GNU Linux-libre 4.4.296-gnu1
[releases.git] / fs / btrfs / extent-tree.c
1 /*
2  * Copyright (C) 2007 Oracle.  All rights reserved.
3  *
4  * This program is free software; you can redistribute it and/or
5  * modify it under the terms of the GNU General Public
6  * License v2 as published by the Free Software Foundation.
7  *
8  * This program is distributed in the hope that it will be useful,
9  * but WITHOUT ANY WARRANTY; without even the implied warranty of
10  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
11  * General Public License for more details.
12  *
13  * You should have received a copy of the GNU General Public
14  * License along with this program; if not, write to the
15  * Free Software Foundation, Inc., 59 Temple Place - Suite 330,
16  * Boston, MA 021110-1307, USA.
17  */
18 #include <linux/sched.h>
19 #include <linux/pagemap.h>
20 #include <linux/writeback.h>
21 #include <linux/blkdev.h>
22 #include <linux/sort.h>
23 #include <linux/rcupdate.h>
24 #include <linux/kthread.h>
25 #include <linux/slab.h>
26 #include <linux/ratelimit.h>
27 #include <linux/percpu_counter.h>
28 #include "hash.h"
29 #include "tree-log.h"
30 #include "disk-io.h"
31 #include "print-tree.h"
32 #include "volumes.h"
33 #include "raid56.h"
34 #include "locking.h"
35 #include "free-space-cache.h"
36 #include "math.h"
37 #include "sysfs.h"
38 #include "qgroup.h"
39
40 #undef SCRAMBLE_DELAYED_REFS
41
42 /*
43  * control flags for do_chunk_alloc's force field
44  * CHUNK_ALLOC_NO_FORCE means to only allocate a chunk
45  * if we really need one.
46  *
47  * CHUNK_ALLOC_LIMITED means to only try and allocate one
48  * if we have very few chunks already allocated.  This is
49  * used as part of the clustering code to help make sure
50  * we have a good pool of storage to cluster in, without
51  * filling the FS with empty chunks
52  *
53  * CHUNK_ALLOC_FORCE means it must try to allocate one
54  *
55  */
56 enum {
57         CHUNK_ALLOC_NO_FORCE = 0,
58         CHUNK_ALLOC_LIMITED = 1,
59         CHUNK_ALLOC_FORCE = 2,
60 };
61
62 /*
63  * Control how reservations are dealt with.
64  *
65  * RESERVE_FREE - freeing a reservation.
66  * RESERVE_ALLOC - allocating space and we need to update bytes_may_use for
67  *   ENOSPC accounting
68  * RESERVE_ALLOC_NO_ACCOUNT - allocating space and we should not update
69  *   bytes_may_use as the ENOSPC accounting is done elsewhere
70  */
71 enum {
72         RESERVE_FREE = 0,
73         RESERVE_ALLOC = 1,
74         RESERVE_ALLOC_NO_ACCOUNT = 2,
75 };
76
77 static int update_block_group(struct btrfs_trans_handle *trans,
78                               struct btrfs_root *root, u64 bytenr,
79                               u64 num_bytes, int alloc);
80 static int __btrfs_free_extent(struct btrfs_trans_handle *trans,
81                                 struct btrfs_root *root,
82                                 struct btrfs_delayed_ref_node *node, u64 parent,
83                                 u64 root_objectid, u64 owner_objectid,
84                                 u64 owner_offset, int refs_to_drop,
85                                 struct btrfs_delayed_extent_op *extra_op);
86 static void __run_delayed_extent_op(struct btrfs_delayed_extent_op *extent_op,
87                                     struct extent_buffer *leaf,
88                                     struct btrfs_extent_item *ei);
89 static int alloc_reserved_file_extent(struct btrfs_trans_handle *trans,
90                                       struct btrfs_root *root,
91                                       u64 parent, u64 root_objectid,
92                                       u64 flags, u64 owner, u64 offset,
93                                       struct btrfs_key *ins, int ref_mod);
94 static int alloc_reserved_tree_block(struct btrfs_trans_handle *trans,
95                                      struct btrfs_root *root,
96                                      u64 parent, u64 root_objectid,
97                                      u64 flags, struct btrfs_disk_key *key,
98                                      int level, struct btrfs_key *ins);
99 static int do_chunk_alloc(struct btrfs_trans_handle *trans,
100                           struct btrfs_root *extent_root, u64 flags,
101                           int force);
102 static int find_next_key(struct btrfs_path *path, int level,
103                          struct btrfs_key *key);
104 static void dump_space_info(struct btrfs_space_info *info, u64 bytes,
105                             int dump_block_groups);
106 static int btrfs_update_reserved_bytes(struct btrfs_block_group_cache *cache,
107                                        u64 num_bytes, int reserve,
108                                        int delalloc);
109 static int block_rsv_use_bytes(struct btrfs_block_rsv *block_rsv,
110                                u64 num_bytes);
111 int btrfs_pin_extent(struct btrfs_root *root,
112                      u64 bytenr, u64 num_bytes, int reserved);
113
114 static noinline int
115 block_group_cache_done(struct btrfs_block_group_cache *cache)
116 {
117         smp_mb();
118         return cache->cached == BTRFS_CACHE_FINISHED ||
119                 cache->cached == BTRFS_CACHE_ERROR;
120 }
121
122 static int block_group_bits(struct btrfs_block_group_cache *cache, u64 bits)
123 {
124         return (cache->flags & bits) == bits;
125 }
126
127 void btrfs_get_block_group(struct btrfs_block_group_cache *cache)
128 {
129         atomic_inc(&cache->count);
130 }
131
132 void btrfs_put_block_group(struct btrfs_block_group_cache *cache)
133 {
134         if (atomic_dec_and_test(&cache->count)) {
135                 WARN_ON(cache->pinned > 0);
136                 WARN_ON(cache->reserved > 0);
137                 kfree(cache->free_space_ctl);
138                 kfree(cache);
139         }
140 }
141
142 /*
143  * this adds the block group to the fs_info rb tree for the block group
144  * cache
145  */
146 static int btrfs_add_block_group_cache(struct btrfs_fs_info *info,
147                                 struct btrfs_block_group_cache *block_group)
148 {
149         struct rb_node **p;
150         struct rb_node *parent = NULL;
151         struct btrfs_block_group_cache *cache;
152
153         spin_lock(&info->block_group_cache_lock);
154         p = &info->block_group_cache_tree.rb_node;
155
156         while (*p) {
157                 parent = *p;
158                 cache = rb_entry(parent, struct btrfs_block_group_cache,
159                                  cache_node);
160                 if (block_group->key.objectid < cache->key.objectid) {
161                         p = &(*p)->rb_left;
162                 } else if (block_group->key.objectid > cache->key.objectid) {
163                         p = &(*p)->rb_right;
164                 } else {
165                         spin_unlock(&info->block_group_cache_lock);
166                         return -EEXIST;
167                 }
168         }
169
170         rb_link_node(&block_group->cache_node, parent, p);
171         rb_insert_color(&block_group->cache_node,
172                         &info->block_group_cache_tree);
173
174         if (info->first_logical_byte > block_group->key.objectid)
175                 info->first_logical_byte = block_group->key.objectid;
176
177         spin_unlock(&info->block_group_cache_lock);
178
179         return 0;
180 }
181
182 /*
183  * This will return the block group at or after bytenr if contains is 0, else
184  * it will return the block group that contains the bytenr
185  */
186 static struct btrfs_block_group_cache *
187 block_group_cache_tree_search(struct btrfs_fs_info *info, u64 bytenr,
188                               int contains)
189 {
190         struct btrfs_block_group_cache *cache, *ret = NULL;
191         struct rb_node *n;
192         u64 end, start;
193
194         spin_lock(&info->block_group_cache_lock);
195         n = info->block_group_cache_tree.rb_node;
196
197         while (n) {
198                 cache = rb_entry(n, struct btrfs_block_group_cache,
199                                  cache_node);
200                 end = cache->key.objectid + cache->key.offset - 1;
201                 start = cache->key.objectid;
202
203                 if (bytenr < start) {
204                         if (!contains && (!ret || start < ret->key.objectid))
205                                 ret = cache;
206                         n = n->rb_left;
207                 } else if (bytenr > start) {
208                         if (contains && bytenr <= end) {
209                                 ret = cache;
210                                 break;
211                         }
212                         n = n->rb_right;
213                 } else {
214                         ret = cache;
215                         break;
216                 }
217         }
218         if (ret) {
219                 btrfs_get_block_group(ret);
220                 if (bytenr == 0 && info->first_logical_byte > ret->key.objectid)
221                         info->first_logical_byte = ret->key.objectid;
222         }
223         spin_unlock(&info->block_group_cache_lock);
224
225         return ret;
226 }
227
228 static int add_excluded_extent(struct btrfs_root *root,
229                                u64 start, u64 num_bytes)
230 {
231         u64 end = start + num_bytes - 1;
232         set_extent_bits(&root->fs_info->freed_extents[0],
233                         start, end, EXTENT_UPTODATE, GFP_NOFS);
234         set_extent_bits(&root->fs_info->freed_extents[1],
235                         start, end, EXTENT_UPTODATE, GFP_NOFS);
236         return 0;
237 }
238
239 static void free_excluded_extents(struct btrfs_root *root,
240                                   struct btrfs_block_group_cache *cache)
241 {
242         u64 start, end;
243
244         start = cache->key.objectid;
245         end = start + cache->key.offset - 1;
246
247         clear_extent_bits(&root->fs_info->freed_extents[0],
248                           start, end, EXTENT_UPTODATE, GFP_NOFS);
249         clear_extent_bits(&root->fs_info->freed_extents[1],
250                           start, end, EXTENT_UPTODATE, GFP_NOFS);
251 }
252
253 static int exclude_super_stripes(struct btrfs_root *root,
254                                  struct btrfs_block_group_cache *cache)
255 {
256         u64 bytenr;
257         u64 *logical;
258         int stripe_len;
259         int i, nr, ret;
260
261         if (cache->key.objectid < BTRFS_SUPER_INFO_OFFSET) {
262                 stripe_len = BTRFS_SUPER_INFO_OFFSET - cache->key.objectid;
263                 cache->bytes_super += stripe_len;
264                 ret = add_excluded_extent(root, cache->key.objectid,
265                                           stripe_len);
266                 if (ret)
267                         return ret;
268         }
269
270         for (i = 0; i < BTRFS_SUPER_MIRROR_MAX; i++) {
271                 bytenr = btrfs_sb_offset(i);
272                 ret = btrfs_rmap_block(&root->fs_info->mapping_tree,
273                                        cache->key.objectid, bytenr,
274                                        0, &logical, &nr, &stripe_len);
275                 if (ret)
276                         return ret;
277
278                 while (nr--) {
279                         u64 start, len;
280
281                         if (logical[nr] > cache->key.objectid +
282                             cache->key.offset)
283                                 continue;
284
285                         if (logical[nr] + stripe_len <= cache->key.objectid)
286                                 continue;
287
288                         start = logical[nr];
289                         if (start < cache->key.objectid) {
290                                 start = cache->key.objectid;
291                                 len = (logical[nr] + stripe_len) - start;
292                         } else {
293                                 len = min_t(u64, stripe_len,
294                                             cache->key.objectid +
295                                             cache->key.offset - start);
296                         }
297
298                         cache->bytes_super += len;
299                         ret = add_excluded_extent(root, start, len);
300                         if (ret) {
301                                 kfree(logical);
302                                 return ret;
303                         }
304                 }
305
306                 kfree(logical);
307         }
308         return 0;
309 }
310
311 static struct btrfs_caching_control *
312 get_caching_control(struct btrfs_block_group_cache *cache)
313 {
314         struct btrfs_caching_control *ctl;
315
316         spin_lock(&cache->lock);
317         if (!cache->caching_ctl) {
318                 spin_unlock(&cache->lock);
319                 return NULL;
320         }
321
322         ctl = cache->caching_ctl;
323         atomic_inc(&ctl->count);
324         spin_unlock(&cache->lock);
325         return ctl;
326 }
327
328 static void put_caching_control(struct btrfs_caching_control *ctl)
329 {
330         if (atomic_dec_and_test(&ctl->count))
331                 kfree(ctl);
332 }
333
334 #ifdef CONFIG_BTRFS_DEBUG
335 static void fragment_free_space(struct btrfs_root *root,
336                                 struct btrfs_block_group_cache *block_group)
337 {
338         u64 start = block_group->key.objectid;
339         u64 len = block_group->key.offset;
340         u64 chunk = block_group->flags & BTRFS_BLOCK_GROUP_METADATA ?
341                 root->nodesize : root->sectorsize;
342         u64 step = chunk << 1;
343
344         while (len > chunk) {
345                 btrfs_remove_free_space(block_group, start, chunk);
346                 start += step;
347                 if (len < step)
348                         len = 0;
349                 else
350                         len -= step;
351         }
352 }
353 #endif
354
355 /*
356  * this is only called by cache_block_group, since we could have freed extents
357  * we need to check the pinned_extents for any extents that can't be used yet
358  * since their free space will be released as soon as the transaction commits.
359  */
360 static u64 add_new_free_space(struct btrfs_block_group_cache *block_group,
361                               struct btrfs_fs_info *info, u64 start, u64 end)
362 {
363         u64 extent_start, extent_end, size, total_added = 0;
364         int ret;
365
366         while (start < end) {
367                 ret = find_first_extent_bit(info->pinned_extents, start,
368                                             &extent_start, &extent_end,
369                                             EXTENT_DIRTY | EXTENT_UPTODATE,
370                                             NULL);
371                 if (ret)
372                         break;
373
374                 if (extent_start <= start) {
375                         start = extent_end + 1;
376                 } else if (extent_start > start && extent_start < end) {
377                         size = extent_start - start;
378                         total_added += size;
379                         ret = btrfs_add_free_space(block_group, start,
380                                                    size);
381                         BUG_ON(ret); /* -ENOMEM or logic error */
382                         start = extent_end + 1;
383                 } else {
384                         break;
385                 }
386         }
387
388         if (start < end) {
389                 size = end - start;
390                 total_added += size;
391                 ret = btrfs_add_free_space(block_group, start, size);
392                 BUG_ON(ret); /* -ENOMEM or logic error */
393         }
394
395         return total_added;
396 }
397
398 static noinline void caching_thread(struct btrfs_work *work)
399 {
400         struct btrfs_block_group_cache *block_group;
401         struct btrfs_fs_info *fs_info;
402         struct btrfs_caching_control *caching_ctl;
403         struct btrfs_root *extent_root;
404         struct btrfs_path *path;
405         struct extent_buffer *leaf;
406         struct btrfs_key key;
407         u64 total_found = 0;
408         u64 last = 0;
409         u32 nritems;
410         int ret = -ENOMEM;
411         bool wakeup = true;
412
413         caching_ctl = container_of(work, struct btrfs_caching_control, work);
414         block_group = caching_ctl->block_group;
415         fs_info = block_group->fs_info;
416         extent_root = fs_info->extent_root;
417
418         path = btrfs_alloc_path();
419         if (!path)
420                 goto out;
421
422         last = max_t(u64, block_group->key.objectid, BTRFS_SUPER_INFO_OFFSET);
423
424 #ifdef CONFIG_BTRFS_DEBUG
425         /*
426          * If we're fragmenting we don't want to make anybody think we can
427          * allocate from this block group until we've had a chance to fragment
428          * the free space.
429          */
430         if (btrfs_should_fragment_free_space(extent_root, block_group))
431                 wakeup = false;
432 #endif
433         /*
434          * We don't want to deadlock with somebody trying to allocate a new
435          * extent for the extent root while also trying to search the extent
436          * root to add free space.  So we skip locking and search the commit
437          * root, since its read-only
438          */
439         path->skip_locking = 1;
440         path->search_commit_root = 1;
441         path->reada = 1;
442
443         key.objectid = last;
444         key.offset = 0;
445         key.type = BTRFS_EXTENT_ITEM_KEY;
446 again:
447         mutex_lock(&caching_ctl->mutex);
448         /* need to make sure the commit_root doesn't disappear */
449         down_read(&fs_info->commit_root_sem);
450
451 next:
452         ret = btrfs_search_slot(NULL, extent_root, &key, path, 0, 0);
453         if (ret < 0)
454                 goto err;
455
456         leaf = path->nodes[0];
457         nritems = btrfs_header_nritems(leaf);
458
459         while (1) {
460                 if (btrfs_fs_closing(fs_info) > 1) {
461                         last = (u64)-1;
462                         break;
463                 }
464
465                 if (path->slots[0] < nritems) {
466                         btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
467                 } else {
468                         ret = find_next_key(path, 0, &key);
469                         if (ret)
470                                 break;
471
472                         if (need_resched() ||
473                             rwsem_is_contended(&fs_info->commit_root_sem)) {
474                                 if (wakeup)
475                                         caching_ctl->progress = last;
476                                 btrfs_release_path(path);
477                                 up_read(&fs_info->commit_root_sem);
478                                 mutex_unlock(&caching_ctl->mutex);
479                                 cond_resched();
480                                 goto again;
481                         }
482
483                         ret = btrfs_next_leaf(extent_root, path);
484                         if (ret < 0)
485                                 goto err;
486                         if (ret)
487                                 break;
488                         leaf = path->nodes[0];
489                         nritems = btrfs_header_nritems(leaf);
490                         continue;
491                 }
492
493                 if (key.objectid < last) {
494                         key.objectid = last;
495                         key.offset = 0;
496                         key.type = BTRFS_EXTENT_ITEM_KEY;
497
498                         if (wakeup)
499                                 caching_ctl->progress = last;
500                         btrfs_release_path(path);
501                         goto next;
502                 }
503
504                 if (key.objectid < block_group->key.objectid) {
505                         path->slots[0]++;
506                         continue;
507                 }
508
509                 if (key.objectid >= block_group->key.objectid +
510                     block_group->key.offset)
511                         break;
512
513                 if (key.type == BTRFS_EXTENT_ITEM_KEY ||
514                     key.type == BTRFS_METADATA_ITEM_KEY) {
515                         total_found += add_new_free_space(block_group,
516                                                           fs_info, last,
517                                                           key.objectid);
518                         if (key.type == BTRFS_METADATA_ITEM_KEY)
519                                 last = key.objectid +
520                                         fs_info->tree_root->nodesize;
521                         else
522                                 last = key.objectid + key.offset;
523
524                         if (total_found > (1024 * 1024 * 2)) {
525                                 total_found = 0;
526                                 if (wakeup)
527                                         wake_up(&caching_ctl->wait);
528                         }
529                 }
530                 path->slots[0]++;
531         }
532         ret = 0;
533
534         total_found += add_new_free_space(block_group, fs_info, last,
535                                           block_group->key.objectid +
536                                           block_group->key.offset);
537         spin_lock(&block_group->lock);
538         block_group->caching_ctl = NULL;
539         block_group->cached = BTRFS_CACHE_FINISHED;
540         spin_unlock(&block_group->lock);
541
542 #ifdef CONFIG_BTRFS_DEBUG
543         if (btrfs_should_fragment_free_space(extent_root, block_group)) {
544                 u64 bytes_used;
545
546                 spin_lock(&block_group->space_info->lock);
547                 spin_lock(&block_group->lock);
548                 bytes_used = block_group->key.offset -
549                         btrfs_block_group_used(&block_group->item);
550                 block_group->space_info->bytes_used += bytes_used >> 1;
551                 spin_unlock(&block_group->lock);
552                 spin_unlock(&block_group->space_info->lock);
553                 fragment_free_space(extent_root, block_group);
554         }
555 #endif
556
557         caching_ctl->progress = (u64)-1;
558 err:
559         btrfs_free_path(path);
560         up_read(&fs_info->commit_root_sem);
561
562         free_excluded_extents(extent_root, block_group);
563
564         mutex_unlock(&caching_ctl->mutex);
565 out:
566         if (ret) {
567                 spin_lock(&block_group->lock);
568                 block_group->caching_ctl = NULL;
569                 block_group->cached = BTRFS_CACHE_ERROR;
570                 spin_unlock(&block_group->lock);
571         }
572         wake_up(&caching_ctl->wait);
573
574         put_caching_control(caching_ctl);
575         btrfs_put_block_group(block_group);
576 }
577
578 static int cache_block_group(struct btrfs_block_group_cache *cache,
579                              int load_cache_only)
580 {
581         DEFINE_WAIT(wait);
582         struct btrfs_fs_info *fs_info = cache->fs_info;
583         struct btrfs_caching_control *caching_ctl;
584         int ret = 0;
585
586         caching_ctl = kzalloc(sizeof(*caching_ctl), GFP_NOFS);
587         if (!caching_ctl)
588                 return -ENOMEM;
589
590         INIT_LIST_HEAD(&caching_ctl->list);
591         mutex_init(&caching_ctl->mutex);
592         init_waitqueue_head(&caching_ctl->wait);
593         caching_ctl->block_group = cache;
594         caching_ctl->progress = cache->key.objectid;
595         atomic_set(&caching_ctl->count, 1);
596         btrfs_init_work(&caching_ctl->work, btrfs_cache_helper,
597                         caching_thread, NULL, NULL);
598
599         spin_lock(&cache->lock);
600         /*
601          * This should be a rare occasion, but this could happen I think in the
602          * case where one thread starts to load the space cache info, and then
603          * some other thread starts a transaction commit which tries to do an
604          * allocation while the other thread is still loading the space cache
605          * info.  The previous loop should have kept us from choosing this block
606          * group, but if we've moved to the state where we will wait on caching
607          * block groups we need to first check if we're doing a fast load here,
608          * so we can wait for it to finish, otherwise we could end up allocating
609          * from a block group who's cache gets evicted for one reason or
610          * another.
611          */
612         while (cache->cached == BTRFS_CACHE_FAST) {
613                 struct btrfs_caching_control *ctl;
614
615                 ctl = cache->caching_ctl;
616                 atomic_inc(&ctl->count);
617                 prepare_to_wait(&ctl->wait, &wait, TASK_UNINTERRUPTIBLE);
618                 spin_unlock(&cache->lock);
619
620                 schedule();
621
622                 finish_wait(&ctl->wait, &wait);
623                 put_caching_control(ctl);
624                 spin_lock(&cache->lock);
625         }
626
627         if (cache->cached != BTRFS_CACHE_NO) {
628                 spin_unlock(&cache->lock);
629                 kfree(caching_ctl);
630                 return 0;
631         }
632         WARN_ON(cache->caching_ctl);
633         cache->caching_ctl = caching_ctl;
634         cache->cached = BTRFS_CACHE_FAST;
635         spin_unlock(&cache->lock);
636
637         if (fs_info->mount_opt & BTRFS_MOUNT_SPACE_CACHE) {
638                 mutex_lock(&caching_ctl->mutex);
639                 ret = load_free_space_cache(fs_info, cache);
640
641                 spin_lock(&cache->lock);
642                 if (ret == 1) {
643                         cache->caching_ctl = NULL;
644                         cache->cached = BTRFS_CACHE_FINISHED;
645                         cache->last_byte_to_unpin = (u64)-1;
646                         caching_ctl->progress = (u64)-1;
647                 } else {
648                         if (load_cache_only) {
649                                 cache->caching_ctl = NULL;
650                                 cache->cached = BTRFS_CACHE_NO;
651                         } else {
652                                 cache->cached = BTRFS_CACHE_STARTED;
653                                 cache->has_caching_ctl = 1;
654                         }
655                 }
656                 spin_unlock(&cache->lock);
657 #ifdef CONFIG_BTRFS_DEBUG
658                 if (ret == 1 &&
659                     btrfs_should_fragment_free_space(fs_info->extent_root,
660                                                      cache)) {
661                         u64 bytes_used;
662
663                         spin_lock(&cache->space_info->lock);
664                         spin_lock(&cache->lock);
665                         bytes_used = cache->key.offset -
666                                 btrfs_block_group_used(&cache->item);
667                         cache->space_info->bytes_used += bytes_used >> 1;
668                         spin_unlock(&cache->lock);
669                         spin_unlock(&cache->space_info->lock);
670                         fragment_free_space(fs_info->extent_root, cache);
671                 }
672 #endif
673                 mutex_unlock(&caching_ctl->mutex);
674
675                 wake_up(&caching_ctl->wait);
676                 if (ret == 1) {
677                         put_caching_control(caching_ctl);
678                         free_excluded_extents(fs_info->extent_root, cache);
679                         return 0;
680                 }
681         } else {
682                 /*
683                  * We are not going to do the fast caching, set cached to the
684                  * appropriate value and wakeup any waiters.
685                  */
686                 spin_lock(&cache->lock);
687                 if (load_cache_only) {
688                         cache->caching_ctl = NULL;
689                         cache->cached = BTRFS_CACHE_NO;
690                 } else {
691                         cache->cached = BTRFS_CACHE_STARTED;
692                         cache->has_caching_ctl = 1;
693                 }
694                 spin_unlock(&cache->lock);
695                 wake_up(&caching_ctl->wait);
696         }
697
698         if (load_cache_only) {
699                 put_caching_control(caching_ctl);
700                 return 0;
701         }
702
703         down_write(&fs_info->commit_root_sem);
704         atomic_inc(&caching_ctl->count);
705         list_add_tail(&caching_ctl->list, &fs_info->caching_block_groups);
706         up_write(&fs_info->commit_root_sem);
707
708         btrfs_get_block_group(cache);
709
710         btrfs_queue_work(fs_info->caching_workers, &caching_ctl->work);
711
712         return ret;
713 }
714
715 /*
716  * return the block group that starts at or after bytenr
717  */
718 static struct btrfs_block_group_cache *
719 btrfs_lookup_first_block_group(struct btrfs_fs_info *info, u64 bytenr)
720 {
721         struct btrfs_block_group_cache *cache;
722
723         cache = block_group_cache_tree_search(info, bytenr, 0);
724
725         return cache;
726 }
727
728 /*
729  * return the block group that contains the given bytenr
730  */
731 struct btrfs_block_group_cache *btrfs_lookup_block_group(
732                                                  struct btrfs_fs_info *info,
733                                                  u64 bytenr)
734 {
735         struct btrfs_block_group_cache *cache;
736
737         cache = block_group_cache_tree_search(info, bytenr, 1);
738
739         return cache;
740 }
741
742 static struct btrfs_space_info *__find_space_info(struct btrfs_fs_info *info,
743                                                   u64 flags)
744 {
745         struct list_head *head = &info->space_info;
746         struct btrfs_space_info *found;
747
748         flags &= BTRFS_BLOCK_GROUP_TYPE_MASK;
749
750         rcu_read_lock();
751         list_for_each_entry_rcu(found, head, list) {
752                 if (found->flags & flags) {
753                         rcu_read_unlock();
754                         return found;
755                 }
756         }
757         rcu_read_unlock();
758         return NULL;
759 }
760
761 /*
762  * after adding space to the filesystem, we need to clear the full flags
763  * on all the space infos.
764  */
765 void btrfs_clear_space_info_full(struct btrfs_fs_info *info)
766 {
767         struct list_head *head = &info->space_info;
768         struct btrfs_space_info *found;
769
770         rcu_read_lock();
771         list_for_each_entry_rcu(found, head, list)
772                 found->full = 0;
773         rcu_read_unlock();
774 }
775
776 /* simple helper to search for an existing data extent at a given offset */
777 int btrfs_lookup_data_extent(struct btrfs_root *root, u64 start, u64 len)
778 {
779         int ret;
780         struct btrfs_key key;
781         struct btrfs_path *path;
782
783         path = btrfs_alloc_path();
784         if (!path)
785                 return -ENOMEM;
786
787         key.objectid = start;
788         key.offset = len;
789         key.type = BTRFS_EXTENT_ITEM_KEY;
790         ret = btrfs_search_slot(NULL, root->fs_info->extent_root, &key, path,
791                                 0, 0);
792         btrfs_free_path(path);
793         return ret;
794 }
795
796 /*
797  * helper function to lookup reference count and flags of a tree block.
798  *
799  * the head node for delayed ref is used to store the sum of all the
800  * reference count modifications queued up in the rbtree. the head
801  * node may also store the extent flags to set. This way you can check
802  * to see what the reference count and extent flags would be if all of
803  * the delayed refs are not processed.
804  */
805 int btrfs_lookup_extent_info(struct btrfs_trans_handle *trans,
806                              struct btrfs_root *root, u64 bytenr,
807                              u64 offset, int metadata, u64 *refs, u64 *flags)
808 {
809         struct btrfs_delayed_ref_head *head;
810         struct btrfs_delayed_ref_root *delayed_refs;
811         struct btrfs_path *path;
812         struct btrfs_extent_item *ei;
813         struct extent_buffer *leaf;
814         struct btrfs_key key;
815         u32 item_size;
816         u64 num_refs;
817         u64 extent_flags;
818         int ret;
819
820         /*
821          * If we don't have skinny metadata, don't bother doing anything
822          * different
823          */
824         if (metadata && !btrfs_fs_incompat(root->fs_info, SKINNY_METADATA)) {
825                 offset = root->nodesize;
826                 metadata = 0;
827         }
828
829         path = btrfs_alloc_path();
830         if (!path)
831                 return -ENOMEM;
832
833         if (!trans) {
834                 path->skip_locking = 1;
835                 path->search_commit_root = 1;
836         }
837
838 search_again:
839         key.objectid = bytenr;
840         key.offset = offset;
841         if (metadata)
842                 key.type = BTRFS_METADATA_ITEM_KEY;
843         else
844                 key.type = BTRFS_EXTENT_ITEM_KEY;
845
846         ret = btrfs_search_slot(trans, root->fs_info->extent_root,
847                                 &key, path, 0, 0);
848         if (ret < 0)
849                 goto out_free;
850
851         if (ret > 0 && metadata && key.type == BTRFS_METADATA_ITEM_KEY) {
852                 if (path->slots[0]) {
853                         path->slots[0]--;
854                         btrfs_item_key_to_cpu(path->nodes[0], &key,
855                                               path->slots[0]);
856                         if (key.objectid == bytenr &&
857                             key.type == BTRFS_EXTENT_ITEM_KEY &&
858                             key.offset == root->nodesize)
859                                 ret = 0;
860                 }
861         }
862
863         if (ret == 0) {
864                 leaf = path->nodes[0];
865                 item_size = btrfs_item_size_nr(leaf, path->slots[0]);
866                 if (item_size >= sizeof(*ei)) {
867                         ei = btrfs_item_ptr(leaf, path->slots[0],
868                                             struct btrfs_extent_item);
869                         num_refs = btrfs_extent_refs(leaf, ei);
870                         extent_flags = btrfs_extent_flags(leaf, ei);
871                 } else {
872 #ifdef BTRFS_COMPAT_EXTENT_TREE_V0
873                         struct btrfs_extent_item_v0 *ei0;
874                         BUG_ON(item_size != sizeof(*ei0));
875                         ei0 = btrfs_item_ptr(leaf, path->slots[0],
876                                              struct btrfs_extent_item_v0);
877                         num_refs = btrfs_extent_refs_v0(leaf, ei0);
878                         /* FIXME: this isn't correct for data */
879                         extent_flags = BTRFS_BLOCK_FLAG_FULL_BACKREF;
880 #else
881                         BUG();
882 #endif
883                 }
884                 BUG_ON(num_refs == 0);
885         } else {
886                 num_refs = 0;
887                 extent_flags = 0;
888                 ret = 0;
889         }
890
891         if (!trans)
892                 goto out;
893
894         delayed_refs = &trans->transaction->delayed_refs;
895         spin_lock(&delayed_refs->lock);
896         head = btrfs_find_delayed_ref_head(trans, bytenr);
897         if (head) {
898                 if (!mutex_trylock(&head->mutex)) {
899                         atomic_inc(&head->node.refs);
900                         spin_unlock(&delayed_refs->lock);
901
902                         btrfs_release_path(path);
903
904                         /*
905                          * Mutex was contended, block until it's released and try
906                          * again
907                          */
908                         mutex_lock(&head->mutex);
909                         mutex_unlock(&head->mutex);
910                         btrfs_put_delayed_ref(&head->node);
911                         goto search_again;
912                 }
913                 spin_lock(&head->lock);
914                 if (head->extent_op && head->extent_op->update_flags)
915                         extent_flags |= head->extent_op->flags_to_set;
916                 else
917                         BUG_ON(num_refs == 0);
918
919                 num_refs += head->node.ref_mod;
920                 spin_unlock(&head->lock);
921                 mutex_unlock(&head->mutex);
922         }
923         spin_unlock(&delayed_refs->lock);
924 out:
925         WARN_ON(num_refs == 0);
926         if (refs)
927                 *refs = num_refs;
928         if (flags)
929                 *flags = extent_flags;
930 out_free:
931         btrfs_free_path(path);
932         return ret;
933 }
934
935 /*
936  * Back reference rules.  Back refs have three main goals:
937  *
938  * 1) differentiate between all holders of references to an extent so that
939  *    when a reference is dropped we can make sure it was a valid reference
940  *    before freeing the extent.
941  *
942  * 2) Provide enough information to quickly find the holders of an extent
943  *    if we notice a given block is corrupted or bad.
944  *
945  * 3) Make it easy to migrate blocks for FS shrinking or storage pool
946  *    maintenance.  This is actually the same as #2, but with a slightly
947  *    different use case.
948  *
949  * There are two kinds of back refs. The implicit back refs is optimized
950  * for pointers in non-shared tree blocks. For a given pointer in a block,
951  * back refs of this kind provide information about the block's owner tree
952  * and the pointer's key. These information allow us to find the block by
953  * b-tree searching. The full back refs is for pointers in tree blocks not
954  * referenced by their owner trees. The location of tree block is recorded
955  * in the back refs. Actually the full back refs is generic, and can be
956  * used in all cases the implicit back refs is used. The major shortcoming
957  * of the full back refs is its overhead. Every time a tree block gets
958  * COWed, we have to update back refs entry for all pointers in it.
959  *
960  * For a newly allocated tree block, we use implicit back refs for
961  * pointers in it. This means most tree related operations only involve
962  * implicit back refs. For a tree block created in old transaction, the
963  * only way to drop a reference to it is COW it. So we can detect the
964  * event that tree block loses its owner tree's reference and do the
965  * back refs conversion.
966  *
967  * When a tree block is COW'd through a tree, there are four cases:
968  *
969  * The reference count of the block is one and the tree is the block's
970  * owner tree. Nothing to do in this case.
971  *
972  * The reference count of the block is one and the tree is not the
973  * block's owner tree. In this case, full back refs is used for pointers
974  * in the block. Remove these full back refs, add implicit back refs for
975  * every pointers in the new block.
976  *
977  * The reference count of the block is greater than one and the tree is
978  * the block's owner tree. In this case, implicit back refs is used for
979  * pointers in the block. Add full back refs for every pointers in the
980  * block, increase lower level extents' reference counts. The original
981  * implicit back refs are entailed to the new block.
982  *
983  * The reference count of the block is greater than one and the tree is
984  * not the block's owner tree. Add implicit back refs for every pointer in
985  * the new block, increase lower level extents' reference count.
986  *
987  * Back Reference Key composing:
988  *
989  * The key objectid corresponds to the first byte in the extent,
990  * The key type is used to differentiate between types of back refs.
991  * There are different meanings of the key offset for different types
992  * of back refs.
993  *
994  * File extents can be referenced by:
995  *
996  * - multiple snapshots, subvolumes, or different generations in one subvol
997  * - different files inside a single subvolume
998  * - different offsets inside a file (bookend extents in file.c)
999  *
1000  * The extent ref structure for the implicit back refs has fields for:
1001  *
1002  * - Objectid of the subvolume root
1003  * - objectid of the file holding the reference
1004  * - original offset in the file
1005  * - how many bookend extents
1006  *
1007  * The key offset for the implicit back refs is hash of the first
1008  * three fields.
1009  *
1010  * The extent ref structure for the full back refs has field for:
1011  *
1012  * - number of pointers in the tree leaf
1013  *
1014  * The key offset for the implicit back refs is the first byte of
1015  * the tree leaf
1016  *
1017  * When a file extent is allocated, The implicit back refs is used.
1018  * the fields are filled in:
1019  *
1020  *     (root_key.objectid, inode objectid, offset in file, 1)
1021  *
1022  * When a file extent is removed file truncation, we find the
1023  * corresponding implicit back refs and check the following fields:
1024  *
1025  *     (btrfs_header_owner(leaf), inode objectid, offset in file)
1026  *
1027  * Btree extents can be referenced by:
1028  *
1029  * - Different subvolumes
1030  *
1031  * Both the implicit back refs and the full back refs for tree blocks
1032  * only consist of key. The key offset for the implicit back refs is
1033  * objectid of block's owner tree. The key offset for the full back refs
1034  * is the first byte of parent block.
1035  *
1036  * When implicit back refs is used, information about the lowest key and
1037  * level of the tree block are required. These information are stored in
1038  * tree block info structure.
1039  */
1040
1041 #ifdef BTRFS_COMPAT_EXTENT_TREE_V0
1042 static int convert_extent_item_v0(struct btrfs_trans_handle *trans,
1043                                   struct btrfs_root *root,
1044                                   struct btrfs_path *path,
1045                                   u64 owner, u32 extra_size)
1046 {
1047         struct btrfs_extent_item *item;
1048         struct btrfs_extent_item_v0 *ei0;
1049         struct btrfs_extent_ref_v0 *ref0;
1050         struct btrfs_tree_block_info *bi;
1051         struct extent_buffer *leaf;
1052         struct btrfs_key key;
1053         struct btrfs_key found_key;
1054         u32 new_size = sizeof(*item);
1055         u64 refs;
1056         int ret;
1057
1058         leaf = path->nodes[0];
1059         BUG_ON(btrfs_item_size_nr(leaf, path->slots[0]) != sizeof(*ei0));
1060
1061         btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
1062         ei0 = btrfs_item_ptr(leaf, path->slots[0],
1063                              struct btrfs_extent_item_v0);
1064         refs = btrfs_extent_refs_v0(leaf, ei0);
1065
1066         if (owner == (u64)-1) {
1067                 while (1) {
1068                         if (path->slots[0] >= btrfs_header_nritems(leaf)) {
1069                                 ret = btrfs_next_leaf(root, path);
1070                                 if (ret < 0)
1071                                         return ret;
1072                                 BUG_ON(ret > 0); /* Corruption */
1073                                 leaf = path->nodes[0];
1074                         }
1075                         btrfs_item_key_to_cpu(leaf, &found_key,
1076                                               path->slots[0]);
1077                         BUG_ON(key.objectid != found_key.objectid);
1078                         if (found_key.type != BTRFS_EXTENT_REF_V0_KEY) {
1079                                 path->slots[0]++;
1080                                 continue;
1081                         }
1082                         ref0 = btrfs_item_ptr(leaf, path->slots[0],
1083                                               struct btrfs_extent_ref_v0);
1084                         owner = btrfs_ref_objectid_v0(leaf, ref0);
1085                         break;
1086                 }
1087         }
1088         btrfs_release_path(path);
1089
1090         if (owner < BTRFS_FIRST_FREE_OBJECTID)
1091                 new_size += sizeof(*bi);
1092
1093         new_size -= sizeof(*ei0);
1094         ret = btrfs_search_slot(trans, root, &key, path,
1095                                 new_size + extra_size, 1);
1096         if (ret < 0)
1097                 return ret;
1098         BUG_ON(ret); /* Corruption */
1099
1100         btrfs_extend_item(root, path, new_size);
1101
1102         leaf = path->nodes[0];
1103         item = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_extent_item);
1104         btrfs_set_extent_refs(leaf, item, refs);
1105         /* FIXME: get real generation */
1106         btrfs_set_extent_generation(leaf, item, 0);
1107         if (owner < BTRFS_FIRST_FREE_OBJECTID) {
1108                 btrfs_set_extent_flags(leaf, item,
1109                                        BTRFS_EXTENT_FLAG_TREE_BLOCK |
1110                                        BTRFS_BLOCK_FLAG_FULL_BACKREF);
1111                 bi = (struct btrfs_tree_block_info *)(item + 1);
1112                 /* FIXME: get first key of the block */
1113                 memset_extent_buffer(leaf, 0, (unsigned long)bi, sizeof(*bi));
1114                 btrfs_set_tree_block_level(leaf, bi, (int)owner);
1115         } else {
1116                 btrfs_set_extent_flags(leaf, item, BTRFS_EXTENT_FLAG_DATA);
1117         }
1118         btrfs_mark_buffer_dirty(leaf);
1119         return 0;
1120 }
1121 #endif
1122
1123 static u64 hash_extent_data_ref(u64 root_objectid, u64 owner, u64 offset)
1124 {
1125         u32 high_crc = ~(u32)0;
1126         u32 low_crc = ~(u32)0;
1127         __le64 lenum;
1128
1129         lenum = cpu_to_le64(root_objectid);
1130         high_crc = btrfs_crc32c(high_crc, &lenum, sizeof(lenum));
1131         lenum = cpu_to_le64(owner);
1132         low_crc = btrfs_crc32c(low_crc, &lenum, sizeof(lenum));
1133         lenum = cpu_to_le64(offset);
1134         low_crc = btrfs_crc32c(low_crc, &lenum, sizeof(lenum));
1135
1136         return ((u64)high_crc << 31) ^ (u64)low_crc;
1137 }
1138
1139 static u64 hash_extent_data_ref_item(struct extent_buffer *leaf,
1140                                      struct btrfs_extent_data_ref *ref)
1141 {
1142         return hash_extent_data_ref(btrfs_extent_data_ref_root(leaf, ref),
1143                                     btrfs_extent_data_ref_objectid(leaf, ref),
1144                                     btrfs_extent_data_ref_offset(leaf, ref));
1145 }
1146
1147 static int match_extent_data_ref(struct extent_buffer *leaf,
1148                                  struct btrfs_extent_data_ref *ref,
1149                                  u64 root_objectid, u64 owner, u64 offset)
1150 {
1151         if (btrfs_extent_data_ref_root(leaf, ref) != root_objectid ||
1152             btrfs_extent_data_ref_objectid(leaf, ref) != owner ||
1153             btrfs_extent_data_ref_offset(leaf, ref) != offset)
1154                 return 0;
1155         return 1;
1156 }
1157
1158 static noinline int lookup_extent_data_ref(struct btrfs_trans_handle *trans,
1159                                            struct btrfs_root *root,
1160                                            struct btrfs_path *path,
1161                                            u64 bytenr, u64 parent,
1162                                            u64 root_objectid,
1163                                            u64 owner, u64 offset)
1164 {
1165         struct btrfs_key key;
1166         struct btrfs_extent_data_ref *ref;
1167         struct extent_buffer *leaf;
1168         u32 nritems;
1169         int ret;
1170         int recow;
1171         int err = -ENOENT;
1172
1173         key.objectid = bytenr;
1174         if (parent) {
1175                 key.type = BTRFS_SHARED_DATA_REF_KEY;
1176                 key.offset = parent;
1177         } else {
1178                 key.type = BTRFS_EXTENT_DATA_REF_KEY;
1179                 key.offset = hash_extent_data_ref(root_objectid,
1180                                                   owner, offset);
1181         }
1182 again:
1183         recow = 0;
1184         ret = btrfs_search_slot(trans, root, &key, path, -1, 1);
1185         if (ret < 0) {
1186                 err = ret;
1187                 goto fail;
1188         }
1189
1190         if (parent) {
1191                 if (!ret)
1192                         return 0;
1193 #ifdef BTRFS_COMPAT_EXTENT_TREE_V0
1194                 key.type = BTRFS_EXTENT_REF_V0_KEY;
1195                 btrfs_release_path(path);
1196                 ret = btrfs_search_slot(trans, root, &key, path, -1, 1);
1197                 if (ret < 0) {
1198                         err = ret;
1199                         goto fail;
1200                 }
1201                 if (!ret)
1202                         return 0;
1203 #endif
1204                 goto fail;
1205         }
1206
1207         leaf = path->nodes[0];
1208         nritems = btrfs_header_nritems(leaf);
1209         while (1) {
1210                 if (path->slots[0] >= nritems) {
1211                         ret = btrfs_next_leaf(root, path);
1212                         if (ret < 0)
1213                                 err = ret;
1214                         if (ret)
1215                                 goto fail;
1216
1217                         leaf = path->nodes[0];
1218                         nritems = btrfs_header_nritems(leaf);
1219                         recow = 1;
1220                 }
1221
1222                 btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
1223                 if (key.objectid != bytenr ||
1224                     key.type != BTRFS_EXTENT_DATA_REF_KEY)
1225                         goto fail;
1226
1227                 ref = btrfs_item_ptr(leaf, path->slots[0],
1228                                      struct btrfs_extent_data_ref);
1229
1230                 if (match_extent_data_ref(leaf, ref, root_objectid,
1231                                           owner, offset)) {
1232                         if (recow) {
1233                                 btrfs_release_path(path);
1234                                 goto again;
1235                         }
1236                         err = 0;
1237                         break;
1238                 }
1239                 path->slots[0]++;
1240         }
1241 fail:
1242         return err;
1243 }
1244
1245 static noinline int insert_extent_data_ref(struct btrfs_trans_handle *trans,
1246                                            struct btrfs_root *root,
1247                                            struct btrfs_path *path,
1248                                            u64 bytenr, u64 parent,
1249                                            u64 root_objectid, u64 owner,
1250                                            u64 offset, int refs_to_add)
1251 {
1252         struct btrfs_key key;
1253         struct extent_buffer *leaf;
1254         u32 size;
1255         u32 num_refs;
1256         int ret;
1257
1258         key.objectid = bytenr;
1259         if (parent) {
1260                 key.type = BTRFS_SHARED_DATA_REF_KEY;
1261                 key.offset = parent;
1262                 size = sizeof(struct btrfs_shared_data_ref);
1263         } else {
1264                 key.type = BTRFS_EXTENT_DATA_REF_KEY;
1265                 key.offset = hash_extent_data_ref(root_objectid,
1266                                                   owner, offset);
1267                 size = sizeof(struct btrfs_extent_data_ref);
1268         }
1269
1270         ret = btrfs_insert_empty_item(trans, root, path, &key, size);
1271         if (ret && ret != -EEXIST)
1272                 goto fail;
1273
1274         leaf = path->nodes[0];
1275         if (parent) {
1276                 struct btrfs_shared_data_ref *ref;
1277                 ref = btrfs_item_ptr(leaf, path->slots[0],
1278                                      struct btrfs_shared_data_ref);
1279                 if (ret == 0) {
1280                         btrfs_set_shared_data_ref_count(leaf, ref, refs_to_add);
1281                 } else {
1282                         num_refs = btrfs_shared_data_ref_count(leaf, ref);
1283                         num_refs += refs_to_add;
1284                         btrfs_set_shared_data_ref_count(leaf, ref, num_refs);
1285                 }
1286         } else {
1287                 struct btrfs_extent_data_ref *ref;
1288                 while (ret == -EEXIST) {
1289                         ref = btrfs_item_ptr(leaf, path->slots[0],
1290                                              struct btrfs_extent_data_ref);
1291                         if (match_extent_data_ref(leaf, ref, root_objectid,
1292                                                   owner, offset))
1293                                 break;
1294                         btrfs_release_path(path);
1295                         key.offset++;
1296                         ret = btrfs_insert_empty_item(trans, root, path, &key,
1297                                                       size);
1298                         if (ret && ret != -EEXIST)
1299                                 goto fail;
1300
1301                         leaf = path->nodes[0];
1302                 }
1303                 ref = btrfs_item_ptr(leaf, path->slots[0],
1304                                      struct btrfs_extent_data_ref);
1305                 if (ret == 0) {
1306                         btrfs_set_extent_data_ref_root(leaf, ref,
1307                                                        root_objectid);
1308                         btrfs_set_extent_data_ref_objectid(leaf, ref, owner);
1309                         btrfs_set_extent_data_ref_offset(leaf, ref, offset);
1310                         btrfs_set_extent_data_ref_count(leaf, ref, refs_to_add);
1311                 } else {
1312                         num_refs = btrfs_extent_data_ref_count(leaf, ref);
1313                         num_refs += refs_to_add;
1314                         btrfs_set_extent_data_ref_count(leaf, ref, num_refs);
1315                 }
1316         }
1317         btrfs_mark_buffer_dirty(leaf);
1318         ret = 0;
1319 fail:
1320         btrfs_release_path(path);
1321         return ret;
1322 }
1323
1324 static noinline int remove_extent_data_ref(struct btrfs_trans_handle *trans,
1325                                            struct btrfs_root *root,
1326                                            struct btrfs_path *path,
1327                                            int refs_to_drop, int *last_ref)
1328 {
1329         struct btrfs_key key;
1330         struct btrfs_extent_data_ref *ref1 = NULL;
1331         struct btrfs_shared_data_ref *ref2 = NULL;
1332         struct extent_buffer *leaf;
1333         u32 num_refs = 0;
1334         int ret = 0;
1335
1336         leaf = path->nodes[0];
1337         btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
1338
1339         if (key.type == BTRFS_EXTENT_DATA_REF_KEY) {
1340                 ref1 = btrfs_item_ptr(leaf, path->slots[0],
1341                                       struct btrfs_extent_data_ref);
1342                 num_refs = btrfs_extent_data_ref_count(leaf, ref1);
1343         } else if (key.type == BTRFS_SHARED_DATA_REF_KEY) {
1344                 ref2 = btrfs_item_ptr(leaf, path->slots[0],
1345                                       struct btrfs_shared_data_ref);
1346                 num_refs = btrfs_shared_data_ref_count(leaf, ref2);
1347 #ifdef BTRFS_COMPAT_EXTENT_TREE_V0
1348         } else if (key.type == BTRFS_EXTENT_REF_V0_KEY) {
1349                 struct btrfs_extent_ref_v0 *ref0;
1350                 ref0 = btrfs_item_ptr(leaf, path->slots[0],
1351                                       struct btrfs_extent_ref_v0);
1352                 num_refs = btrfs_ref_count_v0(leaf, ref0);
1353 #endif
1354         } else {
1355                 BUG();
1356         }
1357
1358         BUG_ON(num_refs < refs_to_drop);
1359         num_refs -= refs_to_drop;
1360
1361         if (num_refs == 0) {
1362                 ret = btrfs_del_item(trans, root, path);
1363                 *last_ref = 1;
1364         } else {
1365                 if (key.type == BTRFS_EXTENT_DATA_REF_KEY)
1366                         btrfs_set_extent_data_ref_count(leaf, ref1, num_refs);
1367                 else if (key.type == BTRFS_SHARED_DATA_REF_KEY)
1368                         btrfs_set_shared_data_ref_count(leaf, ref2, num_refs);
1369 #ifdef BTRFS_COMPAT_EXTENT_TREE_V0
1370                 else {
1371                         struct btrfs_extent_ref_v0 *ref0;
1372                         ref0 = btrfs_item_ptr(leaf, path->slots[0],
1373                                         struct btrfs_extent_ref_v0);
1374                         btrfs_set_ref_count_v0(leaf, ref0, num_refs);
1375                 }
1376 #endif
1377                 btrfs_mark_buffer_dirty(leaf);
1378         }
1379         return ret;
1380 }
1381
1382 static noinline u32 extent_data_ref_count(struct btrfs_path *path,
1383                                           struct btrfs_extent_inline_ref *iref)
1384 {
1385         struct btrfs_key key;
1386         struct extent_buffer *leaf;
1387         struct btrfs_extent_data_ref *ref1;
1388         struct btrfs_shared_data_ref *ref2;
1389         u32 num_refs = 0;
1390
1391         leaf = path->nodes[0];
1392         btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
1393         if (iref) {
1394                 if (btrfs_extent_inline_ref_type(leaf, iref) ==
1395                     BTRFS_EXTENT_DATA_REF_KEY) {
1396                         ref1 = (struct btrfs_extent_data_ref *)(&iref->offset);
1397                         num_refs = btrfs_extent_data_ref_count(leaf, ref1);
1398                 } else {
1399                         ref2 = (struct btrfs_shared_data_ref *)(iref + 1);
1400                         num_refs = btrfs_shared_data_ref_count(leaf, ref2);
1401                 }
1402         } else if (key.type == BTRFS_EXTENT_DATA_REF_KEY) {
1403                 ref1 = btrfs_item_ptr(leaf, path->slots[0],
1404                                       struct btrfs_extent_data_ref);
1405                 num_refs = btrfs_extent_data_ref_count(leaf, ref1);
1406         } else if (key.type == BTRFS_SHARED_DATA_REF_KEY) {
1407                 ref2 = btrfs_item_ptr(leaf, path->slots[0],
1408                                       struct btrfs_shared_data_ref);
1409                 num_refs = btrfs_shared_data_ref_count(leaf, ref2);
1410 #ifdef BTRFS_COMPAT_EXTENT_TREE_V0
1411         } else if (key.type == BTRFS_EXTENT_REF_V0_KEY) {
1412                 struct btrfs_extent_ref_v0 *ref0;
1413                 ref0 = btrfs_item_ptr(leaf, path->slots[0],
1414                                       struct btrfs_extent_ref_v0);
1415                 num_refs = btrfs_ref_count_v0(leaf, ref0);
1416 #endif
1417         } else {
1418                 WARN_ON(1);
1419         }
1420         return num_refs;
1421 }
1422
1423 static noinline int lookup_tree_block_ref(struct btrfs_trans_handle *trans,
1424                                           struct btrfs_root *root,
1425                                           struct btrfs_path *path,
1426                                           u64 bytenr, u64 parent,
1427                                           u64 root_objectid)
1428 {
1429         struct btrfs_key key;
1430         int ret;
1431
1432         key.objectid = bytenr;
1433         if (parent) {
1434                 key.type = BTRFS_SHARED_BLOCK_REF_KEY;
1435                 key.offset = parent;
1436         } else {
1437                 key.type = BTRFS_TREE_BLOCK_REF_KEY;
1438                 key.offset = root_objectid;
1439         }
1440
1441         ret = btrfs_search_slot(trans, root, &key, path, -1, 1);
1442         if (ret > 0)
1443                 ret = -ENOENT;
1444 #ifdef BTRFS_COMPAT_EXTENT_TREE_V0
1445         if (ret == -ENOENT && parent) {
1446                 btrfs_release_path(path);
1447                 key.type = BTRFS_EXTENT_REF_V0_KEY;
1448                 ret = btrfs_search_slot(trans, root, &key, path, -1, 1);
1449                 if (ret > 0)
1450                         ret = -ENOENT;
1451         }
1452 #endif
1453         return ret;
1454 }
1455
1456 static noinline int insert_tree_block_ref(struct btrfs_trans_handle *trans,
1457                                           struct btrfs_root *root,
1458                                           struct btrfs_path *path,
1459                                           u64 bytenr, u64 parent,
1460                                           u64 root_objectid)
1461 {
1462         struct btrfs_key key;
1463         int ret;
1464
1465         key.objectid = bytenr;
1466         if (parent) {
1467                 key.type = BTRFS_SHARED_BLOCK_REF_KEY;
1468                 key.offset = parent;
1469         } else {
1470                 key.type = BTRFS_TREE_BLOCK_REF_KEY;
1471                 key.offset = root_objectid;
1472         }
1473
1474         ret = btrfs_insert_empty_item(trans, root, path, &key, 0);
1475         btrfs_release_path(path);
1476         return ret;
1477 }
1478
1479 static inline int extent_ref_type(u64 parent, u64 owner)
1480 {
1481         int type;
1482         if (owner < BTRFS_FIRST_FREE_OBJECTID) {
1483                 if (parent > 0)
1484                         type = BTRFS_SHARED_BLOCK_REF_KEY;
1485                 else
1486                         type = BTRFS_TREE_BLOCK_REF_KEY;
1487         } else {
1488                 if (parent > 0)
1489                         type = BTRFS_SHARED_DATA_REF_KEY;
1490                 else
1491                         type = BTRFS_EXTENT_DATA_REF_KEY;
1492         }
1493         return type;
1494 }
1495
1496 static int find_next_key(struct btrfs_path *path, int level,
1497                          struct btrfs_key *key)
1498
1499 {
1500         for (; level < BTRFS_MAX_LEVEL; level++) {
1501                 if (!path->nodes[level])
1502                         break;
1503                 if (path->slots[level] + 1 >=
1504                     btrfs_header_nritems(path->nodes[level]))
1505                         continue;
1506                 if (level == 0)
1507                         btrfs_item_key_to_cpu(path->nodes[level], key,
1508                                               path->slots[level] + 1);
1509                 else
1510                         btrfs_node_key_to_cpu(path->nodes[level], key,
1511                                               path->slots[level] + 1);
1512                 return 0;
1513         }
1514         return 1;
1515 }
1516
1517 /*
1518  * look for inline back ref. if back ref is found, *ref_ret is set
1519  * to the address of inline back ref, and 0 is returned.
1520  *
1521  * if back ref isn't found, *ref_ret is set to the address where it
1522  * should be inserted, and -ENOENT is returned.
1523  *
1524  * if insert is true and there are too many inline back refs, the path
1525  * points to the extent item, and -EAGAIN is returned.
1526  *
1527  * NOTE: inline back refs are ordered in the same way that back ref
1528  *       items in the tree are ordered.
1529  */
1530 static noinline_for_stack
1531 int lookup_inline_extent_backref(struct btrfs_trans_handle *trans,
1532                                  struct btrfs_root *root,
1533                                  struct btrfs_path *path,
1534                                  struct btrfs_extent_inline_ref **ref_ret,
1535                                  u64 bytenr, u64 num_bytes,
1536                                  u64 parent, u64 root_objectid,
1537                                  u64 owner, u64 offset, int insert)
1538 {
1539         struct btrfs_key key;
1540         struct extent_buffer *leaf;
1541         struct btrfs_extent_item *ei;
1542         struct btrfs_extent_inline_ref *iref;
1543         u64 flags;
1544         u64 item_size;
1545         unsigned long ptr;
1546         unsigned long end;
1547         int extra_size;
1548         int type;
1549         int want;
1550         int ret;
1551         int err = 0;
1552         bool skinny_metadata = btrfs_fs_incompat(root->fs_info,
1553                                                  SKINNY_METADATA);
1554
1555         key.objectid = bytenr;
1556         key.type = BTRFS_EXTENT_ITEM_KEY;
1557         key.offset = num_bytes;
1558
1559         want = extent_ref_type(parent, owner);
1560         if (insert) {
1561                 extra_size = btrfs_extent_inline_ref_size(want);
1562                 path->keep_locks = 1;
1563         } else
1564                 extra_size = -1;
1565
1566         /*
1567          * Owner is our parent level, so we can just add one to get the level
1568          * for the block we are interested in.
1569          */
1570         if (skinny_metadata && owner < BTRFS_FIRST_FREE_OBJECTID) {
1571                 key.type = BTRFS_METADATA_ITEM_KEY;
1572                 key.offset = owner;
1573         }
1574
1575 again:
1576         ret = btrfs_search_slot(trans, root, &key, path, extra_size, 1);
1577         if (ret < 0) {
1578                 err = ret;
1579                 goto out;
1580         }
1581
1582         /*
1583          * We may be a newly converted file system which still has the old fat
1584          * extent entries for metadata, so try and see if we have one of those.
1585          */
1586         if (ret > 0 && skinny_metadata) {
1587                 skinny_metadata = false;
1588                 if (path->slots[0]) {
1589                         path->slots[0]--;
1590                         btrfs_item_key_to_cpu(path->nodes[0], &key,
1591                                               path->slots[0]);
1592                         if (key.objectid == bytenr &&
1593                             key.type == BTRFS_EXTENT_ITEM_KEY &&
1594                             key.offset == num_bytes)
1595                                 ret = 0;
1596                 }
1597                 if (ret) {
1598                         key.objectid = bytenr;
1599                         key.type = BTRFS_EXTENT_ITEM_KEY;
1600                         key.offset = num_bytes;
1601                         btrfs_release_path(path);
1602                         goto again;
1603                 }
1604         }
1605
1606         if (ret && !insert) {
1607                 err = -ENOENT;
1608                 goto out;
1609         } else if (WARN_ON(ret)) {
1610                 err = -EIO;
1611                 goto out;
1612         }
1613
1614         leaf = path->nodes[0];
1615         item_size = btrfs_item_size_nr(leaf, path->slots[0]);
1616 #ifdef BTRFS_COMPAT_EXTENT_TREE_V0
1617         if (item_size < sizeof(*ei)) {
1618                 if (!insert) {
1619                         err = -ENOENT;
1620                         goto out;
1621                 }
1622                 ret = convert_extent_item_v0(trans, root, path, owner,
1623                                              extra_size);
1624                 if (ret < 0) {
1625                         err = ret;
1626                         goto out;
1627                 }
1628                 leaf = path->nodes[0];
1629                 item_size = btrfs_item_size_nr(leaf, path->slots[0]);
1630         }
1631 #endif
1632         BUG_ON(item_size < sizeof(*ei));
1633
1634         ei = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_extent_item);
1635         flags = btrfs_extent_flags(leaf, ei);
1636
1637         ptr = (unsigned long)(ei + 1);
1638         end = (unsigned long)ei + item_size;
1639
1640         if (flags & BTRFS_EXTENT_FLAG_TREE_BLOCK && !skinny_metadata) {
1641                 ptr += sizeof(struct btrfs_tree_block_info);
1642                 BUG_ON(ptr > end);
1643         }
1644
1645         err = -ENOENT;
1646         while (1) {
1647                 if (ptr >= end) {
1648                         WARN_ON(ptr > end);
1649                         break;
1650                 }
1651                 iref = (struct btrfs_extent_inline_ref *)ptr;
1652                 type = btrfs_extent_inline_ref_type(leaf, iref);
1653                 if (want < type)
1654                         break;
1655                 if (want > type) {
1656                         ptr += btrfs_extent_inline_ref_size(type);
1657                         continue;
1658                 }
1659
1660                 if (type == BTRFS_EXTENT_DATA_REF_KEY) {
1661                         struct btrfs_extent_data_ref *dref;
1662                         dref = (struct btrfs_extent_data_ref *)(&iref->offset);
1663                         if (match_extent_data_ref(leaf, dref, root_objectid,
1664                                                   owner, offset)) {
1665                                 err = 0;
1666                                 break;
1667                         }
1668                         if (hash_extent_data_ref_item(leaf, dref) <
1669                             hash_extent_data_ref(root_objectid, owner, offset))
1670                                 break;
1671                 } else {
1672                         u64 ref_offset;
1673                         ref_offset = btrfs_extent_inline_ref_offset(leaf, iref);
1674                         if (parent > 0) {
1675                                 if (parent == ref_offset) {
1676                                         err = 0;
1677                                         break;
1678                                 }
1679                                 if (ref_offset < parent)
1680                                         break;
1681                         } else {
1682                                 if (root_objectid == ref_offset) {
1683                                         err = 0;
1684                                         break;
1685                                 }
1686                                 if (ref_offset < root_objectid)
1687                                         break;
1688                         }
1689                 }
1690                 ptr += btrfs_extent_inline_ref_size(type);
1691         }
1692         if (err == -ENOENT && insert) {
1693                 if (item_size + extra_size >=
1694                     BTRFS_MAX_EXTENT_ITEM_SIZE(root)) {
1695                         err = -EAGAIN;
1696                         goto out;
1697                 }
1698                 /*
1699                  * To add new inline back ref, we have to make sure
1700                  * there is no corresponding back ref item.
1701                  * For simplicity, we just do not add new inline back
1702                  * ref if there is any kind of item for this block
1703                  */
1704                 if (find_next_key(path, 0, &key) == 0 &&
1705                     key.objectid == bytenr &&
1706                     key.type < BTRFS_BLOCK_GROUP_ITEM_KEY) {
1707                         err = -EAGAIN;
1708                         goto out;
1709                 }
1710         }
1711         *ref_ret = (struct btrfs_extent_inline_ref *)ptr;
1712 out:
1713         if (insert) {
1714                 path->keep_locks = 0;
1715                 btrfs_unlock_up_safe(path, 1);
1716         }
1717         return err;
1718 }
1719
1720 /*
1721  * helper to add new inline back ref
1722  */
1723 static noinline_for_stack
1724 void setup_inline_extent_backref(struct btrfs_root *root,
1725                                  struct btrfs_path *path,
1726                                  struct btrfs_extent_inline_ref *iref,
1727                                  u64 parent, u64 root_objectid,
1728                                  u64 owner, u64 offset, int refs_to_add,
1729                                  struct btrfs_delayed_extent_op *extent_op)
1730 {
1731         struct extent_buffer *leaf;
1732         struct btrfs_extent_item *ei;
1733         unsigned long ptr;
1734         unsigned long end;
1735         unsigned long item_offset;
1736         u64 refs;
1737         int size;
1738         int type;
1739
1740         leaf = path->nodes[0];
1741         ei = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_extent_item);
1742         item_offset = (unsigned long)iref - (unsigned long)ei;
1743
1744         type = extent_ref_type(parent, owner);
1745         size = btrfs_extent_inline_ref_size(type);
1746
1747         btrfs_extend_item(root, path, size);
1748
1749         ei = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_extent_item);
1750         refs = btrfs_extent_refs(leaf, ei);
1751         refs += refs_to_add;
1752         btrfs_set_extent_refs(leaf, ei, refs);
1753         if (extent_op)
1754                 __run_delayed_extent_op(extent_op, leaf, ei);
1755
1756         ptr = (unsigned long)ei + item_offset;
1757         end = (unsigned long)ei + btrfs_item_size_nr(leaf, path->slots[0]);
1758         if (ptr < end - size)
1759                 memmove_extent_buffer(leaf, ptr + size, ptr,
1760                                       end - size - ptr);
1761
1762         iref = (struct btrfs_extent_inline_ref *)ptr;
1763         btrfs_set_extent_inline_ref_type(leaf, iref, type);
1764         if (type == BTRFS_EXTENT_DATA_REF_KEY) {
1765                 struct btrfs_extent_data_ref *dref;
1766                 dref = (struct btrfs_extent_data_ref *)(&iref->offset);
1767                 btrfs_set_extent_data_ref_root(leaf, dref, root_objectid);
1768                 btrfs_set_extent_data_ref_objectid(leaf, dref, owner);
1769                 btrfs_set_extent_data_ref_offset(leaf, dref, offset);
1770                 btrfs_set_extent_data_ref_count(leaf, dref, refs_to_add);
1771         } else if (type == BTRFS_SHARED_DATA_REF_KEY) {
1772                 struct btrfs_shared_data_ref *sref;
1773                 sref = (struct btrfs_shared_data_ref *)(iref + 1);
1774                 btrfs_set_shared_data_ref_count(leaf, sref, refs_to_add);
1775                 btrfs_set_extent_inline_ref_offset(leaf, iref, parent);
1776         } else if (type == BTRFS_SHARED_BLOCK_REF_KEY) {
1777                 btrfs_set_extent_inline_ref_offset(leaf, iref, parent);
1778         } else {
1779                 btrfs_set_extent_inline_ref_offset(leaf, iref, root_objectid);
1780         }
1781         btrfs_mark_buffer_dirty(leaf);
1782 }
1783
1784 static int lookup_extent_backref(struct btrfs_trans_handle *trans,
1785                                  struct btrfs_root *root,
1786                                  struct btrfs_path *path,
1787                                  struct btrfs_extent_inline_ref **ref_ret,
1788                                  u64 bytenr, u64 num_bytes, u64 parent,
1789                                  u64 root_objectid, u64 owner, u64 offset)
1790 {
1791         int ret;
1792
1793         ret = lookup_inline_extent_backref(trans, root, path, ref_ret,
1794                                            bytenr, num_bytes, parent,
1795                                            root_objectid, owner, offset, 0);
1796         if (ret != -ENOENT)
1797                 return ret;
1798
1799         btrfs_release_path(path);
1800         *ref_ret = NULL;
1801
1802         if (owner < BTRFS_FIRST_FREE_OBJECTID) {
1803                 ret = lookup_tree_block_ref(trans, root, path, bytenr, parent,
1804                                             root_objectid);
1805         } else {
1806                 ret = lookup_extent_data_ref(trans, root, path, bytenr, parent,
1807                                              root_objectid, owner, offset);
1808         }
1809         return ret;
1810 }
1811
1812 /*
1813  * helper to update/remove inline back ref
1814  */
1815 static noinline_for_stack
1816 void update_inline_extent_backref(struct btrfs_root *root,
1817                                   struct btrfs_path *path,
1818                                   struct btrfs_extent_inline_ref *iref,
1819                                   int refs_to_mod,
1820                                   struct btrfs_delayed_extent_op *extent_op,
1821                                   int *last_ref)
1822 {
1823         struct extent_buffer *leaf;
1824         struct btrfs_extent_item *ei;
1825         struct btrfs_extent_data_ref *dref = NULL;
1826         struct btrfs_shared_data_ref *sref = NULL;
1827         unsigned long ptr;
1828         unsigned long end;
1829         u32 item_size;
1830         int size;
1831         int type;
1832         u64 refs;
1833
1834         leaf = path->nodes[0];
1835         ei = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_extent_item);
1836         refs = btrfs_extent_refs(leaf, ei);
1837         WARN_ON(refs_to_mod < 0 && refs + refs_to_mod <= 0);
1838         refs += refs_to_mod;
1839         btrfs_set_extent_refs(leaf, ei, refs);
1840         if (extent_op)
1841                 __run_delayed_extent_op(extent_op, leaf, ei);
1842
1843         type = btrfs_extent_inline_ref_type(leaf, iref);
1844
1845         if (type == BTRFS_EXTENT_DATA_REF_KEY) {
1846                 dref = (struct btrfs_extent_data_ref *)(&iref->offset);
1847                 refs = btrfs_extent_data_ref_count(leaf, dref);
1848         } else if (type == BTRFS_SHARED_DATA_REF_KEY) {
1849                 sref = (struct btrfs_shared_data_ref *)(iref + 1);
1850                 refs = btrfs_shared_data_ref_count(leaf, sref);
1851         } else {
1852                 refs = 1;
1853                 BUG_ON(refs_to_mod != -1);
1854         }
1855
1856         BUG_ON(refs_to_mod < 0 && refs < -refs_to_mod);
1857         refs += refs_to_mod;
1858
1859         if (refs > 0) {
1860                 if (type == BTRFS_EXTENT_DATA_REF_KEY)
1861                         btrfs_set_extent_data_ref_count(leaf, dref, refs);
1862                 else
1863                         btrfs_set_shared_data_ref_count(leaf, sref, refs);
1864         } else {
1865                 *last_ref = 1;
1866                 size =  btrfs_extent_inline_ref_size(type);
1867                 item_size = btrfs_item_size_nr(leaf, path->slots[0]);
1868                 ptr = (unsigned long)iref;
1869                 end = (unsigned long)ei + item_size;
1870                 if (ptr + size < end)
1871                         memmove_extent_buffer(leaf, ptr, ptr + size,
1872                                               end - ptr - size);
1873                 item_size -= size;
1874                 btrfs_truncate_item(root, path, item_size, 1);
1875         }
1876         btrfs_mark_buffer_dirty(leaf);
1877 }
1878
1879 static noinline_for_stack
1880 int insert_inline_extent_backref(struct btrfs_trans_handle *trans,
1881                                  struct btrfs_root *root,
1882                                  struct btrfs_path *path,
1883                                  u64 bytenr, u64 num_bytes, u64 parent,
1884                                  u64 root_objectid, u64 owner,
1885                                  u64 offset, int refs_to_add,
1886                                  struct btrfs_delayed_extent_op *extent_op)
1887 {
1888         struct btrfs_extent_inline_ref *iref;
1889         int ret;
1890
1891         ret = lookup_inline_extent_backref(trans, root, path, &iref,
1892                                            bytenr, num_bytes, parent,
1893                                            root_objectid, owner, offset, 1);
1894         if (ret == 0) {
1895                 BUG_ON(owner < BTRFS_FIRST_FREE_OBJECTID);
1896                 update_inline_extent_backref(root, path, iref,
1897                                              refs_to_add, extent_op, NULL);
1898         } else if (ret == -ENOENT) {
1899                 setup_inline_extent_backref(root, path, iref, parent,
1900                                             root_objectid, owner, offset,
1901                                             refs_to_add, extent_op);
1902                 ret = 0;
1903         }
1904         return ret;
1905 }
1906
1907 static int insert_extent_backref(struct btrfs_trans_handle *trans,
1908                                  struct btrfs_root *root,
1909                                  struct btrfs_path *path,
1910                                  u64 bytenr, u64 parent, u64 root_objectid,
1911                                  u64 owner, u64 offset, int refs_to_add)
1912 {
1913         int ret;
1914         if (owner < BTRFS_FIRST_FREE_OBJECTID) {
1915                 BUG_ON(refs_to_add != 1);
1916                 ret = insert_tree_block_ref(trans, root, path, bytenr,
1917                                             parent, root_objectid);
1918         } else {
1919                 ret = insert_extent_data_ref(trans, root, path, bytenr,
1920                                              parent, root_objectid,
1921                                              owner, offset, refs_to_add);
1922         }
1923         return ret;
1924 }
1925
1926 static int remove_extent_backref(struct btrfs_trans_handle *trans,
1927                                  struct btrfs_root *root,
1928                                  struct btrfs_path *path,
1929                                  struct btrfs_extent_inline_ref *iref,
1930                                  int refs_to_drop, int is_data, int *last_ref)
1931 {
1932         int ret = 0;
1933
1934         BUG_ON(!is_data && refs_to_drop != 1);
1935         if (iref) {
1936                 update_inline_extent_backref(root, path, iref,
1937                                              -refs_to_drop, NULL, last_ref);
1938         } else if (is_data) {
1939                 ret = remove_extent_data_ref(trans, root, path, refs_to_drop,
1940                                              last_ref);
1941         } else {
1942                 *last_ref = 1;
1943                 ret = btrfs_del_item(trans, root, path);
1944         }
1945         return ret;
1946 }
1947
1948 #define in_range(b, first, len)        ((b) >= (first) && (b) < (first) + (len))
1949 static int btrfs_issue_discard(struct block_device *bdev, u64 start, u64 len,
1950                                u64 *discarded_bytes)
1951 {
1952         int j, ret = 0;
1953         u64 bytes_left, end;
1954         u64 aligned_start = ALIGN(start, 1 << 9);
1955
1956         if (WARN_ON(start != aligned_start)) {
1957                 len -= aligned_start - start;
1958                 len = round_down(len, 1 << 9);
1959                 start = aligned_start;
1960         }
1961
1962         *discarded_bytes = 0;
1963
1964         if (!len)
1965                 return 0;
1966
1967         end = start + len;
1968         bytes_left = len;
1969
1970         /* Skip any superblocks on this device. */
1971         for (j = 0; j < BTRFS_SUPER_MIRROR_MAX; j++) {
1972                 u64 sb_start = btrfs_sb_offset(j);
1973                 u64 sb_end = sb_start + BTRFS_SUPER_INFO_SIZE;
1974                 u64 size = sb_start - start;
1975
1976                 if (!in_range(sb_start, start, bytes_left) &&
1977                     !in_range(sb_end, start, bytes_left) &&
1978                     !in_range(start, sb_start, BTRFS_SUPER_INFO_SIZE))
1979                         continue;
1980
1981                 /*
1982                  * Superblock spans beginning of range.  Adjust start and
1983                  * try again.
1984                  */
1985                 if (sb_start <= start) {
1986                         start += sb_end - start;
1987                         if (start > end) {
1988                                 bytes_left = 0;
1989                                 break;
1990                         }
1991                         bytes_left = end - start;
1992                         continue;
1993                 }
1994
1995                 if (size) {
1996                         ret = blkdev_issue_discard(bdev, start >> 9, size >> 9,
1997                                                    GFP_NOFS, 0);
1998                         if (!ret)
1999                                 *discarded_bytes += size;
2000                         else if (ret != -EOPNOTSUPP)
2001                                 return ret;
2002                 }
2003
2004                 start = sb_end;
2005                 if (start > end) {
2006                         bytes_left = 0;
2007                         break;
2008                 }
2009                 bytes_left = end - start;
2010         }
2011
2012         if (bytes_left) {
2013                 ret = blkdev_issue_discard(bdev, start >> 9, bytes_left >> 9,
2014                                            GFP_NOFS, 0);
2015                 if (!ret)
2016                         *discarded_bytes += bytes_left;
2017         }
2018         return ret;
2019 }
2020
2021 int btrfs_discard_extent(struct btrfs_root *root, u64 bytenr,
2022                          u64 num_bytes, u64 *actual_bytes)
2023 {
2024         int ret;
2025         u64 discarded_bytes = 0;
2026         struct btrfs_bio *bbio = NULL;
2027
2028
2029         /* Tell the block device(s) that the sectors can be discarded */
2030         ret = btrfs_map_block(root->fs_info, REQ_DISCARD,
2031                               bytenr, &num_bytes, &bbio, 0);
2032         /* Error condition is -ENOMEM */
2033         if (!ret) {
2034                 struct btrfs_bio_stripe *stripe = bbio->stripes;
2035                 int i;
2036
2037
2038                 for (i = 0; i < bbio->num_stripes; i++, stripe++) {
2039                         u64 bytes;
2040                         if (!stripe->dev->can_discard)
2041                                 continue;
2042
2043                         ret = btrfs_issue_discard(stripe->dev->bdev,
2044                                                   stripe->physical,
2045                                                   stripe->length,
2046                                                   &bytes);
2047                         if (!ret)
2048                                 discarded_bytes += bytes;
2049                         else if (ret != -EOPNOTSUPP)
2050                                 break; /* Logic errors or -ENOMEM, or -EIO but I don't know how that could happen JDM */
2051
2052                         /*
2053                          * Just in case we get back EOPNOTSUPP for some reason,
2054                          * just ignore the return value so we don't screw up
2055                          * people calling discard_extent.
2056                          */
2057                         ret = 0;
2058                 }
2059                 btrfs_put_bbio(bbio);
2060         }
2061
2062         if (actual_bytes)
2063                 *actual_bytes = discarded_bytes;
2064
2065
2066         if (ret == -EOPNOTSUPP)
2067                 ret = 0;
2068         return ret;
2069 }
2070
2071 /* Can return -ENOMEM */
2072 int btrfs_inc_extent_ref(struct btrfs_trans_handle *trans,
2073                          struct btrfs_root *root,
2074                          u64 bytenr, u64 num_bytes, u64 parent,
2075                          u64 root_objectid, u64 owner, u64 offset)
2076 {
2077         int ret;
2078         struct btrfs_fs_info *fs_info = root->fs_info;
2079
2080         BUG_ON(owner < BTRFS_FIRST_FREE_OBJECTID &&
2081                root_objectid == BTRFS_TREE_LOG_OBJECTID);
2082
2083         if (owner < BTRFS_FIRST_FREE_OBJECTID) {
2084                 ret = btrfs_add_delayed_tree_ref(fs_info, trans, bytenr,
2085                                         num_bytes,
2086                                         parent, root_objectid, (int)owner,
2087                                         BTRFS_ADD_DELAYED_REF, NULL);
2088         } else {
2089                 ret = btrfs_add_delayed_data_ref(fs_info, trans, bytenr,
2090                                         num_bytes, parent, root_objectid,
2091                                         owner, offset, 0,
2092                                         BTRFS_ADD_DELAYED_REF, NULL);
2093         }
2094         return ret;
2095 }
2096
2097 static int __btrfs_inc_extent_ref(struct btrfs_trans_handle *trans,
2098                                   struct btrfs_root *root,
2099                                   struct btrfs_delayed_ref_node *node,
2100                                   u64 parent, u64 root_objectid,
2101                                   u64 owner, u64 offset, int refs_to_add,
2102                                   struct btrfs_delayed_extent_op *extent_op)
2103 {
2104         struct btrfs_fs_info *fs_info = root->fs_info;
2105         struct btrfs_path *path;
2106         struct extent_buffer *leaf;
2107         struct btrfs_extent_item *item;
2108         struct btrfs_key key;
2109         u64 bytenr = node->bytenr;
2110         u64 num_bytes = node->num_bytes;
2111         u64 refs;
2112         int ret;
2113
2114         path = btrfs_alloc_path();
2115         if (!path)
2116                 return -ENOMEM;
2117
2118         path->reada = 1;
2119         path->leave_spinning = 1;
2120         /* this will setup the path even if it fails to insert the back ref */
2121         ret = insert_inline_extent_backref(trans, fs_info->extent_root, path,
2122                                            bytenr, num_bytes, parent,
2123                                            root_objectid, owner, offset,
2124                                            refs_to_add, extent_op);
2125         if ((ret < 0 && ret != -EAGAIN) || !ret)
2126                 goto out;
2127
2128         /*
2129          * Ok we had -EAGAIN which means we didn't have space to insert and
2130          * inline extent ref, so just update the reference count and add a
2131          * normal backref.
2132          */
2133         leaf = path->nodes[0];
2134         btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
2135         item = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_extent_item);
2136         refs = btrfs_extent_refs(leaf, item);
2137         btrfs_set_extent_refs(leaf, item, refs + refs_to_add);
2138         if (extent_op)
2139                 __run_delayed_extent_op(extent_op, leaf, item);
2140
2141         btrfs_mark_buffer_dirty(leaf);
2142         btrfs_release_path(path);
2143
2144         path->reada = 1;
2145         path->leave_spinning = 1;
2146         /* now insert the actual backref */
2147         ret = insert_extent_backref(trans, root->fs_info->extent_root,
2148                                     path, bytenr, parent, root_objectid,
2149                                     owner, offset, refs_to_add);
2150         if (ret)
2151                 btrfs_abort_transaction(trans, root, ret);
2152 out:
2153         btrfs_free_path(path);
2154         return ret;
2155 }
2156
2157 static int run_delayed_data_ref(struct btrfs_trans_handle *trans,
2158                                 struct btrfs_root *root,
2159                                 struct btrfs_delayed_ref_node *node,
2160                                 struct btrfs_delayed_extent_op *extent_op,
2161                                 int insert_reserved)
2162 {
2163         int ret = 0;
2164         struct btrfs_delayed_data_ref *ref;
2165         struct btrfs_key ins;
2166         u64 parent = 0;
2167         u64 ref_root = 0;
2168         u64 flags = 0;
2169
2170         ins.objectid = node->bytenr;
2171         ins.offset = node->num_bytes;
2172         ins.type = BTRFS_EXTENT_ITEM_KEY;
2173
2174         ref = btrfs_delayed_node_to_data_ref(node);
2175         trace_run_delayed_data_ref(node, ref, node->action);
2176
2177         if (node->type == BTRFS_SHARED_DATA_REF_KEY)
2178                 parent = ref->parent;
2179         ref_root = ref->root;
2180
2181         if (node->action == BTRFS_ADD_DELAYED_REF && insert_reserved) {
2182                 if (extent_op)
2183                         flags |= extent_op->flags_to_set;
2184                 ret = alloc_reserved_file_extent(trans, root,
2185                                                  parent, ref_root, flags,
2186                                                  ref->objectid, ref->offset,
2187                                                  &ins, node->ref_mod);
2188         } else if (node->action == BTRFS_ADD_DELAYED_REF) {
2189                 ret = __btrfs_inc_extent_ref(trans, root, node, parent,
2190                                              ref_root, ref->objectid,
2191                                              ref->offset, node->ref_mod,
2192                                              extent_op);
2193         } else if (node->action == BTRFS_DROP_DELAYED_REF) {
2194                 ret = __btrfs_free_extent(trans, root, node, parent,
2195                                           ref_root, ref->objectid,
2196                                           ref->offset, node->ref_mod,
2197                                           extent_op);
2198         } else {
2199                 BUG();
2200         }
2201         return ret;
2202 }
2203
2204 static void __run_delayed_extent_op(struct btrfs_delayed_extent_op *extent_op,
2205                                     struct extent_buffer *leaf,
2206                                     struct btrfs_extent_item *ei)
2207 {
2208         u64 flags = btrfs_extent_flags(leaf, ei);
2209         if (extent_op->update_flags) {
2210                 flags |= extent_op->flags_to_set;
2211                 btrfs_set_extent_flags(leaf, ei, flags);
2212         }
2213
2214         if (extent_op->update_key) {
2215                 struct btrfs_tree_block_info *bi;
2216                 BUG_ON(!(flags & BTRFS_EXTENT_FLAG_TREE_BLOCK));
2217                 bi = (struct btrfs_tree_block_info *)(ei + 1);
2218                 btrfs_set_tree_block_key(leaf, bi, &extent_op->key);
2219         }
2220 }
2221
2222 static int run_delayed_extent_op(struct btrfs_trans_handle *trans,
2223                                  struct btrfs_root *root,
2224                                  struct btrfs_delayed_ref_node *node,
2225                                  struct btrfs_delayed_extent_op *extent_op)
2226 {
2227         struct btrfs_key key;
2228         struct btrfs_path *path;
2229         struct btrfs_extent_item *ei;
2230         struct extent_buffer *leaf;
2231         u32 item_size;
2232         int ret;
2233         int err = 0;
2234         int metadata = !extent_op->is_data;
2235
2236         if (trans->aborted)
2237                 return 0;
2238
2239         if (metadata && !btrfs_fs_incompat(root->fs_info, SKINNY_METADATA))
2240                 metadata = 0;
2241
2242         path = btrfs_alloc_path();
2243         if (!path)
2244                 return -ENOMEM;
2245
2246         key.objectid = node->bytenr;
2247
2248         if (metadata) {
2249                 key.type = BTRFS_METADATA_ITEM_KEY;
2250                 key.offset = extent_op->level;
2251         } else {
2252                 key.type = BTRFS_EXTENT_ITEM_KEY;
2253                 key.offset = node->num_bytes;
2254         }
2255
2256 again:
2257         path->reada = 1;
2258         path->leave_spinning = 1;
2259         ret = btrfs_search_slot(trans, root->fs_info->extent_root, &key,
2260                                 path, 0, 1);
2261         if (ret < 0) {
2262                 err = ret;
2263                 goto out;
2264         }
2265         if (ret > 0) {
2266                 if (metadata) {
2267                         if (path->slots[0] > 0) {
2268                                 path->slots[0]--;
2269                                 btrfs_item_key_to_cpu(path->nodes[0], &key,
2270                                                       path->slots[0]);
2271                                 if (key.objectid == node->bytenr &&
2272                                     key.type == BTRFS_EXTENT_ITEM_KEY &&
2273                                     key.offset == node->num_bytes)
2274                                         ret = 0;
2275                         }
2276                         if (ret > 0) {
2277                                 btrfs_release_path(path);
2278                                 metadata = 0;
2279
2280                                 key.objectid = node->bytenr;
2281                                 key.offset = node->num_bytes;
2282                                 key.type = BTRFS_EXTENT_ITEM_KEY;
2283                                 goto again;
2284                         }
2285                 } else {
2286                         err = -EIO;
2287                         goto out;
2288                 }
2289         }
2290
2291         leaf = path->nodes[0];
2292         item_size = btrfs_item_size_nr(leaf, path->slots[0]);
2293 #ifdef BTRFS_COMPAT_EXTENT_TREE_V0
2294         if (item_size < sizeof(*ei)) {
2295                 ret = convert_extent_item_v0(trans, root->fs_info->extent_root,
2296                                              path, (u64)-1, 0);
2297                 if (ret < 0) {
2298                         err = ret;
2299                         goto out;
2300                 }
2301                 leaf = path->nodes[0];
2302                 item_size = btrfs_item_size_nr(leaf, path->slots[0]);
2303         }
2304 #endif
2305         BUG_ON(item_size < sizeof(*ei));
2306         ei = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_extent_item);
2307         __run_delayed_extent_op(extent_op, leaf, ei);
2308
2309         btrfs_mark_buffer_dirty(leaf);
2310 out:
2311         btrfs_free_path(path);
2312         return err;
2313 }
2314
2315 static int run_delayed_tree_ref(struct btrfs_trans_handle *trans,
2316                                 struct btrfs_root *root,
2317                                 struct btrfs_delayed_ref_node *node,
2318                                 struct btrfs_delayed_extent_op *extent_op,
2319                                 int insert_reserved)
2320 {
2321         int ret = 0;
2322         struct btrfs_delayed_tree_ref *ref;
2323         struct btrfs_key ins;
2324         u64 parent = 0;
2325         u64 ref_root = 0;
2326         bool skinny_metadata = btrfs_fs_incompat(root->fs_info,
2327                                                  SKINNY_METADATA);
2328
2329         ref = btrfs_delayed_node_to_tree_ref(node);
2330         trace_run_delayed_tree_ref(node, ref, node->action);
2331
2332         if (node->type == BTRFS_SHARED_BLOCK_REF_KEY)
2333                 parent = ref->parent;
2334         ref_root = ref->root;
2335
2336         ins.objectid = node->bytenr;
2337         if (skinny_metadata) {
2338                 ins.offset = ref->level;
2339                 ins.type = BTRFS_METADATA_ITEM_KEY;
2340         } else {
2341                 ins.offset = node->num_bytes;
2342                 ins.type = BTRFS_EXTENT_ITEM_KEY;
2343         }
2344
2345         if (node->ref_mod != 1) {
2346                 btrfs_err(root->fs_info,
2347         "btree block(%llu) has %d references rather than 1: action %d ref_root %llu parent %llu",
2348                           node->bytenr, node->ref_mod, node->action, ref_root,
2349                           parent);
2350                 return -EIO;
2351         }
2352         if (node->action == BTRFS_ADD_DELAYED_REF && insert_reserved) {
2353                 BUG_ON(!extent_op || !extent_op->update_flags);
2354                 ret = alloc_reserved_tree_block(trans, root,
2355                                                 parent, ref_root,
2356                                                 extent_op->flags_to_set,
2357                                                 &extent_op->key,
2358                                                 ref->level, &ins);
2359         } else if (node->action == BTRFS_ADD_DELAYED_REF) {
2360                 ret = __btrfs_inc_extent_ref(trans, root, node,
2361                                              parent, ref_root,
2362                                              ref->level, 0, 1,
2363                                              extent_op);
2364         } else if (node->action == BTRFS_DROP_DELAYED_REF) {
2365                 ret = __btrfs_free_extent(trans, root, node,
2366                                           parent, ref_root,
2367                                           ref->level, 0, 1, extent_op);
2368         } else {
2369                 BUG();
2370         }
2371         return ret;
2372 }
2373
2374 /* helper function to actually process a single delayed ref entry */
2375 static int run_one_delayed_ref(struct btrfs_trans_handle *trans,
2376                                struct btrfs_root *root,
2377                                struct btrfs_delayed_ref_node *node,
2378                                struct btrfs_delayed_extent_op *extent_op,
2379                                int insert_reserved)
2380 {
2381         int ret = 0;
2382
2383         if (trans->aborted) {
2384                 if (insert_reserved)
2385                         btrfs_pin_extent(root, node->bytenr,
2386                                          node->num_bytes, 1);
2387                 return 0;
2388         }
2389
2390         if (btrfs_delayed_ref_is_head(node)) {
2391                 struct btrfs_delayed_ref_head *head;
2392                 /*
2393                  * we've hit the end of the chain and we were supposed
2394                  * to insert this extent into the tree.  But, it got
2395                  * deleted before we ever needed to insert it, so all
2396                  * we have to do is clean up the accounting
2397                  */
2398                 BUG_ON(extent_op);
2399                 head = btrfs_delayed_node_to_head(node);
2400                 trace_run_delayed_ref_head(node, head, node->action);
2401
2402                 if (insert_reserved) {
2403                         btrfs_pin_extent(root, node->bytenr,
2404                                          node->num_bytes, 1);
2405                         if (head->is_data) {
2406                                 ret = btrfs_del_csums(trans, root,
2407                                                       node->bytenr,
2408                                                       node->num_bytes);
2409                         }
2410                 }
2411
2412                 /* Also free its reserved qgroup space */
2413                 btrfs_qgroup_free_delayed_ref(root->fs_info,
2414                                               head->qgroup_ref_root,
2415                                               head->qgroup_reserved);
2416                 return ret;
2417         }
2418
2419         if (node->type == BTRFS_TREE_BLOCK_REF_KEY ||
2420             node->type == BTRFS_SHARED_BLOCK_REF_KEY)
2421                 ret = run_delayed_tree_ref(trans, root, node, extent_op,
2422                                            insert_reserved);
2423         else if (node->type == BTRFS_EXTENT_DATA_REF_KEY ||
2424                  node->type == BTRFS_SHARED_DATA_REF_KEY)
2425                 ret = run_delayed_data_ref(trans, root, node, extent_op,
2426                                            insert_reserved);
2427         else
2428                 BUG();
2429         return ret;
2430 }
2431
2432 static inline struct btrfs_delayed_ref_node *
2433 select_delayed_ref(struct btrfs_delayed_ref_head *head)
2434 {
2435         struct btrfs_delayed_ref_node *ref;
2436
2437         if (list_empty(&head->ref_list))
2438                 return NULL;
2439
2440         /*
2441          * Select a delayed ref of type BTRFS_ADD_DELAYED_REF first.
2442          * This is to prevent a ref count from going down to zero, which deletes
2443          * the extent item from the extent tree, when there still are references
2444          * to add, which would fail because they would not find the extent item.
2445          */
2446         list_for_each_entry(ref, &head->ref_list, list) {
2447                 if (ref->action == BTRFS_ADD_DELAYED_REF)
2448                         return ref;
2449         }
2450
2451         return list_entry(head->ref_list.next, struct btrfs_delayed_ref_node,
2452                           list);
2453 }
2454
2455 /*
2456  * Returns 0 on success or if called with an already aborted transaction.
2457  * Returns -ENOMEM or -EIO on failure and will abort the transaction.
2458  */
2459 static noinline int __btrfs_run_delayed_refs(struct btrfs_trans_handle *trans,
2460                                              struct btrfs_root *root,
2461                                              unsigned long nr)
2462 {
2463         struct btrfs_delayed_ref_root *delayed_refs;
2464         struct btrfs_delayed_ref_node *ref;
2465         struct btrfs_delayed_ref_head *locked_ref = NULL;
2466         struct btrfs_delayed_extent_op *extent_op;
2467         struct btrfs_fs_info *fs_info = root->fs_info;
2468         ktime_t start = ktime_get();
2469         int ret;
2470         unsigned long count = 0;
2471         unsigned long actual_count = 0;
2472         int must_insert_reserved = 0;
2473
2474         delayed_refs = &trans->transaction->delayed_refs;
2475         while (1) {
2476                 if (!locked_ref) {
2477                         if (count >= nr)
2478                                 break;
2479
2480                         spin_lock(&delayed_refs->lock);
2481                         locked_ref = btrfs_select_ref_head(trans);
2482                         if (!locked_ref) {
2483                                 spin_unlock(&delayed_refs->lock);
2484                                 break;
2485                         }
2486
2487                         /* grab the lock that says we are going to process
2488                          * all the refs for this head */
2489                         ret = btrfs_delayed_ref_lock(trans, locked_ref);
2490                         spin_unlock(&delayed_refs->lock);
2491                         /*
2492                          * we may have dropped the spin lock to get the head
2493                          * mutex lock, and that might have given someone else
2494                          * time to free the head.  If that's true, it has been
2495                          * removed from our list and we can move on.
2496                          */
2497                         if (ret == -EAGAIN) {
2498                                 locked_ref = NULL;
2499                                 count++;
2500                                 continue;
2501                         }
2502                 }
2503
2504                 /*
2505                  * We need to try and merge add/drops of the same ref since we
2506                  * can run into issues with relocate dropping the implicit ref
2507                  * and then it being added back again before the drop can
2508                  * finish.  If we merged anything we need to re-loop so we can
2509                  * get a good ref.
2510                  * Or we can get node references of the same type that weren't
2511                  * merged when created due to bumps in the tree mod seq, and
2512                  * we need to merge them to prevent adding an inline extent
2513                  * backref before dropping it (triggering a BUG_ON at
2514                  * insert_inline_extent_backref()).
2515                  */
2516                 spin_lock(&locked_ref->lock);
2517                 btrfs_merge_delayed_refs(trans, fs_info, delayed_refs,
2518                                          locked_ref);
2519
2520                 /*
2521                  * locked_ref is the head node, so we have to go one
2522                  * node back for any delayed ref updates
2523                  */
2524                 ref = select_delayed_ref(locked_ref);
2525
2526                 if (ref && ref->seq &&
2527                     btrfs_check_delayed_seq(fs_info, delayed_refs, ref->seq)) {
2528                         spin_unlock(&locked_ref->lock);
2529                         spin_lock(&delayed_refs->lock);
2530                         locked_ref->processing = 0;
2531                         delayed_refs->num_heads_ready++;
2532                         spin_unlock(&delayed_refs->lock);
2533                         btrfs_delayed_ref_unlock(locked_ref);
2534                         locked_ref = NULL;
2535                         cond_resched();
2536                         count++;
2537                         continue;
2538                 }
2539
2540                 /*
2541                  * record the must insert reserved flag before we
2542                  * drop the spin lock.
2543                  */
2544                 must_insert_reserved = locked_ref->must_insert_reserved;
2545                 locked_ref->must_insert_reserved = 0;
2546
2547                 extent_op = locked_ref->extent_op;
2548                 locked_ref->extent_op = NULL;
2549
2550                 if (!ref) {
2551
2552
2553                         /* All delayed refs have been processed, Go ahead
2554                          * and send the head node to run_one_delayed_ref,
2555                          * so that any accounting fixes can happen
2556                          */
2557                         ref = &locked_ref->node;
2558
2559                         if (extent_op && must_insert_reserved) {
2560                                 btrfs_free_delayed_extent_op(extent_op);
2561                                 extent_op = NULL;
2562                         }
2563
2564                         if (extent_op) {
2565                                 spin_unlock(&locked_ref->lock);
2566                                 ret = run_delayed_extent_op(trans, root,
2567                                                             ref, extent_op);
2568                                 btrfs_free_delayed_extent_op(extent_op);
2569
2570                                 if (ret) {
2571                                         /*
2572                                          * Need to reset must_insert_reserved if
2573                                          * there was an error so the abort stuff
2574                                          * can cleanup the reserved space
2575                                          * properly.
2576                                          */
2577                                         if (must_insert_reserved)
2578                                                 locked_ref->must_insert_reserved = 1;
2579                                         spin_lock(&delayed_refs->lock);
2580                                         locked_ref->processing = 0;
2581                                         delayed_refs->num_heads_ready++;
2582                                         spin_unlock(&delayed_refs->lock);
2583                                         btrfs_debug(fs_info, "run_delayed_extent_op returned %d", ret);
2584                                         btrfs_delayed_ref_unlock(locked_ref);
2585                                         return ret;
2586                                 }
2587                                 continue;
2588                         }
2589
2590                         /*
2591                          * Need to drop our head ref lock and re-aqcuire the
2592                          * delayed ref lock and then re-check to make sure
2593                          * nobody got added.
2594                          */
2595                         spin_unlock(&locked_ref->lock);
2596                         spin_lock(&delayed_refs->lock);
2597                         spin_lock(&locked_ref->lock);
2598                         if (!list_empty(&locked_ref->ref_list) ||
2599                             locked_ref->extent_op) {
2600                                 spin_unlock(&locked_ref->lock);
2601                                 spin_unlock(&delayed_refs->lock);
2602                                 continue;
2603                         }
2604                         ref->in_tree = 0;
2605                         delayed_refs->num_heads--;
2606                         rb_erase(&locked_ref->href_node,
2607                                  &delayed_refs->href_root);
2608                         spin_unlock(&delayed_refs->lock);
2609                 } else {
2610                         actual_count++;
2611                         ref->in_tree = 0;
2612                         list_del(&ref->list);
2613                 }
2614                 atomic_dec(&delayed_refs->num_entries);
2615
2616                 if (!btrfs_delayed_ref_is_head(ref)) {
2617                         /*
2618                          * when we play the delayed ref, also correct the
2619                          * ref_mod on head
2620                          */
2621                         switch (ref->action) {
2622                         case BTRFS_ADD_DELAYED_REF:
2623                         case BTRFS_ADD_DELAYED_EXTENT:
2624                                 locked_ref->node.ref_mod -= ref->ref_mod;
2625                                 break;
2626                         case BTRFS_DROP_DELAYED_REF:
2627                                 locked_ref->node.ref_mod += ref->ref_mod;
2628                                 break;
2629                         default:
2630                                 WARN_ON(1);
2631                         }
2632                 }
2633                 spin_unlock(&locked_ref->lock);
2634
2635                 ret = run_one_delayed_ref(trans, root, ref, extent_op,
2636                                           must_insert_reserved);
2637
2638                 btrfs_free_delayed_extent_op(extent_op);
2639                 if (ret) {
2640                         locked_ref->processing = 0;
2641                         btrfs_delayed_ref_unlock(locked_ref);
2642                         btrfs_put_delayed_ref(ref);
2643                         btrfs_debug(fs_info, "run_one_delayed_ref returned %d", ret);
2644                         return ret;
2645                 }
2646
2647                 /*
2648                  * If this node is a head, that means all the refs in this head
2649                  * have been dealt with, and we will pick the next head to deal
2650                  * with, so we must unlock the head and drop it from the cluster
2651                  * list before we release it.
2652                  */
2653                 if (btrfs_delayed_ref_is_head(ref)) {
2654                         if (locked_ref->is_data &&
2655                             locked_ref->total_ref_mod < 0) {
2656                                 spin_lock(&delayed_refs->lock);
2657                                 delayed_refs->pending_csums -= ref->num_bytes;
2658                                 spin_unlock(&delayed_refs->lock);
2659                         }
2660                         btrfs_delayed_ref_unlock(locked_ref);
2661                         locked_ref = NULL;
2662                 }
2663                 btrfs_put_delayed_ref(ref);
2664                 count++;
2665                 cond_resched();
2666         }
2667
2668         /*
2669          * We don't want to include ref heads since we can have empty ref heads
2670          * and those will drastically skew our runtime down since we just do
2671          * accounting, no actual extent tree updates.
2672          */
2673         if (actual_count > 0) {
2674                 u64 runtime = ktime_to_ns(ktime_sub(ktime_get(), start));
2675                 u64 avg;
2676
2677                 /*
2678                  * We weigh the current average higher than our current runtime
2679                  * to avoid large swings in the average.
2680                  */
2681                 spin_lock(&delayed_refs->lock);
2682                 avg = fs_info->avg_delayed_ref_runtime * 3 + runtime;
2683                 fs_info->avg_delayed_ref_runtime = avg >> 2;    /* div by 4 */
2684                 spin_unlock(&delayed_refs->lock);
2685         }
2686         return 0;
2687 }
2688
2689 #ifdef SCRAMBLE_DELAYED_REFS
2690 /*
2691  * Normally delayed refs get processed in ascending bytenr order. This
2692  * correlates in most cases to the order added. To expose dependencies on this
2693  * order, we start to process the tree in the middle instead of the beginning
2694  */
2695 static u64 find_middle(struct rb_root *root)
2696 {
2697         struct rb_node *n = root->rb_node;
2698         struct btrfs_delayed_ref_node *entry;
2699         int alt = 1;
2700         u64 middle;
2701         u64 first = 0, last = 0;
2702
2703         n = rb_first(root);
2704         if (n) {
2705                 entry = rb_entry(n, struct btrfs_delayed_ref_node, rb_node);
2706                 first = entry->bytenr;
2707         }
2708         n = rb_last(root);
2709         if (n) {
2710                 entry = rb_entry(n, struct btrfs_delayed_ref_node, rb_node);
2711                 last = entry->bytenr;
2712         }
2713         n = root->rb_node;
2714
2715         while (n) {
2716                 entry = rb_entry(n, struct btrfs_delayed_ref_node, rb_node);
2717                 WARN_ON(!entry->in_tree);
2718
2719                 middle = entry->bytenr;
2720
2721                 if (alt)
2722                         n = n->rb_left;
2723                 else
2724                         n = n->rb_right;
2725
2726                 alt = 1 - alt;
2727         }
2728         return middle;
2729 }
2730 #endif
2731
2732 static inline u64 heads_to_leaves(struct btrfs_root *root, u64 heads)
2733 {
2734         u64 num_bytes;
2735
2736         num_bytes = heads * (sizeof(struct btrfs_extent_item) +
2737                              sizeof(struct btrfs_extent_inline_ref));
2738         if (!btrfs_fs_incompat(root->fs_info, SKINNY_METADATA))
2739                 num_bytes += heads * sizeof(struct btrfs_tree_block_info);
2740
2741         /*
2742          * We don't ever fill up leaves all the way so multiply by 2 just to be
2743          * closer to what we're really going to want to ouse.
2744          */
2745         return div_u64(num_bytes, BTRFS_LEAF_DATA_SIZE(root));
2746 }
2747
2748 /*
2749  * Takes the number of bytes to be csumm'ed and figures out how many leaves it
2750  * would require to store the csums for that many bytes.
2751  */
2752 u64 btrfs_csum_bytes_to_leaves(struct btrfs_root *root, u64 csum_bytes)
2753 {
2754         u64 csum_size;
2755         u64 num_csums_per_leaf;
2756         u64 num_csums;
2757
2758         csum_size = BTRFS_LEAF_DATA_SIZE(root) - sizeof(struct btrfs_item);
2759         num_csums_per_leaf = div64_u64(csum_size,
2760                         (u64)btrfs_super_csum_size(root->fs_info->super_copy));
2761         num_csums = div64_u64(csum_bytes, root->sectorsize);
2762         num_csums += num_csums_per_leaf - 1;
2763         num_csums = div64_u64(num_csums, num_csums_per_leaf);
2764         return num_csums;
2765 }
2766
2767 int btrfs_check_space_for_delayed_refs(struct btrfs_trans_handle *trans,
2768                                        struct btrfs_root *root)
2769 {
2770         struct btrfs_block_rsv *global_rsv;
2771         u64 num_heads = trans->transaction->delayed_refs.num_heads_ready;
2772         u64 csum_bytes = trans->transaction->delayed_refs.pending_csums;
2773         u64 num_dirty_bgs = trans->transaction->num_dirty_bgs;
2774         u64 num_bytes, num_dirty_bgs_bytes;
2775         int ret = 0;
2776
2777         num_bytes = btrfs_calc_trans_metadata_size(root, 1);
2778         num_heads = heads_to_leaves(root, num_heads);
2779         if (num_heads > 1)
2780                 num_bytes += (num_heads - 1) * root->nodesize;
2781         num_bytes <<= 1;
2782         num_bytes += btrfs_csum_bytes_to_leaves(root, csum_bytes) * root->nodesize;
2783         num_dirty_bgs_bytes = btrfs_calc_trans_metadata_size(root,
2784                                                              num_dirty_bgs);
2785         global_rsv = &root->fs_info->global_block_rsv;
2786
2787         /*
2788          * If we can't allocate any more chunks lets make sure we have _lots_ of
2789          * wiggle room since running delayed refs can create more delayed refs.
2790          */
2791         if (global_rsv->space_info->full) {
2792                 num_dirty_bgs_bytes <<= 1;
2793                 num_bytes <<= 1;
2794         }
2795
2796         spin_lock(&global_rsv->lock);
2797         if (global_rsv->reserved <= num_bytes + num_dirty_bgs_bytes)
2798                 ret = 1;
2799         spin_unlock(&global_rsv->lock);
2800         return ret;
2801 }
2802
2803 int btrfs_should_throttle_delayed_refs(struct btrfs_trans_handle *trans,
2804                                        struct btrfs_root *root)
2805 {
2806         struct btrfs_fs_info *fs_info = root->fs_info;
2807         u64 num_entries =
2808                 atomic_read(&trans->transaction->delayed_refs.num_entries);
2809         u64 avg_runtime;
2810         u64 val;
2811
2812         smp_mb();
2813         avg_runtime = fs_info->avg_delayed_ref_runtime;
2814         val = num_entries * avg_runtime;
2815         if (num_entries * avg_runtime >= NSEC_PER_SEC)
2816                 return 1;
2817         if (val >= NSEC_PER_SEC / 2)
2818                 return 2;
2819
2820         return btrfs_check_space_for_delayed_refs(trans, root);
2821 }
2822
2823 struct async_delayed_refs {
2824         struct btrfs_root *root;
2825         int count;
2826         int error;
2827         int sync;
2828         struct completion wait;
2829         struct btrfs_work work;
2830 };
2831
2832 static void delayed_ref_async_start(struct btrfs_work *work)
2833 {
2834         struct async_delayed_refs *async;
2835         struct btrfs_trans_handle *trans;
2836         int ret;
2837
2838         async = container_of(work, struct async_delayed_refs, work);
2839
2840         trans = btrfs_join_transaction(async->root);
2841         if (IS_ERR(trans)) {
2842                 async->error = PTR_ERR(trans);
2843                 goto done;
2844         }
2845
2846         /*
2847          * trans->sync means that when we call end_transaciton, we won't
2848          * wait on delayed refs
2849          */
2850         trans->sync = true;
2851         ret = btrfs_run_delayed_refs(trans, async->root, async->count);
2852         if (ret)
2853                 async->error = ret;
2854
2855         ret = btrfs_end_transaction(trans, async->root);
2856         if (ret && !async->error)
2857                 async->error = ret;
2858 done:
2859         if (async->sync)
2860                 complete(&async->wait);
2861         else
2862                 kfree(async);
2863 }
2864
2865 int btrfs_async_run_delayed_refs(struct btrfs_root *root,
2866                                  unsigned long count, int wait)
2867 {
2868         struct async_delayed_refs *async;
2869         int ret;
2870
2871         async = kmalloc(sizeof(*async), GFP_NOFS);
2872         if (!async)
2873                 return -ENOMEM;
2874
2875         async->root = root->fs_info->tree_root;
2876         async->count = count;
2877         async->error = 0;
2878         if (wait)
2879                 async->sync = 1;
2880         else
2881                 async->sync = 0;
2882         init_completion(&async->wait);
2883
2884         btrfs_init_work(&async->work, btrfs_extent_refs_helper,
2885                         delayed_ref_async_start, NULL, NULL);
2886
2887         btrfs_queue_work(root->fs_info->extent_workers, &async->work);
2888
2889         if (wait) {
2890                 wait_for_completion(&async->wait);
2891                 ret = async->error;
2892                 kfree(async);
2893                 return ret;
2894         }
2895         return 0;
2896 }
2897
2898 /*
2899  * this starts processing the delayed reference count updates and
2900  * extent insertions we have queued up so far.  count can be
2901  * 0, which means to process everything in the tree at the start
2902  * of the run (but not newly added entries), or it can be some target
2903  * number you'd like to process.
2904  *
2905  * Returns 0 on success or if called with an aborted transaction
2906  * Returns <0 on error and aborts the transaction
2907  */
2908 int btrfs_run_delayed_refs(struct btrfs_trans_handle *trans,
2909                            struct btrfs_root *root, unsigned long count)
2910 {
2911         struct rb_node *node;
2912         struct btrfs_delayed_ref_root *delayed_refs;
2913         struct btrfs_delayed_ref_head *head;
2914         int ret;
2915         int run_all = count == (unsigned long)-1;
2916         bool can_flush_pending_bgs = trans->can_flush_pending_bgs;
2917
2918         /* We'll clean this up in btrfs_cleanup_transaction */
2919         if (trans->aborted)
2920                 return 0;
2921
2922         if (root == root->fs_info->extent_root)
2923                 root = root->fs_info->tree_root;
2924
2925         delayed_refs = &trans->transaction->delayed_refs;
2926         if (count == 0)
2927                 count = atomic_read(&delayed_refs->num_entries) * 2;
2928
2929 again:
2930 #ifdef SCRAMBLE_DELAYED_REFS
2931         delayed_refs->run_delayed_start = find_middle(&delayed_refs->root);
2932 #endif
2933         trans->can_flush_pending_bgs = false;
2934         ret = __btrfs_run_delayed_refs(trans, root, count);
2935         if (ret < 0) {
2936                 btrfs_abort_transaction(trans, root, ret);
2937                 return ret;
2938         }
2939
2940         if (run_all) {
2941                 if (!list_empty(&trans->new_bgs))
2942                         btrfs_create_pending_block_groups(trans, root);
2943
2944                 spin_lock(&delayed_refs->lock);
2945                 node = rb_first(&delayed_refs->href_root);
2946                 if (!node) {
2947                         spin_unlock(&delayed_refs->lock);
2948                         goto out;
2949                 }
2950                 count = (unsigned long)-1;
2951
2952                 while (node) {
2953                         head = rb_entry(node, struct btrfs_delayed_ref_head,
2954                                         href_node);
2955                         if (btrfs_delayed_ref_is_head(&head->node)) {
2956                                 struct btrfs_delayed_ref_node *ref;
2957
2958                                 ref = &head->node;
2959                                 atomic_inc(&ref->refs);
2960
2961                                 spin_unlock(&delayed_refs->lock);
2962                                 /*
2963                                  * Mutex was contended, block until it's
2964                                  * released and try again
2965                                  */
2966                                 mutex_lock(&head->mutex);
2967                                 mutex_unlock(&head->mutex);
2968
2969                                 btrfs_put_delayed_ref(ref);
2970                                 cond_resched();
2971                                 goto again;
2972                         } else {
2973                                 WARN_ON(1);
2974                         }
2975                         node = rb_next(node);
2976                 }
2977                 spin_unlock(&delayed_refs->lock);
2978                 cond_resched();
2979                 goto again;
2980         }
2981 out:
2982         assert_qgroups_uptodate(trans);
2983         trans->can_flush_pending_bgs = can_flush_pending_bgs;
2984         return 0;
2985 }
2986
2987 int btrfs_set_disk_extent_flags(struct btrfs_trans_handle *trans,
2988                                 struct btrfs_root *root,
2989                                 u64 bytenr, u64 num_bytes, u64 flags,
2990                                 int level, int is_data)
2991 {
2992         struct btrfs_delayed_extent_op *extent_op;
2993         int ret;
2994
2995         extent_op = btrfs_alloc_delayed_extent_op();
2996         if (!extent_op)
2997                 return -ENOMEM;
2998
2999         extent_op->flags_to_set = flags;
3000         extent_op->update_flags = 1;
3001         extent_op->update_key = 0;
3002         extent_op->is_data = is_data ? 1 : 0;
3003         extent_op->level = level;
3004
3005         ret = btrfs_add_delayed_extent_op(root->fs_info, trans, bytenr,
3006                                           num_bytes, extent_op);
3007         if (ret)
3008                 btrfs_free_delayed_extent_op(extent_op);
3009         return ret;
3010 }
3011
3012 static noinline int check_delayed_ref(struct btrfs_trans_handle *trans,
3013                                       struct btrfs_root *root,
3014                                       struct btrfs_path *path,
3015                                       u64 objectid, u64 offset, u64 bytenr)
3016 {
3017         struct btrfs_delayed_ref_head *head;
3018         struct btrfs_delayed_ref_node *ref;
3019         struct btrfs_delayed_data_ref *data_ref;
3020         struct btrfs_delayed_ref_root *delayed_refs;
3021         int ret = 0;
3022
3023         delayed_refs = &trans->transaction->delayed_refs;
3024         spin_lock(&delayed_refs->lock);
3025         head = btrfs_find_delayed_ref_head(trans, bytenr);
3026         if (!head) {
3027                 spin_unlock(&delayed_refs->lock);
3028                 return 0;
3029         }
3030
3031         if (!mutex_trylock(&head->mutex)) {
3032                 atomic_inc(&head->node.refs);
3033                 spin_unlock(&delayed_refs->lock);
3034
3035                 btrfs_release_path(path);
3036
3037                 /*
3038                  * Mutex was contended, block until it's released and let
3039                  * caller try again
3040                  */
3041                 mutex_lock(&head->mutex);
3042                 mutex_unlock(&head->mutex);
3043                 btrfs_put_delayed_ref(&head->node);
3044                 return -EAGAIN;
3045         }
3046         spin_unlock(&delayed_refs->lock);
3047
3048         spin_lock(&head->lock);
3049         list_for_each_entry(ref, &head->ref_list, list) {
3050                 /* If it's a shared ref we know a cross reference exists */
3051                 if (ref->type != BTRFS_EXTENT_DATA_REF_KEY) {
3052                         ret = 1;
3053                         break;
3054                 }
3055
3056                 data_ref = btrfs_delayed_node_to_data_ref(ref);
3057
3058                 /*
3059                  * If our ref doesn't match the one we're currently looking at
3060                  * then we have a cross reference.
3061                  */
3062                 if (data_ref->root != root->root_key.objectid ||
3063                     data_ref->objectid != objectid ||
3064                     data_ref->offset != offset) {
3065                         ret = 1;
3066                         break;
3067                 }
3068         }
3069         spin_unlock(&head->lock);
3070         mutex_unlock(&head->mutex);
3071         return ret;
3072 }
3073
3074 static noinline int check_committed_ref(struct btrfs_trans_handle *trans,
3075                                         struct btrfs_root *root,
3076                                         struct btrfs_path *path,
3077                                         u64 objectid, u64 offset, u64 bytenr)
3078 {
3079         struct btrfs_root *extent_root = root->fs_info->extent_root;
3080         struct extent_buffer *leaf;
3081         struct btrfs_extent_data_ref *ref;
3082         struct btrfs_extent_inline_ref *iref;
3083         struct btrfs_extent_item *ei;
3084         struct btrfs_key key;
3085         u32 item_size;
3086         int ret;
3087
3088         key.objectid = bytenr;
3089         key.offset = (u64)-1;
3090         key.type = BTRFS_EXTENT_ITEM_KEY;
3091
3092         ret = btrfs_search_slot(NULL, extent_root, &key, path, 0, 0);
3093         if (ret < 0)
3094                 goto out;
3095         BUG_ON(ret == 0); /* Corruption */
3096
3097         ret = -ENOENT;
3098         if (path->slots[0] == 0)
3099                 goto out;
3100
3101         path->slots[0]--;
3102         leaf = path->nodes[0];
3103         btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
3104
3105         if (key.objectid != bytenr || key.type != BTRFS_EXTENT_ITEM_KEY)
3106                 goto out;
3107
3108         ret = 1;
3109         item_size = btrfs_item_size_nr(leaf, path->slots[0]);
3110 #ifdef BTRFS_COMPAT_EXTENT_TREE_V0
3111         if (item_size < sizeof(*ei)) {
3112                 WARN_ON(item_size != sizeof(struct btrfs_extent_item_v0));
3113                 goto out;
3114         }
3115 #endif
3116         ei = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_extent_item);
3117
3118         if (item_size != sizeof(*ei) +
3119             btrfs_extent_inline_ref_size(BTRFS_EXTENT_DATA_REF_KEY))
3120                 goto out;
3121
3122         if (btrfs_extent_generation(leaf, ei) <=
3123             btrfs_root_last_snapshot(&root->root_item))
3124                 goto out;
3125
3126         iref = (struct btrfs_extent_inline_ref *)(ei + 1);
3127         if (btrfs_extent_inline_ref_type(leaf, iref) !=
3128             BTRFS_EXTENT_DATA_REF_KEY)
3129                 goto out;
3130
3131         ref = (struct btrfs_extent_data_ref *)(&iref->offset);
3132         if (btrfs_extent_refs(leaf, ei) !=
3133             btrfs_extent_data_ref_count(leaf, ref) ||
3134             btrfs_extent_data_ref_root(leaf, ref) !=
3135             root->root_key.objectid ||
3136             btrfs_extent_data_ref_objectid(leaf, ref) != objectid ||
3137             btrfs_extent_data_ref_offset(leaf, ref) != offset)
3138                 goto out;
3139
3140         ret = 0;
3141 out:
3142         return ret;
3143 }
3144
3145 int btrfs_cross_ref_exist(struct btrfs_trans_handle *trans,
3146                           struct btrfs_root *root,
3147                           u64 objectid, u64 offset, u64 bytenr)
3148 {
3149         struct btrfs_path *path;
3150         int ret;
3151         int ret2;
3152
3153         path = btrfs_alloc_path();
3154         if (!path)
3155                 return -ENOENT;
3156
3157         do {
3158                 ret = check_committed_ref(trans, root, path, objectid,
3159                                           offset, bytenr);
3160                 if (ret && ret != -ENOENT)
3161                         goto out;
3162
3163                 ret2 = check_delayed_ref(trans, root, path, objectid,
3164                                          offset, bytenr);
3165         } while (ret2 == -EAGAIN);
3166
3167         if (ret2 && ret2 != -ENOENT) {
3168                 ret = ret2;
3169                 goto out;
3170         }
3171
3172         if (ret != -ENOENT || ret2 != -ENOENT)
3173                 ret = 0;
3174 out:
3175         btrfs_free_path(path);
3176         if (root->root_key.objectid == BTRFS_DATA_RELOC_TREE_OBJECTID)
3177                 WARN_ON(ret > 0);
3178         return ret;
3179 }
3180
3181 static int __btrfs_mod_ref(struct btrfs_trans_handle *trans,
3182                            struct btrfs_root *root,
3183                            struct extent_buffer *buf,
3184                            int full_backref, int inc)
3185 {
3186         u64 bytenr;
3187         u64 num_bytes;
3188         u64 parent;
3189         u64 ref_root;
3190         u32 nritems;
3191         struct btrfs_key key;
3192         struct btrfs_file_extent_item *fi;
3193         int i;
3194         int level;
3195         int ret = 0;
3196         int (*process_func)(struct btrfs_trans_handle *, struct btrfs_root *,
3197                             u64, u64, u64, u64, u64, u64);
3198
3199
3200         if (btrfs_test_is_dummy_root(root))
3201                 return 0;
3202
3203         ref_root = btrfs_header_owner(buf);
3204         nritems = btrfs_header_nritems(buf);
3205         level = btrfs_header_level(buf);
3206
3207         if (!test_bit(BTRFS_ROOT_REF_COWS, &root->state) && level == 0)
3208                 return 0;
3209
3210         if (inc)
3211                 process_func = btrfs_inc_extent_ref;
3212         else
3213                 process_func = btrfs_free_extent;
3214
3215         if (full_backref)
3216                 parent = buf->start;
3217         else
3218                 parent = 0;
3219
3220         for (i = 0; i < nritems; i++) {
3221                 if (level == 0) {
3222                         btrfs_item_key_to_cpu(buf, &key, i);
3223                         if (key.type != BTRFS_EXTENT_DATA_KEY)
3224                                 continue;
3225                         fi = btrfs_item_ptr(buf, i,
3226                                             struct btrfs_file_extent_item);
3227                         if (btrfs_file_extent_type(buf, fi) ==
3228                             BTRFS_FILE_EXTENT_INLINE)
3229                                 continue;
3230                         bytenr = btrfs_file_extent_disk_bytenr(buf, fi);
3231                         if (bytenr == 0)
3232                                 continue;
3233
3234                         num_bytes = btrfs_file_extent_disk_num_bytes(buf, fi);
3235                         key.offset -= btrfs_file_extent_offset(buf, fi);
3236                         ret = process_func(trans, root, bytenr, num_bytes,
3237                                            parent, ref_root, key.objectid,
3238                                            key.offset);
3239                         if (ret)
3240                                 goto fail;
3241                 } else {
3242                         bytenr = btrfs_node_blockptr(buf, i);
3243                         num_bytes = root->nodesize;
3244                         ret = process_func(trans, root, bytenr, num_bytes,
3245                                            parent, ref_root, level - 1, 0);
3246                         if (ret)
3247                                 goto fail;
3248                 }
3249         }
3250         return 0;
3251 fail:
3252         return ret;
3253 }
3254
3255 int btrfs_inc_ref(struct btrfs_trans_handle *trans, struct btrfs_root *root,
3256                   struct extent_buffer *buf, int full_backref)
3257 {
3258         return __btrfs_mod_ref(trans, root, buf, full_backref, 1);
3259 }
3260
3261 int btrfs_dec_ref(struct btrfs_trans_handle *trans, struct btrfs_root *root,
3262                   struct extent_buffer *buf, int full_backref)
3263 {
3264         return __btrfs_mod_ref(trans, root, buf, full_backref, 0);
3265 }
3266
3267 static int write_one_cache_group(struct btrfs_trans_handle *trans,
3268                                  struct btrfs_root *root,
3269                                  struct btrfs_path *path,
3270                                  struct btrfs_block_group_cache *cache)
3271 {
3272         int ret;
3273         struct btrfs_root *extent_root = root->fs_info->extent_root;
3274         unsigned long bi;
3275         struct extent_buffer *leaf;
3276
3277         ret = btrfs_search_slot(trans, extent_root, &cache->key, path, 0, 1);
3278         if (ret) {
3279                 if (ret > 0)
3280                         ret = -ENOENT;
3281                 goto fail;
3282         }
3283
3284         leaf = path->nodes[0];
3285         bi = btrfs_item_ptr_offset(leaf, path->slots[0]);
3286         write_extent_buffer(leaf, &cache->item, bi, sizeof(cache->item));
3287         btrfs_mark_buffer_dirty(leaf);
3288 fail:
3289         btrfs_release_path(path);
3290         return ret;
3291
3292 }
3293
3294 static struct btrfs_block_group_cache *
3295 next_block_group(struct btrfs_root *root,
3296                  struct btrfs_block_group_cache *cache)
3297 {
3298         struct rb_node *node;
3299
3300         spin_lock(&root->fs_info->block_group_cache_lock);
3301
3302         /* If our block group was removed, we need a full search. */
3303         if (RB_EMPTY_NODE(&cache->cache_node)) {
3304                 const u64 next_bytenr = cache->key.objectid + cache->key.offset;
3305
3306                 spin_unlock(&root->fs_info->block_group_cache_lock);
3307                 btrfs_put_block_group(cache);
3308                 cache = btrfs_lookup_first_block_group(root->fs_info,
3309                                                        next_bytenr);
3310                 return cache;
3311         }
3312         node = rb_next(&cache->cache_node);
3313         btrfs_put_block_group(cache);
3314         if (node) {
3315                 cache = rb_entry(node, struct btrfs_block_group_cache,
3316                                  cache_node);
3317                 btrfs_get_block_group(cache);
3318         } else
3319                 cache = NULL;
3320         spin_unlock(&root->fs_info->block_group_cache_lock);
3321         return cache;
3322 }
3323
3324 static int cache_save_setup(struct btrfs_block_group_cache *block_group,
3325                             struct btrfs_trans_handle *trans,
3326                             struct btrfs_path *path)
3327 {
3328         struct btrfs_root *root = block_group->fs_info->tree_root;
3329         struct inode *inode = NULL;
3330         u64 alloc_hint = 0;
3331         int dcs = BTRFS_DC_ERROR;
3332         u64 num_pages = 0;
3333         int retries = 0;
3334         int ret = 0;
3335
3336         /*
3337          * If this block group is smaller than 100 megs don't bother caching the
3338          * block group.
3339          */
3340         if (block_group->key.offset < (100 * 1024 * 1024)) {
3341                 spin_lock(&block_group->lock);
3342                 block_group->disk_cache_state = BTRFS_DC_WRITTEN;
3343                 spin_unlock(&block_group->lock);
3344                 return 0;
3345         }
3346
3347         if (trans->aborted)
3348                 return 0;
3349 again:
3350         inode = lookup_free_space_inode(root, block_group, path);
3351         if (IS_ERR(inode) && PTR_ERR(inode) != -ENOENT) {
3352                 ret = PTR_ERR(inode);
3353                 btrfs_release_path(path);
3354                 goto out;
3355         }
3356
3357         if (IS_ERR(inode)) {
3358                 BUG_ON(retries);
3359                 retries++;
3360
3361                 if (block_group->ro)
3362                         goto out_free;
3363
3364                 ret = create_free_space_inode(root, trans, block_group, path);
3365                 if (ret)
3366                         goto out_free;
3367                 goto again;
3368         }
3369
3370         /*
3371          * We want to set the generation to 0, that way if anything goes wrong
3372          * from here on out we know not to trust this cache when we load up next
3373          * time.
3374          */
3375         BTRFS_I(inode)->generation = 0;
3376         ret = btrfs_update_inode(trans, root, inode);
3377         if (ret) {
3378                 /*
3379                  * So theoretically we could recover from this, simply set the
3380                  * super cache generation to 0 so we know to invalidate the
3381                  * cache, but then we'd have to keep track of the block groups
3382                  * that fail this way so we know we _have_ to reset this cache
3383                  * before the next commit or risk reading stale cache.  So to
3384                  * limit our exposure to horrible edge cases lets just abort the
3385                  * transaction, this only happens in really bad situations
3386                  * anyway.
3387                  */
3388                 btrfs_abort_transaction(trans, root, ret);
3389                 goto out_put;
3390         }
3391         WARN_ON(ret);
3392
3393         /* We've already setup this transaction, go ahead and exit */
3394         if (block_group->cache_generation == trans->transid &&
3395             i_size_read(inode)) {
3396                 dcs = BTRFS_DC_SETUP;
3397                 goto out_put;
3398         }
3399
3400         if (i_size_read(inode) > 0) {
3401                 ret = btrfs_check_trunc_cache_free_space(root,
3402                                         &root->fs_info->global_block_rsv);
3403                 if (ret)
3404                         goto out_put;
3405
3406                 ret = btrfs_truncate_free_space_cache(root, trans, NULL, inode);
3407                 if (ret)
3408                         goto out_put;
3409         }
3410
3411         spin_lock(&block_group->lock);
3412         if (block_group->cached != BTRFS_CACHE_FINISHED ||
3413             !btrfs_test_opt(root, SPACE_CACHE)) {
3414                 /*
3415                  * don't bother trying to write stuff out _if_
3416                  * a) we're not cached,
3417                  * b) we're with nospace_cache mount option.
3418                  */
3419                 dcs = BTRFS_DC_WRITTEN;
3420                 spin_unlock(&block_group->lock);
3421                 goto out_put;
3422         }
3423         spin_unlock(&block_group->lock);
3424
3425         /*
3426          * We hit an ENOSPC when setting up the cache in this transaction, just
3427          * skip doing the setup, we've already cleared the cache so we're safe.
3428          */
3429         if (test_bit(BTRFS_TRANS_CACHE_ENOSPC, &trans->transaction->flags)) {
3430                 ret = -ENOSPC;
3431                 goto out_put;
3432         }
3433
3434         /*
3435          * Try to preallocate enough space based on how big the block group is.
3436          * Keep in mind this has to include any pinned space which could end up
3437          * taking up quite a bit since it's not folded into the other space
3438          * cache.
3439          */
3440         num_pages = div_u64(block_group->key.offset, 256 * 1024 * 1024);
3441         if (!num_pages)
3442                 num_pages = 1;
3443
3444         num_pages *= 16;
3445         num_pages *= PAGE_CACHE_SIZE;
3446
3447         ret = btrfs_check_data_free_space(inode, 0, num_pages);
3448         if (ret)
3449                 goto out_put;
3450
3451         ret = btrfs_prealloc_file_range_trans(inode, trans, 0, 0, num_pages,
3452                                               num_pages, num_pages,
3453                                               &alloc_hint);
3454         /*
3455          * Our cache requires contiguous chunks so that we don't modify a bunch
3456          * of metadata or split extents when writing the cache out, which means
3457          * we can enospc if we are heavily fragmented in addition to just normal
3458          * out of space conditions.  So if we hit this just skip setting up any
3459          * other block groups for this transaction, maybe we'll unpin enough
3460          * space the next time around.
3461          */
3462         if (!ret)
3463                 dcs = BTRFS_DC_SETUP;
3464         else if (ret == -ENOSPC)
3465                 set_bit(BTRFS_TRANS_CACHE_ENOSPC, &trans->transaction->flags);
3466         btrfs_free_reserved_data_space(inode, 0, num_pages);
3467
3468 out_put:
3469         iput(inode);
3470 out_free:
3471         btrfs_release_path(path);
3472 out:
3473         spin_lock(&block_group->lock);
3474         if (!ret && dcs == BTRFS_DC_SETUP)
3475                 block_group->cache_generation = trans->transid;
3476         block_group->disk_cache_state = dcs;
3477         spin_unlock(&block_group->lock);
3478
3479         return ret;
3480 }
3481
3482 int btrfs_setup_space_cache(struct btrfs_trans_handle *trans,
3483                             struct btrfs_root *root)
3484 {
3485         struct btrfs_block_group_cache *cache, *tmp;
3486         struct btrfs_transaction *cur_trans = trans->transaction;
3487         struct btrfs_path *path;
3488
3489         if (list_empty(&cur_trans->dirty_bgs) ||
3490             !btrfs_test_opt(root, SPACE_CACHE))
3491                 return 0;
3492
3493         path = btrfs_alloc_path();
3494         if (!path)
3495                 return -ENOMEM;
3496
3497         /* Could add new block groups, use _safe just in case */
3498         list_for_each_entry_safe(cache, tmp, &cur_trans->dirty_bgs,
3499                                  dirty_list) {
3500                 if (cache->disk_cache_state == BTRFS_DC_CLEAR)
3501                         cache_save_setup(cache, trans, path);
3502         }
3503
3504         btrfs_free_path(path);
3505         return 0;
3506 }
3507
3508 /*
3509  * transaction commit does final block group cache writeback during a
3510  * critical section where nothing is allowed to change the FS.  This is
3511  * required in order for the cache to actually match the block group,
3512  * but can introduce a lot of latency into the commit.
3513  *
3514  * So, btrfs_start_dirty_block_groups is here to kick off block group
3515  * cache IO.  There's a chance we'll have to redo some of it if the
3516  * block group changes again during the commit, but it greatly reduces
3517  * the commit latency by getting rid of the easy block groups while
3518  * we're still allowing others to join the commit.
3519  */
3520 int btrfs_start_dirty_block_groups(struct btrfs_trans_handle *trans,
3521                                    struct btrfs_root *root)
3522 {
3523         struct btrfs_block_group_cache *cache;
3524         struct btrfs_transaction *cur_trans = trans->transaction;
3525         int ret = 0;
3526         int should_put;
3527         struct btrfs_path *path = NULL;
3528         LIST_HEAD(dirty);
3529         struct list_head *io = &cur_trans->io_bgs;
3530         int num_started = 0;
3531         int loops = 0;
3532
3533         spin_lock(&cur_trans->dirty_bgs_lock);
3534         if (list_empty(&cur_trans->dirty_bgs)) {
3535                 spin_unlock(&cur_trans->dirty_bgs_lock);
3536                 return 0;
3537         }
3538         list_splice_init(&cur_trans->dirty_bgs, &dirty);
3539         spin_unlock(&cur_trans->dirty_bgs_lock);
3540
3541 again:
3542         /*
3543          * make sure all the block groups on our dirty list actually
3544          * exist
3545          */
3546         btrfs_create_pending_block_groups(trans, root);
3547
3548         if (!path) {
3549                 path = btrfs_alloc_path();
3550                 if (!path)
3551                         return -ENOMEM;
3552         }
3553
3554         /*
3555          * cache_write_mutex is here only to save us from balance or automatic
3556          * removal of empty block groups deleting this block group while we are
3557          * writing out the cache
3558          */
3559         mutex_lock(&trans->transaction->cache_write_mutex);
3560         while (!list_empty(&dirty)) {
3561                 cache = list_first_entry(&dirty,
3562                                          struct btrfs_block_group_cache,
3563                                          dirty_list);
3564                 /*
3565                  * this can happen if something re-dirties a block
3566                  * group that is already under IO.  Just wait for it to
3567                  * finish and then do it all again
3568                  */
3569                 if (!list_empty(&cache->io_list)) {
3570                         list_del_init(&cache->io_list);
3571                         btrfs_wait_cache_io(root, trans, cache,
3572                                             &cache->io_ctl, path,
3573                                             cache->key.objectid);
3574                         btrfs_put_block_group(cache);
3575                 }
3576
3577
3578                 /*
3579                  * btrfs_wait_cache_io uses the cache->dirty_list to decide
3580                  * if it should update the cache_state.  Don't delete
3581                  * until after we wait.
3582                  *
3583                  * Since we're not running in the commit critical section
3584                  * we need the dirty_bgs_lock to protect from update_block_group
3585                  */
3586                 spin_lock(&cur_trans->dirty_bgs_lock);
3587                 list_del_init(&cache->dirty_list);
3588                 spin_unlock(&cur_trans->dirty_bgs_lock);
3589
3590                 should_put = 1;
3591
3592                 cache_save_setup(cache, trans, path);
3593
3594                 if (cache->disk_cache_state == BTRFS_DC_SETUP) {
3595                         cache->io_ctl.inode = NULL;
3596                         ret = btrfs_write_out_cache(root, trans, cache, path);
3597                         if (ret == 0 && cache->io_ctl.inode) {
3598                                 num_started++;
3599                                 should_put = 0;
3600
3601                                 /*
3602                                  * the cache_write_mutex is protecting
3603                                  * the io_list
3604                                  */
3605                                 list_add_tail(&cache->io_list, io);
3606                         } else {
3607                                 /*
3608                                  * if we failed to write the cache, the
3609                                  * generation will be bad and life goes on
3610                                  */
3611                                 ret = 0;
3612                         }
3613                 }
3614                 if (!ret) {
3615                         ret = write_one_cache_group(trans, root, path, cache);
3616                         /*
3617                          * Our block group might still be attached to the list
3618                          * of new block groups in the transaction handle of some
3619                          * other task (struct btrfs_trans_handle->new_bgs). This
3620                          * means its block group item isn't yet in the extent
3621                          * tree. If this happens ignore the error, as we will
3622                          * try again later in the critical section of the
3623                          * transaction commit.
3624                          */
3625                         if (ret == -ENOENT) {
3626                                 ret = 0;
3627                                 spin_lock(&cur_trans->dirty_bgs_lock);
3628                                 if (list_empty(&cache->dirty_list)) {
3629                                         list_add_tail(&cache->dirty_list,
3630                                                       &cur_trans->dirty_bgs);
3631                                         btrfs_get_block_group(cache);
3632                                 }
3633                                 spin_unlock(&cur_trans->dirty_bgs_lock);
3634                         } else if (ret) {
3635                                 btrfs_abort_transaction(trans, root, ret);
3636                         }
3637                 }
3638
3639                 /* if its not on the io list, we need to put the block group */
3640                 if (should_put)
3641                         btrfs_put_block_group(cache);
3642
3643                 if (ret)
3644                         break;
3645
3646                 /*
3647                  * Avoid blocking other tasks for too long. It might even save
3648                  * us from writing caches for block groups that are going to be
3649                  * removed.
3650                  */
3651                 mutex_unlock(&trans->transaction->cache_write_mutex);
3652                 mutex_lock(&trans->transaction->cache_write_mutex);
3653         }
3654         mutex_unlock(&trans->transaction->cache_write_mutex);
3655
3656         /*
3657          * go through delayed refs for all the stuff we've just kicked off
3658          * and then loop back (just once)
3659          */
3660         ret = btrfs_run_delayed_refs(trans, root, 0);
3661         if (!ret && loops == 0) {
3662                 loops++;
3663                 spin_lock(&cur_trans->dirty_bgs_lock);
3664                 list_splice_init(&cur_trans->dirty_bgs, &dirty);
3665                 /*
3666                  * dirty_bgs_lock protects us from concurrent block group
3667                  * deletes too (not just cache_write_mutex).
3668                  */
3669                 if (!list_empty(&dirty)) {
3670                         spin_unlock(&cur_trans->dirty_bgs_lock);
3671                         goto again;
3672                 }
3673                 spin_unlock(&cur_trans->dirty_bgs_lock);
3674         }
3675
3676         btrfs_free_path(path);
3677         return ret;
3678 }
3679
3680 int btrfs_write_dirty_block_groups(struct btrfs_trans_handle *trans,
3681                                    struct btrfs_root *root)
3682 {
3683         struct btrfs_block_group_cache *cache;
3684         struct btrfs_transaction *cur_trans = trans->transaction;
3685         int ret = 0;
3686         int should_put;
3687         struct btrfs_path *path;
3688         struct list_head *io = &cur_trans->io_bgs;
3689         int num_started = 0;
3690
3691         path = btrfs_alloc_path();
3692         if (!path)
3693                 return -ENOMEM;
3694
3695         /*
3696          * We don't need the lock here since we are protected by the transaction
3697          * commit.  We want to do the cache_save_setup first and then run the
3698          * delayed refs to make sure we have the best chance at doing this all
3699          * in one shot.
3700          */
3701         while (!list_empty(&cur_trans->dirty_bgs)) {
3702                 cache = list_first_entry(&cur_trans->dirty_bgs,
3703                                          struct btrfs_block_group_cache,
3704                                          dirty_list);
3705
3706                 /*
3707                  * this can happen if cache_save_setup re-dirties a block
3708                  * group that is already under IO.  Just wait for it to
3709                  * finish and then do it all again
3710                  */
3711                 if (!list_empty(&cache->io_list)) {
3712                         list_del_init(&cache->io_list);
3713                         btrfs_wait_cache_io(root, trans, cache,
3714                                             &cache->io_ctl, path,
3715                                             cache->key.objectid);
3716                         btrfs_put_block_group(cache);
3717                 }
3718
3719                 /*
3720                  * don't remove from the dirty list until after we've waited
3721                  * on any pending IO
3722                  */
3723                 list_del_init(&cache->dirty_list);
3724                 should_put = 1;
3725
3726                 cache_save_setup(cache, trans, path);
3727
3728                 if (!ret)
3729                         ret = btrfs_run_delayed_refs(trans, root, (unsigned long) -1);
3730
3731                 if (!ret && cache->disk_cache_state == BTRFS_DC_SETUP) {
3732                         cache->io_ctl.inode = NULL;
3733                         ret = btrfs_write_out_cache(root, trans, cache, path);
3734                         if (ret == 0 && cache->io_ctl.inode) {
3735                                 num_started++;
3736                                 should_put = 0;
3737                                 list_add_tail(&cache->io_list, io);
3738                         } else {
3739                                 /*
3740                                  * if we failed to write the cache, the
3741                                  * generation will be bad and life goes on
3742                                  */
3743                                 ret = 0;
3744                         }
3745                 }
3746                 if (!ret) {
3747                         ret = write_one_cache_group(trans, root, path, cache);
3748                         if (ret)
3749                                 btrfs_abort_transaction(trans, root, ret);
3750                 }
3751
3752                 /* if its not on the io list, we need to put the block group */
3753                 if (should_put)
3754                         btrfs_put_block_group(cache);
3755         }
3756
3757         while (!list_empty(io)) {
3758                 cache = list_first_entry(io, struct btrfs_block_group_cache,
3759                                          io_list);
3760                 list_del_init(&cache->io_list);
3761                 btrfs_wait_cache_io(root, trans, cache,
3762                                     &cache->io_ctl, path, cache->key.objectid);
3763                 btrfs_put_block_group(cache);
3764         }
3765
3766         btrfs_free_path(path);
3767         return ret;
3768 }
3769
3770 int btrfs_extent_readonly(struct btrfs_root *root, u64 bytenr)
3771 {
3772         struct btrfs_block_group_cache *block_group;
3773         int readonly = 0;
3774
3775         block_group = btrfs_lookup_block_group(root->fs_info, bytenr);
3776         if (!block_group || block_group->ro)
3777                 readonly = 1;
3778         if (block_group)
3779                 btrfs_put_block_group(block_group);
3780         return readonly;
3781 }
3782
3783 static const char *alloc_name(u64 flags)
3784 {
3785         switch (flags) {
3786         case BTRFS_BLOCK_GROUP_METADATA|BTRFS_BLOCK_GROUP_DATA:
3787                 return "mixed";
3788         case BTRFS_BLOCK_GROUP_METADATA:
3789                 return "metadata";
3790         case BTRFS_BLOCK_GROUP_DATA:
3791                 return "data";
3792         case BTRFS_BLOCK_GROUP_SYSTEM:
3793                 return "system";
3794         default:
3795                 WARN_ON(1);
3796                 return "invalid-combination";
3797         };
3798 }
3799
3800 static int update_space_info(struct btrfs_fs_info *info, u64 flags,
3801                              u64 total_bytes, u64 bytes_used,
3802                              struct btrfs_space_info **space_info)
3803 {
3804         struct btrfs_space_info *found;
3805         int i;
3806         int factor;
3807         int ret;
3808
3809         if (flags & (BTRFS_BLOCK_GROUP_DUP | BTRFS_BLOCK_GROUP_RAID1 |
3810                      BTRFS_BLOCK_GROUP_RAID10))
3811                 factor = 2;
3812         else
3813                 factor = 1;
3814
3815         found = __find_space_info(info, flags);
3816         if (found) {
3817                 spin_lock(&found->lock);
3818                 found->total_bytes += total_bytes;
3819                 found->disk_total += total_bytes * factor;
3820                 found->bytes_used += bytes_used;
3821                 found->disk_used += bytes_used * factor;
3822                 if (total_bytes > 0)
3823                         found->full = 0;
3824                 spin_unlock(&found->lock);
3825                 *space_info = found;
3826                 return 0;
3827         }
3828         found = kzalloc(sizeof(*found), GFP_NOFS);
3829         if (!found)
3830                 return -ENOMEM;
3831
3832         ret = percpu_counter_init(&found->total_bytes_pinned, 0, GFP_KERNEL);
3833         if (ret) {
3834                 kfree(found);
3835                 return ret;
3836         }
3837
3838         for (i = 0; i < BTRFS_NR_RAID_TYPES; i++)
3839                 INIT_LIST_HEAD(&found->block_groups[i]);
3840         init_rwsem(&found->groups_sem);
3841         spin_lock_init(&found->lock);
3842         found->flags = flags & BTRFS_BLOCK_GROUP_TYPE_MASK;
3843         found->total_bytes = total_bytes;
3844         found->disk_total = total_bytes * factor;
3845         found->bytes_used = bytes_used;
3846         found->disk_used = bytes_used * factor;
3847         found->bytes_pinned = 0;
3848         found->bytes_reserved = 0;
3849         found->bytes_readonly = 0;
3850         found->bytes_may_use = 0;
3851         found->full = 0;
3852         found->max_extent_size = 0;
3853         found->force_alloc = CHUNK_ALLOC_NO_FORCE;
3854         found->chunk_alloc = 0;
3855         found->flush = 0;
3856         init_waitqueue_head(&found->wait);
3857         INIT_LIST_HEAD(&found->ro_bgs);
3858
3859         ret = kobject_init_and_add(&found->kobj, &space_info_ktype,
3860                                     info->space_info_kobj, "%s",
3861                                     alloc_name(found->flags));
3862         if (ret) {
3863                 percpu_counter_destroy(&found->total_bytes_pinned);
3864                 kfree(found);
3865                 return ret;
3866         }
3867
3868         *space_info = found;
3869         list_add_rcu(&found->list, &info->space_info);
3870         if (flags & BTRFS_BLOCK_GROUP_DATA)
3871                 info->data_sinfo = found;
3872
3873         return ret;
3874 }
3875
3876 static void set_avail_alloc_bits(struct btrfs_fs_info *fs_info, u64 flags)
3877 {
3878         u64 extra_flags = chunk_to_extended(flags) &
3879                                 BTRFS_EXTENDED_PROFILE_MASK;
3880
3881         write_seqlock(&fs_info->profiles_lock);
3882         if (flags & BTRFS_BLOCK_GROUP_DATA)
3883                 fs_info->avail_data_alloc_bits |= extra_flags;
3884         if (flags & BTRFS_BLOCK_GROUP_METADATA)
3885                 fs_info->avail_metadata_alloc_bits |= extra_flags;
3886         if (flags & BTRFS_BLOCK_GROUP_SYSTEM)
3887                 fs_info->avail_system_alloc_bits |= extra_flags;
3888         write_sequnlock(&fs_info->profiles_lock);
3889 }
3890
3891 /*
3892  * returns target flags in extended format or 0 if restripe for this
3893  * chunk_type is not in progress
3894  *
3895  * should be called with either volume_mutex or balance_lock held
3896  */
3897 static u64 get_restripe_target(struct btrfs_fs_info *fs_info, u64 flags)
3898 {
3899         struct btrfs_balance_control *bctl = fs_info->balance_ctl;
3900         u64 target = 0;
3901
3902         if (!bctl)
3903                 return 0;
3904
3905         if (flags & BTRFS_BLOCK_GROUP_DATA &&
3906             bctl->data.flags & BTRFS_BALANCE_ARGS_CONVERT) {
3907                 target = BTRFS_BLOCK_GROUP_DATA | bctl->data.target;
3908         } else if (flags & BTRFS_BLOCK_GROUP_SYSTEM &&
3909                    bctl->sys.flags & BTRFS_BALANCE_ARGS_CONVERT) {
3910                 target = BTRFS_BLOCK_GROUP_SYSTEM | bctl->sys.target;
3911         } else if (flags & BTRFS_BLOCK_GROUP_METADATA &&
3912                    bctl->meta.flags & BTRFS_BALANCE_ARGS_CONVERT) {
3913                 target = BTRFS_BLOCK_GROUP_METADATA | bctl->meta.target;
3914         }
3915
3916         return target;
3917 }
3918
3919 /*
3920  * @flags: available profiles in extended format (see ctree.h)
3921  *
3922  * Returns reduced profile in chunk format.  If profile changing is in
3923  * progress (either running or paused) picks the target profile (if it's
3924  * already available), otherwise falls back to plain reducing.
3925  */
3926 static u64 btrfs_reduce_alloc_profile(struct btrfs_root *root, u64 flags)
3927 {
3928         u64 num_devices = root->fs_info->fs_devices->rw_devices;
3929         u64 target;
3930         u64 raid_type;
3931         u64 allowed = 0;
3932
3933         /*
3934          * see if restripe for this chunk_type is in progress, if so
3935          * try to reduce to the target profile
3936          */
3937         spin_lock(&root->fs_info->balance_lock);
3938         target = get_restripe_target(root->fs_info, flags);
3939         if (target) {
3940                 /* pick target profile only if it's already available */
3941                 if ((flags & target) & BTRFS_EXTENDED_PROFILE_MASK) {
3942                         spin_unlock(&root->fs_info->balance_lock);
3943                         return extended_to_chunk(target);
3944                 }
3945         }
3946         spin_unlock(&root->fs_info->balance_lock);
3947
3948         /* First, mask out the RAID levels which aren't possible */
3949         for (raid_type = 0; raid_type < BTRFS_NR_RAID_TYPES; raid_type++) {
3950                 if (num_devices >= btrfs_raid_array[raid_type].devs_min)
3951                         allowed |= btrfs_raid_group[raid_type];
3952         }
3953         allowed &= flags;
3954
3955         if (allowed & BTRFS_BLOCK_GROUP_RAID6)
3956                 allowed = BTRFS_BLOCK_GROUP_RAID6;
3957         else if (allowed & BTRFS_BLOCK_GROUP_RAID5)
3958                 allowed = BTRFS_BLOCK_GROUP_RAID5;
3959         else if (allowed & BTRFS_BLOCK_GROUP_RAID10)
3960                 allowed = BTRFS_BLOCK_GROUP_RAID10;
3961         else if (allowed & BTRFS_BLOCK_GROUP_RAID1)
3962                 allowed = BTRFS_BLOCK_GROUP_RAID1;
3963         else if (allowed & BTRFS_BLOCK_GROUP_RAID0)
3964                 allowed = BTRFS_BLOCK_GROUP_RAID0;
3965
3966         flags &= ~BTRFS_BLOCK_GROUP_PROFILE_MASK;
3967
3968         return extended_to_chunk(flags | allowed);
3969 }
3970
3971 static u64 get_alloc_profile(struct btrfs_root *root, u64 orig_flags)
3972 {
3973         unsigned seq;
3974         u64 flags;
3975
3976         do {
3977                 flags = orig_flags;
3978                 seq = read_seqbegin(&root->fs_info->profiles_lock);
3979
3980                 if (flags & BTRFS_BLOCK_GROUP_DATA)
3981                         flags |= root->fs_info->avail_data_alloc_bits;
3982                 else if (flags & BTRFS_BLOCK_GROUP_SYSTEM)
3983                         flags |= root->fs_info->avail_system_alloc_bits;
3984                 else if (flags & BTRFS_BLOCK_GROUP_METADATA)
3985                         flags |= root->fs_info->avail_metadata_alloc_bits;
3986         } while (read_seqretry(&root->fs_info->profiles_lock, seq));
3987
3988         return btrfs_reduce_alloc_profile(root, flags);
3989 }
3990
3991 u64 btrfs_get_alloc_profile(struct btrfs_root *root, int data)
3992 {
3993         u64 flags;
3994         u64 ret;
3995
3996         if (data)
3997                 flags = BTRFS_BLOCK_GROUP_DATA;
3998         else if (root == root->fs_info->chunk_root)
3999                 flags = BTRFS_BLOCK_GROUP_SYSTEM;
4000         else
4001                 flags = BTRFS_BLOCK_GROUP_METADATA;
4002
4003         ret = get_alloc_profile(root, flags);
4004         return ret;
4005 }
4006
4007 int btrfs_alloc_data_chunk_ondemand(struct inode *inode, u64 bytes)
4008 {
4009         struct btrfs_space_info *data_sinfo;
4010         struct btrfs_root *root = BTRFS_I(inode)->root;
4011         struct btrfs_fs_info *fs_info = root->fs_info;
4012         u64 used;
4013         int ret = 0;
4014         int need_commit = 2;
4015         int have_pinned_space;
4016
4017         /* make sure bytes are sectorsize aligned */
4018         bytes = ALIGN(bytes, root->sectorsize);
4019
4020         if (btrfs_is_free_space_inode(inode)) {
4021                 need_commit = 0;
4022                 ASSERT(current->journal_info);
4023         }
4024
4025         data_sinfo = fs_info->data_sinfo;
4026         if (!data_sinfo)
4027                 goto alloc;
4028
4029 again:
4030         /* make sure we have enough space to handle the data first */
4031         spin_lock(&data_sinfo->lock);
4032         used = data_sinfo->bytes_used + data_sinfo->bytes_reserved +
4033                 data_sinfo->bytes_pinned + data_sinfo->bytes_readonly +
4034                 data_sinfo->bytes_may_use;
4035
4036         if (used + bytes > data_sinfo->total_bytes) {
4037                 struct btrfs_trans_handle *trans;
4038
4039                 /*
4040                  * if we don't have enough free bytes in this space then we need
4041                  * to alloc a new chunk.
4042                  */
4043                 if (!data_sinfo->full) {
4044                         u64 alloc_target;
4045
4046                         data_sinfo->force_alloc = CHUNK_ALLOC_FORCE;
4047                         spin_unlock(&data_sinfo->lock);
4048 alloc:
4049                         alloc_target = btrfs_get_alloc_profile(root, 1);
4050                         /*
4051                          * It is ugly that we don't call nolock join
4052                          * transaction for the free space inode case here.
4053                          * But it is safe because we only do the data space
4054                          * reservation for the free space cache in the
4055                          * transaction context, the common join transaction
4056                          * just increase the counter of the current transaction
4057                          * handler, doesn't try to acquire the trans_lock of
4058                          * the fs.
4059                          */
4060                         trans = btrfs_join_transaction(root);
4061                         if (IS_ERR(trans))
4062                                 return PTR_ERR(trans);
4063
4064                         ret = do_chunk_alloc(trans, root->fs_info->extent_root,
4065                                              alloc_target,
4066                                              CHUNK_ALLOC_NO_FORCE);
4067                         btrfs_end_transaction(trans, root);
4068                         if (ret < 0) {
4069                                 if (ret != -ENOSPC)
4070                                         return ret;
4071                                 else {
4072                                         have_pinned_space = 1;
4073                                         goto commit_trans;
4074                                 }
4075                         }
4076
4077                         if (!data_sinfo)
4078                                 data_sinfo = fs_info->data_sinfo;
4079
4080                         goto again;
4081                 }
4082
4083                 /*
4084                  * If we don't have enough pinned space to deal with this
4085                  * allocation, and no removed chunk in current transaction,
4086                  * don't bother committing the transaction.
4087                  */
4088                 have_pinned_space = percpu_counter_compare(
4089                         &data_sinfo->total_bytes_pinned,
4090                         used + bytes - data_sinfo->total_bytes);
4091                 spin_unlock(&data_sinfo->lock);
4092
4093                 /* commit the current transaction and try again */
4094 commit_trans:
4095                 if (need_commit &&
4096                     !atomic_read(&root->fs_info->open_ioctl_trans)) {
4097                         need_commit--;
4098
4099                         if (need_commit > 0) {
4100                                 btrfs_start_delalloc_roots(fs_info, 0, -1);
4101                                 btrfs_wait_ordered_roots(fs_info, -1);
4102                         }
4103
4104                         trans = btrfs_join_transaction(root);
4105                         if (IS_ERR(trans))
4106                                 return PTR_ERR(trans);
4107                         if (have_pinned_space >= 0 ||
4108                             test_bit(BTRFS_TRANS_HAVE_FREE_BGS,
4109                                      &trans->transaction->flags) ||
4110                             need_commit > 0) {
4111                                 ret = btrfs_commit_transaction(trans, root);
4112                                 if (ret)
4113                                         return ret;
4114                                 /*
4115                                  * The cleaner kthread might still be doing iput
4116                                  * operations. Wait for it to finish so that
4117                                  * more space is released.
4118                                  */
4119                                 mutex_lock(&root->fs_info->cleaner_delayed_iput_mutex);
4120                                 mutex_unlock(&root->fs_info->cleaner_delayed_iput_mutex);
4121                                 goto again;
4122                         } else {
4123                                 btrfs_end_transaction(trans, root);
4124                         }
4125                 }
4126
4127                 trace_btrfs_space_reservation(root->fs_info,
4128                                               "space_info:enospc",
4129                                               data_sinfo->flags, bytes, 1);
4130                 return -ENOSPC;
4131         }
4132         data_sinfo->bytes_may_use += bytes;
4133         trace_btrfs_space_reservation(root->fs_info, "space_info",
4134                                       data_sinfo->flags, bytes, 1);
4135         spin_unlock(&data_sinfo->lock);
4136
4137         return 0;
4138 }
4139
4140 /*
4141  * New check_data_free_space() with ability for precious data reservation
4142  * Will replace old btrfs_check_data_free_space(), but for patch split,
4143  * add a new function first and then replace it.
4144  */
4145 int btrfs_check_data_free_space(struct inode *inode, u64 start, u64 len)
4146 {
4147         struct btrfs_root *root = BTRFS_I(inode)->root;
4148         int ret;
4149
4150         /* align the range */
4151         len = round_up(start + len, root->sectorsize) -
4152               round_down(start, root->sectorsize);
4153         start = round_down(start, root->sectorsize);
4154
4155         ret = btrfs_alloc_data_chunk_ondemand(inode, len);
4156         if (ret < 0)
4157                 return ret;
4158
4159         /*
4160          * Use new btrfs_qgroup_reserve_data to reserve precious data space
4161          *
4162          * TODO: Find a good method to avoid reserve data space for NOCOW
4163          * range, but don't impact performance on quota disable case.
4164          */
4165         ret = btrfs_qgroup_reserve_data(inode, start, len);
4166         return ret;
4167 }
4168
4169 /*
4170  * Called if we need to clear a data reservation for this inode
4171  * Normally in a error case.
4172  *
4173  * This one will *NOT* use accurate qgroup reserved space API, just for case
4174  * which we can't sleep and is sure it won't affect qgroup reserved space.
4175  * Like clear_bit_hook().
4176  */
4177 void btrfs_free_reserved_data_space_noquota(struct inode *inode, u64 start,
4178                                             u64 len)
4179 {
4180         struct btrfs_root *root = BTRFS_I(inode)->root;
4181         struct btrfs_space_info *data_sinfo;
4182
4183         /* Make sure the range is aligned to sectorsize */
4184         len = round_up(start + len, root->sectorsize) -
4185               round_down(start, root->sectorsize);
4186         start = round_down(start, root->sectorsize);
4187
4188         data_sinfo = root->fs_info->data_sinfo;
4189         spin_lock(&data_sinfo->lock);
4190         if (WARN_ON(data_sinfo->bytes_may_use < len))
4191                 data_sinfo->bytes_may_use = 0;
4192         else
4193                 data_sinfo->bytes_may_use -= len;
4194         trace_btrfs_space_reservation(root->fs_info, "space_info",
4195                                       data_sinfo->flags, len, 0);
4196         spin_unlock(&data_sinfo->lock);
4197 }
4198
4199 /*
4200  * Called if we need to clear a data reservation for this inode
4201  * Normally in a error case.
4202  *
4203  * This one will handle the per-indoe data rsv map for accurate reserved
4204  * space framework.
4205  */
4206 void btrfs_free_reserved_data_space(struct inode *inode, u64 start, u64 len)
4207 {
4208         btrfs_free_reserved_data_space_noquota(inode, start, len);
4209         btrfs_qgroup_free_data(inode, start, len);
4210 }
4211
4212 static void force_metadata_allocation(struct btrfs_fs_info *info)
4213 {
4214         struct list_head *head = &info->space_info;
4215         struct btrfs_space_info *found;
4216
4217         rcu_read_lock();
4218         list_for_each_entry_rcu(found, head, list) {
4219                 if (found->flags & BTRFS_BLOCK_GROUP_METADATA)
4220                         found->force_alloc = CHUNK_ALLOC_FORCE;
4221         }
4222         rcu_read_unlock();
4223 }
4224
4225 static inline u64 calc_global_rsv_need_space(struct btrfs_block_rsv *global)
4226 {
4227         return (global->size << 1);
4228 }
4229
4230 static int should_alloc_chunk(struct btrfs_root *root,
4231                               struct btrfs_space_info *sinfo, int force)
4232 {
4233         struct btrfs_block_rsv *global_rsv = &root->fs_info->global_block_rsv;
4234         u64 num_bytes = sinfo->total_bytes - sinfo->bytes_readonly;
4235         u64 num_allocated = sinfo->bytes_used + sinfo->bytes_reserved;
4236         u64 thresh;
4237
4238         if (force == CHUNK_ALLOC_FORCE)
4239                 return 1;
4240
4241         /*
4242          * We need to take into account the global rsv because for all intents
4243          * and purposes it's used space.  Don't worry about locking the
4244          * global_rsv, it doesn't change except when the transaction commits.
4245          */
4246         if (sinfo->flags & BTRFS_BLOCK_GROUP_METADATA)
4247                 num_allocated += calc_global_rsv_need_space(global_rsv);
4248
4249         /*
4250          * in limited mode, we want to have some free space up to
4251          * about 1% of the FS size.
4252          */
4253         if (force == CHUNK_ALLOC_LIMITED) {
4254                 thresh = btrfs_super_total_bytes(root->fs_info->super_copy);
4255                 thresh = max_t(u64, 64 * 1024 * 1024,
4256                                div_factor_fine(thresh, 1));
4257
4258                 if (num_bytes - num_allocated < thresh)
4259                         return 1;
4260         }
4261
4262         if (num_allocated + 2 * 1024 * 1024 < div_factor(num_bytes, 8))
4263                 return 0;
4264         return 1;
4265 }
4266
4267 static u64 get_profile_num_devs(struct btrfs_root *root, u64 type)
4268 {
4269         u64 num_dev;
4270
4271         if (type & (BTRFS_BLOCK_GROUP_RAID10 |
4272                     BTRFS_BLOCK_GROUP_RAID0 |
4273                     BTRFS_BLOCK_GROUP_RAID5 |
4274                     BTRFS_BLOCK_GROUP_RAID6))
4275                 num_dev = root->fs_info->fs_devices->rw_devices;
4276         else if (type & BTRFS_BLOCK_GROUP_RAID1)
4277                 num_dev = 2;
4278         else
4279                 num_dev = 1;    /* DUP or single */
4280
4281         return num_dev;
4282 }
4283
4284 /*
4285  * If @is_allocation is true, reserve space in the system space info necessary
4286  * for allocating a chunk, otherwise if it's false, reserve space necessary for
4287  * removing a chunk.
4288  */
4289 void check_system_chunk(struct btrfs_trans_handle *trans,
4290                         struct btrfs_root *root,
4291                         u64 type)
4292 {
4293         struct btrfs_space_info *info;
4294         u64 left;
4295         u64 thresh;
4296         int ret = 0;
4297         u64 num_devs;
4298
4299         /*
4300          * Needed because we can end up allocating a system chunk and for an
4301          * atomic and race free space reservation in the chunk block reserve.
4302          */
4303         ASSERT(mutex_is_locked(&root->fs_info->chunk_mutex));
4304
4305         info = __find_space_info(root->fs_info, BTRFS_BLOCK_GROUP_SYSTEM);
4306         spin_lock(&info->lock);
4307         left = info->total_bytes - info->bytes_used - info->bytes_pinned -
4308                 info->bytes_reserved - info->bytes_readonly -
4309                 info->bytes_may_use;
4310         spin_unlock(&info->lock);
4311
4312         num_devs = get_profile_num_devs(root, type);
4313
4314         /* num_devs device items to update and 1 chunk item to add or remove */
4315         thresh = btrfs_calc_trunc_metadata_size(root, num_devs) +
4316                 btrfs_calc_trans_metadata_size(root, 1);
4317
4318         if (left < thresh && btrfs_test_opt(root, ENOSPC_DEBUG)) {
4319                 btrfs_info(root->fs_info, "left=%llu, need=%llu, flags=%llu",
4320                         left, thresh, type);
4321                 dump_space_info(info, 0, 0);
4322         }
4323
4324         if (left < thresh) {
4325                 u64 flags;
4326
4327                 flags = btrfs_get_alloc_profile(root->fs_info->chunk_root, 0);
4328                 /*
4329                  * Ignore failure to create system chunk. We might end up not
4330                  * needing it, as we might not need to COW all nodes/leafs from
4331                  * the paths we visit in the chunk tree (they were already COWed
4332                  * or created in the current transaction for example).
4333                  */
4334                 ret = btrfs_alloc_chunk(trans, root, flags);
4335         }
4336
4337         if (!ret) {
4338                 ret = btrfs_block_rsv_add(root->fs_info->chunk_root,
4339                                           &root->fs_info->chunk_block_rsv,
4340                                           thresh, BTRFS_RESERVE_NO_FLUSH);
4341                 if (!ret)
4342                         trans->chunk_bytes_reserved += thresh;
4343         }
4344 }
4345
4346 static int do_chunk_alloc(struct btrfs_trans_handle *trans,
4347                           struct btrfs_root *extent_root, u64 flags, int force)
4348 {
4349         struct btrfs_space_info *space_info;
4350         struct btrfs_fs_info *fs_info = extent_root->fs_info;
4351         int wait_for_alloc = 0;
4352         int ret = 0;
4353
4354         /* Don't re-enter if we're already allocating a chunk */
4355         if (trans->allocating_chunk)
4356                 return -ENOSPC;
4357
4358         space_info = __find_space_info(extent_root->fs_info, flags);
4359         if (!space_info) {
4360                 ret = update_space_info(extent_root->fs_info, flags,
4361                                         0, 0, &space_info);
4362                 BUG_ON(ret); /* -ENOMEM */
4363         }
4364         BUG_ON(!space_info); /* Logic error */
4365
4366 again:
4367         spin_lock(&space_info->lock);
4368         if (force < space_info->force_alloc)
4369                 force = space_info->force_alloc;
4370         if (space_info->full) {
4371                 if (should_alloc_chunk(extent_root, space_info, force))
4372                         ret = -ENOSPC;
4373                 else
4374                         ret = 0;
4375                 spin_unlock(&space_info->lock);
4376                 return ret;
4377         }
4378
4379         if (!should_alloc_chunk(extent_root, space_info, force)) {
4380                 spin_unlock(&space_info->lock);
4381                 return 0;
4382         } else if (space_info->chunk_alloc) {
4383                 wait_for_alloc = 1;
4384         } else {
4385                 space_info->chunk_alloc = 1;
4386         }
4387
4388         spin_unlock(&space_info->lock);
4389
4390         mutex_lock(&fs_info->chunk_mutex);
4391
4392         /*
4393          * The chunk_mutex is held throughout the entirety of a chunk
4394          * allocation, so once we've acquired the chunk_mutex we know that the
4395          * other guy is done and we need to recheck and see if we should
4396          * allocate.
4397          */
4398         if (wait_for_alloc) {
4399                 mutex_unlock(&fs_info->chunk_mutex);
4400                 wait_for_alloc = 0;
4401                 cond_resched();
4402                 goto again;
4403         }
4404
4405         trans->allocating_chunk = true;
4406
4407         /*
4408          * If we have mixed data/metadata chunks we want to make sure we keep
4409          * allocating mixed chunks instead of individual chunks.
4410          */
4411         if (btrfs_mixed_space_info(space_info))
4412                 flags |= (BTRFS_BLOCK_GROUP_DATA | BTRFS_BLOCK_GROUP_METADATA);
4413
4414         /*
4415          * if we're doing a data chunk, go ahead and make sure that
4416          * we keep a reasonable number of metadata chunks allocated in the
4417          * FS as well.
4418          */
4419         if (flags & BTRFS_BLOCK_GROUP_DATA && fs_info->metadata_ratio) {
4420                 fs_info->data_chunk_allocations++;
4421                 if (!(fs_info->data_chunk_allocations %
4422                       fs_info->metadata_ratio))
4423                         force_metadata_allocation(fs_info);
4424         }
4425
4426         /*
4427          * Check if we have enough space in SYSTEM chunk because we may need
4428          * to update devices.
4429          */
4430         check_system_chunk(trans, extent_root, flags);
4431
4432         ret = btrfs_alloc_chunk(trans, extent_root, flags);
4433         trans->allocating_chunk = false;
4434
4435         spin_lock(&space_info->lock);
4436         if (ret < 0 && ret != -ENOSPC)
4437                 goto out;
4438         if (ret)
4439                 space_info->full = 1;
4440         else
4441                 ret = 1;
4442
4443         space_info->force_alloc = CHUNK_ALLOC_NO_FORCE;
4444 out:
4445         space_info->chunk_alloc = 0;
4446         spin_unlock(&space_info->lock);
4447         mutex_unlock(&fs_info->chunk_mutex);
4448         /*
4449          * When we allocate a new chunk we reserve space in the chunk block
4450          * reserve to make sure we can COW nodes/leafs in the chunk tree or
4451          * add new nodes/leafs to it if we end up needing to do it when
4452          * inserting the chunk item and updating device items as part of the
4453          * second phase of chunk allocation, performed by
4454          * btrfs_finish_chunk_alloc(). So make sure we don't accumulate a
4455          * large number of new block groups to create in our transaction
4456          * handle's new_bgs list to avoid exhausting the chunk block reserve
4457          * in extreme cases - like having a single transaction create many new
4458          * block groups when starting to write out the free space caches of all
4459          * the block groups that were made dirty during the lifetime of the
4460          * transaction.
4461          */
4462         if (trans->can_flush_pending_bgs &&
4463             trans->chunk_bytes_reserved >= (2 * 1024 * 1024ull)) {
4464                 btrfs_create_pending_block_groups(trans, trans->root);
4465                 btrfs_trans_release_chunk_metadata(trans);
4466         }
4467         return ret;
4468 }
4469
4470 static int can_overcommit(struct btrfs_root *root,
4471                           struct btrfs_space_info *space_info, u64 bytes,
4472                           enum btrfs_reserve_flush_enum flush)
4473 {
4474         struct btrfs_block_rsv *global_rsv = &root->fs_info->global_block_rsv;
4475         u64 profile = btrfs_get_alloc_profile(root, 0);
4476         u64 space_size;
4477         u64 avail;
4478         u64 used;
4479
4480         used = space_info->bytes_used + space_info->bytes_reserved +
4481                 space_info->bytes_pinned + space_info->bytes_readonly;
4482
4483         /*
4484          * We only want to allow over committing if we have lots of actual space
4485          * free, but if we don't have enough space to handle the global reserve
4486          * space then we could end up having a real enospc problem when trying
4487          * to allocate a chunk or some other such important allocation.
4488          */
4489         spin_lock(&global_rsv->lock);
4490         space_size = calc_global_rsv_need_space(global_rsv);
4491         spin_unlock(&global_rsv->lock);
4492         if (used + space_size >= space_info->total_bytes)
4493                 return 0;
4494
4495         used += space_info->bytes_may_use;
4496
4497         spin_lock(&root->fs_info->free_chunk_lock);
4498         avail = root->fs_info->free_chunk_space;
4499         spin_unlock(&root->fs_info->free_chunk_lock);
4500
4501         /*
4502          * If we have dup, raid1 or raid10 then only half of the free
4503          * space is actually useable.  For raid56, the space info used
4504          * doesn't include the parity drive, so we don't have to
4505          * change the math
4506          */
4507         if (profile & (BTRFS_BLOCK_GROUP_DUP |
4508                        BTRFS_BLOCK_GROUP_RAID1 |
4509                        BTRFS_BLOCK_GROUP_RAID10))
4510                 avail >>= 1;
4511
4512         /*
4513          * If we aren't flushing all things, let us overcommit up to
4514          * 1/2th of the space. If we can flush, don't let us overcommit
4515          * too much, let it overcommit up to 1/8 of the space.
4516          */
4517         if (flush == BTRFS_RESERVE_FLUSH_ALL)
4518                 avail >>= 3;
4519         else
4520                 avail >>= 1;
4521
4522         if (used + bytes < space_info->total_bytes + avail)
4523                 return 1;
4524         return 0;
4525 }
4526
4527 static void btrfs_writeback_inodes_sb_nr(struct btrfs_root *root,
4528                                          unsigned long nr_pages, int nr_items)
4529 {
4530         struct super_block *sb = root->fs_info->sb;
4531
4532         if (down_read_trylock(&sb->s_umount)) {
4533                 writeback_inodes_sb_nr(sb, nr_pages, WB_REASON_FS_FREE_SPACE);
4534                 up_read(&sb->s_umount);
4535         } else {
4536                 /*
4537                  * We needn't worry the filesystem going from r/w to r/o though
4538                  * we don't acquire ->s_umount mutex, because the filesystem
4539                  * should guarantee the delalloc inodes list be empty after
4540                  * the filesystem is readonly(all dirty pages are written to
4541                  * the disk).
4542                  */
4543                 btrfs_start_delalloc_roots(root->fs_info, 0, nr_items);
4544                 if (!current->journal_info)
4545                         btrfs_wait_ordered_roots(root->fs_info, nr_items);
4546         }
4547 }
4548
4549 static inline int calc_reclaim_items_nr(struct btrfs_root *root, u64 to_reclaim)
4550 {
4551         u64 bytes;
4552         int nr;
4553
4554         bytes = btrfs_calc_trans_metadata_size(root, 1);
4555         nr = (int)div64_u64(to_reclaim, bytes);
4556         if (!nr)
4557                 nr = 1;
4558         return nr;
4559 }
4560
4561 #define EXTENT_SIZE_PER_ITEM    (256 * 1024)
4562
4563 /*
4564  * shrink metadata reservation for delalloc
4565  */
4566 static void shrink_delalloc(struct btrfs_root *root, u64 to_reclaim, u64 orig,
4567                             bool wait_ordered)
4568 {
4569         struct btrfs_block_rsv *block_rsv;
4570         struct btrfs_space_info *space_info;
4571         struct btrfs_trans_handle *trans;
4572         u64 delalloc_bytes;
4573         u64 max_reclaim;
4574         long time_left;
4575         unsigned long nr_pages;
4576         int loops;
4577         int items;
4578         enum btrfs_reserve_flush_enum flush;
4579
4580         /* Calc the number of the pages we need flush for space reservation */
4581         items = calc_reclaim_items_nr(root, to_reclaim);
4582         to_reclaim = items * EXTENT_SIZE_PER_ITEM;
4583
4584         trans = (struct btrfs_trans_handle *)current->journal_info;
4585         block_rsv = &root->fs_info->delalloc_block_rsv;
4586         space_info = block_rsv->space_info;
4587
4588         delalloc_bytes = percpu_counter_sum_positive(
4589                                                 &root->fs_info->delalloc_bytes);
4590         if (delalloc_bytes == 0) {
4591                 if (trans)
4592                         return;
4593                 if (wait_ordered)
4594                         btrfs_wait_ordered_roots(root->fs_info, items);
4595                 return;
4596         }
4597
4598         loops = 0;
4599         while (delalloc_bytes && loops < 3) {
4600                 max_reclaim = min(delalloc_bytes, to_reclaim);
4601                 nr_pages = max_reclaim >> PAGE_CACHE_SHIFT;
4602                 btrfs_writeback_inodes_sb_nr(root, nr_pages, items);
4603                 /*
4604                  * We need to wait for the async pages to actually start before
4605                  * we do anything.
4606                  */
4607                 max_reclaim = atomic_read(&root->fs_info->async_delalloc_pages);
4608                 if (!max_reclaim)
4609                         goto skip_async;
4610
4611                 if (max_reclaim <= nr_pages)
4612                         max_reclaim = 0;
4613                 else
4614                         max_reclaim -= nr_pages;
4615
4616                 wait_event(root->fs_info->async_submit_wait,
4617                            atomic_read(&root->fs_info->async_delalloc_pages) <=
4618                            (int)max_reclaim);
4619 skip_async:
4620                 if (!trans)
4621                         flush = BTRFS_RESERVE_FLUSH_ALL;
4622                 else
4623                         flush = BTRFS_RESERVE_NO_FLUSH;
4624                 spin_lock(&space_info->lock);
4625                 if (can_overcommit(root, space_info, orig, flush)) {
4626                         spin_unlock(&space_info->lock);
4627                         break;
4628                 }
4629                 spin_unlock(&space_info->lock);
4630
4631                 loops++;
4632                 if (wait_ordered && !trans) {
4633                         btrfs_wait_ordered_roots(root->fs_info, items);
4634                 } else {
4635                         time_left = schedule_timeout_killable(1);
4636                         if (time_left)
4637                                 break;
4638                 }
4639                 delalloc_bytes = percpu_counter_sum_positive(
4640                                                 &root->fs_info->delalloc_bytes);
4641         }
4642 }
4643
4644 /**
4645  * maybe_commit_transaction - possibly commit the transaction if its ok to
4646  * @root - the root we're allocating for
4647  * @bytes - the number of bytes we want to reserve
4648  * @force - force the commit
4649  *
4650  * This will check to make sure that committing the transaction will actually
4651  * get us somewhere and then commit the transaction if it does.  Otherwise it
4652  * will return -ENOSPC.
4653  */
4654 static int may_commit_transaction(struct btrfs_root *root,
4655                                   struct btrfs_space_info *space_info,
4656                                   u64 bytes, int force)
4657 {
4658         struct btrfs_block_rsv *delayed_rsv = &root->fs_info->delayed_block_rsv;
4659         struct btrfs_trans_handle *trans;
4660
4661         trans = (struct btrfs_trans_handle *)current->journal_info;
4662         if (trans)
4663                 return -EAGAIN;
4664
4665         if (force)
4666                 goto commit;
4667
4668         /* See if there is enough pinned space to make this reservation */
4669         if (percpu_counter_compare(&space_info->total_bytes_pinned,
4670                                    bytes) >= 0)
4671                 goto commit;
4672
4673         /*
4674          * See if there is some space in the delayed insertion reservation for
4675          * this reservation.
4676          */
4677         if (space_info != delayed_rsv->space_info)
4678                 return -ENOSPC;
4679
4680         spin_lock(&delayed_rsv->lock);
4681         if (percpu_counter_compare(&space_info->total_bytes_pinned,
4682                                    bytes - delayed_rsv->size) >= 0) {
4683                 spin_unlock(&delayed_rsv->lock);
4684                 return -ENOSPC;
4685         }
4686         spin_unlock(&delayed_rsv->lock);
4687
4688 commit:
4689         trans = btrfs_join_transaction(root);
4690         if (IS_ERR(trans))
4691                 return -ENOSPC;
4692
4693         return btrfs_commit_transaction(trans, root);
4694 }
4695
4696 enum flush_state {
4697         FLUSH_DELAYED_ITEMS_NR  =       1,
4698         FLUSH_DELAYED_ITEMS     =       2,
4699         FLUSH_DELALLOC          =       3,
4700         FLUSH_DELALLOC_WAIT     =       4,
4701         ALLOC_CHUNK             =       5,
4702         COMMIT_TRANS            =       6,
4703 };
4704
4705 static int flush_space(struct btrfs_root *root,
4706                        struct btrfs_space_info *space_info, u64 num_bytes,
4707                        u64 orig_bytes, int state)
4708 {
4709         struct btrfs_trans_handle *trans;
4710         int nr;
4711         int ret = 0;
4712
4713         switch (state) {
4714         case FLUSH_DELAYED_ITEMS_NR:
4715         case FLUSH_DELAYED_ITEMS:
4716                 if (state == FLUSH_DELAYED_ITEMS_NR)
4717                         nr = calc_reclaim_items_nr(root, num_bytes) * 2;
4718                 else
4719                         nr = -1;
4720
4721                 trans = btrfs_join_transaction(root);
4722                 if (IS_ERR(trans)) {
4723                         ret = PTR_ERR(trans);
4724                         break;
4725                 }
4726                 ret = btrfs_run_delayed_items_nr(trans, root, nr);
4727                 btrfs_end_transaction(trans, root);
4728                 break;
4729         case FLUSH_DELALLOC:
4730         case FLUSH_DELALLOC_WAIT:
4731                 shrink_delalloc(root, num_bytes * 2, orig_bytes,
4732                                 state == FLUSH_DELALLOC_WAIT);
4733                 break;
4734         case ALLOC_CHUNK:
4735                 trans = btrfs_join_transaction(root);
4736                 if (IS_ERR(trans)) {
4737                         ret = PTR_ERR(trans);
4738                         break;
4739                 }
4740                 ret = do_chunk_alloc(trans, root->fs_info->extent_root,
4741                                      btrfs_get_alloc_profile(root, 0),
4742                                      CHUNK_ALLOC_NO_FORCE);
4743                 btrfs_end_transaction(trans, root);
4744                 if (ret == -ENOSPC)
4745                         ret = 0;
4746                 break;
4747         case COMMIT_TRANS:
4748                 ret = may_commit_transaction(root, space_info, orig_bytes, 0);
4749                 break;
4750         default:
4751                 ret = -ENOSPC;
4752                 break;
4753         }
4754
4755         return ret;
4756 }
4757
4758 static inline u64
4759 btrfs_calc_reclaim_metadata_size(struct btrfs_root *root,
4760                                  struct btrfs_space_info *space_info)
4761 {
4762         u64 used;
4763         u64 expected;
4764         u64 to_reclaim;
4765
4766         to_reclaim = min_t(u64, num_online_cpus() * 1024 * 1024,
4767                                 16 * 1024 * 1024);
4768         spin_lock(&space_info->lock);
4769         if (can_overcommit(root, space_info, to_reclaim,
4770                            BTRFS_RESERVE_FLUSH_ALL)) {
4771                 to_reclaim = 0;
4772                 goto out;
4773         }
4774
4775         used = space_info->bytes_used + space_info->bytes_reserved +
4776                space_info->bytes_pinned + space_info->bytes_readonly +
4777                space_info->bytes_may_use;
4778         if (can_overcommit(root, space_info, 1024 * 1024,
4779                            BTRFS_RESERVE_FLUSH_ALL))
4780                 expected = div_factor_fine(space_info->total_bytes, 95);
4781         else
4782                 expected = div_factor_fine(space_info->total_bytes, 90);
4783
4784         if (used > expected)
4785                 to_reclaim = used - expected;
4786         else
4787                 to_reclaim = 0;
4788         to_reclaim = min(to_reclaim, space_info->bytes_may_use +
4789                                      space_info->bytes_reserved);
4790 out:
4791         spin_unlock(&space_info->lock);
4792
4793         return to_reclaim;
4794 }
4795
4796 static inline int need_do_async_reclaim(struct btrfs_space_info *space_info,
4797                                         struct btrfs_fs_info *fs_info, u64 used)
4798 {
4799         u64 thresh = div_factor_fine(space_info->total_bytes, 98);
4800
4801         /* If we're just plain full then async reclaim just slows us down. */
4802         if (space_info->bytes_used >= thresh)
4803                 return 0;
4804
4805         return (used >= thresh && !btrfs_fs_closing(fs_info) &&
4806                 !test_bit(BTRFS_FS_STATE_REMOUNTING, &fs_info->fs_state));
4807 }
4808
4809 static int btrfs_need_do_async_reclaim(struct btrfs_space_info *space_info,
4810                                        struct btrfs_fs_info *fs_info,
4811                                        int flush_state)
4812 {
4813         u64 used;
4814
4815         spin_lock(&space_info->lock);
4816         /*
4817          * We run out of space and have not got any free space via flush_space,
4818          * so don't bother doing async reclaim.
4819          */
4820         if (flush_state > COMMIT_TRANS && space_info->full) {
4821                 spin_unlock(&space_info->lock);
4822                 return 0;
4823         }
4824
4825         used = space_info->bytes_used + space_info->bytes_reserved +
4826                space_info->bytes_pinned + space_info->bytes_readonly +
4827                space_info->bytes_may_use;
4828         if (need_do_async_reclaim(space_info, fs_info, used)) {
4829                 spin_unlock(&space_info->lock);
4830                 return 1;
4831         }
4832         spin_unlock(&space_info->lock);
4833
4834         return 0;
4835 }
4836
4837 static void btrfs_async_reclaim_metadata_space(struct work_struct *work)
4838 {
4839         struct btrfs_fs_info *fs_info;
4840         struct btrfs_space_info *space_info;
4841         u64 to_reclaim;
4842         int flush_state;
4843
4844         fs_info = container_of(work, struct btrfs_fs_info, async_reclaim_work);
4845         space_info = __find_space_info(fs_info, BTRFS_BLOCK_GROUP_METADATA);
4846
4847         to_reclaim = btrfs_calc_reclaim_metadata_size(fs_info->fs_root,
4848                                                       space_info);
4849         if (!to_reclaim)
4850                 return;
4851
4852         flush_state = FLUSH_DELAYED_ITEMS_NR;
4853         do {
4854                 flush_space(fs_info->fs_root, space_info, to_reclaim,
4855                             to_reclaim, flush_state);
4856                 flush_state++;
4857                 if (!btrfs_need_do_async_reclaim(space_info, fs_info,
4858                                                  flush_state))
4859                         return;
4860         } while (flush_state < COMMIT_TRANS);
4861 }
4862
4863 void btrfs_init_async_reclaim_work(struct work_struct *work)
4864 {
4865         INIT_WORK(work, btrfs_async_reclaim_metadata_space);
4866 }
4867
4868 /**
4869  * reserve_metadata_bytes - try to reserve bytes from the block_rsv's space
4870  * @root - the root we're allocating for
4871  * @block_rsv - the block_rsv we're allocating for
4872  * @orig_bytes - the number of bytes we want
4873  * @flush - whether or not we can flush to make our reservation
4874  *
4875  * This will reserve orgi_bytes number of bytes from the space info associated
4876  * with the block_rsv.  If there is not enough space it will make an attempt to
4877  * flush out space to make room.  It will do this by flushing delalloc if
4878  * possible or committing the transaction.  If flush is 0 then no attempts to
4879  * regain reservations will be made and this will fail if there is not enough
4880  * space already.
4881  */
4882 static int reserve_metadata_bytes(struct btrfs_root *root,
4883                                   struct btrfs_block_rsv *block_rsv,
4884                                   u64 orig_bytes,
4885                                   enum btrfs_reserve_flush_enum flush)
4886 {
4887         struct btrfs_space_info *space_info = block_rsv->space_info;
4888         u64 used;
4889         u64 num_bytes = orig_bytes;
4890         int flush_state = FLUSH_DELAYED_ITEMS_NR;
4891         int ret = 0;
4892         bool flushing = false;
4893
4894 again:
4895         ret = 0;
4896         spin_lock(&space_info->lock);
4897         /*
4898          * We only want to wait if somebody other than us is flushing and we
4899          * are actually allowed to flush all things.
4900          */
4901         while (flush == BTRFS_RESERVE_FLUSH_ALL && !flushing &&
4902                space_info->flush) {
4903                 spin_unlock(&space_info->lock);
4904                 /*
4905                  * If we have a trans handle we can't wait because the flusher
4906                  * may have to commit the transaction, which would mean we would
4907                  * deadlock since we are waiting for the flusher to finish, but
4908                  * hold the current transaction open.
4909                  */
4910                 if (current->journal_info)
4911                         return -EAGAIN;
4912                 ret = wait_event_killable(space_info->wait, !space_info->flush);
4913                 /* Must have been killed, return */
4914                 if (ret)
4915                         return -EINTR;
4916
4917                 spin_lock(&space_info->lock);
4918         }
4919
4920         ret = -ENOSPC;
4921         used = space_info->bytes_used + space_info->bytes_reserved +
4922                 space_info->bytes_pinned + space_info->bytes_readonly +
4923                 space_info->bytes_may_use;
4924
4925         /*
4926          * The idea here is that we've not already over-reserved the block group
4927          * then we can go ahead and save our reservation first and then start
4928          * flushing if we need to.  Otherwise if we've already overcommitted
4929          * lets start flushing stuff first and then come back and try to make
4930          * our reservation.
4931          */
4932         if (used <= space_info->total_bytes) {
4933                 if (used + orig_bytes <= space_info->total_bytes) {
4934                         space_info->bytes_may_use += orig_bytes;
4935                         trace_btrfs_space_reservation(root->fs_info,
4936                                 "space_info", space_info->flags, orig_bytes, 1);
4937                         ret = 0;
4938                 } else {
4939                         /*
4940                          * Ok set num_bytes to orig_bytes since we aren't
4941                          * overocmmitted, this way we only try and reclaim what
4942                          * we need.
4943                          */
4944                         num_bytes = orig_bytes;
4945                 }
4946         } else {
4947                 /*
4948                  * Ok we're over committed, set num_bytes to the overcommitted
4949                  * amount plus the amount of bytes that we need for this
4950                  * reservation.
4951                  */
4952                 num_bytes = used - space_info->total_bytes +
4953                         (orig_bytes * 2);
4954         }
4955
4956         if (ret && can_overcommit(root, space_info, orig_bytes, flush)) {
4957                 space_info->bytes_may_use += orig_bytes;
4958                 trace_btrfs_space_reservation(root->fs_info, "space_info",
4959                                               space_info->flags, orig_bytes,
4960                                               1);
4961                 ret = 0;
4962         }
4963
4964         /*
4965          * Couldn't make our reservation, save our place so while we're trying
4966          * to reclaim space we can actually use it instead of somebody else
4967          * stealing it from us.
4968          *
4969          * We make the other tasks wait for the flush only when we can flush
4970          * all things.
4971          */
4972         if (ret && flush != BTRFS_RESERVE_NO_FLUSH) {
4973                 flushing = true;
4974                 space_info->flush = 1;
4975         } else if (!ret && space_info->flags & BTRFS_BLOCK_GROUP_METADATA) {
4976                 used += orig_bytes;
4977                 /*
4978                  * We will do the space reservation dance during log replay,
4979                  * which means we won't have fs_info->fs_root set, so don't do
4980                  * the async reclaim as we will panic.
4981                  */
4982                 if (!root->fs_info->log_root_recovering &&
4983                     need_do_async_reclaim(space_info, root->fs_info, used) &&
4984                     !work_busy(&root->fs_info->async_reclaim_work))
4985                         queue_work(system_unbound_wq,
4986                                    &root->fs_info->async_reclaim_work);
4987         }
4988         spin_unlock(&space_info->lock);
4989
4990         if (!ret || flush == BTRFS_RESERVE_NO_FLUSH)
4991                 goto out;
4992
4993         ret = flush_space(root, space_info, num_bytes, orig_bytes,
4994                           flush_state);
4995         flush_state++;
4996
4997         /*
4998          * If we are FLUSH_LIMIT, we can not flush delalloc, or the deadlock
4999          * would happen. So skip delalloc flush.
5000          */
5001         if (flush == BTRFS_RESERVE_FLUSH_LIMIT &&
5002             (flush_state == FLUSH_DELALLOC ||
5003              flush_state == FLUSH_DELALLOC_WAIT))
5004                 flush_state = ALLOC_CHUNK;
5005
5006         if (!ret)
5007                 goto again;
5008         else if (flush == BTRFS_RESERVE_FLUSH_LIMIT &&
5009                  flush_state < COMMIT_TRANS)
5010                 goto again;
5011         else if (flush == BTRFS_RESERVE_FLUSH_ALL &&
5012                  flush_state <= COMMIT_TRANS)
5013                 goto again;
5014
5015 out:
5016         if (ret == -ENOSPC &&
5017             unlikely(root->orphan_cleanup_state == ORPHAN_CLEANUP_STARTED)) {
5018                 struct btrfs_block_rsv *global_rsv =
5019                         &root->fs_info->global_block_rsv;
5020
5021                 if (block_rsv != global_rsv &&
5022                     !block_rsv_use_bytes(global_rsv, orig_bytes))
5023                         ret = 0;
5024         }
5025         if (ret == -ENOSPC)
5026                 trace_btrfs_space_reservation(root->fs_info,
5027                                               "space_info:enospc",
5028                                               space_info->flags, orig_bytes, 1);
5029         if (flushing) {
5030                 spin_lock(&space_info->lock);
5031                 space_info->flush = 0;
5032                 wake_up_all(&space_info->wait);
5033                 spin_unlock(&space_info->lock);
5034         }
5035         return ret;
5036 }
5037
5038 static struct btrfs_block_rsv *get_block_rsv(
5039                                         const struct btrfs_trans_handle *trans,
5040                                         const struct btrfs_root *root)
5041 {
5042         struct btrfs_block_rsv *block_rsv = NULL;
5043
5044         if (test_bit(BTRFS_ROOT_REF_COWS, &root->state) ||
5045             (root == root->fs_info->csum_root && trans->adding_csums) ||
5046              (root == root->fs_info->uuid_root))
5047                 block_rsv = trans->block_rsv;
5048
5049         if (!block_rsv)
5050                 block_rsv = root->block_rsv;
5051
5052         if (!block_rsv)
5053                 block_rsv = &root->fs_info->empty_block_rsv;
5054
5055         return block_rsv;
5056 }
5057
5058 static int block_rsv_use_bytes(struct btrfs_block_rsv *block_rsv,
5059                                u64 num_bytes)
5060 {
5061         int ret = -ENOSPC;
5062         spin_lock(&block_rsv->lock);
5063         if (block_rsv->reserved >= num_bytes) {
5064                 block_rsv->reserved -= num_bytes;
5065                 if (block_rsv->reserved < block_rsv->size)
5066                         block_rsv->full = 0;
5067                 ret = 0;
5068         }
5069         spin_unlock(&block_rsv->lock);
5070         return ret;
5071 }
5072
5073 static void block_rsv_add_bytes(struct btrfs_block_rsv *block_rsv,
5074                                 u64 num_bytes, int update_size)
5075 {
5076         spin_lock(&block_rsv->lock);
5077         block_rsv->reserved += num_bytes;
5078         if (update_size)
5079                 block_rsv->size += num_bytes;
5080         else if (block_rsv->reserved >= block_rsv->size)
5081                 block_rsv->full = 1;
5082         spin_unlock(&block_rsv->lock);
5083 }
5084
5085 int btrfs_cond_migrate_bytes(struct btrfs_fs_info *fs_info,
5086                              struct btrfs_block_rsv *dest, u64 num_bytes,
5087                              int min_factor)
5088 {
5089         struct btrfs_block_rsv *global_rsv = &fs_info->global_block_rsv;
5090         u64 min_bytes;
5091
5092         if (global_rsv->space_info != dest->space_info)
5093                 return -ENOSPC;
5094
5095         spin_lock(&global_rsv->lock);
5096         min_bytes = div_factor(global_rsv->size, min_factor);
5097         if (global_rsv->reserved < min_bytes + num_bytes) {
5098                 spin_unlock(&global_rsv->lock);
5099                 return -ENOSPC;
5100         }
5101         global_rsv->reserved -= num_bytes;
5102         if (global_rsv->reserved < global_rsv->size)
5103                 global_rsv->full = 0;
5104         spin_unlock(&global_rsv->lock);
5105
5106         block_rsv_add_bytes(dest, num_bytes, 1);
5107         return 0;
5108 }
5109
5110 static void block_rsv_release_bytes(struct btrfs_fs_info *fs_info,
5111                                     struct btrfs_block_rsv *block_rsv,
5112                                     struct btrfs_block_rsv *dest, u64 num_bytes)
5113 {
5114         struct btrfs_space_info *space_info = block_rsv->space_info;
5115
5116         spin_lock(&block_rsv->lock);
5117         if (num_bytes == (u64)-1)
5118                 num_bytes = block_rsv->size;
5119         block_rsv->size -= num_bytes;
5120         if (block_rsv->reserved >= block_rsv->size) {
5121                 num_bytes = block_rsv->reserved - block_rsv->size;
5122                 block_rsv->reserved = block_rsv->size;
5123                 block_rsv->full = 1;
5124         } else {
5125                 num_bytes = 0;
5126         }
5127         spin_unlock(&block_rsv->lock);
5128
5129         if (num_bytes > 0) {
5130                 if (dest) {
5131                         spin_lock(&dest->lock);
5132                         if (!dest->full) {
5133                                 u64 bytes_to_add;
5134
5135                                 bytes_to_add = dest->size - dest->reserved;
5136                                 bytes_to_add = min(num_bytes, bytes_to_add);
5137                                 dest->reserved += bytes_to_add;
5138                                 if (dest->reserved >= dest->size)
5139                                         dest->full = 1;
5140                                 num_bytes -= bytes_to_add;
5141                         }
5142                         spin_unlock(&dest->lock);
5143                 }
5144                 if (num_bytes) {
5145                         spin_lock(&space_info->lock);
5146                         space_info->bytes_may_use -= num_bytes;
5147                         trace_btrfs_space_reservation(fs_info, "space_info",
5148                                         space_info->flags, num_bytes, 0);
5149                         spin_unlock(&space_info->lock);
5150                 }
5151         }
5152 }
5153
5154 static int block_rsv_migrate_bytes(struct btrfs_block_rsv *src,
5155                                    struct btrfs_block_rsv *dst, u64 num_bytes)
5156 {
5157         int ret;
5158
5159         ret = block_rsv_use_bytes(src, num_bytes);
5160         if (ret)
5161                 return ret;
5162
5163         block_rsv_add_bytes(dst, num_bytes, 1);
5164         return 0;
5165 }
5166
5167 void btrfs_init_block_rsv(struct btrfs_block_rsv *rsv, unsigned short type)
5168 {
5169         memset(rsv, 0, sizeof(*rsv));
5170         spin_lock_init(&rsv->lock);
5171         rsv->type = type;
5172 }
5173
5174 struct btrfs_block_rsv *btrfs_alloc_block_rsv(struct btrfs_root *root,
5175                                               unsigned short type)
5176 {
5177         struct btrfs_block_rsv *block_rsv;
5178         struct btrfs_fs_info *fs_info = root->fs_info;
5179
5180         block_rsv = kmalloc(sizeof(*block_rsv), GFP_NOFS);
5181         if (!block_rsv)
5182                 return NULL;
5183
5184         btrfs_init_block_rsv(block_rsv, type);
5185         block_rsv->space_info = __find_space_info(fs_info,
5186                                                   BTRFS_BLOCK_GROUP_METADATA);
5187         return block_rsv;
5188 }
5189
5190 void btrfs_free_block_rsv(struct btrfs_root *root,
5191                           struct btrfs_block_rsv *rsv)
5192 {
5193         if (!rsv)
5194                 return;
5195         btrfs_block_rsv_release(root, rsv, (u64)-1);
5196         kfree(rsv);
5197 }
5198
5199 void __btrfs_free_block_rsv(struct btrfs_block_rsv *rsv)
5200 {
5201         kfree(rsv);
5202 }
5203
5204 int btrfs_block_rsv_add(struct btrfs_root *root,
5205                         struct btrfs_block_rsv *block_rsv, u64 num_bytes,
5206                         enum btrfs_reserve_flush_enum flush)
5207 {
5208         int ret;
5209
5210         if (num_bytes == 0)
5211                 return 0;
5212
5213         ret = reserve_metadata_bytes(root, block_rsv, num_bytes, flush);
5214         if (!ret) {
5215                 block_rsv_add_bytes(block_rsv, num_bytes, 1);
5216                 return 0;
5217         }
5218
5219         return ret;
5220 }
5221
5222 int btrfs_block_rsv_check(struct btrfs_root *root,
5223                           struct btrfs_block_rsv *block_rsv, int min_factor)
5224 {
5225         u64 num_bytes = 0;
5226         int ret = -ENOSPC;
5227
5228         if (!block_rsv)
5229                 return 0;
5230
5231         spin_lock(&block_rsv->lock);
5232         num_bytes = div_factor(block_rsv->size, min_factor);
5233         if (block_rsv->reserved >= num_bytes)
5234                 ret = 0;
5235         spin_unlock(&block_rsv->lock);
5236
5237         return ret;
5238 }
5239
5240 int btrfs_block_rsv_refill(struct btrfs_root *root,
5241                            struct btrfs_block_rsv *block_rsv, u64 min_reserved,
5242                            enum btrfs_reserve_flush_enum flush)
5243 {
5244         u64 num_bytes = 0;
5245         int ret = -ENOSPC;
5246
5247         if (!block_rsv)
5248                 return 0;
5249
5250         spin_lock(&block_rsv->lock);
5251         num_bytes = min_reserved;
5252         if (block_rsv->reserved >= num_bytes)
5253                 ret = 0;
5254         else
5255                 num_bytes -= block_rsv->reserved;
5256         spin_unlock(&block_rsv->lock);
5257
5258         if (!ret)
5259                 return 0;
5260
5261         ret = reserve_metadata_bytes(root, block_rsv, num_bytes, flush);
5262         if (!ret) {
5263                 block_rsv_add_bytes(block_rsv, num_bytes, 0);
5264                 return 0;
5265         }
5266
5267         return ret;
5268 }
5269
5270 int btrfs_block_rsv_migrate(struct btrfs_block_rsv *src_rsv,
5271                             struct btrfs_block_rsv *dst_rsv,
5272                             u64 num_bytes)
5273 {
5274         return block_rsv_migrate_bytes(src_rsv, dst_rsv, num_bytes);
5275 }
5276
5277 void btrfs_block_rsv_release(struct btrfs_root *root,
5278                              struct btrfs_block_rsv *block_rsv,
5279                              u64 num_bytes)
5280 {
5281         struct btrfs_block_rsv *global_rsv = &root->fs_info->global_block_rsv;
5282         if (global_rsv == block_rsv ||
5283             block_rsv->space_info != global_rsv->space_info)
5284                 global_rsv = NULL;
5285         block_rsv_release_bytes(root->fs_info, block_rsv, global_rsv,
5286                                 num_bytes);
5287 }
5288
5289 /*
5290  * helper to calculate size of global block reservation.
5291  * the desired value is sum of space used by extent tree,
5292  * checksum tree and root tree
5293  */
5294 static u64 calc_global_metadata_size(struct btrfs_fs_info *fs_info)
5295 {
5296         struct btrfs_space_info *sinfo;
5297         u64 num_bytes;
5298         u64 meta_used;
5299         u64 data_used;
5300         int csum_size = btrfs_super_csum_size(fs_info->super_copy);
5301
5302         sinfo = __find_space_info(fs_info, BTRFS_BLOCK_GROUP_DATA);
5303         spin_lock(&sinfo->lock);
5304         data_used = sinfo->bytes_used;
5305         spin_unlock(&sinfo->lock);
5306
5307         sinfo = __find_space_info(fs_info, BTRFS_BLOCK_GROUP_METADATA);
5308         spin_lock(&sinfo->lock);
5309         if (sinfo->flags & BTRFS_BLOCK_GROUP_DATA)
5310                 data_used = 0;
5311         meta_used = sinfo->bytes_used;
5312         spin_unlock(&sinfo->lock);
5313
5314         num_bytes = (data_used >> fs_info->sb->s_blocksize_bits) *
5315                     csum_size * 2;
5316         num_bytes += div_u64(data_used + meta_used, 50);
5317
5318         if (num_bytes * 3 > meta_used)
5319                 num_bytes = div_u64(meta_used, 3);
5320
5321         return ALIGN(num_bytes, fs_info->extent_root->nodesize << 10);
5322 }
5323
5324 static void update_global_block_rsv(struct btrfs_fs_info *fs_info)
5325 {
5326         struct btrfs_block_rsv *block_rsv = &fs_info->global_block_rsv;
5327         struct btrfs_space_info *sinfo = block_rsv->space_info;
5328         u64 num_bytes;
5329
5330         num_bytes = calc_global_metadata_size(fs_info);
5331
5332         spin_lock(&sinfo->lock);
5333         spin_lock(&block_rsv->lock);
5334
5335         block_rsv->size = min_t(u64, num_bytes, 512 * 1024 * 1024);
5336
5337         num_bytes = sinfo->bytes_used + sinfo->bytes_pinned +
5338                     sinfo->bytes_reserved + sinfo->bytes_readonly +
5339                     sinfo->bytes_may_use;
5340
5341         if (sinfo->total_bytes > num_bytes) {
5342                 num_bytes = sinfo->total_bytes - num_bytes;
5343                 block_rsv->reserved += num_bytes;
5344                 sinfo->bytes_may_use += num_bytes;
5345                 trace_btrfs_space_reservation(fs_info, "space_info",
5346                                       sinfo->flags, num_bytes, 1);
5347         }
5348
5349         if (block_rsv->reserved >= block_rsv->size) {
5350                 num_bytes = block_rsv->reserved - block_rsv->size;
5351                 sinfo->bytes_may_use -= num_bytes;
5352                 trace_btrfs_space_reservation(fs_info, "space_info",
5353                                       sinfo->flags, num_bytes, 0);
5354                 block_rsv->reserved = block_rsv->size;
5355                 block_rsv->full = 1;
5356         }
5357
5358         spin_unlock(&block_rsv->lock);
5359         spin_unlock(&sinfo->lock);
5360 }
5361
5362 static void init_global_block_rsv(struct btrfs_fs_info *fs_info)
5363 {
5364         struct btrfs_space_info *space_info;
5365
5366         space_info = __find_space_info(fs_info, BTRFS_BLOCK_GROUP_SYSTEM);
5367         fs_info->chunk_block_rsv.space_info = space_info;
5368
5369         space_info = __find_space_info(fs_info, BTRFS_BLOCK_GROUP_METADATA);
5370         fs_info->global_block_rsv.space_info = space_info;
5371         fs_info->delalloc_block_rsv.space_info = space_info;
5372         fs_info->trans_block_rsv.space_info = space_info;
5373         fs_info->empty_block_rsv.space_info = space_info;
5374         fs_info->delayed_block_rsv.space_info = space_info;
5375
5376         fs_info->extent_root->block_rsv = &fs_info->global_block_rsv;
5377         fs_info->csum_root->block_rsv = &fs_info->global_block_rsv;
5378         fs_info->dev_root->block_rsv = &fs_info->global_block_rsv;
5379         fs_info->tree_root->block_rsv = &fs_info->global_block_rsv;
5380         if (fs_info->quota_root)
5381                 fs_info->quota_root->block_rsv = &fs_info->global_block_rsv;
5382         fs_info->chunk_root->block_rsv = &fs_info->chunk_block_rsv;
5383
5384         update_global_block_rsv(fs_info);
5385 }
5386
5387 static void release_global_block_rsv(struct btrfs_fs_info *fs_info)
5388 {
5389         block_rsv_release_bytes(fs_info, &fs_info->global_block_rsv, NULL,
5390                                 (u64)-1);
5391         WARN_ON(fs_info->delalloc_block_rsv.size > 0);
5392         WARN_ON(fs_info->delalloc_block_rsv.reserved > 0);
5393         WARN_ON(fs_info->trans_block_rsv.size > 0);
5394         WARN_ON(fs_info->trans_block_rsv.reserved > 0);
5395         WARN_ON(fs_info->chunk_block_rsv.size > 0);
5396         WARN_ON(fs_info->chunk_block_rsv.reserved > 0);
5397         WARN_ON(fs_info->delayed_block_rsv.size > 0);
5398         WARN_ON(fs_info->delayed_block_rsv.reserved > 0);
5399 }
5400
5401 void btrfs_trans_release_metadata(struct btrfs_trans_handle *trans,
5402                                   struct btrfs_root *root)
5403 {
5404         if (!trans->block_rsv)
5405                 return;
5406
5407         if (!trans->bytes_reserved)
5408                 return;
5409
5410         trace_btrfs_space_reservation(root->fs_info, "transaction",
5411                                       trans->transid, trans->bytes_reserved, 0);
5412         btrfs_block_rsv_release(root, trans->block_rsv, trans->bytes_reserved);
5413         trans->bytes_reserved = 0;
5414 }
5415
5416 /*
5417  * To be called after all the new block groups attached to the transaction
5418  * handle have been created (btrfs_create_pending_block_groups()).
5419  */
5420 void btrfs_trans_release_chunk_metadata(struct btrfs_trans_handle *trans)
5421 {
5422         struct btrfs_fs_info *fs_info = trans->root->fs_info;
5423
5424         if (!trans->chunk_bytes_reserved)
5425                 return;
5426
5427         WARN_ON_ONCE(!list_empty(&trans->new_bgs));
5428
5429         block_rsv_release_bytes(fs_info, &fs_info->chunk_block_rsv, NULL,
5430                                 trans->chunk_bytes_reserved);
5431         trans->chunk_bytes_reserved = 0;
5432 }
5433
5434 /* Can only return 0 or -ENOSPC */
5435 int btrfs_orphan_reserve_metadata(struct btrfs_trans_handle *trans,
5436                                   struct inode *inode)
5437 {
5438         struct btrfs_root *root = BTRFS_I(inode)->root;
5439         struct btrfs_block_rsv *src_rsv = get_block_rsv(trans, root);
5440         struct btrfs_block_rsv *dst_rsv = root->orphan_block_rsv;
5441
5442         /*
5443          * We need to hold space in order to delete our orphan item once we've
5444          * added it, so this takes the reservation so we can release it later
5445          * when we are truly done with the orphan item.
5446          */
5447         u64 num_bytes = btrfs_calc_trans_metadata_size(root, 1);
5448         trace_btrfs_space_reservation(root->fs_info, "orphan",
5449                                       btrfs_ino(inode), num_bytes, 1);
5450         return block_rsv_migrate_bytes(src_rsv, dst_rsv, num_bytes);
5451 }
5452
5453 void btrfs_orphan_release_metadata(struct inode *inode)
5454 {
5455         struct btrfs_root *root = BTRFS_I(inode)->root;
5456         u64 num_bytes = btrfs_calc_trans_metadata_size(root, 1);
5457         trace_btrfs_space_reservation(root->fs_info, "orphan",
5458                                       btrfs_ino(inode), num_bytes, 0);
5459         btrfs_block_rsv_release(root, root->orphan_block_rsv, num_bytes);
5460 }
5461
5462 /*
5463  * btrfs_subvolume_reserve_metadata() - reserve space for subvolume operation
5464  * root: the root of the parent directory
5465  * rsv: block reservation
5466  * items: the number of items that we need do reservation
5467  * qgroup_reserved: used to return the reserved size in qgroup
5468  *
5469  * This function is used to reserve the space for snapshot/subvolume
5470  * creation and deletion. Those operations are different with the
5471  * common file/directory operations, they change two fs/file trees
5472  * and root tree, the number of items that the qgroup reserves is
5473  * different with the free space reservation. So we can not use
5474  * the space reseravtion mechanism in start_transaction().
5475  */
5476 int btrfs_subvolume_reserve_metadata(struct btrfs_root *root,
5477                                      struct btrfs_block_rsv *rsv,
5478                                      int items,
5479                                      u64 *qgroup_reserved,
5480                                      bool use_global_rsv)
5481 {
5482         u64 num_bytes;
5483         int ret;
5484         struct btrfs_block_rsv *global_rsv = &root->fs_info->global_block_rsv;
5485
5486         if (root->fs_info->quota_enabled) {
5487                 /* One for parent inode, two for dir entries */
5488                 num_bytes = 3 * root->nodesize;
5489                 ret = btrfs_qgroup_reserve_meta(root, num_bytes);
5490                 if (ret)
5491                         return ret;
5492         } else {
5493                 num_bytes = 0;
5494         }
5495
5496         *qgroup_reserved = num_bytes;
5497
5498         num_bytes = btrfs_calc_trans_metadata_size(root, items);
5499         rsv->space_info = __find_space_info(root->fs_info,
5500                                             BTRFS_BLOCK_GROUP_METADATA);
5501         ret = btrfs_block_rsv_add(root, rsv, num_bytes,
5502                                   BTRFS_RESERVE_FLUSH_ALL);
5503
5504         if (ret == -ENOSPC && use_global_rsv)
5505                 ret = btrfs_block_rsv_migrate(global_rsv, rsv, num_bytes);
5506
5507         if (ret && *qgroup_reserved)
5508                 btrfs_qgroup_free_meta(root, *qgroup_reserved);
5509
5510         return ret;
5511 }
5512
5513 void btrfs_subvolume_release_metadata(struct btrfs_root *root,
5514                                       struct btrfs_block_rsv *rsv,
5515                                       u64 qgroup_reserved)
5516 {
5517         btrfs_block_rsv_release(root, rsv, (u64)-1);
5518 }
5519
5520 /**
5521  * drop_outstanding_extent - drop an outstanding extent
5522  * @inode: the inode we're dropping the extent for
5523  * @num_bytes: the number of bytes we're relaseing.
5524  *
5525  * This is called when we are freeing up an outstanding extent, either called
5526  * after an error or after an extent is written.  This will return the number of
5527  * reserved extents that need to be freed.  This must be called with
5528  * BTRFS_I(inode)->lock held.
5529  */
5530 static unsigned drop_outstanding_extent(struct inode *inode, u64 num_bytes)
5531 {
5532         unsigned drop_inode_space = 0;
5533         unsigned dropped_extents = 0;
5534         unsigned num_extents = 0;
5535
5536         num_extents = (unsigned)div64_u64(num_bytes +
5537                                           BTRFS_MAX_EXTENT_SIZE - 1,
5538                                           BTRFS_MAX_EXTENT_SIZE);
5539         ASSERT(num_extents);
5540         ASSERT(BTRFS_I(inode)->outstanding_extents >= num_extents);
5541         BTRFS_I(inode)->outstanding_extents -= num_extents;
5542
5543         if (BTRFS_I(inode)->outstanding_extents == 0 &&
5544             test_and_clear_bit(BTRFS_INODE_DELALLOC_META_RESERVED,
5545                                &BTRFS_I(inode)->runtime_flags))
5546                 drop_inode_space = 1;
5547
5548         /*
5549          * If we have more or the same amount of outsanding extents than we have
5550          * reserved then we need to leave the reserved extents count alone.
5551          */
5552         if (BTRFS_I(inode)->outstanding_extents >=
5553             BTRFS_I(inode)->reserved_extents)
5554                 return drop_inode_space;
5555
5556         dropped_extents = BTRFS_I(inode)->reserved_extents -
5557                 BTRFS_I(inode)->outstanding_extents;
5558         BTRFS_I(inode)->reserved_extents -= dropped_extents;
5559         return dropped_extents + drop_inode_space;
5560 }
5561
5562 /**
5563  * calc_csum_metadata_size - return the amount of metada space that must be
5564  *      reserved/free'd for the given bytes.
5565  * @inode: the inode we're manipulating
5566  * @num_bytes: the number of bytes in question
5567  * @reserve: 1 if we are reserving space, 0 if we are freeing space
5568  *
5569  * This adjusts the number of csum_bytes in the inode and then returns the
5570  * correct amount of metadata that must either be reserved or freed.  We
5571  * calculate how many checksums we can fit into one leaf and then divide the
5572  * number of bytes that will need to be checksumed by this value to figure out
5573  * how many checksums will be required.  If we are adding bytes then the number
5574  * may go up and we will return the number of additional bytes that must be
5575  * reserved.  If it is going down we will return the number of bytes that must
5576  * be freed.
5577  *
5578  * This must be called with BTRFS_I(inode)->lock held.
5579  */
5580 static u64 calc_csum_metadata_size(struct inode *inode, u64 num_bytes,
5581                                    int reserve)
5582 {
5583         struct btrfs_root *root = BTRFS_I(inode)->root;
5584         u64 old_csums, num_csums;
5585
5586         if (BTRFS_I(inode)->flags & BTRFS_INODE_NODATASUM &&
5587             BTRFS_I(inode)->csum_bytes == 0)
5588                 return 0;
5589
5590         old_csums = btrfs_csum_bytes_to_leaves(root, BTRFS_I(inode)->csum_bytes);
5591         if (reserve)
5592                 BTRFS_I(inode)->csum_bytes += num_bytes;
5593         else
5594                 BTRFS_I(inode)->csum_bytes -= num_bytes;
5595         num_csums = btrfs_csum_bytes_to_leaves(root, BTRFS_I(inode)->csum_bytes);
5596
5597         /* No change, no need to reserve more */
5598         if (old_csums == num_csums)
5599                 return 0;
5600
5601         if (reserve)
5602                 return btrfs_calc_trans_metadata_size(root,
5603                                                       num_csums - old_csums);
5604
5605         return btrfs_calc_trans_metadata_size(root, old_csums - num_csums);
5606 }
5607
5608 int btrfs_delalloc_reserve_metadata(struct inode *inode, u64 num_bytes)
5609 {
5610         struct btrfs_root *root = BTRFS_I(inode)->root;
5611         struct btrfs_block_rsv *block_rsv = &root->fs_info->delalloc_block_rsv;
5612         u64 to_reserve = 0;
5613         u64 csum_bytes;
5614         unsigned nr_extents = 0;
5615         int extra_reserve = 0;
5616         enum btrfs_reserve_flush_enum flush = BTRFS_RESERVE_FLUSH_ALL;
5617         int ret = 0;
5618         bool delalloc_lock = true;
5619         u64 to_free = 0;
5620         unsigned dropped;
5621
5622         /* If we are a free space inode we need to not flush since we will be in
5623          * the middle of a transaction commit.  We also don't need the delalloc
5624          * mutex since we won't race with anybody.  We need this mostly to make
5625          * lockdep shut its filthy mouth.
5626          */
5627         if (btrfs_is_free_space_inode(inode)) {
5628                 flush = BTRFS_RESERVE_NO_FLUSH;
5629                 delalloc_lock = false;
5630         }
5631
5632         if (flush != BTRFS_RESERVE_NO_FLUSH &&
5633             btrfs_transaction_in_commit(root->fs_info))
5634                 schedule_timeout(1);
5635
5636         if (delalloc_lock)
5637                 mutex_lock(&BTRFS_I(inode)->delalloc_mutex);
5638
5639         num_bytes = ALIGN(num_bytes, root->sectorsize);
5640
5641         spin_lock(&BTRFS_I(inode)->lock);
5642         nr_extents = (unsigned)div64_u64(num_bytes +
5643                                          BTRFS_MAX_EXTENT_SIZE - 1,
5644                                          BTRFS_MAX_EXTENT_SIZE);
5645         BTRFS_I(inode)->outstanding_extents += nr_extents;
5646         nr_extents = 0;
5647
5648         if (BTRFS_I(inode)->outstanding_extents >
5649             BTRFS_I(inode)->reserved_extents)
5650                 nr_extents = BTRFS_I(inode)->outstanding_extents -
5651                         BTRFS_I(inode)->reserved_extents;
5652
5653         /*
5654          * Add an item to reserve for updating the inode when we complete the
5655          * delalloc io.
5656          */
5657         if (!test_bit(BTRFS_INODE_DELALLOC_META_RESERVED,
5658                       &BTRFS_I(inode)->runtime_flags)) {
5659                 nr_extents++;
5660                 extra_reserve = 1;
5661         }
5662
5663         to_reserve = btrfs_calc_trans_metadata_size(root, nr_extents);
5664         to_reserve += calc_csum_metadata_size(inode, num_bytes, 1);
5665         csum_bytes = BTRFS_I(inode)->csum_bytes;
5666         spin_unlock(&BTRFS_I(inode)->lock);
5667
5668         if (root->fs_info->quota_enabled) {
5669                 ret = btrfs_qgroup_reserve_meta(root,
5670                                 nr_extents * root->nodesize);
5671                 if (ret)
5672                         goto out_fail;
5673         }
5674
5675         ret = reserve_metadata_bytes(root, block_rsv, to_reserve, flush);
5676         if (unlikely(ret)) {
5677                 btrfs_qgroup_free_meta(root, nr_extents * root->nodesize);
5678                 goto out_fail;
5679         }
5680
5681         spin_lock(&BTRFS_I(inode)->lock);
5682         if (extra_reserve) {
5683                 set_bit(BTRFS_INODE_DELALLOC_META_RESERVED,
5684                         &BTRFS_I(inode)->runtime_flags);
5685                 nr_extents--;
5686         }
5687         BTRFS_I(inode)->reserved_extents += nr_extents;
5688         spin_unlock(&BTRFS_I(inode)->lock);
5689
5690         if (delalloc_lock)
5691                 mutex_unlock(&BTRFS_I(inode)->delalloc_mutex);
5692
5693         if (to_reserve)
5694                 trace_btrfs_space_reservation(root->fs_info, "delalloc",
5695                                               btrfs_ino(inode), to_reserve, 1);
5696         block_rsv_add_bytes(block_rsv, to_reserve, 1);
5697
5698         return 0;
5699
5700 out_fail:
5701         spin_lock(&BTRFS_I(inode)->lock);
5702         dropped = drop_outstanding_extent(inode, num_bytes);
5703         /*
5704          * If the inodes csum_bytes is the same as the original
5705          * csum_bytes then we know we haven't raced with any free()ers
5706          * so we can just reduce our inodes csum bytes and carry on.
5707          */
5708         if (BTRFS_I(inode)->csum_bytes == csum_bytes) {
5709                 calc_csum_metadata_size(inode, num_bytes, 0);
5710         } else {
5711                 u64 orig_csum_bytes = BTRFS_I(inode)->csum_bytes;
5712                 u64 bytes;
5713
5714                 /*
5715                  * This is tricky, but first we need to figure out how much we
5716                  * free'd from any free-ers that occured during this
5717                  * reservation, so we reset ->csum_bytes to the csum_bytes
5718                  * before we dropped our lock, and then call the free for the
5719                  * number of bytes that were freed while we were trying our
5720                  * reservation.
5721                  */
5722                 bytes = csum_bytes - BTRFS_I(inode)->csum_bytes;
5723                 BTRFS_I(inode)->csum_bytes = csum_bytes;
5724                 to_free = calc_csum_metadata_size(inode, bytes, 0);
5725
5726
5727                 /*
5728                  * Now we need to see how much we would have freed had we not
5729                  * been making this reservation and our ->csum_bytes were not
5730                  * artificially inflated.
5731                  */
5732                 BTRFS_I(inode)->csum_bytes = csum_bytes - num_bytes;
5733                 bytes = csum_bytes - orig_csum_bytes;
5734                 bytes = calc_csum_metadata_size(inode, bytes, 0);
5735
5736                 /*
5737                  * Now reset ->csum_bytes to what it should be.  If bytes is
5738                  * more than to_free then we would have free'd more space had we
5739                  * not had an artificially high ->csum_bytes, so we need to free
5740                  * the remainder.  If bytes is the same or less then we don't
5741                  * need to do anything, the other free-ers did the correct
5742                  * thing.
5743                  */
5744                 BTRFS_I(inode)->csum_bytes = orig_csum_bytes - num_bytes;
5745                 if (bytes > to_free)
5746                         to_free = bytes - to_free;
5747                 else
5748                         to_free = 0;
5749         }
5750         spin_unlock(&BTRFS_I(inode)->lock);
5751         if (dropped)
5752                 to_free += btrfs_calc_trans_metadata_size(root, dropped);
5753
5754         if (to_free) {
5755                 btrfs_block_rsv_release(root, block_rsv, to_free);
5756                 trace_btrfs_space_reservation(root->fs_info, "delalloc",
5757                                               btrfs_ino(inode), to_free, 0);
5758         }
5759         if (delalloc_lock)
5760                 mutex_unlock(&BTRFS_I(inode)->delalloc_mutex);
5761         return ret;
5762 }
5763
5764 /**
5765  * btrfs_delalloc_release_metadata - release a metadata reservation for an inode
5766  * @inode: the inode to release the reservation for
5767  * @num_bytes: the number of bytes we're releasing
5768  *
5769  * This will release the metadata reservation for an inode.  This can be called
5770  * once we complete IO for a given set of bytes to release their metadata
5771  * reservations.
5772  */
5773 void btrfs_delalloc_release_metadata(struct inode *inode, u64 num_bytes)
5774 {
5775         struct btrfs_root *root = BTRFS_I(inode)->root;
5776         u64 to_free = 0;
5777         unsigned dropped;
5778
5779         num_bytes = ALIGN(num_bytes, root->sectorsize);
5780         spin_lock(&BTRFS_I(inode)->lock);
5781         dropped = drop_outstanding_extent(inode, num_bytes);
5782
5783         if (num_bytes)
5784                 to_free = calc_csum_metadata_size(inode, num_bytes, 0);
5785         spin_unlock(&BTRFS_I(inode)->lock);
5786         if (dropped > 0)
5787                 to_free += btrfs_calc_trans_metadata_size(root, dropped);
5788
5789         if (btrfs_test_is_dummy_root(root))
5790                 return;
5791
5792         trace_btrfs_space_reservation(root->fs_info, "delalloc",
5793                                       btrfs_ino(inode), to_free, 0);
5794
5795         btrfs_block_rsv_release(root, &root->fs_info->delalloc_block_rsv,
5796                                 to_free);
5797 }
5798
5799 /**
5800  * btrfs_delalloc_reserve_space - reserve data and metadata space for
5801  * delalloc
5802  * @inode: inode we're writing to
5803  * @start: start range we are writing to
5804  * @len: how long the range we are writing to
5805  *
5806  * TODO: This function will finally replace old btrfs_delalloc_reserve_space()
5807  *
5808  * This will do the following things
5809  *
5810  * o reserve space in data space info for num bytes
5811  *   and reserve precious corresponding qgroup space
5812  *   (Done in check_data_free_space)
5813  *
5814  * o reserve space for metadata space, based on the number of outstanding
5815  *   extents and how much csums will be needed
5816  *   also reserve metadata space in a per root over-reserve method.
5817  * o add to the inodes->delalloc_bytes
5818  * o add it to the fs_info's delalloc inodes list.
5819  *   (Above 3 all done in delalloc_reserve_metadata)
5820  *
5821  * Return 0 for success
5822  * Return <0 for error(-ENOSPC or -EQUOT)
5823  */
5824 int btrfs_delalloc_reserve_space(struct inode *inode, u64 start, u64 len)
5825 {
5826         int ret;
5827
5828         ret = btrfs_check_data_free_space(inode, start, len);
5829         if (ret < 0)
5830                 return ret;
5831         ret = btrfs_delalloc_reserve_metadata(inode, len);
5832         if (ret < 0)
5833                 btrfs_free_reserved_data_space(inode, start, len);
5834         return ret;
5835 }
5836
5837 /**
5838  * btrfs_delalloc_release_space - release data and metadata space for delalloc
5839  * @inode: inode we're releasing space for
5840  * @start: start position of the space already reserved
5841  * @len: the len of the space already reserved
5842  *
5843  * This must be matched with a call to btrfs_delalloc_reserve_space.  This is
5844  * called in the case that we don't need the metadata AND data reservations
5845  * anymore.  So if there is an error or we insert an inline extent.
5846  *
5847  * This function will release the metadata space that was not used and will
5848  * decrement ->delalloc_bytes and remove it from the fs_info delalloc_inodes
5849  * list if there are no delalloc bytes left.
5850  * Also it will handle the qgroup reserved space.
5851  */
5852 void btrfs_delalloc_release_space(struct inode *inode, u64 start, u64 len)
5853 {
5854         btrfs_delalloc_release_metadata(inode, len);
5855         btrfs_free_reserved_data_space(inode, start, len);
5856 }
5857
5858 static int update_block_group(struct btrfs_trans_handle *trans,
5859                               struct btrfs_root *root, u64 bytenr,
5860                               u64 num_bytes, int alloc)
5861 {
5862         struct btrfs_block_group_cache *cache = NULL;
5863         struct btrfs_fs_info *info = root->fs_info;
5864         u64 total = num_bytes;
5865         u64 old_val;
5866         u64 byte_in_group;
5867         int factor;
5868
5869         /* block accounting for super block */
5870         spin_lock(&info->delalloc_root_lock);
5871         old_val = btrfs_super_bytes_used(info->super_copy);
5872         if (alloc)
5873                 old_val += num_bytes;
5874         else
5875                 old_val -= num_bytes;
5876         btrfs_set_super_bytes_used(info->super_copy, old_val);
5877         spin_unlock(&info->delalloc_root_lock);
5878
5879         while (total) {
5880                 cache = btrfs_lookup_block_group(info, bytenr);
5881                 if (!cache)
5882                         return -ENOENT;
5883                 if (cache->flags & (BTRFS_BLOCK_GROUP_DUP |
5884                                     BTRFS_BLOCK_GROUP_RAID1 |
5885                                     BTRFS_BLOCK_GROUP_RAID10))
5886                         factor = 2;
5887                 else
5888                         factor = 1;
5889                 /*
5890                  * If this block group has free space cache written out, we
5891                  * need to make sure to load it if we are removing space.  This
5892                  * is because we need the unpinning stage to actually add the
5893                  * space back to the block group, otherwise we will leak space.
5894                  */
5895                 if (!alloc && cache->cached == BTRFS_CACHE_NO)
5896                         cache_block_group(cache, 1);
5897
5898                 byte_in_group = bytenr - cache->key.objectid;
5899                 WARN_ON(byte_in_group > cache->key.offset);
5900
5901                 spin_lock(&cache->space_info->lock);
5902                 spin_lock(&cache->lock);
5903
5904                 if (btrfs_test_opt(root, SPACE_CACHE) &&
5905                     cache->disk_cache_state < BTRFS_DC_CLEAR)
5906                         cache->disk_cache_state = BTRFS_DC_CLEAR;
5907
5908                 old_val = btrfs_block_group_used(&cache->item);
5909                 num_bytes = min(total, cache->key.offset - byte_in_group);
5910                 if (alloc) {
5911                         old_val += num_bytes;
5912                         btrfs_set_block_group_used(&cache->item, old_val);
5913                         cache->reserved -= num_bytes;
5914                         cache->space_info->bytes_reserved -= num_bytes;
5915                         cache->space_info->bytes_used += num_bytes;
5916                         cache->space_info->disk_used += num_bytes * factor;
5917                         spin_unlock(&cache->lock);
5918                         spin_unlock(&cache->space_info->lock);
5919                 } else {
5920                         old_val -= num_bytes;
5921                         btrfs_set_block_group_used(&cache->item, old_val);
5922                         cache->pinned += num_bytes;
5923                         cache->space_info->bytes_pinned += num_bytes;
5924                         cache->space_info->bytes_used -= num_bytes;
5925                         cache->space_info->disk_used -= num_bytes * factor;
5926                         spin_unlock(&cache->lock);
5927                         spin_unlock(&cache->space_info->lock);
5928
5929                         set_extent_dirty(info->pinned_extents,
5930                                          bytenr, bytenr + num_bytes - 1,
5931                                          GFP_NOFS | __GFP_NOFAIL);
5932                 }
5933
5934                 spin_lock(&trans->transaction->dirty_bgs_lock);
5935                 if (list_empty(&cache->dirty_list)) {
5936                         list_add_tail(&cache->dirty_list,
5937                                       &trans->transaction->dirty_bgs);
5938                                 trans->transaction->num_dirty_bgs++;
5939                         btrfs_get_block_group(cache);
5940                 }
5941                 spin_unlock(&trans->transaction->dirty_bgs_lock);
5942
5943                 /*
5944                  * No longer have used bytes in this block group, queue it for
5945                  * deletion. We do this after adding the block group to the
5946                  * dirty list to avoid races between cleaner kthread and space
5947                  * cache writeout.
5948                  */
5949                 if (!alloc && old_val == 0) {
5950                         spin_lock(&info->unused_bgs_lock);
5951                         if (list_empty(&cache->bg_list)) {
5952                                 btrfs_get_block_group(cache);
5953                                 list_add_tail(&cache->bg_list,
5954                                               &info->unused_bgs);
5955                         }
5956                         spin_unlock(&info->unused_bgs_lock);
5957                 }
5958
5959                 btrfs_put_block_group(cache);
5960                 total -= num_bytes;
5961                 bytenr += num_bytes;
5962         }
5963         return 0;
5964 }
5965
5966 static u64 first_logical_byte(struct btrfs_root *root, u64 search_start)
5967 {
5968         struct btrfs_block_group_cache *cache;
5969         u64 bytenr;
5970
5971         spin_lock(&root->fs_info->block_group_cache_lock);
5972         bytenr = root->fs_info->first_logical_byte;
5973         spin_unlock(&root->fs_info->block_group_cache_lock);
5974
5975         if (bytenr < (u64)-1)
5976                 return bytenr;
5977
5978         cache = btrfs_lookup_first_block_group(root->fs_info, search_start);
5979         if (!cache)
5980                 return 0;
5981
5982         bytenr = cache->key.objectid;
5983         btrfs_put_block_group(cache);
5984
5985         return bytenr;
5986 }
5987
5988 static int pin_down_extent(struct btrfs_root *root,
5989                            struct btrfs_block_group_cache *cache,
5990                            u64 bytenr, u64 num_bytes, int reserved)
5991 {
5992         spin_lock(&cache->space_info->lock);
5993         spin_lock(&cache->lock);
5994         cache->pinned += num_bytes;
5995         cache->space_info->bytes_pinned += num_bytes;
5996         if (reserved) {
5997                 cache->reserved -= num_bytes;
5998                 cache->space_info->bytes_reserved -= num_bytes;
5999         }
6000         spin_unlock(&cache->lock);
6001         spin_unlock(&cache->space_info->lock);
6002
6003         set_extent_dirty(root->fs_info->pinned_extents, bytenr,
6004                          bytenr + num_bytes - 1, GFP_NOFS | __GFP_NOFAIL);
6005         if (reserved)
6006                 trace_btrfs_reserved_extent_free(root, bytenr, num_bytes);
6007         return 0;
6008 }
6009
6010 /*
6011  * this function must be called within transaction
6012  */
6013 int btrfs_pin_extent(struct btrfs_root *root,
6014                      u64 bytenr, u64 num_bytes, int reserved)
6015 {
6016         struct btrfs_block_group_cache *cache;
6017
6018         cache = btrfs_lookup_block_group(root->fs_info, bytenr);
6019         BUG_ON(!cache); /* Logic error */
6020
6021         pin_down_extent(root, cache, bytenr, num_bytes, reserved);
6022
6023         btrfs_put_block_group(cache);
6024         return 0;
6025 }
6026
6027 /*
6028  * this function must be called within transaction
6029  */
6030 int btrfs_pin_extent_for_log_replay(struct btrfs_root *root,
6031                                     u64 bytenr, u64 num_bytes)
6032 {
6033         struct btrfs_block_group_cache *cache;
6034         int ret;
6035
6036         cache = btrfs_lookup_block_group(root->fs_info, bytenr);
6037         if (!cache)
6038                 return -EINVAL;
6039
6040         /*
6041          * pull in the free space cache (if any) so that our pin
6042          * removes the free space from the cache.  We have load_only set
6043          * to one because the slow code to read in the free extents does check
6044          * the pinned extents.
6045          */
6046         cache_block_group(cache, 1);
6047
6048         pin_down_extent(root, cache, bytenr, num_bytes, 0);
6049
6050         /* remove us from the free space cache (if we're there at all) */
6051         ret = btrfs_remove_free_space(cache, bytenr, num_bytes);
6052         btrfs_put_block_group(cache);
6053         return ret;
6054 }
6055
6056 static int __exclude_logged_extent(struct btrfs_root *root, u64 start, u64 num_bytes)
6057 {
6058         int ret;
6059         struct btrfs_block_group_cache *block_group;
6060         struct btrfs_caching_control *caching_ctl;
6061
6062         block_group = btrfs_lookup_block_group(root->fs_info, start);
6063         if (!block_group)
6064                 return -EINVAL;
6065
6066         cache_block_group(block_group, 0);
6067         caching_ctl = get_caching_control(block_group);
6068
6069         if (!caching_ctl) {
6070                 /* Logic error */
6071                 BUG_ON(!block_group_cache_done(block_group));
6072                 ret = btrfs_remove_free_space(block_group, start, num_bytes);
6073         } else {
6074                 mutex_lock(&caching_ctl->mutex);
6075
6076                 if (start >= caching_ctl->progress) {
6077                         ret = add_excluded_extent(root, start, num_bytes);
6078                 } else if (start + num_bytes <= caching_ctl->progress) {
6079                         ret = btrfs_remove_free_space(block_group,
6080                                                       start, num_bytes);
6081                 } else {
6082                         num_bytes = caching_ctl->progress - start;
6083                         ret = btrfs_remove_free_space(block_group,
6084                                                       start, num_bytes);
6085                         if (ret)
6086                                 goto out_lock;
6087
6088                         num_bytes = (start + num_bytes) -
6089                                 caching_ctl->progress;
6090                         start = caching_ctl->progress;
6091                         ret = add_excluded_extent(root, start, num_bytes);
6092                 }
6093 out_lock:
6094                 mutex_unlock(&caching_ctl->mutex);
6095                 put_caching_control(caching_ctl);
6096         }
6097         btrfs_put_block_group(block_group);
6098         return ret;
6099 }
6100
6101 int btrfs_exclude_logged_extents(struct btrfs_root *log,
6102                                  struct extent_buffer *eb)
6103 {
6104         struct btrfs_file_extent_item *item;
6105         struct btrfs_key key;
6106         int found_type;
6107         int i;
6108
6109         if (!btrfs_fs_incompat(log->fs_info, MIXED_GROUPS))
6110                 return 0;
6111
6112         for (i = 0; i < btrfs_header_nritems(eb); i++) {
6113                 btrfs_item_key_to_cpu(eb, &key, i);
6114                 if (key.type != BTRFS_EXTENT_DATA_KEY)
6115                         continue;
6116                 item = btrfs_item_ptr(eb, i, struct btrfs_file_extent_item);
6117                 found_type = btrfs_file_extent_type(eb, item);
6118                 if (found_type == BTRFS_FILE_EXTENT_INLINE)
6119                         continue;
6120                 if (btrfs_file_extent_disk_bytenr(eb, item) == 0)
6121                         continue;
6122                 key.objectid = btrfs_file_extent_disk_bytenr(eb, item);
6123                 key.offset = btrfs_file_extent_disk_num_bytes(eb, item);
6124                 __exclude_logged_extent(log, key.objectid, key.offset);
6125         }
6126
6127         return 0;
6128 }
6129
6130 /**
6131  * btrfs_update_reserved_bytes - update the block_group and space info counters
6132  * @cache:      The cache we are manipulating
6133  * @num_bytes:  The number of bytes in question
6134  * @reserve:    One of the reservation enums
6135  * @delalloc:   The blocks are allocated for the delalloc write
6136  *
6137  * This is called by the allocator when it reserves space, or by somebody who is
6138  * freeing space that was never actually used on disk.  For example if you
6139  * reserve some space for a new leaf in transaction A and before transaction A
6140  * commits you free that leaf, you call this with reserve set to 0 in order to
6141  * clear the reservation.
6142  *
6143  * Metadata reservations should be called with RESERVE_ALLOC so we do the proper
6144  * ENOSPC accounting.  For data we handle the reservation through clearing the
6145  * delalloc bits in the io_tree.  We have to do this since we could end up
6146  * allocating less disk space for the amount of data we have reserved in the
6147  * case of compression.
6148  *
6149  * If this is a reservation and the block group has become read only we cannot
6150  * make the reservation and return -EAGAIN, otherwise this function always
6151  * succeeds.
6152  */
6153 static int btrfs_update_reserved_bytes(struct btrfs_block_group_cache *cache,
6154                                        u64 num_bytes, int reserve, int delalloc)
6155 {
6156         struct btrfs_space_info *space_info = cache->space_info;
6157         int ret = 0;
6158
6159         spin_lock(&space_info->lock);
6160         spin_lock(&cache->lock);
6161         if (reserve != RESERVE_FREE) {
6162                 if (cache->ro) {
6163                         ret = -EAGAIN;
6164                 } else {
6165                         cache->reserved += num_bytes;
6166                         space_info->bytes_reserved += num_bytes;
6167                         if (reserve == RESERVE_ALLOC) {
6168                                 trace_btrfs_space_reservation(cache->fs_info,
6169                                                 "space_info", space_info->flags,
6170                                                 num_bytes, 0);
6171                                 space_info->bytes_may_use -= num_bytes;
6172                         }
6173
6174                         if (delalloc)
6175                                 cache->delalloc_bytes += num_bytes;
6176                 }
6177         } else {
6178                 if (cache->ro)
6179                         space_info->bytes_readonly += num_bytes;
6180                 cache->reserved -= num_bytes;
6181                 space_info->bytes_reserved -= num_bytes;
6182
6183                 if (delalloc)
6184                         cache->delalloc_bytes -= num_bytes;
6185         }
6186         spin_unlock(&cache->lock);
6187         spin_unlock(&space_info->lock);
6188         return ret;
6189 }
6190
6191 void btrfs_prepare_extent_commit(struct btrfs_trans_handle *trans,
6192                                 struct btrfs_root *root)
6193 {
6194         struct btrfs_fs_info *fs_info = root->fs_info;
6195         struct btrfs_caching_control *next;
6196         struct btrfs_caching_control *caching_ctl;
6197         struct btrfs_block_group_cache *cache;
6198
6199         down_write(&fs_info->commit_root_sem);
6200
6201         list_for_each_entry_safe(caching_ctl, next,
6202                                  &fs_info->caching_block_groups, list) {
6203                 cache = caching_ctl->block_group;
6204                 if (block_group_cache_done(cache)) {
6205                         cache->last_byte_to_unpin = (u64)-1;
6206                         list_del_init(&caching_ctl->list);
6207                         put_caching_control(caching_ctl);
6208                 } else {
6209                         cache->last_byte_to_unpin = caching_ctl->progress;
6210                 }
6211         }
6212
6213         if (fs_info->pinned_extents == &fs_info->freed_extents[0])
6214                 fs_info->pinned_extents = &fs_info->freed_extents[1];
6215         else
6216                 fs_info->pinned_extents = &fs_info->freed_extents[0];
6217
6218         up_write(&fs_info->commit_root_sem);
6219
6220         update_global_block_rsv(fs_info);
6221 }
6222
6223 /*
6224  * Returns the free cluster for the given space info and sets empty_cluster to
6225  * what it should be based on the mount options.
6226  */
6227 static struct btrfs_free_cluster *
6228 fetch_cluster_info(struct btrfs_root *root, struct btrfs_space_info *space_info,
6229                    u64 *empty_cluster)
6230 {
6231         struct btrfs_free_cluster *ret = NULL;
6232         bool ssd = btrfs_test_opt(root, SSD);
6233
6234         *empty_cluster = 0;
6235         if (btrfs_mixed_space_info(space_info))
6236                 return ret;
6237
6238         if (ssd)
6239                 *empty_cluster = 2 * 1024 * 1024;
6240         if (space_info->flags & BTRFS_BLOCK_GROUP_METADATA) {
6241                 ret = &root->fs_info->meta_alloc_cluster;
6242                 if (!ssd)
6243                         *empty_cluster = 64 * 1024;
6244         } else if ((space_info->flags & BTRFS_BLOCK_GROUP_DATA) && ssd) {
6245                 ret = &root->fs_info->data_alloc_cluster;
6246         }
6247
6248         return ret;
6249 }
6250
6251 static int unpin_extent_range(struct btrfs_root *root, u64 start, u64 end,
6252                               const bool return_free_space)
6253 {
6254         struct btrfs_fs_info *fs_info = root->fs_info;
6255         struct btrfs_block_group_cache *cache = NULL;
6256         struct btrfs_space_info *space_info;
6257         struct btrfs_block_rsv *global_rsv = &fs_info->global_block_rsv;
6258         struct btrfs_free_cluster *cluster = NULL;
6259         u64 len;
6260         u64 total_unpinned = 0;
6261         u64 empty_cluster = 0;
6262         bool readonly;
6263
6264         while (start <= end) {
6265                 readonly = false;
6266                 if (!cache ||
6267                     start >= cache->key.objectid + cache->key.offset) {
6268                         if (cache)
6269                                 btrfs_put_block_group(cache);
6270                         total_unpinned = 0;
6271                         cache = btrfs_lookup_block_group(fs_info, start);
6272                         BUG_ON(!cache); /* Logic error */
6273
6274                         cluster = fetch_cluster_info(root,
6275                                                      cache->space_info,
6276                                                      &empty_cluster);
6277                         empty_cluster <<= 1;
6278                 }
6279
6280                 len = cache->key.objectid + cache->key.offset - start;
6281                 len = min(len, end + 1 - start);
6282
6283                 if (start < cache->last_byte_to_unpin) {
6284                         len = min(len, cache->last_byte_to_unpin - start);
6285                         if (return_free_space)
6286                                 btrfs_add_free_space(cache, start, len);
6287                 }
6288
6289                 start += len;
6290                 total_unpinned += len;
6291                 space_info = cache->space_info;
6292
6293                 /*
6294                  * If this space cluster has been marked as fragmented and we've
6295                  * unpinned enough in this block group to potentially allow a
6296                  * cluster to be created inside of it go ahead and clear the
6297                  * fragmented check.
6298                  */
6299                 if (cluster && cluster->fragmented &&
6300                     total_unpinned > empty_cluster) {
6301                         spin_lock(&cluster->lock);
6302                         cluster->fragmented = 0;
6303                         spin_unlock(&cluster->lock);
6304                 }
6305
6306                 spin_lock(&space_info->lock);
6307                 spin_lock(&cache->lock);
6308                 cache->pinned -= len;
6309                 space_info->bytes_pinned -= len;
6310                 space_info->max_extent_size = 0;
6311                 percpu_counter_add(&space_info->total_bytes_pinned, -len);
6312                 if (cache->ro) {
6313                         space_info->bytes_readonly += len;
6314                         readonly = true;
6315                 }
6316                 spin_unlock(&cache->lock);
6317                 if (!readonly && global_rsv->space_info == space_info) {
6318                         spin_lock(&global_rsv->lock);
6319                         if (!global_rsv->full) {
6320                                 len = min(len, global_rsv->size -
6321                                           global_rsv->reserved);
6322                                 global_rsv->reserved += len;
6323                                 space_info->bytes_may_use += len;
6324                                 if (global_rsv->reserved >= global_rsv->size)
6325                                         global_rsv->full = 1;
6326                         }
6327                         spin_unlock(&global_rsv->lock);
6328                 }
6329                 spin_unlock(&space_info->lock);
6330         }
6331
6332         if (cache)
6333                 btrfs_put_block_group(cache);
6334         return 0;
6335 }
6336
6337 int btrfs_finish_extent_commit(struct btrfs_trans_handle *trans,
6338                                struct btrfs_root *root)
6339 {
6340         struct btrfs_fs_info *fs_info = root->fs_info;
6341         struct btrfs_block_group_cache *block_group, *tmp;
6342         struct list_head *deleted_bgs;
6343         struct extent_io_tree *unpin;
6344         u64 start;
6345         u64 end;
6346         int ret;
6347
6348         if (fs_info->pinned_extents == &fs_info->freed_extents[0])
6349                 unpin = &fs_info->freed_extents[1];
6350         else
6351                 unpin = &fs_info->freed_extents[0];
6352
6353         while (!trans->aborted) {
6354                 mutex_lock(&fs_info->unused_bg_unpin_mutex);
6355                 ret = find_first_extent_bit(unpin, 0, &start, &end,
6356                                             EXTENT_DIRTY, NULL);
6357                 if (ret) {
6358                         mutex_unlock(&fs_info->unused_bg_unpin_mutex);
6359                         break;
6360                 }
6361
6362                 if (btrfs_test_opt(root, DISCARD))
6363                         ret = btrfs_discard_extent(root, start,
6364                                                    end + 1 - start, NULL);
6365
6366                 clear_extent_dirty(unpin, start, end, GFP_NOFS);
6367                 unpin_extent_range(root, start, end, true);
6368                 mutex_unlock(&fs_info->unused_bg_unpin_mutex);
6369                 cond_resched();
6370         }
6371
6372         /*
6373          * Transaction is finished.  We don't need the lock anymore.  We
6374          * do need to clean up the block groups in case of a transaction
6375          * abort.
6376          */
6377         deleted_bgs = &trans->transaction->deleted_bgs;
6378         list_for_each_entry_safe(block_group, tmp, deleted_bgs, bg_list) {
6379                 u64 trimmed = 0;
6380
6381                 ret = -EROFS;
6382                 if (!trans->aborted)
6383                         ret = btrfs_discard_extent(root,
6384                                                    block_group->key.objectid,
6385                                                    block_group->key.offset,
6386                                                    &trimmed);
6387
6388                 list_del_init(&block_group->bg_list);
6389                 btrfs_put_block_group_trimming(block_group);
6390                 btrfs_put_block_group(block_group);
6391
6392                 if (ret) {
6393                         const char *errstr = btrfs_decode_error(ret);
6394                         btrfs_warn(fs_info,
6395                                    "Discard failed while removing blockgroup: errno=%d %s\n",
6396                                    ret, errstr);
6397                 }
6398         }
6399
6400         return 0;
6401 }
6402
6403 static void add_pinned_bytes(struct btrfs_fs_info *fs_info, u64 num_bytes,
6404                              u64 owner, u64 root_objectid)
6405 {
6406         struct btrfs_space_info *space_info;
6407         u64 flags;
6408
6409         if (owner < BTRFS_FIRST_FREE_OBJECTID) {
6410                 if (root_objectid == BTRFS_CHUNK_TREE_OBJECTID)
6411                         flags = BTRFS_BLOCK_GROUP_SYSTEM;
6412                 else
6413                         flags = BTRFS_BLOCK_GROUP_METADATA;
6414         } else {
6415                 flags = BTRFS_BLOCK_GROUP_DATA;
6416         }
6417
6418         space_info = __find_space_info(fs_info, flags);
6419         BUG_ON(!space_info); /* Logic bug */
6420         percpu_counter_add(&space_info->total_bytes_pinned, num_bytes);
6421 }
6422
6423
6424 static int __btrfs_free_extent(struct btrfs_trans_handle *trans,
6425                                 struct btrfs_root *root,
6426                                 struct btrfs_delayed_ref_node *node, u64 parent,
6427                                 u64 root_objectid, u64 owner_objectid,
6428                                 u64 owner_offset, int refs_to_drop,
6429                                 struct btrfs_delayed_extent_op *extent_op)
6430 {
6431         struct btrfs_key key;
6432         struct btrfs_path *path;
6433         struct btrfs_fs_info *info = root->fs_info;
6434         struct btrfs_root *extent_root = info->extent_root;
6435         struct extent_buffer *leaf;
6436         struct btrfs_extent_item *ei;
6437         struct btrfs_extent_inline_ref *iref;
6438         int ret;
6439         int is_data;
6440         int extent_slot = 0;
6441         int found_extent = 0;
6442         int num_to_del = 1;
6443         u32 item_size;
6444         u64 refs;
6445         u64 bytenr = node->bytenr;
6446         u64 num_bytes = node->num_bytes;
6447         int last_ref = 0;
6448         bool skinny_metadata = btrfs_fs_incompat(root->fs_info,
6449                                                  SKINNY_METADATA);
6450
6451         path = btrfs_alloc_path();
6452         if (!path)
6453                 return -ENOMEM;
6454
6455         path->reada = 1;
6456         path->leave_spinning = 1;
6457
6458         is_data = owner_objectid >= BTRFS_FIRST_FREE_OBJECTID;
6459         BUG_ON(!is_data && refs_to_drop != 1);
6460
6461         if (is_data)
6462                 skinny_metadata = 0;
6463
6464         ret = lookup_extent_backref(trans, extent_root, path, &iref,
6465                                     bytenr, num_bytes, parent,
6466                                     root_objectid, owner_objectid,
6467                                     owner_offset);
6468         if (ret == 0) {
6469                 extent_slot = path->slots[0];
6470                 while (extent_slot >= 0) {
6471                         btrfs_item_key_to_cpu(path->nodes[0], &key,
6472                                               extent_slot);
6473                         if (key.objectid != bytenr)
6474                                 break;
6475                         if (key.type == BTRFS_EXTENT_ITEM_KEY &&
6476                             key.offset == num_bytes) {
6477                                 found_extent = 1;
6478                                 break;
6479                         }
6480                         if (key.type == BTRFS_METADATA_ITEM_KEY &&
6481                             key.offset == owner_objectid) {
6482                                 found_extent = 1;
6483                                 break;
6484                         }
6485                         if (path->slots[0] - extent_slot > 5)
6486                                 break;
6487                         extent_slot--;
6488                 }
6489 #ifdef BTRFS_COMPAT_EXTENT_TREE_V0
6490                 item_size = btrfs_item_size_nr(path->nodes[0], extent_slot);
6491                 if (found_extent && item_size < sizeof(*ei))
6492                         found_extent = 0;
6493 #endif
6494                 if (!found_extent) {
6495                         BUG_ON(iref);
6496                         ret = remove_extent_backref(trans, extent_root, path,
6497                                                     NULL, refs_to_drop,
6498                                                     is_data, &last_ref);
6499                         if (ret) {
6500                                 btrfs_abort_transaction(trans, extent_root, ret);
6501                                 goto out;
6502                         }
6503                         btrfs_release_path(path);
6504                         path->leave_spinning = 1;
6505
6506                         key.objectid = bytenr;
6507                         key.type = BTRFS_EXTENT_ITEM_KEY;
6508                         key.offset = num_bytes;
6509
6510                         if (!is_data && skinny_metadata) {
6511                                 key.type = BTRFS_METADATA_ITEM_KEY;
6512                                 key.offset = owner_objectid;
6513                         }
6514
6515                         ret = btrfs_search_slot(trans, extent_root,
6516                                                 &key, path, -1, 1);
6517                         if (ret > 0 && skinny_metadata && path->slots[0]) {
6518                                 /*
6519                                  * Couldn't find our skinny metadata item,
6520                                  * see if we have ye olde extent item.
6521                                  */
6522                                 path->slots[0]--;
6523                                 btrfs_item_key_to_cpu(path->nodes[0], &key,
6524                                                       path->slots[0]);
6525                                 if (key.objectid == bytenr &&
6526                                     key.type == BTRFS_EXTENT_ITEM_KEY &&
6527                                     key.offset == num_bytes)
6528                                         ret = 0;
6529                         }
6530
6531                         if (ret > 0 && skinny_metadata) {
6532                                 skinny_metadata = false;
6533                                 key.objectid = bytenr;
6534                                 key.type = BTRFS_EXTENT_ITEM_KEY;
6535                                 key.offset = num_bytes;
6536                                 btrfs_release_path(path);
6537                                 ret = btrfs_search_slot(trans, extent_root,
6538                                                         &key, path, -1, 1);
6539                         }
6540
6541                         if (ret) {
6542                                 btrfs_err(info, "umm, got %d back from search, was looking for %llu",
6543                                         ret, bytenr);
6544                                 if (ret > 0)
6545                                         btrfs_print_leaf(extent_root,
6546                                                          path->nodes[0]);
6547                         }
6548                         if (ret < 0) {
6549                                 btrfs_abort_transaction(trans, extent_root, ret);
6550                                 goto out;
6551                         }
6552                         extent_slot = path->slots[0];
6553                 }
6554         } else if (WARN_ON(ret == -ENOENT)) {
6555                 btrfs_print_leaf(extent_root, path->nodes[0]);
6556                 btrfs_err(info,
6557                         "unable to find ref byte nr %llu parent %llu root %llu  owner %llu offset %llu",
6558                         bytenr, parent, root_objectid, owner_objectid,
6559                         owner_offset);
6560                 btrfs_abort_transaction(trans, extent_root, ret);
6561                 goto out;
6562         } else {
6563                 btrfs_abort_transaction(trans, extent_root, ret);
6564                 goto out;
6565         }
6566
6567         leaf = path->nodes[0];
6568         item_size = btrfs_item_size_nr(leaf, extent_slot);
6569 #ifdef BTRFS_COMPAT_EXTENT_TREE_V0
6570         if (item_size < sizeof(*ei)) {
6571                 BUG_ON(found_extent || extent_slot != path->slots[0]);
6572                 ret = convert_extent_item_v0(trans, extent_root, path,
6573                                              owner_objectid, 0);
6574                 if (ret < 0) {
6575                         btrfs_abort_transaction(trans, extent_root, ret);
6576                         goto out;
6577                 }
6578
6579                 btrfs_release_path(path);
6580                 path->leave_spinning = 1;
6581
6582                 key.objectid = bytenr;
6583                 key.type = BTRFS_EXTENT_ITEM_KEY;
6584                 key.offset = num_bytes;
6585
6586                 ret = btrfs_search_slot(trans, extent_root, &key, path,
6587                                         -1, 1);
6588                 if (ret) {
6589                         btrfs_err(info, "umm, got %d back from search, was looking for %llu",
6590                                 ret, bytenr);
6591                         btrfs_print_leaf(extent_root, path->nodes[0]);
6592                 }
6593                 if (ret < 0) {
6594                         btrfs_abort_transaction(trans, extent_root, ret);
6595                         goto out;
6596                 }
6597
6598                 extent_slot = path->slots[0];
6599                 leaf = path->nodes[0];
6600                 item_size = btrfs_item_size_nr(leaf, extent_slot);
6601         }
6602 #endif
6603         BUG_ON(item_size < sizeof(*ei));
6604         ei = btrfs_item_ptr(leaf, extent_slot,
6605                             struct btrfs_extent_item);
6606         if (owner_objectid < BTRFS_FIRST_FREE_OBJECTID &&
6607             key.type == BTRFS_EXTENT_ITEM_KEY) {
6608                 struct btrfs_tree_block_info *bi;
6609                 BUG_ON(item_size < sizeof(*ei) + sizeof(*bi));
6610                 bi = (struct btrfs_tree_block_info *)(ei + 1);
6611                 WARN_ON(owner_objectid != btrfs_tree_block_level(leaf, bi));
6612         }
6613
6614         refs = btrfs_extent_refs(leaf, ei);
6615         if (refs < refs_to_drop) {
6616                 btrfs_err(info, "trying to drop %d refs but we only have %Lu "
6617                           "for bytenr %Lu", refs_to_drop, refs, bytenr);
6618                 ret = -EINVAL;
6619                 btrfs_abort_transaction(trans, extent_root, ret);
6620                 goto out;
6621         }
6622         refs -= refs_to_drop;
6623
6624         if (refs > 0) {
6625                 if (extent_op)
6626                         __run_delayed_extent_op(extent_op, leaf, ei);
6627                 /*
6628                  * In the case of inline back ref, reference count will
6629                  * be updated by remove_extent_backref
6630                  */
6631                 if (iref) {
6632                         BUG_ON(!found_extent);
6633                 } else {
6634                         btrfs_set_extent_refs(leaf, ei, refs);
6635                         btrfs_mark_buffer_dirty(leaf);
6636                 }
6637                 if (found_extent) {
6638                         ret = remove_extent_backref(trans, extent_root, path,
6639                                                     iref, refs_to_drop,
6640                                                     is_data, &last_ref);
6641                         if (ret) {
6642                                 btrfs_abort_transaction(trans, extent_root, ret);
6643                                 goto out;
6644                         }
6645                 }
6646                 add_pinned_bytes(root->fs_info, -num_bytes, owner_objectid,
6647                                  root_objectid);
6648         } else {
6649                 if (found_extent) {
6650                         BUG_ON(is_data && refs_to_drop !=
6651                                extent_data_ref_count(path, iref));
6652                         if (iref) {
6653                                 BUG_ON(path->slots[0] != extent_slot);
6654                         } else {
6655                                 BUG_ON(path->slots[0] != extent_slot + 1);
6656                                 path->slots[0] = extent_slot;
6657                                 num_to_del = 2;
6658                         }
6659                 }
6660
6661                 last_ref = 1;
6662                 ret = btrfs_del_items(trans, extent_root, path, path->slots[0],
6663                                       num_to_del);
6664                 if (ret) {
6665                         btrfs_abort_transaction(trans, extent_root, ret);
6666                         goto out;
6667                 }
6668                 btrfs_release_path(path);
6669
6670                 if (is_data) {
6671                         ret = btrfs_del_csums(trans, root, bytenr, num_bytes);
6672                         if (ret) {
6673                                 btrfs_abort_transaction(trans, extent_root, ret);
6674                                 goto out;
6675                         }
6676                 }
6677
6678                 ret = update_block_group(trans, root, bytenr, num_bytes, 0);
6679                 if (ret) {
6680                         btrfs_abort_transaction(trans, extent_root, ret);
6681                         goto out;
6682                 }
6683         }
6684         btrfs_release_path(path);
6685
6686 out:
6687         btrfs_free_path(path);
6688         return ret;
6689 }
6690
6691 /*
6692  * when we free an block, it is possible (and likely) that we free the last
6693  * delayed ref for that extent as well.  This searches the delayed ref tree for
6694  * a given extent, and if there are no other delayed refs to be processed, it
6695  * removes it from the tree.
6696  */
6697 static noinline int check_ref_cleanup(struct btrfs_trans_handle *trans,
6698                                       struct btrfs_root *root, u64 bytenr)
6699 {
6700         struct btrfs_delayed_ref_head *head;
6701         struct btrfs_delayed_ref_root *delayed_refs;
6702         int ret = 0;
6703
6704         delayed_refs = &trans->transaction->delayed_refs;
6705         spin_lock(&delayed_refs->lock);
6706         head = btrfs_find_delayed_ref_head(trans, bytenr);
6707         if (!head)
6708                 goto out_delayed_unlock;
6709
6710         spin_lock(&head->lock);
6711         if (!list_empty(&head->ref_list))
6712                 goto out;
6713
6714         if (head->extent_op) {
6715                 if (!head->must_insert_reserved)
6716                         goto out;
6717                 btrfs_free_delayed_extent_op(head->extent_op);
6718                 head->extent_op = NULL;
6719         }
6720
6721         /*
6722          * waiting for the lock here would deadlock.  If someone else has it
6723          * locked they are already in the process of dropping it anyway
6724          */
6725         if (!mutex_trylock(&head->mutex))
6726                 goto out;
6727
6728         /*
6729          * at this point we have a head with no other entries.  Go
6730          * ahead and process it.
6731          */
6732         head->node.in_tree = 0;
6733         rb_erase(&head->href_node, &delayed_refs->href_root);
6734
6735         atomic_dec(&delayed_refs->num_entries);
6736
6737         /*
6738          * we don't take a ref on the node because we're removing it from the
6739          * tree, so we just steal the ref the tree was holding.
6740          */
6741         delayed_refs->num_heads--;
6742         if (head->processing == 0)
6743                 delayed_refs->num_heads_ready--;
6744         head->processing = 0;
6745         spin_unlock(&head->lock);
6746         spin_unlock(&delayed_refs->lock);
6747
6748         BUG_ON(head->extent_op);
6749         if (head->must_insert_reserved)
6750                 ret = 1;
6751
6752         mutex_unlock(&head->mutex);
6753         btrfs_put_delayed_ref(&head->node);
6754         return ret;
6755 out:
6756         spin_unlock(&head->lock);
6757
6758 out_delayed_unlock:
6759         spin_unlock(&delayed_refs->lock);
6760         return 0;
6761 }
6762
6763 void btrfs_free_tree_block(struct btrfs_trans_handle *trans,
6764                            struct btrfs_root *root,
6765                            struct extent_buffer *buf,
6766                            u64 parent, int last_ref)
6767 {
6768         int pin = 1;
6769         int ret;
6770
6771         if (root->root_key.objectid != BTRFS_TREE_LOG_OBJECTID) {
6772                 ret = btrfs_add_delayed_tree_ref(root->fs_info, trans,
6773                                         buf->start, buf->len,
6774                                         parent, root->root_key.objectid,
6775                                         btrfs_header_level(buf),
6776                                         BTRFS_DROP_DELAYED_REF, NULL);
6777                 BUG_ON(ret); /* -ENOMEM */
6778         }
6779
6780         if (!last_ref)
6781                 return;
6782
6783         if (btrfs_header_generation(buf) == trans->transid) {
6784                 struct btrfs_block_group_cache *cache;
6785
6786                 if (root->root_key.objectid != BTRFS_TREE_LOG_OBJECTID) {
6787                         ret = check_ref_cleanup(trans, root, buf->start);
6788                         if (!ret)
6789                                 goto out;
6790                 }
6791
6792                 cache = btrfs_lookup_block_group(root->fs_info, buf->start);
6793
6794                 if (btrfs_header_flag(buf, BTRFS_HEADER_FLAG_WRITTEN)) {
6795                         pin_down_extent(root, cache, buf->start, buf->len, 1);
6796                         btrfs_put_block_group(cache);
6797                         goto out;
6798                 }
6799
6800                 WARN_ON(test_bit(EXTENT_BUFFER_DIRTY, &buf->bflags));
6801
6802                 btrfs_add_free_space(cache, buf->start, buf->len);
6803                 btrfs_update_reserved_bytes(cache, buf->len, RESERVE_FREE, 0);
6804                 btrfs_put_block_group(cache);
6805                 trace_btrfs_reserved_extent_free(root, buf->start, buf->len);
6806                 pin = 0;
6807         }
6808 out:
6809         if (pin)
6810                 add_pinned_bytes(root->fs_info, buf->len,
6811                                  btrfs_header_level(buf),
6812                                  root->root_key.objectid);
6813
6814         /*
6815          * Deleting the buffer, clear the corrupt flag since it doesn't matter
6816          * anymore.
6817          */
6818         clear_bit(EXTENT_BUFFER_CORRUPT, &buf->bflags);
6819 }
6820
6821 /* Can return -ENOMEM */
6822 int btrfs_free_extent(struct btrfs_trans_handle *trans, struct btrfs_root *root,
6823                       u64 bytenr, u64 num_bytes, u64 parent, u64 root_objectid,
6824                       u64 owner, u64 offset)
6825 {
6826         int ret;
6827         struct btrfs_fs_info *fs_info = root->fs_info;
6828
6829         if (btrfs_test_is_dummy_root(root))
6830                 return 0;
6831
6832         add_pinned_bytes(root->fs_info, num_bytes, owner, root_objectid);
6833
6834         /*
6835          * tree log blocks never actually go into the extent allocation
6836          * tree, just update pinning info and exit early.
6837          */
6838         if (root_objectid == BTRFS_TREE_LOG_OBJECTID) {
6839                 WARN_ON(owner >= BTRFS_FIRST_FREE_OBJECTID);
6840                 /* unlocks the pinned mutex */
6841                 btrfs_pin_extent(root, bytenr, num_bytes, 1);
6842                 ret = 0;
6843         } else if (owner < BTRFS_FIRST_FREE_OBJECTID) {
6844                 ret = btrfs_add_delayed_tree_ref(fs_info, trans, bytenr,
6845                                         num_bytes,
6846                                         parent, root_objectid, (int)owner,
6847                                         BTRFS_DROP_DELAYED_REF, NULL);
6848         } else {
6849                 ret = btrfs_add_delayed_data_ref(fs_info, trans, bytenr,
6850                                                 num_bytes,
6851                                                 parent, root_objectid, owner,
6852                                                 offset, 0,
6853                                                 BTRFS_DROP_DELAYED_REF, NULL);
6854         }
6855         return ret;
6856 }
6857
6858 /*
6859  * when we wait for progress in the block group caching, its because
6860  * our allocation attempt failed at least once.  So, we must sleep
6861  * and let some progress happen before we try again.
6862  *
6863  * This function will sleep at least once waiting for new free space to
6864  * show up, and then it will check the block group free space numbers
6865  * for our min num_bytes.  Another option is to have it go ahead
6866  * and look in the rbtree for a free extent of a given size, but this
6867  * is a good start.
6868  *
6869  * Callers of this must check if cache->cached == BTRFS_CACHE_ERROR before using
6870  * any of the information in this block group.
6871  */
6872 static noinline void
6873 wait_block_group_cache_progress(struct btrfs_block_group_cache *cache,
6874                                 u64 num_bytes)
6875 {
6876         struct btrfs_caching_control *caching_ctl;
6877
6878         caching_ctl = get_caching_control(cache);
6879         if (!caching_ctl)
6880                 return;
6881
6882         wait_event(caching_ctl->wait, block_group_cache_done(cache) ||
6883                    (cache->free_space_ctl->free_space >= num_bytes));
6884
6885         put_caching_control(caching_ctl);
6886 }
6887
6888 static noinline int
6889 wait_block_group_cache_done(struct btrfs_block_group_cache *cache)
6890 {
6891         struct btrfs_caching_control *caching_ctl;
6892         int ret = 0;
6893
6894         caching_ctl = get_caching_control(cache);
6895         if (!caching_ctl)
6896                 return (cache->cached == BTRFS_CACHE_ERROR) ? -EIO : 0;
6897
6898         wait_event(caching_ctl->wait, block_group_cache_done(cache));
6899         if (cache->cached == BTRFS_CACHE_ERROR)
6900                 ret = -EIO;
6901         put_caching_control(caching_ctl);
6902         return ret;
6903 }
6904
6905 int __get_raid_index(u64 flags)
6906 {
6907         if (flags & BTRFS_BLOCK_GROUP_RAID10)
6908                 return BTRFS_RAID_RAID10;
6909         else if (flags & BTRFS_BLOCK_GROUP_RAID1)
6910                 return BTRFS_RAID_RAID1;
6911         else if (flags & BTRFS_BLOCK_GROUP_DUP)
6912                 return BTRFS_RAID_DUP;
6913         else if (flags & BTRFS_BLOCK_GROUP_RAID0)
6914                 return BTRFS_RAID_RAID0;
6915         else if (flags & BTRFS_BLOCK_GROUP_RAID5)
6916                 return BTRFS_RAID_RAID5;
6917         else if (flags & BTRFS_BLOCK_GROUP_RAID6)
6918                 return BTRFS_RAID_RAID6;
6919
6920         return BTRFS_RAID_SINGLE; /* BTRFS_BLOCK_GROUP_SINGLE */
6921 }
6922
6923 int get_block_group_index(struct btrfs_block_group_cache *cache)
6924 {
6925         return __get_raid_index(cache->flags);
6926 }
6927
6928 static const char *btrfs_raid_type_names[BTRFS_NR_RAID_TYPES] = {
6929         [BTRFS_RAID_RAID10]     = "raid10",
6930         [BTRFS_RAID_RAID1]      = "raid1",
6931         [BTRFS_RAID_DUP]        = "dup",
6932         [BTRFS_RAID_RAID0]      = "raid0",
6933         [BTRFS_RAID_SINGLE]     = "single",
6934         [BTRFS_RAID_RAID5]      = "raid5",
6935         [BTRFS_RAID_RAID6]      = "raid6",
6936 };
6937
6938 static const char *get_raid_name(enum btrfs_raid_types type)
6939 {
6940         if (type >= BTRFS_NR_RAID_TYPES)
6941                 return NULL;
6942
6943         return btrfs_raid_type_names[type];
6944 }
6945
6946 enum btrfs_loop_type {
6947         LOOP_CACHING_NOWAIT = 0,
6948         LOOP_CACHING_WAIT = 1,
6949         LOOP_ALLOC_CHUNK = 2,
6950         LOOP_NO_EMPTY_SIZE = 3,
6951 };
6952
6953 static inline void
6954 btrfs_lock_block_group(struct btrfs_block_group_cache *cache,
6955                        int delalloc)
6956 {
6957         if (delalloc)
6958                 down_read(&cache->data_rwsem);
6959 }
6960
6961 static inline void
6962 btrfs_grab_block_group(struct btrfs_block_group_cache *cache,
6963                        int delalloc)
6964 {
6965         btrfs_get_block_group(cache);
6966         if (delalloc)
6967                 down_read(&cache->data_rwsem);
6968 }
6969
6970 static struct btrfs_block_group_cache *
6971 btrfs_lock_cluster(struct btrfs_block_group_cache *block_group,
6972                    struct btrfs_free_cluster *cluster,
6973                    int delalloc)
6974 {
6975         struct btrfs_block_group_cache *used_bg;
6976         bool locked = false;
6977 again:
6978         spin_lock(&cluster->refill_lock);
6979         if (locked) {
6980                 if (used_bg == cluster->block_group)
6981                         return used_bg;
6982
6983                 up_read(&used_bg->data_rwsem);
6984                 btrfs_put_block_group(used_bg);
6985         }
6986
6987         used_bg = cluster->block_group;
6988         if (!used_bg)
6989                 return NULL;
6990
6991         if (used_bg == block_group)
6992                 return used_bg;
6993
6994         btrfs_get_block_group(used_bg);
6995
6996         if (!delalloc)
6997                 return used_bg;
6998
6999         if (down_read_trylock(&used_bg->data_rwsem))
7000                 return used_bg;
7001
7002         spin_unlock(&cluster->refill_lock);
7003         down_read(&used_bg->data_rwsem);
7004         locked = true;
7005         goto again;
7006 }
7007
7008 static inline void
7009 btrfs_release_block_group(struct btrfs_block_group_cache *cache,
7010                          int delalloc)
7011 {
7012         if (delalloc)
7013                 up_read(&cache->data_rwsem);
7014         btrfs_put_block_group(cache);
7015 }
7016
7017 /*
7018  * walks the btree of allocated extents and find a hole of a given size.
7019  * The key ins is changed to record the hole:
7020  * ins->objectid == start position
7021  * ins->flags = BTRFS_EXTENT_ITEM_KEY
7022  * ins->offset == the size of the hole.
7023  * Any available blocks before search_start are skipped.
7024  *
7025  * If there is no suitable free space, we will record the max size of
7026  * the free space extent currently.
7027  */
7028 static noinline int find_free_extent(struct btrfs_root *orig_root,
7029                                      u64 num_bytes, u64 empty_size,
7030                                      u64 hint_byte, struct btrfs_key *ins,
7031                                      u64 flags, int delalloc)
7032 {
7033         int ret = 0;
7034         struct btrfs_root *root = orig_root->fs_info->extent_root;
7035         struct btrfs_free_cluster *last_ptr = NULL;
7036         struct btrfs_block_group_cache *block_group = NULL;
7037         u64 search_start = 0;
7038         u64 max_extent_size = 0;
7039         u64 empty_cluster = 0;
7040         struct btrfs_space_info *space_info;
7041         int loop = 0;
7042         int index = __get_raid_index(flags);
7043         int alloc_type = (flags & BTRFS_BLOCK_GROUP_DATA) ?
7044                 RESERVE_ALLOC_NO_ACCOUNT : RESERVE_ALLOC;
7045         bool failed_cluster_refill = false;
7046         bool failed_alloc = false;
7047         bool use_cluster = true;
7048         bool have_caching_bg = false;
7049         bool orig_have_caching_bg = false;
7050         bool full_search = false;
7051
7052         WARN_ON(num_bytes < root->sectorsize);
7053         ins->type = BTRFS_EXTENT_ITEM_KEY;
7054         ins->objectid = 0;
7055         ins->offset = 0;
7056
7057         trace_find_free_extent(orig_root, num_bytes, empty_size, flags);
7058
7059         space_info = __find_space_info(root->fs_info, flags);
7060         if (!space_info) {
7061                 btrfs_err(root->fs_info, "No space info for %llu", flags);
7062                 return -ENOSPC;
7063         }
7064
7065         /*
7066          * If our free space is heavily fragmented we may not be able to make
7067          * big contiguous allocations, so instead of doing the expensive search
7068          * for free space, simply return ENOSPC with our max_extent_size so we
7069          * can go ahead and search for a more manageable chunk.
7070          *
7071          * If our max_extent_size is large enough for our allocation simply
7072          * disable clustering since we will likely not be able to find enough
7073          * space to create a cluster and induce latency trying.
7074          */
7075         if (unlikely(space_info->max_extent_size)) {
7076                 spin_lock(&space_info->lock);
7077                 if (space_info->max_extent_size &&
7078                     num_bytes > space_info->max_extent_size) {
7079                         ins->offset = space_info->max_extent_size;
7080                         spin_unlock(&space_info->lock);
7081                         return -ENOSPC;
7082                 } else if (space_info->max_extent_size) {
7083                         use_cluster = false;
7084                 }
7085                 spin_unlock(&space_info->lock);
7086         }
7087
7088         last_ptr = fetch_cluster_info(orig_root, space_info, &empty_cluster);
7089         if (last_ptr) {
7090                 spin_lock(&last_ptr->lock);
7091                 if (last_ptr->block_group)
7092                         hint_byte = last_ptr->window_start;
7093                 if (last_ptr->fragmented) {
7094                         /*
7095                          * We still set window_start so we can keep track of the
7096                          * last place we found an allocation to try and save
7097                          * some time.
7098                          */
7099                         hint_byte = last_ptr->window_start;
7100                         use_cluster = false;
7101                 }
7102                 spin_unlock(&last_ptr->lock);
7103         }
7104
7105         search_start = max(search_start, first_logical_byte(root, 0));
7106         search_start = max(search_start, hint_byte);
7107         if (search_start == hint_byte) {
7108                 block_group = btrfs_lookup_block_group(root->fs_info,
7109                                                        search_start);
7110                 /*
7111                  * we don't want to use the block group if it doesn't match our
7112                  * allocation bits, or if its not cached.
7113                  *
7114                  * However if we are re-searching with an ideal block group
7115                  * picked out then we don't care that the block group is cached.
7116                  */
7117                 if (block_group && block_group_bits(block_group, flags) &&
7118                     block_group->cached != BTRFS_CACHE_NO) {
7119                         down_read(&space_info->groups_sem);
7120                         if (list_empty(&block_group->list) ||
7121                             block_group->ro) {
7122                                 /*
7123                                  * someone is removing this block group,
7124                                  * we can't jump into the have_block_group
7125                                  * target because our list pointers are not
7126                                  * valid
7127                                  */
7128                                 btrfs_put_block_group(block_group);
7129                                 up_read(&space_info->groups_sem);
7130                         } else {
7131                                 index = get_block_group_index(block_group);
7132                                 btrfs_lock_block_group(block_group, delalloc);
7133                                 goto have_block_group;
7134                         }
7135                 } else if (block_group) {
7136                         btrfs_put_block_group(block_group);
7137                 }
7138         }
7139 search:
7140         have_caching_bg = false;
7141         if (index == 0 || index == __get_raid_index(flags))
7142                 full_search = true;
7143         down_read(&space_info->groups_sem);
7144         list_for_each_entry(block_group, &space_info->block_groups[index],
7145                             list) {
7146                 u64 offset;
7147                 int cached;
7148
7149                 btrfs_grab_block_group(block_group, delalloc);
7150                 search_start = block_group->key.objectid;
7151
7152                 /*
7153                  * this can happen if we end up cycling through all the
7154                  * raid types, but we want to make sure we only allocate
7155                  * for the proper type.
7156                  */
7157                 if (!block_group_bits(block_group, flags)) {
7158                     u64 extra = BTRFS_BLOCK_GROUP_DUP |
7159                                 BTRFS_BLOCK_GROUP_RAID1 |
7160                                 BTRFS_BLOCK_GROUP_RAID5 |
7161                                 BTRFS_BLOCK_GROUP_RAID6 |
7162                                 BTRFS_BLOCK_GROUP_RAID10;
7163
7164                         /*
7165                          * if they asked for extra copies and this block group
7166                          * doesn't provide them, bail.  This does allow us to
7167                          * fill raid0 from raid1.
7168                          */
7169                         if ((flags & extra) && !(block_group->flags & extra))
7170                                 goto loop;
7171
7172                         /*
7173                          * This block group has different flags than we want.
7174                          * It's possible that we have MIXED_GROUP flag but no
7175                          * block group is mixed.  Just skip such block group.
7176                          */
7177                         btrfs_release_block_group(block_group, delalloc);
7178                         continue;
7179                 }
7180
7181 have_block_group:
7182                 cached = block_group_cache_done(block_group);
7183                 if (unlikely(!cached)) {
7184                         have_caching_bg = true;
7185                         ret = cache_block_group(block_group, 0);
7186                         BUG_ON(ret < 0);
7187                         ret = 0;
7188                 }
7189
7190                 if (unlikely(block_group->cached == BTRFS_CACHE_ERROR))
7191                         goto loop;
7192                 if (unlikely(block_group->ro))
7193                         goto loop;
7194
7195                 /*
7196                  * Ok we want to try and use the cluster allocator, so
7197                  * lets look there
7198                  */
7199                 if (last_ptr && use_cluster) {
7200                         struct btrfs_block_group_cache *used_block_group;
7201                         unsigned long aligned_cluster;
7202                         /*
7203                          * the refill lock keeps out other
7204                          * people trying to start a new cluster
7205                          */
7206                         used_block_group = btrfs_lock_cluster(block_group,
7207                                                               last_ptr,
7208                                                               delalloc);
7209                         if (!used_block_group)
7210                                 goto refill_cluster;
7211
7212                         if (used_block_group != block_group &&
7213                             (used_block_group->ro ||
7214                              !block_group_bits(used_block_group, flags)))
7215                                 goto release_cluster;
7216
7217                         offset = btrfs_alloc_from_cluster(used_block_group,
7218                                                 last_ptr,
7219                                                 num_bytes,
7220                                                 used_block_group->key.objectid,
7221                                                 &max_extent_size);
7222                         if (offset) {
7223                                 /* we have a block, we're done */
7224                                 spin_unlock(&last_ptr->refill_lock);
7225                                 trace_btrfs_reserve_extent_cluster(root,
7226                                                 used_block_group,
7227                                                 search_start, num_bytes);
7228                                 if (used_block_group != block_group) {
7229                                         btrfs_release_block_group(block_group,
7230                                                                   delalloc);
7231                                         block_group = used_block_group;
7232                                 }
7233                                 goto checks;
7234                         }
7235
7236                         WARN_ON(last_ptr->block_group != used_block_group);
7237 release_cluster:
7238                         /* If we are on LOOP_NO_EMPTY_SIZE, we can't
7239                          * set up a new clusters, so lets just skip it
7240                          * and let the allocator find whatever block
7241                          * it can find.  If we reach this point, we
7242                          * will have tried the cluster allocator
7243                          * plenty of times and not have found
7244                          * anything, so we are likely way too
7245                          * fragmented for the clustering stuff to find
7246                          * anything.
7247                          *
7248                          * However, if the cluster is taken from the
7249                          * current block group, release the cluster
7250                          * first, so that we stand a better chance of
7251                          * succeeding in the unclustered
7252                          * allocation.  */
7253                         if (loop >= LOOP_NO_EMPTY_SIZE &&
7254                             used_block_group != block_group) {
7255                                 spin_unlock(&last_ptr->refill_lock);
7256                                 btrfs_release_block_group(used_block_group,
7257                                                           delalloc);
7258                                 goto unclustered_alloc;
7259                         }
7260
7261                         /*
7262                          * this cluster didn't work out, free it and
7263                          * start over
7264                          */
7265                         btrfs_return_cluster_to_free_space(NULL, last_ptr);
7266
7267                         if (used_block_group != block_group)
7268                                 btrfs_release_block_group(used_block_group,
7269                                                           delalloc);
7270 refill_cluster:
7271                         if (loop >= LOOP_NO_EMPTY_SIZE) {
7272                                 spin_unlock(&last_ptr->refill_lock);
7273                                 goto unclustered_alloc;
7274                         }
7275
7276                         aligned_cluster = max_t(unsigned long,
7277                                                 empty_cluster + empty_size,
7278                                               block_group->full_stripe_len);
7279
7280                         /* allocate a cluster in this block group */
7281                         ret = btrfs_find_space_cluster(root, block_group,
7282                                                        last_ptr, search_start,
7283                                                        num_bytes,
7284                                                        aligned_cluster);
7285                         if (ret == 0) {
7286                                 /*
7287                                  * now pull our allocation out of this
7288                                  * cluster
7289                                  */
7290                                 offset = btrfs_alloc_from_cluster(block_group,
7291                                                         last_ptr,
7292                                                         num_bytes,
7293                                                         search_start,
7294                                                         &max_extent_size);
7295                                 if (offset) {
7296                                         /* we found one, proceed */
7297                                         spin_unlock(&last_ptr->refill_lock);
7298                                         trace_btrfs_reserve_extent_cluster(root,
7299                                                 block_group, search_start,
7300                                                 num_bytes);
7301                                         goto checks;
7302                                 }
7303                         } else if (!cached && loop > LOOP_CACHING_NOWAIT
7304                                    && !failed_cluster_refill) {
7305                                 spin_unlock(&last_ptr->refill_lock);
7306
7307                                 failed_cluster_refill = true;
7308                                 wait_block_group_cache_progress(block_group,
7309                                        num_bytes + empty_cluster + empty_size);
7310                                 goto have_block_group;
7311                         }
7312
7313                         /*
7314                          * at this point we either didn't find a cluster
7315                          * or we weren't able to allocate a block from our
7316                          * cluster.  Free the cluster we've been trying
7317                          * to use, and go to the next block group
7318                          */
7319                         btrfs_return_cluster_to_free_space(NULL, last_ptr);
7320                         spin_unlock(&last_ptr->refill_lock);
7321                         goto loop;
7322                 }
7323
7324 unclustered_alloc:
7325                 /*
7326                  * We are doing an unclustered alloc, set the fragmented flag so
7327                  * we don't bother trying to setup a cluster again until we get
7328                  * more space.
7329                  */
7330                 if (unlikely(last_ptr)) {
7331                         spin_lock(&last_ptr->lock);
7332                         last_ptr->fragmented = 1;
7333                         spin_unlock(&last_ptr->lock);
7334                 }
7335                 spin_lock(&block_group->free_space_ctl->tree_lock);
7336                 if (cached &&
7337                     block_group->free_space_ctl->free_space <
7338                     num_bytes + empty_cluster + empty_size) {
7339                         if (block_group->free_space_ctl->free_space >
7340                             max_extent_size)
7341                                 max_extent_size =
7342                                         block_group->free_space_ctl->free_space;
7343                         spin_unlock(&block_group->free_space_ctl->tree_lock);
7344                         goto loop;
7345                 }
7346                 spin_unlock(&block_group->free_space_ctl->tree_lock);
7347
7348                 offset = btrfs_find_space_for_alloc(block_group, search_start,
7349                                                     num_bytes, empty_size,
7350                                                     &max_extent_size);
7351                 /*
7352                  * If we didn't find a chunk, and we haven't failed on this
7353                  * block group before, and this block group is in the middle of
7354                  * caching and we are ok with waiting, then go ahead and wait
7355                  * for progress to be made, and set failed_alloc to true.
7356                  *
7357                  * If failed_alloc is true then we've already waited on this
7358                  * block group once and should move on to the next block group.
7359                  */
7360                 if (!offset && !failed_alloc && !cached &&
7361                     loop > LOOP_CACHING_NOWAIT) {
7362                         wait_block_group_cache_progress(block_group,
7363                                                 num_bytes + empty_size);
7364                         failed_alloc = true;
7365                         goto have_block_group;
7366                 } else if (!offset) {
7367                         goto loop;
7368                 }
7369 checks:
7370                 search_start = ALIGN(offset, root->stripesize);
7371
7372                 /* move on to the next group */
7373                 if (search_start + num_bytes >
7374                     block_group->key.objectid + block_group->key.offset) {
7375                         btrfs_add_free_space(block_group, offset, num_bytes);
7376                         goto loop;
7377                 }
7378
7379                 if (offset < search_start)
7380                         btrfs_add_free_space(block_group, offset,
7381                                              search_start - offset);
7382                 BUG_ON(offset > search_start);
7383
7384                 ret = btrfs_update_reserved_bytes(block_group, num_bytes,
7385                                                   alloc_type, delalloc);
7386                 if (ret == -EAGAIN) {
7387                         btrfs_add_free_space(block_group, offset, num_bytes);
7388                         goto loop;
7389                 }
7390
7391                 /* we are all good, lets return */
7392                 ins->objectid = search_start;
7393                 ins->offset = num_bytes;
7394
7395                 trace_btrfs_reserve_extent(orig_root, block_group,
7396                                            search_start, num_bytes);
7397                 btrfs_release_block_group(block_group, delalloc);
7398                 break;
7399 loop:
7400                 failed_cluster_refill = false;
7401                 failed_alloc = false;
7402                 BUG_ON(index != get_block_group_index(block_group));
7403                 btrfs_release_block_group(block_group, delalloc);
7404         }
7405         up_read(&space_info->groups_sem);
7406
7407         if ((loop == LOOP_CACHING_NOWAIT) && have_caching_bg
7408                 && !orig_have_caching_bg)
7409                 orig_have_caching_bg = true;
7410
7411         if (!ins->objectid && loop >= LOOP_CACHING_WAIT && have_caching_bg)
7412                 goto search;
7413
7414         if (!ins->objectid && ++index < BTRFS_NR_RAID_TYPES)
7415                 goto search;
7416
7417         /*
7418          * LOOP_CACHING_NOWAIT, search partially cached block groups, kicking
7419          *                      caching kthreads as we move along
7420          * LOOP_CACHING_WAIT, search everything, and wait if our bg is caching
7421          * LOOP_ALLOC_CHUNK, force a chunk allocation and try again
7422          * LOOP_NO_EMPTY_SIZE, set empty_size and empty_cluster to 0 and try
7423          *                      again
7424          */
7425         if (!ins->objectid && loop < LOOP_NO_EMPTY_SIZE) {
7426                 index = 0;
7427                 if (loop == LOOP_CACHING_NOWAIT) {
7428                         /*
7429                          * We want to skip the LOOP_CACHING_WAIT step if we
7430                          * don't have any unached bgs and we've alrelady done a
7431                          * full search through.
7432                          */
7433                         if (orig_have_caching_bg || !full_search)
7434                                 loop = LOOP_CACHING_WAIT;
7435                         else
7436                                 loop = LOOP_ALLOC_CHUNK;
7437                 } else {
7438                         loop++;
7439                 }
7440
7441                 if (loop == LOOP_ALLOC_CHUNK) {
7442                         struct btrfs_trans_handle *trans;
7443                         int exist = 0;
7444
7445                         trans = current->journal_info;
7446                         if (trans)
7447                                 exist = 1;
7448                         else
7449                                 trans = btrfs_join_transaction(root);
7450
7451                         if (IS_ERR(trans)) {
7452                                 ret = PTR_ERR(trans);
7453                                 goto out;
7454                         }
7455
7456                         ret = do_chunk_alloc(trans, root, flags,
7457                                              CHUNK_ALLOC_FORCE);
7458
7459                         /*
7460                          * If we can't allocate a new chunk we've already looped
7461                          * through at least once, move on to the NO_EMPTY_SIZE
7462                          * case.
7463                          */
7464                         if (ret == -ENOSPC)
7465                                 loop = LOOP_NO_EMPTY_SIZE;
7466
7467                         /*
7468                          * Do not bail out on ENOSPC since we
7469                          * can do more things.
7470                          */
7471                         if (ret < 0 && ret != -ENOSPC)
7472                                 btrfs_abort_transaction(trans,
7473                                                         root, ret);
7474                         else
7475                                 ret = 0;
7476                         if (!exist)
7477                                 btrfs_end_transaction(trans, root);
7478                         if (ret)
7479                                 goto out;
7480                 }
7481
7482                 if (loop == LOOP_NO_EMPTY_SIZE) {
7483                         /*
7484                          * Don't loop again if we already have no empty_size and
7485                          * no empty_cluster.
7486                          */
7487                         if (empty_size == 0 &&
7488                             empty_cluster == 0) {
7489                                 ret = -ENOSPC;
7490                                 goto out;
7491                         }
7492                         empty_size = 0;
7493                         empty_cluster = 0;
7494                 }
7495
7496                 goto search;
7497         } else if (!ins->objectid) {
7498                 ret = -ENOSPC;
7499         } else if (ins->objectid) {
7500                 if (!use_cluster && last_ptr) {
7501                         spin_lock(&last_ptr->lock);
7502                         last_ptr->window_start = ins->objectid;
7503                         spin_unlock(&last_ptr->lock);
7504                 }
7505                 ret = 0;
7506         }
7507 out:
7508         if (ret == -ENOSPC) {
7509                 spin_lock(&space_info->lock);
7510                 space_info->max_extent_size = max_extent_size;
7511                 spin_unlock(&space_info->lock);
7512                 ins->offset = max_extent_size;
7513         }
7514         return ret;
7515 }
7516
7517 static void dump_space_info(struct btrfs_space_info *info, u64 bytes,
7518                             int dump_block_groups)
7519 {
7520         struct btrfs_block_group_cache *cache;
7521         int index = 0;
7522
7523         spin_lock(&info->lock);
7524         printk(KERN_INFO "BTRFS: space_info %llu has %llu free, is %sfull\n",
7525                info->flags,
7526                info->total_bytes - info->bytes_used - info->bytes_pinned -
7527                info->bytes_reserved - info->bytes_readonly,
7528                (info->full) ? "" : "not ");
7529         printk(KERN_INFO "BTRFS: space_info total=%llu, used=%llu, pinned=%llu, "
7530                "reserved=%llu, may_use=%llu, readonly=%llu\n",
7531                info->total_bytes, info->bytes_used, info->bytes_pinned,
7532                info->bytes_reserved, info->bytes_may_use,
7533                info->bytes_readonly);
7534         spin_unlock(&info->lock);
7535
7536         if (!dump_block_groups)
7537                 return;
7538
7539         down_read(&info->groups_sem);
7540 again:
7541         list_for_each_entry(cache, &info->block_groups[index], list) {
7542                 spin_lock(&cache->lock);
7543                 printk(KERN_INFO "BTRFS: "
7544                            "block group %llu has %llu bytes, "
7545                            "%llu used %llu pinned %llu reserved %s\n",
7546                        cache->key.objectid, cache->key.offset,
7547                        btrfs_block_group_used(&cache->item), cache->pinned,
7548                        cache->reserved, cache->ro ? "[readonly]" : "");
7549                 btrfs_dump_free_space(cache, bytes);
7550                 spin_unlock(&cache->lock);
7551         }
7552         if (++index < BTRFS_NR_RAID_TYPES)
7553                 goto again;
7554         up_read(&info->groups_sem);
7555 }
7556
7557 int btrfs_reserve_extent(struct btrfs_root *root,
7558                          u64 num_bytes, u64 min_alloc_size,
7559                          u64 empty_size, u64 hint_byte,
7560                          struct btrfs_key *ins, int is_data, int delalloc)
7561 {
7562         bool final_tried = num_bytes == min_alloc_size;
7563         u64 flags;
7564         int ret;
7565
7566         flags = btrfs_get_alloc_profile(root, is_data);
7567 again:
7568         WARN_ON(num_bytes < root->sectorsize);
7569         ret = find_free_extent(root, num_bytes, empty_size, hint_byte, ins,
7570                                flags, delalloc);
7571
7572         if (ret == -ENOSPC) {
7573                 if (!final_tried && ins->offset) {
7574                         num_bytes = min(num_bytes >> 1, ins->offset);
7575                         num_bytes = round_down(num_bytes, root->sectorsize);
7576                         num_bytes = max(num_bytes, min_alloc_size);
7577                         if (num_bytes == min_alloc_size)
7578                                 final_tried = true;
7579                         goto again;
7580                 } else if (btrfs_test_opt(root, ENOSPC_DEBUG)) {
7581                         struct btrfs_space_info *sinfo;
7582
7583                         sinfo = __find_space_info(root->fs_info, flags);
7584                         btrfs_err(root->fs_info, "allocation failed flags %llu, wanted %llu",
7585                                 flags, num_bytes);
7586                         if (sinfo)
7587                                 dump_space_info(sinfo, num_bytes, 1);
7588                 }
7589         }
7590
7591         return ret;
7592 }
7593
7594 static int __btrfs_free_reserved_extent(struct btrfs_root *root,
7595                                         u64 start, u64 len,
7596                                         int pin, int delalloc)
7597 {
7598         struct btrfs_block_group_cache *cache;
7599         int ret = 0;
7600
7601         cache = btrfs_lookup_block_group(root->fs_info, start);
7602         if (!cache) {
7603                 btrfs_err(root->fs_info, "Unable to find block group for %llu",
7604                         start);
7605                 return -ENOSPC;
7606         }
7607
7608         if (pin)
7609                 pin_down_extent(root, cache, start, len, 1);
7610         else {
7611                 if (btrfs_test_opt(root, DISCARD))
7612                         ret = btrfs_discard_extent(root, start, len, NULL);
7613                 btrfs_add_free_space(cache, start, len);
7614                 btrfs_update_reserved_bytes(cache, len, RESERVE_FREE, delalloc);
7615         }
7616
7617         btrfs_put_block_group(cache);
7618
7619         trace_btrfs_reserved_extent_free(root, start, len);
7620
7621         return ret;
7622 }
7623
7624 int btrfs_free_reserved_extent(struct btrfs_root *root,
7625                                u64 start, u64 len, int delalloc)
7626 {
7627         return __btrfs_free_reserved_extent(root, start, len, 0, delalloc);
7628 }
7629
7630 int btrfs_free_and_pin_reserved_extent(struct btrfs_root *root,
7631                                        u64 start, u64 len)
7632 {
7633         return __btrfs_free_reserved_extent(root, start, len, 1, 0);
7634 }
7635
7636 static int alloc_reserved_file_extent(struct btrfs_trans_handle *trans,
7637                                       struct btrfs_root *root,
7638                                       u64 parent, u64 root_objectid,
7639                                       u64 flags, u64 owner, u64 offset,
7640                                       struct btrfs_key *ins, int ref_mod)
7641 {
7642         int ret;
7643         struct btrfs_fs_info *fs_info = root->fs_info;
7644         struct btrfs_extent_item *extent_item;
7645         struct btrfs_extent_inline_ref *iref;
7646         struct btrfs_path *path;
7647         struct extent_buffer *leaf;
7648         int type;
7649         u32 size;
7650
7651         if (parent > 0)
7652                 type = BTRFS_SHARED_DATA_REF_KEY;
7653         else
7654                 type = BTRFS_EXTENT_DATA_REF_KEY;
7655
7656         size = sizeof(*extent_item) + btrfs_extent_inline_ref_size(type);
7657
7658         path = btrfs_alloc_path();
7659         if (!path)
7660                 return -ENOMEM;
7661
7662         path->leave_spinning = 1;
7663         ret = btrfs_insert_empty_item(trans, fs_info->extent_root, path,
7664                                       ins, size);
7665         if (ret) {
7666                 btrfs_free_path(path);
7667                 return ret;
7668         }
7669
7670         leaf = path->nodes[0];
7671         extent_item = btrfs_item_ptr(leaf, path->slots[0],
7672                                      struct btrfs_extent_item);
7673         btrfs_set_extent_refs(leaf, extent_item, ref_mod);
7674         btrfs_set_extent_generation(leaf, extent_item, trans->transid);
7675         btrfs_set_extent_flags(leaf, extent_item,
7676                                flags | BTRFS_EXTENT_FLAG_DATA);
7677
7678         iref = (struct btrfs_extent_inline_ref *)(extent_item + 1);
7679         btrfs_set_extent_inline_ref_type(leaf, iref, type);
7680         if (parent > 0) {
7681                 struct btrfs_shared_data_ref *ref;
7682                 ref = (struct btrfs_shared_data_ref *)(iref + 1);
7683                 btrfs_set_extent_inline_ref_offset(leaf, iref, parent);
7684                 btrfs_set_shared_data_ref_count(leaf, ref, ref_mod);
7685         } else {
7686                 struct btrfs_extent_data_ref *ref;
7687                 ref = (struct btrfs_extent_data_ref *)(&iref->offset);
7688                 btrfs_set_extent_data_ref_root(leaf, ref, root_objectid);
7689                 btrfs_set_extent_data_ref_objectid(leaf, ref, owner);
7690                 btrfs_set_extent_data_ref_offset(leaf, ref, offset);
7691                 btrfs_set_extent_data_ref_count(leaf, ref, ref_mod);
7692         }
7693
7694         btrfs_mark_buffer_dirty(path->nodes[0]);
7695         btrfs_free_path(path);
7696
7697         ret = update_block_group(trans, root, ins->objectid, ins->offset, 1);
7698         if (ret) { /* -ENOENT, logic error */
7699                 btrfs_err(fs_info, "update block group failed for %llu %llu",
7700                         ins->objectid, ins->offset);
7701                 BUG();
7702         }
7703         trace_btrfs_reserved_extent_alloc(root, ins->objectid, ins->offset);
7704         return ret;
7705 }
7706
7707 static int alloc_reserved_tree_block(struct btrfs_trans_handle *trans,
7708                                      struct btrfs_root *root,
7709                                      u64 parent, u64 root_objectid,
7710                                      u64 flags, struct btrfs_disk_key *key,
7711                                      int level, struct btrfs_key *ins)
7712 {
7713         int ret;
7714         struct btrfs_fs_info *fs_info = root->fs_info;
7715         struct btrfs_extent_item *extent_item;
7716         struct btrfs_tree_block_info *block_info;
7717         struct btrfs_extent_inline_ref *iref;
7718         struct btrfs_path *path;
7719         struct extent_buffer *leaf;
7720         u32 size = sizeof(*extent_item) + sizeof(*iref);
7721         u64 num_bytes = ins->offset;
7722         bool skinny_metadata = btrfs_fs_incompat(root->fs_info,
7723                                                  SKINNY_METADATA);
7724
7725         if (!skinny_metadata)
7726                 size += sizeof(*block_info);
7727
7728         path = btrfs_alloc_path();
7729         if (!path) {
7730                 btrfs_free_and_pin_reserved_extent(root, ins->objectid,
7731                                                    root->nodesize);
7732                 return -ENOMEM;
7733         }
7734
7735         path->leave_spinning = 1;
7736         ret = btrfs_insert_empty_item(trans, fs_info->extent_root, path,
7737                                       ins, size);
7738         if (ret) {
7739                 btrfs_free_path(path);
7740                 btrfs_free_and_pin_reserved_extent(root, ins->objectid,
7741                                                    root->nodesize);
7742                 return ret;
7743         }
7744
7745         leaf = path->nodes[0];
7746         extent_item = btrfs_item_ptr(leaf, path->slots[0],
7747                                      struct btrfs_extent_item);
7748         btrfs_set_extent_refs(leaf, extent_item, 1);
7749         btrfs_set_extent_generation(leaf, extent_item, trans->transid);
7750         btrfs_set_extent_flags(leaf, extent_item,
7751                                flags | BTRFS_EXTENT_FLAG_TREE_BLOCK);
7752
7753         if (skinny_metadata) {
7754                 iref = (struct btrfs_extent_inline_ref *)(extent_item + 1);
7755                 num_bytes = root->nodesize;
7756         } else {
7757                 block_info = (struct btrfs_tree_block_info *)(extent_item + 1);
7758                 btrfs_set_tree_block_key(leaf, block_info, key);
7759                 btrfs_set_tree_block_level(leaf, block_info, level);
7760                 iref = (struct btrfs_extent_inline_ref *)(block_info + 1);
7761         }
7762
7763         if (parent > 0) {
7764                 BUG_ON(!(flags & BTRFS_BLOCK_FLAG_FULL_BACKREF));
7765                 btrfs_set_extent_inline_ref_type(leaf, iref,
7766                                                  BTRFS_SHARED_BLOCK_REF_KEY);
7767                 btrfs_set_extent_inline_ref_offset(leaf, iref, parent);
7768         } else {
7769                 btrfs_set_extent_inline_ref_type(leaf, iref,
7770                                                  BTRFS_TREE_BLOCK_REF_KEY);
7771                 btrfs_set_extent_inline_ref_offset(leaf, iref, root_objectid);
7772         }
7773
7774         btrfs_mark_buffer_dirty(leaf);
7775         btrfs_free_path(path);
7776
7777         ret = update_block_group(trans, root, ins->objectid, root->nodesize,
7778                                  1);
7779         if (ret) { /* -ENOENT, logic error */
7780                 btrfs_err(fs_info, "update block group failed for %llu %llu",
7781                         ins->objectid, ins->offset);
7782                 BUG();
7783         }
7784
7785         trace_btrfs_reserved_extent_alloc(root, ins->objectid, root->nodesize);
7786         return ret;
7787 }
7788
7789 int btrfs_alloc_reserved_file_extent(struct btrfs_trans_handle *trans,
7790                                      struct btrfs_root *root,
7791                                      u64 root_objectid, u64 owner,
7792                                      u64 offset, u64 ram_bytes,
7793                                      struct btrfs_key *ins)
7794 {
7795         int ret;
7796
7797         BUG_ON(root_objectid == BTRFS_TREE_LOG_OBJECTID);
7798
7799         ret = btrfs_add_delayed_data_ref(root->fs_info, trans, ins->objectid,
7800                                          ins->offset, 0,
7801                                          root_objectid, owner, offset,
7802                                          ram_bytes, BTRFS_ADD_DELAYED_EXTENT,
7803                                          NULL);
7804         return ret;
7805 }
7806
7807 /*
7808  * this is used by the tree logging recovery code.  It records that
7809  * an extent has been allocated and makes sure to clear the free
7810  * space cache bits as well
7811  */
7812 int btrfs_alloc_logged_file_extent(struct btrfs_trans_handle *trans,
7813                                    struct btrfs_root *root,
7814                                    u64 root_objectid, u64 owner, u64 offset,
7815                                    struct btrfs_key *ins)
7816 {
7817         int ret;
7818         struct btrfs_block_group_cache *block_group;
7819
7820         /*
7821          * Mixed block groups will exclude before processing the log so we only
7822          * need to do the exlude dance if this fs isn't mixed.
7823          */
7824         if (!btrfs_fs_incompat(root->fs_info, MIXED_GROUPS)) {
7825                 ret = __exclude_logged_extent(root, ins->objectid, ins->offset);
7826                 if (ret)
7827                         return ret;
7828         }
7829
7830         block_group = btrfs_lookup_block_group(root->fs_info, ins->objectid);
7831         if (!block_group)
7832                 return -EINVAL;
7833
7834         ret = btrfs_update_reserved_bytes(block_group, ins->offset,
7835                                           RESERVE_ALLOC_NO_ACCOUNT, 0);
7836         BUG_ON(ret); /* logic error */
7837         ret = alloc_reserved_file_extent(trans, root, 0, root_objectid,
7838                                          0, owner, offset, ins, 1);
7839         btrfs_put_block_group(block_group);
7840         return ret;
7841 }
7842
7843 static struct extent_buffer *
7844 btrfs_init_new_buffer(struct btrfs_trans_handle *trans, struct btrfs_root *root,
7845                       u64 bytenr, int level)
7846 {
7847         struct extent_buffer *buf;
7848
7849         buf = btrfs_find_create_tree_block(root, bytenr);
7850         if (!buf)
7851                 return ERR_PTR(-ENOMEM);
7852
7853         /*
7854          * Extra safety check in case the extent tree is corrupted and extent
7855          * allocator chooses to use a tree block which is already used and
7856          * locked.
7857          */
7858         if (buf->lock_owner == current->pid) {
7859                 btrfs_err_rl(root->fs_info,
7860 "tree block %llu owner %llu already locked by pid=%d, extent tree corruption detected",
7861                         buf->start, btrfs_header_owner(buf), current->pid);
7862                 free_extent_buffer(buf);
7863                 return ERR_PTR(-EUCLEAN);
7864         }
7865
7866         btrfs_set_header_generation(buf, trans->transid);
7867         btrfs_set_buffer_lockdep_class(root->root_key.objectid, buf, level);
7868         btrfs_tree_lock(buf);
7869         clean_tree_block(trans, root->fs_info, buf);
7870         clear_bit(EXTENT_BUFFER_STALE, &buf->bflags);
7871
7872         btrfs_set_lock_blocking(buf);
7873         btrfs_set_buffer_uptodate(buf);
7874
7875         if (root->root_key.objectid == BTRFS_TREE_LOG_OBJECTID) {
7876                 buf->log_index = root->log_transid % 2;
7877                 /*
7878                  * we allow two log transactions at a time, use different
7879                  * EXENT bit to differentiate dirty pages.
7880                  */
7881                 if (buf->log_index == 0)
7882                         set_extent_dirty(&root->dirty_log_pages, buf->start,
7883                                         buf->start + buf->len - 1, GFP_NOFS);
7884                 else
7885                         set_extent_new(&root->dirty_log_pages, buf->start,
7886                                         buf->start + buf->len - 1, GFP_NOFS);
7887         } else {
7888                 buf->log_index = -1;
7889                 set_extent_dirty(&trans->transaction->dirty_pages, buf->start,
7890                          buf->start + buf->len - 1, GFP_NOFS);
7891         }
7892         trans->dirty = true;
7893         /* this returns a buffer locked for blocking */
7894         return buf;
7895 }
7896
7897 static struct btrfs_block_rsv *
7898 use_block_rsv(struct btrfs_trans_handle *trans,
7899               struct btrfs_root *root, u32 blocksize)
7900 {
7901         struct btrfs_block_rsv *block_rsv;
7902         struct btrfs_block_rsv *global_rsv = &root->fs_info->global_block_rsv;
7903         int ret;
7904         bool global_updated = false;
7905
7906         block_rsv = get_block_rsv(trans, root);
7907
7908         if (unlikely(block_rsv->size == 0))
7909                 goto try_reserve;
7910 again:
7911         ret = block_rsv_use_bytes(block_rsv, blocksize);
7912         if (!ret)
7913                 return block_rsv;
7914
7915         if (block_rsv->failfast)
7916                 return ERR_PTR(ret);
7917
7918         if (block_rsv->type == BTRFS_BLOCK_RSV_GLOBAL && !global_updated) {
7919                 global_updated = true;
7920                 update_global_block_rsv(root->fs_info);
7921                 goto again;
7922         }
7923
7924         if (btrfs_test_opt(root, ENOSPC_DEBUG)) {
7925                 static DEFINE_RATELIMIT_STATE(_rs,
7926                                 DEFAULT_RATELIMIT_INTERVAL * 10,
7927                                 /*DEFAULT_RATELIMIT_BURST*/ 1);
7928                 if (__ratelimit(&_rs))
7929                         WARN(1, KERN_DEBUG
7930                                 "BTRFS: block rsv returned %d\n", ret);
7931         }
7932 try_reserve:
7933         ret = reserve_metadata_bytes(root, block_rsv, blocksize,
7934                                      BTRFS_RESERVE_NO_FLUSH);
7935         if (!ret)
7936                 return block_rsv;
7937         /*
7938          * If we couldn't reserve metadata bytes try and use some from
7939          * the global reserve if its space type is the same as the global
7940          * reservation.
7941          */
7942         if (block_rsv->type != BTRFS_BLOCK_RSV_GLOBAL &&
7943             block_rsv->space_info == global_rsv->space_info) {
7944                 ret = block_rsv_use_bytes(global_rsv, blocksize);
7945                 if (!ret)
7946                         return global_rsv;
7947         }
7948         return ERR_PTR(ret);
7949 }
7950
7951 static void unuse_block_rsv(struct btrfs_fs_info *fs_info,
7952                             struct btrfs_block_rsv *block_rsv, u32 blocksize)
7953 {
7954         block_rsv_add_bytes(block_rsv, blocksize, 0);
7955         block_rsv_release_bytes(fs_info, block_rsv, NULL, 0);
7956 }
7957
7958 /*
7959  * finds a free extent and does all the dirty work required for allocation
7960  * returns the tree buffer or an ERR_PTR on error.
7961  */
7962 struct extent_buffer *btrfs_alloc_tree_block(struct btrfs_trans_handle *trans,
7963                                         struct btrfs_root *root,
7964                                         u64 parent, u64 root_objectid,
7965                                         struct btrfs_disk_key *key, int level,
7966                                         u64 hint, u64 empty_size)
7967 {
7968         struct btrfs_key ins;
7969         struct btrfs_block_rsv *block_rsv;
7970         struct extent_buffer *buf;
7971         struct btrfs_delayed_extent_op *extent_op;
7972         u64 flags = 0;
7973         int ret;
7974         u32 blocksize = root->nodesize;
7975         bool skinny_metadata = btrfs_fs_incompat(root->fs_info,
7976                                                  SKINNY_METADATA);
7977
7978         if (btrfs_test_is_dummy_root(root)) {
7979                 buf = btrfs_init_new_buffer(trans, root, root->alloc_bytenr,
7980                                             level);
7981                 if (!IS_ERR(buf))
7982                         root->alloc_bytenr += blocksize;
7983                 return buf;
7984         }
7985
7986         block_rsv = use_block_rsv(trans, root, blocksize);
7987         if (IS_ERR(block_rsv))
7988                 return ERR_CAST(block_rsv);
7989
7990         ret = btrfs_reserve_extent(root, blocksize, blocksize,
7991                                    empty_size, hint, &ins, 0, 0);
7992         if (ret)
7993                 goto out_unuse;
7994
7995         buf = btrfs_init_new_buffer(trans, root, ins.objectid, level);
7996         if (IS_ERR(buf)) {
7997                 ret = PTR_ERR(buf);
7998                 goto out_free_reserved;
7999         }
8000
8001         if (root_objectid == BTRFS_TREE_RELOC_OBJECTID) {
8002                 if (parent == 0)
8003                         parent = ins.objectid;
8004                 flags |= BTRFS_BLOCK_FLAG_FULL_BACKREF;
8005         } else
8006                 BUG_ON(parent > 0);
8007
8008         if (root_objectid != BTRFS_TREE_LOG_OBJECTID) {
8009                 extent_op = btrfs_alloc_delayed_extent_op();
8010                 if (!extent_op) {
8011                         ret = -ENOMEM;
8012                         goto out_free_buf;
8013                 }
8014                 if (key)
8015                         memcpy(&extent_op->key, key, sizeof(extent_op->key));
8016                 else
8017                         memset(&extent_op->key, 0, sizeof(extent_op->key));
8018                 extent_op->flags_to_set = flags;
8019                 if (skinny_metadata)
8020                         extent_op->update_key = 0;
8021                 else
8022                         extent_op->update_key = 1;
8023                 extent_op->update_flags = 1;
8024                 extent_op->is_data = 0;
8025                 extent_op->level = level;
8026
8027                 ret = btrfs_add_delayed_tree_ref(root->fs_info, trans,
8028                                                  ins.objectid, ins.offset,
8029                                                  parent, root_objectid, level,
8030                                                  BTRFS_ADD_DELAYED_EXTENT,
8031                                                  extent_op);
8032                 if (ret)
8033                         goto out_free_delayed;
8034         }
8035         return buf;
8036
8037 out_free_delayed:
8038         btrfs_free_delayed_extent_op(extent_op);
8039 out_free_buf:
8040         free_extent_buffer(buf);
8041 out_free_reserved:
8042         btrfs_free_reserved_extent(root, ins.objectid, ins.offset, 0);
8043 out_unuse:
8044         unuse_block_rsv(root->fs_info, block_rsv, blocksize);
8045         return ERR_PTR(ret);
8046 }
8047
8048 struct walk_control {
8049         u64 refs[BTRFS_MAX_LEVEL];
8050         u64 flags[BTRFS_MAX_LEVEL];
8051         struct btrfs_key update_progress;
8052         int stage;
8053         int level;
8054         int shared_level;
8055         int update_ref;
8056         int keep_locks;
8057         int reada_slot;
8058         int reada_count;
8059         int for_reloc;
8060 };
8061
8062 #define DROP_REFERENCE  1
8063 #define UPDATE_BACKREF  2
8064
8065 static noinline void reada_walk_down(struct btrfs_trans_handle *trans,
8066                                      struct btrfs_root *root,
8067                                      struct walk_control *wc,
8068                                      struct btrfs_path *path)
8069 {
8070         u64 bytenr;
8071         u64 generation;
8072         u64 refs;
8073         u64 flags;
8074         u32 nritems;
8075         u32 blocksize;
8076         struct btrfs_key key;
8077         struct extent_buffer *eb;
8078         int ret;
8079         int slot;
8080         int nread = 0;
8081
8082         if (path->slots[wc->level] < wc->reada_slot) {
8083                 wc->reada_count = wc->reada_count * 2 / 3;
8084                 wc->reada_count = max(wc->reada_count, 2);
8085         } else {
8086                 wc->reada_count = wc->reada_count * 3 / 2;
8087                 wc->reada_count = min_t(int, wc->reada_count,
8088                                         BTRFS_NODEPTRS_PER_BLOCK(root));
8089         }
8090
8091         eb = path->nodes[wc->level];
8092         nritems = btrfs_header_nritems(eb);
8093         blocksize = root->nodesize;
8094
8095         for (slot = path->slots[wc->level]; slot < nritems; slot++) {
8096                 if (nread >= wc->reada_count)
8097                         break;
8098
8099                 cond_resched();
8100                 bytenr = btrfs_node_blockptr(eb, slot);
8101                 generation = btrfs_node_ptr_generation(eb, slot);
8102
8103                 if (slot == path->slots[wc->level])
8104                         goto reada;
8105
8106                 if (wc->stage == UPDATE_BACKREF &&
8107                     generation <= root->root_key.offset)
8108                         continue;
8109
8110                 /* We don't lock the tree block, it's OK to be racy here */
8111                 ret = btrfs_lookup_extent_info(trans, root, bytenr,
8112                                                wc->level - 1, 1, &refs,
8113                                                &flags);
8114                 /* We don't care about errors in readahead. */
8115                 if (ret < 0)
8116                         continue;
8117                 BUG_ON(refs == 0);
8118
8119                 if (wc->stage == DROP_REFERENCE) {
8120                         if (refs == 1)
8121                                 goto reada;
8122
8123                         if (wc->level == 1 &&
8124                             (flags & BTRFS_BLOCK_FLAG_FULL_BACKREF))
8125                                 continue;
8126                         if (!wc->update_ref ||
8127                             generation <= root->root_key.offset)
8128                                 continue;
8129                         btrfs_node_key_to_cpu(eb, &key, slot);
8130                         ret = btrfs_comp_cpu_keys(&key,
8131                                                   &wc->update_progress);
8132                         if (ret < 0)
8133                                 continue;
8134                 } else {
8135                         if (wc->level == 1 &&
8136                             (flags & BTRFS_BLOCK_FLAG_FULL_BACKREF))
8137                                 continue;
8138                 }
8139 reada:
8140                 readahead_tree_block(root, bytenr);
8141                 nread++;
8142         }
8143         wc->reada_slot = slot;
8144 }
8145
8146 /*
8147  * These may not be seen by the usual inc/dec ref code so we have to
8148  * add them here.
8149  */
8150 static int record_one_subtree_extent(struct btrfs_trans_handle *trans,
8151                                      struct btrfs_root *root, u64 bytenr,
8152                                      u64 num_bytes)
8153 {
8154         struct btrfs_qgroup_extent_record *qrecord;
8155         struct btrfs_delayed_ref_root *delayed_refs;
8156
8157         qrecord = kmalloc(sizeof(*qrecord), GFP_NOFS);
8158         if (!qrecord)
8159                 return -ENOMEM;
8160
8161         qrecord->bytenr = bytenr;
8162         qrecord->num_bytes = num_bytes;
8163         qrecord->old_roots = NULL;
8164
8165         delayed_refs = &trans->transaction->delayed_refs;
8166         spin_lock(&delayed_refs->lock);
8167         if (btrfs_qgroup_insert_dirty_extent(delayed_refs, qrecord))
8168                 kfree(qrecord);
8169         spin_unlock(&delayed_refs->lock);
8170
8171         return 0;
8172 }
8173
8174 static int account_leaf_items(struct btrfs_trans_handle *trans,
8175                               struct btrfs_root *root,
8176                               struct extent_buffer *eb)
8177 {
8178         int nr = btrfs_header_nritems(eb);
8179         int i, extent_type, ret;
8180         struct btrfs_key key;
8181         struct btrfs_file_extent_item *fi;
8182         u64 bytenr, num_bytes;
8183
8184         /* We can be called directly from walk_up_proc() */
8185         if (!root->fs_info->quota_enabled)
8186                 return 0;
8187
8188         for (i = 0; i < nr; i++) {
8189                 btrfs_item_key_to_cpu(eb, &key, i);
8190
8191                 if (key.type != BTRFS_EXTENT_DATA_KEY)
8192                         continue;
8193
8194                 fi = btrfs_item_ptr(eb, i, struct btrfs_file_extent_item);
8195                 /* filter out non qgroup-accountable extents  */
8196                 extent_type = btrfs_file_extent_type(eb, fi);
8197
8198                 if (extent_type == BTRFS_FILE_EXTENT_INLINE)
8199                         continue;
8200
8201                 bytenr = btrfs_file_extent_disk_bytenr(eb, fi);
8202                 if (!bytenr)
8203                         continue;
8204
8205                 num_bytes = btrfs_file_extent_disk_num_bytes(eb, fi);
8206
8207                 ret = record_one_subtree_extent(trans, root, bytenr, num_bytes);
8208                 if (ret)
8209                         return ret;
8210         }
8211         return 0;
8212 }
8213
8214 /*
8215  * Walk up the tree from the bottom, freeing leaves and any interior
8216  * nodes which have had all slots visited. If a node (leaf or
8217  * interior) is freed, the node above it will have it's slot
8218  * incremented. The root node will never be freed.
8219  *
8220  * At the end of this function, we should have a path which has all
8221  * slots incremented to the next position for a search. If we need to
8222  * read a new node it will be NULL and the node above it will have the
8223  * correct slot selected for a later read.
8224  *
8225  * If we increment the root nodes slot counter past the number of
8226  * elements, 1 is returned to signal completion of the search.
8227  */
8228 static int adjust_slots_upwards(struct btrfs_root *root,
8229                                 struct btrfs_path *path, int root_level)
8230 {
8231         int level = 0;
8232         int nr, slot;
8233         struct extent_buffer *eb;
8234
8235         if (root_level == 0)
8236                 return 1;
8237
8238         while (level <= root_level) {
8239                 eb = path->nodes[level];
8240                 nr = btrfs_header_nritems(eb);
8241                 path->slots[level]++;
8242                 slot = path->slots[level];
8243                 if (slot >= nr || level == 0) {
8244                         /*
8245                          * Don't free the root -  we will detect this
8246                          * condition after our loop and return a
8247                          * positive value for caller to stop walking the tree.
8248                          */
8249                         if (level != root_level) {
8250                                 btrfs_tree_unlock_rw(eb, path->locks[level]);
8251                                 path->locks[level] = 0;
8252
8253                                 free_extent_buffer(eb);
8254                                 path->nodes[level] = NULL;
8255                                 path->slots[level] = 0;
8256                         }
8257                 } else {
8258                         /*
8259                          * We have a valid slot to walk back down
8260                          * from. Stop here so caller can process these
8261                          * new nodes.
8262                          */
8263                         break;
8264                 }
8265
8266                 level++;
8267         }
8268
8269         eb = path->nodes[root_level];
8270         if (path->slots[root_level] >= btrfs_header_nritems(eb))
8271                 return 1;
8272
8273         return 0;
8274 }
8275
8276 /*
8277  * root_eb is the subtree root and is locked before this function is called.
8278  */
8279 static int account_shared_subtree(struct btrfs_trans_handle *trans,
8280                                   struct btrfs_root *root,
8281                                   struct extent_buffer *root_eb,
8282                                   u64 root_gen,
8283                                   int root_level)
8284 {
8285         int ret = 0;
8286         int level;
8287         struct extent_buffer *eb = root_eb;
8288         struct btrfs_path *path = NULL;
8289
8290         BUG_ON(root_level < 0 || root_level > BTRFS_MAX_LEVEL);
8291         BUG_ON(root_eb == NULL);
8292
8293         if (!root->fs_info->quota_enabled)
8294                 return 0;
8295
8296         if (!extent_buffer_uptodate(root_eb)) {
8297                 ret = btrfs_read_buffer(root_eb, root_gen);
8298                 if (ret)
8299                         goto out;
8300         }
8301
8302         if (root_level == 0) {
8303                 ret = account_leaf_items(trans, root, root_eb);
8304                 goto out;
8305         }
8306
8307         path = btrfs_alloc_path();
8308         if (!path)
8309                 return -ENOMEM;
8310
8311         /*
8312          * Walk down the tree.  Missing extent blocks are filled in as
8313          * we go. Metadata is accounted every time we read a new
8314          * extent block.
8315          *
8316          * When we reach a leaf, we account for file extent items in it,
8317          * walk back up the tree (adjusting slot pointers as we go)
8318          * and restart the search process.
8319          */
8320         extent_buffer_get(root_eb); /* For path */
8321         path->nodes[root_level] = root_eb;
8322         path->slots[root_level] = 0;
8323         path->locks[root_level] = 0; /* so release_path doesn't try to unlock */
8324 walk_down:
8325         level = root_level;
8326         while (level >= 0) {
8327                 if (path->nodes[level] == NULL) {
8328                         int parent_slot;
8329                         u64 child_gen;
8330                         u64 child_bytenr;
8331
8332                         /* We need to get child blockptr/gen from
8333                          * parent before we can read it. */
8334                         eb = path->nodes[level + 1];
8335                         parent_slot = path->slots[level + 1];
8336                         child_bytenr = btrfs_node_blockptr(eb, parent_slot);
8337                         child_gen = btrfs_node_ptr_generation(eb, parent_slot);
8338
8339                         eb = read_tree_block(root, child_bytenr, child_gen);
8340                         if (IS_ERR(eb)) {
8341                                 ret = PTR_ERR(eb);
8342                                 goto out;
8343                         } else if (!extent_buffer_uptodate(eb)) {
8344                                 free_extent_buffer(eb);
8345                                 ret = -EIO;
8346                                 goto out;
8347                         }
8348
8349                         path->nodes[level] = eb;
8350                         path->slots[level] = 0;
8351
8352                         btrfs_tree_read_lock(eb);
8353                         btrfs_set_lock_blocking_rw(eb, BTRFS_READ_LOCK);
8354                         path->locks[level] = BTRFS_READ_LOCK_BLOCKING;
8355
8356                         ret = record_one_subtree_extent(trans, root, child_bytenr,
8357                                                         root->nodesize);
8358                         if (ret)
8359                                 goto out;
8360                 }
8361
8362                 if (level == 0) {
8363                         ret = account_leaf_items(trans, root, path->nodes[level]);
8364                         if (ret)
8365                                 goto out;
8366
8367                         /* Nonzero return here means we completed our search */
8368                         ret = adjust_slots_upwards(root, path, root_level);
8369                         if (ret)
8370                                 break;
8371
8372                         /* Restart search with new slots */
8373                         goto walk_down;
8374                 }
8375
8376                 level--;
8377         }
8378
8379         ret = 0;
8380 out:
8381         btrfs_free_path(path);
8382
8383         return ret;
8384 }
8385
8386 /*
8387  * helper to process tree block while walking down the tree.
8388  *
8389  * when wc->stage == UPDATE_BACKREF, this function updates
8390  * back refs for pointers in the block.
8391  *
8392  * NOTE: return value 1 means we should stop walking down.
8393  */
8394 static noinline int walk_down_proc(struct btrfs_trans_handle *trans,
8395                                    struct btrfs_root *root,
8396                                    struct btrfs_path *path,
8397                                    struct walk_control *wc, int lookup_info)
8398 {
8399         int level = wc->level;
8400         struct extent_buffer *eb = path->nodes[level];
8401         u64 flag = BTRFS_BLOCK_FLAG_FULL_BACKREF;
8402         int ret;
8403
8404         if (wc->stage == UPDATE_BACKREF &&
8405             btrfs_header_owner(eb) != root->root_key.objectid)
8406                 return 1;
8407
8408         /*
8409          * when reference count of tree block is 1, it won't increase
8410          * again. once full backref flag is set, we never clear it.
8411          */
8412         if (lookup_info &&
8413             ((wc->stage == DROP_REFERENCE && wc->refs[level] != 1) ||
8414              (wc->stage == UPDATE_BACKREF && !(wc->flags[level] & flag)))) {
8415                 BUG_ON(!path->locks[level]);
8416                 ret = btrfs_lookup_extent_info(trans, root,
8417                                                eb->start, level, 1,
8418                                                &wc->refs[level],
8419                                                &wc->flags[level]);
8420                 BUG_ON(ret == -ENOMEM);
8421                 if (ret)
8422                         return ret;
8423                 BUG_ON(wc->refs[level] == 0);
8424         }
8425
8426         if (wc->stage == DROP_REFERENCE) {
8427                 if (wc->refs[level] > 1)
8428                         return 1;
8429
8430                 if (path->locks[level] && !wc->keep_locks) {
8431                         btrfs_tree_unlock_rw(eb, path->locks[level]);
8432                         path->locks[level] = 0;
8433                 }
8434                 return 0;
8435         }
8436
8437         /* wc->stage == UPDATE_BACKREF */
8438         if (!(wc->flags[level] & flag)) {
8439                 BUG_ON(!path->locks[level]);
8440                 ret = btrfs_inc_ref(trans, root, eb, 1);
8441                 BUG_ON(ret); /* -ENOMEM */
8442                 ret = btrfs_dec_ref(trans, root, eb, 0);
8443                 BUG_ON(ret); /* -ENOMEM */
8444                 ret = btrfs_set_disk_extent_flags(trans, root, eb->start,
8445                                                   eb->len, flag,
8446                                                   btrfs_header_level(eb), 0);
8447                 BUG_ON(ret); /* -ENOMEM */
8448                 wc->flags[level] |= flag;
8449         }
8450
8451         /*
8452          * the block is shared by multiple trees, so it's not good to
8453          * keep the tree lock
8454          */
8455         if (path->locks[level] && level > 0) {
8456                 btrfs_tree_unlock_rw(eb, path->locks[level]);
8457                 path->locks[level] = 0;
8458         }
8459         return 0;
8460 }
8461
8462 /*
8463  * helper to process tree block pointer.
8464  *
8465  * when wc->stage == DROP_REFERENCE, this function checks
8466  * reference count of the block pointed to. if the block
8467  * is shared and we need update back refs for the subtree
8468  * rooted at the block, this function changes wc->stage to
8469  * UPDATE_BACKREF. if the block is shared and there is no
8470  * need to update back, this function drops the reference
8471  * to the block.
8472  *
8473  * NOTE: return value 1 means we should stop walking down.
8474  */
8475 static noinline int do_walk_down(struct btrfs_trans_handle *trans,
8476                                  struct btrfs_root *root,
8477                                  struct btrfs_path *path,
8478                                  struct walk_control *wc, int *lookup_info)
8479 {
8480         u64 bytenr;
8481         u64 generation;
8482         u64 parent;
8483         u32 blocksize;
8484         struct btrfs_key key;
8485         struct extent_buffer *next;
8486         int level = wc->level;
8487         int reada = 0;
8488         int ret = 0;
8489         bool need_account = false;
8490
8491         generation = btrfs_node_ptr_generation(path->nodes[level],
8492                                                path->slots[level]);
8493         /*
8494          * if the lower level block was created before the snapshot
8495          * was created, we know there is no need to update back refs
8496          * for the subtree
8497          */
8498         if (wc->stage == UPDATE_BACKREF &&
8499             generation <= root->root_key.offset) {
8500                 *lookup_info = 1;
8501                 return 1;
8502         }
8503
8504         bytenr = btrfs_node_blockptr(path->nodes[level], path->slots[level]);
8505         blocksize = root->nodesize;
8506
8507         next = btrfs_find_tree_block(root->fs_info, bytenr);
8508         if (!next) {
8509                 next = btrfs_find_create_tree_block(root, bytenr);
8510                 if (!next)
8511                         return -ENOMEM;
8512                 btrfs_set_buffer_lockdep_class(root->root_key.objectid, next,
8513                                                level - 1);
8514                 reada = 1;
8515         }
8516         btrfs_tree_lock(next);
8517         btrfs_set_lock_blocking(next);
8518
8519         ret = btrfs_lookup_extent_info(trans, root, bytenr, level - 1, 1,
8520                                        &wc->refs[level - 1],
8521                                        &wc->flags[level - 1]);
8522         if (ret < 0)
8523                 goto out_unlock;
8524
8525         if (unlikely(wc->refs[level - 1] == 0)) {
8526                 btrfs_err(root->fs_info, "Missing references.");
8527                 ret = -EIO;
8528                 goto out_unlock;
8529         }
8530         *lookup_info = 0;
8531
8532         if (wc->stage == DROP_REFERENCE) {
8533                 if (wc->refs[level - 1] > 1) {
8534                         need_account = true;
8535                         if (level == 1 &&
8536                             (wc->flags[0] & BTRFS_BLOCK_FLAG_FULL_BACKREF))
8537                                 goto skip;
8538
8539                         if (!wc->update_ref ||
8540                             generation <= root->root_key.offset)
8541                                 goto skip;
8542
8543                         btrfs_node_key_to_cpu(path->nodes[level], &key,
8544                                               path->slots[level]);
8545                         ret = btrfs_comp_cpu_keys(&key, &wc->update_progress);
8546                         if (ret < 0)
8547                                 goto skip;
8548
8549                         wc->stage = UPDATE_BACKREF;
8550                         wc->shared_level = level - 1;
8551                 }
8552         } else {
8553                 if (level == 1 &&
8554                     (wc->flags[0] & BTRFS_BLOCK_FLAG_FULL_BACKREF))
8555                         goto skip;
8556         }
8557
8558         if (!btrfs_buffer_uptodate(next, generation, 0)) {
8559                 btrfs_tree_unlock(next);
8560                 free_extent_buffer(next);
8561                 next = NULL;
8562                 *lookup_info = 1;
8563         }
8564
8565         if (!next) {
8566                 if (reada && level == 1)
8567                         reada_walk_down(trans, root, wc, path);
8568                 next = read_tree_block(root, bytenr, generation);
8569                 if (IS_ERR(next)) {
8570                         return PTR_ERR(next);
8571                 } else if (!extent_buffer_uptodate(next)) {
8572                         free_extent_buffer(next);
8573                         return -EIO;
8574                 }
8575                 btrfs_tree_lock(next);
8576                 btrfs_set_lock_blocking(next);
8577         }
8578
8579         level--;
8580         ASSERT(level == btrfs_header_level(next));
8581         if (level != btrfs_header_level(next)) {
8582                 btrfs_err(root->fs_info, "mismatched level");
8583                 ret = -EIO;
8584                 goto out_unlock;
8585         }
8586         path->nodes[level] = next;
8587         path->slots[level] = 0;
8588         path->locks[level] = BTRFS_WRITE_LOCK_BLOCKING;
8589         wc->level = level;
8590         if (wc->level == 1)
8591                 wc->reada_slot = 0;
8592         return 0;
8593 skip:
8594         wc->refs[level - 1] = 0;
8595         wc->flags[level - 1] = 0;
8596         if (wc->stage == DROP_REFERENCE) {
8597                 if (wc->flags[level] & BTRFS_BLOCK_FLAG_FULL_BACKREF) {
8598                         parent = path->nodes[level]->start;
8599                 } else {
8600                         ASSERT(root->root_key.objectid ==
8601                                btrfs_header_owner(path->nodes[level]));
8602                         if (root->root_key.objectid !=
8603                             btrfs_header_owner(path->nodes[level])) {
8604                                 btrfs_err(root->fs_info,
8605                                                 "mismatched block owner");
8606                                 ret = -EIO;
8607                                 goto out_unlock;
8608                         }
8609                         parent = 0;
8610                 }
8611
8612                 if (need_account) {
8613                         ret = account_shared_subtree(trans, root, next,
8614                                                      generation, level - 1);
8615                         if (ret) {
8616                                 btrfs_err_rl(root->fs_info,
8617                                         "Error "
8618                                         "%d accounting shared subtree. Quota "
8619                                         "is out of sync, rescan required.",
8620                                         ret);
8621                         }
8622                 }
8623                 ret = btrfs_free_extent(trans, root, bytenr, blocksize, parent,
8624                                 root->root_key.objectid, level - 1, 0);
8625                 if (ret)
8626                         goto out_unlock;
8627         }
8628
8629         *lookup_info = 1;
8630         ret = 1;
8631
8632 out_unlock:
8633         btrfs_tree_unlock(next);
8634         free_extent_buffer(next);
8635
8636         return ret;
8637 }
8638
8639 /*
8640  * helper to process tree block while walking up the tree.
8641  *
8642  * when wc->stage == DROP_REFERENCE, this function drops
8643  * reference count on the block.
8644  *
8645  * when wc->stage == UPDATE_BACKREF, this function changes
8646  * wc->stage back to DROP_REFERENCE if we changed wc->stage
8647  * to UPDATE_BACKREF previously while processing the block.
8648  *
8649  * NOTE: return value 1 means we should stop walking up.
8650  */
8651 static noinline int walk_up_proc(struct btrfs_trans_handle *trans,
8652                                  struct btrfs_root *root,
8653                                  struct btrfs_path *path,
8654                                  struct walk_control *wc)
8655 {
8656         int ret;
8657         int level = wc->level;
8658         struct extent_buffer *eb = path->nodes[level];
8659         u64 parent = 0;
8660
8661         if (wc->stage == UPDATE_BACKREF) {
8662                 BUG_ON(wc->shared_level < level);
8663                 if (level < wc->shared_level)
8664                         goto out;
8665
8666                 ret = find_next_key(path, level + 1, &wc->update_progress);
8667                 if (ret > 0)
8668                         wc->update_ref = 0;
8669
8670                 wc->stage = DROP_REFERENCE;
8671                 wc->shared_level = -1;
8672                 path->slots[level] = 0;
8673
8674                 /*
8675                  * check reference count again if the block isn't locked.
8676                  * we should start walking down the tree again if reference
8677                  * count is one.
8678                  */
8679                 if (!path->locks[level]) {
8680                         BUG_ON(level == 0);
8681                         btrfs_tree_lock(eb);
8682                         btrfs_set_lock_blocking(eb);
8683                         path->locks[level] = BTRFS_WRITE_LOCK_BLOCKING;
8684
8685                         ret = btrfs_lookup_extent_info(trans, root,
8686                                                        eb->start, level, 1,
8687                                                        &wc->refs[level],
8688                                                        &wc->flags[level]);
8689                         if (ret < 0) {
8690                                 btrfs_tree_unlock_rw(eb, path->locks[level]);
8691                                 path->locks[level] = 0;
8692                                 return ret;
8693                         }
8694                         BUG_ON(wc->refs[level] == 0);
8695                         if (wc->refs[level] == 1) {
8696                                 btrfs_tree_unlock_rw(eb, path->locks[level]);
8697                                 path->locks[level] = 0;
8698                                 return 1;
8699                         }
8700                 }
8701         }
8702
8703         /* wc->stage == DROP_REFERENCE */
8704         BUG_ON(wc->refs[level] > 1 && !path->locks[level]);
8705
8706         if (wc->refs[level] == 1) {
8707                 if (level == 0) {
8708                         if (wc->flags[level] & BTRFS_BLOCK_FLAG_FULL_BACKREF)
8709                                 ret = btrfs_dec_ref(trans, root, eb, 1);
8710                         else
8711                                 ret = btrfs_dec_ref(trans, root, eb, 0);
8712                         BUG_ON(ret); /* -ENOMEM */
8713                         ret = account_leaf_items(trans, root, eb);
8714                         if (ret) {
8715                                 btrfs_err_rl(root->fs_info,
8716                                         "error "
8717                                         "%d accounting leaf items. Quota "
8718                                         "is out of sync, rescan required.",
8719                                         ret);
8720                         }
8721                 }
8722                 /* make block locked assertion in clean_tree_block happy */
8723                 if (!path->locks[level] &&
8724                     btrfs_header_generation(eb) == trans->transid) {
8725                         btrfs_tree_lock(eb);
8726                         btrfs_set_lock_blocking(eb);
8727                         path->locks[level] = BTRFS_WRITE_LOCK_BLOCKING;
8728                 }
8729                 clean_tree_block(trans, root->fs_info, eb);
8730         }
8731
8732         if (eb == root->node) {
8733                 if (wc->flags[level] & BTRFS_BLOCK_FLAG_FULL_BACKREF)
8734                         parent = eb->start;
8735                 else if (root->root_key.objectid != btrfs_header_owner(eb))
8736                         goto owner_mismatch;
8737         } else {
8738                 if (wc->flags[level + 1] & BTRFS_BLOCK_FLAG_FULL_BACKREF)
8739                         parent = path->nodes[level + 1]->start;
8740                 else if (root->root_key.objectid !=
8741                          btrfs_header_owner(path->nodes[level + 1]))
8742                         goto owner_mismatch;
8743         }
8744
8745         btrfs_free_tree_block(trans, root, eb, parent, wc->refs[level] == 1);
8746 out:
8747         wc->refs[level] = 0;
8748         wc->flags[level] = 0;
8749         return 0;
8750
8751 owner_mismatch:
8752         btrfs_err_rl(root->fs_info, "unexpected tree owner, have %llu expect %llu",
8753                      btrfs_header_owner(eb), root->root_key.objectid);
8754         return -EUCLEAN;
8755 }
8756
8757 static noinline int walk_down_tree(struct btrfs_trans_handle *trans,
8758                                    struct btrfs_root *root,
8759                                    struct btrfs_path *path,
8760                                    struct walk_control *wc)
8761 {
8762         int level = wc->level;
8763         int lookup_info = 1;
8764         int ret;
8765
8766         while (level >= 0) {
8767                 ret = walk_down_proc(trans, root, path, wc, lookup_info);
8768                 if (ret > 0)
8769                         break;
8770
8771                 if (level == 0)
8772                         break;
8773
8774                 if (path->slots[level] >=
8775                     btrfs_header_nritems(path->nodes[level]))
8776                         break;
8777
8778                 ret = do_walk_down(trans, root, path, wc, &lookup_info);
8779                 if (ret > 0) {
8780                         path->slots[level]++;
8781                         continue;
8782                 } else if (ret < 0)
8783                         return ret;
8784                 level = wc->level;
8785         }
8786         return 0;
8787 }
8788
8789 static noinline int walk_up_tree(struct btrfs_trans_handle *trans,
8790                                  struct btrfs_root *root,
8791                                  struct btrfs_path *path,
8792                                  struct walk_control *wc, int max_level)
8793 {
8794         int level = wc->level;
8795         int ret;
8796
8797         path->slots[level] = btrfs_header_nritems(path->nodes[level]);
8798         while (level < max_level && path->nodes[level]) {
8799                 wc->level = level;
8800                 if (path->slots[level] + 1 <
8801                     btrfs_header_nritems(path->nodes[level])) {
8802                         path->slots[level]++;
8803                         return 0;
8804                 } else {
8805                         ret = walk_up_proc(trans, root, path, wc);
8806                         if (ret > 0)
8807                                 return 0;
8808                         if (ret < 0)
8809                                 return ret;
8810
8811                         if (path->locks[level]) {
8812                                 btrfs_tree_unlock_rw(path->nodes[level],
8813                                                      path->locks[level]);
8814                                 path->locks[level] = 0;
8815                         }
8816                         free_extent_buffer(path->nodes[level]);
8817                         path->nodes[level] = NULL;
8818                         level++;
8819                 }
8820         }
8821         return 1;
8822 }
8823
8824 /*
8825  * drop a subvolume tree.
8826  *
8827  * this function traverses the tree freeing any blocks that only
8828  * referenced by the tree.
8829  *
8830  * when a shared tree block is found. this function decreases its
8831  * reference count by one. if update_ref is true, this function
8832  * also make sure backrefs for the shared block and all lower level
8833  * blocks are properly updated.
8834  *
8835  * If called with for_reloc == 0, may exit early with -EAGAIN
8836  */
8837 int btrfs_drop_snapshot(struct btrfs_root *root,
8838                          struct btrfs_block_rsv *block_rsv, int update_ref,
8839                          int for_reloc)
8840 {
8841         struct btrfs_path *path;
8842         struct btrfs_trans_handle *trans;
8843         struct btrfs_root *tree_root = root->fs_info->tree_root;
8844         struct btrfs_root_item *root_item = &root->root_item;
8845         struct walk_control *wc;
8846         struct btrfs_key key;
8847         int err = 0;
8848         int ret;
8849         int level;
8850         bool root_dropped = false;
8851
8852         btrfs_debug(root->fs_info, "Drop subvolume %llu", root->objectid);
8853
8854         path = btrfs_alloc_path();
8855         if (!path) {
8856                 err = -ENOMEM;
8857                 goto out;
8858         }
8859
8860         wc = kzalloc(sizeof(*wc), GFP_NOFS);
8861         if (!wc) {
8862                 btrfs_free_path(path);
8863                 err = -ENOMEM;
8864                 goto out;
8865         }
8866
8867         trans = btrfs_start_transaction(tree_root, 0);
8868         if (IS_ERR(trans)) {
8869                 err = PTR_ERR(trans);
8870                 goto out_free;
8871         }
8872
8873         if (block_rsv)
8874                 trans->block_rsv = block_rsv;
8875
8876         if (btrfs_disk_key_objectid(&root_item->drop_progress) == 0) {
8877                 level = btrfs_header_level(root->node);
8878                 path->nodes[level] = btrfs_lock_root_node(root);
8879                 btrfs_set_lock_blocking(path->nodes[level]);
8880                 path->slots[level] = 0;
8881                 path->locks[level] = BTRFS_WRITE_LOCK_BLOCKING;
8882                 memset(&wc->update_progress, 0,
8883                        sizeof(wc->update_progress));
8884         } else {
8885                 btrfs_disk_key_to_cpu(&key, &root_item->drop_progress);
8886                 memcpy(&wc->update_progress, &key,
8887                        sizeof(wc->update_progress));
8888
8889                 level = root_item->drop_level;
8890                 BUG_ON(level == 0);
8891                 path->lowest_level = level;
8892                 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
8893                 path->lowest_level = 0;
8894                 if (ret < 0) {
8895                         err = ret;
8896                         goto out_end_trans;
8897                 }
8898                 WARN_ON(ret > 0);
8899
8900                 /*
8901                  * unlock our path, this is safe because only this
8902                  * function is allowed to delete this snapshot
8903                  */
8904                 btrfs_unlock_up_safe(path, 0);
8905
8906                 level = btrfs_header_level(root->node);
8907                 while (1) {
8908                         btrfs_tree_lock(path->nodes[level]);
8909                         btrfs_set_lock_blocking(path->nodes[level]);
8910                         path->locks[level] = BTRFS_WRITE_LOCK_BLOCKING;
8911
8912                         ret = btrfs_lookup_extent_info(trans, root,
8913                                                 path->nodes[level]->start,
8914                                                 level, 1, &wc->refs[level],
8915                                                 &wc->flags[level]);
8916                         if (ret < 0) {
8917                                 err = ret;
8918                                 goto out_end_trans;
8919                         }
8920                         BUG_ON(wc->refs[level] == 0);
8921
8922                         if (level == root_item->drop_level)
8923                                 break;
8924
8925                         btrfs_tree_unlock(path->nodes[level]);
8926                         path->locks[level] = 0;
8927                         WARN_ON(wc->refs[level] != 1);
8928                         level--;
8929                 }
8930         }
8931
8932         wc->level = level;
8933         wc->shared_level = -1;
8934         wc->stage = DROP_REFERENCE;
8935         wc->update_ref = update_ref;
8936         wc->keep_locks = 0;
8937         wc->for_reloc = for_reloc;
8938         wc->reada_count = BTRFS_NODEPTRS_PER_BLOCK(root);
8939
8940         while (1) {
8941
8942                 ret = walk_down_tree(trans, root, path, wc);
8943                 if (ret < 0) {
8944                         err = ret;
8945                         break;
8946                 }
8947
8948                 ret = walk_up_tree(trans, root, path, wc, BTRFS_MAX_LEVEL);
8949                 if (ret < 0) {
8950                         err = ret;
8951                         break;
8952                 }
8953
8954                 if (ret > 0) {
8955                         BUG_ON(wc->stage != DROP_REFERENCE);
8956                         break;
8957                 }
8958
8959                 if (wc->stage == DROP_REFERENCE) {
8960                         level = wc->level;
8961                         btrfs_node_key(path->nodes[level],
8962                                        &root_item->drop_progress,
8963                                        path->slots[level]);
8964                         root_item->drop_level = level;
8965                 }
8966
8967                 BUG_ON(wc->level == 0);
8968                 if (btrfs_should_end_transaction(trans, tree_root) ||
8969                     (!for_reloc && btrfs_need_cleaner_sleep(root))) {
8970                         ret = btrfs_update_root(trans, tree_root,
8971                                                 &root->root_key,
8972                                                 root_item);
8973                         if (ret) {
8974                                 btrfs_abort_transaction(trans, tree_root, ret);
8975                                 err = ret;
8976                                 goto out_end_trans;
8977                         }
8978
8979                         btrfs_end_transaction_throttle(trans, tree_root);
8980                         if (!for_reloc && btrfs_need_cleaner_sleep(root)) {
8981                                 pr_debug("BTRFS: drop snapshot early exit\n");
8982                                 err = -EAGAIN;
8983                                 goto out_free;
8984                         }
8985
8986                         trans = btrfs_start_transaction(tree_root, 0);
8987                         if (IS_ERR(trans)) {
8988                                 err = PTR_ERR(trans);
8989                                 goto out_free;
8990                         }
8991                         if (block_rsv)
8992                                 trans->block_rsv = block_rsv;
8993                 }
8994         }
8995         btrfs_release_path(path);
8996         if (err)
8997                 goto out_end_trans;
8998
8999         ret = btrfs_del_root(trans, tree_root, &root->root_key);
9000         if (ret) {
9001                 btrfs_abort_transaction(trans, tree_root, ret);
9002                 goto out_end_trans;
9003         }
9004
9005         if (root->root_key.objectid != BTRFS_TREE_RELOC_OBJECTID) {
9006                 ret = btrfs_find_root(tree_root, &root->root_key, path,
9007                                       NULL, NULL);
9008                 if (ret < 0) {
9009                         btrfs_abort_transaction(trans, tree_root, ret);
9010                         err = ret;
9011                         goto out_end_trans;
9012                 } else if (ret > 0) {
9013                         /* if we fail to delete the orphan item this time
9014                          * around, it'll get picked up the next time.
9015                          *
9016                          * The most common failure here is just -ENOENT.
9017                          */
9018                         btrfs_del_orphan_item(trans, tree_root,
9019                                               root->root_key.objectid);
9020                 }
9021         }
9022
9023         if (test_bit(BTRFS_ROOT_IN_RADIX, &root->state)) {
9024                 btrfs_add_dropped_root(trans, root);
9025         } else {
9026                 free_extent_buffer(root->node);
9027                 free_extent_buffer(root->commit_root);
9028                 btrfs_put_fs_root(root);
9029         }
9030         root_dropped = true;
9031 out_end_trans:
9032         btrfs_end_transaction_throttle(trans, tree_root);
9033 out_free:
9034         kfree(wc);
9035         btrfs_free_path(path);
9036 out:
9037         /*
9038          * So if we need to stop dropping the snapshot for whatever reason we
9039          * need to make sure to add it back to the dead root list so that we
9040          * keep trying to do the work later.  This also cleans up roots if we
9041          * don't have it in the radix (like when we recover after a power fail
9042          * or unmount) so we don't leak memory.
9043          */
9044         if (!for_reloc && root_dropped == false)
9045                 btrfs_add_dead_root(root);
9046         if (err && err != -EAGAIN)
9047                 btrfs_std_error(root->fs_info, err, NULL);
9048         return err;
9049 }
9050
9051 /*
9052  * drop subtree rooted at tree block 'node'.
9053  *
9054  * NOTE: this function will unlock and release tree block 'node'
9055  * only used by relocation code
9056  */
9057 int btrfs_drop_subtree(struct btrfs_trans_handle *trans,
9058                         struct btrfs_root *root,
9059                         struct extent_buffer *node,
9060                         struct extent_buffer *parent)
9061 {
9062         struct btrfs_path *path;
9063         struct walk_control *wc;
9064         int level;
9065         int parent_level;
9066         int ret = 0;
9067         int wret;
9068
9069         BUG_ON(root->root_key.objectid != BTRFS_TREE_RELOC_OBJECTID);
9070
9071         path = btrfs_alloc_path();
9072         if (!path)
9073                 return -ENOMEM;
9074
9075         wc = kzalloc(sizeof(*wc), GFP_NOFS);
9076         if (!wc) {
9077                 btrfs_free_path(path);
9078                 return -ENOMEM;
9079         }
9080
9081         btrfs_assert_tree_locked(parent);
9082         parent_level = btrfs_header_level(parent);
9083         extent_buffer_get(parent);
9084         path->nodes[parent_level] = parent;
9085         path->slots[parent_level] = btrfs_header_nritems(parent);
9086
9087         btrfs_assert_tree_locked(node);
9088         level = btrfs_header_level(node);
9089         path->nodes[level] = node;
9090         path->slots[level] = 0;
9091         path->locks[level] = BTRFS_WRITE_LOCK_BLOCKING;
9092
9093         wc->refs[parent_level] = 1;
9094         wc->flags[parent_level] = BTRFS_BLOCK_FLAG_FULL_BACKREF;
9095         wc->level = level;
9096         wc->shared_level = -1;
9097         wc->stage = DROP_REFERENCE;
9098         wc->update_ref = 0;
9099         wc->keep_locks = 1;
9100         wc->for_reloc = 1;
9101         wc->reada_count = BTRFS_NODEPTRS_PER_BLOCK(root);
9102
9103         while (1) {
9104                 wret = walk_down_tree(trans, root, path, wc);
9105                 if (wret < 0) {
9106                         ret = wret;
9107                         break;
9108                 }
9109
9110                 wret = walk_up_tree(trans, root, path, wc, parent_level);
9111                 if (wret < 0)
9112                         ret = wret;
9113                 if (wret != 0)
9114                         break;
9115         }
9116
9117         kfree(wc);
9118         btrfs_free_path(path);
9119         return ret;
9120 }
9121
9122 static u64 update_block_group_flags(struct btrfs_root *root, u64 flags)
9123 {
9124         u64 num_devices;
9125         u64 stripped;
9126
9127         /*
9128          * if restripe for this chunk_type is on pick target profile and
9129          * return, otherwise do the usual balance
9130          */
9131         stripped = get_restripe_target(root->fs_info, flags);
9132         if (stripped)
9133                 return extended_to_chunk(stripped);
9134
9135         num_devices = root->fs_info->fs_devices->rw_devices;
9136
9137         stripped = BTRFS_BLOCK_GROUP_RAID0 |
9138                 BTRFS_BLOCK_GROUP_RAID5 | BTRFS_BLOCK_GROUP_RAID6 |
9139                 BTRFS_BLOCK_GROUP_RAID1 | BTRFS_BLOCK_GROUP_RAID10;
9140
9141         if (num_devices == 1) {
9142                 stripped |= BTRFS_BLOCK_GROUP_DUP;
9143                 stripped = flags & ~stripped;
9144
9145                 /* turn raid0 into single device chunks */
9146                 if (flags & BTRFS_BLOCK_GROUP_RAID0)
9147                         return stripped;
9148
9149                 /* turn mirroring into duplication */
9150                 if (flags & (BTRFS_BLOCK_GROUP_RAID1 |
9151                              BTRFS_BLOCK_GROUP_RAID10))
9152                         return stripped | BTRFS_BLOCK_GROUP_DUP;
9153         } else {
9154                 /* they already had raid on here, just return */
9155                 if (flags & stripped)
9156                         return flags;
9157
9158                 stripped |= BTRFS_BLOCK_GROUP_DUP;
9159                 stripped = flags & ~stripped;
9160
9161                 /* switch duplicated blocks with raid1 */
9162                 if (flags & BTRFS_BLOCK_GROUP_DUP)
9163                         return stripped | BTRFS_BLOCK_GROUP_RAID1;
9164
9165                 /* this is drive concat, leave it alone */
9166         }
9167
9168         return flags;
9169 }
9170
9171 static int inc_block_group_ro(struct btrfs_block_group_cache *cache, int force)
9172 {
9173         struct btrfs_space_info *sinfo = cache->space_info;
9174         u64 num_bytes;
9175         u64 min_allocable_bytes;
9176         int ret = -ENOSPC;
9177
9178         /*
9179          * We need some metadata space and system metadata space for
9180          * allocating chunks in some corner cases until we force to set
9181          * it to be readonly.
9182          */
9183         if ((sinfo->flags &
9184              (BTRFS_BLOCK_GROUP_SYSTEM | BTRFS_BLOCK_GROUP_METADATA)) &&
9185             !force)
9186                 min_allocable_bytes = 1 * 1024 * 1024;
9187         else
9188                 min_allocable_bytes = 0;
9189
9190         spin_lock(&sinfo->lock);
9191         spin_lock(&cache->lock);
9192
9193         if (cache->ro) {
9194                 cache->ro++;
9195                 ret = 0;
9196                 goto out;
9197         }
9198
9199         num_bytes = cache->key.offset - cache->reserved - cache->pinned -
9200                     cache->bytes_super - btrfs_block_group_used(&cache->item);
9201
9202         if (sinfo->bytes_used + sinfo->bytes_reserved + sinfo->bytes_pinned +
9203             sinfo->bytes_may_use + sinfo->bytes_readonly + num_bytes +
9204             min_allocable_bytes <= sinfo->total_bytes) {
9205                 sinfo->bytes_readonly += num_bytes;
9206                 cache->ro++;
9207                 list_add_tail(&cache->ro_list, &sinfo->ro_bgs);
9208                 ret = 0;
9209         }
9210 out:
9211         spin_unlock(&cache->lock);
9212         spin_unlock(&sinfo->lock);
9213         return ret;
9214 }
9215
9216 int btrfs_inc_block_group_ro(struct btrfs_root *root,
9217                              struct btrfs_block_group_cache *cache)
9218
9219 {
9220         struct btrfs_trans_handle *trans;
9221         u64 alloc_flags;
9222         int ret;
9223
9224 again:
9225         trans = btrfs_join_transaction(root);
9226         if (IS_ERR(trans))
9227                 return PTR_ERR(trans);
9228
9229         /*
9230          * we're not allowed to set block groups readonly after the dirty
9231          * block groups cache has started writing.  If it already started,
9232          * back off and let this transaction commit
9233          */
9234         mutex_lock(&root->fs_info->ro_block_group_mutex);
9235         if (test_bit(BTRFS_TRANS_DIRTY_BG_RUN, &trans->transaction->flags)) {
9236                 u64 transid = trans->transid;
9237
9238                 mutex_unlock(&root->fs_info->ro_block_group_mutex);
9239                 btrfs_end_transaction(trans, root);
9240
9241                 ret = btrfs_wait_for_commit(root, transid);
9242                 if (ret)
9243                         return ret;
9244                 goto again;
9245         }
9246
9247         /*
9248          * if we are changing raid levels, try to allocate a corresponding
9249          * block group with the new raid level.
9250          */
9251         alloc_flags = update_block_group_flags(root, cache->flags);
9252         if (alloc_flags != cache->flags) {
9253                 ret = do_chunk_alloc(trans, root, alloc_flags,
9254                                      CHUNK_ALLOC_FORCE);
9255                 /*
9256                  * ENOSPC is allowed here, we may have enough space
9257                  * already allocated at the new raid level to
9258                  * carry on
9259                  */
9260                 if (ret == -ENOSPC)
9261                         ret = 0;
9262                 if (ret < 0)
9263                         goto out;
9264         }
9265
9266         ret = inc_block_group_ro(cache, 0);
9267         if (!ret)
9268                 goto out;
9269         alloc_flags = get_alloc_profile(root, cache->space_info->flags);
9270         ret = do_chunk_alloc(trans, root, alloc_flags,
9271                              CHUNK_ALLOC_FORCE);
9272         if (ret < 0)
9273                 goto out;
9274         ret = inc_block_group_ro(cache, 0);
9275 out:
9276         if (cache->flags & BTRFS_BLOCK_GROUP_SYSTEM) {
9277                 alloc_flags = update_block_group_flags(root, cache->flags);
9278                 lock_chunks(root->fs_info->chunk_root);
9279                 check_system_chunk(trans, root, alloc_flags);
9280                 unlock_chunks(root->fs_info->chunk_root);
9281         }
9282         mutex_unlock(&root->fs_info->ro_block_group_mutex);
9283
9284         btrfs_end_transaction(trans, root);
9285         return ret;
9286 }
9287
9288 int btrfs_force_chunk_alloc(struct btrfs_trans_handle *trans,
9289                             struct btrfs_root *root, u64 type)
9290 {
9291         u64 alloc_flags = get_alloc_profile(root, type);
9292         return do_chunk_alloc(trans, root, alloc_flags,
9293                               CHUNK_ALLOC_FORCE);
9294 }
9295
9296 /*
9297  * helper to account the unused space of all the readonly block group in the
9298  * space_info. takes mirrors into account.
9299  */
9300 u64 btrfs_account_ro_block_groups_free_space(struct btrfs_space_info *sinfo)
9301 {
9302         struct btrfs_block_group_cache *block_group;
9303         u64 free_bytes = 0;
9304         int factor;
9305
9306         /* It's df, we don't care if it's racey */
9307         if (list_empty(&sinfo->ro_bgs))
9308                 return 0;
9309
9310         spin_lock(&sinfo->lock);
9311         list_for_each_entry(block_group, &sinfo->ro_bgs, ro_list) {
9312                 spin_lock(&block_group->lock);
9313
9314                 if (!block_group->ro) {
9315                         spin_unlock(&block_group->lock);
9316                         continue;
9317                 }
9318
9319                 if (block_group->flags & (BTRFS_BLOCK_GROUP_RAID1 |
9320                                           BTRFS_BLOCK_GROUP_RAID10 |
9321                                           BTRFS_BLOCK_GROUP_DUP))
9322                         factor = 2;
9323                 else
9324                         factor = 1;
9325
9326                 free_bytes += (block_group->key.offset -
9327                                btrfs_block_group_used(&block_group->item)) *
9328                                factor;
9329
9330                 spin_unlock(&block_group->lock);
9331         }
9332         spin_unlock(&sinfo->lock);
9333
9334         return free_bytes;
9335 }
9336
9337 void btrfs_dec_block_group_ro(struct btrfs_root *root,
9338                               struct btrfs_block_group_cache *cache)
9339 {
9340         struct btrfs_space_info *sinfo = cache->space_info;
9341         u64 num_bytes;
9342
9343         BUG_ON(!cache->ro);
9344
9345         spin_lock(&sinfo->lock);
9346         spin_lock(&cache->lock);
9347         if (!--cache->ro) {
9348                 num_bytes = cache->key.offset - cache->reserved -
9349                             cache->pinned - cache->bytes_super -
9350                             btrfs_block_group_used(&cache->item);
9351                 sinfo->bytes_readonly -= num_bytes;
9352                 list_del_init(&cache->ro_list);
9353         }
9354         spin_unlock(&cache->lock);
9355         spin_unlock(&sinfo->lock);
9356 }
9357
9358 /*
9359  * checks to see if its even possible to relocate this block group.
9360  *
9361  * @return - -1 if it's not a good idea to relocate this block group, 0 if its
9362  * ok to go ahead and try.
9363  */
9364 int btrfs_can_relocate(struct btrfs_root *root, u64 bytenr)
9365 {
9366         struct btrfs_block_group_cache *block_group;
9367         struct btrfs_space_info *space_info;
9368         struct btrfs_fs_devices *fs_devices = root->fs_info->fs_devices;
9369         struct btrfs_device *device;
9370         struct btrfs_trans_handle *trans;
9371         u64 min_free;
9372         u64 dev_min = 1;
9373         u64 dev_nr = 0;
9374         u64 target;
9375         int index;
9376         int full = 0;
9377         int ret = 0;
9378
9379         block_group = btrfs_lookup_block_group(root->fs_info, bytenr);
9380
9381         /* odd, couldn't find the block group, leave it alone */
9382         if (!block_group)
9383                 return -1;
9384
9385         min_free = btrfs_block_group_used(&block_group->item);
9386
9387         /* no bytes used, we're good */
9388         if (!min_free)
9389                 goto out;
9390
9391         space_info = block_group->space_info;
9392         spin_lock(&space_info->lock);
9393
9394         full = space_info->full;
9395
9396         /*
9397          * if this is the last block group we have in this space, we can't
9398          * relocate it unless we're able to allocate a new chunk below.
9399          *
9400          * Otherwise, we need to make sure we have room in the space to handle
9401          * all of the extents from this block group.  If we can, we're good
9402          */
9403         if ((space_info->total_bytes != block_group->key.offset) &&
9404             (space_info->bytes_used + space_info->bytes_reserved +
9405              space_info->bytes_pinned + space_info->bytes_readonly +
9406              min_free < space_info->total_bytes)) {
9407                 spin_unlock(&space_info->lock);
9408                 goto out;
9409         }
9410         spin_unlock(&space_info->lock);
9411
9412         /*
9413          * ok we don't have enough space, but maybe we have free space on our
9414          * devices to allocate new chunks for relocation, so loop through our
9415          * alloc devices and guess if we have enough space.  if this block
9416          * group is going to be restriped, run checks against the target
9417          * profile instead of the current one.
9418          */
9419         ret = -1;
9420
9421         /*
9422          * index:
9423          *      0: raid10
9424          *      1: raid1
9425          *      2: dup
9426          *      3: raid0
9427          *      4: single
9428          */
9429         target = get_restripe_target(root->fs_info, block_group->flags);
9430         if (target) {
9431                 index = __get_raid_index(extended_to_chunk(target));
9432         } else {
9433                 /*
9434                  * this is just a balance, so if we were marked as full
9435                  * we know there is no space for a new chunk
9436                  */
9437                 if (full)
9438                         goto out;
9439
9440                 index = get_block_group_index(block_group);
9441         }
9442
9443         if (index == BTRFS_RAID_RAID10) {
9444                 dev_min = 4;
9445                 /* Divide by 2 */
9446                 min_free >>= 1;
9447         } else if (index == BTRFS_RAID_RAID1) {
9448                 dev_min = 2;
9449         } else if (index == BTRFS_RAID_DUP) {
9450                 /* Multiply by 2 */
9451                 min_free <<= 1;
9452         } else if (index == BTRFS_RAID_RAID0) {
9453                 dev_min = fs_devices->rw_devices;
9454                 min_free = div64_u64(min_free, dev_min);
9455         }
9456
9457         /* We need to do this so that we can look at pending chunks */
9458         trans = btrfs_join_transaction(root);
9459         if (IS_ERR(trans)) {
9460                 ret = PTR_ERR(trans);
9461                 goto out;
9462         }
9463
9464         mutex_lock(&root->fs_info->chunk_mutex);
9465         list_for_each_entry(device, &fs_devices->alloc_list, dev_alloc_list) {
9466                 u64 dev_offset;
9467
9468                 /*
9469                  * check to make sure we can actually find a chunk with enough
9470                  * space to fit our block group in.
9471                  */
9472                 if (device->total_bytes > device->bytes_used + min_free &&
9473                     !device->is_tgtdev_for_dev_replace) {
9474                         ret = find_free_dev_extent(trans, device, min_free,
9475                                                    &dev_offset, NULL);
9476                         if (!ret)
9477                                 dev_nr++;
9478
9479                         if (dev_nr >= dev_min)
9480                                 break;
9481
9482                         ret = -1;
9483                 }
9484         }
9485         mutex_unlock(&root->fs_info->chunk_mutex);
9486         btrfs_end_transaction(trans, root);
9487 out:
9488         btrfs_put_block_group(block_group);
9489         return ret;
9490 }
9491
9492 static int find_first_block_group(struct btrfs_root *root,
9493                 struct btrfs_path *path, struct btrfs_key *key)
9494 {
9495         int ret = 0;
9496         struct btrfs_key found_key;
9497         struct extent_buffer *leaf;
9498         struct btrfs_block_group_item bg;
9499         u64 flags;
9500         int slot;
9501
9502         ret = btrfs_search_slot(NULL, root, key, path, 0, 0);
9503         if (ret < 0)
9504                 goto out;
9505
9506         while (1) {
9507                 slot = path->slots[0];
9508                 leaf = path->nodes[0];
9509                 if (slot >= btrfs_header_nritems(leaf)) {
9510                         ret = btrfs_next_leaf(root, path);
9511                         if (ret == 0)
9512                                 continue;
9513                         if (ret < 0)
9514                                 goto out;
9515                         break;
9516                 }
9517                 btrfs_item_key_to_cpu(leaf, &found_key, slot);
9518
9519                 if (found_key.objectid >= key->objectid &&
9520                     found_key.type == BTRFS_BLOCK_GROUP_ITEM_KEY) {
9521                         struct extent_map_tree *em_tree;
9522                         struct extent_map *em;
9523
9524                         em_tree = &root->fs_info->mapping_tree.map_tree;
9525                         read_lock(&em_tree->lock);
9526                         em = lookup_extent_mapping(em_tree, found_key.objectid,
9527                                                    found_key.offset);
9528                         read_unlock(&em_tree->lock);
9529                         if (!em) {
9530                                 btrfs_err(root->fs_info,
9531                         "logical %llu len %llu found bg but no related chunk",
9532                                           found_key.objectid, found_key.offset);
9533                                 ret = -ENOENT;
9534                         } else if (em->start != found_key.objectid ||
9535                                    em->len != found_key.offset) {
9536                                 btrfs_err(root->fs_info,
9537                 "block group %llu len %llu mismatch with chunk %llu len %llu",
9538                                           found_key.objectid, found_key.offset,
9539                                           em->start, em->len);
9540                                 ret = -EUCLEAN;
9541                         } else {
9542                                 read_extent_buffer(leaf, &bg,
9543                                         btrfs_item_ptr_offset(leaf, slot),
9544                                         sizeof(bg));
9545                                 flags = btrfs_block_group_flags(&bg) &
9546                                         BTRFS_BLOCK_GROUP_TYPE_MASK;
9547
9548                                 if (flags != (em->map_lookup->type &
9549                                               BTRFS_BLOCK_GROUP_TYPE_MASK)) {
9550                                         btrfs_err(root->fs_info,
9551 "block group %llu len %llu type flags 0x%llx mismatch with chunk type flags 0x%llx",
9552                                                 found_key.objectid,
9553                                                 found_key.offset, flags,
9554                                                 (BTRFS_BLOCK_GROUP_TYPE_MASK &
9555                                                  em->map_lookup->type));
9556                                         ret = -EUCLEAN;
9557                                 } else {
9558                                         ret = 0;
9559                                 }
9560                         }
9561                         free_extent_map(em);
9562                         goto out;
9563                 }
9564                 path->slots[0]++;
9565         }
9566 out:
9567         return ret;
9568 }
9569
9570 void btrfs_put_block_group_cache(struct btrfs_fs_info *info)
9571 {
9572         struct btrfs_block_group_cache *block_group;
9573         u64 last = 0;
9574
9575         while (1) {
9576                 struct inode *inode;
9577
9578                 block_group = btrfs_lookup_first_block_group(info, last);
9579                 while (block_group) {
9580                         wait_block_group_cache_done(block_group);
9581                         spin_lock(&block_group->lock);
9582                         if (block_group->iref)
9583                                 break;
9584                         spin_unlock(&block_group->lock);
9585                         block_group = next_block_group(info->tree_root,
9586                                                        block_group);
9587                 }
9588                 if (!block_group) {
9589                         if (last == 0)
9590                                 break;
9591                         last = 0;
9592                         continue;
9593                 }
9594
9595                 inode = block_group->inode;
9596                 block_group->iref = 0;
9597                 block_group->inode = NULL;
9598                 spin_unlock(&block_group->lock);
9599                 iput(inode);
9600                 last = block_group->key.objectid + block_group->key.offset;
9601                 btrfs_put_block_group(block_group);
9602         }
9603 }
9604
9605 int btrfs_free_block_groups(struct btrfs_fs_info *info)
9606 {
9607         struct btrfs_block_group_cache *block_group;
9608         struct btrfs_space_info *space_info;
9609         struct btrfs_caching_control *caching_ctl;
9610         struct rb_node *n;
9611
9612         down_write(&info->commit_root_sem);
9613         while (!list_empty(&info->caching_block_groups)) {
9614                 caching_ctl = list_entry(info->caching_block_groups.next,
9615                                          struct btrfs_caching_control, list);
9616                 list_del(&caching_ctl->list);
9617                 put_caching_control(caching_ctl);
9618         }
9619         up_write(&info->commit_root_sem);
9620
9621         spin_lock(&info->unused_bgs_lock);
9622         while (!list_empty(&info->unused_bgs)) {
9623                 block_group = list_first_entry(&info->unused_bgs,
9624                                                struct btrfs_block_group_cache,
9625                                                bg_list);
9626                 list_del_init(&block_group->bg_list);
9627                 btrfs_put_block_group(block_group);
9628         }
9629         spin_unlock(&info->unused_bgs_lock);
9630
9631         spin_lock(&info->block_group_cache_lock);
9632         while ((n = rb_last(&info->block_group_cache_tree)) != NULL) {
9633                 block_group = rb_entry(n, struct btrfs_block_group_cache,
9634                                        cache_node);
9635                 rb_erase(&block_group->cache_node,
9636                          &info->block_group_cache_tree);
9637                 RB_CLEAR_NODE(&block_group->cache_node);
9638                 spin_unlock(&info->block_group_cache_lock);
9639
9640                 down_write(&block_group->space_info->groups_sem);
9641                 list_del(&block_group->list);
9642                 up_write(&block_group->space_info->groups_sem);
9643
9644                 if (block_group->cached == BTRFS_CACHE_STARTED)
9645                         wait_block_group_cache_done(block_group);
9646
9647                 /*
9648                  * We haven't cached this block group, which means we could
9649                  * possibly have excluded extents on this block group.
9650                  */
9651                 if (block_group->cached == BTRFS_CACHE_NO ||
9652                     block_group->cached == BTRFS_CACHE_ERROR)
9653                         free_excluded_extents(info->extent_root, block_group);
9654
9655                 btrfs_remove_free_space_cache(block_group);
9656                 btrfs_put_block_group(block_group);
9657
9658                 spin_lock(&info->block_group_cache_lock);
9659         }
9660         spin_unlock(&info->block_group_cache_lock);
9661
9662         /* now that all the block groups are freed, go through and
9663          * free all the space_info structs.  This is only called during
9664          * the final stages of unmount, and so we know nobody is
9665          * using them.  We call synchronize_rcu() once before we start,
9666          * just to be on the safe side.
9667          */
9668         synchronize_rcu();
9669
9670         release_global_block_rsv(info);
9671
9672         while (!list_empty(&info->space_info)) {
9673                 int i;
9674
9675                 space_info = list_entry(info->space_info.next,
9676                                         struct btrfs_space_info,
9677                                         list);
9678                 if (btrfs_test_opt(info->tree_root, ENOSPC_DEBUG)) {
9679                         if (WARN_ON(space_info->bytes_pinned > 0 ||
9680                             space_info->bytes_reserved > 0 ||
9681                             space_info->bytes_may_use > 0)) {
9682                                 dump_space_info(space_info, 0, 0);
9683                         }
9684                 }
9685                 list_del(&space_info->list);
9686                 for (i = 0; i < BTRFS_NR_RAID_TYPES; i++) {
9687                         struct kobject *kobj;
9688                         kobj = space_info->block_group_kobjs[i];
9689                         space_info->block_group_kobjs[i] = NULL;
9690                         if (kobj) {
9691                                 kobject_del(kobj);
9692                                 kobject_put(kobj);
9693                         }
9694                 }
9695                 kobject_del(&space_info->kobj);
9696                 kobject_put(&space_info->kobj);
9697         }
9698         return 0;
9699 }
9700
9701 static void __link_block_group(struct btrfs_space_info *space_info,
9702                                struct btrfs_block_group_cache *cache)
9703 {
9704         int index = get_block_group_index(cache);
9705         bool first = false;
9706
9707         down_write(&space_info->groups_sem);
9708         if (list_empty(&space_info->block_groups[index]))
9709                 first = true;
9710         list_add_tail(&cache->list, &space_info->block_groups[index]);
9711         up_write(&space_info->groups_sem);
9712
9713         if (first) {
9714                 struct raid_kobject *rkobj;
9715                 int ret;
9716
9717                 rkobj = kzalloc(sizeof(*rkobj), GFP_NOFS);
9718                 if (!rkobj)
9719                         goto out_err;
9720                 rkobj->raid_type = index;
9721                 kobject_init(&rkobj->kobj, &btrfs_raid_ktype);
9722                 ret = kobject_add(&rkobj->kobj, &space_info->kobj,
9723                                   "%s", get_raid_name(index));
9724                 if (ret) {
9725                         kobject_put(&rkobj->kobj);
9726                         goto out_err;
9727                 }
9728                 space_info->block_group_kobjs[index] = &rkobj->kobj;
9729         }
9730
9731         return;
9732 out_err:
9733         pr_warn("BTRFS: failed to add kobject for block cache. ignoring.\n");
9734 }
9735
9736 static struct btrfs_block_group_cache *
9737 btrfs_create_block_group_cache(struct btrfs_root *root, u64 start, u64 size)
9738 {
9739         struct btrfs_block_group_cache *cache;
9740
9741         cache = kzalloc(sizeof(*cache), GFP_NOFS);
9742         if (!cache)
9743                 return NULL;
9744
9745         cache->free_space_ctl = kzalloc(sizeof(*cache->free_space_ctl),
9746                                         GFP_NOFS);
9747         if (!cache->free_space_ctl) {
9748                 kfree(cache);
9749                 return NULL;
9750         }
9751
9752         cache->key.objectid = start;
9753         cache->key.offset = size;
9754         cache->key.type = BTRFS_BLOCK_GROUP_ITEM_KEY;
9755
9756         cache->sectorsize = root->sectorsize;
9757         cache->fs_info = root->fs_info;
9758         cache->full_stripe_len = btrfs_full_stripe_len(root,
9759                                                &root->fs_info->mapping_tree,
9760                                                start);
9761         atomic_set(&cache->count, 1);
9762         spin_lock_init(&cache->lock);
9763         init_rwsem(&cache->data_rwsem);
9764         INIT_LIST_HEAD(&cache->list);
9765         INIT_LIST_HEAD(&cache->cluster_list);
9766         INIT_LIST_HEAD(&cache->bg_list);
9767         INIT_LIST_HEAD(&cache->ro_list);
9768         INIT_LIST_HEAD(&cache->dirty_list);
9769         INIT_LIST_HEAD(&cache->io_list);
9770         btrfs_init_free_space_ctl(cache);
9771         atomic_set(&cache->trimming, 0);
9772
9773         return cache;
9774 }
9775
9776
9777 /*
9778  * Iterate all chunks and verify that each of them has the corresponding block
9779  * group
9780  */
9781 static int check_chunk_block_group_mappings(struct btrfs_fs_info *fs_info)
9782 {
9783         struct btrfs_mapping_tree *map_tree = &fs_info->mapping_tree;
9784         struct extent_map *em;
9785         struct btrfs_block_group_cache *bg;
9786         u64 start = 0;
9787         int ret = 0;
9788
9789         while (1) {
9790                 read_lock(&map_tree->map_tree.lock);
9791                 /*
9792                  * lookup_extent_mapping will return the first extent map
9793                  * intersecting the range, so setting @len to 1 is enough to
9794                  * get the first chunk.
9795                  */
9796                 em = lookup_extent_mapping(&map_tree->map_tree, start, 1);
9797                 read_unlock(&map_tree->map_tree.lock);
9798                 if (!em)
9799                         break;
9800
9801                 bg = btrfs_lookup_block_group(fs_info, em->start);
9802                 if (!bg) {
9803                         btrfs_err(fs_info,
9804         "chunk start=%llu len=%llu doesn't have corresponding block group",
9805                                      em->start, em->len);
9806                         ret = -EUCLEAN;
9807                         free_extent_map(em);
9808                         break;
9809                 }
9810                 if (bg->key.objectid != em->start ||
9811                     bg->key.offset != em->len ||
9812                     (bg->flags & BTRFS_BLOCK_GROUP_TYPE_MASK) !=
9813                     (em->map_lookup->type & BTRFS_BLOCK_GROUP_TYPE_MASK)) {
9814                         btrfs_err(fs_info,
9815 "chunk start=%llu len=%llu flags=0x%llx doesn't match block group start=%llu len=%llu flags=0x%llx",
9816                                 em->start, em->len,
9817                                 em->map_lookup->type & BTRFS_BLOCK_GROUP_TYPE_MASK,
9818                                 bg->key.objectid, bg->key.offset,
9819                                 bg->flags & BTRFS_BLOCK_GROUP_TYPE_MASK);
9820                         ret = -EUCLEAN;
9821                         free_extent_map(em);
9822                         btrfs_put_block_group(bg);
9823                         break;
9824                 }
9825                 start = em->start + em->len;
9826                 free_extent_map(em);
9827                 btrfs_put_block_group(bg);
9828         }
9829         return ret;
9830 }
9831
9832 int btrfs_read_block_groups(struct btrfs_root *root)
9833 {
9834         struct btrfs_path *path;
9835         int ret;
9836         struct btrfs_block_group_cache *cache;
9837         struct btrfs_fs_info *info = root->fs_info;
9838         struct btrfs_space_info *space_info;
9839         struct btrfs_key key;
9840         struct btrfs_key found_key;
9841         struct extent_buffer *leaf;
9842         int need_clear = 0;
9843         u64 cache_gen;
9844         u64 feature;
9845         int mixed;
9846
9847         feature = btrfs_super_incompat_flags(info->super_copy);
9848         mixed = !!(feature & BTRFS_FEATURE_INCOMPAT_MIXED_GROUPS);
9849
9850         root = info->extent_root;
9851         key.objectid = 0;
9852         key.offset = 0;
9853         key.type = BTRFS_BLOCK_GROUP_ITEM_KEY;
9854         path = btrfs_alloc_path();
9855         if (!path)
9856                 return -ENOMEM;
9857         path->reada = 1;
9858
9859         cache_gen = btrfs_super_cache_generation(root->fs_info->super_copy);
9860         if (btrfs_test_opt(root, SPACE_CACHE) &&
9861             btrfs_super_generation(root->fs_info->super_copy) != cache_gen)
9862                 need_clear = 1;
9863         if (btrfs_test_opt(root, CLEAR_CACHE))
9864                 need_clear = 1;
9865
9866         while (1) {
9867                 ret = find_first_block_group(root, path, &key);
9868                 if (ret > 0)
9869                         break;
9870                 if (ret != 0)
9871                         goto error;
9872
9873                 leaf = path->nodes[0];
9874                 btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]);
9875
9876                 cache = btrfs_create_block_group_cache(root, found_key.objectid,
9877                                                        found_key.offset);
9878                 if (!cache) {
9879                         ret = -ENOMEM;
9880                         goto error;
9881                 }
9882
9883                 if (need_clear) {
9884                         /*
9885                          * When we mount with old space cache, we need to
9886                          * set BTRFS_DC_CLEAR and set dirty flag.
9887                          *
9888                          * a) Setting 'BTRFS_DC_CLEAR' makes sure that we
9889                          *    truncate the old free space cache inode and
9890                          *    setup a new one.
9891                          * b) Setting 'dirty flag' makes sure that we flush
9892                          *    the new space cache info onto disk.
9893                          */
9894                         if (btrfs_test_opt(root, SPACE_CACHE))
9895                                 cache->disk_cache_state = BTRFS_DC_CLEAR;
9896                 }
9897
9898                 read_extent_buffer(leaf, &cache->item,
9899                                    btrfs_item_ptr_offset(leaf, path->slots[0]),
9900                                    sizeof(cache->item));
9901                 cache->flags = btrfs_block_group_flags(&cache->item);
9902                 if (!mixed &&
9903                     ((cache->flags & BTRFS_BLOCK_GROUP_METADATA) &&
9904                     (cache->flags & BTRFS_BLOCK_GROUP_DATA))) {
9905                         btrfs_err(info,
9906 "bg %llu is a mixed block group but filesystem hasn't enabled mixed block groups",
9907                                   cache->key.objectid);
9908                         btrfs_put_block_group(cache);
9909                         ret = -EINVAL;
9910                         goto error;
9911                 }
9912
9913                 key.objectid = found_key.objectid + found_key.offset;
9914                 btrfs_release_path(path);
9915
9916                 /*
9917                  * We need to exclude the super stripes now so that the space
9918                  * info has super bytes accounted for, otherwise we'll think
9919                  * we have more space than we actually do.
9920                  */
9921                 ret = exclude_super_stripes(root, cache);
9922                 if (ret) {
9923                         /*
9924                          * We may have excluded something, so call this just in
9925                          * case.
9926                          */
9927                         free_excluded_extents(root, cache);
9928                         btrfs_put_block_group(cache);
9929                         goto error;
9930                 }
9931
9932                 /*
9933                  * check for two cases, either we are full, and therefore
9934                  * don't need to bother with the caching work since we won't
9935                  * find any space, or we are empty, and we can just add all
9936                  * the space in and be done with it.  This saves us _alot_ of
9937                  * time, particularly in the full case.
9938                  */
9939                 if (found_key.offset == btrfs_block_group_used(&cache->item)) {
9940                         cache->last_byte_to_unpin = (u64)-1;
9941                         cache->cached = BTRFS_CACHE_FINISHED;
9942                         free_excluded_extents(root, cache);
9943                 } else if (btrfs_block_group_used(&cache->item) == 0) {
9944                         cache->last_byte_to_unpin = (u64)-1;
9945                         cache->cached = BTRFS_CACHE_FINISHED;
9946                         add_new_free_space(cache, root->fs_info,
9947                                            found_key.objectid,
9948                                            found_key.objectid +
9949                                            found_key.offset);
9950                         free_excluded_extents(root, cache);
9951                 }
9952
9953                 ret = btrfs_add_block_group_cache(root->fs_info, cache);
9954                 if (ret) {
9955                         btrfs_remove_free_space_cache(cache);
9956                         btrfs_put_block_group(cache);
9957                         goto error;
9958                 }
9959
9960                 ret = update_space_info(info, cache->flags, found_key.offset,
9961                                         btrfs_block_group_used(&cache->item),
9962                                         &space_info);
9963                 if (ret) {
9964                         btrfs_remove_free_space_cache(cache);
9965                         spin_lock(&info->block_group_cache_lock);
9966                         rb_erase(&cache->cache_node,
9967                                  &info->block_group_cache_tree);
9968                         RB_CLEAR_NODE(&cache->cache_node);
9969                         spin_unlock(&info->block_group_cache_lock);
9970                         btrfs_put_block_group(cache);
9971                         goto error;
9972                 }
9973
9974                 cache->space_info = space_info;
9975                 spin_lock(&cache->space_info->lock);
9976                 cache->space_info->bytes_readonly += cache->bytes_super;
9977                 spin_unlock(&cache->space_info->lock);
9978
9979                 __link_block_group(space_info, cache);
9980
9981                 set_avail_alloc_bits(root->fs_info, cache->flags);
9982                 if (btrfs_chunk_readonly(root, cache->key.objectid)) {
9983                         inc_block_group_ro(cache, 1);
9984                 } else if (btrfs_block_group_used(&cache->item) == 0) {
9985                         spin_lock(&info->unused_bgs_lock);
9986                         /* Should always be true but just in case. */
9987                         if (list_empty(&cache->bg_list)) {
9988                                 btrfs_get_block_group(cache);
9989                                 list_add_tail(&cache->bg_list,
9990                                               &info->unused_bgs);
9991                         }
9992                         spin_unlock(&info->unused_bgs_lock);
9993                 }
9994         }
9995
9996         list_for_each_entry_rcu(space_info, &root->fs_info->space_info, list) {
9997                 if (!(get_alloc_profile(root, space_info->flags) &
9998                       (BTRFS_BLOCK_GROUP_RAID10 |
9999                        BTRFS_BLOCK_GROUP_RAID1 |
10000                        BTRFS_BLOCK_GROUP_RAID5 |
10001                        BTRFS_BLOCK_GROUP_RAID6 |
10002                        BTRFS_BLOCK_GROUP_DUP)))
10003                         continue;
10004                 /*
10005                  * avoid allocating from un-mirrored block group if there are
10006                  * mirrored block groups.
10007                  */
10008                 list_for_each_entry(cache,
10009                                 &space_info->block_groups[BTRFS_RAID_RAID0],
10010                                 list)
10011                         inc_block_group_ro(cache, 1);
10012                 list_for_each_entry(cache,
10013                                 &space_info->block_groups[BTRFS_RAID_SINGLE],
10014                                 list)
10015                         inc_block_group_ro(cache, 1);
10016         }
10017
10018         init_global_block_rsv(info);
10019         ret = check_chunk_block_group_mappings(info);
10020 error:
10021         btrfs_free_path(path);
10022         return ret;
10023 }
10024
10025 void btrfs_create_pending_block_groups(struct btrfs_trans_handle *trans,
10026                                        struct btrfs_root *root)
10027 {
10028         struct btrfs_block_group_cache *block_group;
10029         struct btrfs_root *extent_root = root->fs_info->extent_root;
10030         struct btrfs_block_group_item item;
10031         struct btrfs_key key;
10032         int ret = 0;
10033         bool can_flush_pending_bgs = trans->can_flush_pending_bgs;
10034
10035         trans->can_flush_pending_bgs = false;
10036         while (!list_empty(&trans->new_bgs)) {
10037                 block_group = list_first_entry(&trans->new_bgs,
10038                                                struct btrfs_block_group_cache,
10039                                                bg_list);
10040                 if (ret)
10041                         goto next;
10042
10043                 spin_lock(&block_group->lock);
10044                 memcpy(&item, &block_group->item, sizeof(item));
10045                 memcpy(&key, &block_group->key, sizeof(key));
10046                 spin_unlock(&block_group->lock);
10047
10048                 ret = btrfs_insert_item(trans, extent_root, &key, &item,
10049                                         sizeof(item));
10050                 if (ret)
10051                         btrfs_abort_transaction(trans, extent_root, ret);
10052                 ret = btrfs_finish_chunk_alloc(trans, extent_root,
10053                                                key.objectid, key.offset);
10054                 if (ret)
10055                         btrfs_abort_transaction(trans, extent_root, ret);
10056 next:
10057                 list_del_init(&block_group->bg_list);
10058         }
10059         trans->can_flush_pending_bgs = can_flush_pending_bgs;
10060 }
10061
10062 int btrfs_make_block_group(struct btrfs_trans_handle *trans,
10063                            struct btrfs_root *root, u64 bytes_used,
10064                            u64 type, u64 chunk_objectid, u64 chunk_offset,
10065                            u64 size)
10066 {
10067         int ret;
10068         struct btrfs_root *extent_root;
10069         struct btrfs_block_group_cache *cache;
10070
10071         extent_root = root->fs_info->extent_root;
10072
10073         btrfs_set_log_full_commit(root->fs_info, trans);
10074
10075         cache = btrfs_create_block_group_cache(root, chunk_offset, size);
10076         if (!cache)
10077                 return -ENOMEM;
10078
10079         btrfs_set_block_group_used(&cache->item, bytes_used);
10080         btrfs_set_block_group_chunk_objectid(&cache->item, chunk_objectid);
10081         btrfs_set_block_group_flags(&cache->item, type);
10082
10083         cache->flags = type;
10084         cache->last_byte_to_unpin = (u64)-1;
10085         cache->cached = BTRFS_CACHE_FINISHED;
10086         ret = exclude_super_stripes(root, cache);
10087         if (ret) {
10088                 /*
10089                  * We may have excluded something, so call this just in
10090                  * case.
10091                  */
10092                 free_excluded_extents(root, cache);
10093                 btrfs_put_block_group(cache);
10094                 return ret;
10095         }
10096
10097         add_new_free_space(cache, root->fs_info, chunk_offset,
10098                            chunk_offset + size);
10099
10100         free_excluded_extents(root, cache);
10101
10102 #ifdef CONFIG_BTRFS_DEBUG
10103         if (btrfs_should_fragment_free_space(root, cache)) {
10104                 u64 new_bytes_used = size - bytes_used;
10105
10106                 bytes_used += new_bytes_used >> 1;
10107                 fragment_free_space(root, cache);
10108         }
10109 #endif
10110         /*
10111          * Call to ensure the corresponding space_info object is created and
10112          * assigned to our block group, but don't update its counters just yet.
10113          * We want our bg to be added to the rbtree with its ->space_info set.
10114          */
10115         ret = update_space_info(root->fs_info, cache->flags, 0, 0,
10116                                 &cache->space_info);
10117         if (ret) {
10118                 btrfs_remove_free_space_cache(cache);
10119                 btrfs_put_block_group(cache);
10120                 return ret;
10121         }
10122
10123         ret = btrfs_add_block_group_cache(root->fs_info, cache);
10124         if (ret) {
10125                 btrfs_remove_free_space_cache(cache);
10126                 btrfs_put_block_group(cache);
10127                 return ret;
10128         }
10129
10130         /*
10131          * Now that our block group has its ->space_info set and is inserted in
10132          * the rbtree, update the space info's counters.
10133          */
10134         ret = update_space_info(root->fs_info, cache->flags, size, bytes_used,
10135                                 &cache->space_info);
10136         if (ret) {
10137                 btrfs_remove_free_space_cache(cache);
10138                 spin_lock(&root->fs_info->block_group_cache_lock);
10139                 rb_erase(&cache->cache_node,
10140                          &root->fs_info->block_group_cache_tree);
10141                 RB_CLEAR_NODE(&cache->cache_node);
10142                 spin_unlock(&root->fs_info->block_group_cache_lock);
10143                 btrfs_put_block_group(cache);
10144                 return ret;
10145         }
10146         update_global_block_rsv(root->fs_info);
10147
10148         spin_lock(&cache->space_info->lock);
10149         cache->space_info->bytes_readonly += cache->bytes_super;
10150         spin_unlock(&cache->space_info->lock);
10151
10152         __link_block_group(cache->space_info, cache);
10153
10154         list_add_tail(&cache->bg_list, &trans->new_bgs);
10155
10156         set_avail_alloc_bits(extent_root->fs_info, type);
10157
10158         return 0;
10159 }
10160
10161 static void clear_avail_alloc_bits(struct btrfs_fs_info *fs_info, u64 flags)
10162 {
10163         u64 extra_flags = chunk_to_extended(flags) &
10164                                 BTRFS_EXTENDED_PROFILE_MASK;
10165
10166         write_seqlock(&fs_info->profiles_lock);
10167         if (flags & BTRFS_BLOCK_GROUP_DATA)
10168                 fs_info->avail_data_alloc_bits &= ~extra_flags;
10169         if (flags & BTRFS_BLOCK_GROUP_METADATA)
10170                 fs_info->avail_metadata_alloc_bits &= ~extra_flags;
10171         if (flags & BTRFS_BLOCK_GROUP_SYSTEM)
10172                 fs_info->avail_system_alloc_bits &= ~extra_flags;
10173         write_sequnlock(&fs_info->profiles_lock);
10174 }
10175
10176 int btrfs_remove_block_group(struct btrfs_trans_handle *trans,
10177                              struct btrfs_root *root, u64 group_start,
10178                              struct extent_map *em)
10179 {
10180         struct btrfs_path *path;
10181         struct btrfs_block_group_cache *block_group;
10182         struct btrfs_free_cluster *cluster;
10183         struct btrfs_root *tree_root = root->fs_info->tree_root;
10184         struct btrfs_key key;
10185         struct inode *inode;
10186         struct kobject *kobj = NULL;
10187         int ret;
10188         int index;
10189         int factor;
10190         struct btrfs_caching_control *caching_ctl = NULL;
10191         bool remove_em;
10192
10193         root = root->fs_info->extent_root;
10194
10195         block_group = btrfs_lookup_block_group(root->fs_info, group_start);
10196         BUG_ON(!block_group);
10197         BUG_ON(!block_group->ro);
10198
10199         /*
10200          * Free the reserved super bytes from this block group before
10201          * remove it.
10202          */
10203         free_excluded_extents(root, block_group);
10204
10205         memcpy(&key, &block_group->key, sizeof(key));
10206         index = get_block_group_index(block_group);
10207         if (block_group->flags & (BTRFS_BLOCK_GROUP_DUP |
10208                                   BTRFS_BLOCK_GROUP_RAID1 |
10209                                   BTRFS_BLOCK_GROUP_RAID10))
10210                 factor = 2;
10211         else
10212                 factor = 1;
10213
10214         /* make sure this block group isn't part of an allocation cluster */
10215         cluster = &root->fs_info->data_alloc_cluster;
10216         spin_lock(&cluster->refill_lock);
10217         btrfs_return_cluster_to_free_space(block_group, cluster);
10218         spin_unlock(&cluster->refill_lock);
10219
10220         /*
10221          * make sure this block group isn't part of a metadata
10222          * allocation cluster
10223          */
10224         cluster = &root->fs_info->meta_alloc_cluster;
10225         spin_lock(&cluster->refill_lock);
10226         btrfs_return_cluster_to_free_space(block_group, cluster);
10227         spin_unlock(&cluster->refill_lock);
10228
10229         path = btrfs_alloc_path();
10230         if (!path) {
10231                 ret = -ENOMEM;
10232                 goto out;
10233         }
10234
10235         /*
10236          * get the inode first so any iput calls done for the io_list
10237          * aren't the final iput (no unlinks allowed now)
10238          */
10239         inode = lookup_free_space_inode(tree_root, block_group, path);
10240
10241         mutex_lock(&trans->transaction->cache_write_mutex);
10242         /*
10243          * make sure our free spache cache IO is done before remove the
10244          * free space inode
10245          */
10246         spin_lock(&trans->transaction->dirty_bgs_lock);
10247         if (!list_empty(&block_group->io_list)) {
10248                 list_del_init(&block_group->io_list);
10249
10250                 WARN_ON(!IS_ERR(inode) && inode != block_group->io_ctl.inode);
10251
10252                 spin_unlock(&trans->transaction->dirty_bgs_lock);
10253                 btrfs_wait_cache_io(root, trans, block_group,
10254                                     &block_group->io_ctl, path,
10255                                     block_group->key.objectid);
10256                 btrfs_put_block_group(block_group);
10257                 spin_lock(&trans->transaction->dirty_bgs_lock);
10258         }
10259
10260         if (!list_empty(&block_group->dirty_list)) {
10261                 list_del_init(&block_group->dirty_list);
10262                 btrfs_put_block_group(block_group);
10263         }
10264         spin_unlock(&trans->transaction->dirty_bgs_lock);
10265         mutex_unlock(&trans->transaction->cache_write_mutex);
10266
10267         if (!IS_ERR(inode)) {
10268                 ret = btrfs_orphan_add(trans, inode);
10269                 if (ret) {
10270                         btrfs_add_delayed_iput(inode);
10271                         goto out;
10272                 }
10273                 clear_nlink(inode);
10274                 /* One for the block groups ref */
10275                 spin_lock(&block_group->lock);
10276                 if (block_group->iref) {
10277                         block_group->iref = 0;
10278                         block_group->inode = NULL;
10279                         spin_unlock(&block_group->lock);
10280                         iput(inode);
10281                 } else {
10282                         spin_unlock(&block_group->lock);
10283                 }
10284                 /* One for our lookup ref */
10285                 btrfs_add_delayed_iput(inode);
10286         }
10287
10288         key.objectid = BTRFS_FREE_SPACE_OBJECTID;
10289         key.offset = block_group->key.objectid;
10290         key.type = 0;
10291
10292         ret = btrfs_search_slot(trans, tree_root, &key, path, -1, 1);
10293         if (ret < 0)
10294                 goto out;
10295         if (ret > 0)
10296                 btrfs_release_path(path);
10297         if (ret == 0) {
10298                 ret = btrfs_del_item(trans, tree_root, path);
10299                 if (ret)
10300                         goto out;
10301                 btrfs_release_path(path);
10302         }
10303
10304         spin_lock(&root->fs_info->block_group_cache_lock);
10305         rb_erase(&block_group->cache_node,
10306                  &root->fs_info->block_group_cache_tree);
10307         RB_CLEAR_NODE(&block_group->cache_node);
10308
10309         if (root->fs_info->first_logical_byte == block_group->key.objectid)
10310                 root->fs_info->first_logical_byte = (u64)-1;
10311         spin_unlock(&root->fs_info->block_group_cache_lock);
10312
10313         down_write(&block_group->space_info->groups_sem);
10314         /*
10315          * we must use list_del_init so people can check to see if they
10316          * are still on the list after taking the semaphore
10317          */
10318         list_del_init(&block_group->list);
10319         if (list_empty(&block_group->space_info->block_groups[index])) {
10320                 kobj = block_group->space_info->block_group_kobjs[index];
10321                 block_group->space_info->block_group_kobjs[index] = NULL;
10322                 clear_avail_alloc_bits(root->fs_info, block_group->flags);
10323         }
10324         up_write(&block_group->space_info->groups_sem);
10325         if (kobj) {
10326                 kobject_del(kobj);
10327                 kobject_put(kobj);
10328         }
10329
10330         if (block_group->has_caching_ctl)
10331                 caching_ctl = get_caching_control(block_group);
10332         if (block_group->cached == BTRFS_CACHE_STARTED)
10333                 wait_block_group_cache_done(block_group);
10334         if (block_group->has_caching_ctl) {
10335                 down_write(&root->fs_info->commit_root_sem);
10336                 if (!caching_ctl) {
10337                         struct btrfs_caching_control *ctl;
10338
10339                         list_for_each_entry(ctl,
10340                                     &root->fs_info->caching_block_groups, list)
10341                                 if (ctl->block_group == block_group) {
10342                                         caching_ctl = ctl;
10343                                         atomic_inc(&caching_ctl->count);
10344                                         break;
10345                                 }
10346                 }
10347                 if (caching_ctl)
10348                         list_del_init(&caching_ctl->list);
10349                 up_write(&root->fs_info->commit_root_sem);
10350                 if (caching_ctl) {
10351                         /* Once for the caching bgs list and once for us. */
10352                         put_caching_control(caching_ctl);
10353                         put_caching_control(caching_ctl);
10354                 }
10355         }
10356
10357         spin_lock(&trans->transaction->dirty_bgs_lock);
10358         if (!list_empty(&block_group->dirty_list)) {
10359                 WARN_ON(1);
10360         }
10361         if (!list_empty(&block_group->io_list)) {
10362                 WARN_ON(1);
10363         }
10364         spin_unlock(&trans->transaction->dirty_bgs_lock);
10365         btrfs_remove_free_space_cache(block_group);
10366
10367         spin_lock(&block_group->space_info->lock);
10368         list_del_init(&block_group->ro_list);
10369
10370         if (btrfs_test_opt(root, ENOSPC_DEBUG)) {
10371                 WARN_ON(block_group->space_info->total_bytes
10372                         < block_group->key.offset);
10373                 WARN_ON(block_group->space_info->bytes_readonly
10374                         < block_group->key.offset);
10375                 WARN_ON(block_group->space_info->disk_total
10376                         < block_group->key.offset * factor);
10377         }
10378         block_group->space_info->total_bytes -= block_group->key.offset;
10379         block_group->space_info->bytes_readonly -= block_group->key.offset;
10380         block_group->space_info->disk_total -= block_group->key.offset * factor;
10381
10382         spin_unlock(&block_group->space_info->lock);
10383
10384         memcpy(&key, &block_group->key, sizeof(key));
10385
10386         lock_chunks(root);
10387         if (!list_empty(&em->list)) {
10388                 /* We're in the transaction->pending_chunks list. */
10389                 free_extent_map(em);
10390         }
10391         spin_lock(&block_group->lock);
10392         block_group->removed = 1;
10393         /*
10394          * At this point trimming can't start on this block group, because we
10395          * removed the block group from the tree fs_info->block_group_cache_tree
10396          * so no one can't find it anymore and even if someone already got this
10397          * block group before we removed it from the rbtree, they have already
10398          * incremented block_group->trimming - if they didn't, they won't find
10399          * any free space entries because we already removed them all when we
10400          * called btrfs_remove_free_space_cache().
10401          *
10402          * And we must not remove the extent map from the fs_info->mapping_tree
10403          * to prevent the same logical address range and physical device space
10404          * ranges from being reused for a new block group. This is because our
10405          * fs trim operation (btrfs_trim_fs() / btrfs_ioctl_fitrim()) is
10406          * completely transactionless, so while it is trimming a range the
10407          * currently running transaction might finish and a new one start,
10408          * allowing for new block groups to be created that can reuse the same
10409          * physical device locations unless we take this special care.
10410          *
10411          * There may also be an implicit trim operation if the file system
10412          * is mounted with -odiscard. The same protections must remain
10413          * in place until the extents have been discarded completely when
10414          * the transaction commit has completed.
10415          */
10416         remove_em = (atomic_read(&block_group->trimming) == 0);
10417         /*
10418          * Make sure a trimmer task always sees the em in the pinned_chunks list
10419          * if it sees block_group->removed == 1 (needs to lock block_group->lock
10420          * before checking block_group->removed).
10421          */
10422         if (!remove_em) {
10423                 /*
10424                  * Our em might be in trans->transaction->pending_chunks which
10425                  * is protected by fs_info->chunk_mutex ([lock|unlock]_chunks),
10426                  * and so is the fs_info->pinned_chunks list.
10427                  *
10428                  * So at this point we must be holding the chunk_mutex to avoid
10429                  * any races with chunk allocation (more specifically at
10430                  * volumes.c:contains_pending_extent()), to ensure it always
10431                  * sees the em, either in the pending_chunks list or in the
10432                  * pinned_chunks list.
10433                  */
10434                 list_move_tail(&em->list, &root->fs_info->pinned_chunks);
10435         }
10436         spin_unlock(&block_group->lock);
10437
10438         if (remove_em) {
10439                 struct extent_map_tree *em_tree;
10440
10441                 em_tree = &root->fs_info->mapping_tree.map_tree;
10442                 write_lock(&em_tree->lock);
10443                 /*
10444                  * The em might be in the pending_chunks list, so make sure the
10445                  * chunk mutex is locked, since remove_extent_mapping() will
10446                  * delete us from that list.
10447                  */
10448                 remove_extent_mapping(em_tree, em);
10449                 write_unlock(&em_tree->lock);
10450                 /* once for the tree */
10451                 free_extent_map(em);
10452         }
10453
10454         unlock_chunks(root);
10455
10456         btrfs_put_block_group(block_group);
10457         btrfs_put_block_group(block_group);
10458
10459         ret = btrfs_search_slot(trans, root, &key, path, -1, 1);
10460         if (ret > 0)
10461                 ret = -EIO;
10462         if (ret < 0)
10463                 goto out;
10464
10465         ret = btrfs_del_item(trans, root, path);
10466 out:
10467         btrfs_free_path(path);
10468         return ret;
10469 }
10470
10471 struct btrfs_trans_handle *
10472 btrfs_start_trans_remove_block_group(struct btrfs_fs_info *fs_info,
10473                                      const u64 chunk_offset)
10474 {
10475         struct extent_map_tree *em_tree = &fs_info->mapping_tree.map_tree;
10476         struct extent_map *em;
10477         struct map_lookup *map;
10478         unsigned int num_items;
10479
10480         read_lock(&em_tree->lock);
10481         em = lookup_extent_mapping(em_tree, chunk_offset, 1);
10482         read_unlock(&em_tree->lock);
10483         ASSERT(em && em->start == chunk_offset);
10484
10485         /*
10486          * We need to reserve 3 + N units from the metadata space info in order
10487          * to remove a block group (done at btrfs_remove_chunk() and at
10488          * btrfs_remove_block_group()), which are used for:
10489          *
10490          * 1 unit for adding the free space inode's orphan (located in the tree
10491          * of tree roots).
10492          * 1 unit for deleting the block group item (located in the extent
10493          * tree).
10494          * 1 unit for deleting the free space item (located in tree of tree
10495          * roots).
10496          * N units for deleting N device extent items corresponding to each
10497          * stripe (located in the device tree).
10498          *
10499          * In order to remove a block group we also need to reserve units in the
10500          * system space info in order to update the chunk tree (update one or
10501          * more device items and remove one chunk item), but this is done at
10502          * btrfs_remove_chunk() through a call to check_system_chunk().
10503          */
10504         map = em->map_lookup;
10505         num_items = 3 + map->num_stripes;
10506         free_extent_map(em);
10507
10508         return btrfs_start_transaction_fallback_global_rsv(fs_info->extent_root,
10509                                                            num_items, 1);
10510 }
10511
10512 /*
10513  * Process the unused_bgs list and remove any that don't have any allocated
10514  * space inside of them.
10515  */
10516 void btrfs_delete_unused_bgs(struct btrfs_fs_info *fs_info)
10517 {
10518         struct btrfs_block_group_cache *block_group;
10519         struct btrfs_space_info *space_info;
10520         struct btrfs_root *root = fs_info->extent_root;
10521         struct btrfs_trans_handle *trans;
10522         int ret = 0;
10523
10524         if (!fs_info->open)
10525                 return;
10526
10527         spin_lock(&fs_info->unused_bgs_lock);
10528         while (!list_empty(&fs_info->unused_bgs)) {
10529                 u64 start, end;
10530                 int trimming;
10531
10532                 block_group = list_first_entry(&fs_info->unused_bgs,
10533                                                struct btrfs_block_group_cache,
10534                                                bg_list);
10535                 list_del_init(&block_group->bg_list);
10536
10537                 space_info = block_group->space_info;
10538
10539                 if (ret || btrfs_mixed_space_info(space_info)) {
10540                         btrfs_put_block_group(block_group);
10541                         continue;
10542                 }
10543                 spin_unlock(&fs_info->unused_bgs_lock);
10544
10545                 mutex_lock(&fs_info->delete_unused_bgs_mutex);
10546
10547                 /* Don't want to race with allocators so take the groups_sem */
10548                 down_write(&space_info->groups_sem);
10549                 spin_lock(&block_group->lock);
10550                 if (block_group->reserved || block_group->pinned ||
10551                     btrfs_block_group_used(&block_group->item) ||
10552                     block_group->ro ||
10553                     list_is_singular(&block_group->list)) {
10554                         /*
10555                          * We want to bail if we made new allocations or have
10556                          * outstanding allocations in this block group.  We do
10557                          * the ro check in case balance is currently acting on
10558                          * this block group.
10559                          */
10560                         spin_unlock(&block_group->lock);
10561                         up_write(&space_info->groups_sem);
10562                         goto next;
10563                 }
10564                 spin_unlock(&block_group->lock);
10565
10566                 /* We don't want to force the issue, only flip if it's ok. */
10567                 ret = inc_block_group_ro(block_group, 0);
10568                 up_write(&space_info->groups_sem);
10569                 if (ret < 0) {
10570                         ret = 0;
10571                         goto next;
10572                 }
10573
10574                 /*
10575                  * Want to do this before we do anything else so we can recover
10576                  * properly if we fail to join the transaction.
10577                  */
10578                 trans = btrfs_start_trans_remove_block_group(fs_info,
10579                                                      block_group->key.objectid);
10580                 if (IS_ERR(trans)) {
10581                         btrfs_dec_block_group_ro(root, block_group);
10582                         ret = PTR_ERR(trans);
10583                         goto next;
10584                 }
10585
10586                 /*
10587                  * We could have pending pinned extents for this block group,
10588                  * just delete them, we don't care about them anymore.
10589                  */
10590                 start = block_group->key.objectid;
10591                 end = start + block_group->key.offset - 1;
10592                 /*
10593                  * Hold the unused_bg_unpin_mutex lock to avoid racing with
10594                  * btrfs_finish_extent_commit(). If we are at transaction N,
10595                  * another task might be running finish_extent_commit() for the
10596                  * previous transaction N - 1, and have seen a range belonging
10597                  * to the block group in freed_extents[] before we were able to
10598                  * clear the whole block group range from freed_extents[]. This
10599                  * means that task can lookup for the block group after we
10600                  * unpinned it from freed_extents[] and removed it, leading to
10601                  * a BUG_ON() at btrfs_unpin_extent_range().
10602                  */
10603                 mutex_lock(&fs_info->unused_bg_unpin_mutex);
10604                 ret = clear_extent_bits(&fs_info->freed_extents[0], start, end,
10605                                   EXTENT_DIRTY, GFP_NOFS);
10606                 if (ret) {
10607                         mutex_unlock(&fs_info->unused_bg_unpin_mutex);
10608                         btrfs_dec_block_group_ro(root, block_group);
10609                         goto end_trans;
10610                 }
10611                 ret = clear_extent_bits(&fs_info->freed_extents[1], start, end,
10612                                   EXTENT_DIRTY, GFP_NOFS);
10613                 if (ret) {
10614                         mutex_unlock(&fs_info->unused_bg_unpin_mutex);
10615                         btrfs_dec_block_group_ro(root, block_group);
10616                         goto end_trans;
10617                 }
10618                 mutex_unlock(&fs_info->unused_bg_unpin_mutex);
10619
10620                 /* Reset pinned so btrfs_put_block_group doesn't complain */
10621                 spin_lock(&space_info->lock);
10622                 spin_lock(&block_group->lock);
10623
10624                 space_info->bytes_pinned -= block_group->pinned;
10625                 space_info->bytes_readonly += block_group->pinned;
10626                 percpu_counter_add(&space_info->total_bytes_pinned,
10627                                    -block_group->pinned);
10628                 block_group->pinned = 0;
10629
10630                 spin_unlock(&block_group->lock);
10631                 spin_unlock(&space_info->lock);
10632
10633                 /* DISCARD can flip during remount */
10634                 trimming = btrfs_test_opt(root, DISCARD);
10635
10636                 /* Implicit trim during transaction commit. */
10637                 if (trimming)
10638                         btrfs_get_block_group_trimming(block_group);
10639
10640                 /*
10641                  * Btrfs_remove_chunk will abort the transaction if things go
10642                  * horribly wrong.
10643                  */
10644                 ret = btrfs_remove_chunk(trans, root,
10645                                          block_group->key.objectid);
10646
10647                 if (ret) {
10648                         if (trimming)
10649                                 btrfs_put_block_group_trimming(block_group);
10650                         goto end_trans;
10651                 }
10652
10653                 /*
10654                  * If we're not mounted with -odiscard, we can just forget
10655                  * about this block group. Otherwise we'll need to wait
10656                  * until transaction commit to do the actual discard.
10657                  */
10658                 if (trimming) {
10659                         spin_lock(&fs_info->unused_bgs_lock);
10660                         /*
10661                          * A concurrent scrub might have added us to the list
10662                          * fs_info->unused_bgs, so use a list_move operation
10663                          * to add the block group to the deleted_bgs list.
10664                          */
10665                         list_move(&block_group->bg_list,
10666                                   &trans->transaction->deleted_bgs);
10667                         spin_unlock(&fs_info->unused_bgs_lock);
10668                         btrfs_get_block_group(block_group);
10669                 }
10670 end_trans:
10671                 btrfs_end_transaction(trans, root);
10672 next:
10673                 mutex_unlock(&fs_info->delete_unused_bgs_mutex);
10674                 btrfs_put_block_group(block_group);
10675                 spin_lock(&fs_info->unused_bgs_lock);
10676         }
10677         spin_unlock(&fs_info->unused_bgs_lock);
10678 }
10679
10680 int btrfs_init_space_info(struct btrfs_fs_info *fs_info)
10681 {
10682         struct btrfs_space_info *space_info;
10683         struct btrfs_super_block *disk_super;
10684         u64 features;
10685         u64 flags;
10686         int mixed = 0;
10687         int ret;
10688
10689         disk_super = fs_info->super_copy;
10690         if (!btrfs_super_root(disk_super))
10691                 return -EINVAL;
10692
10693         features = btrfs_super_incompat_flags(disk_super);
10694         if (features & BTRFS_FEATURE_INCOMPAT_MIXED_GROUPS)
10695                 mixed = 1;
10696
10697         flags = BTRFS_BLOCK_GROUP_SYSTEM;
10698         ret = update_space_info(fs_info, flags, 0, 0, &space_info);
10699         if (ret)
10700                 goto out;
10701
10702         if (mixed) {
10703                 flags = BTRFS_BLOCK_GROUP_METADATA | BTRFS_BLOCK_GROUP_DATA;
10704                 ret = update_space_info(fs_info, flags, 0, 0, &space_info);
10705         } else {
10706                 flags = BTRFS_BLOCK_GROUP_METADATA;
10707                 ret = update_space_info(fs_info, flags, 0, 0, &space_info);
10708                 if (ret)
10709                         goto out;
10710
10711                 flags = BTRFS_BLOCK_GROUP_DATA;
10712                 ret = update_space_info(fs_info, flags, 0, 0, &space_info);
10713         }
10714 out:
10715         return ret;
10716 }
10717
10718 int btrfs_error_unpin_extent_range(struct btrfs_root *root, u64 start, u64 end)
10719 {
10720         return unpin_extent_range(root, start, end, false);
10721 }
10722
10723 /*
10724  * It used to be that old block groups would be left around forever.
10725  * Iterating over them would be enough to trim unused space.  Since we
10726  * now automatically remove them, we also need to iterate over unallocated
10727  * space.
10728  *
10729  * We don't want a transaction for this since the discard may take a
10730  * substantial amount of time.  We don't require that a transaction be
10731  * running, but we do need to take a running transaction into account
10732  * to ensure that we're not discarding chunks that were released in
10733  * the current transaction.
10734  *
10735  * Holding the chunks lock will prevent other threads from allocating
10736  * or releasing chunks, but it won't prevent a running transaction
10737  * from committing and releasing the memory that the pending chunks
10738  * list head uses.  For that, we need to take a reference to the
10739  * transaction.
10740  */
10741 static int btrfs_trim_free_extents(struct btrfs_device *device,
10742                                    struct fstrim_range *range, u64 *trimmed)
10743 {
10744         u64 start = range->start, len = 0;
10745         int ret;
10746
10747         *trimmed = 0;
10748
10749         /* Discard not supported = nothing to do. */
10750         if (!blk_queue_discard(bdev_get_queue(device->bdev)))
10751                 return 0;
10752
10753         /* Not writeable = nothing to do. */
10754         if (!device->writeable)
10755                 return 0;
10756
10757         /* No free space = nothing to do. */
10758         if (device->total_bytes <= device->bytes_used)
10759                 return 0;
10760
10761         ret = 0;
10762
10763         while (1) {
10764                 struct btrfs_fs_info *fs_info = device->dev_root->fs_info;
10765                 struct btrfs_transaction *trans;
10766                 u64 bytes;
10767
10768                 ret = mutex_lock_interruptible(&fs_info->chunk_mutex);
10769                 if (ret)
10770                         return ret;
10771
10772                 down_read(&fs_info->commit_root_sem);
10773
10774                 spin_lock(&fs_info->trans_lock);
10775                 trans = fs_info->running_transaction;
10776                 if (trans)
10777                         atomic_inc(&trans->use_count);
10778                 spin_unlock(&fs_info->trans_lock);
10779
10780                 ret = find_free_dev_extent_start(trans, device, range->minlen,
10781                                                  start, &start, &len);
10782                 if (trans)
10783                         btrfs_put_transaction(trans);
10784
10785                 if (ret) {
10786                         up_read(&fs_info->commit_root_sem);
10787                         mutex_unlock(&fs_info->chunk_mutex);
10788                         if (ret == -ENOSPC)
10789                                 ret = 0;
10790                         break;
10791                 }
10792
10793                 /* If we are out of the passed range break */
10794                 if (start > range->start + range->len - 1) {
10795                         mutex_unlock(&fs_info->chunk_mutex);
10796                         ret = 0;
10797                         break;
10798                 }
10799
10800                 start = max(range->start, start);
10801                 len = min(range->len, len);
10802
10803                 ret = btrfs_issue_discard(device->bdev, start, len, &bytes);
10804                 up_read(&fs_info->commit_root_sem);
10805                 mutex_unlock(&fs_info->chunk_mutex);
10806
10807                 if (ret)
10808                         break;
10809
10810                 start += len;
10811                 *trimmed += bytes;
10812
10813                 /* We've trimmed enough */
10814                 if (*trimmed >= range->len)
10815                         break;
10816
10817                 if (fatal_signal_pending(current)) {
10818                         ret = -ERESTARTSYS;
10819                         break;
10820                 }
10821
10822                 cond_resched();
10823         }
10824
10825         return ret;
10826 }
10827
10828 int btrfs_trim_fs(struct btrfs_root *root, struct fstrim_range *range)
10829 {
10830         struct btrfs_fs_info *fs_info = root->fs_info;
10831         struct btrfs_block_group_cache *cache = NULL;
10832         struct btrfs_device *device;
10833         struct list_head *devices;
10834         u64 group_trimmed;
10835         u64 start;
10836         u64 end;
10837         u64 trimmed = 0;
10838         int ret = 0;
10839
10840         cache = btrfs_lookup_first_block_group(fs_info, range->start);
10841         while (cache) {
10842                 if (cache->key.objectid >= (range->start + range->len)) {
10843                         btrfs_put_block_group(cache);
10844                         break;
10845                 }
10846
10847                 start = max(range->start, cache->key.objectid);
10848                 end = min(range->start + range->len,
10849                                 cache->key.objectid + cache->key.offset);
10850
10851                 if (end - start >= range->minlen) {
10852                         if (!block_group_cache_done(cache)) {
10853                                 ret = cache_block_group(cache, 0);
10854                                 if (ret) {
10855                                         btrfs_put_block_group(cache);
10856                                         break;
10857                                 }
10858                                 ret = wait_block_group_cache_done(cache);
10859                                 if (ret) {
10860                                         btrfs_put_block_group(cache);
10861                                         break;
10862                                 }
10863                         }
10864                         ret = btrfs_trim_block_group(cache,
10865                                                      &group_trimmed,
10866                                                      start,
10867                                                      end,
10868                                                      range->minlen);
10869
10870                         trimmed += group_trimmed;
10871                         if (ret) {
10872                                 btrfs_put_block_group(cache);
10873                                 break;
10874                         }
10875                 }
10876
10877                 cache = next_block_group(fs_info->tree_root, cache);
10878         }
10879
10880         mutex_lock(&root->fs_info->fs_devices->device_list_mutex);
10881         devices = &root->fs_info->fs_devices->devices;
10882         list_for_each_entry(device, devices, dev_list) {
10883                 ret = btrfs_trim_free_extents(device, range, &group_trimmed);
10884                 if (ret)
10885                         break;
10886
10887                 trimmed += group_trimmed;
10888         }
10889         mutex_unlock(&root->fs_info->fs_devices->device_list_mutex);
10890
10891         range->len = trimmed;
10892         return ret;
10893 }
10894
10895 /*
10896  * btrfs_{start,end}_write_no_snapshoting() are similar to
10897  * mnt_{want,drop}_write(), they are used to prevent some tasks from writing
10898  * data into the page cache through nocow before the subvolume is snapshoted,
10899  * but flush the data into disk after the snapshot creation, or to prevent
10900  * operations while snapshoting is ongoing and that cause the snapshot to be
10901  * inconsistent (writes followed by expanding truncates for example).
10902  */
10903 void btrfs_end_write_no_snapshoting(struct btrfs_root *root)
10904 {
10905         percpu_counter_dec(&root->subv_writers->counter);
10906         /*
10907          * Make sure counter is updated before we wake up waiters.
10908          */
10909         smp_mb();
10910         if (waitqueue_active(&root->subv_writers->wait))
10911                 wake_up(&root->subv_writers->wait);
10912 }
10913
10914 int btrfs_start_write_no_snapshoting(struct btrfs_root *root)
10915 {
10916         if (atomic_read(&root->will_be_snapshoted))
10917                 return 0;
10918
10919         percpu_counter_inc(&root->subv_writers->counter);
10920         /*
10921          * Make sure counter is updated before we check for snapshot creation.
10922          */
10923         smp_mb();
10924         if (atomic_read(&root->will_be_snapshoted)) {
10925                 btrfs_end_write_no_snapshoting(root);
10926                 return 0;
10927         }
10928         return 1;
10929 }