5 |
4369 BTRFS_BLOCK_GROUP_RAID6))
4370 num_dev = fs_info->fs_devices->rw_devices;
4371 else if (type & BTRFS_BLOCK_GROUP_RAID1)
4374 num_dev = 1; /* DUP or single */
4380 * If @is_allocation is true, reserve space in the system space info necessary
4381 * for allocating a chunk, otherwise if it's false, reserve space necessary for
4384 void check_system_chunk(struct btrfs_trans_handle *trans, u64 type)
4386 struct btrfs_fs_info *fs_info = trans->fs_info;
4387 struct btrfs_space_info *info;
4394 * Needed because we can end up allocating a system chunk and for an
4395 * atomic and race free space reservation in the chunk block reserve.
4397 lockdep_assert_held(&fs_info->chunk_mutex);
4399 info = __find_space_info(fs_info, BTRFS_BLOCK_GROUP_SYSTEM);
4400 spin_lock(&info->lock);
4401 left = info->total_bytes - btrfs_space_info_used(info, true);
4402 spin_unlock(&info->lock);
4404 num_devs = get_profile_num_devs(fs_info, type);
4406 /* num_devs device items to update and 1 chunk item to add or remove */
4407 thresh = btrfs_calc_trunc_metadata_size(fs_info, num_devs) +
4408 btrfs_calc_trans_metadata_size(fs_info, 1);
4410 if (left < thresh && btrfs_test_opt(fs_info, ENOSPC_DEBUG)) {
4411 btrfs_info(fs_info, "left=%llu, need=%llu, flags=%llu",
4412 left, thresh, type);
4413 dump_space_info(fs_info, info, 0, 0);
4416 if (left < thresh) {
4417 u64 flags = btrfs_system_alloc_profile(fs_info);
4420 * Ignore failure to create system chunk. We might end up not
4421 * needing it, as we might not need to COW all nodes/leafs from
4422 * the paths we visit in the chunk tree (they were already COWed
4423 * or created in the current transaction for example).
4425 ret = btrfs_alloc_chunk(trans, flags);
4429 ret = btrfs_block_rsv_add(fs_info->chunk_root,
4430 &fs_info->chunk_block_rsv,
4431 thresh, BTRFS_RESERVE_NO_FLUSH);
4433 trans->chunk_bytes_reserved += thresh;
4438 * If force is CHUNK_ALLOC_FORCE:
4439 * - return 1 if it successfully allocates a chunk,
4440 * - return errors including -ENOSPC otherwise.
4441 * If force is NOT CHUNK_ALLOC_FORCE:
4442 * - return 0 if it doesn't need to allocate a new chunk,
4443 * - return 1 if it successfully allocates a chunk,
4444 * - return errors including -ENOSPC otherwise.
4446 static int do_chunk_alloc(struct btrfs_trans_handle *trans, u64 flags,
4449 struct btrfs_fs_info *fs_info = trans->fs_info;
4450 struct btrfs_space_info *space_info;
4451 bool wait_for_alloc = false;
4452 bool should_alloc = false;
4455 /* Don't re-enter if we're already allocating a chunk */
4456 if (trans->allocating_chunk)
4459 space_info = __find_space_info(fs_info, flags);
4463 spin_lock(&space_info->lock);
4464 if (force < space_info->force_alloc)
4465 force = space_info->force_alloc;
4466 should_alloc = should_alloc_chunk(fs_info, space_info, force);
4467 if (space_info->full) {
4468 /* No more free physical space */
4473 spin_unlock(&space_info->lock);
4475 } else if (!should_alloc) {
4476 spin_unlock(&space_info->lock);
4478 } else if (space_info->chunk_alloc) {
4480 * Someone is already allocating, so we need to block
4481 * until this someone is finished and then loop to
4482 * recheck if we should continue with our allocation
4485 wait_for_alloc = true;
4486 spin_unlock(&space_info->lock);
4487 mutex_lock(&fs_info->chunk_mutex);
4488 mutex_unlock(&fs_info->chunk_mutex);
4490 /* Proceed with allocation */
4491 space_info->chunk_alloc = 1;
4492 wait_for_alloc = false;
4493 spin_unlock(&space_info->lock);
4497 } while (wait_for_alloc);
4499 mutex_lock(&fs_info->chunk_mutex);
4500 trans->allocating_chunk = true;
4503 * If we have mixed data/metadata chunks we want to make sure we keep
4504 * allocating mixed chunks instead of individual chunks.
4506 if (btrfs_mixed_space_info(space_info))
4507 flags |= (BTRFS_BLOCK_GROUP_DATA | BTRFS_BLOCK_GROUP_METADATA);
4510 * if we're doing a data chunk, go ahead and make sure that
4511 * we keep a reasonable number of metadata chunks allocated in the
4514 if (flags & BTRFS_BLOCK_GROUP_DATA && fs_info->metadata_ratio) {
4515 fs_info->data_chunk_allocations++;
4516 if (!(fs_info->data_chunk_allocations %
4517 fs_info->metadata_ratio))
4518 force_metadata_allocation(fs_info);
4522 * Check if we have enough space in SYSTEM chunk because we may need
4523 * to update devices.
4525 check_system_chunk(trans, flags);
4527 ret = btrfs_alloc_chunk(trans, flags);
4528 trans->allocating_chunk = false;
4530 spin_lock(&space_info->lock);
4533 space_info->full = 1;
4538 space_info->max_extent_size = 0;
4541 space_info->force_alloc = CHUNK_ALLOC_NO_FORCE;
4543 space_info->chunk_alloc = 0;
4544 spin_unlock(&space_info->lock);
4545 mutex_unlock(&fs_info->chunk_mutex);
4547 * When we allocate a new chunk we reserve space in the chunk block
4548 * reserve to make sure we can COW nodes/leafs in the chunk tree or
4549 * add new nodes/leafs to it if we end up needing to do it when
4550 * inserting the chunk item and updating device items as part of the
4551 * second phase of chunk allocation, performed by
4552 * btrfs_finish_chunk_alloc(). So make sure we don't accumulate a
4553 * large number of new block groups to create in our transaction
4554 * handle's new_bgs list to avoid exhausting the chunk block reserve
4555 * in extreme cases - like having a single transaction create many new
4556 * block groups when starting to write out the free space caches of all
4557 * the block groups that were made dirty during the lifetime of the
4560 if (trans->chunk_bytes_reserved >= (u64)SZ_2M)
4561 btrfs_create_pending_block_groups(trans);
4566 static int can_overcommit(struct btrfs_fs_info *fs_info,
4567 struct btrfs_space_info *space_info, u64 bytes,
4568 enum btrfs_reserve_flush_enum flush,
4571 struct btrfs_block_rsv *global_rsv = &fs_info->global_block_rsv;
4578 /* Don't overcommit when in mixed mode. */
4579 if (space_info->flags & BTRFS_BLOCK_GROUP_DATA)
4583 profile = btrfs_system_alloc_profile(fs_info);
4585 profile = btrfs_metadata_alloc_profile(fs_info);
4587 used = btrfs_space_info_used(space_info, false);
4590 * We only want to allow over committing if we have lots of actual space
4591 * free, but if we don't have enough space to handle the global reserve
4592 * space then we could end up having a real enospc problem when trying
4593 * to allocate a chunk or some other such important allocation.
4595 spin_lock(&global_rsv->lock);
4596 space_size = calc_global_rsv_need_space(global_rsv);
4597 spin_unlock(&global_rsv->lock);
4598 if (used + space_size >= space_info->total_bytes)
4601 used += space_info->bytes_may_use;
4603 avail = atomic64_read(&fs_info->free_chunk_space);
4606 * If we have dup, raid1 or raid10 then only half of the free
4607 * space is actually useable. For raid56, the space info used
4608 * doesn't include the parity drive, so we don't have to
4611 factor = btrfs_bg_type_to_factor(profile);
4612 avail = div_u64(avail, factor);
4615 * If we aren't flushing all things, let us overcommit up to
4616 * 1/2th of the space. If we can flush, don't let us overcommit
4617 * too much, let it overcommit up to 1/8 of the space.
4619 if (flush == BTRFS_RESERVE_FLUSH_ALL)
4624 if (used + bytes < space_info->total_bytes + avail)
4629 static void btrfs_writeback_inodes_sb_nr(struct btrfs_fs_info *fs_info,
4630 unsigned long nr_pages, int nr_items)
4632 struct super_block *sb = fs_info->sb;
4634 if (down_read_trylock(&sb->s_umount)) {
4635 writeback_inodes_sb_nr(sb, nr_pages, WB_REASON_FS_FREE_SPACE);
4636 up_read(&sb->s_umount);
4639 * We needn't worry the filesystem going from r/w to r/o though
4640 * we don't acquire ->s_umount mutex, because the filesystem
4641 * should guarantee the delalloc inodes list be empty after
4642 * the filesystem is readonly(all dirty pages are written to
4645 btrfs_start_delalloc_roots(fs_info, nr_items);
4646 if (!current->journal_info)
4647 btrfs_wait_ordered_roots(fs_info, nr_items, 0, (u64)-1);
4651 static inline u64 calc_reclaim_items_nr(struct btrfs_fs_info *fs_info,
4657 bytes = btrfs_calc_trans_metadata_size(fs_info, 1);
4658 nr = div64_u64(to_reclaim, bytes);
4664 #define EXTENT_SIZE_PER_ITEM SZ_256K
4667 * shrink metadata reservation for delalloc
4669 static void shrink_delalloc(struct btrfs_fs_info *fs_info, u64 to_reclaim,
4670 u64 orig, bool wait_ordered)
4672 struct btrfs_space_info *space_info;
4673 struct btrfs_trans_handle *trans;
4678 unsigned long nr_pages;
4681 /* Calc the number of the pages we need flush for space reservation */
4682 items = calc_reclaim_items_nr(fs_info, to_reclaim);
4683 to_reclaim = items * EXTENT_SIZE_PER_ITEM;
4685 trans = (struct btrfs_trans_handle *)current->journal_info;
4686 space_info = __find_space_info(fs_info, BTRFS_BLOCK_GROUP_METADATA);
4688 delalloc_bytes = percpu_counter_sum_positive(
4689 &fs_info->delalloc_bytes);
4690 if (delalloc_bytes == 0) {
4694 btrfs_wait_ordered_roots(fs_info, items, 0, (u64)-1);
4699 while (delalloc_bytes && loops < 3) {
4700 max_reclaim = min(delalloc_bytes, to_reclaim);
4701 nr_pages = max_reclaim >> PAGE_SHIFT;
4702 btrfs_writeback_inodes_sb_nr(fs_info, nr_pages, items);
4704 * We need to wait for the async pages to actually start before
4707 max_reclaim = atomic_read(&fs_info->async_delalloc_pages);
4711 if (max_reclaim <= nr_pages)
4714 max_reclaim -= nr_pages;
4716 wait_event(fs_info->async_submit_wait,
4717 atomic_read(&fs_info->async_delalloc_pages) <=
4720 spin_lock(&space_info->lock);
4721 if (list_empty(&space_info->tickets) &&
4722 list_empty(&space_info->priority_tickets)) {
4723 spin_unlock(&space_info->lock);
4726 spin_unlock(&space_info->lock);
4729 if (wait_ordered && !trans) {
4730 btrfs_wait_ordered_roots(fs_info, items, 0, (u64)-1);
4732 time_left = schedule_timeout_killable(1);
4736 delalloc_bytes = percpu_counter_sum_positive(
4737 &fs_info->delalloc_bytes);
4741 struct reserve_ticket {
4744 struct list_head list;
4745 wait_queue_head_t wait;
4749 * maybe_commit_transaction - possibly commit the transaction if its ok to
4750 * @root - the root we're allocating for
4751 * @bytes - the number of bytes we want to reserve
4752 * @force - force the commit
4754 * This will check to make sure that committing the transaction will actually
4755 * get us somewhere and then commit the transaction if it does. Otherwise it
4756 * will return -ENOSPC.
4758 static int may_commit_transaction(struct btrfs_fs_info *fs_info,
4759 struct btrfs_space_info *space_info)
4761 struct reserve_ticket *ticket = NULL;
4762 struct btrfs_block_rsv *delayed_rsv = &fs_info->delayed_block_rsv;
4763 struct btrfs_trans_handle *trans;
4766 trans = (struct btrfs_trans_handle *)current->journal_info;
4770 spin_lock(&space_info->lock);
4771 if (!list_empty(&space_info->priority_tickets))
4772 ticket = list_first_entry(&space_info->priority_tickets,
4773 struct reserve_ticket, list);
4774 else if (!list_empty(&space_info->tickets))
4775 ticket = list_first_entry(&space_info->tickets,
4776 struct reserve_ticket, list);
4777 bytes = (ticket) ? ticket->bytes : 0;
4778 spin_unlock(&space_info->lock);
4783 /* See if there is enough pinned space to make this reservation */
4784 if (__percpu_counter_compare(&space_info->total_bytes_pinned,
4786 BTRFS_TOTAL_BYTES_PINNED_BATCH) >= 0)
4790 * See if there is some space in the delayed insertion reservation for
4793 if (space_info != delayed_rsv->space_info)
4796 spin_lock(&delayed_rsv->lock);
4797 if (delayed_rsv->size > bytes)
4800 bytes -= delayed_rsv->size;
4801 spin_unlock(&delayed_rsv->lock);
4803 if (__percpu_counter_compare(&space_info->total_bytes_pinned,
4805 BTRFS_TOTAL_BYTES_PINNED_BATCH) < 0) {
4810 trans = btrfs_join_transaction(fs_info->extent_root);
4814 return btrfs_commit_transaction(trans);
4818 * Try to flush some data based on policy set by @state. This is only advisory
4819 * and may fail for various reasons. The caller is supposed to examine the
4820 * state of @space_info to detect the outcome.
4822 static void flush_space(struct btrfs_fs_info *fs_info,
4823 struct btrfs_space_info *space_info, u64 num_bytes,
4826 struct btrfs_root *root = fs_info->extent_root;
4827 struct btrfs_trans_handle *trans;
4832 case FLUSH_DELAYED_ITEMS_NR:
4833 case FLUSH_DELAYED_ITEMS:
4834 if (state == FLUSH_DELAYED_ITEMS_NR)
4835 nr = calc_reclaim_items_nr(fs_info, num_bytes) * 2;
4839 trans = btrfs_join_transaction(root);
4840 if (IS_ERR(trans)) {
4841 ret = PTR_ERR(trans);
4844 ret = btrfs_run_delayed_items_nr(trans, nr);
4845 btrfs_end_transaction(trans);
4847 case FLUSH_DELALLOC:
4848 case FLUSH_DELALLOC_WAIT:
4849 shrink_delalloc(fs_info, num_bytes * 2, num_bytes,
4850 state == FLUSH_DELALLOC_WAIT);
4853 trans = btrfs_join_transaction(root);
4854 if (IS_ERR(trans)) {
4855 ret = PTR_ERR(trans);
4858 ret = do_chunk_alloc(trans,
4859 btrfs_metadata_alloc_profile(fs_info),
4860 CHUNK_ALLOC_NO_FORCE);
4861 btrfs_end_transaction(trans);
4862 if (ret > 0 || ret == -ENOSPC)
4866 ret = may_commit_transaction(fs_info, space_info);
4873 trace_btrfs_flush_space(fs_info, space_info->flags, num_bytes, state,
4879 btrfs_calc_reclaim_metadata_size(struct btrfs_fs_info *fs_info,
4880 struct btrfs_space_info *space_info,
4883 struct reserve_ticket *ticket;
4888 list_for_each_entry(ticket, &space_info->tickets, list)
4889 to_reclaim += ticket->bytes;
4890 list_for_each_entry(ticket, &space_info->priority_tickets, list)
4891 to_reclaim += ticket->bytes;
4895 to_reclaim = min_t(u64, num_online_cpus() * SZ_1M, SZ_16M);
4896 if (can_overcommit(fs_info, space_info, to_reclaim,
4897 BTRFS_RESERVE_FLUSH_ALL, system_chunk))
4900 used = btrfs_space_info_used(space_info, true);
4902 if (can_overcommit(fs_info, space_info, SZ_1M,
4903 BTRFS_RESERVE_FLUSH_ALL, system_chunk))
4904 expected = div_factor_fine(space_info->total_bytes, 95);
4906 expected = div_factor_fine(space_info->total_bytes, 90);
4908 if (used > expected)
4909 to_reclaim = used - expected;
4912 to_reclaim = min(to_reclaim, space_info->bytes_may_use +
4913 space_info->bytes_reserved);
4917 static inline int need_do_async_reclaim(struct btrfs_fs_info *fs_info,
4918 struct btrfs_space_info *space_info,
4919 u64 used, bool system_chunk)
4921 u64 thresh = div_factor_fine(space_info->total_bytes, 98);
4923 /* If we're just plain full then async reclaim just slows us down. */
4924 if ((space_info->bytes_used + space_info->bytes_reserved) >= thresh)
4927 if (!btrfs_calc_reclaim_metadata_size(fs_info, space_info,
4931 return (used >= thresh && !btrfs_fs_closing(fs_info) &&
4932 !test_bit(BTRFS_FS_STATE_REMOUNTING, &fs_info->fs_state));
4935 static void wake_all_tickets(struct list_head *head)
4937 struct reserve_ticket *ticket;
4939 while (!list_empty(head)) {
4940 ticket = list_first_entry(head, struct reserve_ticket, list);
4941 list_del_init(&ticket->list);
4942 ticket->error = -ENOSPC;
4943 wake_up(&ticket->wait);
4948 * This is for normal flushers, we can wait all goddamned day if we want to. We
4949 * will loop and continuously try to flush as long as we are making progress.
4950 * We count progress as clearing off tickets each time we have to loop.
4952 static void btrfs_async_reclaim_metadata_space(struct work_struct *work)
4954 struct btrfs_fs_info *fs_info;
4955 struct btrfs_space_info *space_info;
4958 int commit_cycles = 0;
4959 u64 last_tickets_id;
4961 fs_info = container_of(work, struct btrfs_fs_info, async_reclaim_work);
4962 space_info = __find_space_info(fs_info, BTRFS_BLOCK_GROUP_METADATA);
4964 spin_lock(&space_info->lock);
4965 to_reclaim = btrfs_calc_reclaim_metadata_size(fs_info, space_info,
4968 space_info->flush = 0;
4969 spin_unlock(&space_info->lock);
4972 last_tickets_id = space_info->tickets_id;
4973 spin_unlock(&space_info->lock);
4975 flush_state = FLUSH_DELAYED_ITEMS_NR;
4977 flush_space(fs_info, space_info, to_reclaim, flush_state);
4978 spin_lock(&space_info->lock);
4979 if (list_empty(&space_info->tickets)) {
4980 space_info->flush = 0;
4981 spin_unlock(&space_info->lock);
4984 to_reclaim = btrfs_calc_reclaim_metadata_size(fs_info,
4987 if (last_tickets_id == space_info->tickets_id) {
4990 last_tickets_id = space_info->tickets_id;
4991 flush_state = FLUSH_DELAYED_ITEMS_NR;
4996 if (flush_state > COMMIT_TRANS) {
4998 if (commit_cycles > 2) {
4999 wake_all_tickets(&space_info->tickets);
5000 space_info->flush = 0;
5002 flush_state = FLUSH_DELAYED_ITEMS_NR;
5005 spin_unlock(&space_info->lock);
5006 } while (flush_state <= COMMIT_TRANS);
5009 void btrfs_init_async_reclaim_work(struct work_struct *work)
5011 INIT_WORK(work, btrfs_async_reclaim_metadata_space);
5014 static void priority_reclaim_metadata_space(struct btrfs_fs_info *fs_info,
5015 struct btrfs_space_info *space_info,
5016 struct reserve_ticket *ticket)
5019 int flush_state = FLUSH_DELAYED_ITEMS_NR;
5021 spin_lock(&space_info->lock);
5022 to_reclaim = btrfs_calc_reclaim_metadata_size(fs_info, space_info,
5025 spin_unlock(&space_info->lock);
5028 spin_unlock(&space_info->lock);
5031 flush_space(fs_info, space_info, to_reclaim, flush_state);
5033 spin_lock(&space_info->lock);
5034 if (ticket->bytes == 0) {
5035 spin_unlock(&space_info->lock);
5038 spin_unlock(&space_info->lock);
5041 * Priority flushers can't wait on delalloc without
5044 if (flush_state == FLUSH_DELALLOC ||
5045 flush_state == FLUSH_DELALLOC_WAIT)
5046 flush_state = ALLOC_CHUNK;
5047 } while (flush_state < COMMIT_TRANS);
5050 static int wait_reserve_ticket(struct btrfs_fs_info *fs_info,
5051 struct btrfs_space_info *space_info,
5052 struct reserve_ticket *ticket, u64 orig_bytes)
5058 spin_lock(&space_info->lock);
5059 while (ticket->bytes > 0 && ticket->error == 0) {
5060 ret = prepare_to_wait_event(&ticket->wait, &wait, TASK_KILLABLE);
5065 spin_unlock(&space_info->lock);
5069 finish_wait(&ticket->wait, &wait);
5070 spin_lock(&space_info->lock);
5073 ret = ticket->error;
5074 if (!list_empty(&ticket->list))
5075 list_del_init(&ticket->list);
5076 if (ticket->bytes && ticket->bytes < orig_bytes) {
5077 u64 num_bytes = orig_bytes - ticket->bytes;
5078 space_info->bytes_may_use -= num_bytes;
5079 trace_btrfs_space_reservation(fs_info, "space_info",
5080 space_info->flags, num_bytes, 0);
5082 spin_unlock(&space_info->lock);
5088 * reserve_metadata_bytes - try to reserve bytes from the block_rsv's space
5089 * @root - the root we're allocating for
5090 * @space_info - the space info we want to allocate from
5091 * @orig_bytes - the number of bytes we want
5092 * @flush - whether or not we can flush to make our reservation
5094 * This will reserve orig_bytes number of bytes from the space info associated
5095 * with the block_rsv. If there is not enough space it will make an attempt to
5096 * flush out space to make room. It will do this by flushing delalloc if
5097 * possible or committing the transaction. If flush is 0 then no attempts to
5098 * regain reservations will be made and this will fail if there is not enough
5101 static int __reserve_metadata_bytes(struct btrfs_fs_info *fs_info,
5102 struct btrfs_space_info *space_info,
5104 enum btrfs_reserve_flush_enum flush,
5107 struct reserve_ticket ticket;
5112 ASSERT(!current->journal_info || flush != BTRFS_RESERVE_FLUSH_ALL);
5114 spin_lock(&space_info->lock);
5116 used = btrfs_space_info_used(space_info, true);
5119 * If we have enough space then hooray, make our reservation and carry
5120 * on. If not see if we can overcommit, and if we can, hooray carry on.
5121 * If not things get more complicated.
5123 if (used + orig_bytes <= space_info->total_bytes) {
5124 space_info->bytes_may_use += orig_bytes;
5125 trace_btrfs_space_reservation(fs_info, "space_info",
5126 space_info->flags, orig_bytes, 1);
5128 } else if (can_overcommit(fs_info, space_info, orig_bytes, flush,
5130 space_info->bytes_may_use += orig_bytes;
5131 trace_btrfs_space_reservation(fs_info, "space_info",
5132 space_info->flags, orig_bytes, 1);
5137 * If we couldn't make a reservation then setup our reservation ticket
5138 * and kick the async worker if it's not already running.
5140 * If we are a priority flusher then we just need to add our ticket to
5141 * the list and we will do our own flushing further down.
5143 if (ret && flush != BTRFS_RESERVE_NO_FLUSH) {
5144 ticket.bytes = orig_bytes;
5146 init_waitqueue_head(&ticket.wait);
5147 if (flush == BTRFS_RESERVE_FLUSH_ALL) {
5148 list_add_tail(&ticket.list, &space_info->tickets);
5149 if (!space_info->flush) {
5150 space_info->flush = 1;
5151 trace_btrfs_trigger_flush(fs_info,
5155 queue_work(system_unbound_wq,
5156 &fs_info->async_reclaim_work);
5159 list_add_tail(&ticket.list,
5160 &space_info->priority_tickets);
5162 } else if (!ret && space_info->flags & BTRFS_BLOCK_GROUP_METADATA) {
5165 * We will do the space reservation dance during log replay,
5166 * which means we won't have fs_info->fs_root set, so don't do
5167 * the async reclaim as we will panic.
5169 if (!test_bit(BTRFS_FS_LOG_RECOVERING, &fs_info->flags) &&
5170 need_do_async_reclaim(fs_info, space_info,
5171 used, system_chunk) &&
5172 !work_busy(&fs_info->async_reclaim_work)) {
5173 trace_btrfs_trigger_flush(fs_info, space_info->flags,
5174 orig_bytes, flush, "preempt");
5175 queue_work(system_unbound_wq,
5176 &fs_info->async_reclaim_work);
5179 spin_unlock(&space_info->lock);
5180 if (!ret || flush == BTRFS_RESERVE_NO_FLUSH)
5183 if (flush == BTRFS_RESERVE_FLUSH_ALL)
5184 return wait_reserve_ticket(fs_info, space_info, &ticket,
5188 priority_reclaim_metadata_space(fs_info, space_info, &ticket);
5189 spin_lock(&space_info->lock);
5191 if (ticket.bytes < orig_bytes) {
5192 u64 num_bytes = orig_bytes - ticket.bytes;
5193 space_info->bytes_may_use -= num_bytes;
5194 trace_btrfs_space_reservation(fs_info, "space_info",
5199 list_del_init(&ticket.list);
5202 spin_unlock(&space_info->lock);
5203 ASSERT(list_empty(&ticket.list));
5208 * reserve_metadata_bytes - try to reserve bytes from the block_rsv's space
5209 * @root - the root we're allocating for
5210 * @block_rsv - the block_rsv we're allocating for
5211 * @orig_bytes - the number of bytes we want
5212 * @flush - whether or not we can flush to make our reservation
5214 * This will reserve orgi_bytes number of bytes from the space info associated
5215 * with the block_rsv. If there is not enough space it will make an attempt to
5216 * flush out space to make room. It will do this by flushing delalloc if
5217 * possible or committing the transaction. If flush is 0 then no attempts to
5218 * regain reservations will be made and this will fail if there is not enough
5221 static int reserve_metadata_bytes(struct btrfs_root *root,
5222 struct btrfs_block_rsv *block_rsv,
5224 enum btrfs_reserve_flush_enum flush)
5226 struct btrfs_fs_info *fs_info = root->fs_info;
5227 struct btrfs_block_rsv *global_rsv = &fs_info->global_block_rsv;
5229 bool system_chunk = (root == fs_info->chunk_root);
5231 ret = __reserve_metadata_bytes(fs_info, block_rsv->space_info,
5232 orig_bytes, flush, system_chunk);
5233 if (ret == -ENOSPC &&
5234 unlikely(root->orphan_cleanup_state == ORPHAN_CLEANUP_STARTED)) {
5235 if (block_rsv != global_rsv &&
5236 !block_rsv_use_bytes(global_rsv, orig_bytes))
5239 if (ret == -ENOSPC) {
5240 trace_btrfs_space_reservation(fs_info, "space_info:enospc",
5241 block_rsv->space_info->flags,
5244 if (btrfs_test_opt(fs_info, ENOSPC_DEBUG))
5245 dump_space_info(fs_info, block_rsv->space_info,
5251 static struct btrfs_block_rsv *get_block_rsv(
5252 const struct btrfs_trans_handle *trans,
5253 const struct btrfs_root *root)
5255 struct btrfs_fs_info *fs_info = root->fs_info;
5256 struct btrfs_block_rsv *block_rsv = NULL;
5258 if (test_bit(BTRFS_ROOT_REF_COWS, &root->state) ||
5259 (root == fs_info->csum_root && trans->adding_csums) ||
5260 (root == fs_info->uuid_root))
5261 block_rsv = trans->block_rsv;
5264 block_rsv = root->block_rsv;
5267 block_rsv = &fs_info->empty_block_rsv;
5272 static int block_rsv_use_bytes(struct btrfs_block_rsv *block_rsv,
5276 spin_lock(&block_rsv->lock);
5277 if (block_rsv->reserved >= num_bytes) {
5278 block_rsv->reserved -= num_bytes;
5279 if (block_rsv->reserved < block_rsv->size)
5280 block_rsv->full = 0;
5283 spin_unlock(&block_rsv->lock);
5287 static void block_rsv_add_bytes(struct btrfs_block_rsv *block_rsv,
5288 u64 num_bytes, int update_size)
5290 spin_lock(&block_rsv->lock);
5291 block_rsv->reserved += num_bytes;
5293 block_rsv->size += num_bytes;
5294 else if (block_rsv->reserved >= block_rsv->size)
5295 block_rsv->full = 1;
5296 spin_unlock(&block_rsv->lock);
5299 int btrfs_cond_migrate_bytes(struct btrfs_fs_info *fs_info,
5300 struct btrfs_block_rsv *dest, u64 num_bytes,
5303 struct btrfs_block_rsv *global_rsv = &fs_info->global_block_rsv;
5306 if (global_rsv->space_info != dest->space_info)
5309 spin_lock(&global_rsv->lock);
5310 min_bytes = div_factor(global_rsv->size, min_factor);
5311 if (global_rsv->reserved < min_bytes + num_bytes) {
5312 spin_unlock(&global_rsv->lock);
5315 global_rsv->reserved -= num_bytes;
5316 if (global_rsv->reserved < global_rsv->size)
5317 global_rsv->full = 0;
5318 spin_unlock(&global_rsv->lock);
5320 block_rsv_add_bytes(dest, num_bytes, 1);
5325 * This is for space we already have accounted in space_info->bytes_may_use, so
5326 * basically when we're returning space from block_rsv's.
5328 static void space_info_add_old_bytes(struct btrfs_fs_info *fs_info,
5329 struct btrfs_space_info *space_info,
5332 struct reserve_ticket *ticket;
5333 struct list_head *head;
5335 enum btrfs_reserve_flush_enum flush = BTRFS_RESERVE_NO_FLUSH;
5336 bool check_overcommit = false;
5338 spin_lock(&space_info->lock);
5339 head = &space_info->priority_tickets;
5342 * If we are over our limit then we need to check and see if we can
5343 * overcommit, and if we can't then we just need to free up our space
5344 * and not satisfy any requests.
5346 used = btrfs_space_info_used(space_info, true);
5347 if (used - num_bytes >= space_info->total_bytes)
5348 check_overcommit = true;
5350 while (!list_empty(head) && num_bytes) {
5351 ticket = list_first_entry(head, struct reserve_ticket,
5354 * We use 0 bytes because this space is already reserved, so
5355 * adding the ticket space would be a double count.
5357 if (check_overcommit &&
5358 !can_overcommit(fs_info, space_info, 0, flush, false))
5360 if (num_bytes >= ticket->bytes) {
5361 list_del_init(&ticket->list);
5362 num_bytes -= ticket->bytes;
5364 space_info->tickets_id++;
5365 wake_up(&ticket->wait);
5367 ticket->bytes -= num_bytes;
5372 if (num_bytes && head == &space_info->priority_tickets) {
5373 head = &space_info->tickets;
5374 flush = BTRFS_RESERVE_FLUSH_ALL;
5377 space_info->bytes_may_use -= num_bytes;
5378 trace_btrfs_space_reservation(fs_info, "space_info",
5379 space_info->flags, num_bytes, 0);
5380 spin_unlock(&space_info->lock);
5384 * This is for newly allocated space that isn't accounted in
5385 * space_info->bytes_may_use yet. So if we allocate a chunk or unpin an extent
5386 * we use this helper.
5388 static void space_info_add_new_bytes(struct btrfs_fs_info *fs_info,
5389 struct btrfs_space_info *space_info,
5392 struct reserve_ticket *ticket;
5393 struct list_head *head = &space_info->priority_tickets;
5396 while (!list_empty(head) && num_bytes) {
5397 ticket = list_first_entry(head, struct reserve_ticket,
5399 if (num_bytes >= ticket->bytes) {
5400 trace_btrfs_space_reservation(fs_info, "space_info",
5403 list_del_init(&ticket->list);
5404 num_bytes -= ticket->bytes;
5405 space_info->bytes_may_use += ticket->bytes;
5407 space_info->tickets_id++;
5408 wake_up(&ticket->wait);
5410 trace_btrfs_space_reservation(fs_info, "space_info",
5413 space_info->bytes_may_use += num_bytes;
5414 ticket->bytes -= num_bytes;
5419 if (num_bytes && head == &space_info->priority_tickets) {
5420 head = &space_info->tickets;
5425 static u64 block_rsv_release_bytes(struct btrfs_fs_info *fs_info,
5426 struct btrfs_block_rsv *block_rsv,
5427 struct btrfs_block_rsv *dest, u64 num_bytes,
5428 u64 *qgroup_to_release_ret)
5430 struct btrfs_space_info *space_info = block_rsv->space_info;
5431 u64 qgroup_to_release = 0;
5434 spin_lock(&block_rsv->lock);
5435 if (num_bytes == (u64)-1) {
5436 num_bytes = block_rsv->size;
5437 qgroup_to_release = block_rsv->qgroup_rsv_size;
5439 block_rsv->size -= num_bytes;
5440 if (block_rsv->reserved >= block_rsv->size) {
5441 num_bytes = block_rsv->reserved - block_rsv->size;
5442 block_rsv->reserved = block_rsv->size;
5443 block_rsv->full = 1;
5447 if (block_rsv->qgroup_rsv_reserved >= block_rsv->qgroup_rsv_size) {
5448 qgroup_to_release = block_rsv->qgroup_rsv_reserved -
5449 block_rsv->qgroup_rsv_size;
5450 block_rsv->qgroup_rsv_reserved = block_rsv->qgroup_rsv_size;
5452 qgroup_to_release = 0;
5454 spin_unlock(&block_rsv->lock);
5457 if (num_bytes > 0) {
5459 spin_lock(&dest->lock);
5463 bytes_to_add = dest->size - dest->reserved;
5464 bytes_to_add = min(num_bytes, bytes_to_add);
5465 dest->reserved += bytes_to_add;
5466 if (dest->reserved >= dest->size)
5468 num_bytes -= bytes_to_add;
5470 spin_unlock(&dest->lock);
5473 space_info_add_old_bytes(fs_info, space_info,
5476 if (qgroup_to_release_ret)
5477 *qgroup_to_release_ret = qgroup_to_release;
5481 int btrfs_block_rsv_migrate(struct btrfs_block_rsv *src,
5482 struct btrfs_block_rsv *dst, u64 num_bytes,
5487 ret = block_rsv_use_bytes(src, num_bytes);
5491 block_rsv_add_bytes(dst, num_bytes, update_size);
5495 void btrfs_init_block_rsv(struct btrfs_block_rsv *rsv, unsigned short type)
5497 memset(rsv, 0, sizeof(*rsv));
5498 spin_lock_init(&rsv->lock);
5502 void btrfs_init_metadata_block_rsv(struct btrfs_fs_info *fs_info,
5503 struct btrfs_block_rsv *rsv,
5504 unsigned short type)
5506 btrfs_init_block_rsv(rsv, type);
5507 rsv->space_info = __find_space_info(fs_info,
5508 BTRFS_BLOCK_GROUP_METADATA);
5511 struct btrfs_block_rsv *btrfs_alloc_block_rsv(struct btrfs_fs_info *fs_info,
5512 unsigned short type)
5514 struct btrfs_block_rsv *block_rsv;
5516 block_rsv = kmalloc(sizeof(*block_rsv), GFP_NOFS);
5520 btrfs_init_metadata_block_rsv(fs_info, block_rsv, type);
5524 void btrfs_free_block_rsv(struct btrfs_fs_info *fs_info,
5525 struct btrfs_block_rsv *rsv)
5529 btrfs_block_rsv_release(fs_info, rsv, (u64)-1);
5533 int btrfs_block_rsv_add(struct btrfs_root *root,
5534 struct btrfs_block_rsv *block_rsv, u64 num_bytes,
5535 enum btrfs_reserve_flush_enum flush)
5542 ret = reserve_metadata_bytes(root, block_rsv, num_bytes, flush);
5544 block_rsv_add_bytes(block_rsv, num_bytes, 1);
5551 int btrfs_block_rsv_check(struct btrfs_block_rsv *block_rsv, int min_factor)
5559 spin_lock(&block_rsv->lock);
5560 num_bytes = div_factor(block_rsv->size, min_factor);
5561 if (block_rsv->reserved >= num_bytes)
5563 spin_unlock(&block_rsv->lock);
5568 int btrfs_block_rsv_refill(struct btrfs_root *root,
5569 struct btrfs_block_rsv *block_rsv, u64 min_reserved,
5570 enum btrfs_reserve_flush_enum flush)
5578 spin_lock(&block_rsv->lock);
5579 num_bytes = min_reserved;
5580 if (block_rsv->reserved >= num_bytes)
5583 num_bytes -= block_rsv->reserved;
5584 spin_unlock(&block_rsv->lock);
5589 ret = reserve_metadata_bytes(root, block_rsv, num_bytes, flush);
5591 block_rsv_add_bytes(block_rsv, num_bytes, 0);
5599 * btrfs_inode_rsv_refill - refill the inode block rsv.
5600 * @inode - the inode we are refilling.
5601 * @flush - the flusing restriction.
5603 * Essentially the same as btrfs_block_rsv_refill, except it uses the
5604 * block_rsv->size as the minimum size. We'll either refill the missing amount
5605 * or return if we already have enough space. This will also handle the resreve
5606 * tracepoint for the reserved amount.
5608 static int btrfs_inode_rsv_refill(struct btrfs_inode *inode,
5609 enum btrfs_reserve_flush_enum flush)
5611 struct btrfs_root *root = inode->root;
5612 struct btrfs_block_rsv *block_rsv = &inode->block_rsv;
5614 u64 qgroup_num_bytes = 0;
5617 spin_lock(&block_rsv->lock);
5618 if (block_rsv->reserved < block_rsv->size)
5619 num_bytes = block_rsv->size - block_rsv->reserved;
5620 if (block_rsv->qgroup_rsv_reserved < block_rsv->qgroup_rsv_size)
5621 qgroup_num_bytes = block_rsv->qgroup_rsv_size -
5622 block_rsv->qgroup_rsv_reserved;
5623 spin_unlock(&block_rsv->lock);
5628 ret = btrfs_qgroup_reserve_meta_prealloc(root, qgroup_num_bytes, true);
5631 ret = reserve_metadata_bytes(root, block_rsv, num_bytes, flush);
5633 block_rsv_add_bytes(block_rsv, num_bytes, 0);
5634 trace_btrfs_space_reservation(root->fs_info, "delalloc",
5635 btrfs_ino(inode), num_bytes, 1);
5637 /* Don't forget to increase qgroup_rsv_reserved */
5638 spin_lock(&block_rsv->lock);
5639 block_rsv->qgroup_rsv_reserved += qgroup_num_bytes;
5640 spin_unlock(&block_rsv->lock);
5642 btrfs_qgroup_free_meta_prealloc(root, qgroup_num_bytes);
5647 * btrfs_inode_rsv_release - release any excessive reservation.
5648 * @inode - the inode we need to release from.
5649 * @qgroup_free - free or convert qgroup meta.
5650 * Unlike normal operation, qgroup meta reservation needs to know if we are
5651 * freeing qgroup reservation or just converting it into per-trans. Normally
5652 * @qgroup_free is true for error handling, and false for normal release.
5654 * This is the same as btrfs_block_rsv_release, except that it handles the
5655 * tracepoint for the reservation.
5657 static void btrfs_inode_rsv_release(struct btrfs_inode *inode, bool qgroup_free)
5659 struct btrfs_fs_info *fs_info = inode->root->fs_info;
5660 struct btrfs_block_rsv *global_rsv = &fs_info->global_block_rsv;
5661 struct btrfs_block_rsv *block_rsv = &inode->block_rsv;
5663 u64 qgroup_to_release = 0;
5666 * Since we statically set the block_rsv->size we just want to say we
5667 * are releasing 0 bytes, and then we'll just get the reservation over
5670 released = block_rsv_release_bytes(fs_info, block_rsv, global_rsv, 0,
5671 &qgroup_to_release);
5673 trace_btrfs_space_reservation(fs_info, "delalloc",
5674 btrfs_ino(inode), released, 0);
5676 btrfs_qgroup_free_meta_prealloc(inode->root, qgroup_to_release);
5678 btrfs_qgroup_convert_reserved_meta(inode->root,
5682 void btrfs_block_rsv_release(struct btrfs_fs_info *fs_info,
5683 struct btrfs_block_rsv *block_rsv,
5686 struct btrfs_block_rsv *global_rsv = &fs_info->global_block_rsv;
5688 if (global_rsv == block_rsv ||
5689 block_rsv->space_info != global_rsv->space_info)
5691 block_rsv_release_bytes(fs_info, block_rsv, global_rsv, num_bytes, NULL);
5694 static void update_global_block_rsv(struct btrfs_fs_info *fs_info)
5696 struct btrfs_block_rsv *block_rsv = &fs_info->global_block_rsv;
5697 struct btrfs_space_info *sinfo = block_rsv->space_info;
5701 * The global block rsv is based on the size of the extent tree, the
5702 * checksum tree and the root tree. If the fs is empty we want to set
5703 * it to a minimal amount for safety.
5705 num_bytes = btrfs_root_used(&fs_info->extent_root->root_item) +
5706 btrfs_root_used(&fs_info->csum_root->root_item) +
5707 btrfs_root_used(&fs_info->tree_root->root_item);
5708 num_bytes = max_t(u64, num_bytes, SZ_16M);
5710 spin_lock(&sinfo->lock);
5711 spin_lock(&block_rsv->lock);
5713 block_rsv->size = min_t(u64, num_bytes, SZ_512M);
5715 if (block_rsv->reserved < block_rsv->size) {
5716 num_bytes = btrfs_space_info_used(sinfo, true);
5717 if (sinfo->total_bytes > num_bytes) {
5718 num_bytes = sinfo->total_bytes - num_bytes;
5719 num_bytes = min(num_bytes,
5720 block_rsv->size - block_rsv->reserved);
5721 block_rsv->reserved += num_bytes;
5722 sinfo->bytes_may_use += num_bytes;
5723 trace_btrfs_space_reservation(fs_info, "space_info",
5724 sinfo->flags, num_bytes,
5727 } else if (block_rsv->reserved > block_rsv->size) {
5728 num_bytes = block_rsv->reserved - block_rsv->size;
5729 sinfo->bytes_may_use -= num_bytes;
5730 trace_btrfs_space_reservation(fs_info, "space_info",
5731 sinfo->flags, num_bytes, 0);
5732 block_rsv->reserved = block_rsv->size;
5735 if (block_rsv->reserved == block_rsv->size)
5736 block_rsv->full = 1;
5738 block_rsv->full = 0;
5740 spin_unlock(&block_rsv->lock);
5741 spin_unlock(&sinfo->lock);
5744 static void init_global_block_rsv(struct btrfs_fs_info *fs_info)
5746 struct btrfs_space_info *space_info;
5748 space_info = __find_space_info(fs_info, BTRFS_BLOCK_GROUP_SYSTEM);
5749 fs_info->chunk_block_rsv.space_info = space_info;
5751 space_info = __find_space_info(fs_info, BTRFS_BLOCK_GROUP_METADATA);
5752 fs_info->global_block_rsv.space_info = space_info;
5753 fs_info->trans_block_rsv.space_info = space_info;
5754 fs_info->empty_block_rsv.space_info = space_info;
5755 fs_info->delayed_block_rsv.space_info = space_info;
5757 fs_info->extent_root->block_rsv = &fs_info->global_block_rsv;
5758 fs_info->csum_root->block_rsv = &fs_info->global_block_rsv;
5759 fs_info->dev_root->block_rsv = &fs_info->global_block_rsv;
5760 fs_info->tree_root->block_rsv = &fs_info->global_block_rsv;
5761 if (fs_info->quota_root)
5762 fs_info->quota_root->block_rsv = &fs_info->global_block_rsv;
5763 fs_info->chunk_root->block_rsv = &fs_info->chunk_block_rsv;
5765 update_global_block_rsv(fs_info);
5768 static void release_global_block_rsv(struct btrfs_fs_info *fs_info)
5770 block_rsv_release_bytes(fs_info, &fs_info->global_block_rsv, NULL,
5772 WARN_ON(fs_info->trans_block_rsv.size > 0);
5773 WARN_ON(fs_info->trans_block_rsv.reserved > 0);
5774 WARN_ON(fs_info->chunk_block_rsv.size > 0);
5775 WARN_ON(fs_info->chunk_block_rsv.reserved > 0);
5776 WARN_ON(fs_info->delayed_block_rsv.size > 0);
5777 WARN_ON(fs_info->delayed_block_rsv.reserved > 0);
5782 * To be called after all the new block groups attached to the transaction
5783 * handle have been created (btrfs_create_pending_block_groups()).
5785 void btrfs_trans_release_chunk_metadata(struct btrfs_trans_handle *trans)
5787 struct btrfs_fs_info *fs_info = trans->fs_info;
5789 if (!trans->chunk_bytes_reserved)
5792 WARN_ON_ONCE(!list_empty(&trans->new_bgs));
5794 block_rsv_release_bytes(fs_info, &fs_info->chunk_block_rsv, NULL,
5795 trans->chunk_bytes_reserved, NULL);
5796 trans->chunk_bytes_reserved = 0;
5800 * btrfs_subvolume_reserve_metadata() - reserve space for subvolume operation
5801 * root: the root of the parent directory
5802 * rsv: block reservation
5803 * items: the number of items that we need do reservation
5804 * use_global_rsv: allow fallback to the global block reservation
5806 * This function is used to reserve the space for snapshot/subvolume
5807 * creation and deletion. Those operations are different with the
5808 * common file/directory operations, they change two fs/file trees
5809 * and root tree, the number of items that the qgroup reserves is
5810 * different with the free space reservation. So we can not use
5811 * the space reservation mechanism in start_transaction().
5813 int btrfs_subvolume_reserve_metadata(struct btrfs_root *root,
5814 struct btrfs_block_rsv *rsv, int items,
5815 bool use_global_rsv)
5817 u64 qgroup_num_bytes = 0;
5820 struct btrfs_fs_info *fs_info = root->fs_info;
5821 struct btrfs_block_rsv *global_rsv = &fs_info->global_block_rsv;
5823 if (test_bit(BTRFS_FS_QUOTA_ENABLED, &fs_info->flags)) {
5824 /* One for parent inode, two for dir entries */
5825 qgroup_num_bytes = 3 * fs_info->nodesize;
5826 ret = btrfs_qgroup_reserve_meta_prealloc(root,
5827 qgroup_num_bytes, true);
5832 num_bytes = btrfs_calc_trans_metadata_size(fs_info, items);
5833 rsv->space_info = __find_space_info(fs_info,
5834 BTRFS_BLOCK_GROUP_METADATA);
5835 ret = btrfs_block_rsv_add(root, rsv, num_bytes,
5836 BTRFS_RESERVE_FLUSH_ALL);
5838 if (ret == -ENOSPC && use_global_rsv)
5839 ret = btrfs_block_rsv_migrate(global_rsv, rsv, num_bytes, 1);
5841 if (ret && qgroup_num_bytes)
5842 btrfs_qgroup_free_meta_prealloc(root, qgroup_num_bytes);
5847 void btrfs_subvolume_release_metadata(struct btrfs_fs_info *fs_info,
5848 struct btrfs_block_rsv *rsv)
5850 btrfs_block_rsv_release(fs_info, rsv, (u64)-1);
5853 static void btrfs_calculate_inode_block_rsv_size(struct btrfs_fs_info *fs_info,
5854 struct btrfs_inode *inode)
5856 struct btrfs_block_rsv *block_rsv = &inode->block_rsv;
5857 u64 reserve_size = 0;
5858 u64 qgroup_rsv_size = 0;
5860 unsigned outstanding_extents;
5862 lockdep_assert_held(&inode->lock);
5863 outstanding_extents = inode->outstanding_extents;
5864 if (outstanding_extents)
5865 reserve_size = btrfs_calc_trans_metadata_size(fs_info,
5866 outstanding_extents + 1);
5867 csum_leaves = btrfs_csum_bytes_to_leaves(fs_info,
5869 reserve_size += btrfs_calc_trans_metadata_size(fs_info,
5872 * For qgroup rsv, the calculation is very simple:
5873 * account one nodesize for each outstanding extent
5875 * This is overestimating in most cases.
5877 qgroup_rsv_size = (u64)outstanding_extents * fs_info->nodesize;
5879 spin_lock(&block_rsv->lock);
5880 block_rsv->size = reserve_size;
5881 block_rsv->qgroup_rsv_size = qgroup_rsv_size;
5882 spin_unlock(&block_rsv->lock);
5885 int btrfs_delalloc_reserve_metadata(struct btrfs_inode *inode, u64 num_bytes)
5887 struct btrfs_fs_info *fs_info = inode->root->fs_info;
5888 unsigned nr_extents;
5889 enum btrfs_reserve_flush_enum flush = BTRFS_RESERVE_FLUSH_ALL;
5891 bool delalloc_lock = true;
5893 /* If we are a free space inode we need to not flush since we will be in
5894 * the middle of a transaction commit. We also don't need the delalloc
5895 * mutex since we won't race with anybody. We need this mostly to make
5896 * lockdep shut its filthy mouth.
5898 * If we have a transaction open (can happen if we call truncate_block
5899 * from truncate), then we need FLUSH_LIMIT so we don't deadlock.
5901 if (btrfs_is_free_space_inode(inode)) {
5902 flush = BTRFS_RESERVE_NO_FLUSH;
5903 delalloc_lock = false;
5905 if (current->journal_info)
5906 flush = BTRFS_RESERVE_FLUSH_LIMIT;
5908 if (btrfs_transaction_in_commit(fs_info))
5909 schedule_timeout(1);
5913 mutex_lock(&inode->delalloc_mutex);
5915 num_bytes = ALIGN(num_bytes, fs_info->sectorsize);
5917 /* Add our new extents and calculate the new rsv size. */
5918 spin_lock(&inode->lock);
5919 nr_extents = count_max_extents(num_bytes);
5920 btrfs_mod_outstanding_extents(inode, nr_extents);
5921 inode->csum_bytes += num_bytes;
5922 btrfs_calculate_inode_block_rsv_size(fs_info, inode);
5923 spin_unlock(&inode->lock);
5925 ret = btrfs_inode_rsv_refill(inode, flush);
5930 mutex_unlock(&inode->delalloc_mutex);
5934 spin_lock(&inode->lock);
5935 nr_extents = count_max_extents(num_bytes);
5936 btrfs_mod_outstanding_extents(inode, -nr_extents);
5937 inode->csum_bytes -= num_bytes;
5938 btrfs_calculate_inode_block_rsv_size(fs_info, inode);
5939 spin_unlock(&inode->lock);
5941 btrfs_inode_rsv_release(inode, true);
5943 mutex_unlock(&inode->delalloc_mutex);
5948 * btrfs_delalloc_release_metadata - release a metadata reservation for an inode
5949 * @inode: the inode to release the reservation for.
5950 * @num_bytes: the number of bytes we are releasing.
5951 * @qgroup_free: free qgroup reservation or convert it to per-trans reservation
5953 * This will release the metadata reservation for an inode. This can be called
5954 * once we complete IO for a given set of bytes to release their metadata
5955 * reservations, or on error for the same reason.
5957 void btrfs_delalloc_release_metadata(struct btrfs_inode *inode, u64 num_bytes,
5960 struct btrfs_fs_info *fs_info = inode->root->fs_info;
5962 num_bytes = ALIGN(num_bytes, fs_info->sectorsize);
5963 spin_lock(&inode->lock);
5964 inode->csum_bytes -= num_bytes;
5965 btrfs_calculate_inode_block_rsv_size(fs_info, inode);
5966 spin_unlock(&inode->lock);
5968 if (btrfs_is_testing(fs_info))
5971 btrfs_inode_rsv_release(inode, qgroup_free);
5975 * btrfs_delalloc_release_extents - release our outstanding_extents
5976 * @inode: the inode to balance the reservation for.
5977 * @num_bytes: the number of bytes we originally reserved with
5978 * @qgroup_free: do we need to free qgroup meta reservation or convert them.
5980 * When we reserve space we increase outstanding_extents for the extents we may
5981 * add. Once we've set the range as delalloc or created our ordered extents we
5982 * have outstanding_extents to track the real usage, so we use this to free our
5983 * temporarily tracked outstanding_extents. This _must_ be used in conjunction
5984 * with btrfs_delalloc_reserve_metadata.
5986 void btrfs_delalloc_release_extents(struct btrfs_inode *inode, u64 num_bytes)
5988 struct btrfs_fs_info *fs_info = inode->root->fs_info;
5989 unsigned num_extents;
5991 spin_lock(&inode->lock);
5992 num_extents = count_max_extents(num_bytes);
5993 btrfs_mod_outstanding_extents(inode, -num_extents);
5994 btrfs_calculate_inode_block_rsv_size(fs_info, inode);
5995 spin_unlock(&inode->lock);
5997 if (btrfs_is_testing(fs_info))
6000 btrfs_inode_rsv_release(inode, true);
6004 * btrfs_delalloc_reserve_space - reserve data and metadata space for
6006 * @inode: inode we're writing to
6007 * @start: start range we are writing to
6008 * @len: how long the range we are writing to
6009 * @reserved: mandatory parameter, record actually reserved qgroup ranges of
6010 * current reservation.
6012 * This will do the following things
6014 * o reserve space in data space info for num bytes
6015 * and reserve precious corresponding qgroup space
6016 * (Done in check_data_free_space)
6018 * o reserve space for metadata space, based on the number of outstanding
6019 * extents and how much csums will be needed
6020 * also reserve metadata space in a per root over-reserve method.
6021 * o add to the inodes->delalloc_bytes
6022 * o add it to the fs_info's delalloc inodes list.
6023 * (Above 3 all done in delalloc_reserve_metadata)
6025 * Return 0 for success
6026 * Return <0 for error(-ENOSPC or -EQUOT)
6028 int btrfs_delalloc_reserve_space(struct inode *inode,
6029 struct extent_changeset **reserved, u64 start, u64 len)
6033 ret = btrfs_check_data_free_space(inode, reserved, start, len);
6036 ret = btrfs_delalloc_reserve_metadata(BTRFS_I(inode), len);
6038 btrfs_free_reserved_data_space(inode, *reserved, start, len);
6043 * btrfs_delalloc_release_space - release data and metadata space for delalloc
6044 * @inode: inode we're releasing space for
6045 * @start: start position of the space already reserved
6046 * @len: the len of the space already reserved
6047 * @release_bytes: the len of the space we consumed or didn't use
6049 * This function will release the metadata space that was not used and will
6050 * decrement ->delalloc_bytes and remove it from the fs_info delalloc_inodes
6051 * list if there are no delalloc bytes left.
6052 * Also it will handle the qgroup reserved space.
6054 void btrfs_delalloc_release_space(struct inode *inode,
6055 struct extent_changeset *reserved,
6056 u64 start, u64 len, bool qgroup_free)
6058 btrfs_delalloc_release_metadata(BTRFS_I(inode), len, qgroup_free);
6059 btrfs_free_reserved_data_space(inode, reserved, start, len);
6062 static int update_block_group(struct btrfs_trans_handle *trans,
6063 struct btrfs_fs_info *info, u64 bytenr,
6064 u64 num_bytes, int alloc)
6066 struct btrfs_block_group_cache *cache = NULL;
6067 u64 total = num_bytes;
6072 /* block accounting for super block */
6073 spin_lock(&info->delalloc_root_lock);
6074 old_val = btrfs_super_bytes_used(info->super_copy);
6076 old_val += num_bytes;
6078 old_val -= num_bytes;
6079 btrfs_set_super_bytes_used(info->super_copy, old_val);
6080 spin_unlock(&info->delalloc_root_lock);
6083 cache = btrfs_lookup_block_group(info, bytenr);
6086 factor = btrfs_bg_type_to_factor(cache->flags);
6089 * If this block group has free space cache written out, we
6090 * need to make sure to load it if we are removing space. This
6091 * is because we need the unpinning stage to actually add the
6092 * space back to the block group, otherwise we will leak space.
6094 if (!alloc && cache->cached == BTRFS_CACHE_NO)
6095 cache_block_group(cache, 1);
6097 byte_in_group = bytenr - cache->key.objectid;
6098 WARN_ON(byte_in_group > cache->key.offset);
6100 spin_lock(&cache->space_info->lock);
6101 spin_lock(&cache->lock);
6103 if (btrfs_test_opt(info, SPACE_CACHE) &&
6104 cache->disk_cache_state < BTRFS_DC_CLEAR)
6105 cache->disk_cache_state = BTRFS_DC_CLEAR;
6107 old_val = btrfs_block_group_used(&cache->item);
6108 num_bytes = min(total, cache->key.offset - byte_in_group);
6110 old_val += num_bytes;
6111 btrfs_set_block_group_used(&cache->item, old_val);
6112 cache->reserved -= num_bytes;
6113 cache->space_info->bytes_reserved -= num_bytes;
6114 cache->space_info->bytes_used += num_bytes;
6115 cache->space_info->disk_used += num_bytes * factor;
6116 spin_unlock(&cache->lock);
6117 spin_unlock(&cache->space_info->lock);
6119 old_val -= num_bytes;
6120 btrfs_set_block_group_used(&cache->item, old_val);
6121 cache->pinned += num_bytes;
6122 cache->space_info->bytes_pinned += num_bytes;
6123 cache->space_info->bytes_used -= num_bytes;
6124 cache->space_info->disk_used -= num_bytes * factor;
6125 spin_unlock(&cache->lock);
6126 spin_unlock(&cache->space_info->lock);
6128 trace_btrfs_space_reservation(info, "pinned",
6129 cache->space_info->flags,
6131 percpu_counter_add_batch(&cache->space_info->total_bytes_pinned,
6133 BTRFS_TOTAL_BYTES_PINNED_BATCH);
6134 set_extent_dirty(info->pinned_extents,
6135 bytenr, bytenr + num_bytes - 1,
6136 GFP_NOFS | __GFP_NOFAIL);
6139 spin_lock(&trans->transaction->dirty_bgs_lock);
6140 if (list_empty(&cache->dirty_list)) {
6141 list_add_tail(&cache->dirty_list,
6142 &trans->transaction->dirty_bgs);
6143 trans->transaction->num_dirty_bgs++;
6144 btrfs_get_block_group(cache);
6146 spin_unlock(&trans->transaction->dirty_bgs_lock);
6149 * No longer have used bytes in this block group, queue it for
6150 * deletion. We do this after adding the block group to the
6151 * dirty list to avoid races between cleaner kthread and space
6154 if (!alloc && old_val == 0)
6155 btrfs_mark_bg_unused(cache);
6157 btrfs_put_block_group(cache);
6159 bytenr += num_bytes;
6164 static u64 first_logical_byte(struct btrfs_fs_info *fs_info, u64 search_start)
6166 struct btrfs_block_group_cache *cache;
6169 spin_lock(&fs_info->block_group_cache_lock);
6170 bytenr = fs_info->first_logical_byte;
6171 spin_unlock(&fs_info->block_group_cache_lock);
6173 if (bytenr < (u64)-1)
6176 cache = btrfs_lookup_first_block_group(fs_info, search_start);
6180 bytenr = cache->key.objectid;
6181 btrfs_put_block_group(cache);
6186 static int pin_down_extent(struct btrfs_fs_info *fs_info,
6187 struct btrfs_block_group_cache *cache,
6188 u64 bytenr, u64 num_bytes, int reserved)
6190 spin_lock(&cache->space_info->lock);
6191 spin_lock(&cache->lock);
6192 cache->pinned += num_bytes;
6193 cache->space_info->bytes_pinned += num_bytes;
6195 cache->reserved -= num_bytes;
6196 cache->space_info->bytes_reserved -= num_bytes;
6198 spin_unlock(&cache->lock);
6199 spin_unlock(&cache->space_info->lock);
6201 trace_btrfs_space_reservation(fs_info, "pinned",
6202 cache->space_info->flags, num_bytes, 1);
6203 percpu_counter_add_batch(&cache->space_info->total_bytes_pinned,
6204 num_bytes, BTRFS_TOTAL_BYTES_PINNED_BATCH);
6205 set_extent_dirty(fs_info->pinned_extents, bytenr,
6206 bytenr + num_bytes - 1, GFP_NOFS | __GFP_NOFAIL);
6211 * this function must be called within transaction
6213 int btrfs_pin_extent(struct btrfs_fs_info *fs_info,
6214 u64 bytenr, u64 num_bytes, int reserved)
6216 struct btrfs_block_group_cache *cache;
6218 cache = btrfs_lookup_block_group(fs_info, bytenr);
6219 BUG_ON(!cache); /* Logic error */
6221 pin_down_extent(fs_info, cache, bytenr, num_bytes, reserved);
6223 btrfs_put_block_group(cache);
6228 * this function must be called within transaction
6230 int btrfs_pin_extent_for_log_replay(struct btrfs_fs_info *fs_info,
6231 u64 bytenr, u64 num_bytes)
6233 struct btrfs_block_group_cache *cache;
6236 cache = btrfs_lookup_block_group(fs_info, bytenr);
6241 * pull in the free space cache (if any) so that our pin
6242 * removes the free space from the cache. We have load_only set
6243 * to one because the slow code to read in the free extents does check
6244 * the pinned extents.
6246 cache_block_group(cache, 1);
6248 pin_down_extent(fs_info, cache, bytenr, num_bytes, 0);
6250 /* remove us from the free space cache (if we're there at all) */
6251 ret = btrfs_remove_free_space(cache, bytenr, num_bytes);
6252 btrfs_put_block_group(cache);
6256 static int __exclude_logged_extent(struct btrfs_fs_info *fs_info,
6257 u64 start, u64 num_bytes)
6260 struct btrfs_block_group_cache *block_group;
6261 struct btrfs_caching_control *caching_ctl;
6263 block_group = btrfs_lookup_block_group(fs_info, start);
6267 cache_block_group(block_group, 0);
6268 caching_ctl = get_caching_control(block_group);
6272 BUG_ON(!block_group_cache_done(block_group));
6273 ret = btrfs_remove_free_space(block_group, start, num_bytes);
6275 mutex_lock(&caching_ctl->mutex);
6277 if (start >= caching_ctl->progress) {
6278 ret = add_excluded_extent(fs_info, start, num_bytes);
6279 } else if (start + num_bytes <= caching_ctl->progress) {
6280 ret = btrfs_remove_free_space(block_group,
6283 num_bytes = caching_ctl->progress - start;
6284 ret = btrfs_remove_free_space(block_group,
6289 num_bytes = (start + num_bytes) -
6290 caching_ctl->progress;
6291 start = caching_ctl->progress;
6292 ret = add_excluded_extent(fs_info, start, num_bytes);
6295 mutex_unlock(&caching_ctl->mutex);
6296 put_caching_control(caching_ctl);
6298 btrfs_put_block_group(block_group);
6302 int btrfs_exclude_logged_extents(struct btrfs_fs_info *fs_info,
6303 struct extent_buffer *eb)
6305 struct btrfs_file_extent_item *item;
6306 struct btrfs_key key;
6311 if (!btrfs_fs_incompat(fs_info, MIXED_GROUPS))
6314 for (i = 0; i < btrfs_header_nritems(eb); i++) {
6315 btrfs_item_key_to_cpu(eb, &key, i);
6316 if (key.type != BTRFS_EXTENT_DATA_KEY)
6318 item = btrfs_item_ptr(eb, i, struct btrfs_file_extent_item);
6319 found_type = btrfs_file_extent_type(eb, item);
6320 if (found_type == BTRFS_FILE_EXTENT_INLINE)
6322 if (btrfs_file_extent_disk_bytenr(eb, item) == 0)
6324 key.objectid = btrfs_file_extent_disk_bytenr(eb, item);
6325 key.offset = btrfs_file_extent_disk_num_bytes(eb, item);
6326 ret = __exclude_logged_extent(fs_info, key.objectid, key.offset);
6335 btrfs_inc_block_group_reservations(struct btrfs_block_group_cache *bg)
6337 atomic_inc(&bg->reservations);
6340 void btrfs_dec_block_group_reservations(struct btrfs_fs_info *fs_info,
6343 struct btrfs_block_group_cache *bg;
6345 bg = btrfs_lookup_block_group(fs_info, start);
6347 if (atomic_dec_and_test(&bg->reservations))
6348 wake_up_var(&bg->reservations);
6349 btrfs_put_block_group(bg);
6352 void btrfs_wait_block_group_reservations(struct btrfs_block_group_cache *bg)
6354 struct btrfs_space_info *space_info = bg->space_info;
6358 if (!(bg->flags & BTRFS_BLOCK_GROUP_DATA))
6362 * Our block group is read only but before we set it to read only,
6363 * some task might have had allocated an extent from it already, but it
6364 * has not yet created a respective ordered extent (and added it to a
6365 * root's list of ordered extents).
6366 * Therefore wait for any task currently allocating extents, since the
6367 * block group's reservations counter is incremented while a read lock
6368 * on the groups' semaphore is held and decremented after releasing
6369 * the read access on that semaphore and creating the ordered extent.
6371 down_write(&space_info->groups_sem);
6372 up_write(&space_info->groups_sem);
6374 wait_var_event(&bg->reservations, !atomic_read(&bg->reservations));
6378 * btrfs_add_reserved_bytes - update the block_group and space info counters
6379 * @cache: The cache we are manipulating
6380 * @ram_bytes: The number of bytes of file content, and will be same to
6381 * @num_bytes except for the compress path.
6382 * @num_bytes: The number of bytes in question
6383 * @delalloc: The blocks are allocated for the delalloc write
6385 * This is called by the allocator when it reserves space. If this is a
6386 * reservation and the block group has become read only we cannot make the
6387 * reservation and return -EAGAIN, otherwise this function always succeeds.
6389 static int btrfs_add_reserved_bytes(struct btrfs_block_group_cache *cache,
6390 u64 ram_bytes, u64 num_bytes, int delalloc)
6392 struct btrfs_space_info *space_info = cache->space_info;
6395 spin_lock(&space_info->lock);
6396 spin_lock(&cache->lock);
6400 cache->reserved += num_bytes;
6401 space_info->bytes_reserved += num_bytes;
6403 trace_btrfs_space_reservation(cache->fs_info,
6404 "space_info", space_info->flags,
6406 space_info->bytes_may_use -= ram_bytes;
6408 cache->delalloc_bytes += num_bytes;
6410 spin_unlock(&cache->lock);
6411 spin_unlock(&space_info->lock);
6416 * btrfs_free_reserved_bytes - update the block_group and space info counters
6417 * @cache: The cache we are manipulating
6418 * @num_bytes: The number of bytes in question
6419 * @delalloc: The blocks are allocated for the delalloc write
6421 * This is called by somebody who is freeing space that was never actually used
6422 * on disk. For example if you reserve some space for a new leaf in transaction
6423 * A and before transaction A commits you free that leaf, you call this with
6424 * reserve set to 0 in order to clear the reservation.
6427 static int btrfs_free_reserved_bytes(struct btrfs_block_group_cache *cache,
6428 u64 num_bytes, int delalloc)
6430 struct btrfs_space_info *space_info = cache->space_info;
6433 spin_lock(&space_info->lock);
6434 spin_lock(&cache->lock);
6436 space_info->bytes_readonly += num_bytes;
6437 cache->reserved -= num_bytes;
6438 space_info->bytes_reserved -= num_bytes;
6439 space_info->max_extent_size = 0;
6442 cache->delalloc_bytes -= num_bytes;
6443 spin_unlock(&cache->lock);
6444 spin_unlock(&space_info->lock);
6447 void btrfs_prepare_extent_commit(struct btrfs_fs_info *fs_info)
6449 struct btrfs_caching_control *next;
6450 struct btrfs_caching_control *caching_ctl;
6451 struct btrfs_block_group_cache *cache;
6453 down_write(&fs_info->commit_root_sem);
6455 list_for_each_entry_safe(caching_ctl, next,
6456 &fs_info->caching_block_groups, list) {
6457 cache = caching_ctl->block_group;
6458 if (block_group_cache_done(cache)) {
6459 cache->last_byte_to_unpin = (u64)-1;
6460 list_del_init(&caching_ctl->list);
6461 put_caching_control(caching_ctl);
6463 cache->last_byte_to_unpin = caching_ctl->progress;
6467 if (fs_info->pinned_extents == &fs_info->freed_extents[0])
6468 fs_info->pinned_extents = &fs_info->freed_extents[1];
6470 fs_info->pinned_extents = &fs_info->freed_extents[0];
6472 up_write(&fs_info->commit_root_sem);
6474 update_global_block_rsv(fs_info);
6478 * Returns the free cluster for the given space info and sets empty_cluster to
6479 * what it should be based on the mount options.
6481 static struct btrfs_free_cluster *
6482 fetch_cluster_info(struct btrfs_fs_info *fs_info,
6483 struct btrfs_space_info *space_info, u64 *empty_cluster)
6485 struct btrfs_free_cluster *ret = NULL;
6488 if (btrfs_mixed_space_info(space_info))
6491 if (space_info->flags & BTRFS_BLOCK_GROUP_METADATA) {
6492 ret = &fs_info->meta_alloc_cluster;
6493 if (btrfs_test_opt(fs_info, SSD))
6494 *empty_cluster = SZ_2M;
6496 *empty_cluster = SZ_64K;
6497 } else if ((space_info->flags & BTRFS_BLOCK_GROUP_DATA) &&
6498 btrfs_test_opt(fs_info, SSD_SPREAD)) {
6499 *empty_cluster = SZ_2M;
6500 ret = &fs_info->data_alloc_cluster;
6506 static int unpin_extent_range(struct btrfs_fs_info *fs_info,
6508 const bool return_free_space)
6510 struct btrfs_block_group_cache *cache = NULL;
6511 struct btrfs_space_info *space_info;
6512 struct btrfs_block_rsv *global_rsv = &fs_info->global_block_rsv;
6513 struct btrfs_free_cluster *cluster = NULL;
6515 u64 total_unpinned = 0;
6516 u64 empty_cluster = 0;
6519 while (start <= end) {
6522 start >= cache->key.objectid + cache->key.offset) {
6524 btrfs_put_block_group(cache);
6526 cache = btrfs_lookup_block_group(fs_info, start);
6527 BUG_ON(!cache); /* Logic error */
6529 cluster = fetch_cluster_info(fs_info,
6532 empty_cluster <<= 1;
6535 len = cache->key.objectid + cache->key.offset - start;
6536 len = min(len, end + 1 - start);
6538 if (start < cache->last_byte_to_unpin) {
6539 len = min(len, cache->last_byte_to_unpin - start);
6540 if (return_free_space)
6541 btrfs_add_free_space(cache, start, len);
6545 total_unpinned += len;
6546 space_info = cache->space_info;
6549 * If this space cluster has been marked as fragmented and we've
6550 * unpinned enough in this block group to potentially allow a
6551 * cluster to be created inside of it go ahead and clear the
6554 if (cluster && cluster->fragmented &&
6555 total_unpinned > empty_cluster) {
6556 spin_lock(&cluster->lock);
6557 cluster->fragmented = 0;
6558 spin_unlock(&cluster->lock);
6561 spin_lock(&space_info->lock);
6562 spin_lock(&cache->lock);
6563 cache->pinned -= len;
6564 space_info->bytes_pinned -= len;
6566 trace_btrfs_space_reservation(fs_info, "pinned",
6567 space_info->flags, len, 0);
6568 space_info->max_extent_size = 0;
6569 percpu_counter_add_batch(&space_info->total_bytes_pinned,
6570 -len, BTRFS_TOTAL_BYTES_PINNED_BATCH);
6572 space_info->bytes_readonly += len;
6575 spin_unlock(&cache->lock);
6576 if (!readonly && return_free_space &&
6577 global_rsv->space_info == space_info) {
6580 spin_lock(&global_rsv->lock);
6581 if (!global_rsv->full) {
6582 to_add = min(len, global_rsv->size -
6583 global_rsv->reserved);
6584 global_rsv->reserved += to_add;
6585 space_info->bytes_may_use += to_add;
6586 if (global_rsv->reserved >= global_rsv->size)
6587 global_rsv->full = 1;
6588 trace_btrfs_space_reservation(fs_info,
6594 spin_unlock(&global_rsv->lock);
6595 /* Add to any tickets we may have */
6597 space_info_add_new_bytes(fs_info, space_info,
6600 spin_unlock(&space_info->lock);
6604 btrfs_put_block_group(cache);
6608 int btrfs_finish_extent_commit(struct btrfs_trans_handle *trans)
6610 struct btrfs_fs_info *fs_info = trans->fs_info;
6611 struct btrfs_block_group_cache *block_group, *tmp;
6612 struct list_head *deleted_bgs;
6613 struct extent_io_tree *unpin;
6618 if (fs_info->pinned_extents == &fs_info->freed_extents[0])
6619 unpin = &fs_info->freed_extents[1];
6621 unpin = &fs_info->freed_extents[0];
6623 while (!trans->aborted) {
6624 struct extent_state *cached_state = NULL;
6626 mutex_lock(&fs_info->unused_bg_unpin_mutex);
6627 ret = find_first_extent_bit(unpin, 0, &start, &end,
6628 EXTENT_DIRTY, &cached_state);
6630 mutex_unlock(&fs_info->unused_bg_unpin_mutex);
6634 if (btrfs_test_opt(fs_info, DISCARD))
6635 ret = btrfs_discard_extent(fs_info, start,
6636 end + 1 - start, NULL);
6638 clear_extent_dirty(unpin, start, end, &cached_state);
6639 unpin_extent_range(fs_info, start, end, true);
6640 mutex_unlock(&fs_info->unused_bg_unpin_mutex);
6641 free_extent_state(cached_state);
6646 * Transaction is finished. We don't need the lock anymore. We
6647 * do need to clean up the block groups in case of a transaction
6650 deleted_bgs = &trans->transaction->deleted_bgs;
6651 list_for_each_entry_safe(block_group, tmp, deleted_bgs, bg_list) {
6655 if (!trans->aborted)
6656 ret = btrfs_discard_extent(fs_info,
6657 block_group->key.objectid,
6658 block_group->key.offset,
6661 list_del_init(&block_group->bg_list);
6662 btrfs_put_block_group_trimming(block_group);
6663 btrfs_put_block_group(block_group);
6666 const char *errstr = btrfs_decode_error(ret);
6668 "discard failed while removing blockgroup: errno=%d %s",
6676 static int __btrfs_free_extent(struct btrfs_trans_handle *trans,
6677 struct btrfs_delayed_ref_node *node, u64 parent,
6678 u64 root_objectid, u64 owner_objectid,
6679 u64 owner_offset, int refs_to_drop,
6680 struct btrfs_delayed_extent_op *extent_op)
6682 struct btrfs_fs_info *info = trans->fs_info;
6683 struct btrfs_key key;
6684 struct btrfs_path *path;
6685 struct btrfs_root *extent_root = info->extent_root;
6686 struct extent_buffer *leaf;
6687 struct btrfs_extent_item *ei;
6688 struct btrfs_extent_inline_ref *iref;
6691 int extent_slot = 0;
6692 int found_extent = 0;
6696 u64 bytenr = node->bytenr;
6697 u64 num_bytes = node->num_bytes;
6699 bool skinny_metadata = btrfs_fs_incompat(info, SKINNY_METADATA);
6701 path = btrfs_alloc_path();
6705 path->reada = READA_FORWARD;
6706 path->leave_spinning = 1;
6708 is_data = owner_objectid >= BTRFS_FIRST_FREE_OBJECTID;
6709 BUG_ON(!is_data && refs_to_drop != 1);
6712 skinny_metadata = false;
6714 ret = lookup_extent_backref(trans, path, &iref, bytenr, num_bytes,
6715 parent, root_objectid, owner_objectid,
6718 extent_slot = path->slots[0];
6719 while (extent_slot >= 0) {
6720 btrfs_item_key_to_cpu(path->nodes[0], &key,
6722 if (key.objectid != bytenr)
6724 if (key.type == BTRFS_EXTENT_ITEM_KEY &&
6725 key.offset == num_bytes) {
6729 if (key.type == BTRFS_METADATA_ITEM_KEY &&
6730 key.offset == owner_objectid) {
6734 if (path->slots[0] - extent_slot > 5)
6739 if (!found_extent) {
6741 ret = remove_extent_backref(trans, path, NULL,
6743 is_data, &last_ref);
6745 btrfs_abort_transaction(trans, ret);
6748 btrfs_release_path(path);
6749 path->leave_spinning = 1;
6751 key.objectid = bytenr;
6752 key.type = BTRFS_EXTENT_ITEM_KEY;
6753 key.offset = num_bytes;
6755 if (!is_data && skinny_metadata) {
6756 key.type = BTRFS_METADATA_ITEM_KEY;
6757 key.offset = owner_objectid;
6760 ret = btrfs_search_slot(trans, extent_root,
6762 if (ret > 0 && skinny_metadata && path->slots[0]) {
6764 * Couldn't find our skinny metadata item,
6765 * see if we have ye olde extent item.
6768 btrfs_item_key_to_cpu(path->nodes[0], &key,
6770 if (key.objectid == bytenr &&
6771 key.type == BTRFS_EXTENT_ITEM_KEY &&
6772 key.offset == num_bytes)
6776 if (ret > 0 && skinny_metadata) {
6777 skinny_metadata = false;
6778 key.objectid = bytenr;
6779 key.type = BTRFS_EXTENT_ITEM_KEY;
6780 key.offset = num_bytes;
6781 btrfs_release_path(path);
6782 ret = btrfs_search_slot(trans, extent_root,
6788 "umm, got %d back from search, was looking for %llu",
6791 btrfs_print_leaf(path->nodes[0]);
6794 btrfs_abort_transaction(trans, ret);
6797 extent_slot = path->slots[0];
6799 } else if (WARN_ON(ret == -ENOENT)) {
6800 btrfs_print_leaf(path->nodes[0]);
6802 "unable to find ref byte nr %llu parent %llu root %llu owner %llu offset %llu",
6803 bytenr, parent, root_objectid, owner_objectid,
6805 btrfs_abort_transaction(trans, ret);
6808 btrfs_abort_transaction(trans, ret);
6812 leaf = path->nodes[0];
6813 item_size = btrfs_item_size_nr(leaf, extent_slot);
6814 if (unlikely(item_size < sizeof(*ei))) {
6816 btrfs_print_v0_err(info);
6817 btrfs_abort_transaction(trans, ret);
6820 ei = btrfs_item_ptr(leaf, extent_slot,
6821 struct btrfs_extent_item);
6822 if (owner_objectid < BTRFS_FIRST_FREE_OBJECTID &&
6823 key.type == BTRFS_EXTENT_ITEM_KEY) {
6824 struct btrfs_tree_block_info *bi;
6825 BUG_ON(item_size < sizeof(*ei) + sizeof(*bi));
6826 bi = (struct btrfs_tree_block_info *)(ei + 1);
6827 WARN_ON(owner_objectid != btrfs_tree_block_level(leaf, bi));
6830 refs = btrfs_extent_refs(leaf, ei);
6831 if (refs < refs_to_drop) {
6833 "trying to drop %d refs but we only have %Lu for bytenr %Lu",
6834 refs_to_drop, refs, bytenr);
6836 btrfs_abort_transaction(trans, ret);
6839 refs -= refs_to_drop;
6843 __run_delayed_extent_op(extent_op, leaf, ei);
6845 * In the case of inline back ref, reference count will
6846 * be updated by remove_extent_backref
6849 BUG_ON(!found_extent);
6851 btrfs_set_extent_refs(leaf, ei, refs);
6852 btrfs_mark_buffer_dirty(leaf);
6855 ret = remove_extent_backref(trans, path, iref,
6856 refs_to_drop, is_data,
6859 btrfs_abort_transaction(trans, ret);
6865 BUG_ON(is_data && refs_to_drop !=
6866 extent_data_ref_count(path, iref));
6868 BUG_ON(path->slots[0] != extent_slot);
6870 BUG_ON(path->slots[0] != extent_slot + 1);
6871 path->slots[0] = extent_slot;
6877 ret = btrfs_del_items(trans, extent_root, path, path->slots[0],
6880 btrfs_abort_transaction(trans, ret);
6883 btrfs_release_path(path);
6886 ret = btrfs_del_csums(trans, info->csum_root, bytenr,
6889 btrfs_abort_transaction(trans, ret);
6894 ret = add_to_free_space_tree(trans, bytenr, num_bytes);
6896 btrfs_abort_transaction(trans, ret);
6900 ret = update_block_group(trans, info, bytenr, num_bytes, 0);
6902 btrfs_abort_transaction(trans, ret);
6906 btrfs_release_path(path);
6909 btrfs_free_path(path);
6914 * when we free an block, it is possible (and likely) that we free the last
6915 * delayed ref for that extent as well. This searches the delayed ref tree for
6916 * a given extent, and if there are no other delayed refs to be processed, it
6917 * removes it from the tree.
6919 static noinline int check_ref_cleanup(struct btrfs_trans_handle *trans,
6922 struct btrfs_delayed_ref_head *head;
6923 struct btrfs_delayed_ref_root *delayed_refs;
6926 delayed_refs = &trans->transaction->delayed_refs;
6927 spin_lock(&delayed_refs->lock);
6928 head = btrfs_find_delayed_ref_head(delayed_refs, bytenr);
6930 goto out_delayed_unlock;
6932 spin_lock(&head->lock);
6933 if (!RB_EMPTY_ROOT(&head->ref_tree))
6936 if (head->extent_op) {
6937 if (!head->must_insert_reserved)
6939 btrfs_free_delayed_extent_op(head->extent_op);
6940 head->extent_op = NULL;
6944 * waiting for the lock here would deadlock. If someone else has it
6945 * locked they are already in the process of dropping it anyway
6947 if (!mutex_trylock(&head->mutex))
6951 * at this point we have a head with no other entries. Go
6952 * ahead and process it.
6954 rb_erase(&head->href_node, &delayed_refs->href_root);
6955 RB_CLEAR_NODE(&head->href_node);
6956 atomic_dec(&delayed_refs->num_entries);
6959 * we don't take a ref on the node because we're removing it from the
6960 * tree, so we just steal the ref the tree was holding.
6962 delayed_refs->num_heads--;
6963 if (head->processing == 0)
6964 delayed_refs->num_heads_ready--;
6965 head->processing = 0;
6966 spin_unlock(&head->lock);
6967 spin_unlock(&delayed_refs->lock);
6969 BUG_ON(head->extent_op);
6970 if (head->must_insert_reserved)
6973 mutex_unlock(&head->mutex);
6974 btrfs_put_delayed_ref_head(head);
6977 spin_unlock(&head->lock);
6980 spin_unlock(&delayed_refs->lock);
6984 void btrfs_free_tree_block(struct btrfs_trans_handle *trans,
6985 struct btrfs_root *root,
6986 struct extent_buffer *buf,
6987 u64 parent, int last_ref)
6989 struct btrfs_fs_info *fs_info = root->fs_info;
6993 if (root->root_key.objectid != BTRFS_TREE_LOG_OBJECTID) {
6994 int old_ref_mod, new_ref_mod;
6996 btrfs_ref_tree_mod(root, buf->start, buf->len, parent,
6997 root->root_key.objectid,
6998 btrfs_header_level(buf), 0,
6999 BTRFS_DROP_DELAYED_REF);
7000 ret = btrfs_add_delayed_tree_ref(trans, buf->start,
7002 root->root_key.objectid,
7003 btrfs_header_level(buf),
7004 BTRFS_DROP_DELAYED_REF, NULL,
7005 &old_ref_mod, &new_ref_mod);
7006 BUG_ON(ret); /* -ENOMEM */
7007 pin = old_ref_mod >= 0 && new_ref_mod < 0;
7010 if (last_ref && btrfs_header_generation(buf) == trans->transid) {
7011 struct btrfs_block_group_cache *cache;
7013 if (root->root_key.objectid != BTRFS_TREE_LOG_OBJECTID) {
7014 ret = check_ref_cleanup(trans, buf->start);
7020 cache = btrfs_lookup_block_group(fs_info, buf->start);
7022 if (btrfs_header_flag(buf, BTRFS_HEADER_FLAG_WRITTEN)) {
7023 pin_down_extent(fs_info, cache, buf->start,
7025 btrfs_put_block_group(cache);
7029 WARN_ON(test_bit(EXTENT_BUFFER_DIRTY, &buf->bflags));
7031 btrfs_add_free_space(cache, buf->start, buf->len);
7032 btrfs_free_reserved_bytes(cache, buf->len, 0);
7033 btrfs_put_block_group(cache);
7034 trace_btrfs_reserved_extent_free(fs_info, buf->start, buf->len);
7038 add_pinned_bytes(fs_info, buf->len, true,
7039 root->root_key.objectid);
7043 * Deleting the buffer, clear the corrupt flag since it doesn't
7046 clear_bit(EXTENT_BUFFER_CORRUPT, &buf->bflags);
7050 /* Can return -ENOMEM */
7051 int btrfs_free_extent(struct btrfs_trans_handle *trans,
7052 struct btrfs_root *root,
7053 u64 bytenr, u64 num_bytes, u64 parent, u64 root_objectid,
7054 u64 owner, u64 offset)
7056 struct btrfs_fs_info *fs_info = root->fs_info;
7057 int old_ref_mod, new_ref_mod;
7060 if (btrfs_is_testing(fs_info))
7063 if (root_objectid != BTRFS_TREE_LOG_OBJECTID)
7064 btrfs_ref_tree_mod(root, bytenr, num_bytes, parent,
7065 root_objectid, owner, offset,
7066 BTRFS_DROP_DELAYED_REF);
7069 * tree log blocks never actually go into the extent allocation
7070 * tree, just update pinning info and exit early.
7072 if (root_objectid == BTRFS_TREE_LOG_OBJECTID) {
7073 WARN_ON(owner >= BTRFS_FIRST_FREE_OBJECTID);
7074 /* unlocks the pinned mutex */
7075 btrfs_pin_extent(fs_info, bytenr, num_bytes, 1);
7076 old_ref_mod = new_ref_mod = 0;
7078 } else if (owner < BTRFS_FIRST_FREE_OBJECTID) {
7079 ret = btrfs_add_delayed_tree_ref(trans, bytenr,
7081 root_objectid, (int)owner,
7082 BTRFS_DROP_DELAYED_REF, NULL,
7083 &old_ref_mod, &new_ref_mod);
7085 ret = btrfs_add_delayed_data_ref(trans, bytenr,
7087 root_objectid, owner, offset,
7088 0, BTRFS_DROP_DELAYED_REF,
7089 &old_ref_mod, &new_ref_mod);
7092 if (ret == 0 && old_ref_mod >= 0 && new_ref_mod < 0) {
7093 bool metadata = owner < BTRFS_FIRST_FREE_OBJECTID;
7095 add_pinned_bytes(fs_info, num_bytes, metadata, root_objectid);
7102 * when we wait for progress in the block group caching, its because
7103 * our allocation attempt failed at least once. So, we must sleep
7104 * and let some progress happen before we try again.
7106 * This function will sleep at least once waiting for new free space to
7107 * show up, and then it will check the block group free space numbers
7108 * for our min num_bytes. Another option is to have it go ahead
7109 * and look in the rbtree for a free extent of a given size, but this
7112 * Callers of this must check if cache->cached == BTRFS_CACHE_ERROR before using
7113 * any of the information in this block group.
7115 static noinline void
7116 wait_block_group_cache_progress(struct btrfs_block_group_cache *cache,
7119 struct btrfs_caching_control *caching_ctl;
7121 caching_ctl = get_caching_control(cache);
7125 wait_event(caching_ctl->wait, block_group_cache_done(cache) ||
7126 (cache->free_space_ctl->free_space >= num_bytes));
7128 put_caching_control(caching_ctl);
7132 wait_block_group_cache_done(struct btrfs_block_group_cache *cache)
7134 struct btrfs_caching_control *caching_ctl;
7137 caching_ctl = get_caching_control(cache);
7139 return (cache->cached == BTRFS_CACHE_ERROR) ? -EIO : 0;
7141 wait_event(caching_ctl->wait, block_group_cache_done(cache));
7142 if (cache->cached == BTRFS_CACHE_ERROR)
7144 put_caching_control(caching_ctl);
7148 enum btrfs_loop_type {
7149 LOOP_CACHING_NOWAIT = 0,
7150 LOOP_CACHING_WAIT = 1,
7151 LOOP_ALLOC_CHUNK = 2,
7152 LOOP_NO_EMPTY_SIZE = 3,
7156 btrfs_lock_block_group(struct btrfs_block_group_cache *cache,
7160 down_read(&cache->data_rwsem);
7164 btrfs_grab_block_group(struct btrfs_block_group_cache *cache,
7167 btrfs_get_block_group(cache);
7169 down_read(&cache->data_rwsem);
7172 static struct btrfs_block_group_cache *
7173 btrfs_lock_cluster(struct btrfs_block_group_cache *block_group,
7174 struct btrfs_free_cluster *cluster,
7177 struct btrfs_block_group_cache *used_bg = NULL;
7179 spin_lock(&cluster->refill_lock);
7181 used_bg = cluster->block_group;
7185 if (used_bg == block_group)
7188 btrfs_get_block_group(used_bg);
7193 if (down_read_trylock(&used_bg->data_rwsem))
7196 spin_unlock(&cluster->refill_lock);
7198 /* We should only have one-level nested. */
7199 down_read_nested(&used_bg->data_rwsem, SINGLE_DEPTH_NESTING);
7201 spin_lock(&cluster->refill_lock);
7202 if (used_bg == cluster->block_group)
7205 up_read(&used_bg->data_rwsem);
7206 btrfs_put_block_group(used_bg);
7211 btrfs_release_block_group(struct btrfs_block_group_cache *cache,
7215 up_read(&cache->data_rwsem);
7216 btrfs_put_block_group(cache);
7220 * walks the btree of allocated extents and find a hole of a given size.
7221 * The key ins is changed to record the hole:
7222 * ins->objectid == start position
7223 * ins->flags = BTRFS_EXTENT_ITEM_KEY
7224 * ins->offset == the size of the hole.
7225 * Any available blocks before search_start are skipped.
7227 * If there is no suitable free space, we will record the max size of
7228 * the free space extent currently.
7230 static noinline int find_free_extent(struct btrfs_fs_info *fs_info,
7231 u64 ram_bytes, u64 num_bytes, u64 empty_size,
7232 u64 hint_byte, struct btrfs_key *ins,
7233 u64 flags, int delalloc)
7236 struct btrfs_root *root = fs_info->extent_root;
7237 struct btrfs_free_cluster *last_ptr = NULL;
7238 struct btrfs_block_group_cache *block_group = NULL;
7239 u64 search_start = 0;
7240 u64 max_extent_size = 0;
7241 u64 max_free_space = 0;
7242 u64 empty_cluster = 0;
7243 struct btrfs_space_info *space_info;
7245 int index = btrfs_bg_flags_to_raid_index(flags);
7246 bool failed_cluster_refill = false;
7247 bool failed_alloc = false;
7248 bool use_cluster = true;
7249 bool have_caching_bg = false;
7250 bool orig_have_caching_bg = false;
7251 bool full_search = false;
7253 WARN_ON(num_bytes < fs_info->sectorsize);
7254 ins->type = BTRFS_EXTENT_ITEM_KEY;
7258 trace_find_free_extent(fs_info, num_bytes, empty_size, flags);
7260 space_info = __find_space_info(fs_info, flags);
7262 btrfs_err(fs_info, "No space info for %llu", flags);
7267 * If our free space is heavily fragmented we may not be able to make
7268 * big contiguous allocations, so instead of doing the expensive search
7269 * for free space, simply return ENOSPC with our max_extent_size so we
7270 * can go ahead and search for a more manageable chunk.
7272 * If our max_extent_size is large enough for our allocation simply
7273 * disable clustering since we will likely not be able to find enough
7274 * space to create a cluster and induce latency trying.
7276 if (unlikely(space_info->max_extent_size)) {
7277 spin_lock(&space_info->lock);
7278 if (space_info->max_extent_size &&
7279 num_bytes > space_info->max_extent_size) {
7280 ins->offset = space_info->max_extent_size;
7281 spin_unlock(&space_info->lock);
7283 } else if (space_info->max_extent_size) {
7284 use_cluster = false;
7286 spin_unlock(&space_info->lock);
7289 last_ptr = fetch_cluster_info(fs_info, space_info, &empty_cluster);
7291 spin_lock(&last_ptr->lock);
7292 if (last_ptr->block_group)
7293 hint_byte = last_ptr->window_start;
7294 if (last_ptr->fragmented) {
7296 * We still set window_start so we can keep track of the
7297 * last place we found an allocation to try and save
7300 hint_byte = last_ptr->window_start;
7301 use_cluster = false;
7303 spin_unlock(&last_ptr->lock);
7306 search_start = max(search_start, first_logical_byte(fs_info, 0));
7307 search_start = max(search_start, hint_byte);
7308 if (search_start == hint_byte) {
7309 block_group = btrfs_lookup_block_group(fs_info, search_start);
7311 * we don't want to use the block group if it doesn't match our
7312 * allocation bits, or if its not cached.
7314 * However if we are re-searching with an ideal block group
7315 * picked out then we don't care that the block group is cached.
7317 if (block_group && block_group_bits(block_group, flags) &&
7318 block_group->cached != BTRFS_CACHE_NO) {
7319 down_read(&space_info->groups_sem);
7320 if (list_empty(&block_group->list) ||
7323 * someone is removing this block group,
7324 * we can't jump into the have_block_group
7325 * target because our list pointers are not
7328 btrfs_put_block_group(block_group);
7329 up_read(&space_info->groups_sem);
7331 index = btrfs_bg_flags_to_raid_index(
7332 block_group->flags);
7333 btrfs_lock_block_group(block_group, delalloc);
7334 goto have_block_group;
7336 } else if (block_group) {
7337 btrfs_put_block_group(block_group);
7341 have_caching_bg = false;
7342 if (index == 0 || index == btrfs_bg_flags_to_raid_index(flags))
7344 down_read(&space_info->groups_sem);
7345 list_for_each_entry(block_group, &space_info->block_groups[index],
7350 /* If the block group is read-only, we can skip it entirely. */
7351 if (unlikely(block_group->ro))
7354 btrfs_grab_block_group(block_group, delalloc);
7355 search_start = block_group->key.objectid;
7358 * this can happen if we end up cycling through all the
7359 * raid types, but we want to make sure we only allocate
7360 * for the proper type.
7362 if (!block_group_bits(block_group, flags)) {
7363 u64 extra = BTRFS_BLOCK_GROUP_DUP |
7364 BTRFS_BLOCK_GROUP_RAID1 |
7365 BTRFS_BLOCK_GROUP_RAID5 |
7366 BTRFS_BLOCK_GROUP_RAID6 |
7367 BTRFS_BLOCK_GROUP_RAID10;
7370 * if they asked for extra copies and this block group
7371 * doesn't provide them, bail. This does allow us to
7372 * fill raid0 from raid1.
7374 if ((flags & extra) && !(block_group->flags & extra))
7378 * This block group has different flags than we want.
7379 * It's possible that we have MIXED_GROUP flag but no
7380 * block group is mixed. Just skip such block group.
7382 btrfs_release_block_group(block_group, delalloc);
7387 cached = block_group_cache_done(block_group);
7388 if (unlikely(!cached)) {
7389 have_caching_bg = true;
7390 ret = cache_block_group(block_group, 0);
7395 if (unlikely(block_group->cached == BTRFS_CACHE_ERROR))
7399 * Ok we want to try and use the cluster allocator, so
7402 if (last_ptr && use_cluster) {
7403 struct btrfs_block_group_cache *used_block_group;
7404 unsigned long aligned_cluster;
7406 * the refill lock keeps out other
7407 * people trying to start a new cluster
7409 used_block_group = btrfs_lock_cluster(block_group,
7412 if (!used_block_group)
7413 goto refill_cluster;
7415 if (used_block_group != block_group &&
7416 (used_block_group->ro ||
7417 !block_group_bits(used_block_group, flags)))
7418 goto release_cluster;
7420 offset = btrfs_alloc_from_cluster(used_block_group,
7423 used_block_group->key.objectid,
7426 /* we have a block, we're done */
7427 spin_unlock(&last_ptr->refill_lock);
7428 trace_btrfs_reserve_extent_cluster(
7430 search_start, num_bytes);
7431 if (used_block_group != block_group) {
7432 btrfs_release_block_group(block_group,
7434 block_group = used_block_group;
7439 WARN_ON(last_ptr->block_group != used_block_group);
7441 /* If we are on LOOP_NO_EMPTY_SIZE, we can't
7442 * set up a new clusters, so lets just skip it
7443 * and let the allocator find whatever block
7444 * it can find. If we reach this point, we
7445 * will have tried the cluster allocator
7446 * plenty of times and not have found
7447 * anything, so we are likely way too
7448 * fragmented for the clustering stuff to find
7451 * However, if the cluster is taken from the
7452 * current block group, release the cluster
7453 * first, so that we stand a better chance of
7454 * succeeding in the unclustered
7456 if (loop >= LOOP_NO_EMPTY_SIZE &&
7457 used_block_group != block_group) {
7458 spin_unlock(&last_ptr->refill_lock);
7459 btrfs_release_block_group(used_block_group,
7461 goto unclustered_alloc;
7465 * this cluster didn't work out, free it and
7468 btrfs_return_cluster_to_free_space(NULL, last_ptr);
7470 if (used_block_group != block_group)
7471 btrfs_release_block_group(used_block_group,
7474 if (loop >= LOOP_NO_EMPTY_SIZE) {
7475 spin_unlock(&last_ptr->refill_lock);
7476 goto unclustered_alloc;
7479 aligned_cluster = max_t(unsigned long,
7480 empty_cluster + empty_size,
7481 block_group->full_stripe_len);
7483 /* allocate a cluster in this block group */
7484 ret = btrfs_find_space_cluster(fs_info, block_group,
7485 last_ptr, search_start,
7490 * now pull our allocation out of this
7493 offset = btrfs_alloc_from_cluster(block_group,
7499 /* we found one, proceed */
7500 spin_unlock(&last_ptr->refill_lock);
7501 trace_btrfs_reserve_extent_cluster(
7502 block_group, search_start,
7506 } else if (!cached && loop > LOOP_CACHING_NOWAIT
7507 && !failed_cluster_refill) {
7508 spin_unlock(&last_ptr->refill_lock);
7510 failed_cluster_refill = true;
7511 wait_block_group_cache_progress(block_group,
7512 num_bytes + empty_cluster + empty_size);
7513 goto have_block_group;
7517 * at this point we either didn't find a cluster
7518 * or we weren't able to allocate a block from our
7519 * cluster. Free the cluster we've been trying
7520 * to use, and go to the next block group
7522 btrfs_return_cluster_to_free_space(NULL, last_ptr);
7523 spin_unlock(&last_ptr->refill_lock);
7529 * We are doing an unclustered alloc, set the fragmented flag so
7530 * we don't bother trying to setup a cluster again until we get
7533 if (unlikely(last_ptr)) {
7534 spin_lock(&last_ptr->lock);
7535 last_ptr->fragmented = 1;
7536 spin_unlock(&last_ptr->lock);
7539 struct btrfs_free_space_ctl *ctl =
7540 block_group->free_space_ctl;
7542 spin_lock(&ctl->tree_lock);
7543 if (ctl->free_space <
7544 num_bytes + empty_cluster + empty_size) {
7545 max_free_space = max(max_free_space,
7547 spin_unlock(&ctl->tree_lock);
7550 spin_unlock(&ctl->tree_lock);
7553 offset = btrfs_find_space_for_alloc(block_group, search_start,
7554 num_bytes, empty_size,
7557 * If we didn't find a chunk, and we haven't failed on this
7558 * block group before, and this block group is in the middle of
7559 * caching and we are ok with waiting, then go ahead and wait
7560 * for progress to be made, and set failed_alloc to true.
7562 * If failed_alloc is true then we've already waited on this
7563 * block group once and should move on to the next block group.
7565 if (!offset && !failed_alloc && !cached &&
7566 loop > LOOP_CACHING_NOWAIT) {
7567 wait_block_group_cache_progress(block_group,
7568 num_bytes + empty_size);
7569 failed_alloc = true;
7570 goto have_block_group;
7571 } else if (!offset) {
7575 search_start = round_up(offset, fs_info->stripesize);
7577 /* move on to the next group */
7578 if (search_start + num_bytes >
7579 block_group->key.objectid + block_group->key.offset) {
7580 btrfs_add_free_space(block_group, offset, num_bytes);
7584 if (offset < search_start)
7585 btrfs_add_free_space(block_group, offset,
7586 search_start - offset);
7588 ret = btrfs_add_reserved_bytes(block_group, ram_bytes,
7589 num_bytes, delalloc);
7590 if (ret == -EAGAIN) {
7591 btrfs_add_free_space(block_group, offset, num_bytes);
7594 btrfs_inc_block_group_reservations(block_group);
7596 /* we are all good, lets return */
7597 ins->objectid = search_start;
7598 ins->offset = num_bytes;
7600 trace_btrfs_reserve_extent(block_group, search_start, num_bytes);
7601 btrfs_release_block_group(block_group, delalloc);
7604 failed_cluster_refill = false;
7605 failed_alloc = false;
7606 BUG_ON(btrfs_bg_flags_to_raid_index(block_group->flags) !=
7608 btrfs_release_block_group(block_group, delalloc);
7611 up_read(&space_info->groups_sem);
7613 if ((loop == LOOP_CACHING_NOWAIT) && have_caching_bg
7614 && !orig_have_caching_bg)
7615 orig_have_caching_bg = true;
7617 if (!ins->objectid && loop >= LOOP_CACHING_WAIT && have_caching_bg)
7620 if (!ins->objectid && ++index < BTRFS_NR_RAID_TYPES)
7624 * LOOP_CACHING_NOWAIT, search partially cached block groups, kicking
7625 * caching kthreads as we move along
7626 * LOOP_CACHING_WAIT, search everything, and wait if our bg is caching
7627 * LOOP_ALLOC_CHUNK, force a chunk allocation and try again
7628 * LOOP_NO_EMPTY_SIZE, set empty_size and empty_cluster to 0 and try
7631 if (!ins->objectid && loop < LOOP_NO_EMPTY_SIZE) {
7633 if (loop == LOOP_CACHING_NOWAIT) {
7635 * We want to skip the LOOP_CACHING_WAIT step if we
7636 * don't have any uncached bgs and we've already done a
7637 * full search through.
7639 if (orig_have_caching_bg || !full_search)
7640 loop = LOOP_CACHING_WAIT;
7642 loop = LOOP_ALLOC_CHUNK;
7647 if (loop == LOOP_ALLOC_CHUNK) {
7648 struct btrfs_trans_handle *trans;
7651 trans = current->journal_info;
7655 trans = btrfs_join_transaction(root);
7657 if (IS_ERR(trans)) {
7658 ret = PTR_ERR(trans);
7662 ret = do_chunk_alloc(trans, flags, CHUNK_ALLOC_FORCE);
7665 * If we can't allocate a new chunk we've already looped
7666 * through at least once, move on to the NO_EMPTY_SIZE
7670 loop = LOOP_NO_EMPTY_SIZE;
7673 * Do not bail out on ENOSPC since we
7674 * can do more things.
7676 if (ret < 0 && ret != -ENOSPC)
7677 btrfs_abort_transaction(trans, ret);
7681 btrfs_end_transaction(trans);
7686 if (loop == LOOP_NO_EMPTY_SIZE) {
7688 * Don't loop again if we already have no empty_size and
7691 if (empty_size == 0 &&
7692 empty_cluster == 0) {
7701 } else if (!ins->objectid) {
7703 } else if (ins->objectid) {
7704 if (!use_cluster && last_ptr) {
7705 spin_lock(&last_ptr->lock);
7706 last_ptr->window_start = ins->objectid;
7707 spin_unlock(&last_ptr->lock);
7712 if (ret == -ENOSPC) {
7713 if (!max_extent_size)
7714 max_extent_size = max_free_space;
7715 spin_lock(&space_info->lock);
7716 space_info->max_extent_size = max_extent_size;
7717 spin_unlock(&space_info->lock);
7718 ins->offset = max_extent_size;
7723 static void dump_space_info(struct btrfs_fs_info *fs_info,
7724 struct btrfs_space_info *info, u64 bytes,
7725 int dump_block_groups)
7727 struct btrfs_block_group_cache *cache;
7730 spin_lock(&info->lock);
7731 btrfs_info(fs_info, "space_info %llu has %llu free, is %sfull",
7733 info->total_bytes - btrfs_space_info_used(info, true),
7734 info->full ? "" : "not ");
7736 "space_info total=%llu, used=%llu, pinned=%llu, reserved=%llu, may_use=%llu, readonly=%llu",
7737 info->total_bytes, info->bytes_used, info->bytes_pinned,
7738 info->bytes_reserved, info->bytes_may_use,
7739 info->bytes_readonly);
7740 spin_unlock(&info->lock);
7742 if (!dump_block_groups)
7745 down_read(&info->groups_sem);
7747 list_for_each_entry(cache, &info->block_groups[index], list) {
7748 spin_lock(&cache->lock);
7750 "block group %llu has %llu bytes, %llu used %llu pinned %llu reserved %s",
7751 cache->key.objectid, cache->key.offset,
7752 btrfs_block_group_used(&cache->item), cache->pinned,
7753 cache->reserved, cache->ro ? "[readonly]" : "");
7754 btrfs_dump_free_space(cache, bytes);
7755 spin_unlock(&cache->lock);
7757 if (++index < BTRFS_NR_RAID_TYPES)
7759 up_read(&info->groups_sem);
7763 * btrfs_reserve_extent - entry point to the extent allocator. Tries to find a
7764 * hole that is at least as big as @num_bytes.
7766 * @root - The root that will contain this extent
7768 * @ram_bytes - The amount of space in ram that @num_bytes take. This
7769 * is used for accounting purposes. This value differs
7770 * from @num_bytes only in the case of compressed extents.
7772 * @num_bytes - Number of bytes to allocate on-disk.
7774 * @min_alloc_size - Indicates the minimum amount of space that the
7775 * allocator should try to satisfy. In some cases
7776 * @num_bytes may be larger than what is required and if
7777 * the filesystem is fragmented then allocation fails.
7778 * However, the presence of @min_alloc_size gives a
7779 * chance to try and satisfy the smaller allocation.
7781 * @empty_size - A hint that you plan on doing more COW. This is the
7782 * size in bytes the allocator should try to find free
7783 * next to the block it returns. This is just a hint and
7784 * may be ignored by the allocator.
7786 * @hint_byte - Hint to the allocator to start searching above the byte
7787 * address passed. It might be ignored.
7789 * @ins - This key is modified to record the found hole. It will
7790 * have the following values:
7791 * ins->objectid == start position
7792 * ins->flags = BTRFS_EXTENT_ITEM_KEY
7793 * ins->offset == the size of the hole.
7795 * @is_data - Boolean flag indicating whether an extent is
7796 * allocated for data (true) or metadata (false)
7798 * @delalloc - Boolean flag indicating whether this allocation is for
7799 * delalloc or not. If 'true' data_rwsem of block groups
7800 * is going to be acquired.
7803 * Returns 0 when an allocation succeeded or < 0 when an error occurred. In
7804 * case -ENOSPC is returned then @ins->offset will contain the size of the
7805 * largest available hole the allocator managed to find.
7807 int btrfs_reserve_extent(struct btrfs_root *root, u64 ram_bytes,
7808 u64 num_bytes, u64 min_alloc_size,
7809 u64 empty_size, u64 hint_byte,
7810 struct btrfs_key *ins, int is_data, int delalloc)
7812 struct btrfs_fs_info *fs_info = root->fs_info;
7813 bool final_tried = num_bytes == min_alloc_size;
7817 flags = get_alloc_profile_by_root(root, is_data);
7819 WARN_ON(num_bytes < fs_info->sectorsize);
7820 ret = find_free_extent(fs_info, ram_bytes, num_bytes, empty_size,
7821 hint_byte, ins, flags, delalloc);
7822 if (!ret && !is_data) {
7823 btrfs_dec_block_group_reservations(fs_info, ins->objectid);
7824 } else if (ret == -ENOSPC) {
7825 if (!final_tried && ins->offset) {
7826 num_bytes = min(num_bytes >> 1, ins->offset);
7827 num_bytes = round_down(num_bytes,
7828 fs_info->sectorsize);
7829 num_bytes = max(num_bytes, min_alloc_size);
7830 ram_bytes = num_bytes;
7831 if (num_bytes == min_alloc_size)
7834 } else if (btrfs_test_opt(fs_info, ENOSPC_DEBUG)) {
7835 struct btrfs_space_info *sinfo;
7837 sinfo = __find_space_info(fs_info, flags);
7839 "allocation failed flags %llu, wanted %llu",
7842 dump_space_info(fs_info, sinfo, num_bytes, 1);
7849 static int __btrfs_free_reserved_extent(struct btrfs_fs_info *fs_info,
7851 int pin, int delalloc)
7853 struct btrfs_block_group_cache *cache;
7856 cache = btrfs_lookup_block_group(fs_info, start);
7858 btrfs_err(fs_info, "Unable to find block group for %llu",
7864 pin_down_extent(fs_info, cache, start, len, 1);
7866 if (btrfs_test_opt(fs_info, DISCARD))
7867 ret = btrfs_discard_extent(fs_info, start, len, NULL);
7868 btrfs_add_free_space(cache, start, len);
7869 btrfs_free_reserved_bytes(cache, len, delalloc);
7870 trace_btrfs_reserved_extent_free(fs_info, start, len);
7873 btrfs_put_block_group(cache);
7877 int btrfs_free_reserved_extent(struct btrfs_fs_info *fs_info,
7878 u64 start, u64 len, int delalloc)
7880 return __btrfs_free_reserved_extent(fs_info, start, len, 0, delalloc);
7883 int btrfs_free_and_pin_reserved_extent(struct btrfs_fs_info *fs_info,
7886 return __btrfs_free_reserved_extent(fs_info, start, len, 1, 0);
7889 static int alloc_reserved_file_extent(struct btrfs_trans_handle *trans,
7890 u64 parent, u64 root_objectid,
7891 u64 flags, u64 owner, u64 offset,
7892 struct btrfs_key *ins, int ref_mod)
7894 struct btrfs_fs_info *fs_info = trans->fs_info;
7896 struct btrfs_extent_item *extent_item;
7897 struct btrfs_extent_inline_ref *iref;
7898 struct btrfs_path *path;
7899 struct extent_buffer *leaf;
7904 type = BTRFS_SHARED_DATA_REF_KEY;
7906 type = BTRFS_EXTENT_DATA_REF_KEY;
7908 size = sizeof(*extent_item) + btrfs_extent_inline_ref_size(type);
7910 path = btrfs_alloc_path();
7914 path->leave_spinning = 1;
7915 ret = btrfs_insert_empty_item(trans, fs_info->extent_root, path,
7918 btrfs_free_path(path);
7922 leaf = path->nodes[0];
7923 extent_item = btrfs_item_ptr(leaf, path->slots[0],
7924 struct btrfs_extent_item);
7925 btrfs_set_extent_refs(leaf, extent_item, ref_mod);
7926 btrfs_set_extent_generation(leaf, extent_item, trans->transid);
7927 btrfs_set_extent_flags(leaf, extent_item,
7928 flags | BTRFS_EXTENT_FLAG_DATA);
7930 iref = (struct btrfs_extent_inline_ref *)(extent_item + 1);
7931 btrfs_set_extent_inline_ref_type(leaf, iref, type);
7933 struct btrfs_shared_data_ref *ref;
7934 ref = (struct btrfs_shared_data_ref *)(iref + 1);
7935 btrfs_set_extent_inline_ref_offset(leaf, iref, parent);
7936 btrfs_set_shared_data_ref_count(leaf, ref, ref_mod);
7938 struct btrfs_extent_data_ref *ref;
7939 ref = (struct btrfs_extent_data_ref *)(&iref->offset);
7940 btrfs_set_extent_data_ref_root(leaf, ref, root_objectid);
7941 btrfs_set_extent_data_ref_objectid(leaf, ref, owner);
7942 btrfs_set_extent_data_ref_offset(leaf, ref, offset);
7943 btrfs_set_extent_data_ref_count(leaf, ref, ref_mod);
7946 btrfs_mark_buffer_dirty(path->nodes[0]);
7947 btrfs_free_path(path);
7949 ret = remove_from_free_space_tree(trans, ins->objectid, ins->offset);
7953 ret = update_block_group(trans, fs_info, ins->objectid, ins->offset, 1);
7954 if (ret) { /* -ENOENT, logic error */
7955 btrfs_err(fs_info, "update block group failed for %llu %llu",
7956 ins->objectid, ins->offset);
7959 trace_btrfs_reserved_extent_alloc(fs_info, ins->objectid, ins->offset);
7963 static int alloc_reserved_tree_block(struct btrfs_trans_handle *trans,
7964 struct btrfs_delayed_ref_node *node,
7965 struct btrfs_delayed_extent_op *extent_op)
7967 struct btrfs_fs_info *fs_info = trans->fs_info;
7969 struct btrfs_extent_item *extent_item;
7970 struct btrfs_key extent_key;
7971 struct btrfs_tree_block_info *block_info;
7972 struct btrfs_extent_inline_ref *iref;
7973 struct btrfs_path *path;
7974 struct extent_buffer *leaf;
7975 struct btrfs_delayed_tree_ref *ref;
7976 u32 size = sizeof(*extent_item) + sizeof(*iref);
7978 u64 flags = extent_op->flags_to_set;
7979 bool skinny_metadata = btrfs_fs_incompat(fs_info, SKINNY_METADATA);
7981 ref = btrfs_delayed_node_to_tree_ref(node);
7983 extent_key.objectid = node->bytenr;
7984 if (skinny_metadata) {
7985 extent_key.offset = ref->level;
7986 extent_key.type = BTRFS_METADATA_ITEM_KEY;
7987 num_bytes = fs_info->nodesize;
7989 extent_key.offset = node->num_bytes;
7990 extent_key.type = BTRFS_EXTENT_ITEM_KEY;
7991 size += sizeof(*block_info);
7992 num_bytes = node->num_bytes;
7995 path = btrfs_alloc_path();
7999 path->leave_spinning = 1;
8000 ret = btrfs_insert_empty_item(trans, fs_info->extent_root, path,
8003 btrfs_free_path(path);
8007 leaf = path->nodes[0];
8008 extent_item = btrfs_item_ptr(leaf, path->slots[0],
8009 struct btrfs_extent_item);
8010 btrfs_set_extent_refs(leaf, extent_item, 1);
8011 btrfs_set_extent_generation(leaf, extent_item, trans->transid);
8012 btrfs_set_extent_flags(leaf, extent_item,
8013 flags | BTRFS_EXTENT_FLAG_TREE_BLOCK);
8015 if (skinny_metadata) {
8016 iref = (struct btrfs_extent_inline_ref *)(extent_item + 1);
8018 block_info = (struct btrfs_tree_block_info *)(extent_item + 1);
8019 btrfs_set_tree_block_key(leaf, block_info, &extent_op->key);
8020 btrfs_set_tree_block_level(leaf, block_info, ref->level);
8021 iref = (struct btrfs_extent_inline_ref *)(block_info + 1);
8024 if (node->type == BTRFS_SHARED_BLOCK_REF_KEY) {
8025 BUG_ON(!(flags & BTRFS_BLOCK_FLAG_FULL_BACKREF));
8026 btrfs_set_extent_inline_ref_type(leaf, iref,
8027 BTRFS_SHARED_BLOCK_REF_KEY);
8028 btrfs_set_extent_inline_ref_offset(leaf, iref, ref->parent);
8030 btrfs_set_extent_inline_ref_type(leaf, iref,
8031 BTRFS_TREE_BLOCK_REF_KEY);
8032 btrfs_set_extent_inline_ref_offset(leaf, iref, ref->root);
8035 btrfs_mark_buffer_dirty(leaf);
8036 btrfs_free_path(path);
8038 ret = remove_from_free_space_tree(trans, extent_key.objectid,
8043 ret = update_block_group(trans, fs_info, extent_key.objectid,
8044 fs_info->nodesize, 1);
8045 if (ret) { /* -ENOENT, logic error */
8046 btrfs_err(fs_info, "update block group failed for %llu %llu",
8047 extent_key.objectid, extent_key.offset);
8051 trace_btrfs_reserved_extent_alloc(fs_info, extent_key.objectid,
8056 int btrfs_alloc_reserved_file_extent(struct btrfs_trans_handle *trans,
8057 struct btrfs_root *root, u64 owner,
8058 u64 offset, u64 ram_bytes,
8059 struct btrfs_key *ins)
8063 BUG_ON(root->root_key.objectid == BTRFS_TREE_LOG_OBJECTID);
8065 btrfs_ref_tree_mod(root, ins->objectid, ins->offset, 0,
8066 root->root_key.objectid, owner, offset,
8067 BTRFS_ADD_DELAYED_EXTENT);
8069 ret = btrfs_add_delayed_data_ref(trans, ins->objectid,
8071 root->root_key.objectid, owner,
8073 BTRFS_ADD_DELAYED_EXTENT, NULL, NULL);
8078 * this is used by the tree logging recovery code. It records that
8079 * an extent has been allocated and makes sure to clear the free
8080 * space cache bits as well
8082 int btrfs_alloc_logged_file_extent(struct btrfs_trans_handle *trans,
8083 u64 root_objectid, u64 owner, u64 offset,
8084 struct btrfs_key *ins)
8086 struct btrfs_fs_info *fs_info = trans->fs_info;
8088 struct btrfs_block_group_cache *block_group;
8089 struct btrfs_space_info *space_info;
8092 * Mixed block groups will exclude before processing the log so we only
8093 * need to do the exclude dance if this fs isn't mixed.
8095 if (!btrfs_fs_incompat(fs_info, MIXED_GROUPS)) {
8096 ret = __exclude_logged_extent(fs_info, ins->objectid,
8102 block_group = btrfs_lookup_block_group(fs_info, ins->objectid);
8106 space_info = block_group->space_info;
8107 spin_lock(&space_info->lock);
8108 spin_lock(&block_group->lock);
8109 space_info->bytes_reserved += ins->offset;
8110 block_group->reserved += ins->offset;
8111 spin_unlock(&block_group->lock);
8112 spin_unlock(&space_info->lock);
8114 ret = alloc_reserved_file_extent(trans, 0, root_objectid, 0, owner,
8116 btrfs_put_block_group(block_group);
8120 static struct extent_buffer *
8121 btrfs_init_new_buffer(struct btrfs_trans_handle *trans, struct btrfs_root *root,
8122 u64 bytenr, int level, u64 owner)
8124 struct btrfs_fs_info *fs_info = root->fs_info;
8125 struct extent_buffer *buf;
8127 buf = btrfs_find_create_tree_block(fs_info, bytenr);
8132 * Extra safety check in case the extent tree is corrupted and extent
8133 * allocator chooses to use a tree block which is already used and
8136 if (buf->lock_owner == current->pid) {
8137 btrfs_err_rl(fs_info,
8138 "tree block %llu owner %llu already locked by pid=%d, extent tree corruption detected",
8139 buf->start, btrfs_header_owner(buf), current->pid);
8140 free_extent_buffer(buf);
8141 return ERR_PTR(-EUCLEAN);
8144 btrfs_set_buffer_lockdep_class(root->root_key.objectid, buf, level);
8145 btrfs_tree_lock(buf);
8146 clean_tree_block(fs_info, buf);
8147 clear_bit(EXTENT_BUFFER_STALE, &buf->bflags);
8149 btrfs_set_lock_blocking(buf);
8150 set_extent_buffer_uptodate(buf);
8152 memzero_extent_buffer(buf, 0, sizeof(struct btrfs_header));
8153 btrfs_set_header_level(buf, level);
8154 btrfs_set_header_bytenr(buf, buf->start);
8155 btrfs_set_header_generation(buf, trans->transid);
8156 btrfs_set_header_backref_rev(buf, BTRFS_MIXED_BACKREF_REV);
8157 btrfs_set_header_owner(buf, owner);
8158 write_extent_buffer_fsid(buf, fs_info->fsid);
8159 write_extent_buffer_chunk_tree_uuid(buf, fs_info->chunk_tree_uuid);
8160 if (root->root_key.objectid == BTRFS_TREE_LOG_OBJECTID) {
8161 buf->log_index = root->log_transid % 2;
8163 * we allow two log transactions at a time, use different
8164 * EXENT bit to differentiate dirty pages.
8166 if (buf->log_index == 0)
8167 set_extent_dirty(&root->dirty_log_pages, buf->start,
8168 buf->start + buf->len - 1, GFP_NOFS);
8170 set_extent_new(&root->dirty_log_pages, buf->start,
8171 buf->start + buf->len - 1);
8173 buf->log_index = -1;
8174 set_extent_dirty(&trans->transaction->dirty_pages, buf->start,
8175 buf->start + buf->len - 1, GFP_NOFS);
8177 trans->dirty = true;
8178 /* this returns a buffer locked for blocking */
8182 static struct btrfs_block_rsv *
8183 use_block_rsv(struct btrfs_trans_handle *trans,
8184 struct btrfs_root *root, u32 blocksize)
8186 struct btrfs_fs_info *fs_info = root->fs_info;
8187 struct btrfs_block_rsv *block_rsv;
8188 struct btrfs_block_rsv *global_rsv = &fs_info->global_block_rsv;
8190 bool global_updated = false;
8192 block_rsv = get_block_rsv(trans, root);
8194 if (unlikely(block_rsv->size == 0))
8197 ret = block_rsv_use_bytes(block_rsv, blocksize);
8201 if (block_rsv->failfast)
8202 return ERR_PTR(ret);
8204 if (block_rsv->type == BTRFS_BLOCK_RSV_GLOBAL && !global_updated) {
8205 global_updated = true;
8206 update_global_block_rsv(fs_info);
8210 if (btrfs_test_opt(fs_info, ENOSPC_DEBUG)) {
8211 static DEFINE_RATELIMIT_STATE(_rs,
8212 DEFAULT_RATELIMIT_INTERVAL * 10,
8213 /*DEFAULT_RATELIMIT_BURST*/ 1);
8214 if (__ratelimit(&_rs))
8216 "BTRFS: block rsv returned %d\n", ret);
8219 ret = reserve_metadata_bytes(root, block_rsv, blocksize,
8220 BTRFS_RESERVE_NO_FLUSH);
8224 * If we couldn't reserve metadata bytes try and use some from
8225 * the global reserve if its space type is the same as the global
8228 if (block_rsv->type != BTRFS_BLOCK_RSV_GLOBAL &&
8229 block_rsv->space_info == global_rsv->space_info) {
8230 ret = block_rsv_use_bytes(global_rsv, blocksize);
8234 return ERR_PTR(ret);
8237 static void unuse_block_rsv(struct btrfs_fs_info *fs_info,
8238 struct btrfs_block_rsv *block_rsv, u32 blocksize)
8240 block_rsv_add_bytes(block_rsv, blocksize, 0);
8241 block_rsv_release_bytes(fs_info, block_rsv, NULL, 0, NULL);
8245 * finds a free extent and does all the dirty work required for allocation
8246 * returns the tree buffer or an ERR_PTR on error.
8248 struct extent_buffer *btrfs_alloc_tree_block(struct btrfs_trans_handle *trans,
8249 struct btrfs_root *root,
8250 u64 parent, u64 root_objectid,
8251 const struct btrfs_disk_key *key,
8252 int level, u64 hint,
8255 struct btrfs_fs_info *fs_info = root->fs_info;
8256 struct btrfs_key ins;
8257 struct btrfs_block_rsv *block_rsv;
8258 struct extent_buffer *buf;
8259 struct btrfs_delayed_extent_op *extent_op;
8262 u32 blocksize = fs_info->nodesize;
8263 bool skinny_metadata = btrfs_fs_incompat(fs_info, SKINNY_METADATA);
8265 #ifdef CONFIG_BTRFS_FS_RUN_SANITY_TESTS
8266 if (btrfs_is_testing(fs_info)) {
8267 buf = btrfs_init_new_buffer(trans, root, root->alloc_bytenr,
8268 level, root_objectid);
8270 root->alloc_bytenr += blocksize;
8275 block_rsv = use_block_rsv(trans, root, blocksize);
8276 if (IS_ERR(block_rsv))
8277 return ERR_CAST(block_rsv);
8279 ret = btrfs_reserve_extent(root, blocksize, blocksize, blocksize,
8280 empty_size, hint, &ins, 0, 0);
8284 buf = btrfs_init_new_buffer(trans, root, ins.objectid, level,
8288 goto out_free_reserved;
8291 if (root_objectid == BTRFS_TREE_RELOC_OBJECTID) {
8293 parent = ins.objectid;
8294 flags |= BTRFS_BLOCK_FLAG_FULL_BACKREF;
8298 if (root_objectid != BTRFS_TREE_LOG_OBJECTID) {
8299 extent_op = btrfs_alloc_delayed_extent_op();
8305 memcpy(&extent_op->key, key, sizeof(extent_op->key));
8307 memset(&extent_op->key, 0, sizeof(extent_op->key));
8308 extent_op->flags_to_set = flags;
8309 extent_op->update_key = skinny_metadata ? false : true;
8310 extent_op->update_flags = true;
8311 extent_op->is_data = false;
8312 extent_op->level = level;
8314 btrfs_ref_tree_mod(root, ins.objectid, ins.offset, parent,
8315 root_objectid, level, 0,
8316 BTRFS_ADD_DELAYED_EXTENT);
8317 ret = btrfs_add_delayed_tree_ref(trans, ins.objectid,
8319 root_objectid, level,
8320 BTRFS_ADD_DELAYED_EXTENT,
8321 extent_op, NULL, NULL);
8323 goto out_free_delayed;
8328 btrfs_free_delayed_extent_op(extent_op);
8330 free_extent_buffer(buf);
8332 btrfs_free_reserved_extent(fs_info, ins.objectid, ins.offset, 0);
8334 unuse_block_rsv(fs_info, block_rsv, blocksize);
8335 return ERR_PTR(ret);
8338 struct walk_control {
8339 u64 refs[BTRFS_MAX_LEVEL];
8340 u64 flags[BTRFS_MAX_LEVEL];
8341 struct btrfs_key update_progress;
8351 #define DROP_REFERENCE 1
8352 #define UPDATE_BACKREF 2
8354 static noinline void reada_walk_down(struct btrfs_trans_handle *trans,
8355 struct btrfs_root *root,
8356 struct walk_control *wc,
8357 struct btrfs_path *path)
8359 struct btrfs_fs_info *fs_info = root->fs_info;
8365 struct btrfs_key key;
8366 struct extent_buffer *eb;
8371 if (path->slots[wc->level] < wc->reada_slot) {
8372 wc->reada_count = wc->reada_count * 2 / 3;
8373 wc->reada_count = max(wc->reada_count, 2);
8375 wc->reada_count = wc->reada_count * 3 / 2;
8376 wc->reada_count = min_t(int, wc->reada_count,
8377 BTRFS_NODEPTRS_PER_BLOCK(fs_info));
8380 eb = path->nodes[wc->level];
8381 nritems = btrfs_header_nritems(eb);
8383 for (slot = path->slots[wc->level]; slot < nritems; slot++) {
8384 if (nread >= wc->reada_count)
8388 bytenr = btrfs_node_blockptr(eb, slot);
8389 generation = btrfs_node_ptr_generation(eb, slot);
8391 if (slot == path->slots[wc->level])
8394 if (wc->stage == UPDATE_BACKREF &&
8395 generation <= root->root_key.offset)
8398 /* We don't lock the tree block, it's OK to be racy here */
8399 ret = btrfs_lookup_extent_info(trans, fs_info, bytenr,
8400 wc->level - 1, 1, &refs,
8402 /* We don't care about errors in readahead. */
8407 if (wc->stage == DROP_REFERENCE) {
8411 if (wc->level == 1 &&
8412 (flags & BTRFS_BLOCK_FLAG_FULL_BACKREF))
8414 if (!wc->update_ref ||
8415 generation <= root->root_key.offset)
8417 btrfs_node_key_to_cpu(eb, &key, slot);
8418 ret = btrfs_comp_cpu_keys(&key,
8419 &wc->update_progress);
8423 if (wc->level == 1 &&
8424 (flags & BTRFS_BLOCK_FLAG_FULL_BACKREF))
8428 readahead_tree_block(fs_info, bytenr);
8431 wc->reada_slot = slot;
8435 * helper to process tree block while walking down the tree.
8437 * when wc->stage == UPDATE_BACKREF, this function updates
8438 * back refs for pointers in the block.
8440 * NOTE: return value 1 means we should stop walking down.
8442 static noinline int walk_down_proc(struct btrfs_trans_handle *trans,
8443 struct btrfs_root *root,
8444 struct btrfs_path *path,
8445 struct walk_control *wc, int lookup_info)
8447 struct btrfs_fs_info *fs_info = root->fs_info;
8448 int level = wc->level;
8449 struct extent_buffer *eb = path->nodes[level];
8450 u64 flag = BTRFS_BLOCK_FLAG_FULL_BACKREF;
8453 if (wc->stage == UPDATE_BACKREF &&
8454 btrfs_header_owner(eb) != root->root_key.objectid)
8458 * when reference count of tree block is 1, it won't increase
8459 * again. once full backref flag is set, we never clear it.
8462 ((wc->stage == DROP_REFERENCE && wc->refs[level] != 1) ||
8463 (wc->stage == UPDATE_BACKREF && !(wc->flags[level] & flag)))) {
8464 BUG_ON(!path->locks[level]);
8465 ret = btrfs_lookup_extent_info(trans, fs_info,
8466 eb->start, level, 1,
8469 BUG_ON(ret == -ENOMEM);
8472 BUG_ON(wc->refs[level] == 0);
8475 if (wc->stage == DROP_REFERENCE) {
8476 if (wc->refs[level] > 1)
8479 if (path->locks[level] && !wc->keep_locks) {
8480 btrfs_tree_unlock_rw(eb, path->locks[level]);
8481 path->locks[level] = 0;
8486 /* wc->stage == UPDATE_BACKREF */
8487 if (!(wc->flags[level] & flag)) {
8488 BUG_ON(!path->locks[level]);
8489 ret = btrfs_inc_ref(trans, root, eb, 1);
8490 BUG_ON(ret); /* -ENOMEM */
8491 ret = btrfs_dec_ref(trans, root, eb, 0);
8492 BUG_ON(ret); /* -ENOMEM */
8493 ret = btrfs_set_disk_extent_flags(trans, fs_info, eb->start,
8495 btrfs_header_level(eb), 0);
8496 BUG_ON(ret); /* -ENOMEM */
8497 wc->flags[level] |= flag;
8501 * the block is shared by multiple trees, so it's not good to
8502 * keep the tree lock
8504 if (path->locks[level] && level > 0) {
8505 btrfs_tree_unlock_rw(eb, path->locks[level]);
8506 path->locks[level] = 0;
8512 * helper to process tree block pointer.
8514 * when wc->stage == DROP_REFERENCE, this function checks
8515 * reference count of the block pointed to. if the block
8516 * is shared and we need update back refs for the subtree
8517 * rooted at the block, this function changes wc->stage to
8518 * UPDATE_BACKREF. if the block is shared and there is no
8519 * need to update back, this function drops the reference
8522 * NOTE: return value 1 means we should stop walking down.
8524 static noinline int do_walk_down(struct btrfs_trans_handle *trans,
8525 struct btrfs_root *root,
8526 struct btrfs_path *path,
8527 struct walk_control *wc, int *lookup_info)
8529 struct btrfs_fs_info *fs_info = root->fs_info;
8534 struct btrfs_key key;
8535 struct btrfs_key first_key;
8536 struct extent_buffer *next;
8537 int level = wc->level;
8540 bool need_account = false;
8542 generation = btrfs_node_ptr_generation(path->nodes[level],
8543 path->slots[level]);
8545 * if the lower level block was created before the snapshot
8546 * was created, we know there is no need to update back refs
8549 if (wc->stage == UPDATE_BACKREF &&
8550 generation <= root->root_key.offset) {
8555 bytenr = btrfs_node_blockptr(path->nodes[level], path->slots[level]);
8556 btrfs_node_key_to_cpu(path->nodes[level], &first_key,
8557 path->slots[level]);
8558 blocksize = fs_info->nodesize;
8560 next = find_extent_buffer(fs_info, bytenr);
8562 next = btrfs_find_create_tree_block(fs_info, bytenr);
8564 return PTR_ERR(next);
8566 btrfs_set_buffer_lockdep_class(root->root_key.objectid, next,
8570 btrfs_tree_lock(next);
8571 btrfs_set_lock_blocking(next);
8573 ret = btrfs_lookup_extent_info(trans, fs_info, bytenr, level - 1, 1,
8574 &wc->refs[level - 1],
8575 &wc->flags[level - 1]);
8579 if (unlikely(wc->refs[level - 1] == 0)) {
8580 btrfs_err(fs_info, "Missing references.");
8586 if (wc->stage == DROP_REFERENCE) {
8587 if (wc->refs[level - 1] > 1) {
8588 need_account = true;
8590 (wc->flags[0] & BTRFS_BLOCK_FLAG_FULL_BACKREF))
8593 if (!wc->update_ref ||
8594 generation <= root->root_key.offset)
8597 btrfs_node_key_to_cpu(path->nodes[level], &key,
8598 path->slots[level]);
8599 ret = btrfs_comp_cpu_keys(&key, &wc->update_progress);
8603 wc->stage = UPDATE_BACKREF;
8604 wc->shared_level = level - 1;
8608 (wc->flags[0] & BTRFS_BLOCK_FLAG_FULL_BACKREF))
8612 if (!btrfs_buffer_uptodate(next, generation, 0)) {
8613 btrfs_tree_unlock(next);
8614 free_extent_buffer(next);
8620 if (reada && level == 1)
8621 reada_walk_down(trans, root, wc, path);
8622 next = read_tree_block(fs_info, bytenr, generation, level - 1,
8625 return PTR_ERR(next);
8626 } else if (!extent_buffer_uptodate(next)) {
8627 free_extent_buffer(next);
8630 btrfs_tree_lock(next);
8631 btrfs_set_lock_blocking(next);
8635 ASSERT(level == btrfs_header_level(next));
8636 if (level != btrfs_header_level(next)) {
8637 btrfs_err(root->fs_info, "mismatched level");
8641 path->nodes[level] = next;
8642 path->slots[level] = 0;
8643 path->locks[level] = BTRFS_WRITE_LOCK_BLOCKING;
8649 wc->refs[level - 1] = 0;
8650 wc->flags[level - 1] = 0;
8651 if (wc->stage == DROP_REFERENCE) {
8652 if (wc->flags[level] & BTRFS_BLOCK_FLAG_FULL_BACKREF) {
8653 parent = path->nodes[level]->start;
8655 ASSERT(root->root_key.objectid ==
8656 btrfs_header_owner(path->nodes[level]));
8657 if (root->root_key.objectid !=
8658 btrfs_header_owner(path->nodes[level])) {
8659 btrfs_err(root->fs_info,
8660 "mismatched block owner");
8668 ret = btrfs_qgroup_trace_subtree(trans, next,
8669 generation, level - 1);
8671 btrfs_err_rl(fs_info,
8672 "Error %d accounting shared subtree. Quota is out of sync, rescan required.",
8676 ret = btrfs_free_extent(trans, root, bytenr, blocksize,
8677 parent, root->root_key.objectid,
8687 btrfs_tree_unlock(next);
8688 free_extent_buffer(next);
8694 * helper to process tree block while walking up the tree.
8696 * when wc->stage == DROP_REFERENCE, this function drops
8697 * reference count on the block.
8699 * when wc->stage == UPDATE_BACKREF, this function changes
8700 * wc->stage back to DROP_REFERENCE if we changed wc->stage
8701 * to UPDATE_BACKREF previously while processing the block.
8703 * NOTE: return value 1 means we should stop walking up.
8705 static noinline int walk_up_proc(struct btrfs_trans_handle *trans,
8706 struct btrfs_root *root,
8707 struct btrfs_path *path,
8708 struct walk_control *wc)
8710 struct btrfs_fs_info *fs_info = root->fs_info;
8712 int level = wc->level;
8713 struct extent_buffer *eb = path->nodes[level];
8716 if (wc->stage == UPDATE_BACKREF) {
8717 BUG_ON(wc->shared_level < level);
8718 if (level < wc->shared_level)
8721 ret = find_next_key(path, level + 1, &wc->update_progress);
8725 wc->stage = DROP_REFERENCE;
8726 wc->shared_level = -1;
8727 path->slots[level] = 0;
8730 * check reference count again if the block isn't locked.
8731 * we should start walking down the tree again if reference
8734 if (!path->locks[level]) {
8736 btrfs_tree_lock(eb);
8737 btrfs_set_lock_blocking(eb);
8738 path->locks[level] = BTRFS_WRITE_LOCK_BLOCKING;
8740 ret = btrfs_lookup_extent_info(trans, fs_info,
8741 eb->start, level, 1,
8745 btrfs_tree_unlock_rw(eb, path->locks[level]);
8746 path->locks[level] = 0;
8749 BUG_ON(wc->refs[level] == 0);
8750 if (wc->refs[level] == 1) {
8751 btrfs_tree_unlock_rw(eb, path->locks[level]);
8752 path->locks[level] = 0;
8758 /* wc->stage == DROP_REFERENCE */
8759 BUG_ON(wc->refs[level] > 1 && !path->locks[level]);
8761 if (wc->refs[level] == 1) {
8763 if (wc->flags[level] & BTRFS_BLOCK_FLAG_FULL_BACKREF)
8764 ret = btrfs_dec_ref(trans, root, eb, 1);
8766 ret = btrfs_dec_ref(trans, root, eb, 0);
8767 BUG_ON(ret); /* -ENOMEM */
8768 ret = btrfs_qgroup_trace_leaf_items(trans, eb);
8770 btrfs_err_rl(fs_info,
8771 "error %d accounting leaf items. Quota is out of sync, rescan required.",
8775 /* make block locked assertion in clean_tree_block happy */
8776 if (!path->locks[level] &&
8777 btrfs_header_generation(eb) == trans->transid) {
8778 btrfs_tree_lock(eb);
8779 btrfs_set_lock_blocking(eb);
8780 path->locks[level] = BTRFS_WRITE_LOCK_BLOCKING;
8782 clean_tree_block(fs_info, eb);
8785 if (eb == root->node) {
8786 if (wc->flags[level] & BTRFS_BLOCK_FLAG_FULL_BACKREF)
8788 else if (root->root_key.objectid != btrfs_header_owner(eb))
8789 goto owner_mismatch;
8791 if (wc->flags[level + 1] & BTRFS_BLOCK_FLAG_FULL_BACKREF)
8792 parent = path->nodes[level + 1]->start;
8793 else if (root->root_key.objectid !=
8794 btrfs_header_owner(path->nodes[level + 1]))
8795 goto owner_mismatch;
8798 btrfs_free_tree_block(trans, root, eb, parent, wc->refs[level] == 1);
8800 wc->refs[level] = 0;
8801 wc->flags[level] = 0;
8805 btrfs_err_rl(fs_info, "unexpected tree owner, have %llu expect %llu",
8806 btrfs_header_owner(eb), root->root_key.objectid);
8810 static noinline int walk_down_tree(struct btrfs_trans_handle *trans,
8811 struct btrfs_root *root,
8812 struct btrfs_path *path,
8813 struct walk_control *wc)
8815 int level = wc->level;
8816 int lookup_info = 1;
8819 while (level >= 0) {
8820 ret = walk_down_proc(trans, root, path, wc, lookup_info);
8827 if (path->slots[level] >=
8828 btrfs_header_nritems(path->nodes[level]))
8831 ret = do_walk_down(trans, root, path, wc, &lookup_info);
8833 path->slots[level]++;
8842 static noinline int walk_up_tree(struct btrfs_trans_handle *trans,
8843 struct btrfs_root *root,
8844 struct btrfs_path *path,
8845 struct walk_control *wc, int max_level)
8847 int level = wc->level;
8850 path->slots[level] = btrfs_header_nritems(path->nodes[level]);
8851 while (level < max_level && path->nodes[level]) {
8853 if (path->slots[level] + 1 <
8854 btrfs_header_nritems(path->nodes[level])) {
8855 path->slots[level]++;
8858 ret = walk_up_proc(trans, root, path, wc);
8864 if (path->locks[level]) {
8865 btrfs_tree_unlock_rw(path->nodes[level],
8866 path->locks[level]);
8867 path->locks[level] = 0;
8869 free_extent_buffer(path->nodes[level]);
8870 path->nodes[level] = NULL;
8878 * drop a subvolume tree.
8880 * this function traverses the tree freeing any blocks that only
8881 * referenced by the tree.
8883 * when a shared tree block is found. this function decreases its
8884 * reference count by one. if update_ref is true, this function
8885 * also make sure backrefs for the shared block and all lower level
8886 * blocks are properly updated.
8888 * If called with for_reloc == 0, may exit early with -EAGAIN
8890 int btrfs_drop_snapshot(struct btrfs_root *root,
8891 struct btrfs_block_rsv *block_rsv, int update_ref,
8894 struct btrfs_fs_info *fs_info = root->fs_info;
8895 struct btrfs_path *path;
8896 struct btrfs_trans_handle *trans;
8897 struct btrfs_root *tree_root = fs_info->tree_root;
8898 struct btrfs_root_item *root_item = &root->root_item;
8899 struct walk_control *wc;
8900 struct btrfs_key key;
8904 bool root_dropped = false;
8906 btrfs_debug(fs_info, "Drop subvolume %llu", root->objectid);
8908 path = btrfs_alloc_path();
8914 wc = kzalloc(sizeof(*wc), GFP_NOFS);
8916 btrfs_free_path(path);
8921 trans = btrfs_start_transaction(tree_root, 0);
8922 if (IS_ERR(trans)) {
8923 err = PTR_ERR(trans);
8927 err = btrfs_run_delayed_items(trans);
8932 trans->block_rsv = block_rsv;
8934 if (btrfs_disk_key_objectid(&root_item->drop_progress) == 0) {
8935 level = btrfs_header_level(root->node);
8936 path->nodes[level] = btrfs_lock_root_node(root);
8937 btrfs_set_lock_blocking(path->nodes[level]);
8938 path->slots[level] = 0;
8939 path->locks[level] = BTRFS_WRITE_LOCK_BLOCKING;
8940 memset(&wc->update_progress, 0,
8941 sizeof(wc->update_progress));
8943 btrfs_disk_key_to_cpu(&key, &root_item->drop_progress);
8944 memcpy(&wc->update_progress, &key,
8945 sizeof(wc->update_progress));
8947 level = root_item->drop_level;
8949 path->lowest_level = level;
8950 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
8951 path->lowest_level = 0;
8959 * unlock our path, this is safe because only this
8960 * function is allowed to delete this snapshot
8962 btrfs_unlock_up_safe(path, 0);
8964 level = btrfs_header_level(root->node);
8966 btrfs_tree_lock(path->nodes[level]);
8967 btrfs_set_lock_blocking(path->nodes[level]);
8968 path->locks[level] = BTRFS_WRITE_LOCK_BLOCKING;
8970 ret = btrfs_lookup_extent_info(trans, fs_info,
8971 path->nodes[level]->start,
8972 level, 1, &wc->refs[level],
8978 BUG_ON(wc->refs[level] == 0);
8980 if (level == root_item->drop_level)
8983 btrfs_tree_unlock(path->nodes[level]);
8984 path->locks[level] = 0;
8985 WARN_ON(wc->refs[level] != 1);
8991 wc->shared_level = -1;
8992 wc->stage = DROP_REFERENCE;
8993 wc->update_ref = update_ref;
8995 wc->reada_count = BTRFS_NODEPTRS_PER_BLOCK(fs_info);
8999 ret = walk_down_tree(trans, root, path, wc);
9005 ret = walk_up_tree(trans, root, path, wc, BTRFS_MAX_LEVEL);
9012 BUG_ON(wc->stage != DROP_REFERENCE);
9016 if (wc->stage == DROP_REFERENCE) {
9018 btrfs_node_key(path->nodes[level],
9019 &root_item->drop_progress,
9020 path->slots[level]);
9021 root_item->drop_level = level;
9024 BUG_ON(wc->level == 0);
9025 if (btrfs_should_end_transaction(trans) ||
9026 (!for_reloc && btrfs_need_cleaner_sleep(fs_info))) {
9027 ret = btrfs_update_root(trans, tree_root,
9031 btrfs_abort_transaction(trans, ret);
9036 btrfs_end_transaction_throttle(trans);
9037 if (!for_reloc && btrfs_need_cleaner_sleep(fs_info)) {
9038 btrfs_debug(fs_info,
9039 "drop snapshot early exit");
9044 trans = btrfs_start_transaction(tree_root, 0);
9045 if (IS_ERR(trans)) {
9046 err = PTR_ERR(trans);
9050 trans->block_rsv = block_rsv;
9053 btrfs_release_path(path);
9057 ret = btrfs_del_root(trans, &root->root_key);
9059 btrfs_abort_transaction(trans, ret);
9064 if (root->root_key.objectid != BTRFS_TREE_RELOC_OBJECTID) {
9065 ret = btrfs_find_root(tree_root, &root->root_key, path,
9068 btrfs_abort_transaction(trans, ret);
9071 } else if (ret > 0) {
9072 /* if we fail to delete the orphan item this time
9073 * around, it'll get picked up the next time.
9075 * The most common failure here is just -ENOENT.
9077 btrfs_del_orphan_item(trans, tree_root,
9078 root->root_key.objectid);
9082 if (test_bit(BTRFS_ROOT_IN_RADIX, &root->state)) {
9083 btrfs_add_dropped_root(trans, root);
9085 free_extent_buffer(root->node);
9086 free_extent_buffer(root->commit_root);
9087 btrfs_put_fs_root(root);
9089 root_dropped = true;
9091 btrfs_end_transaction_throttle(trans);
9094 btrfs_free_path(path);
9097 * So if we need to stop dropping the snapshot for whatever reason we
9098 * need to make sure to add it back to the dead root list so that we
9099 * keep trying to do the work later. This also cleans up roots if we
9100 * don't have it in the radix (like when we recover after a power fail
9101 * or unmount) so we don't leak memory.
9103 if (!for_reloc && !root_dropped)
9104 btrfs_add_dead_root(root);
9109 * drop subtree rooted at tree block 'node'.
9111 * NOTE: this function will unlock and release tree block 'node'
9112 * only used by relocation code
9114 int btrfs_drop_subtree(struct btrfs_trans_handle *trans,
9115 struct btrfs_root *root,
9116 struct extent_buffer *node,
9117 struct extent_buffer *parent)
9119 struct btrfs_fs_info *fs_info = root->fs_info;
9120 struct btrfs_path *path;
9121 struct walk_control *wc;
9127 BUG_ON(root->root_key.objectid != BTRFS_TREE_RELOC_OBJECTID);
9129 path = btrfs_alloc_path();
9133 wc = kzalloc(sizeof(*wc), GFP_NOFS);
9135 btrfs_free_path(path);
9139 btrfs_assert_tree_locked(parent);
9140 parent_level = btrfs_header_level(parent);
9141 extent_buffer_get(parent);
9142 path->nodes[parent_level] = parent;
9143 path->slots[parent_level] = btrfs_header_nritems(parent);
9145 btrfs_assert_tree_locked(node);
9146 level = btrfs_header_level(node);
9147 path->nodes[level] = node;
9148 path->slots[level] = 0;
9149 path->locks[level] = BTRFS_WRITE_LOCK_BLOCKING;
9151 wc->refs[parent_level] = 1;
9152 wc->flags[parent_level] = BTRFS_BLOCK_FLAG_FULL_BACKREF;
9154 wc->shared_level = -1;
9155 wc->stage = DROP_REFERENCE;
9158 wc->reada_count = BTRFS_NODEPTRS_PER_BLOCK(fs_info);
9161 wret = walk_down_tree(trans, root, path, wc);
9167 wret = walk_up_tree(trans, root, path, wc, parent_level);
9175 btrfs_free_path(path);
9179 static u64 update_block_group_flags(struct btrfs_fs_info *fs_info, u64 flags)
9185 * if restripe for this chunk_type is on pick target profile and
9186 * return, otherwise do the usual balance
9188 stripped = get_restripe_target(fs_info, flags);
9190 return extended_to_chunk(stripped);
9192 num_devices = fs_info->fs_devices->rw_devices;
9194 stripped = BTRFS_BLOCK_GROUP_RAID0 |
9195 BTRFS_BLOCK_GROUP_RAID5 | BTRFS_BLOCK_GROUP_RAID6 |
9196 BTRFS_BLOCK_GROUP_RAID1 | BTRFS_BLOCK_GROUP_RAID10;
9198 if (num_devices == 1) {
9199 stripped |= BTRFS_BLOCK_GROUP_DUP;
9200 stripped = flags & ~stripped;
9202 /* turn raid0 into single device chunks */
9203 if (flags & BTRFS_BLOCK_GROUP_RAID0)
9206 /* turn mirroring into duplication */
9207 if (flags & (BTRFS_BLOCK_GROUP_RAID1 |
9208 BTRFS_BLOCK_GROUP_RAID10))
9209 return stripped | BTRFS_BLOCK_GROUP_DUP;
9211 /* they already had raid on here, just return */
9212 if (flags & stripped)
9215 stripped |= BTRFS_BLOCK_GROUP_DUP;
9216 stripped = flags & ~stripped;
9218 /* switch duplicated blocks with raid1 */
9219 if (flags & BTRFS_BLOCK_GROUP_DUP)
9220 return stripped | BTRFS_BLOCK_GROUP_RAID1;
9222 /* this is drive concat, leave it alone */
9228 static int inc_block_group_ro(struct btrfs_block_group_cache *cache, int force)
9230 struct btrfs_space_info *sinfo = cache->space_info;
9232 u64 min_allocable_bytes;
9236 * We need some metadata space and system metadata space for
9237 * allocating chunks in some corner cases until we force to set
9238 * it to be readonly.
9241 (BTRFS_BLOCK_GROUP_SYSTEM | BTRFS_BLOCK_GROUP_METADATA)) &&
9243 min_allocable_bytes = SZ_1M;
9245 min_allocable_bytes = 0;
9247 spin_lock(&sinfo->lock);
9248 spin_lock(&cache->lock);
9256 num_bytes = cache->key.offset - cache->reserved - cache->pinned -
9257 cache->bytes_super - btrfs_block_group_used(&cache->item);
9259 if (btrfs_space_info_used(sinfo, true) + num_bytes +
9260 min_allocable_bytes <= sinfo->total_bytes) {
9261 sinfo->bytes_readonly += num_bytes;
9263 list_add_tail(&cache->ro_list, &sinfo->ro_bgs);
9267 spin_unlock(&cache->lock);
9268 spin_unlock(&sinfo->lock);
9272 int btrfs_inc_block_group_ro(struct btrfs_block_group_cache *cache)
9275 struct btrfs_fs_info *fs_info = cache->fs_info;
9276 struct btrfs_trans_handle *trans;
9281 trans = btrfs_join_transaction(fs_info->extent_root);
9283 return PTR_ERR(trans);
9286 * we're not allowed to set block groups readonly after the dirty
9287 * block groups cache has started writing. If it already started,
9288 * back off and let this transaction commit
9290 mutex_lock(&fs_info->ro_block_group_mutex);
9291 if (test_bit(BTRFS_TRANS_DIRTY_BG_RUN, &trans->transaction->flags)) {
9292 u64 transid = trans->transid;
9294 mutex_unlock(&fs_info->ro_block_group_mutex);
9295 btrfs_end_transaction(trans);
9297 ret = btrfs_wait_for_commit(fs_info, transid);
9304 * if we are changing raid levels, try to allocate a corresponding
9305 * block group with the new raid level.
9307 alloc_flags = update_block_group_flags(fs_info, cache->flags);
9308 if (alloc_flags != cache->flags) {
9309 ret = do_chunk_alloc(trans, alloc_flags,
9312 * ENOSPC is allowed here, we may have enough space
9313 * already allocated at the new raid level to
9322 ret = inc_block_group_ro(cache, 0);
9325 alloc_flags = get_alloc_profile(fs_info, cache->space_info->flags);
9326 ret = do_chunk_alloc(trans, alloc_flags, CHUNK_ALLOC_FORCE);
9329 ret = inc_block_group_ro(cache, 0);
9331 if (cache->flags & BTRFS_BLOCK_GROUP_SYSTEM) {
9332 alloc_flags = update_block_group_flags(fs_info, cache->flags);
9333 mutex_lock(&fs_info->chunk_mutex);
9334 check_system_chunk(trans, alloc_flags);
9335 mutex_unlock(&fs_info->chunk_mutex);
9337 mutex_unlock(&fs_info->ro_block_group_mutex);
9339 btrfs_end_transaction(trans);
9343 int btrfs_force_chunk_alloc(struct btrfs_trans_handle *trans, u64 type)
9345 u64 alloc_flags = get_alloc_profile(trans->fs_info, type);
9347 return do_chunk_alloc(trans, alloc_flags, CHUNK_ALLOC_FORCE);
9351 * helper to account the unused space of all the readonly block group in the
9352 * space_info. takes mirrors into account.
9354 u64 btrfs_account_ro_block_groups_free_space(struct btrfs_space_info *sinfo)
9356 struct btrfs_block_group_cache *block_group;
9360 /* It's df, we don't care if it's racy */
9361 if (list_empty(&sinfo->ro_bgs))
9364 spin_lock(&sinfo->lock);
9365 list_for_each_entry(block_group, &sinfo->ro_bgs, ro_list) {
9366 spin_lock(&block_group->lock);
9368 if (!block_group->ro) {
9369 spin_unlock(&block_group->lock);
9373 factor = btrfs_bg_type_to_factor(block_group->flags);
9374 free_bytes += (block_group->key.offset -
9375 btrfs_block_group_used(&block_group->item)) *
9378 spin_unlock(&block_group->lock);
9380 spin_unlock(&sinfo->lock);
9385 void btrfs_dec_block_group_ro(struct btrfs_block_group_cache *cache)
9387 struct btrfs_space_info *sinfo = cache->space_info;
9392 spin_lock(&sinfo->lock);
9393 spin_lock(&cache->lock);
9395 num_bytes = cache->key.offset - cache->reserved -
9396 cache->pinned - cache->bytes_super -
9397 btrfs_block_group_used(&cache->item);
9398 sinfo->bytes_readonly -= num_bytes;
9399 list_del_init(&cache->ro_list);
9401 spin_unlock(&cache->lock);
9402 spin_unlock(&sinfo->lock);
9406 * checks to see if its even possible to relocate this block group.
9408 * @return - -1 if it's not a good idea to relocate this block group, 0 if its
9409 * ok to go ahead and try.
9411 int btrfs_can_relocate(struct btrfs_fs_info *fs_info, u64 bytenr)
9413 struct btrfs_root *root = fs_info->extent_root;
9414 struct btrfs_block_group_cache *block_group;
9415 struct btrfs_space_info *space_info;
9416 struct btrfs_fs_devices *fs_devices = fs_info->fs_devices;
9417 struct btrfs_device *device;
9418 struct btrfs_trans_handle *trans;
9428 debug = btrfs_test_opt(fs_info, ENOSPC_DEBUG);
9430 block_group = btrfs_lookup_block_group(fs_info, bytenr);
9432 /* odd, couldn't find the block group, leave it alone */
9436 "can't find block group for bytenr %llu",
9441 min_free = btrfs_block_group_used(&block_group->item);
9443 /* no bytes used, we're good */
9447 space_info = block_group->space_info;
9448 spin_lock(&space_info->lock);
9450 full = space_info->full;
9453 * if this is the last block group we have in this space, we can't
9454 * relocate it unless we're able to allocate a new chunk below.
9456 * Otherwise, we need to make sure we have room in the space to handle
9457 * all of the extents from this block group. If we can, we're good
9459 if ((space_info->total_bytes != block_group->key.offset) &&
9460 (btrfs_space_info_used(space_info, false) + min_free <
9461 space_info->total_bytes)) {
9462 spin_unlock(&space_info->lock);
9465 spin_unlock(&space_info->lock);
9468 * ok we don't have enough space, but maybe we have free space on our
9469 * devices to allocate new chunks for relocation, so loop through our
9470 * alloc devices and guess if we have enough space. if this block
9471 * group is going to be restriped, run checks against the target
9472 * profile instead of the current one.
9484 target = get_restripe_target(fs_info, block_group->flags);
9486 index = btrfs_bg_flags_to_raid_index(extended_to_chunk(target));
9489 * this is just a balance, so if we were marked as full
9490 * we know there is no space for a new chunk
9495 "no space to alloc new chunk for block group %llu",
9496 block_group->key.objectid);
9500 index = btrfs_bg_flags_to_raid_index(block_group->flags);
9503 if (index == BTRFS_RAID_RAID10) {
9507 } else if (index == BTRFS_RAID_RAID1) {
9509 } else if (index == BTRFS_RAID_DUP) {
9512 } else if (index == BTRFS_RAID_RAID0) {
9513 dev_min = fs_devices->rw_devices;
9514 min_free = div64_u64(min_free, dev_min);
9517 /* We need to do this so that we can look at pending chunks */
9518 trans = btrfs_join_transaction(root);
9519 if (IS_ERR(trans)) {
9520 ret = PTR_ERR(trans);
9524 mutex_lock(&fs_info->chunk_mutex);
9525 list_for_each_entry(device, &fs_devices->alloc_list, dev_alloc_list) {
9529 * check to make sure we can actually find a chunk with enough
9530 * space to fit our block group in.
9532 if (device->total_bytes > device->bytes_used + min_free &&
9533 !test_bit(BTRFS_DEV_STATE_REPLACE_TGT, &device->dev_state)) {
9534 ret = find_free_dev_extent(trans, device, min_free,
9539 if (dev_nr >= dev_min)
9545 if (debug && ret == -1)
9547 "no space to allocate a new chunk for block group %llu",
9548 block_group->key.objectid);
9549 mutex_unlock(&fs_info->chunk_mutex);
9550 btrfs_end_transaction(trans);
9552 btrfs_put_block_group(block_group);
9556 static int find_first_block_group(struct btrfs_fs_info *fs_info,
9557 struct btrfs_path *path,
9558 struct btrfs_key *key)
9560 struct btrfs_root *root = fs_info->extent_root;
9562 struct btrfs_key found_key;
9563 struct extent_buffer *leaf;
9564 struct btrfs_block_group_item bg;
9568 ret = btrfs_search_slot(NULL, root, key, path, 0, 0);
9573 slot = path->slots[0];
9574 leaf = path->nodes[0];
9575 if (slot >= btrfs_header_nritems(leaf)) {
9576 ret = btrfs_next_leaf(root, path);
9583 btrfs_item_key_to_cpu(leaf, &found_key, slot);
9585 if (found_key.objectid >= key->objectid &&
9586 found_key.type == BTRFS_BLOCK_GROUP_ITEM_KEY) {
9587 struct extent_map_tree *em_tree;
9588 struct extent_map *em;
9590 em_tree = &root->fs_info->mapping_tree.map_tree;
9591 read_lock(&em_tree->lock);
9592 em = lookup_extent_mapping(em_tree, found_key.objectid,
9594 read_unlock(&em_tree->lock);
9597 "logical %llu len %llu found bg but no related chunk",
9598 found_key.objectid, found_key.offset);
9600 } else if (em->start != found_key.objectid ||
9601 em->len != found_key.offset) {
9603 "block group %llu len %llu mismatch with chunk %llu len %llu",
9604 found_key.objectid, found_key.offset,
9605 em->start, em->len);
9608 read_extent_buffer(leaf, &bg,
9609 btrfs_item_ptr_offset(leaf, slot),
9611 flags = btrfs_block_group_flags(&bg) &
9612 BTRFS_BLOCK_GROUP_TYPE_MASK;
9614 if (flags != (em->map_lookup->type &
9615 BTRFS_BLOCK_GROUP_TYPE_MASK)) {
9617 "block group %llu len %llu type flags 0x%llx mismatch with chunk type flags 0x%llx",
9619 found_key.offset, flags,
9620 (BTRFS_BLOCK_GROUP_TYPE_MASK &
9621 em->map_lookup->type));
9627 free_extent_map(em);
9636 void btrfs_put_block_group_cache(struct btrfs_fs_info *info)
9638 struct btrfs_block_group_cache *block_group;
9642 struct inode *inode;
9644 block_group = btrfs_lookup_first_block_group(info, last);
9645 while (block_group) {
9646 wait_block_group_cache_done(block_group);
9647 spin_lock(&block_group->lock);
9648 if (block_group->iref)
9650 spin_unlock(&block_group->lock);
9651 block_group = next_block_group(info, block_group);
9660 inode = block_group->inode;
9661 block_group->iref = 0;
9662 block_group->inode = NULL;
9663 spin_unlock(&block_group->lock);
9664 ASSERT(block_group->io_ctl.inode == NULL);
9666 last = block_group->key.objectid + block_group->key.offset;
9667 btrfs_put_block_group(block_group);
9672 * Must be called only after stopping all workers, since we could have block
9673 * group caching kthreads running, and therefore they could race with us if we
9674 * freed the block groups before stopping them.
9676 int btrfs_free_block_groups(struct btrfs_fs_info *info)
9678 struct btrfs_block_group_cache *block_group;
9679 struct btrfs_space_info *space_info;
9680 struct btrfs_caching_control *caching_ctl;
9683 down_write(&info->commit_root_sem);
9684 while (!list_empty(&info->caching_block_groups)) {
9685 caching_ctl = list_entry(info->caching_block_groups.next,
9686 struct btrfs_caching_control, list);
9687 list_del(&caching_ctl->list);
9688 put_caching_control(caching_ctl);
9690 up_write(&info->commit_root_sem);
9692 spin_lock(&info->unused_bgs_lock);
9693 while (!list_empty(&info->unused_bgs)) {
9694 block_group = list_first_entry(&info->unused_bgs,
9695 struct btrfs_block_group_cache,
9697 list_del_init(&block_group->bg_list);
9698 btrfs_put_block_group(block_group);
9700 spin_unlock(&info->unused_bgs_lock);
9702 spin_lock(&info->block_group_cache_lock);
9703 while ((n = rb_last(&info->block_group_cache_tree)) != NULL) {
9704 block_group = rb_entry(n, struct btrfs_block_group_cache,
9706 rb_erase(&block_group->cache_node,
9707 &info->block_group_cache_tree);
9708 RB_CLEAR_NODE(&block_group->cache_node);
9709 spin_unlock(&info->block_group_cache_lock);
9711 down_write(&block_group->space_info->groups_sem);
9712 list_del(&block_group->list);
9713 up_write(&block_group->space_info->groups_sem);
9716 * We haven't cached this block group, which means we could
9717 * possibly have excluded extents on this block group.
9719 if (block_group->cached == BTRFS_CACHE_NO ||
9720 block_group->cached == BTRFS_CACHE_ERROR)
9721 free_excluded_extents(block_group);
9723 btrfs_remove_free_space_cache(block_group);
9724 ASSERT(block_group->cached != BTRFS_CACHE_STARTED);
9725 ASSERT(list_empty(&block_group->dirty_list));
9726 ASSERT(list_empty(&block_group->io_list));
9727 ASSERT(list_empty(&block_group->bg_list));
9728 ASSERT(atomic_read(&block_group->count) == 1);
9729 btrfs_put_block_group(block_group);
9731 spin_lock(&info->block_group_cache_lock);
9733 spin_unlock(&info->block_group_cache_lock);
9735 /* now that all the block groups are freed, go through and
9736 * free all the space_info structs. This is only called during
9737 * the final stages of unmount, and so we know nobody is
9738 * using them. We call synchronize_rcu() once before we start,
9739 * just to be on the safe side.
9743 release_global_block_rsv(info);
9745 while (!list_empty(&info->space_info)) {
9748 space_info = list_entry(info->space_info.next,
9749 struct btrfs_space_info,
9753 * Do not hide this behind enospc_debug, this is actually
9754 * important and indicates a real bug if this happens.
9756 if (WARN_ON(space_info->bytes_pinned > 0 ||
9757 space_info->bytes_reserved > 0 ||
9758 space_info->bytes_may_use > 0))
9759 dump_space_info(info, space_info, 0, 0);
9760 list_del(&space_info->list);
9761 for (i = 0; i < BTRFS_NR_RAID_TYPES; i++) {
9762 struct kobject *kobj;
9763 kobj = space_info->block_group_kobjs[i];
9764 space_info->block_group_kobjs[i] = NULL;
9770 kobject_del(&space_info->kobj);
9771 kobject_put(&space_info->kobj);
9776 /* link_block_group will queue up kobjects to add when we're reclaim-safe */
9777 void btrfs_add_raid_kobjects(struct btrfs_fs_info *fs_info)
9779 struct btrfs_space_info *space_info;
9780 struct raid_kobject *rkobj;
9785 spin_lock(&fs_info->pending_raid_kobjs_lock);
9786 list_splice_init(&fs_info->pending_raid_kobjs, &list);
9787 spin_unlock(&fs_info->pending_raid_kobjs_lock);
9789 list_for_each_entry(rkobj, &list, list) {
9790 space_info = __find_space_info(fs_info, rkobj->flags);
9791 index = btrfs_bg_flags_to_raid_index(rkobj->flags);
9793 ret = kobject_add(&rkobj->kobj, &space_info->kobj,
9794 "%s", get_raid_name(index));
9796 kobject_put(&rkobj->kobj);
9802 "failed to add kobject for block cache, ignoring");
9805 static void link_block_group(struct btrfs_block_group_cache *cache)
9807 struct btrfs_space_info *space_info = cache->space_info;
9808 struct btrfs_fs_info *fs_info = cache->fs_info;
9809 int index = btrfs_bg_flags_to_raid_index(cache->flags);
9812 down_write(&space_info->groups_sem);
9813 if (list_empty(&space_info->block_groups[index]))
9815 list_add_tail(&cache->list, &space_info->block_groups[index]);
9816 up_write(&space_info->groups_sem);
9819 struct raid_kobject *rkobj = kzalloc(sizeof(*rkobj), GFP_NOFS);
9821 btrfs_warn(cache->fs_info,
9822 "couldn't alloc memory for raid level kobject");
9825 rkobj->flags = cache->flags;
9826 kobject_init(&rkobj->kobj, &btrfs_raid_ktype);
9828 spin_lock(&fs_info->pending_raid_kobjs_lock);
9829 list_add_tail(&rkobj->list, &fs_info->pending_raid_kobjs);
9830 spin_unlock(&fs_info->pending_raid_kobjs_lock);
9831 space_info->block_group_kobjs[index] = &rkobj->kobj;
9835 static struct btrfs_block_group_cache *
9836 btrfs_create_block_group_cache(struct btrfs_fs_info *fs_info,
9837 u64 start, u64 size)
9839 struct btrfs_block_group_cache *cache;
9841 cache = kzalloc(sizeof(*cache), GFP_NOFS);
9845 cache->free_space_ctl = kzalloc(sizeof(*cache->free_space_ctl),
9847 if (!cache->free_space_ctl) {
9852 cache->key.objectid = start;
9853 cache->key.offset = size;
9854 cache->key.type = BTRFS_BLOCK_GROUP_ITEM_KEY;
9856 cache->fs_info = fs_info;
9857 cache->full_stripe_len = btrfs_full_stripe_len(fs_info, start);
9858 set_free_space_tree_thresholds(cache);
9860 atomic_set(&cache->count, 1);
9861 spin_lock_init(&cache->lock);
9862 init_rwsem(&cache->data_rwsem);
9863 INIT_LIST_HEAD(&cache->list);
9864 INIT_LIST_HEAD(&cache->cluster_list);
9865 INIT_LIST_HEAD(&cache->bg_list);
9866 INIT_LIST_HEAD(&cache->ro_list);
9867 INIT_LIST_HEAD(&cache->dirty_list);
9868 INIT_LIST_HEAD(&cache->io_list);
9869 btrfs_init_free_space_ctl(cache);
9870 atomic_set(&cache->trimming, 0);
9871 mutex_init(&cache->free_space_lock);
9872 btrfs_init_full_stripe_locks_tree(&cache->full_stripe_locks_root);
9879 * Iterate all chunks and verify that each of them has the corresponding block
9882 static int check_chunk_block_group_mappings(struct btrfs_fs_info *fs_info)
9884 struct btrfs_mapping_tree *map_tree = &fs_info->mapping_tree;
9885 struct extent_map *em;
9886 struct btrfs_block_group_cache *bg;
9891 read_lock(&map_tree->map_tree.lock);
9893 * lookup_extent_mapping will return the first extent map
9894 * intersecting the range, so setting @len to 1 is enough to
9895 * get the first chunk.
9897 em = lookup_extent_mapping(&map_tree->map_tree, start, 1);
9898 read_unlock(&map_tree->map_tree.lock);
9902 bg = btrfs_lookup_block_group(fs_info, em->start);
9905 "chunk start=%llu len=%llu doesn't have corresponding block group",
9906 em->start, em->len);
9908 free_extent_map(em);
9911 if (bg->key.objectid != em->start ||
9912 bg->key.offset != em->len ||
9913 (bg->flags & BTRFS_BLOCK_GROUP_TYPE_MASK) !=
9914 (em->map_lookup->type & BTRFS_BLOCK_GROUP_TYPE_MASK)) {
9916 "chunk start=%llu len=%llu flags=0x%llx doesn't match block group start=%llu len=%llu flags=0x%llx",
9918 em->map_lookup->type & BTRFS_BLOCK_GROUP_TYPE_MASK,
9919 bg->key.objectid, bg->key.offset,
9920 bg->flags & BTRFS_BLOCK_GROUP_TYPE_MASK);
9922 free_extent_map(em);
9923 btrfs_put_block_group(bg);
9926 start = em->start + em->len;
9927 free_extent_map(em);
9928 btrfs_put_block_group(bg);
9933 int btrfs_read_block_groups(struct btrfs_fs_info *info)
9935 struct btrfs_path *path;
9937 struct btrfs_block_group_cache *cache;
9938 struct btrfs_space_info *space_info;
9939 struct btrfs_key key;
9940 struct btrfs_key found_key;
9941 struct extent_buffer *leaf;
9947 feature = btrfs_super_incompat_flags(info->super_copy);
9948 mixed = !!(feature & BTRFS_FEATURE_INCOMPAT_MIXED_GROUPS);
9952 key.type = BTRFS_BLOCK_GROUP_ITEM_KEY;
9953 path = btrfs_alloc_path();
9956 path->reada = READA_FORWARD;
9958 cache_gen = btrfs_super_cache_generation(info->super_copy);
9959 if (btrfs_test_opt(info, SPACE_CACHE) &&
9960 btrfs_super_generation(info->super_copy) != cache_gen)
9962 if (btrfs_test_opt(info, CLEAR_CACHE))
9966 ret = find_first_block_group(info, path, &key);
9972 leaf = path->nodes[0];
9973 btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]);
9975 cache = btrfs_create_block_group_cache(info, found_key.objectid,
9984 * When we mount with old space cache, we need to
9985 * set BTRFS_DC_CLEAR and set dirty flag.
9987 * a) Setting 'BTRFS_DC_CLEAR' makes sure that we
9988 * truncate the old free space cache inode and
9990 * b) Setting 'dirty flag' makes sure that we flush
9991 * the new space cache info onto disk.
9993 if (btrfs_test_opt(info, SPACE_CACHE))
9994 cache->disk_cache_state = BTRFS_DC_CLEAR;
9997 read_extent_buffer(leaf, &cache->item,
9998 btrfs_item_ptr_offset(leaf, path->slots[0]),
9999 sizeof(cache->item));
10000 cache->flags = btrfs_block_group_flags(&cache->item);
10002 ((cache->flags & BTRFS_BLOCK_GROUP_METADATA) &&
10003 (cache->flags & BTRFS_BLOCK_GROUP_DATA))) {
10005 "bg %llu is a mixed block group but filesystem hasn't enabled mixed block groups",
10006 cache->key.objectid);
10007 btrfs_put_block_group(cache);
10012 key.objectid = found_key.objectid + found_key.offset;
10013 btrfs_release_path(path);
10016 * We need to exclude the super stripes now so that the space
10017 * info has super bytes accounted for, otherwise we'll think
10018 * we have more space than we actually do.
10020 ret = exclude_super_stripes(cache);
10023 * We may have excluded something, so call this just in
10026 free_excluded_extents(cache);
10027 btrfs_put_block_group(cache);
10032 * check for two cases, either we are full, and therefore
10033 * don't need to bother with the caching work since we won't
10034 * find any space, or we are empty, and we can just add all
10035 * the space in and be done with it. This saves us _alot_ of
10036 * time, particularly in the full case.
10038 if (found_key.offset == btrfs_block_group_used(&cache->item)) {
10039 cache->last_byte_to_unpin = (u64)-1;
10040 cache->cached = BTRFS_CACHE_FINISHED;
10041 free_excluded_extents(cache);
10042 } else if (btrfs_block_group_used(&cache->item) == 0) {
10043 cache->last_byte_to_unpin = (u64)-1;
10044 cache->cached = BTRFS_CACHE_FINISHED;
10045 add_new_free_space(cache, found_key.objectid,
10046 found_key.objectid +
10048 free_excluded_extents(cache);
10051 ret = btrfs_add_block_group_cache(info, cache);
10053 btrfs_remove_free_space_cache(cache);
10054 btrfs_put_block_group(cache);
10058 trace_btrfs_add_block_group(info, cache, 0);
10059 update_space_info(info, cache->flags, found_key.offset,
10060 btrfs_block_group_used(&cache->item),
10061 cache->bytes_super, &space_info);
10063 cache->space_info = space_info;
10065 link_block_group(cache);
10067 set_avail_alloc_bits(info, cache->flags);
10068 if (btrfs_chunk_readonly(info, cache->key.objectid)) {
10069 inc_block_group_ro(cache, 1);
10070 } else if (btrfs_block_group_used(&cache->item) == 0) {
10071 ASSERT(list_empty(&cache->bg_list));
10072 btrfs_mark_bg_unused(cache);
10076 list_for_each_entry_rcu(space_info, &info->space_info, list) {
10077 if (!(get_alloc_profile(info, space_info->flags) &
10078 (BTRFS_BLOCK_GROUP_RAID10 |
10079 BTRFS_BLOCK_GROUP_RAID1 |
10080 BTRFS_BLOCK_GROUP_RAID5 |
10081 BTRFS_BLOCK_GROUP_RAID6 |
10082 BTRFS_BLOCK_GROUP_DUP)))
10085 * avoid allocating from un-mirrored block group if there are
10086 * mirrored block groups.
10088 list_for_each_entry(cache,
10089 &space_info->block_groups[BTRFS_RAID_RAID0],
10091 inc_block_group_ro(cache, 1);
10092 list_for_each_entry(cache,
10093 &space_info->block_groups[BTRFS_RAID_SINGLE],
10095 inc_block_group_ro(cache, 1);
10098 btrfs_add_raid_kobjects(info);
10099 init_global_block_rsv(info);
10100 ret = check_chunk_block_group_mappings(info);
10102 btrfs_free_path(path);
10106 void btrfs_create_pending_block_groups(struct btrfs_trans_handle *trans)
10108 struct btrfs_fs_info *fs_info = trans->fs_info;
10109 struct btrfs_block_group_cache *block_group;
10110 struct btrfs_root *extent_root = fs_info->extent_root;
10111 struct btrfs_block_group_item item;
10112 struct btrfs_key key;
10115 if (!trans->can_flush_pending_bgs)
10118 while (!list_empty(&trans->new_bgs)) {
10119 block_group = list_first_entry(&trans->new_bgs,
10120 struct btrfs_block_group_cache,
10125 spin_lock(&block_group->lock);
10126 memcpy(&item, &block_group->item, sizeof(item));
10127 memcpy(&key, &block_group->key, sizeof(key));
10128 spin_unlock(&block_group->lock);
10130 ret = btrfs_insert_item(trans, extent_root, &key, &item,
10133 btrfs_abort_transaction(trans, ret);
10134 ret = btrfs_finish_chunk_alloc(trans, key.objectid, key.offset);
10136 btrfs_abort_transaction(trans, ret);
10137 add_block_group_free_space(trans, block_group);
10138 /* already aborted the transaction if it failed. */
10140 list_del_init(&block_group->bg_list);
10142 btrfs_trans_release_chunk_metadata(trans);
10145 int btrfs_make_block_group(struct btrfs_trans_handle *trans, u64 bytes_used,
10146 u64 type, u64 chunk_offset, u64 size)
10148 struct btrfs_fs_info *fs_info = trans->fs_info;
10149 struct btrfs_block_group_cache *cache;
10152 btrfs_set_log_full_commit(fs_info, trans);
10154 cache = btrfs_create_block_group_cache(fs_info, chunk_offset, size);
10158 btrfs_set_block_group_used(&cache->item, bytes_used);
10159 btrfs_set_block_group_chunk_objectid(&cache->item,
10160 BTRFS_FIRST_CHUNK_TREE_OBJECTID);
10161 btrfs_set_block_group_flags(&cache->item, type);
10163 cache->flags = type;
10164 cache->last_byte_to_unpin = (u64)-1;
10165 cache->cached = BTRFS_CACHE_FINISHED;
10166 cache->needs_free_space = 1;
10167 ret = exclude_super_stripes(cache);
10170 * We may have excluded something, so call this just in
10173 free_excluded_extents(cache);
10174 btrfs_put_block_group(cache);
10178 add_new_free_space(cache, chunk_offset, chunk_offset + size);
10180 free_excluded_extents(cache);
10182 #ifdef CONFIG_BTRFS_DEBUG
10183 if (btrfs_should_fragment_free_space(cache)) {
10184 u64 new_bytes_used = size - bytes_used;
10186 bytes_used += new_bytes_used >> 1;
10187 fragment_free_space(cache);
10191 * Ensure the corresponding space_info object is created and
10192 * assigned to our block group. We want our bg to be added to the rbtree
10193 * with its ->space_info set.
10195 cache->space_info = __find_space_info(fs_info, cache->flags);
10196 ASSERT(cache->space_info);
10198 ret = btrfs_add_block_group_cache(fs_info, cache);
10200 btrfs_remove_free_space_cache(cache);
10201 btrfs_put_block_group(cache);
10206 * Now that our block group has its ->space_info set and is inserted in
10207 * the rbtree, update the space info's counters.
10209 trace_btrfs_add_block_group(fs_info, cache, 1);
10210 update_space_info(fs_info, cache->flags, size, bytes_used,
10211 cache->bytes_super, &cache->space_info);
10212 update_global_block_rsv(fs_info);
10214 link_block_group(cache);
10216 list_add_tail(&cache->bg_list, &trans->new_bgs);
10218 set_avail_alloc_bits(fs_info, type);
10222 static void clear_avail_alloc_bits(struct btrfs_fs_info *fs_info, u64 flags)
10224 u64 extra_flags = chunk_to_extended(flags) &
10225 BTRFS_EXTENDED_PROFILE_MASK;
10227 write_seqlock(&fs_info->profiles_lock);
10228 if (flags & BTRFS_BLOCK_GROUP_DATA)
10229 fs_info->avail_data_alloc_bits &= ~extra_flags;
10230 if (flags & BTRFS_BLOCK_GROUP_METADATA)
10231 fs_info->avail_metadata_alloc_bits &= ~extra_flags;
10232 if (flags & BTRFS_BLOCK_GROUP_SYSTEM)
10233 fs_info->avail_system_alloc_bits &= ~extra_flags;
10234 write_sequnlock(&fs_info->profiles_lock);
10237 int btrfs_remove_block_group(struct btrfs_trans_handle *trans,
10238 u64 group_start, struct extent_map *em)
10240 struct btrfs_fs_info *fs_info = trans->fs_info;
10241 struct btrfs_root *root = fs_info->extent_root;
10242 struct btrfs_path *path;
10243 struct btrfs_block_group_cache *block_group;
10244 struct btrfs_free_cluster *cluster;
10245 struct btrfs_root *tree_root = fs_info->tree_root;
10246 struct btrfs_key key;
10247 struct inode *inode;
10248 struct kobject *kobj = NULL;
10252 struct btrfs_caching_control *caching_ctl = NULL;
10255 block_group = btrfs_lookup_block_group(fs_info, group_start);
10256 BUG_ON(!block_group);
10257 BUG_ON(!block_group->ro);
10259 trace_btrfs_remove_block_group(block_group);
10261 * Free the reserved super bytes from this block group before
10264 free_excluded_extents(block_group);
10265 btrfs_free_ref_tree_range(fs_info, block_group->key.objectid,
10266 block_group->key.offset);
10268 memcpy(&key, &block_group->key, sizeof(key));
10269 index = btrfs_bg_flags_to_raid_index(block_group->flags);
10270 factor = btrfs_bg_type_to_factor(block_group->flags);
10272 /* make sure this block group isn't part of an allocation cluster */
10273 cluster = &fs_info->data_alloc_cluster;
10274 spin_lock(&cluster->refill_lock);
10275 btrfs_return_cluster_to_free_space(block_group, cluster);
10276 spin_unlock(&cluster->refill_lock);
10279 * make sure this block group isn't part of a metadata
10280 * allocation cluster
10282 cluster = &fs_info->meta_alloc_cluster;
10283 spin_lock(&cluster->refill_lock);
10284 btrfs_return_cluster_to_free_space(block_group, cluster);
10285 spin_unlock(&cluster->refill_lock);
10287 path = btrfs_alloc_path();
10294 * get the inode first so any iput calls done for the io_list
10295 * aren't the final iput (no unlinks allowed now)
10297 inode = lookup_free_space_inode(fs_info, block_group, path);
10299 mutex_lock(&trans->transaction->cache_write_mutex);
10301 * make sure our free spache cache IO is done before remove the
10304 spin_lock(&trans->transaction->dirty_bgs_lock);
10305 if (!list_empty(&block_group->io_list)) {
10306 list_del_init(&block_group->io_list);
10308 WARN_ON(!IS_ERR(inode) && inode != block_group->io_ctl.inode);
10310 spin_unlock(&trans->transaction->dirty_bgs_lock);
10311 btrfs_wait_cache_io(trans, block_group, path);
10312 btrfs_put_block_group(block_group);
10313 spin_lock(&trans->transaction->dirty_bgs_lock);
10316 if (!list_empty(&block_group->dirty_list)) {
10317 list_del_init(&block_group->dirty_list);
10318 btrfs_put_block_group(block_group);
10320 spin_unlock(&trans->transaction->dirty_bgs_lock);
10321 mutex_unlock(&trans->transaction->cache_write_mutex);
10323 if (!IS_ERR(inode)) {
10324 ret = btrfs_orphan_add(trans, BTRFS_I(inode));
10326 btrfs_add_delayed_iput(inode);
10329 clear_nlink(inode);
10330 /* One for the block groups ref */
10331 spin_lock(&block_group->lock);
10332 if (block_group->iref) {
10333 block_group->iref = 0;
10334 block_group->inode = NULL;
10335 spin_unlock(&block_group->lock);
10338 spin_unlock(&block_group->lock);
10340 /* One for our lookup ref */
10341 btrfs_add_delayed_iput(inode);
10344 key.objectid = BTRFS_FREE_SPACE_OBJECTID;
10345 key.offset = block_group->key.objectid;
10348 ret = btrfs_search_slot(trans, tree_root, &key, path, -1, 1);
10352 btrfs_release_path(path);
10354 ret = btrfs_del_item(trans, tree_root, path);
10357 btrfs_release_path(path);
10360 spin_lock(&fs_info->block_group_cache_lock);
10361 rb_erase(&block_group->cache_node,
10362 &fs_info->block_group_cache_tree);
10363 RB_CLEAR_NODE(&block_group->cache_node);
10365 /* Once for the block groups rbtree */
10366 btrfs_put_block_group(block_group);
10368 if (fs_info->first_logical_byte == block_group->key.objectid)
10369 fs_info->first_logical_byte = (u64)-1;
10370 spin_unlock(&fs_info->block_group_cache_lock);
10372 down_write(&block_group->space_info->groups_sem);
10374 * we must use list_del_init so people can check to see if they
10375 * are still on the list after taking the semaphore
10377 list_del_init(&block_group->list);
10378 if (list_empty(&block_group->space_info->block_groups[index])) {
10379 kobj = block_group->space_info->block_group_kobjs[index];
10380 block_group->space_info->block_group_kobjs[index] = NULL;
10381 clear_avail_alloc_bits(fs_info, block_group->flags);
10383 up_write(&block_group->space_info->groups_sem);
10389 if (block_group->has_caching_ctl)
10390 caching_ctl = get_caching_control(block_group);
10391 if (block_group->cached == BTRFS_CACHE_STARTED)
10392 wait_block_group_cache_done(block_group);
10393 if (block_group->has_caching_ctl) {
10394 down_write(&fs_info->commit_root_sem);
10395 if (!caching_ctl) {
10396 struct btrfs_caching_control *ctl;
10398 list_for_each_entry(ctl,
10399 &fs_info->caching_block_groups, list)
10400 if (ctl->block_group == block_group) {
10402 refcount_inc(&caching_ctl->count);
10407 list_del_init(&caching_ctl->list);
10408 up_write(&fs_info->commit_root_sem);
10410 /* Once for the caching bgs list and once for us. */
10411 put_caching_control(caching_ctl);
10412 put_caching_control(caching_ctl);
10416 spin_lock(&trans->transaction->dirty_bgs_lock);
10417 if (!list_empty(&block_group->dirty_list)) {
10420 if (!list_empty(&block_group->io_list)) {
10423 spin_unlock(&trans->transaction->dirty_bgs_lock);
10424 btrfs_remove_free_space_cache(block_group);
10426 spin_lock(&block_group->space_info->lock);
10427 list_del_init(&block_group->ro_list);
10429 if (btrfs_test_opt(fs_info, ENOSPC_DEBUG)) {
10430 WARN_ON(block_group->space_info->total_bytes
10431 < block_group->key.offset);
10432 WARN_ON(block_group->space_info->bytes_readonly
10433 < block_group->key.offset);
10434 WARN_ON(block_group->space_info->disk_total
10435 < block_group->key.offset * factor);
10437 block_group->space_info->total_bytes -= block_group->key.offset;
10438 block_group->space_info->bytes_readonly -= block_group->key.offset;
10439 block_group->space_info->disk_total -= block_group->key.offset * factor;
10441 spin_unlock(&block_group->space_info->lock);
10443 memcpy(&key, &block_group->key, sizeof(key));
10445 mutex_lock(&fs_info->chunk_mutex);
10446 if (!list_empty(&em->list)) {
10447 /* We're in the transaction->pending_chunks list. */
10448 free_extent_map(em);
10450 spin_lock(&block_group->lock);
10451 block_group->removed = 1;
10453 * At this point trimming can't start on this block group, because we
10454 * removed the block group from the tree fs_info->block_group_cache_tree
10455 * so no one can't find it anymore and even if someone already got this
10456 * block group before we removed it from the rbtree, they have already
10457 * incremented block_group->trimming - if they didn't, they won't find
10458 * any free space entries because we already removed them all when we
10459 * called btrfs_remove_free_space_cache().
10461 * And we must not remove the extent map from the fs_info->mapping_tree
10462 * to prevent the same logical address range and physical device space
10463 * ranges from being reused for a new block group. This is because our
10464 * fs trim operation (btrfs_trim_fs() / btrfs_ioctl_fitrim()) is
10465 * completely transactionless, so while it is trimming a range the
10466 * currently running transaction might finish and a new one start,
10467 * allowing for new block groups to be created that can reuse the same
10468 * physical device locations unless we take this special care.
10470 * There may also be an implicit trim operation if the file system
10471 * is mounted with -odiscard. The same protections must remain
10472 * in place until the extents have been discarded completely when
10473 * the transaction commit has completed.
10475 remove_em = (atomic_read(&block_group->trimming) == 0);
10477 * Make sure a trimmer task always sees the em in the pinned_chunks list
10478 * if it sees block_group->removed == 1 (needs to lock block_group->lock
10479 * before checking block_group->removed).
10483 * Our em might be in trans->transaction->pending_chunks which
10484 * is protected by fs_info->chunk_mutex ([lock|unlock]_chunks),
10485 * and so is the fs_info->pinned_chunks list.
10487 * So at this point we must be holding the chunk_mutex to avoid
10488 * any races with chunk allocation (more specifically at
10489 * volumes.c:contains_pending_extent()), to ensure it always
10490 * sees the em, either in the pending_chunks list or in the
10491 * pinned_chunks list.
10493 list_move_tail(&em->list, &fs_info->pinned_chunks);
10495 spin_unlock(&block_group->lock);
10497 mutex_unlock(&fs_info->chunk_mutex);
10499 ret = remove_block_group_free_space(trans, block_group);
10503 ret = btrfs_search_slot(trans, root, &key, path, -1, 1);
10509 ret = btrfs_del_item(trans, root, path);
10514 struct extent_map_tree *em_tree;
10516 em_tree = &fs_info->mapping_tree.map_tree;
10517 write_lock(&em_tree->lock);
10519 * The em might be in the pending_chunks list, so make sure the
10520 * chunk mutex is locked, since remove_extent_mapping() will
10521 * delete us from that list.
10523 remove_extent_mapping(em_tree, em);
10524 write_unlock(&em_tree->lock);
10525 /* once for the tree */
10526 free_extent_map(em);
10530 /* Once for the lookup reference */
10531 btrfs_put_block_group(block_group);
10532 btrfs_free_path(path);
10536 struct btrfs_trans_handle *
10537 btrfs_start_trans_remove_block_group(struct btrfs_fs_info *fs_info,
10538 const u64 chunk_offset)
10540 struct extent_map_tree *em_tree = &fs_info->mapping_tree.map_tree;
10541 struct extent_map *em;
10542 struct map_lookup *map;
10543 unsigned int num_items;
10545 read_lock(&em_tree->lock);
10546 em = lookup_extent_mapping(em_tree, chunk_offset, 1);
10547 read_unlock(&em_tree->lock);
10548 ASSERT(em && em->start == chunk_offset);
10551 * We need to reserve 3 + N units from the metadata space info in order
10552 * to remove a block group (done at btrfs_remove_chunk() and at
10553 * btrfs_remove_block_group()), which are used for:
10555 * 1 unit for adding the free space inode's orphan (located in the tree
10557 * 1 unit for deleting the block group item (located in the extent
10559 * 1 unit for deleting the free space item (located in tree of tree
10561 * N units for deleting N device extent items corresponding to each
10562 * stripe (located in the device tree).
10564 * In order to remove a block group we also need to reserve units in the
10565 * system space info in order to update the chunk tree (update one or
10566 * more device items and remove one chunk item), but this is done at
10567 * btrfs_remove_chunk() through a call to check_system_chunk().
10569 map = em->map_lookup;
10570 num_items = 3 + map->num_stripes;
10571 free_extent_map(em);
10573 return btrfs_start_transaction_fallback_global_rsv(fs_info->extent_root,
10578 * Process the unused_bgs list and remove any that don't have any allocated
10579 * space inside of them.
10581 void btrfs_delete_unused_bgs(struct btrfs_fs_info *fs_info)
10583 struct btrfs_block_group_cache *block_group;
10584 struct btrfs_space_info *space_info;
10585 struct btrfs_trans_handle *trans;
10588 if (!test_bit(BTRFS_FS_OPEN, &fs_info->flags))
10591 spin_lock(&fs_info->unused_bgs_lock);
10592 while (!list_empty(&fs_info->unused_bgs)) {
10596 block_group = list_first_entry(&fs_info->unused_bgs,
10597 struct btrfs_block_group_cache,
10599 list_del_init(&block_group->bg_list);
10601 space_info = block_group->space_info;
10603 if (ret || btrfs_mixed_space_info(space_info)) {
10604 btrfs_put_block_group(block_group);
10607 spin_unlock(&fs_info->unused_bgs_lock);
10609 mutex_lock(&fs_info->delete_unused_bgs_mutex);
10611 /* Don't want to race with allocators so take the groups_sem */
10612 down_write(&space_info->groups_sem);
10613 spin_lock(&block_group->lock);
10614 if (block_group->reserved || block_group->pinned ||
10615 btrfs_block_group_used(&block_group->item) ||
10617 list_is_singular(&block_group->list)) {
10619 * We want to bail if we made new allocations or have
10620 * outstanding allocations in this block group. We do
10621 * the ro check in case balance is currently acting on
10622 * this block group.
10624 trace_btrfs_skip_unused_block_group(block_group);
10625 spin_unlock(&block_group->lock);
10626 up_write(&space_info->groups_sem);
10629 spin_unlock(&block_group->lock);
10631 /* We don't want to force the issue, only flip if it's ok. */
10632 ret = inc_block_group_ro(block_group, 0);
10633 up_write(&space_info->groups_sem);
10640 * Want to do this before we do anything else so we can recover
10641 * properly if we fail to join the transaction.
10643 trans = btrfs_start_trans_remove_block_group(fs_info,
10644 block_group->key.objectid);
10645 if (IS_ERR(trans)) {
10646 btrfs_dec_block_group_ro(block_group);
10647 ret = PTR_ERR(trans);
10652 * We could have pending pinned extents for this block group,
10653 * just delete them, we don't care about them anymore.
10655 start = block_group->key.objectid;
10656 end = start + block_group->key.offset - 1;
10658 * Hold the unused_bg_unpin_mutex lock to avoid racing with
10659 * btrfs_finish_extent_commit(). If we are at transaction N,
10660 * another task might be running finish_extent_commit() for the
10661 * previous transaction N - 1, and have seen a range belonging
10662 * to the block group in freed_extents[] before we were able to
10663 * clear the whole block group range from freed_extents[]. This
10664 * means that task can lookup for the block group after we
10665 * unpinned it from freed_extents[] and removed it, leading to
10666 * a BUG_ON() at btrfs_unpin_extent_range().
10668 mutex_lock(&fs_info->unused_bg_unpin_mutex);
10669 ret = clear_extent_bits(&fs_info->freed_extents[0], start, end,
10672 mutex_unlock(&fs_info->unused_bg_unpin_mutex);
10673 btrfs_dec_block_group_ro(block_group);
10676 ret = clear_extent_bits(&fs_info->freed_extents[1], start, end,
10679 mutex_unlock(&fs_info->unused_bg_unpin_mutex);
10680 btrfs_dec_block_group_ro(block_group);
10683 mutex_unlock(&fs_info->unused_bg_unpin_mutex);
10685 /* Reset pinned so btrfs_put_block_group doesn't complain */
10686 spin_lock(&space_info->lock);
10687 spin_lock(&block_group->lock);
10689 space_info->bytes_pinned -= block_group->pinned;
10690 space_info->bytes_readonly += block_group->pinned;
10691 percpu_counter_add_batch(&space_info->total_bytes_pinned,
10692 -block_group->pinned,
10693 BTRFS_TOTAL_BYTES_PINNED_BATCH);
10694 block_group->pinned = 0;
10696 spin_unlock(&block_group->lock);
10697 spin_unlock(&space_info->lock);
10699 /* DISCARD can flip during remount */
10700 trimming = btrfs_test_opt(fs_info, DISCARD);
10702 /* Implicit trim during transaction commit. */
10704 btrfs_get_block_group_trimming(block_group);
10707 * Btrfs_remove_chunk will abort the transaction if things go
10710 ret = btrfs_remove_chunk(trans, block_group->key.objectid);
10714 btrfs_put_block_group_trimming(block_group);
10719 * If we're not mounted with -odiscard, we can just forget
10720 * about this block group. Otherwise we'll need to wait
10721 * until transaction commit to do the actual discard.
10724 spin_lock(&fs_info->unused_bgs_lock);
10726 * A concurrent scrub might have added us to the list
10727 * fs_info->unused_bgs, so use a list_move operation
10728 * to add the block group to the deleted_bgs list.
10730 list_move(&block_group->bg_list,
10731 &trans->transaction->deleted_bgs);
10732 spin_unlock(&fs_info->unused_bgs_lock);
10733 btrfs_get_block_group(block_group);
10736 btrfs_end_transaction(trans);
10738 mutex_unlock(&fs_info->delete_unused_bgs_mutex);
10739 btrfs_put_block_group(block_group);
10740 spin_lock(&fs_info->unused_bgs_lock);
10742 spin_unlock(&fs_info->unused_bgs_lock);
10745 int btrfs_init_space_info(struct btrfs_fs_info *fs_info)
10747 struct btrfs_super_block *disk_super;
10753 disk_super = fs_info->super_copy;
10754 if (!btrfs_super_root(disk_super))
10757 features = btrfs_super_incompat_flags(disk_super);
10758 if (features & BTRFS_FEATURE_INCOMPAT_MIXED_GROUPS)
10761 flags = BTRFS_BLOCK_GROUP_SYSTEM;
10762 ret = create_space_info(fs_info, flags);
10767 flags = BTRFS_BLOCK_GROUP_METADATA | BTRFS_BLOCK_GROUP_DATA;
10768 ret = create_space_info(fs_info, flags);
10770 flags = BTRFS_BLOCK_GROUP_METADATA;
10771 ret = create_space_info(fs_info, flags);
10775 flags = BTRFS_BLOCK_GROUP_DATA;
10776 ret = create_space_info(fs_info, flags);
10782 int btrfs_error_unpin_extent_range(struct btrfs_fs_info *fs_info,
10783 u64 start, u64 end)
10785 return unpin_extent_range(fs_info, start, end, false);
10789 * It used to be that old block groups would be left around forever.
10790 * Iterating over them would be enough to trim unused space. Since we
10791 * now automatically remove them, we also need to iterate over unallocated
10794 * We don't want a transaction for this since the discard may take a
10795 * substantial amount of time. We don't require that a transaction be
10796 * running, but we do need to take a running transaction into account
10797 * to ensure that we're not discarding chunks that were released or
10798 * allocated in the current transaction.
10800 * Holding the chunks lock will prevent other threads from allocating
10801 * or releasing chunks, but it won't prevent a running transaction
10802 * from committing and releasing the memory that the pending chunks
10803 * list head uses. For that, we need to take a reference to the
10804 * transaction and hold the commit root sem. We only need to hold
10805 * it while performing the free space search since we have already
10806 * held back allocations.
10808 static int btrfs_trim_free_extents(struct btrfs_device *device,
10809 u64 minlen, u64 *trimmed)
10811 u64 start = 0, len = 0;
10816 /* Discard not supported = nothing to do. */
10817 if (!blk_queue_discard(bdev_get_queue(device->bdev)))
10820 /* Not writeable = nothing to do. */
10821 if (!test_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state))
10824 /* No free space = nothing to do. */
10825 if (device->total_bytes <= device->bytes_used)
10831 struct btrfs_fs_info *fs_info = device->fs_info;
10832 struct btrfs_transaction *trans;
10835 ret = mutex_lock_interruptible(&fs_info->chunk_mutex);
10839 ret = down_read_killable(&fs_info->commit_root_sem);
10841 mutex_unlock(&fs_info->chunk_mutex);
10845 spin_lock(&fs_info->trans_lock);
10846 trans = fs_info->running_transaction;
10848 refcount_inc(&trans->use_count);
10849 spin_unlock(&fs_info->trans_lock);
10852 up_read(&fs_info->commit_root_sem);
10854 ret = find_free_dev_extent_start(trans, device, minlen, start,
10857 up_read(&fs_info->commit_root_sem);
10858 btrfs_put_transaction(trans);
10862 mutex_unlock(&fs_info->chunk_mutex);
10863 if (ret == -ENOSPC)
10868 ret = btrfs_issue_discard(device->bdev, start, len, &bytes);
10869 mutex_unlock(&fs_info->chunk_mutex);
10877 if (fatal_signal_pending(current)) {
10878 ret = -ERESTARTSYS;
10889 * Trim the whole filesystem by:
10890 * 1) trimming the free space in each block group
10891 * 2) trimming the unallocated space on each device
10893 * This will also continue trimming even if a block group or device encounters
10894 * an error. The return value will be the last error, or 0 if nothing bad
10897 int btrfs_trim_fs(struct btrfs_fs_info *fs_info, struct fstrim_range *range)
10899 struct btrfs_block_group_cache *cache = NULL;
10900 struct btrfs_device *device;
10901 struct list_head *devices;
10907 u64 dev_failed = 0;
10912 cache = btrfs_lookup_first_block_group(fs_info, range->start);
10913 for (; cache; cache = next_block_group(fs_info, cache)) {
10914 if (cache->key.objectid >= (range->start + range->len)) {
10915 btrfs_put_block_group(cache);
10919 start = max(range->start, cache->key.objectid);
10920 end = min(range->start + range->len,
10921 cache->key.objectid + cache->key.offset);
10923 if (end - start >= range->minlen) {
10924 if (!block_group_cache_done(cache)) {
10925 ret = cache_block_group(cache, 0);
10931 ret = wait_block_group_cache_done(cache);
10938 ret = btrfs_trim_block_group(cache,
10944 trimmed += group_trimmed;
10954 btrfs_warn(fs_info,
10955 "failed to trim %llu block group(s), last error %d",
10956 bg_failed, bg_ret);
10957 mutex_lock(&fs_info->fs_devices->device_list_mutex);
10958 devices = &fs_info->fs_devices->devices;
10959 list_for_each_entry(device, devices, dev_list) {
10960 ret = btrfs_trim_free_extents(device, range->minlen,
10968 trimmed += group_trimmed;
10970 mutex_unlock(&fs_info->fs_devices->device_list_mutex);
10973 btrfs_warn(fs_info,
10974 "failed to trim %llu device(s), last error %d",
10975 dev_failed, dev_ret);
10976 range->len = trimmed;
10983 * btrfs_{start,end}_write_no_snapshotting() are similar to
10984 * mnt_{want,drop}_write(), they are used to prevent some tasks from writing
10985 * data into the page cache through nocow before the subvolume is snapshoted,
10986 * but flush the data into disk after the snapshot creation, or to prevent
10987 * operations while snapshotting is ongoing and that cause the snapshot to be
10988 * inconsistent (writes followed by expanding truncates for example).
10990 void btrfs_end_write_no_snapshotting(struct btrfs_root *root)
10992 percpu_counter_dec(&root->subv_writers->counter);
10993 cond_wake_up(&root->subv_writers->wait);
10996 int btrfs_start_write_no_snapshotting(struct btrfs_root *root)
10998 if (atomic_read(&root->will_be_snapshotted))
11001 percpu_counter_inc(&root->subv_writers->counter);
11003 * Make sure counter is updated before we check for snapshot creation.
11006 if (atomic_read(&root->will_be_snapshotted)) {
11007 btrfs_end_write_no_snapshotting(root);
11013 void btrfs_wait_for_snapshot_creation(struct btrfs_root *root)
11018 ret = btrfs_start_write_no_snapshotting(root);
11021 wait_var_event(&root->will_be_snapshotted,
11022 !atomic_read(&root->will_be_snapshotted));
11026 void btrfs_mark_bg_unused(struct btrfs_block_group_cache *bg)
11028 struct btrfs_fs_info *fs_info = bg->fs_info;
11030 spin_lock(&fs_info->unused_bgs_lock);
11031 if (list_empty(&bg->bg_list)) {
11032 btrfs_get_block_group(bg);
11033 trace_btrfs_add_unused_block_group(bg);
11034 list_add_tail(&bg->bg_list, &fs_info->unused_bgs);
11036 spin_unlock(&fs_info->unused_bgs_lock);