1 // SPDX-License-Identifier: GPL-2.0
3 * Copyright (C) 2007 Oracle. All rights reserved.
7 #include <linux/blkdev.h>
8 #include <linux/radix-tree.h>
9 #include <linux/writeback.h>
10 #include <linux/buffer_head.h>
11 #include <linux/workqueue.h>
12 #include <linux/kthread.h>
13 #include <linux/slab.h>
14 #include <linux/migrate.h>
15 #include <linux/ratelimit.h>
16 #include <linux/uuid.h>
17 #include <linux/semaphore.h>
18 #include <linux/error-injection.h>
19 #include <linux/crc32c.h>
20 #include <linux/sched/mm.h>
21 #include <asm/unaligned.h>
24 #include "transaction.h"
25 #include "btrfs_inode.h"
27 #include "print-tree.h"
30 #include "free-space-cache.h"
31 #include "free-space-tree.h"
32 #include "inode-map.h"
33 #include "check-integrity.h"
34 #include "rcu-string.h"
35 #include "dev-replace.h"
39 #include "compression.h"
40 #include "tree-checker.h"
41 #include "ref-verify.h"
44 #include <asm/cpufeature.h>
47 #define BTRFS_SUPER_FLAG_SUPP (BTRFS_HEADER_FLAG_WRITTEN |\
48 BTRFS_HEADER_FLAG_RELOC |\
49 BTRFS_SUPER_FLAG_ERROR |\
50 BTRFS_SUPER_FLAG_SEEDING |\
51 BTRFS_SUPER_FLAG_METADUMP |\
52 BTRFS_SUPER_FLAG_METADUMP_V2)
54 static const struct extent_io_ops btree_extent_io_ops;
55 static void end_workqueue_fn(struct btrfs_work *work);
56 static void btrfs_destroy_ordered_extents(struct btrfs_root *root);
57 static int btrfs_destroy_delayed_refs(struct btrfs_transaction *trans,
58 struct btrfs_fs_info *fs_info);
59 static void btrfs_destroy_delalloc_inodes(struct btrfs_root *root);
60 static int btrfs_destroy_marked_extents(struct btrfs_fs_info *fs_info,
61 struct extent_io_tree *dirty_pages,
63 static int btrfs_destroy_pinned_extent(struct btrfs_fs_info *fs_info,
64 struct extent_io_tree *pinned_extents);
65 static int btrfs_cleanup_transaction(struct btrfs_fs_info *fs_info);
66 static void btrfs_error_commit_super(struct btrfs_fs_info *fs_info);
69 * btrfs_end_io_wq structs are used to do processing in task context when an IO
70 * is complete. This is used during reads to verify checksums, and it is used
71 * by writes to insert metadata for new file extents after IO is complete.
73 struct btrfs_end_io_wq {
77 struct btrfs_fs_info *info;
79 enum btrfs_wq_endio_type metadata;
80 struct btrfs_work work;
83 static struct kmem_cache *btrfs_end_io_wq_cache;
85 int __init btrfs_end_io_wq_init(void)
87 btrfs_end_io_wq_cache = kmem_cache_create("btrfs_end_io_wq",
88 sizeof(struct btrfs_end_io_wq),
92 if (!btrfs_end_io_wq_cache)
97 void __cold btrfs_end_io_wq_exit(void)
99 kmem_cache_destroy(btrfs_end_io_wq_cache);
103 * async submit bios are used to offload expensive checksumming
104 * onto the worker threads. They checksum file and metadata bios
105 * just before they are sent down the IO stack.
107 struct async_submit_bio {
110 extent_submit_bio_start_t *submit_bio_start;
113 * bio_offset is optional, can be used if the pages in the bio
114 * can't tell us where in the file the bio should go
117 struct btrfs_work work;
122 * Lockdep class keys for extent_buffer->lock's in this root. For a given
123 * eb, the lockdep key is determined by the btrfs_root it belongs to and
124 * the level the eb occupies in the tree.
126 * Different roots are used for different purposes and may nest inside each
127 * other and they require separate keysets. As lockdep keys should be
128 * static, assign keysets according to the purpose of the root as indicated
129 * by btrfs_root->objectid. This ensures that all special purpose roots
130 * have separate keysets.
132 * Lock-nesting across peer nodes is always done with the immediate parent
133 * node locked thus preventing deadlock. As lockdep doesn't know this, use
134 * subclass to avoid triggering lockdep warning in such cases.
136 * The key is set by the readpage_end_io_hook after the buffer has passed
137 * csum validation but before the pages are unlocked. It is also set by
138 * btrfs_init_new_buffer on freshly allocated blocks.
140 * We also add a check to make sure the highest level of the tree is the
141 * same as our lockdep setup here. If BTRFS_MAX_LEVEL changes, this code
142 * needs update as well.
144 #ifdef CONFIG_DEBUG_LOCK_ALLOC
145 # if BTRFS_MAX_LEVEL != 8
149 static struct btrfs_lockdep_keyset {
150 u64 id; /* root objectid */
151 const char *name_stem; /* lock name stem */
152 char names[BTRFS_MAX_LEVEL + 1][20];
153 struct lock_class_key keys[BTRFS_MAX_LEVEL + 1];
154 } btrfs_lockdep_keysets[] = {
155 { .id = BTRFS_ROOT_TREE_OBJECTID, .name_stem = "root" },
156 { .id = BTRFS_EXTENT_TREE_OBJECTID, .name_stem = "extent" },
157 { .id = BTRFS_CHUNK_TREE_OBJECTID, .name_stem = "chunk" },
158 { .id = BTRFS_DEV_TREE_OBJECTID, .name_stem = "dev" },
159 { .id = BTRFS_FS_TREE_OBJECTID, .name_stem = "fs" },
160 { .id = BTRFS_CSUM_TREE_OBJECTID, .name_stem = "csum" },
161 { .id = BTRFS_QUOTA_TREE_OBJECTID, .name_stem = "quota" },
162 { .id = BTRFS_TREE_LOG_OBJECTID, .name_stem = "log" },
163 { .id = BTRFS_TREE_RELOC_OBJECTID, .name_stem = "treloc" },
164 { .id = BTRFS_DATA_RELOC_TREE_OBJECTID, .name_stem = "dreloc" },
165 { .id = BTRFS_UUID_TREE_OBJECTID, .name_stem = "uuid" },
166 { .id = BTRFS_FREE_SPACE_TREE_OBJECTID, .name_stem = "free-space" },
167 { .id = 0, .name_stem = "tree" },
170 void __init btrfs_init_lockdep(void)
174 /* initialize lockdep class names */
175 for (i = 0; i < ARRAY_SIZE(btrfs_lockdep_keysets); i++) {
176 struct btrfs_lockdep_keyset *ks = &btrfs_lockdep_keysets[i];
178 for (j = 0; j < ARRAY_SIZE(ks->names); j++)
179 snprintf(ks->names[j], sizeof(ks->names[j]),
180 "btrfs-%s-%02d", ks->name_stem, j);
184 void btrfs_set_buffer_lockdep_class(u64 objectid, struct extent_buffer *eb,
187 struct btrfs_lockdep_keyset *ks;
189 BUG_ON(level >= ARRAY_SIZE(ks->keys));
191 /* find the matching keyset, id 0 is the default entry */
192 for (ks = btrfs_lockdep_keysets; ks->id; ks++)
193 if (ks->id == objectid)
196 lockdep_set_class_and_name(&eb->lock,
197 &ks->keys[level], ks->names[level]);
203 * extents on the btree inode are pretty simple, there's one extent
204 * that covers the entire device
206 struct extent_map *btree_get_extent(struct btrfs_inode *inode,
207 struct page *page, size_t pg_offset, u64 start, u64 len,
210 struct btrfs_fs_info *fs_info = inode->root->fs_info;
211 struct extent_map_tree *em_tree = &inode->extent_tree;
212 struct extent_map *em;
215 read_lock(&em_tree->lock);
216 em = lookup_extent_mapping(em_tree, start, len);
218 em->bdev = fs_info->fs_devices->latest_bdev;
219 read_unlock(&em_tree->lock);
222 read_unlock(&em_tree->lock);
224 em = alloc_extent_map();
226 em = ERR_PTR(-ENOMEM);
231 em->block_len = (u64)-1;
233 em->bdev = fs_info->fs_devices->latest_bdev;
235 write_lock(&em_tree->lock);
236 ret = add_extent_mapping(em_tree, em, 0);
237 if (ret == -EEXIST) {
239 em = lookup_extent_mapping(em_tree, start, len);
246 write_unlock(&em_tree->lock);
252 u32 btrfs_csum_data(const char *data, u32 seed, size_t len)
254 return crc32c(seed, data, len);
257 void btrfs_csum_final(u32 crc, u8 *result)
259 put_unaligned_le32(~crc, result);
263 * compute the csum for a btree block, and either verify it or write it
264 * into the csum field of the block.
266 static int csum_tree_block(struct btrfs_fs_info *fs_info,
267 struct extent_buffer *buf,
270 u16 csum_size = btrfs_super_csum_size(fs_info->super_copy);
271 char result[BTRFS_CSUM_SIZE];
273 unsigned long cur_len;
274 unsigned long offset = BTRFS_CSUM_SIZE;
276 unsigned long map_start;
277 unsigned long map_len;
281 len = buf->len - offset;
283 err = map_private_extent_buffer(buf, offset, 32,
284 &kaddr, &map_start, &map_len);
287 cur_len = min(len, map_len - (offset - map_start));
288 crc = btrfs_csum_data(kaddr + offset - map_start,
293 memset(result, 0, BTRFS_CSUM_SIZE);
295 btrfs_csum_final(crc, result);
298 if (memcmp_extent_buffer(buf, result, 0, csum_size)) {
301 memcpy(&found, result, csum_size);
303 read_extent_buffer(buf, &val, 0, csum_size);
304 btrfs_warn_rl(fs_info,
305 "%s checksum verify failed on %llu wanted %X found %X level %d",
306 fs_info->sb->s_id, buf->start,
307 val, found, btrfs_header_level(buf));
311 write_extent_buffer(buf, result, 0, csum_size);
318 * we can't consider a given block up to date unless the transid of the
319 * block matches the transid in the parent node's pointer. This is how we
320 * detect blocks that either didn't get written at all or got written
321 * in the wrong place.
323 static int verify_parent_transid(struct extent_io_tree *io_tree,
324 struct extent_buffer *eb, u64 parent_transid,
327 struct extent_state *cached_state = NULL;
329 bool need_lock = (current->journal_info == BTRFS_SEND_TRANS_STUB);
331 if (!parent_transid || btrfs_header_generation(eb) == parent_transid)
338 btrfs_tree_read_lock(eb);
339 btrfs_set_lock_blocking_rw(eb, BTRFS_READ_LOCK);
342 lock_extent_bits(io_tree, eb->start, eb->start + eb->len - 1,
344 if (extent_buffer_uptodate(eb) &&
345 btrfs_header_generation(eb) == parent_transid) {
349 btrfs_err_rl(eb->fs_info,
350 "parent transid verify failed on %llu wanted %llu found %llu",
352 parent_transid, btrfs_header_generation(eb));
356 * Things reading via commit roots that don't have normal protection,
357 * like send, can have a really old block in cache that may point at a
358 * block that has been freed and re-allocated. So don't clear uptodate
359 * if we find an eb that is under IO (dirty/writeback) because we could
360 * end up reading in the stale data and then writing it back out and
361 * making everybody very sad.
363 if (!extent_buffer_under_io(eb))
364 clear_extent_buffer_uptodate(eb);
366 unlock_extent_cached(io_tree, eb->start, eb->start + eb->len - 1,
369 btrfs_tree_read_unlock_blocking(eb);
374 * Return 0 if the superblock checksum type matches the checksum value of that
375 * algorithm. Pass the raw disk superblock data.
377 static int btrfs_check_super_csum(struct btrfs_fs_info *fs_info,
380 struct btrfs_super_block *disk_sb =
381 (struct btrfs_super_block *)raw_disk_sb;
382 u16 csum_type = btrfs_super_csum_type(disk_sb);
385 if (csum_type == BTRFS_CSUM_TYPE_CRC32) {
387 char result[sizeof(crc)];
390 * The super_block structure does not span the whole
391 * BTRFS_SUPER_INFO_SIZE range, we expect that the unused space
392 * is filled with zeros and is included in the checksum.
394 crc = btrfs_csum_data(raw_disk_sb + BTRFS_CSUM_SIZE,
395 crc, BTRFS_SUPER_INFO_SIZE - BTRFS_CSUM_SIZE);
396 btrfs_csum_final(crc, result);
398 if (memcmp(raw_disk_sb, result, sizeof(result)))
402 if (csum_type >= ARRAY_SIZE(btrfs_csum_sizes)) {
403 btrfs_err(fs_info, "unsupported checksum algorithm %u",
411 int btrfs_verify_level_key(struct btrfs_fs_info *fs_info,
412 struct extent_buffer *eb, int level,
413 struct btrfs_key *first_key, u64 parent_transid)
416 struct btrfs_key found_key;
419 found_level = btrfs_header_level(eb);
420 if (found_level != level) {
421 #ifdef CONFIG_BTRFS_DEBUG
424 "tree level mismatch detected, bytenr=%llu level expected=%u has=%u",
425 eb->start, level, found_level);
434 * For live tree block (new tree blocks in current transaction),
435 * we need proper lock context to avoid race, which is impossible here.
436 * So we only checks tree blocks which is read from disk, whose
437 * generation <= fs_info->last_trans_committed.
439 if (btrfs_header_generation(eb) > fs_info->last_trans_committed)
442 /* We have @first_key, so this @eb must have at least one item */
443 if (btrfs_header_nritems(eb) == 0) {
445 "invalid tree nritems, bytenr=%llu nritems=0 expect >0",
447 WARN_ON(IS_ENABLED(CONFIG_BTRFS_DEBUG));
452 btrfs_node_key_to_cpu(eb, &found_key, 0);
454 btrfs_item_key_to_cpu(eb, &found_key, 0);
455 ret = btrfs_comp_cpu_keys(first_key, &found_key);
457 #ifdef CONFIG_BTRFS_DEBUG
461 "tree first key mismatch detected, bytenr=%llu parent_transid=%llu key expected=(%llu,%u,%llu) has=(%llu,%u,%llu)",
462 eb->start, parent_transid, first_key->objectid,
463 first_key->type, first_key->offset,
464 found_key.objectid, found_key.type,
472 * helper to read a given tree block, doing retries as required when
473 * the checksums don't match and we have alternate mirrors to try.
475 * @parent_transid: expected transid, skip check if 0
476 * @level: expected level, mandatory check
477 * @first_key: expected key of first slot, skip check if NULL
479 static int btree_read_extent_buffer_pages(struct btrfs_fs_info *fs_info,
480 struct extent_buffer *eb,
481 u64 parent_transid, int level,
482 struct btrfs_key *first_key)
484 struct extent_io_tree *io_tree;
489 int failed_mirror = 0;
491 io_tree = &BTRFS_I(fs_info->btree_inode)->io_tree;
493 clear_bit(EXTENT_BUFFER_CORRUPT, &eb->bflags);
494 ret = read_extent_buffer_pages(io_tree, eb, WAIT_COMPLETE,
497 if (verify_parent_transid(io_tree, eb,
500 else if (btrfs_verify_level_key(fs_info, eb, level,
501 first_key, parent_transid))
507 num_copies = btrfs_num_copies(fs_info,
512 if (!failed_mirror) {
514 failed_mirror = eb->read_mirror;
518 if (mirror_num == failed_mirror)
521 if (mirror_num > num_copies)
525 if (failed && !ret && failed_mirror)
526 repair_eb_io_failure(fs_info, eb, failed_mirror);
532 * checksum a dirty tree block before IO. This has extra checks to make sure
533 * we only fill in the checksum field in the first page of a multi-page block
536 static int csum_dirty_buffer(struct btrfs_fs_info *fs_info, struct page *page)
538 u64 start = page_offset(page);
540 struct extent_buffer *eb;
542 eb = (struct extent_buffer *)page->private;
543 if (page != eb->pages[0])
546 found_start = btrfs_header_bytenr(eb);
548 * Please do not consolidate these warnings into a single if.
549 * It is useful to know what went wrong.
551 if (WARN_ON(found_start != start))
553 if (WARN_ON(!PageUptodate(page)))
556 ASSERT(memcmp_extent_buffer(eb, fs_info->fsid,
557 btrfs_header_fsid(), BTRFS_FSID_SIZE) == 0);
559 return csum_tree_block(fs_info, eb, 0);
562 static int check_tree_block_fsid(struct btrfs_fs_info *fs_info,
563 struct extent_buffer *eb)
565 struct btrfs_fs_devices *fs_devices = fs_info->fs_devices;
566 u8 fsid[BTRFS_FSID_SIZE];
569 read_extent_buffer(eb, fsid, btrfs_header_fsid(), BTRFS_FSID_SIZE);
571 if (!memcmp(fsid, fs_devices->fsid, BTRFS_FSID_SIZE)) {
575 fs_devices = fs_devices->seed;
580 static int btree_readpage_end_io_hook(struct btrfs_io_bio *io_bio,
581 u64 phy_offset, struct page *page,
582 u64 start, u64 end, int mirror)
586 struct extent_buffer *eb;
587 struct btrfs_root *root = BTRFS_I(page->mapping->host)->root;
588 struct btrfs_fs_info *fs_info = root->fs_info;
595 eb = (struct extent_buffer *)page->private;
597 /* the pending IO might have been the only thing that kept this buffer
598 * in memory. Make sure we have a ref for all this other checks
600 extent_buffer_get(eb);
602 reads_done = atomic_dec_and_test(&eb->io_pages);
606 eb->read_mirror = mirror;
607 if (test_bit(EXTENT_BUFFER_READ_ERR, &eb->bflags)) {
612 found_start = btrfs_header_bytenr(eb);
613 if (found_start != eb->start) {
614 btrfs_err_rl(fs_info, "bad tree block start, want %llu have %llu",
615 eb->start, found_start);
619 if (check_tree_block_fsid(fs_info, eb)) {
620 btrfs_err_rl(fs_info, "bad fsid on block %llu",
625 found_level = btrfs_header_level(eb);
626 if (found_level >= BTRFS_MAX_LEVEL) {
627 btrfs_err(fs_info, "bad tree block level %d on %llu",
628 (int)btrfs_header_level(eb), eb->start);
633 btrfs_set_buffer_lockdep_class(btrfs_header_owner(eb),
636 ret = csum_tree_block(fs_info, eb, 1);
641 * If this is a leaf block and it is corrupt, set the corrupt bit so
642 * that we don't try and read the other copies of this block, just
645 if (found_level == 0 && btrfs_check_leaf_full(fs_info, eb)) {
646 set_bit(EXTENT_BUFFER_CORRUPT, &eb->bflags);
650 if (found_level > 0 && btrfs_check_node(fs_info, eb))
654 set_extent_buffer_uptodate(eb);
657 test_and_clear_bit(EXTENT_BUFFER_READAHEAD, &eb->bflags))
658 btree_readahead_hook(eb, ret);
662 * our io error hook is going to dec the io pages
663 * again, we have to make sure it has something
666 atomic_inc(&eb->io_pages);
667 clear_extent_buffer_uptodate(eb);
669 free_extent_buffer(eb);
674 static int btree_io_failed_hook(struct page *page, int failed_mirror)
676 struct extent_buffer *eb;
678 eb = (struct extent_buffer *)page->private;
679 set_bit(EXTENT_BUFFER_READ_ERR, &eb->bflags);
680 eb->read_mirror = failed_mirror;
681 atomic_dec(&eb->io_pages);
682 if (test_and_clear_bit(EXTENT_BUFFER_READAHEAD, &eb->bflags))
683 btree_readahead_hook(eb, -EIO);
684 return -EIO; /* we fixed nothing */
687 static void end_workqueue_bio(struct bio *bio)
689 struct btrfs_end_io_wq *end_io_wq = bio->bi_private;
690 struct btrfs_fs_info *fs_info;
691 struct btrfs_workqueue *wq;
692 btrfs_work_func_t func;
694 fs_info = end_io_wq->info;
695 end_io_wq->status = bio->bi_status;
697 if (bio_op(bio) == REQ_OP_WRITE) {
698 if (end_io_wq->metadata == BTRFS_WQ_ENDIO_METADATA) {
699 wq = fs_info->endio_meta_write_workers;
700 func = btrfs_endio_meta_write_helper;
701 } else if (end_io_wq->metadata == BTRFS_WQ_ENDIO_FREE_SPACE) {
702 wq = fs_info->endio_freespace_worker;
703 func = btrfs_freespace_write_helper;
704 } else if (end_io_wq->metadata == BTRFS_WQ_ENDIO_RAID56) {
705 wq = fs_info->endio_raid56_workers;
706 func = btrfs_endio_raid56_helper;
708 wq = fs_info->endio_write_workers;
709 func = btrfs_endio_write_helper;
712 if (unlikely(end_io_wq->metadata ==
713 BTRFS_WQ_ENDIO_DIO_REPAIR)) {
714 wq = fs_info->endio_repair_workers;
715 func = btrfs_endio_repair_helper;
716 } else if (end_io_wq->metadata == BTRFS_WQ_ENDIO_RAID56) {
717 wq = fs_info->endio_raid56_workers;
718 func = btrfs_endio_raid56_helper;
719 } else if (end_io_wq->metadata) {
720 wq = fs_info->endio_meta_workers;
721 func = btrfs_endio_meta_helper;
723 wq = fs_info->endio_workers;
724 func = btrfs_endio_helper;
728 btrfs_init_work(&end_io_wq->work, func, end_workqueue_fn, NULL, NULL);
729 btrfs_queue_work(wq, &end_io_wq->work);
732 blk_status_t btrfs_bio_wq_end_io(struct btrfs_fs_info *info, struct bio *bio,
733 enum btrfs_wq_endio_type metadata)
735 struct btrfs_end_io_wq *end_io_wq;
737 end_io_wq = kmem_cache_alloc(btrfs_end_io_wq_cache, GFP_NOFS);
739 return BLK_STS_RESOURCE;
741 end_io_wq->private = bio->bi_private;
742 end_io_wq->end_io = bio->bi_end_io;
743 end_io_wq->info = info;
744 end_io_wq->status = 0;
745 end_io_wq->bio = bio;
746 end_io_wq->metadata = metadata;
748 bio->bi_private = end_io_wq;
749 bio->bi_end_io = end_workqueue_bio;
753 static void run_one_async_start(struct btrfs_work *work)
755 struct async_submit_bio *async;
758 async = container_of(work, struct async_submit_bio, work);
759 ret = async->submit_bio_start(async->private_data, async->bio,
765 static void run_one_async_done(struct btrfs_work *work)
767 struct async_submit_bio *async;
769 async = container_of(work, struct async_submit_bio, work);
771 /* If an error occurred we just want to clean up the bio and move on */
773 async->bio->bi_status = async->status;
774 bio_endio(async->bio);
778 btrfs_submit_bio_done(async->private_data, async->bio, async->mirror_num);
781 static void run_one_async_free(struct btrfs_work *work)
783 struct async_submit_bio *async;
785 async = container_of(work, struct async_submit_bio, work);
789 blk_status_t btrfs_wq_submit_bio(struct btrfs_fs_info *fs_info, struct bio *bio,
790 int mirror_num, unsigned long bio_flags,
791 u64 bio_offset, void *private_data,
792 extent_submit_bio_start_t *submit_bio_start)
794 struct async_submit_bio *async;
796 async = kmalloc(sizeof(*async), GFP_NOFS);
798 return BLK_STS_RESOURCE;
800 async->private_data = private_data;
802 async->mirror_num = mirror_num;
803 async->submit_bio_start = submit_bio_start;
805 btrfs_init_work(&async->work, btrfs_worker_helper, run_one_async_start,
806 run_one_async_done, run_one_async_free);
808 async->bio_offset = bio_offset;
812 if (op_is_sync(bio->bi_opf))
813 btrfs_set_work_high_priority(&async->work);
815 btrfs_queue_work(fs_info->workers, &async->work);
819 static blk_status_t btree_csum_one_bio(struct bio *bio)
821 struct bio_vec *bvec;
822 struct btrfs_root *root;
825 ASSERT(!bio_flagged(bio, BIO_CLONED));
826 bio_for_each_segment_all(bvec, bio, i) {
827 root = BTRFS_I(bvec->bv_page->mapping->host)->root;
828 ret = csum_dirty_buffer(root->fs_info, bvec->bv_page);
833 return errno_to_blk_status(ret);
836 static blk_status_t btree_submit_bio_start(void *private_data, struct bio *bio,
840 * when we're called for a write, we're already in the async
841 * submission context. Just jump into btrfs_map_bio
843 return btree_csum_one_bio(bio);
846 static int check_async_write(struct btrfs_inode *bi)
848 if (atomic_read(&bi->sync_writers))
851 if (static_cpu_has(X86_FEATURE_XMM4_2))
857 static blk_status_t btree_submit_bio_hook(void *private_data, struct bio *bio,
858 int mirror_num, unsigned long bio_flags,
861 struct inode *inode = private_data;
862 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
863 int async = check_async_write(BTRFS_I(inode));
866 if (bio_op(bio) != REQ_OP_WRITE) {
868 * called for a read, do the setup so that checksum validation
869 * can happen in the async kernel threads
871 ret = btrfs_bio_wq_end_io(fs_info, bio,
872 BTRFS_WQ_ENDIO_METADATA);
875 ret = btrfs_map_bio(fs_info, bio, mirror_num, 0);
877 ret = btree_csum_one_bio(bio);
880 ret = btrfs_map_bio(fs_info, bio, mirror_num, 0);
883 * kthread helpers are used to submit writes so that
884 * checksumming can happen in parallel across all CPUs
886 ret = btrfs_wq_submit_bio(fs_info, bio, mirror_num, 0,
887 bio_offset, private_data,
888 btree_submit_bio_start);
896 bio->bi_status = ret;
901 #ifdef CONFIG_MIGRATION
902 static int btree_migratepage(struct address_space *mapping,
903 struct page *newpage, struct page *page,
904 enum migrate_mode mode)
907 * we can't safely write a btree page from here,
908 * we haven't done the locking hook
913 * Buffers may be managed in a filesystem specific way.
914 * We must have no buffers or drop them.
916 if (page_has_private(page) &&
917 !try_to_release_page(page, GFP_KERNEL))
919 return migrate_page(mapping, newpage, page, mode);
924 static int btree_writepages(struct address_space *mapping,
925 struct writeback_control *wbc)
927 struct btrfs_fs_info *fs_info;
930 if (wbc->sync_mode == WB_SYNC_NONE) {
932 if (wbc->for_kupdate)
935 fs_info = BTRFS_I(mapping->host)->root->fs_info;
936 /* this is a bit racy, but that's ok */
937 ret = __percpu_counter_compare(&fs_info->dirty_metadata_bytes,
938 BTRFS_DIRTY_METADATA_THRESH,
939 fs_info->dirty_metadata_batch);
943 return btree_write_cache_pages(mapping, wbc);
946 static int btree_readpage(struct file *file, struct page *page)
948 struct extent_io_tree *tree;
949 tree = &BTRFS_I(page->mapping->host)->io_tree;
950 return extent_read_full_page(tree, page, btree_get_extent, 0);
953 static int btree_releasepage(struct page *page, gfp_t gfp_flags)
955 if (PageWriteback(page) || PageDirty(page))
958 return try_release_extent_buffer(page);
961 static void btree_invalidatepage(struct page *page, unsigned int offset,
964 struct extent_io_tree *tree;
965 tree = &BTRFS_I(page->mapping->host)->io_tree;
966 extent_invalidatepage(tree, page, offset);
967 btree_releasepage(page, GFP_NOFS);
968 if (PagePrivate(page)) {
969 btrfs_warn(BTRFS_I(page->mapping->host)->root->fs_info,
970 "page private not zero on page %llu",
971 (unsigned long long)page_offset(page));
972 ClearPagePrivate(page);
973 set_page_private(page, 0);
978 static int btree_set_page_dirty(struct page *page)
981 struct extent_buffer *eb;
983 BUG_ON(!PagePrivate(page));
984 eb = (struct extent_buffer *)page->private;
986 BUG_ON(!test_bit(EXTENT_BUFFER_DIRTY, &eb->bflags));
987 BUG_ON(!atomic_read(&eb->refs));
988 btrfs_assert_tree_locked(eb);
990 return __set_page_dirty_nobuffers(page);
993 static const struct address_space_operations btree_aops = {
994 .readpage = btree_readpage,
995 .writepages = btree_writepages,
996 .releasepage = btree_releasepage,
997 .invalidatepage = btree_invalidatepage,
998 #ifdef CONFIG_MIGRATION
999 .migratepage = btree_migratepage,
1001 .set_page_dirty = btree_set_page_dirty,
1004 void readahead_tree_block(struct btrfs_fs_info *fs_info, u64 bytenr)
1006 struct extent_buffer *buf = NULL;
1007 struct inode *btree_inode = fs_info->btree_inode;
1010 buf = btrfs_find_create_tree_block(fs_info, bytenr);
1014 ret = read_extent_buffer_pages(&BTRFS_I(btree_inode)->io_tree, buf,
1017 free_extent_buffer_stale(buf);
1019 free_extent_buffer(buf);
1022 int reada_tree_block_flagged(struct btrfs_fs_info *fs_info, u64 bytenr,
1023 int mirror_num, struct extent_buffer **eb)
1025 struct extent_buffer *buf = NULL;
1026 struct inode *btree_inode = fs_info->btree_inode;
1027 struct extent_io_tree *io_tree = &BTRFS_I(btree_inode)->io_tree;
1030 buf = btrfs_find_create_tree_block(fs_info, bytenr);
1034 set_bit(EXTENT_BUFFER_READAHEAD, &buf->bflags);
1036 ret = read_extent_buffer_pages(io_tree, buf, WAIT_PAGE_LOCK,
1039 free_extent_buffer_stale(buf);
1043 if (test_bit(EXTENT_BUFFER_CORRUPT, &buf->bflags)) {
1044 free_extent_buffer_stale(buf);
1046 } else if (extent_buffer_uptodate(buf)) {
1049 free_extent_buffer(buf);
1054 struct extent_buffer *btrfs_find_create_tree_block(
1055 struct btrfs_fs_info *fs_info,
1058 if (btrfs_is_testing(fs_info))
1059 return alloc_test_extent_buffer(fs_info, bytenr);
1060 return alloc_extent_buffer(fs_info, bytenr);
1064 int btrfs_write_tree_block(struct extent_buffer *buf)
1066 return filemap_fdatawrite_range(buf->pages[0]->mapping, buf->start,
1067 buf->start + buf->len - 1);
1070 void btrfs_wait_tree_block_writeback(struct extent_buffer *buf)
1072 filemap_fdatawait_range(buf->pages[0]->mapping,
1073 buf->start, buf->start + buf->len - 1);
1077 * Read tree block at logical address @bytenr and do variant basic but critical
1080 * @parent_transid: expected transid of this tree block, skip check if 0
1081 * @level: expected level, mandatory check
1082 * @first_key: expected key in slot 0, skip check if NULL
1084 struct extent_buffer *read_tree_block(struct btrfs_fs_info *fs_info, u64 bytenr,
1085 u64 parent_transid, int level,
1086 struct btrfs_key *first_key)
1088 struct extent_buffer *buf = NULL;
1091 buf = btrfs_find_create_tree_block(fs_info, bytenr);
1095 ret = btree_read_extent_buffer_pages(fs_info, buf, parent_transid,
1098 free_extent_buffer_stale(buf);
1099 return ERR_PTR(ret);
1105 void clean_tree_block(struct btrfs_fs_info *fs_info,
1106 struct extent_buffer *buf)
1108 if (btrfs_header_generation(buf) ==
1109 fs_info->running_transaction->transid) {
1110 btrfs_assert_tree_locked(buf);
1112 if (test_and_clear_bit(EXTENT_BUFFER_DIRTY, &buf->bflags)) {
1113 percpu_counter_add_batch(&fs_info->dirty_metadata_bytes,
1115 fs_info->dirty_metadata_batch);
1116 /* ugh, clear_extent_buffer_dirty needs to lock the page */
1117 btrfs_set_lock_blocking(buf);
1118 clear_extent_buffer_dirty(buf);
1123 static struct btrfs_subvolume_writers *btrfs_alloc_subvolume_writers(void)
1125 struct btrfs_subvolume_writers *writers;
1128 writers = kmalloc(sizeof(*writers), GFP_NOFS);
1130 return ERR_PTR(-ENOMEM);
1132 ret = percpu_counter_init(&writers->counter, 0, GFP_NOFS);
1135 return ERR_PTR(ret);
1138 init_waitqueue_head(&writers->wait);
1143 btrfs_free_subvolume_writers(struct btrfs_subvolume_writers *writers)
1145 percpu_counter_destroy(&writers->counter);
1149 static void __setup_root(struct btrfs_root *root, struct btrfs_fs_info *fs_info,
1152 bool dummy = test_bit(BTRFS_FS_STATE_DUMMY_FS_INFO, &fs_info->fs_state);
1154 root->commit_root = NULL;
1156 root->orphan_cleanup_state = 0;
1158 root->objectid = objectid;
1159 root->last_trans = 0;
1160 root->highest_objectid = 0;
1161 root->nr_delalloc_inodes = 0;
1162 root->nr_ordered_extents = 0;
1163 root->inode_tree = RB_ROOT;
1164 INIT_RADIX_TREE(&root->delayed_nodes_tree, GFP_ATOMIC);
1165 root->block_rsv = NULL;
1167 INIT_LIST_HEAD(&root->dirty_list);
1168 INIT_LIST_HEAD(&root->root_list);
1169 INIT_LIST_HEAD(&root->delalloc_inodes);
1170 INIT_LIST_HEAD(&root->delalloc_root);
1171 INIT_LIST_HEAD(&root->ordered_extents);
1172 INIT_LIST_HEAD(&root->ordered_root);
1173 INIT_LIST_HEAD(&root->logged_list[0]);
1174 INIT_LIST_HEAD(&root->logged_list[1]);
1175 spin_lock_init(&root->inode_lock);
1176 spin_lock_init(&root->delalloc_lock);
1177 spin_lock_init(&root->ordered_extent_lock);
1178 spin_lock_init(&root->accounting_lock);
1179 spin_lock_init(&root->log_extents_lock[0]);
1180 spin_lock_init(&root->log_extents_lock[1]);
1181 spin_lock_init(&root->qgroup_meta_rsv_lock);
1182 mutex_init(&root->objectid_mutex);
1183 mutex_init(&root->log_mutex);
1184 mutex_init(&root->ordered_extent_mutex);
1185 mutex_init(&root->delalloc_mutex);
1186 init_waitqueue_head(&root->log_writer_wait);
1187 init_waitqueue_head(&root->log_commit_wait[0]);
1188 init_waitqueue_head(&root->log_commit_wait[1]);
1189 INIT_LIST_HEAD(&root->log_ctxs[0]);
1190 INIT_LIST_HEAD(&root->log_ctxs[1]);
1191 atomic_set(&root->log_commit[0], 0);
1192 atomic_set(&root->log_commit[1], 0);
1193 atomic_set(&root->log_writers, 0);
1194 atomic_set(&root->log_batch, 0);
1195 refcount_set(&root->refs, 1);
1196 atomic_set(&root->will_be_snapshotted, 0);
1197 atomic_set(&root->snapshot_force_cow, 0);
1198 root->log_transid = 0;
1199 root->log_transid_committed = -1;
1200 root->last_log_commit = 0;
1202 extent_io_tree_init(&root->dirty_log_pages, NULL);
1204 memset(&root->root_key, 0, sizeof(root->root_key));
1205 memset(&root->root_item, 0, sizeof(root->root_item));
1206 memset(&root->defrag_progress, 0, sizeof(root->defrag_progress));
1208 root->defrag_trans_start = fs_info->generation;
1210 root->defrag_trans_start = 0;
1211 root->root_key.objectid = objectid;
1214 spin_lock_init(&root->root_item_lock);
1217 static struct btrfs_root *btrfs_alloc_root(struct btrfs_fs_info *fs_info,
1220 struct btrfs_root *root = kzalloc(sizeof(*root), flags);
1222 root->fs_info = fs_info;
1226 #ifdef CONFIG_BTRFS_FS_RUN_SANITY_TESTS
1227 /* Should only be used by the testing infrastructure */
1228 struct btrfs_root *btrfs_alloc_dummy_root(struct btrfs_fs_info *fs_info)
1230 struct btrfs_root *root;
1233 return ERR_PTR(-EINVAL);
1235 root = btrfs_alloc_root(fs_info, GFP_KERNEL);
1237 return ERR_PTR(-ENOMEM);
1239 /* We don't use the stripesize in selftest, set it as sectorsize */
1240 __setup_root(root, fs_info, BTRFS_ROOT_TREE_OBJECTID);
1241 root->alloc_bytenr = 0;
1247 struct btrfs_root *btrfs_create_tree(struct btrfs_trans_handle *trans,
1248 struct btrfs_fs_info *fs_info,
1251 struct extent_buffer *leaf;
1252 struct btrfs_root *tree_root = fs_info->tree_root;
1253 struct btrfs_root *root;
1254 struct btrfs_key key;
1255 unsigned int nofs_flag;
1257 uuid_le uuid = NULL_UUID_LE;
1260 * We're holding a transaction handle, so use a NOFS memory allocation
1261 * context to avoid deadlock if reclaim happens.
1263 nofs_flag = memalloc_nofs_save();
1264 root = btrfs_alloc_root(fs_info, GFP_KERNEL);
1265 memalloc_nofs_restore(nofs_flag);
1267 return ERR_PTR(-ENOMEM);
1269 __setup_root(root, fs_info, objectid);
1270 root->root_key.objectid = objectid;
1271 root->root_key.type = BTRFS_ROOT_ITEM_KEY;
1272 root->root_key.offset = 0;
1274 leaf = btrfs_alloc_tree_block(trans, root, 0, objectid, NULL, 0, 0, 0);
1276 ret = PTR_ERR(leaf);
1282 btrfs_mark_buffer_dirty(leaf);
1284 root->commit_root = btrfs_root_node(root);
1285 set_bit(BTRFS_ROOT_TRACK_DIRTY, &root->state);
1287 root->root_item.flags = 0;
1288 root->root_item.byte_limit = 0;
1289 btrfs_set_root_bytenr(&root->root_item, leaf->start);
1290 btrfs_set_root_generation(&root->root_item, trans->transid);
1291 btrfs_set_root_level(&root->root_item, 0);
1292 btrfs_set_root_refs(&root->root_item, 1);
1293 btrfs_set_root_used(&root->root_item, leaf->len);
1294 btrfs_set_root_last_snapshot(&root->root_item, 0);
1295 btrfs_set_root_dirid(&root->root_item, 0);
1296 if (is_fstree(objectid))
1298 memcpy(root->root_item.uuid, uuid.b, BTRFS_UUID_SIZE);
1299 root->root_item.drop_level = 0;
1301 key.objectid = objectid;
1302 key.type = BTRFS_ROOT_ITEM_KEY;
1304 ret = btrfs_insert_root(trans, tree_root, &key, &root->root_item);
1308 btrfs_tree_unlock(leaf);
1314 btrfs_tree_unlock(leaf);
1315 free_extent_buffer(root->commit_root);
1316 free_extent_buffer(leaf);
1320 return ERR_PTR(ret);
1323 static struct btrfs_root *alloc_log_tree(struct btrfs_trans_handle *trans,
1324 struct btrfs_fs_info *fs_info)
1326 struct btrfs_root *root;
1327 struct extent_buffer *leaf;
1329 root = btrfs_alloc_root(fs_info, GFP_NOFS);
1331 return ERR_PTR(-ENOMEM);
1333 __setup_root(root, fs_info, BTRFS_TREE_LOG_OBJECTID);
1335 root->root_key.objectid = BTRFS_TREE_LOG_OBJECTID;
1336 root->root_key.type = BTRFS_ROOT_ITEM_KEY;
1337 root->root_key.offset = BTRFS_TREE_LOG_OBJECTID;
1340 * DON'T set REF_COWS for log trees
1342 * log trees do not get reference counted because they go away
1343 * before a real commit is actually done. They do store pointers
1344 * to file data extents, and those reference counts still get
1345 * updated (along with back refs to the log tree).
1348 leaf = btrfs_alloc_tree_block(trans, root, 0, BTRFS_TREE_LOG_OBJECTID,
1352 return ERR_CAST(leaf);
1357 btrfs_mark_buffer_dirty(root->node);
1358 btrfs_tree_unlock(root->node);
1362 int btrfs_init_log_root_tree(struct btrfs_trans_handle *trans,
1363 struct btrfs_fs_info *fs_info)
1365 struct btrfs_root *log_root;
1367 log_root = alloc_log_tree(trans, fs_info);
1368 if (IS_ERR(log_root))
1369 return PTR_ERR(log_root);
1370 WARN_ON(fs_info->log_root_tree);
1371 fs_info->log_root_tree = log_root;
1375 int btrfs_add_log_tree(struct btrfs_trans_handle *trans,
1376 struct btrfs_root *root)
1378 struct btrfs_fs_info *fs_info = root->fs_info;
1379 struct btrfs_root *log_root;
1380 struct btrfs_inode_item *inode_item;
1382 log_root = alloc_log_tree(trans, fs_info);
1383 if (IS_ERR(log_root))
1384 return PTR_ERR(log_root);
1386 log_root->last_trans = trans->transid;
1387 log_root->root_key.offset = root->root_key.objectid;
1389 inode_item = &log_root->root_item.inode;
1390 btrfs_set_stack_inode_generation(inode_item, 1);
1391 btrfs_set_stack_inode_size(inode_item, 3);
1392 btrfs_set_stack_inode_nlink(inode_item, 1);
1393 btrfs_set_stack_inode_nbytes(inode_item,
1395 btrfs_set_stack_inode_mode(inode_item, S_IFDIR | 0755);
1397 btrfs_set_root_node(&log_root->root_item, log_root->node);
1399 WARN_ON(root->log_root);
1400 root->log_root = log_root;
1401 root->log_transid = 0;
1402 root->log_transid_committed = -1;
1403 root->last_log_commit = 0;
1407 static struct btrfs_root *btrfs_read_tree_root(struct btrfs_root *tree_root,
1408 struct btrfs_key *key)
1410 struct btrfs_root *root;
1411 struct btrfs_fs_info *fs_info = tree_root->fs_info;
1412 struct btrfs_path *path;
1417 path = btrfs_alloc_path();
1419 return ERR_PTR(-ENOMEM);
1421 root = btrfs_alloc_root(fs_info, GFP_NOFS);
1427 __setup_root(root, fs_info, key->objectid);
1429 ret = btrfs_find_root(tree_root, key, path,
1430 &root->root_item, &root->root_key);
1437 generation = btrfs_root_generation(&root->root_item);
1438 level = btrfs_root_level(&root->root_item);
1439 root->node = read_tree_block(fs_info,
1440 btrfs_root_bytenr(&root->root_item),
1441 generation, level, NULL);
1442 if (IS_ERR(root->node)) {
1443 ret = PTR_ERR(root->node);
1445 } else if (!btrfs_buffer_uptodate(root->node, generation, 0)) {
1447 free_extent_buffer(root->node);
1450 root->commit_root = btrfs_root_node(root);
1452 btrfs_free_path(path);
1458 root = ERR_PTR(ret);
1462 struct btrfs_root *btrfs_read_fs_root(struct btrfs_root *tree_root,
1463 struct btrfs_key *location)
1465 struct btrfs_root *root;
1467 root = btrfs_read_tree_root(tree_root, location);
1471 if (root->root_key.objectid != BTRFS_TREE_LOG_OBJECTID) {
1472 set_bit(BTRFS_ROOT_REF_COWS, &root->state);
1473 btrfs_check_and_init_root_item(&root->root_item);
1479 int btrfs_init_fs_root(struct btrfs_root *root)
1482 struct btrfs_subvolume_writers *writers;
1484 root->free_ino_ctl = kzalloc(sizeof(*root->free_ino_ctl), GFP_NOFS);
1485 root->free_ino_pinned = kzalloc(sizeof(*root->free_ino_pinned),
1487 if (!root->free_ino_pinned || !root->free_ino_ctl) {
1492 writers = btrfs_alloc_subvolume_writers();
1493 if (IS_ERR(writers)) {
1494 ret = PTR_ERR(writers);
1497 root->subv_writers = writers;
1499 btrfs_init_free_ino_ctl(root);
1500 spin_lock_init(&root->ino_cache_lock);
1501 init_waitqueue_head(&root->ino_cache_wait);
1504 * Don't assign anonymous block device to roots that are not exposed to
1505 * userspace, the id pool is limited to 1M
1507 if (is_fstree(root->root_key.objectid) &&
1508 btrfs_root_refs(&root->root_item) > 0) {
1509 ret = get_anon_bdev(&root->anon_dev);
1514 mutex_lock(&root->objectid_mutex);
1515 ret = btrfs_find_highest_objectid(root,
1516 &root->highest_objectid);
1518 mutex_unlock(&root->objectid_mutex);
1522 ASSERT(root->highest_objectid <= BTRFS_LAST_FREE_OBJECTID);
1524 mutex_unlock(&root->objectid_mutex);
1528 /* The caller is responsible to call btrfs_free_fs_root */
1532 struct btrfs_root *btrfs_lookup_fs_root(struct btrfs_fs_info *fs_info,
1535 struct btrfs_root *root;
1537 spin_lock(&fs_info->fs_roots_radix_lock);
1538 root = radix_tree_lookup(&fs_info->fs_roots_radix,
1539 (unsigned long)root_id);
1540 spin_unlock(&fs_info->fs_roots_radix_lock);
1544 int btrfs_insert_fs_root(struct btrfs_fs_info *fs_info,
1545 struct btrfs_root *root)
1549 ret = radix_tree_preload(GFP_NOFS);
1553 spin_lock(&fs_info->fs_roots_radix_lock);
1554 ret = radix_tree_insert(&fs_info->fs_roots_radix,
1555 (unsigned long)root->root_key.objectid,
1558 set_bit(BTRFS_ROOT_IN_RADIX, &root->state);
1559 spin_unlock(&fs_info->fs_roots_radix_lock);
1560 radix_tree_preload_end();
1565 struct btrfs_root *btrfs_get_fs_root(struct btrfs_fs_info *fs_info,
1566 struct btrfs_key *location,
1569 struct btrfs_root *root;
1570 struct btrfs_path *path;
1571 struct btrfs_key key;
1574 if (location->objectid == BTRFS_ROOT_TREE_OBJECTID)
1575 return fs_info->tree_root;
1576 if (location->objectid == BTRFS_EXTENT_TREE_OBJECTID)
1577 return fs_info->extent_root;
1578 if (location->objectid == BTRFS_CHUNK_TREE_OBJECTID)
1579 return fs_info->chunk_root;
1580 if (location->objectid == BTRFS_DEV_TREE_OBJECTID)
1581 return fs_info->dev_root;
1582 if (location->objectid == BTRFS_CSUM_TREE_OBJECTID)
1583 return fs_info->csum_root;
1584 if (location->objectid == BTRFS_QUOTA_TREE_OBJECTID)
1585 return fs_info->quota_root ? fs_info->quota_root :
1587 if (location->objectid == BTRFS_UUID_TREE_OBJECTID)
1588 return fs_info->uuid_root ? fs_info->uuid_root :
1590 if (location->objectid == BTRFS_FREE_SPACE_TREE_OBJECTID)
1591 return fs_info->free_space_root ? fs_info->free_space_root :
1594 root = btrfs_lookup_fs_root(fs_info, location->objectid);
1596 if (check_ref && btrfs_root_refs(&root->root_item) == 0)
1597 return ERR_PTR(-ENOENT);
1601 root = btrfs_read_fs_root(fs_info->tree_root, location);
1605 if (check_ref && btrfs_root_refs(&root->root_item) == 0) {
1610 ret = btrfs_init_fs_root(root);
1614 path = btrfs_alloc_path();
1619 key.objectid = BTRFS_ORPHAN_OBJECTID;
1620 key.type = BTRFS_ORPHAN_ITEM_KEY;
1621 key.offset = location->objectid;
1623 ret = btrfs_search_slot(NULL, fs_info->tree_root, &key, path, 0, 0);
1624 btrfs_free_path(path);
1628 set_bit(BTRFS_ROOT_ORPHAN_ITEM_INSERTED, &root->state);
1630 ret = btrfs_insert_fs_root(fs_info, root);
1632 if (ret == -EEXIST) {
1633 btrfs_free_fs_root(root);
1640 btrfs_free_fs_root(root);
1641 return ERR_PTR(ret);
1644 static int btrfs_congested_fn(void *congested_data, int bdi_bits)
1646 struct btrfs_fs_info *info = (struct btrfs_fs_info *)congested_data;
1648 struct btrfs_device *device;
1649 struct backing_dev_info *bdi;
1652 list_for_each_entry_rcu(device, &info->fs_devices->devices, dev_list) {
1655 bdi = device->bdev->bd_bdi;
1656 if (bdi_congested(bdi, bdi_bits)) {
1666 * called by the kthread helper functions to finally call the bio end_io
1667 * functions. This is where read checksum verification actually happens
1669 static void end_workqueue_fn(struct btrfs_work *work)
1672 struct btrfs_end_io_wq *end_io_wq;
1674 end_io_wq = container_of(work, struct btrfs_end_io_wq, work);
1675 bio = end_io_wq->bio;
1677 bio->bi_status = end_io_wq->status;
1678 bio->bi_private = end_io_wq->private;
1679 bio->bi_end_io = end_io_wq->end_io;
1681 kmem_cache_free(btrfs_end_io_wq_cache, end_io_wq);
1684 static int cleaner_kthread(void *arg)
1686 struct btrfs_root *root = arg;
1687 struct btrfs_fs_info *fs_info = root->fs_info;
1693 /* Make the cleaner go to sleep early. */
1694 if (btrfs_need_cleaner_sleep(fs_info))
1698 * Do not do anything if we might cause open_ctree() to block
1699 * before we have finished mounting the filesystem.
1701 if (!test_bit(BTRFS_FS_OPEN, &fs_info->flags))
1704 if (!mutex_trylock(&fs_info->cleaner_mutex))
1708 * Avoid the problem that we change the status of the fs
1709 * during the above check and trylock.
1711 if (btrfs_need_cleaner_sleep(fs_info)) {
1712 mutex_unlock(&fs_info->cleaner_mutex);
1716 mutex_lock(&fs_info->cleaner_delayed_iput_mutex);
1717 btrfs_run_delayed_iputs(fs_info);
1718 mutex_unlock(&fs_info->cleaner_delayed_iput_mutex);
1720 again = btrfs_clean_one_deleted_snapshot(root);
1721 mutex_unlock(&fs_info->cleaner_mutex);
1724 * The defragger has dealt with the R/O remount and umount,
1725 * needn't do anything special here.
1727 btrfs_run_defrag_inodes(fs_info);
1730 * Acquires fs_info->delete_unused_bgs_mutex to avoid racing
1731 * with relocation (btrfs_relocate_chunk) and relocation
1732 * acquires fs_info->cleaner_mutex (btrfs_relocate_block_group)
1733 * after acquiring fs_info->delete_unused_bgs_mutex. So we
1734 * can't hold, nor need to, fs_info->cleaner_mutex when deleting
1735 * unused block groups.
1737 btrfs_delete_unused_bgs(fs_info);
1739 if (kthread_should_park())
1741 if (kthread_should_stop())
1744 set_current_state(TASK_INTERRUPTIBLE);
1746 __set_current_state(TASK_RUNNING);
1751 static int transaction_kthread(void *arg)
1753 struct btrfs_root *root = arg;
1754 struct btrfs_fs_info *fs_info = root->fs_info;
1755 struct btrfs_trans_handle *trans;
1756 struct btrfs_transaction *cur;
1759 unsigned long delay;
1763 cannot_commit = false;
1764 delay = HZ * fs_info->commit_interval;
1765 mutex_lock(&fs_info->transaction_kthread_mutex);
1767 spin_lock(&fs_info->trans_lock);
1768 cur = fs_info->running_transaction;
1770 spin_unlock(&fs_info->trans_lock);
1774 now = ktime_get_seconds();
1775 if (cur->state < TRANS_STATE_BLOCKED &&
1776 !test_bit(BTRFS_FS_NEED_ASYNC_COMMIT, &fs_info->flags) &&
1777 (now < cur->start_time ||
1778 now - cur->start_time < fs_info->commit_interval)) {
1779 spin_unlock(&fs_info->trans_lock);
1783 transid = cur->transid;
1784 spin_unlock(&fs_info->trans_lock);
1786 /* If the file system is aborted, this will always fail. */
1787 trans = btrfs_attach_transaction(root);
1788 if (IS_ERR(trans)) {
1789 if (PTR_ERR(trans) != -ENOENT)
1790 cannot_commit = true;
1793 if (transid == trans->transid) {
1794 btrfs_commit_transaction(trans);
1796 btrfs_end_transaction(trans);
1799 wake_up_process(fs_info->cleaner_kthread);
1800 mutex_unlock(&fs_info->transaction_kthread_mutex);
1802 if (unlikely(test_bit(BTRFS_FS_STATE_ERROR,
1803 &fs_info->fs_state)))
1804 btrfs_cleanup_transaction(fs_info);
1805 if (!kthread_should_stop() &&
1806 (!btrfs_transaction_blocked(fs_info) ||
1808 schedule_timeout_interruptible(delay);
1809 } while (!kthread_should_stop());
1814 * this will find the highest generation in the array of
1815 * root backups. The index of the highest array is returned,
1816 * or -1 if we can't find anything.
1818 * We check to make sure the array is valid by comparing the
1819 * generation of the latest root in the array with the generation
1820 * in the super block. If they don't match we pitch it.
1822 static int find_newest_super_backup(struct btrfs_fs_info *info, u64 newest_gen)
1825 int newest_index = -1;
1826 struct btrfs_root_backup *root_backup;
1829 for (i = 0; i < BTRFS_NUM_BACKUP_ROOTS; i++) {
1830 root_backup = info->super_copy->super_roots + i;
1831 cur = btrfs_backup_tree_root_gen(root_backup);
1832 if (cur == newest_gen)
1836 /* check to see if we actually wrapped around */
1837 if (newest_index == BTRFS_NUM_BACKUP_ROOTS - 1) {
1838 root_backup = info->super_copy->super_roots;
1839 cur = btrfs_backup_tree_root_gen(root_backup);
1840 if (cur == newest_gen)
1843 return newest_index;
1848 * find the oldest backup so we know where to store new entries
1849 * in the backup array. This will set the backup_root_index
1850 * field in the fs_info struct
1852 static void find_oldest_super_backup(struct btrfs_fs_info *info,
1855 int newest_index = -1;
1857 newest_index = find_newest_super_backup(info, newest_gen);
1858 /* if there was garbage in there, just move along */
1859 if (newest_index == -1) {
1860 info->backup_root_index = 0;
1862 info->backup_root_index = (newest_index + 1) % BTRFS_NUM_BACKUP_ROOTS;
1867 * copy all the root pointers into the super backup array.
1868 * this will bump the backup pointer by one when it is
1871 static void backup_super_roots(struct btrfs_fs_info *info)
1874 struct btrfs_root_backup *root_backup;
1877 next_backup = info->backup_root_index;
1878 last_backup = (next_backup + BTRFS_NUM_BACKUP_ROOTS - 1) %
1879 BTRFS_NUM_BACKUP_ROOTS;
1882 * just overwrite the last backup if we're at the same generation
1883 * this happens only at umount
1885 root_backup = info->super_for_commit->super_roots + last_backup;
1886 if (btrfs_backup_tree_root_gen(root_backup) ==
1887 btrfs_header_generation(info->tree_root->node))
1888 next_backup = last_backup;
1890 root_backup = info->super_for_commit->super_roots + next_backup;
1893 * make sure all of our padding and empty slots get zero filled
1894 * regardless of which ones we use today
1896 memset(root_backup, 0, sizeof(*root_backup));
1898 info->backup_root_index = (next_backup + 1) % BTRFS_NUM_BACKUP_ROOTS;
1900 btrfs_set_backup_tree_root(root_backup, info->tree_root->node->start);
1901 btrfs_set_backup_tree_root_gen(root_backup,
1902 btrfs_header_generation(info->tree_root->node));
1904 btrfs_set_backup_tree_root_level(root_backup,
1905 btrfs_header_level(info->tree_root->node));
1907 btrfs_set_backup_chunk_root(root_backup, info->chunk_root->node->start);
1908 btrfs_set_backup_chunk_root_gen(root_backup,
1909 btrfs_header_generation(info->chunk_root->node));
1910 btrfs_set_backup_chunk_root_level(root_backup,
1911 btrfs_header_level(info->chunk_root->node));
1913 btrfs_set_backup_extent_root(root_backup, info->extent_root->node->start);
1914 btrfs_set_backup_extent_root_gen(root_backup,
1915 btrfs_header_generation(info->extent_root->node));
1916 btrfs_set_backup_extent_root_level(root_backup,
1917 btrfs_header_level(info->extent_root->node));
1920 * we might commit during log recovery, which happens before we set
1921 * the fs_root. Make sure it is valid before we fill it in.
1923 if (info->fs_root && info->fs_root->node) {
1924 btrfs_set_backup_fs_root(root_backup,
1925 info->fs_root->node->start);
1926 btrfs_set_backup_fs_root_gen(root_backup,
1927 btrfs_header_generation(info->fs_root->node));
1928 btrfs_set_backup_fs_root_level(root_backup,
1929 btrfs_header_level(info->fs_root->node));
1932 btrfs_set_backup_dev_root(root_backup, info->dev_root->node->start);
1933 btrfs_set_backup_dev_root_gen(root_backup,
1934 btrfs_header_generation(info->dev_root->node));
1935 btrfs_set_backup_dev_root_level(root_backup,
1936 btrfs_header_level(info->dev_root->node));
1938 btrfs_set_backup_csum_root(root_backup, info->csum_root->node->start);
1939 btrfs_set_backup_csum_root_gen(root_backup,
1940 btrfs_header_generation(info->csum_root->node));
1941 btrfs_set_backup_csum_root_level(root_backup,
1942 btrfs_header_level(info->csum_root->node));
1944 btrfs_set_backup_total_bytes(root_backup,
1945 btrfs_super_total_bytes(info->super_copy));
1946 btrfs_set_backup_bytes_used(root_backup,
1947 btrfs_super_bytes_used(info->super_copy));
1948 btrfs_set_backup_num_devices(root_backup,
1949 btrfs_super_num_devices(info->super_copy));
1952 * if we don't copy this out to the super_copy, it won't get remembered
1953 * for the next commit
1955 memcpy(&info->super_copy->super_roots,
1956 &info->super_for_commit->super_roots,
1957 sizeof(*root_backup) * BTRFS_NUM_BACKUP_ROOTS);
1961 * this copies info out of the root backup array and back into
1962 * the in-memory super block. It is meant to help iterate through
1963 * the array, so you send it the number of backups you've already
1964 * tried and the last backup index you used.
1966 * this returns -1 when it has tried all the backups
1968 static noinline int next_root_backup(struct btrfs_fs_info *info,
1969 struct btrfs_super_block *super,
1970 int *num_backups_tried, int *backup_index)
1972 struct btrfs_root_backup *root_backup;
1973 int newest = *backup_index;
1975 if (*num_backups_tried == 0) {
1976 u64 gen = btrfs_super_generation(super);
1978 newest = find_newest_super_backup(info, gen);
1982 *backup_index = newest;
1983 *num_backups_tried = 1;
1984 } else if (*num_backups_tried == BTRFS_NUM_BACKUP_ROOTS) {
1985 /* we've tried all the backups, all done */
1988 /* jump to the next oldest backup */
1989 newest = (*backup_index + BTRFS_NUM_BACKUP_ROOTS - 1) %
1990 BTRFS_NUM_BACKUP_ROOTS;
1991 *backup_index = newest;
1992 *num_backups_tried += 1;
1994 root_backup = super->super_roots + newest;
1996 btrfs_set_super_generation(super,
1997 btrfs_backup_tree_root_gen(root_backup));
1998 btrfs_set_super_root(super, btrfs_backup_tree_root(root_backup));
1999 btrfs_set_super_root_level(super,
2000 btrfs_backup_tree_root_level(root_backup));
2001 btrfs_set_super_bytes_used(super, btrfs_backup_bytes_used(root_backup));
2004 * fixme: the total bytes and num_devices need to match or we should
2007 btrfs_set_super_total_bytes(super, btrfs_backup_total_bytes(root_backup));
2008 btrfs_set_super_num_devices(super, btrfs_backup_num_devices(root_backup));
2012 /* helper to cleanup workers */
2013 static void btrfs_stop_all_workers(struct btrfs_fs_info *fs_info)
2015 btrfs_destroy_workqueue(fs_info->fixup_workers);
2016 btrfs_destroy_workqueue(fs_info->delalloc_workers);
2017 btrfs_destroy_workqueue(fs_info->workers);
2018 btrfs_destroy_workqueue(fs_info->endio_workers);
2019 btrfs_destroy_workqueue(fs_info->endio_raid56_workers);
2020 btrfs_destroy_workqueue(fs_info->endio_repair_workers);
2021 btrfs_destroy_workqueue(fs_info->rmw_workers);
2022 btrfs_destroy_workqueue(fs_info->endio_write_workers);
2023 btrfs_destroy_workqueue(fs_info->endio_freespace_worker);
2024 btrfs_destroy_workqueue(fs_info->submit_workers);
2025 btrfs_destroy_workqueue(fs_info->delayed_workers);
2026 btrfs_destroy_workqueue(fs_info->caching_workers);
2027 btrfs_destroy_workqueue(fs_info->readahead_workers);
2028 btrfs_destroy_workqueue(fs_info->flush_workers);
2029 btrfs_destroy_workqueue(fs_info->qgroup_rescan_workers);
2030 btrfs_destroy_workqueue(fs_info->extent_workers);
2032 * Now that all other work queues are destroyed, we can safely destroy
2033 * the queues used for metadata I/O, since tasks from those other work
2034 * queues can do metadata I/O operations.
2036 btrfs_destroy_workqueue(fs_info->endio_meta_workers);
2037 btrfs_destroy_workqueue(fs_info->endio_meta_write_workers);
2040 static void free_root_extent_buffers(struct btrfs_root *root)
2043 free_extent_buffer(root->node);
2044 free_extent_buffer(root->commit_root);
2046 root->commit_root = NULL;
2050 /* helper to cleanup tree roots */
2051 static void free_root_pointers(struct btrfs_fs_info *info, bool free_chunk_root)
2053 free_root_extent_buffers(info->tree_root);
2055 free_root_extent_buffers(info->dev_root);
2056 free_root_extent_buffers(info->extent_root);
2057 free_root_extent_buffers(info->csum_root);
2058 free_root_extent_buffers(info->quota_root);
2059 free_root_extent_buffers(info->uuid_root);
2060 if (free_chunk_root)
2061 free_root_extent_buffers(info->chunk_root);
2062 free_root_extent_buffers(info->free_space_root);
2065 void btrfs_free_fs_roots(struct btrfs_fs_info *fs_info)
2068 struct btrfs_root *gang[8];
2071 while (!list_empty(&fs_info->dead_roots)) {
2072 gang[0] = list_entry(fs_info->dead_roots.next,
2073 struct btrfs_root, root_list);
2074 list_del(&gang[0]->root_list);
2076 if (test_bit(BTRFS_ROOT_IN_RADIX, &gang[0]->state)) {
2077 btrfs_drop_and_free_fs_root(fs_info, gang[0]);
2079 free_extent_buffer(gang[0]->node);
2080 free_extent_buffer(gang[0]->commit_root);
2081 btrfs_put_fs_root(gang[0]);
2086 ret = radix_tree_gang_lookup(&fs_info->fs_roots_radix,
2091 for (i = 0; i < ret; i++)
2092 btrfs_drop_and_free_fs_root(fs_info, gang[i]);
2095 if (test_bit(BTRFS_FS_STATE_ERROR, &fs_info->fs_state)) {
2096 btrfs_free_log_root_tree(NULL, fs_info);
2097 btrfs_destroy_pinned_extent(fs_info, fs_info->pinned_extents);
2101 static void btrfs_init_scrub(struct btrfs_fs_info *fs_info)
2103 mutex_init(&fs_info->scrub_lock);
2104 atomic_set(&fs_info->scrubs_running, 0);
2105 atomic_set(&fs_info->scrub_pause_req, 0);
2106 atomic_set(&fs_info->scrubs_paused, 0);
2107 atomic_set(&fs_info->scrub_cancel_req, 0);
2108 init_waitqueue_head(&fs_info->scrub_pause_wait);
2109 fs_info->scrub_workers_refcnt = 0;
2112 static void btrfs_init_balance(struct btrfs_fs_info *fs_info)
2114 spin_lock_init(&fs_info->balance_lock);
2115 mutex_init(&fs_info->balance_mutex);
2116 atomic_set(&fs_info->balance_pause_req, 0);
2117 atomic_set(&fs_info->balance_cancel_req, 0);
2118 fs_info->balance_ctl = NULL;
2119 init_waitqueue_head(&fs_info->balance_wait_q);
2122 static void btrfs_init_btree_inode(struct btrfs_fs_info *fs_info)
2124 struct inode *inode = fs_info->btree_inode;
2126 inode->i_ino = BTRFS_BTREE_INODE_OBJECTID;
2127 set_nlink(inode, 1);
2129 * we set the i_size on the btree inode to the max possible int.
2130 * the real end of the address space is determined by all of
2131 * the devices in the system
2133 inode->i_size = OFFSET_MAX;
2134 inode->i_mapping->a_ops = &btree_aops;
2136 RB_CLEAR_NODE(&BTRFS_I(inode)->rb_node);
2137 extent_io_tree_init(&BTRFS_I(inode)->io_tree, inode);
2138 BTRFS_I(inode)->io_tree.track_uptodate = 0;
2139 extent_map_tree_init(&BTRFS_I(inode)->extent_tree);
2141 BTRFS_I(inode)->io_tree.ops = &btree_extent_io_ops;
2143 BTRFS_I(inode)->root = fs_info->tree_root;
2144 memset(&BTRFS_I(inode)->location, 0, sizeof(struct btrfs_key));
2145 set_bit(BTRFS_INODE_DUMMY, &BTRFS_I(inode)->runtime_flags);
2146 btrfs_insert_inode_hash(inode);
2149 static void btrfs_init_dev_replace_locks(struct btrfs_fs_info *fs_info)
2151 mutex_init(&fs_info->dev_replace.lock_finishing_cancel_unmount);
2152 rwlock_init(&fs_info->dev_replace.lock);
2153 atomic_set(&fs_info->dev_replace.read_locks, 0);
2154 atomic_set(&fs_info->dev_replace.blocking_readers, 0);
2155 init_waitqueue_head(&fs_info->replace_wait);
2156 init_waitqueue_head(&fs_info->dev_replace.read_lock_wq);
2159 static void btrfs_init_qgroup(struct btrfs_fs_info *fs_info)
2161 spin_lock_init(&fs_info->qgroup_lock);
2162 mutex_init(&fs_info->qgroup_ioctl_lock);
2163 fs_info->qgroup_tree = RB_ROOT;
2164 fs_info->qgroup_op_tree = RB_ROOT;
2165 INIT_LIST_HEAD(&fs_info->dirty_qgroups);
2166 fs_info->qgroup_seq = 1;
2167 fs_info->qgroup_ulist = NULL;
2168 fs_info->qgroup_rescan_running = false;
2169 mutex_init(&fs_info->qgroup_rescan_lock);
2172 static int btrfs_init_workqueues(struct btrfs_fs_info *fs_info,
2173 struct btrfs_fs_devices *fs_devices)
2175 u32 max_active = fs_info->thread_pool_size;
2176 unsigned int flags = WQ_MEM_RECLAIM | WQ_FREEZABLE | WQ_UNBOUND;
2179 btrfs_alloc_workqueue(fs_info, "worker",
2180 flags | WQ_HIGHPRI, max_active, 16);
2182 fs_info->delalloc_workers =
2183 btrfs_alloc_workqueue(fs_info, "delalloc",
2184 flags, max_active, 2);
2186 fs_info->flush_workers =
2187 btrfs_alloc_workqueue(fs_info, "flush_delalloc",
2188 flags, max_active, 0);
2190 fs_info->caching_workers =
2191 btrfs_alloc_workqueue(fs_info, "cache", flags, max_active, 0);
2194 * a higher idle thresh on the submit workers makes it much more
2195 * likely that bios will be send down in a sane order to the
2198 fs_info->submit_workers =
2199 btrfs_alloc_workqueue(fs_info, "submit", flags,
2200 min_t(u64, fs_devices->num_devices,
2203 fs_info->fixup_workers =
2204 btrfs_alloc_workqueue(fs_info, "fixup", flags, 1, 0);
2207 * endios are largely parallel and should have a very
2210 fs_info->endio_workers =
2211 btrfs_alloc_workqueue(fs_info, "endio", flags, max_active, 4);
2212 fs_info->endio_meta_workers =
2213 btrfs_alloc_workqueue(fs_info, "endio-meta", flags,
2215 fs_info->endio_meta_write_workers =
2216 btrfs_alloc_workqueue(fs_info, "endio-meta-write", flags,
2218 fs_info->endio_raid56_workers =
2219 btrfs_alloc_workqueue(fs_info, "endio-raid56", flags,
2221 fs_info->endio_repair_workers =
2222 btrfs_alloc_workqueue(fs_info, "endio-repair", flags, 1, 0);
2223 fs_info->rmw_workers =
2224 btrfs_alloc_workqueue(fs_info, "rmw", flags, max_active, 2);
2225 fs_info->endio_write_workers =
2226 btrfs_alloc_workqueue(fs_info, "endio-write", flags,
2228 fs_info->endio_freespace_worker =
2229 btrfs_alloc_workqueue(fs_info, "freespace-write", flags,
2231 fs_info->delayed_workers =
2232 btrfs_alloc_workqueue(fs_info, "delayed-meta", flags,
2234 fs_info->readahead_workers =
2235 btrfs_alloc_workqueue(fs_info, "readahead", flags,
2237 fs_info->qgroup_rescan_workers =
2238 btrfs_alloc_workqueue(fs_info, "qgroup-rescan", flags, 1, 0);
2239 fs_info->extent_workers =
2240 btrfs_alloc_workqueue(fs_info, "extent-refs", flags,
2241 min_t(u64, fs_devices->num_devices,
2244 if (!(fs_info->workers && fs_info->delalloc_workers &&
2245 fs_info->submit_workers && fs_info->flush_workers &&
2246 fs_info->endio_workers && fs_info->endio_meta_workers &&
2247 fs_info->endio_meta_write_workers &&
2248 fs_info->endio_repair_workers &&
2249 fs_info->endio_write_workers && fs_info->endio_raid56_workers &&
2250 fs_info->endio_freespace_worker && fs_info->rmw_workers &&
2251 fs_info->caching_workers && fs_info->readahead_workers &&
2252 fs_info->fixup_workers && fs_info->delayed_workers &&
2253 fs_info->extent_workers &&
2254 fs_info->qgroup_rescan_workers)) {
2261 static int btrfs_replay_log(struct btrfs_fs_info *fs_info,
2262 struct btrfs_fs_devices *fs_devices)
2265 struct btrfs_root *log_tree_root;
2266 struct btrfs_super_block *disk_super = fs_info->super_copy;
2267 u64 bytenr = btrfs_super_log_root(disk_super);
2268 int level = btrfs_super_log_root_level(disk_super);
2270 if (fs_devices->rw_devices == 0) {
2271 btrfs_warn(fs_info, "log replay required on RO media");
2275 log_tree_root = btrfs_alloc_root(fs_info, GFP_KERNEL);
2279 __setup_root(log_tree_root, fs_info, BTRFS_TREE_LOG_OBJECTID);
2281 log_tree_root->node = read_tree_block(fs_info, bytenr,
2282 fs_info->generation + 1,
2284 if (IS_ERR(log_tree_root->node)) {
2285 btrfs_warn(fs_info, "failed to read log tree");
2286 ret = PTR_ERR(log_tree_root->node);
2287 kfree(log_tree_root);
2289 } else if (!extent_buffer_uptodate(log_tree_root->node)) {
2290 btrfs_err(fs_info, "failed to read log tree");
2291 free_extent_buffer(log_tree_root->node);
2292 kfree(log_tree_root);
2295 /* returns with log_tree_root freed on success */
2296 ret = btrfs_recover_log_trees(log_tree_root);
2298 btrfs_handle_fs_error(fs_info, ret,
2299 "Failed to recover log tree");
2300 free_extent_buffer(log_tree_root->node);
2301 kfree(log_tree_root);
2305 if (sb_rdonly(fs_info->sb)) {
2306 ret = btrfs_commit_super(fs_info);
2314 static int btrfs_read_roots(struct btrfs_fs_info *fs_info)
2316 struct btrfs_root *tree_root = fs_info->tree_root;
2317 struct btrfs_root *root;
2318 struct btrfs_key location;
2321 BUG_ON(!fs_info->tree_root);
2323 location.objectid = BTRFS_EXTENT_TREE_OBJECTID;
2324 location.type = BTRFS_ROOT_ITEM_KEY;
2325 location.offset = 0;
2327 root = btrfs_read_tree_root(tree_root, &location);
2329 ret = PTR_ERR(root);
2332 set_bit(BTRFS_ROOT_TRACK_DIRTY, &root->state);
2333 fs_info->extent_root = root;
2335 location.objectid = BTRFS_DEV_TREE_OBJECTID;
2336 root = btrfs_read_tree_root(tree_root, &location);
2338 ret = PTR_ERR(root);
2341 set_bit(BTRFS_ROOT_TRACK_DIRTY, &root->state);
2342 fs_info->dev_root = root;
2343 btrfs_init_devices_late(fs_info);
2345 location.objectid = BTRFS_CSUM_TREE_OBJECTID;
2346 root = btrfs_read_tree_root(tree_root, &location);
2348 ret = PTR_ERR(root);
2351 set_bit(BTRFS_ROOT_TRACK_DIRTY, &root->state);
2352 fs_info->csum_root = root;
2354 location.objectid = BTRFS_QUOTA_TREE_OBJECTID;
2355 root = btrfs_read_tree_root(tree_root, &location);
2356 if (!IS_ERR(root)) {
2357 set_bit(BTRFS_ROOT_TRACK_DIRTY, &root->state);
2358 set_bit(BTRFS_FS_QUOTA_ENABLED, &fs_info->flags);
2359 fs_info->quota_root = root;
2362 location.objectid = BTRFS_UUID_TREE_OBJECTID;
2363 root = btrfs_read_tree_root(tree_root, &location);
2365 ret = PTR_ERR(root);
2369 set_bit(BTRFS_ROOT_TRACK_DIRTY, &root->state);
2370 fs_info->uuid_root = root;
2373 if (btrfs_fs_compat_ro(fs_info, FREE_SPACE_TREE)) {
2374 location.objectid = BTRFS_FREE_SPACE_TREE_OBJECTID;
2375 root = btrfs_read_tree_root(tree_root, &location);
2377 ret = PTR_ERR(root);
2380 set_bit(BTRFS_ROOT_TRACK_DIRTY, &root->state);
2381 fs_info->free_space_root = root;
2386 btrfs_warn(fs_info, "failed to read root (objectid=%llu): %d",
2387 location.objectid, ret);
2392 * Real super block validation
2393 * NOTE: super csum type and incompat features will not be checked here.
2395 * @sb: super block to check
2396 * @mirror_num: the super block number to check its bytenr:
2397 * 0 the primary (1st) sb
2398 * 1, 2 2nd and 3rd backup copy
2399 * -1 skip bytenr check
2401 static int validate_super(struct btrfs_fs_info *fs_info,
2402 struct btrfs_super_block *sb, int mirror_num)
2404 u64 nodesize = btrfs_super_nodesize(sb);
2405 u64 sectorsize = btrfs_super_sectorsize(sb);
2408 if (btrfs_super_magic(sb) != BTRFS_MAGIC) {
2409 btrfs_err(fs_info, "no valid FS found");
2412 if (btrfs_super_flags(sb) & ~BTRFS_SUPER_FLAG_SUPP) {
2413 btrfs_err(fs_info, "unrecognized or unsupported super flag: %llu",
2414 btrfs_super_flags(sb) & ~BTRFS_SUPER_FLAG_SUPP);
2417 if (btrfs_super_root_level(sb) >= BTRFS_MAX_LEVEL) {
2418 btrfs_err(fs_info, "tree_root level too big: %d >= %d",
2419 btrfs_super_root_level(sb), BTRFS_MAX_LEVEL);
2422 if (btrfs_super_chunk_root_level(sb) >= BTRFS_MAX_LEVEL) {
2423 btrfs_err(fs_info, "chunk_root level too big: %d >= %d",
2424 btrfs_super_chunk_root_level(sb), BTRFS_MAX_LEVEL);
2427 if (btrfs_super_log_root_level(sb) >= BTRFS_MAX_LEVEL) {
2428 btrfs_err(fs_info, "log_root level too big: %d >= %d",
2429 btrfs_super_log_root_level(sb), BTRFS_MAX_LEVEL);
2434 * Check sectorsize and nodesize first, other check will need it.
2435 * Check all possible sectorsize(4K, 8K, 16K, 32K, 64K) here.
2437 if (!is_power_of_2(sectorsize) || sectorsize < 4096 ||
2438 sectorsize > BTRFS_MAX_METADATA_BLOCKSIZE) {
2439 btrfs_err(fs_info, "invalid sectorsize %llu", sectorsize);
2442 /* Only PAGE SIZE is supported yet */
2443 if (sectorsize != PAGE_SIZE) {
2445 "sectorsize %llu not supported yet, only support %lu",
2446 sectorsize, PAGE_SIZE);
2449 if (!is_power_of_2(nodesize) || nodesize < sectorsize ||
2450 nodesize > BTRFS_MAX_METADATA_BLOCKSIZE) {
2451 btrfs_err(fs_info, "invalid nodesize %llu", nodesize);
2454 if (nodesize != le32_to_cpu(sb->__unused_leafsize)) {
2455 btrfs_err(fs_info, "invalid leafsize %u, should be %llu",
2456 le32_to_cpu(sb->__unused_leafsize), nodesize);
2460 /* Root alignment check */
2461 if (!IS_ALIGNED(btrfs_super_root(sb), sectorsize)) {
2462 btrfs_warn(fs_info, "tree_root block unaligned: %llu",
2463 btrfs_super_root(sb));
2466 if (!IS_ALIGNED(btrfs_super_chunk_root(sb), sectorsize)) {
2467 btrfs_warn(fs_info, "chunk_root block unaligned: %llu",
2468 btrfs_super_chunk_root(sb));
2471 if (!IS_ALIGNED(btrfs_super_log_root(sb), sectorsize)) {
2472 btrfs_warn(fs_info, "log_root block unaligned: %llu",
2473 btrfs_super_log_root(sb));
2477 if (memcmp(fs_info->fsid, sb->dev_item.fsid, BTRFS_FSID_SIZE) != 0) {
2479 "dev_item UUID does not match fsid: %pU != %pU",
2480 fs_info->fsid, sb->dev_item.fsid);
2485 * Hint to catch really bogus numbers, bitflips or so, more exact checks are
2488 if (btrfs_super_bytes_used(sb) < 6 * btrfs_super_nodesize(sb)) {
2489 btrfs_err(fs_info, "bytes_used is too small %llu",
2490 btrfs_super_bytes_used(sb));
2493 if (!is_power_of_2(btrfs_super_stripesize(sb))) {
2494 btrfs_err(fs_info, "invalid stripesize %u",
2495 btrfs_super_stripesize(sb));
2498 if (btrfs_super_num_devices(sb) > (1UL << 31))
2499 btrfs_warn(fs_info, "suspicious number of devices: %llu",
2500 btrfs_super_num_devices(sb));
2501 if (btrfs_super_num_devices(sb) == 0) {
2502 btrfs_err(fs_info, "number of devices is 0");
2506 if (mirror_num >= 0 &&
2507 btrfs_super_bytenr(sb) != btrfs_sb_offset(mirror_num)) {
2508 btrfs_err(fs_info, "super offset mismatch %llu != %u",
2509 btrfs_super_bytenr(sb), BTRFS_SUPER_INFO_OFFSET);
2514 * Obvious sys_chunk_array corruptions, it must hold at least one key
2517 if (btrfs_super_sys_array_size(sb) > BTRFS_SYSTEM_CHUNK_ARRAY_SIZE) {
2518 btrfs_err(fs_info, "system chunk array too big %u > %u",
2519 btrfs_super_sys_array_size(sb),
2520 BTRFS_SYSTEM_CHUNK_ARRAY_SIZE);
2523 if (btrfs_super_sys_array_size(sb) < sizeof(struct btrfs_disk_key)
2524 + sizeof(struct btrfs_chunk)) {
2525 btrfs_err(fs_info, "system chunk array too small %u < %zu",
2526 btrfs_super_sys_array_size(sb),
2527 sizeof(struct btrfs_disk_key)
2528 + sizeof(struct btrfs_chunk));
2533 * The generation is a global counter, we'll trust it more than the others
2534 * but it's still possible that it's the one that's wrong.
2536 if (btrfs_super_generation(sb) < btrfs_super_chunk_root_generation(sb))
2538 "suspicious: generation < chunk_root_generation: %llu < %llu",
2539 btrfs_super_generation(sb),
2540 btrfs_super_chunk_root_generation(sb));
2541 if (btrfs_super_generation(sb) < btrfs_super_cache_generation(sb)
2542 && btrfs_super_cache_generation(sb) != (u64)-1)
2544 "suspicious: generation < cache_generation: %llu < %llu",
2545 btrfs_super_generation(sb),
2546 btrfs_super_cache_generation(sb));
2552 * Validation of super block at mount time.
2553 * Some checks already done early at mount time, like csum type and incompat
2554 * flags will be skipped.
2556 static int btrfs_validate_mount_super(struct btrfs_fs_info *fs_info)
2558 return validate_super(fs_info, fs_info->super_copy, 0);
2562 * Validation of super block at write time.
2563 * Some checks like bytenr check will be skipped as their values will be
2565 * Extra checks like csum type and incompat flags will be done here.
2567 static int btrfs_validate_write_super(struct btrfs_fs_info *fs_info,
2568 struct btrfs_super_block *sb)
2572 ret = validate_super(fs_info, sb, -1);
2575 if (btrfs_super_csum_type(sb) != BTRFS_CSUM_TYPE_CRC32) {
2577 btrfs_err(fs_info, "invalid csum type, has %u want %u",
2578 btrfs_super_csum_type(sb), BTRFS_CSUM_TYPE_CRC32);
2581 if (btrfs_super_incompat_flags(sb) & ~BTRFS_FEATURE_INCOMPAT_SUPP) {
2584 "invalid incompat flags, has 0x%llx valid mask 0x%llx",
2585 btrfs_super_incompat_flags(sb),
2586 (unsigned long long)BTRFS_FEATURE_INCOMPAT_SUPP);
2592 "super block corruption detected before writing it to disk");
2596 int open_ctree(struct super_block *sb,
2597 struct btrfs_fs_devices *fs_devices,
2605 struct btrfs_key location;
2606 struct buffer_head *bh;
2607 struct btrfs_super_block *disk_super;
2608 struct btrfs_fs_info *fs_info = btrfs_sb(sb);
2609 struct btrfs_root *tree_root;
2610 struct btrfs_root *chunk_root;
2613 int num_backups_tried = 0;
2614 int backup_index = 0;
2615 int clear_free_space_tree = 0;
2618 tree_root = fs_info->tree_root = btrfs_alloc_root(fs_info, GFP_KERNEL);
2619 chunk_root = fs_info->chunk_root = btrfs_alloc_root(fs_info, GFP_KERNEL);
2620 if (!tree_root || !chunk_root) {
2625 ret = init_srcu_struct(&fs_info->subvol_srcu);
2631 ret = percpu_counter_init(&fs_info->dirty_metadata_bytes, 0, GFP_KERNEL);
2636 fs_info->dirty_metadata_batch = PAGE_SIZE *
2637 (1 + ilog2(nr_cpu_ids));
2639 ret = percpu_counter_init(&fs_info->delalloc_bytes, 0, GFP_KERNEL);
2642 goto fail_dirty_metadata_bytes;
2645 ret = percpu_counter_init(&fs_info->bio_counter, 0, GFP_KERNEL);
2648 goto fail_delalloc_bytes;
2651 INIT_RADIX_TREE(&fs_info->fs_roots_radix, GFP_ATOMIC);
2652 INIT_RADIX_TREE(&fs_info->buffer_radix, GFP_ATOMIC);
2653 INIT_LIST_HEAD(&fs_info->trans_list);
2654 INIT_LIST_HEAD(&fs_info->dead_roots);
2655 INIT_LIST_HEAD(&fs_info->delayed_iputs);
2656 INIT_LIST_HEAD(&fs_info->delalloc_roots);
2657 INIT_LIST_HEAD(&fs_info->caching_block_groups);
2658 INIT_LIST_HEAD(&fs_info->pending_raid_kobjs);
2659 spin_lock_init(&fs_info->pending_raid_kobjs_lock);
2660 spin_lock_init(&fs_info->delalloc_root_lock);
2661 spin_lock_init(&fs_info->trans_lock);
2662 spin_lock_init(&fs_info->fs_roots_radix_lock);
2663 spin_lock_init(&fs_info->delayed_iput_lock);
2664 spin_lock_init(&fs_info->defrag_inodes_lock);
2665 spin_lock_init(&fs_info->super_lock);
2666 spin_lock_init(&fs_info->qgroup_op_lock);
2667 spin_lock_init(&fs_info->buffer_lock);
2668 spin_lock_init(&fs_info->unused_bgs_lock);
2669 rwlock_init(&fs_info->tree_mod_log_lock);
2670 mutex_init(&fs_info->unused_bg_unpin_mutex);
2671 mutex_init(&fs_info->delete_unused_bgs_mutex);
2672 mutex_init(&fs_info->reloc_mutex);
2673 mutex_init(&fs_info->delalloc_root_mutex);
2674 mutex_init(&fs_info->cleaner_delayed_iput_mutex);
2675 seqlock_init(&fs_info->profiles_lock);
2677 INIT_LIST_HEAD(&fs_info->dirty_cowonly_roots);
2678 INIT_LIST_HEAD(&fs_info->space_info);
2679 INIT_LIST_HEAD(&fs_info->tree_mod_seq_list);
2680 INIT_LIST_HEAD(&fs_info->unused_bgs);
2681 btrfs_mapping_init(&fs_info->mapping_tree);
2682 btrfs_init_block_rsv(&fs_info->global_block_rsv,
2683 BTRFS_BLOCK_RSV_GLOBAL);
2684 btrfs_init_block_rsv(&fs_info->trans_block_rsv, BTRFS_BLOCK_RSV_TRANS);
2685 btrfs_init_block_rsv(&fs_info->chunk_block_rsv, BTRFS_BLOCK_RSV_CHUNK);
2686 btrfs_init_block_rsv(&fs_info->empty_block_rsv, BTRFS_BLOCK_RSV_EMPTY);
2687 btrfs_init_block_rsv(&fs_info->delayed_block_rsv,
2688 BTRFS_BLOCK_RSV_DELOPS);
2689 atomic_set(&fs_info->async_delalloc_pages, 0);
2690 atomic_set(&fs_info->defrag_running, 0);
2691 atomic_set(&fs_info->qgroup_op_seq, 0);
2692 atomic_set(&fs_info->reada_works_cnt, 0);
2693 atomic64_set(&fs_info->tree_mod_seq, 0);
2695 fs_info->max_inline = BTRFS_DEFAULT_MAX_INLINE;
2696 fs_info->metadata_ratio = 0;
2697 fs_info->defrag_inodes = RB_ROOT;
2698 atomic64_set(&fs_info->free_chunk_space, 0);
2699 fs_info->tree_mod_log = RB_ROOT;
2700 fs_info->commit_interval = BTRFS_DEFAULT_COMMIT_INTERVAL;
2701 fs_info->avg_delayed_ref_runtime = NSEC_PER_SEC >> 6; /* div by 64 */
2702 /* readahead state */
2703 INIT_RADIX_TREE(&fs_info->reada_tree, GFP_NOFS & ~__GFP_DIRECT_RECLAIM);
2704 spin_lock_init(&fs_info->reada_lock);
2705 btrfs_init_ref_verify(fs_info);
2707 fs_info->thread_pool_size = min_t(unsigned long,
2708 num_online_cpus() + 2, 8);
2710 INIT_LIST_HEAD(&fs_info->ordered_roots);
2711 spin_lock_init(&fs_info->ordered_root_lock);
2713 fs_info->btree_inode = new_inode(sb);
2714 if (!fs_info->btree_inode) {
2716 goto fail_bio_counter;
2718 mapping_set_gfp_mask(fs_info->btree_inode->i_mapping, GFP_NOFS);
2720 fs_info->delayed_root = kmalloc(sizeof(struct btrfs_delayed_root),
2722 if (!fs_info->delayed_root) {
2726 btrfs_init_delayed_root(fs_info->delayed_root);
2728 btrfs_init_scrub(fs_info);
2729 #ifdef CONFIG_BTRFS_FS_CHECK_INTEGRITY
2730 fs_info->check_integrity_print_mask = 0;
2732 btrfs_init_balance(fs_info);
2733 btrfs_init_async_reclaim_work(&fs_info->async_reclaim_work);
2735 sb->s_blocksize = BTRFS_BDEV_BLOCKSIZE;
2736 sb->s_blocksize_bits = blksize_bits(BTRFS_BDEV_BLOCKSIZE);
2738 btrfs_init_btree_inode(fs_info);
2740 spin_lock_init(&fs_info->block_group_cache_lock);
2741 fs_info->block_group_cache_tree = RB_ROOT;
2742 fs_info->first_logical_byte = (u64)-1;
2744 extent_io_tree_init(&fs_info->freed_extents[0], NULL);
2745 extent_io_tree_init(&fs_info->freed_extents[1], NULL);
2746 fs_info->pinned_extents = &fs_info->freed_extents[0];
2747 set_bit(BTRFS_FS_BARRIER, &fs_info->flags);
2749 mutex_init(&fs_info->ordered_operations_mutex);
2750 mutex_init(&fs_info->tree_log_mutex);
2751 mutex_init(&fs_info->chunk_mutex);
2752 mutex_init(&fs_info->transaction_kthread_mutex);
2753 mutex_init(&fs_info->cleaner_mutex);
2754 mutex_init(&fs_info->ro_block_group_mutex);
2755 init_rwsem(&fs_info->commit_root_sem);
2756 init_rwsem(&fs_info->cleanup_work_sem);
2757 init_rwsem(&fs_info->subvol_sem);
2758 sema_init(&fs_info->uuid_tree_rescan_sem, 1);
2760 btrfs_init_dev_replace_locks(fs_info);
2761 btrfs_init_qgroup(fs_info);
2763 btrfs_init_free_cluster(&fs_info->meta_alloc_cluster);
2764 btrfs_init_free_cluster(&fs_info->data_alloc_cluster);
2766 init_waitqueue_head(&fs_info->transaction_throttle);
2767 init_waitqueue_head(&fs_info->transaction_wait);
2768 init_waitqueue_head(&fs_info->transaction_blocked_wait);
2769 init_waitqueue_head(&fs_info->async_submit_wait);
2771 INIT_LIST_HEAD(&fs_info->pinned_chunks);
2773 /* Usable values until the real ones are cached from the superblock */
2774 fs_info->nodesize = 4096;
2775 fs_info->sectorsize = 4096;
2776 fs_info->stripesize = 4096;
2778 ret = btrfs_alloc_stripe_hash_table(fs_info);
2784 __setup_root(tree_root, fs_info, BTRFS_ROOT_TREE_OBJECTID);
2786 invalidate_bdev(fs_devices->latest_bdev);
2789 * Read super block and check the signature bytes only
2791 bh = btrfs_read_dev_super(fs_devices->latest_bdev);
2798 * We want to check superblock checksum, the type is stored inside.
2799 * Pass the whole disk block of size BTRFS_SUPER_INFO_SIZE (4k).
2801 if (btrfs_check_super_csum(fs_info, bh->b_data)) {
2802 btrfs_err(fs_info, "superblock checksum mismatch");
2809 * super_copy is zeroed at allocation time and we never touch the
2810 * following bytes up to INFO_SIZE, the checksum is calculated from
2811 * the whole block of INFO_SIZE
2813 memcpy(fs_info->super_copy, bh->b_data, sizeof(*fs_info->super_copy));
2814 memcpy(fs_info->super_for_commit, fs_info->super_copy,
2815 sizeof(*fs_info->super_for_commit));
2818 memcpy(fs_info->fsid, fs_info->super_copy->fsid, BTRFS_FSID_SIZE);
2820 ret = btrfs_validate_mount_super(fs_info);
2822 btrfs_err(fs_info, "superblock contains fatal errors");
2827 disk_super = fs_info->super_copy;
2828 if (!btrfs_super_root(disk_super))
2831 /* check FS state, whether FS is broken. */
2832 if (btrfs_super_flags(disk_super) & BTRFS_SUPER_FLAG_ERROR)
2833 set_bit(BTRFS_FS_STATE_ERROR, &fs_info->fs_state);
2836 * run through our array of backup supers and setup
2837 * our ring pointer to the oldest one
2839 generation = btrfs_super_generation(disk_super);
2840 find_oldest_super_backup(fs_info, generation);
2843 * In the long term, we'll store the compression type in the super
2844 * block, and it'll be used for per file compression control.
2846 fs_info->compress_type = BTRFS_COMPRESS_ZLIB;
2848 ret = btrfs_parse_options(fs_info, options, sb->s_flags);
2854 features = btrfs_super_incompat_flags(disk_super) &
2855 ~BTRFS_FEATURE_INCOMPAT_SUPP;
2858 "cannot mount because of unsupported optional features (%llx)",
2864 features = btrfs_super_incompat_flags(disk_super);
2865 features |= BTRFS_FEATURE_INCOMPAT_MIXED_BACKREF;
2866 if (fs_info->compress_type == BTRFS_COMPRESS_LZO)
2867 features |= BTRFS_FEATURE_INCOMPAT_COMPRESS_LZO;
2868 else if (fs_info->compress_type == BTRFS_COMPRESS_ZSTD)
2869 features |= BTRFS_FEATURE_INCOMPAT_COMPRESS_ZSTD;
2871 if (features & BTRFS_FEATURE_INCOMPAT_SKINNY_METADATA)
2872 btrfs_info(fs_info, "has skinny extents");
2875 * flag our filesystem as having big metadata blocks if
2876 * they are bigger than the page size
2878 if (btrfs_super_nodesize(disk_super) > PAGE_SIZE) {
2879 if (!(features & BTRFS_FEATURE_INCOMPAT_BIG_METADATA))
2881 "flagging fs with big metadata feature");
2882 features |= BTRFS_FEATURE_INCOMPAT_BIG_METADATA;
2885 nodesize = btrfs_super_nodesize(disk_super);
2886 sectorsize = btrfs_super_sectorsize(disk_super);
2887 stripesize = sectorsize;
2888 fs_info->dirty_metadata_batch = nodesize * (1 + ilog2(nr_cpu_ids));
2889 fs_info->delalloc_batch = sectorsize * 512 * (1 + ilog2(nr_cpu_ids));
2891 /* Cache block sizes */
2892 fs_info->nodesize = nodesize;
2893 fs_info->sectorsize = sectorsize;
2894 fs_info->stripesize = stripesize;
2897 * mixed block groups end up with duplicate but slightly offset
2898 * extent buffers for the same range. It leads to corruptions
2900 if ((features & BTRFS_FEATURE_INCOMPAT_MIXED_GROUPS) &&
2901 (sectorsize != nodesize)) {
2903 "unequal nodesize/sectorsize (%u != %u) are not allowed for mixed block groups",
2904 nodesize, sectorsize);
2909 * Needn't use the lock because there is no other task which will
2912 btrfs_set_super_incompat_flags(disk_super, features);
2914 features = btrfs_super_compat_ro_flags(disk_super) &
2915 ~BTRFS_FEATURE_COMPAT_RO_SUPP;
2916 if (!sb_rdonly(sb) && features) {
2918 "cannot mount read-write because of unsupported optional features (%llx)",
2924 ret = btrfs_init_workqueues(fs_info, fs_devices);
2927 goto fail_sb_buffer;
2930 sb->s_bdi->congested_fn = btrfs_congested_fn;
2931 sb->s_bdi->congested_data = fs_info;
2932 sb->s_bdi->capabilities |= BDI_CAP_CGROUP_WRITEBACK;
2933 sb->s_bdi->ra_pages = VM_MAX_READAHEAD * SZ_1K / PAGE_SIZE;
2934 sb->s_bdi->ra_pages *= btrfs_super_num_devices(disk_super);
2935 sb->s_bdi->ra_pages = max(sb->s_bdi->ra_pages, SZ_4M / PAGE_SIZE);
2937 sb->s_blocksize = sectorsize;
2938 sb->s_blocksize_bits = blksize_bits(sectorsize);
2939 memcpy(&sb->s_uuid, fs_info->fsid, BTRFS_FSID_SIZE);
2941 mutex_lock(&fs_info->chunk_mutex);
2942 ret = btrfs_read_sys_array(fs_info);
2943 mutex_unlock(&fs_info->chunk_mutex);
2945 btrfs_err(fs_info, "failed to read the system array: %d", ret);
2946 goto fail_sb_buffer;
2949 generation = btrfs_super_chunk_root_generation(disk_super);
2950 level = btrfs_super_chunk_root_level(disk_super);
2952 __setup_root(chunk_root, fs_info, BTRFS_CHUNK_TREE_OBJECTID);
2954 chunk_root->node = read_tree_block(fs_info,
2955 btrfs_super_chunk_root(disk_super),
2956 generation, level, NULL);
2957 if (IS_ERR(chunk_root->node) ||
2958 !extent_buffer_uptodate(chunk_root->node)) {
2959 btrfs_err(fs_info, "failed to read chunk root");
2960 if (!IS_ERR(chunk_root->node))
2961 free_extent_buffer(chunk_root->node);
2962 chunk_root->node = NULL;
2963 goto fail_tree_roots;
2965 btrfs_set_root_node(&chunk_root->root_item, chunk_root->node);
2966 chunk_root->commit_root = btrfs_root_node(chunk_root);
2968 read_extent_buffer(chunk_root->node, fs_info->chunk_tree_uuid,
2969 btrfs_header_chunk_tree_uuid(chunk_root->node), BTRFS_UUID_SIZE);
2971 ret = btrfs_read_chunk_tree(fs_info);
2973 btrfs_err(fs_info, "failed to read chunk tree: %d", ret);
2974 goto fail_tree_roots;
2978 * Keep the devid that is marked to be the target device for the
2979 * device replace procedure
2981 btrfs_free_extra_devids(fs_devices, 0);
2983 if (!fs_devices->latest_bdev) {
2984 btrfs_err(fs_info, "failed to read devices");
2985 goto fail_tree_roots;
2989 generation = btrfs_super_generation(disk_super);
2990 level = btrfs_super_root_level(disk_super);
2992 tree_root->node = read_tree_block(fs_info,
2993 btrfs_super_root(disk_super),
2994 generation, level, NULL);
2995 if (IS_ERR(tree_root->node) ||
2996 !extent_buffer_uptodate(tree_root->node)) {
2997 btrfs_warn(fs_info, "failed to read tree root");
2998 if (!IS_ERR(tree_root->node))
2999 free_extent_buffer(tree_root->node);
3000 tree_root->node = NULL;
3001 goto recovery_tree_root;
3004 btrfs_set_root_node(&tree_root->root_item, tree_root->node);
3005 tree_root->commit_root = btrfs_root_node(tree_root);
3006 btrfs_set_root_refs(&tree_root->root_item, 1);
3008 mutex_lock(&tree_root->objectid_mutex);
3009 ret = btrfs_find_highest_objectid(tree_root,
3010 &tree_root->highest_objectid);
3012 mutex_unlock(&tree_root->objectid_mutex);
3013 goto recovery_tree_root;
3016 ASSERT(tree_root->highest_objectid <= BTRFS_LAST_FREE_OBJECTID);
3018 mutex_unlock(&tree_root->objectid_mutex);
3020 ret = btrfs_read_roots(fs_info);
3022 goto recovery_tree_root;
3024 fs_info->generation = generation;
3025 fs_info->last_trans_committed = generation;
3028 * If we have a uuid root and we're not being told to rescan we need to
3029 * check the generation here so we can set the
3030 * BTRFS_FS_UPDATE_UUID_TREE_GEN bit. Otherwise we could commit the
3031 * transaction during a balance or the log replay without updating the
3032 * uuid generation, and then if we crash we would rescan the uuid tree,
3033 * even though it was perfectly fine.
3035 if (fs_info->uuid_root && !btrfs_test_opt(fs_info, RESCAN_UUID_TREE) &&
3036 fs_info->generation == btrfs_super_uuid_tree_generation(disk_super))
3037 set_bit(BTRFS_FS_UPDATE_UUID_TREE_GEN, &fs_info->flags);
3039 ret = btrfs_verify_dev_extents(fs_info);
3042 "failed to verify dev extents against chunks: %d",
3044 goto fail_block_groups;
3046 ret = btrfs_recover_balance(fs_info);
3048 btrfs_err(fs_info, "failed to recover balance: %d", ret);
3049 goto fail_block_groups;
3052 ret = btrfs_init_dev_stats(fs_info);
3054 btrfs_err(fs_info, "failed to init dev_stats: %d", ret);
3055 goto fail_block_groups;
3058 ret = btrfs_init_dev_replace(fs_info);
3060 btrfs_err(fs_info, "failed to init dev_replace: %d", ret);
3061 goto fail_block_groups;
3064 btrfs_free_extra_devids(fs_devices, 1);
3066 ret = btrfs_sysfs_add_fsid(fs_devices, NULL);
3068 btrfs_err(fs_info, "failed to init sysfs fsid interface: %d",
3070 goto fail_block_groups;
3073 ret = btrfs_sysfs_add_device(fs_devices);
3075 btrfs_err(fs_info, "failed to init sysfs device interface: %d",
3077 goto fail_fsdev_sysfs;
3080 ret = btrfs_sysfs_add_mounted(fs_info);
3082 btrfs_err(fs_info, "failed to init sysfs interface: %d", ret);
3083 goto fail_fsdev_sysfs;
3086 ret = btrfs_init_space_info(fs_info);
3088 btrfs_err(fs_info, "failed to initialize space info: %d", ret);
3092 ret = btrfs_read_block_groups(fs_info);
3094 btrfs_err(fs_info, "failed to read block groups: %d", ret);
3098 if (!sb_rdonly(sb) && !btrfs_check_rw_degradable(fs_info, NULL)) {
3100 "writeable mount is not allowed due to too many missing devices");
3104 fs_info->cleaner_kthread = kthread_run(cleaner_kthread, tree_root,
3106 if (IS_ERR(fs_info->cleaner_kthread))
3109 fs_info->transaction_kthread = kthread_run(transaction_kthread,
3111 "btrfs-transaction");
3112 if (IS_ERR(fs_info->transaction_kthread))
3115 if (!btrfs_test_opt(fs_info, NOSSD) &&
3116 !fs_info->fs_devices->rotating) {
3117 btrfs_set_and_info(fs_info, SSD, "enabling ssd optimizations");
3121 * Mount does not set all options immediately, we can do it now and do
3122 * not have to wait for transaction commit
3124 btrfs_apply_pending_changes(fs_info);
3126 #ifdef CONFIG_BTRFS_FS_CHECK_INTEGRITY
3127 if (btrfs_test_opt(fs_info, CHECK_INTEGRITY)) {
3128 ret = btrfsic_mount(fs_info, fs_devices,
3129 btrfs_test_opt(fs_info,
3130 CHECK_INTEGRITY_INCLUDING_EXTENT_DATA) ?
3132 fs_info->check_integrity_print_mask);
3135 "failed to initialize integrity check module: %d",
3139 ret = btrfs_read_qgroup_config(fs_info);
3141 goto fail_trans_kthread;
3143 if (btrfs_build_ref_tree(fs_info))
3144 btrfs_err(fs_info, "couldn't build ref tree");
3146 /* do not make disk changes in broken FS or nologreplay is given */
3147 if (btrfs_super_log_root(disk_super) != 0 &&
3148 !btrfs_test_opt(fs_info, NOLOGREPLAY)) {
3149 btrfs_info(fs_info, "start tree-log replay");
3150 ret = btrfs_replay_log(fs_info, fs_devices);
3157 ret = btrfs_find_orphan_roots(fs_info);
3161 if (!sb_rdonly(sb)) {
3162 ret = btrfs_cleanup_fs_roots(fs_info);
3166 mutex_lock(&fs_info->cleaner_mutex);
3167 ret = btrfs_recover_relocation(tree_root);
3168 mutex_unlock(&fs_info->cleaner_mutex);
3170 btrfs_warn(fs_info, "failed to recover relocation: %d",
3177 location.objectid = BTRFS_FS_TREE_OBJECTID;
3178 location.type = BTRFS_ROOT_ITEM_KEY;
3179 location.offset = 0;
3181 fs_info->fs_root = btrfs_read_fs_root_no_name(fs_info, &location);
3182 if (IS_ERR(fs_info->fs_root)) {
3183 err = PTR_ERR(fs_info->fs_root);
3184 btrfs_warn(fs_info, "failed to read fs tree: %d", err);
3185 fs_info->fs_root = NULL;
3192 if (btrfs_test_opt(fs_info, CLEAR_CACHE) &&
3193 btrfs_fs_compat_ro(fs_info, FREE_SPACE_TREE)) {
3194 clear_free_space_tree = 1;
3195 } else if (btrfs_fs_compat_ro(fs_info, FREE_SPACE_TREE) &&
3196 !btrfs_fs_compat_ro(fs_info, FREE_SPACE_TREE_VALID)) {
3197 btrfs_warn(fs_info, "free space tree is invalid");
3198 clear_free_space_tree = 1;
3201 if (clear_free_space_tree) {
3202 btrfs_info(fs_info, "clearing free space tree");
3203 ret = btrfs_clear_free_space_tree(fs_info);
3206 "failed to clear free space tree: %d", ret);
3207 close_ctree(fs_info);
3212 if (btrfs_test_opt(fs_info, FREE_SPACE_TREE) &&
3213 !btrfs_fs_compat_ro(fs_info, FREE_SPACE_TREE)) {
3214 btrfs_info(fs_info, "creating free space tree");
3215 ret = btrfs_create_free_space_tree(fs_info);
3218 "failed to create free space tree: %d", ret);
3219 close_ctree(fs_info);
3224 down_read(&fs_info->cleanup_work_sem);
3225 if ((ret = btrfs_orphan_cleanup(fs_info->fs_root)) ||
3226 (ret = btrfs_orphan_cleanup(fs_info->tree_root))) {
3227 up_read(&fs_info->cleanup_work_sem);
3228 close_ctree(fs_info);
3231 up_read(&fs_info->cleanup_work_sem);
3233 ret = btrfs_resume_balance_async(fs_info);
3235 btrfs_warn(fs_info, "failed to resume balance: %d", ret);
3236 close_ctree(fs_info);
3240 ret = btrfs_resume_dev_replace_async(fs_info);
3242 btrfs_warn(fs_info, "failed to resume device replace: %d", ret);
3243 close_ctree(fs_info);
3247 btrfs_qgroup_rescan_resume(fs_info);
3249 if (!fs_info->uuid_root) {
3250 btrfs_info(fs_info, "creating UUID tree");
3251 ret = btrfs_create_uuid_tree(fs_info);
3254 "failed to create the UUID tree: %d", ret);
3255 close_ctree(fs_info);
3258 } else if (btrfs_test_opt(fs_info, RESCAN_UUID_TREE) ||
3259 fs_info->generation !=
3260 btrfs_super_uuid_tree_generation(disk_super)) {
3261 btrfs_info(fs_info, "checking UUID tree");
3262 ret = btrfs_check_uuid_tree(fs_info);
3265 "failed to check the UUID tree: %d", ret);
3266 close_ctree(fs_info);
3270 set_bit(BTRFS_FS_OPEN, &fs_info->flags);
3273 * backuproot only affect mount behavior, and if open_ctree succeeded,
3274 * no need to keep the flag
3276 btrfs_clear_opt(fs_info->mount_opt, USEBACKUPROOT);
3281 btrfs_free_qgroup_config(fs_info);
3283 kthread_stop(fs_info->transaction_kthread);
3284 btrfs_cleanup_transaction(fs_info);
3285 btrfs_free_fs_roots(fs_info);
3287 kthread_stop(fs_info->cleaner_kthread);
3290 * make sure we're done with the btree inode before we stop our
3293 filemap_write_and_wait(fs_info->btree_inode->i_mapping);
3296 btrfs_sysfs_remove_mounted(fs_info);
3299 btrfs_sysfs_remove_fsid(fs_info->fs_devices);
3302 btrfs_put_block_group_cache(fs_info);
3305 free_root_pointers(fs_info, true);
3306 invalidate_inode_pages2(fs_info->btree_inode->i_mapping);
3309 btrfs_stop_all_workers(fs_info);
3310 btrfs_free_block_groups(fs_info);
3313 btrfs_mapping_tree_free(&fs_info->mapping_tree);
3315 iput(fs_info->btree_inode);
3317 percpu_counter_destroy(&fs_info->bio_counter);
3318 fail_delalloc_bytes:
3319 percpu_counter_destroy(&fs_info->delalloc_bytes);
3320 fail_dirty_metadata_bytes:
3321 percpu_counter_destroy(&fs_info->dirty_metadata_bytes);
3323 cleanup_srcu_struct(&fs_info->subvol_srcu);
3325 btrfs_free_stripe_hash_table(fs_info);
3326 btrfs_close_devices(fs_info->fs_devices);
3330 if (!btrfs_test_opt(fs_info, USEBACKUPROOT))
3331 goto fail_tree_roots;
3333 free_root_pointers(fs_info, false);
3335 /* don't use the log in recovery mode, it won't be valid */
3336 btrfs_set_super_log_root(disk_super, 0);
3338 /* we can't trust the free space cache either */
3339 btrfs_set_opt(fs_info->mount_opt, CLEAR_CACHE);
3341 ret = next_root_backup(fs_info, fs_info->super_copy,
3342 &num_backups_tried, &backup_index);
3344 goto fail_block_groups;
3345 goto retry_root_backup;
3347 ALLOW_ERROR_INJECTION(open_ctree, ERRNO);
3349 static void btrfs_end_buffer_write_sync(struct buffer_head *bh, int uptodate)
3352 set_buffer_uptodate(bh);
3354 struct btrfs_device *device = (struct btrfs_device *)
3357 btrfs_warn_rl_in_rcu(device->fs_info,
3358 "lost page write due to IO error on %s",
3359 rcu_str_deref(device->name));
3360 /* note, we don't set_buffer_write_io_error because we have
3361 * our own ways of dealing with the IO errors
3363 clear_buffer_uptodate(bh);
3364 btrfs_dev_stat_inc_and_print(device, BTRFS_DEV_STAT_WRITE_ERRS);
3370 int btrfs_read_dev_one_super(struct block_device *bdev, int copy_num,
3371 struct buffer_head **bh_ret)
3373 struct buffer_head *bh;
3374 struct btrfs_super_block *super;
3377 bytenr = btrfs_sb_offset(copy_num);
3378 if (bytenr + BTRFS_SUPER_INFO_SIZE >= i_size_read(bdev->bd_inode))
3381 bh = __bread(bdev, bytenr / BTRFS_BDEV_BLOCKSIZE, BTRFS_SUPER_INFO_SIZE);
3383 * If we fail to read from the underlying devices, as of now
3384 * the best option we have is to mark it EIO.
3389 super = (struct btrfs_super_block *)bh->b_data;
3390 if (btrfs_super_bytenr(super) != bytenr ||
3391 btrfs_super_magic(super) != BTRFS_MAGIC) {
3401 struct buffer_head *btrfs_read_dev_super(struct block_device *bdev)
3403 struct buffer_head *bh;
3404 struct buffer_head *latest = NULL;
3405 struct btrfs_super_block *super;
3410 /* we would like to check all the supers, but that would make
3411 * a btrfs mount succeed after a mkfs from a different FS.
3412 * So, we need to add a special mount option to scan for
3413 * later supers, using BTRFS_SUPER_MIRROR_MAX instead
3415 for (i = 0; i < 1; i++) {
3416 ret = btrfs_read_dev_one_super(bdev, i, &bh);
3420 super = (struct btrfs_super_block *)bh->b_data;
3422 if (!latest || btrfs_super_generation(super) > transid) {
3425 transid = btrfs_super_generation(super);
3432 return ERR_PTR(ret);
3438 * Write superblock @sb to the @device. Do not wait for completion, all the
3439 * buffer heads we write are pinned.
3441 * Write @max_mirrors copies of the superblock, where 0 means default that fit
3442 * the expected device size at commit time. Note that max_mirrors must be
3443 * same for write and wait phases.
3445 * Return number of errors when buffer head is not found or submission fails.
3447 static int write_dev_supers(struct btrfs_device *device,
3448 struct btrfs_super_block *sb, int max_mirrors)
3450 struct buffer_head *bh;
3458 if (max_mirrors == 0)
3459 max_mirrors = BTRFS_SUPER_MIRROR_MAX;
3461 for (i = 0; i < max_mirrors; i++) {
3462 bytenr = btrfs_sb_offset(i);
3463 if (bytenr + BTRFS_SUPER_INFO_SIZE >=
3464 device->commit_total_bytes)
3467 btrfs_set_super_bytenr(sb, bytenr);
3470 crc = btrfs_csum_data((const char *)sb + BTRFS_CSUM_SIZE, crc,
3471 BTRFS_SUPER_INFO_SIZE - BTRFS_CSUM_SIZE);
3472 btrfs_csum_final(crc, sb->csum);
3474 /* One reference for us, and we leave it for the caller */
3475 bh = __getblk(device->bdev, bytenr / BTRFS_BDEV_BLOCKSIZE,
3476 BTRFS_SUPER_INFO_SIZE);
3478 btrfs_err(device->fs_info,
3479 "couldn't get super buffer head for bytenr %llu",
3485 memcpy(bh->b_data, sb, BTRFS_SUPER_INFO_SIZE);
3487 /* one reference for submit_bh */
3490 set_buffer_uptodate(bh);
3492 bh->b_end_io = btrfs_end_buffer_write_sync;
3493 bh->b_private = device;
3496 * we fua the first super. The others we allow
3499 op_flags = REQ_SYNC | REQ_META | REQ_PRIO;
3500 if (i == 0 && !btrfs_test_opt(device->fs_info, NOBARRIER))
3501 op_flags |= REQ_FUA;
3502 ret = btrfsic_submit_bh(REQ_OP_WRITE, op_flags, bh);
3506 return errors < i ? 0 : -1;
3510 * Wait for write completion of superblocks done by write_dev_supers,
3511 * @max_mirrors same for write and wait phases.
3513 * Return number of errors when buffer head is not found or not marked up to
3516 static int wait_dev_supers(struct btrfs_device *device, int max_mirrors)
3518 struct buffer_head *bh;
3521 bool primary_failed = false;
3524 if (max_mirrors == 0)
3525 max_mirrors = BTRFS_SUPER_MIRROR_MAX;
3527 for (i = 0; i < max_mirrors; i++) {
3528 bytenr = btrfs_sb_offset(i);
3529 if (bytenr + BTRFS_SUPER_INFO_SIZE >=
3530 device->commit_total_bytes)
3533 bh = __find_get_block(device->bdev,
3534 bytenr / BTRFS_BDEV_BLOCKSIZE,
3535 BTRFS_SUPER_INFO_SIZE);
3539 primary_failed = true;
3543 if (!buffer_uptodate(bh)) {
3546 primary_failed = true;
3549 /* drop our reference */
3552 /* drop the reference from the writing run */
3556 /* log error, force error return */
3557 if (primary_failed) {
3558 btrfs_err(device->fs_info, "error writing primary super block to device %llu",
3563 return errors < i ? 0 : -1;
3567 * endio for the write_dev_flush, this will wake anyone waiting
3568 * for the barrier when it is done
3570 static void btrfs_end_empty_barrier(struct bio *bio)
3572 complete(bio->bi_private);
3576 * Submit a flush request to the device if it supports it. Error handling is
3577 * done in the waiting counterpart.
3579 static void write_dev_flush(struct btrfs_device *device)
3581 struct request_queue *q = bdev_get_queue(device->bdev);
3582 struct bio *bio = device->flush_bio;
3584 if (!test_bit(QUEUE_FLAG_WC, &q->queue_flags))
3588 bio->bi_end_io = btrfs_end_empty_barrier;
3589 bio_set_dev(bio, device->bdev);
3590 bio->bi_opf = REQ_OP_WRITE | REQ_SYNC | REQ_PREFLUSH;
3591 init_completion(&device->flush_wait);
3592 bio->bi_private = &device->flush_wait;
3594 btrfsic_submit_bio(bio);
3595 set_bit(BTRFS_DEV_STATE_FLUSH_SENT, &device->dev_state);
3599 * If the flush bio has been submitted by write_dev_flush, wait for it.
3601 static blk_status_t wait_dev_flush(struct btrfs_device *device)
3603 struct bio *bio = device->flush_bio;
3605 if (!test_bit(BTRFS_DEV_STATE_FLUSH_SENT, &device->dev_state))
3608 clear_bit(BTRFS_DEV_STATE_FLUSH_SENT, &device->dev_state);
3609 wait_for_completion_io(&device->flush_wait);
3611 return bio->bi_status;
3614 static int check_barrier_error(struct btrfs_fs_info *fs_info)
3616 if (!btrfs_check_rw_degradable(fs_info, NULL))
3622 * send an empty flush down to each device in parallel,
3623 * then wait for them
3625 static int barrier_all_devices(struct btrfs_fs_info *info)
3627 struct list_head *head;
3628 struct btrfs_device *dev;
3629 int errors_wait = 0;
3632 lockdep_assert_held(&info->fs_devices->device_list_mutex);
3633 /* send down all the barriers */
3634 head = &info->fs_devices->devices;
3635 list_for_each_entry(dev, head, dev_list) {
3636 if (test_bit(BTRFS_DEV_STATE_MISSING, &dev->dev_state))
3640 if (!test_bit(BTRFS_DEV_STATE_IN_FS_METADATA, &dev->dev_state) ||
3641 !test_bit(BTRFS_DEV_STATE_WRITEABLE, &dev->dev_state))
3644 write_dev_flush(dev);
3645 dev->last_flush_error = BLK_STS_OK;
3648 /* wait for all the barriers */
3649 list_for_each_entry(dev, head, dev_list) {
3650 if (test_bit(BTRFS_DEV_STATE_MISSING, &dev->dev_state))
3656 if (!test_bit(BTRFS_DEV_STATE_IN_FS_METADATA, &dev->dev_state) ||
3657 !test_bit(BTRFS_DEV_STATE_WRITEABLE, &dev->dev_state))
3660 ret = wait_dev_flush(dev);
3662 dev->last_flush_error = ret;
3663 btrfs_dev_stat_inc_and_print(dev,
3664 BTRFS_DEV_STAT_FLUSH_ERRS);
3671 * At some point we need the status of all disks
3672 * to arrive at the volume status. So error checking
3673 * is being pushed to a separate loop.
3675 return check_barrier_error(info);
3680 int btrfs_get_num_tolerated_disk_barrier_failures(u64 flags)
3683 int min_tolerated = INT_MAX;
3685 if ((flags & BTRFS_BLOCK_GROUP_PROFILE_MASK) == 0 ||
3686 (flags & BTRFS_AVAIL_ALLOC_BIT_SINGLE))
3687 min_tolerated = min(min_tolerated,
3688 btrfs_raid_array[BTRFS_RAID_SINGLE].
3689 tolerated_failures);
3691 for (raid_type = 0; raid_type < BTRFS_NR_RAID_TYPES; raid_type++) {
3692 if (raid_type == BTRFS_RAID_SINGLE)
3694 if (!(flags & btrfs_raid_array[raid_type].bg_flag))
3696 min_tolerated = min(min_tolerated,
3697 btrfs_raid_array[raid_type].
3698 tolerated_failures);
3701 if (min_tolerated == INT_MAX) {
3702 pr_warn("BTRFS: unknown raid flag: %llu", flags);
3706 return min_tolerated;
3709 int write_all_supers(struct btrfs_fs_info *fs_info, int max_mirrors)
3711 struct list_head *head;
3712 struct btrfs_device *dev;
3713 struct btrfs_super_block *sb;
3714 struct btrfs_dev_item *dev_item;
3718 int total_errors = 0;
3721 do_barriers = !btrfs_test_opt(fs_info, NOBARRIER);
3724 * max_mirrors == 0 indicates we're from commit_transaction,
3725 * not from fsync where the tree roots in fs_info have not
3726 * been consistent on disk.
3728 if (max_mirrors == 0)
3729 backup_super_roots(fs_info);
3731 sb = fs_info->super_for_commit;
3732 dev_item = &sb->dev_item;
3734 mutex_lock(&fs_info->fs_devices->device_list_mutex);
3735 head = &fs_info->fs_devices->devices;
3736 max_errors = btrfs_super_num_devices(fs_info->super_copy) - 1;
3739 ret = barrier_all_devices(fs_info);
3742 &fs_info->fs_devices->device_list_mutex);
3743 btrfs_handle_fs_error(fs_info, ret,
3744 "errors while submitting device barriers.");
3749 list_for_each_entry(dev, head, dev_list) {
3754 if (!test_bit(BTRFS_DEV_STATE_IN_FS_METADATA, &dev->dev_state) ||
3755 !test_bit(BTRFS_DEV_STATE_WRITEABLE, &dev->dev_state))
3758 btrfs_set_stack_device_generation(dev_item, 0);
3759 btrfs_set_stack_device_type(dev_item, dev->type);
3760 btrfs_set_stack_device_id(dev_item, dev->devid);
3761 btrfs_set_stack_device_total_bytes(dev_item,
3762 dev->commit_total_bytes);
3763 btrfs_set_stack_device_bytes_used(dev_item,
3764 dev->commit_bytes_used);
3765 btrfs_set_stack_device_io_align(dev_item, dev->io_align);
3766 btrfs_set_stack_device_io_width(dev_item, dev->io_width);
3767 btrfs_set_stack_device_sector_size(dev_item, dev->sector_size);
3768 memcpy(dev_item->uuid, dev->uuid, BTRFS_UUID_SIZE);
3769 memcpy(dev_item->fsid, dev->fs_devices->fsid, BTRFS_FSID_SIZE);
3771 flags = btrfs_super_flags(sb);
3772 btrfs_set_super_flags(sb, flags | BTRFS_HEADER_FLAG_WRITTEN);
3774 ret = btrfs_validate_write_super(fs_info, sb);
3776 mutex_unlock(&fs_info->fs_devices->device_list_mutex);
3777 btrfs_handle_fs_error(fs_info, -EUCLEAN,
3778 "unexpected superblock corruption detected");
3782 ret = write_dev_supers(dev, sb, max_mirrors);
3786 if (total_errors > max_errors) {
3787 btrfs_err(fs_info, "%d errors while writing supers",
3789 mutex_unlock(&fs_info->fs_devices->device_list_mutex);
3791 /* FUA is masked off if unsupported and can't be the reason */
3792 btrfs_handle_fs_error(fs_info, -EIO,
3793 "%d errors while writing supers",
3799 list_for_each_entry(dev, head, dev_list) {
3802 if (!test_bit(BTRFS_DEV_STATE_IN_FS_METADATA, &dev->dev_state) ||
3803 !test_bit(BTRFS_DEV_STATE_WRITEABLE, &dev->dev_state))
3806 ret = wait_dev_supers(dev, max_mirrors);
3810 mutex_unlock(&fs_info->fs_devices->device_list_mutex);
3811 if (total_errors > max_errors) {
3812 btrfs_handle_fs_error(fs_info, -EIO,
3813 "%d errors while writing supers",
3820 /* Drop a fs root from the radix tree and free it. */
3821 void btrfs_drop_and_free_fs_root(struct btrfs_fs_info *fs_info,
3822 struct btrfs_root *root)
3824 spin_lock(&fs_info->fs_roots_radix_lock);
3825 radix_tree_delete(&fs_info->fs_roots_radix,
3826 (unsigned long)root->root_key.objectid);
3827 spin_unlock(&fs_info->fs_roots_radix_lock);
3829 if (btrfs_root_refs(&root->root_item) == 0)
3830 synchronize_srcu(&fs_info->subvol_srcu);
3832 if (test_bit(BTRFS_FS_STATE_ERROR, &fs_info->fs_state)) {
3833 btrfs_free_log(NULL, root);
3834 if (root->reloc_root) {
3835 free_extent_buffer(root->reloc_root->node);
3836 free_extent_buffer(root->reloc_root->commit_root);
3837 btrfs_put_fs_root(root->reloc_root);
3838 root->reloc_root = NULL;
3842 if (root->free_ino_pinned)
3843 __btrfs_remove_free_space_cache(root->free_ino_pinned);
3844 if (root->free_ino_ctl)
3845 __btrfs_remove_free_space_cache(root->free_ino_ctl);
3846 btrfs_free_fs_root(root);
3849 void btrfs_free_fs_root(struct btrfs_root *root)
3851 iput(root->ino_cache_inode);
3852 WARN_ON(!RB_EMPTY_ROOT(&root->inode_tree));
3854 free_anon_bdev(root->anon_dev);
3855 if (root->subv_writers)
3856 btrfs_free_subvolume_writers(root->subv_writers);
3857 free_extent_buffer(root->node);
3858 free_extent_buffer(root->commit_root);
3859 kfree(root->free_ino_ctl);
3860 kfree(root->free_ino_pinned);
3861 btrfs_put_fs_root(root);
3864 int btrfs_cleanup_fs_roots(struct btrfs_fs_info *fs_info)
3866 u64 root_objectid = 0;
3867 struct btrfs_root *gang[8];
3870 unsigned int ret = 0;
3874 index = srcu_read_lock(&fs_info->subvol_srcu);
3875 ret = radix_tree_gang_lookup(&fs_info->fs_roots_radix,
3876 (void **)gang, root_objectid,
3879 srcu_read_unlock(&fs_info->subvol_srcu, index);
3882 root_objectid = gang[ret - 1]->root_key.objectid + 1;
3884 for (i = 0; i < ret; i++) {
3885 /* Avoid to grab roots in dead_roots */
3886 if (btrfs_root_refs(&gang[i]->root_item) == 0) {
3890 /* grab all the search result for later use */
3891 gang[i] = btrfs_grab_fs_root(gang[i]);
3893 srcu_read_unlock(&fs_info->subvol_srcu, index);
3895 for (i = 0; i < ret; i++) {
3898 root_objectid = gang[i]->root_key.objectid;
3899 err = btrfs_orphan_cleanup(gang[i]);
3902 btrfs_put_fs_root(gang[i]);
3907 /* release the uncleaned roots due to error */
3908 for (; i < ret; i++) {
3910 btrfs_put_fs_root(gang[i]);
3915 int btrfs_commit_super(struct btrfs_fs_info *fs_info)
3917 struct btrfs_root *root = fs_info->tree_root;
3918 struct btrfs_trans_handle *trans;
3920 mutex_lock(&fs_info->cleaner_mutex);
3921 btrfs_run_delayed_iputs(fs_info);
3922 mutex_unlock(&fs_info->cleaner_mutex);
3923 wake_up_process(fs_info->cleaner_kthread);
3925 /* wait until ongoing cleanup work done */
3926 down_write(&fs_info->cleanup_work_sem);
3927 up_write(&fs_info->cleanup_work_sem);
3929 trans = btrfs_join_transaction(root);
3931 return PTR_ERR(trans);
3932 return btrfs_commit_transaction(trans);
3935 void close_ctree(struct btrfs_fs_info *fs_info)
3939 set_bit(BTRFS_FS_CLOSING_START, &fs_info->flags);
3941 * We don't want the cleaner to start new transactions, add more delayed
3942 * iputs, etc. while we're closing. We can't use kthread_stop() yet
3943 * because that frees the task_struct, and the transaction kthread might
3944 * still try to wake up the cleaner.
3946 kthread_park(fs_info->cleaner_kthread);
3948 /* wait for the qgroup rescan worker to stop */
3949 btrfs_qgroup_wait_for_completion(fs_info, false);
3951 /* wait for the uuid_scan task to finish */
3952 down(&fs_info->uuid_tree_rescan_sem);
3953 /* avoid complains from lockdep et al., set sem back to initial state */
3954 up(&fs_info->uuid_tree_rescan_sem);
3956 /* pause restriper - we want to resume on mount */
3957 btrfs_pause_balance(fs_info);
3959 btrfs_dev_replace_suspend_for_unmount(fs_info);
3961 btrfs_scrub_cancel(fs_info);
3963 /* wait for any defraggers to finish */
3964 wait_event(fs_info->transaction_wait,
3965 (atomic_read(&fs_info->defrag_running) == 0));
3967 /* clear out the rbtree of defraggable inodes */
3968 btrfs_cleanup_defrag_inodes(fs_info);
3970 cancel_work_sync(&fs_info->async_reclaim_work);
3972 if (!sb_rdonly(fs_info->sb)) {
3974 * The cleaner kthread is stopped, so do one final pass over
3975 * unused block groups.
3977 btrfs_delete_unused_bgs(fs_info);
3980 * There might be existing delayed inode workers still running
3981 * and holding an empty delayed inode item. We must wait for
3982 * them to complete first because they can create a transaction.
3983 * This happens when someone calls btrfs_balance_delayed_items()
3984 * and then a transaction commit runs the same delayed nodes
3985 * before any delayed worker has done something with the nodes.
3986 * We must wait for any worker here and not at transaction
3987 * commit time since that could cause a deadlock.
3988 * This is a very rare case.
3990 btrfs_flush_workqueue(fs_info->delayed_workers);
3992 ret = btrfs_commit_super(fs_info);
3994 btrfs_err(fs_info, "commit super ret %d", ret);
3997 if (test_bit(BTRFS_FS_STATE_ERROR, &fs_info->fs_state) ||
3998 test_bit(BTRFS_FS_STATE_TRANS_ABORTED, &fs_info->fs_state))
3999 btrfs_error_commit_super(fs_info);
4001 kthread_stop(fs_info->transaction_kthread);
4002 kthread_stop(fs_info->cleaner_kthread);
4004 set_bit(BTRFS_FS_CLOSING_DONE, &fs_info->flags);
4006 btrfs_free_qgroup_config(fs_info);
4007 ASSERT(list_empty(&fs_info->delalloc_roots));
4009 if (percpu_counter_sum(&fs_info->delalloc_bytes)) {
4010 btrfs_info(fs_info, "at unmount delalloc count %lld",
4011 percpu_counter_sum(&fs_info->delalloc_bytes));
4014 btrfs_sysfs_remove_mounted(fs_info);
4015 btrfs_sysfs_remove_fsid(fs_info->fs_devices);
4017 btrfs_free_fs_roots(fs_info);
4019 btrfs_put_block_group_cache(fs_info);
4022 * we must make sure there is not any read request to
4023 * submit after we stopping all workers.
4025 invalidate_inode_pages2(fs_info->btree_inode->i_mapping);
4026 btrfs_stop_all_workers(fs_info);
4028 clear_bit(BTRFS_FS_OPEN, &fs_info->flags);
4029 free_root_pointers(fs_info, true);
4032 * We must free the block groups after dropping the fs_roots as we could
4033 * have had an IO error and have left over tree log blocks that aren't
4034 * cleaned up until the fs roots are freed. This makes the block group
4035 * accounting appear to be wrong because there's pending reserved bytes,
4036 * so make sure we do the block group cleanup afterwards.
4038 btrfs_free_block_groups(fs_info);
4040 iput(fs_info->btree_inode);
4042 #ifdef CONFIG_BTRFS_FS_CHECK_INTEGRITY
4043 if (btrfs_test_opt(fs_info, CHECK_INTEGRITY))
4044 btrfsic_unmount(fs_info->fs_devices);
4047 btrfs_close_devices(fs_info->fs_devices);
4048 btrfs_mapping_tree_free(&fs_info->mapping_tree);
4050 percpu_counter_destroy(&fs_info->dirty_metadata_bytes);
4051 percpu_counter_destroy(&fs_info->delalloc_bytes);
4052 percpu_counter_destroy(&fs_info->bio_counter);
4053 cleanup_srcu_struct(&fs_info->subvol_srcu);
4055 btrfs_free_stripe_hash_table(fs_info);
4056 btrfs_free_ref_cache(fs_info);
4058 while (!list_empty(&fs_info->pinned_chunks)) {
4059 struct extent_map *em;
4061 em = list_first_entry(&fs_info->pinned_chunks,
4062 struct extent_map, list);
4063 list_del_init(&em->list);
4064 free_extent_map(em);
4068 int btrfs_buffer_uptodate(struct extent_buffer *buf, u64 parent_transid,
4072 struct inode *btree_inode = buf->pages[0]->mapping->host;
4074 ret = extent_buffer_uptodate(buf);
4078 ret = verify_parent_transid(&BTRFS_I(btree_inode)->io_tree, buf,
4079 parent_transid, atomic);
4085 void btrfs_mark_buffer_dirty(struct extent_buffer *buf)
4087 struct btrfs_fs_info *fs_info;
4088 struct btrfs_root *root;
4089 u64 transid = btrfs_header_generation(buf);
4092 #ifdef CONFIG_BTRFS_FS_RUN_SANITY_TESTS
4094 * This is a fast path so only do this check if we have sanity tests
4095 * enabled. Normal people shouldn't be using umapped buffers as dirty
4096 * outside of the sanity tests.
4098 if (unlikely(test_bit(EXTENT_BUFFER_UNMAPPED, &buf->bflags)))
4101 root = BTRFS_I(buf->pages[0]->mapping->host)->root;
4102 fs_info = root->fs_info;
4103 btrfs_assert_tree_locked(buf);
4104 if (transid != fs_info->generation)
4105 WARN(1, KERN_CRIT "btrfs transid mismatch buffer %llu, found %llu running %llu\n",
4106 buf->start, transid, fs_info->generation);
4107 was_dirty = set_extent_buffer_dirty(buf);
4109 percpu_counter_add_batch(&fs_info->dirty_metadata_bytes,
4111 fs_info->dirty_metadata_batch);
4112 #ifdef CONFIG_BTRFS_FS_CHECK_INTEGRITY
4114 * Since btrfs_mark_buffer_dirty() can be called with item pointer set
4115 * but item data not updated.
4116 * So here we should only check item pointers, not item data.
4118 if (btrfs_header_level(buf) == 0 &&
4119 btrfs_check_leaf_relaxed(fs_info, buf)) {
4120 btrfs_print_leaf(buf);
4126 static void __btrfs_btree_balance_dirty(struct btrfs_fs_info *fs_info,
4130 * looks as though older kernels can get into trouble with
4131 * this code, they end up stuck in balance_dirty_pages forever
4135 if (current->flags & PF_MEMALLOC)
4139 btrfs_balance_delayed_items(fs_info);
4141 ret = __percpu_counter_compare(&fs_info->dirty_metadata_bytes,
4142 BTRFS_DIRTY_METADATA_THRESH,
4143 fs_info->dirty_metadata_batch);
4145 balance_dirty_pages_ratelimited(fs_info->btree_inode->i_mapping);
4149 void btrfs_btree_balance_dirty(struct btrfs_fs_info *fs_info)
4151 __btrfs_btree_balance_dirty(fs_info, 1);
4154 void btrfs_btree_balance_dirty_nodelay(struct btrfs_fs_info *fs_info)
4156 __btrfs_btree_balance_dirty(fs_info, 0);
4159 int btrfs_read_buffer(struct extent_buffer *buf, u64 parent_transid, int level,
4160 struct btrfs_key *first_key)
4162 struct btrfs_root *root = BTRFS_I(buf->pages[0]->mapping->host)->root;
4163 struct btrfs_fs_info *fs_info = root->fs_info;
4165 return btree_read_extent_buffer_pages(fs_info, buf, parent_transid,
4169 static void btrfs_error_commit_super(struct btrfs_fs_info *fs_info)
4171 /* cleanup FS via transaction */
4172 btrfs_cleanup_transaction(fs_info);
4174 mutex_lock(&fs_info->cleaner_mutex);
4175 btrfs_run_delayed_iputs(fs_info);
4176 mutex_unlock(&fs_info->cleaner_mutex);
4178 down_write(&fs_info->cleanup_work_sem);
4179 up_write(&fs_info->cleanup_work_sem);
4182 static void btrfs_destroy_ordered_extents(struct btrfs_root *root)
4184 struct btrfs_ordered_extent *ordered;
4186 spin_lock(&root->ordered_extent_lock);
4188 * This will just short circuit the ordered completion stuff which will
4189 * make sure the ordered extent gets properly cleaned up.
4191 list_for_each_entry(ordered, &root->ordered_extents,
4193 set_bit(BTRFS_ORDERED_IOERR, &ordered->flags);
4194 spin_unlock(&root->ordered_extent_lock);
4197 static void btrfs_destroy_all_ordered_extents(struct btrfs_fs_info *fs_info)
4199 struct btrfs_root *root;
4200 struct list_head splice;
4202 INIT_LIST_HEAD(&splice);
4204 spin_lock(&fs_info->ordered_root_lock);
4205 list_splice_init(&fs_info->ordered_roots, &splice);
4206 while (!list_empty(&splice)) {
4207 root = list_first_entry(&splice, struct btrfs_root,
4209 list_move_tail(&root->ordered_root,
4210 &fs_info->ordered_roots);
4212 spin_unlock(&fs_info->ordered_root_lock);
4213 btrfs_destroy_ordered_extents(root);
4216 spin_lock(&fs_info->ordered_root_lock);
4218 spin_unlock(&fs_info->ordered_root_lock);
4221 * We need this here because if we've been flipped read-only we won't
4222 * get sync() from the umount, so we need to make sure any ordered
4223 * extents that haven't had their dirty pages IO start writeout yet
4224 * actually get run and error out properly.
4226 btrfs_wait_ordered_roots(fs_info, U64_MAX, 0, (u64)-1);
4229 static int btrfs_destroy_delayed_refs(struct btrfs_transaction *trans,
4230 struct btrfs_fs_info *fs_info)
4232 struct rb_node *node;
4233 struct btrfs_delayed_ref_root *delayed_refs;
4234 struct btrfs_delayed_ref_node *ref;
4237 delayed_refs = &trans->delayed_refs;
4239 spin_lock(&delayed_refs->lock);
4240 if (atomic_read(&delayed_refs->num_entries) == 0) {
4241 spin_unlock(&delayed_refs->lock);
4242 btrfs_info(fs_info, "delayed_refs has NO entry");
4246 while ((node = rb_first(&delayed_refs->href_root)) != NULL) {
4247 struct btrfs_delayed_ref_head *head;
4249 bool pin_bytes = false;
4251 head = rb_entry(node, struct btrfs_delayed_ref_head,
4253 if (!mutex_trylock(&head->mutex)) {
4254 refcount_inc(&head->refs);
4255 spin_unlock(&delayed_refs->lock);
4257 mutex_lock(&head->mutex);
4258 mutex_unlock(&head->mutex);
4259 btrfs_put_delayed_ref_head(head);
4260 spin_lock(&delayed_refs->lock);
4263 spin_lock(&head->lock);
4264 while ((n = rb_first(&head->ref_tree)) != NULL) {
4265 ref = rb_entry(n, struct btrfs_delayed_ref_node,
4268 rb_erase(&ref->ref_node, &head->ref_tree);
4269 RB_CLEAR_NODE(&ref->ref_node);
4270 if (!list_empty(&ref->add_list))
4271 list_del(&ref->add_list);
4272 atomic_dec(&delayed_refs->num_entries);
4273 btrfs_put_delayed_ref(ref);
4275 if (head->must_insert_reserved)
4277 btrfs_free_delayed_extent_op(head->extent_op);
4278 delayed_refs->num_heads--;
4279 if (head->processing == 0)
4280 delayed_refs->num_heads_ready--;
4281 atomic_dec(&delayed_refs->num_entries);
4282 rb_erase(&head->href_node, &delayed_refs->href_root);
4283 RB_CLEAR_NODE(&head->href_node);
4284 spin_unlock(&head->lock);
4285 spin_unlock(&delayed_refs->lock);
4286 mutex_unlock(&head->mutex);
4289 btrfs_pin_extent(fs_info, head->bytenr,
4290 head->num_bytes, 1);
4291 btrfs_put_delayed_ref_head(head);
4293 spin_lock(&delayed_refs->lock);
4296 spin_unlock(&delayed_refs->lock);
4301 static void btrfs_destroy_delalloc_inodes(struct btrfs_root *root)
4303 struct btrfs_inode *btrfs_inode;
4304 struct list_head splice;
4306 INIT_LIST_HEAD(&splice);
4308 spin_lock(&root->delalloc_lock);
4309 list_splice_init(&root->delalloc_inodes, &splice);
4311 while (!list_empty(&splice)) {
4312 struct inode *inode = NULL;
4313 btrfs_inode = list_first_entry(&splice, struct btrfs_inode,
4315 __btrfs_del_delalloc_inode(root, btrfs_inode);
4316 spin_unlock(&root->delalloc_lock);
4319 * Make sure we get a live inode and that it'll not disappear
4322 inode = igrab(&btrfs_inode->vfs_inode);
4324 invalidate_inode_pages2(inode->i_mapping);
4327 spin_lock(&root->delalloc_lock);
4329 spin_unlock(&root->delalloc_lock);
4332 static void btrfs_destroy_all_delalloc_inodes(struct btrfs_fs_info *fs_info)
4334 struct btrfs_root *root;
4335 struct list_head splice;
4337 INIT_LIST_HEAD(&splice);
4339 spin_lock(&fs_info->delalloc_root_lock);
4340 list_splice_init(&fs_info->delalloc_roots, &splice);
4341 while (!list_empty(&splice)) {
4342 root = list_first_entry(&splice, struct btrfs_root,
4344 root = btrfs_grab_fs_root(root);
4346 spin_unlock(&fs_info->delalloc_root_lock);
4348 btrfs_destroy_delalloc_inodes(root);
4349 btrfs_put_fs_root(root);
4351 spin_lock(&fs_info->delalloc_root_lock);
4353 spin_unlock(&fs_info->delalloc_root_lock);
4356 static int btrfs_destroy_marked_extents(struct btrfs_fs_info *fs_info,
4357 struct extent_io_tree *dirty_pages,
4361 struct extent_buffer *eb;
4366 ret = find_first_extent_bit(dirty_pages, start, &start, &end,
4371 clear_extent_bits(dirty_pages, start, end, mark);
4372 while (start <= end) {
4373 eb = find_extent_buffer(fs_info, start);
4374 start += fs_info->nodesize;
4377 wait_on_extent_buffer_writeback(eb);
4379 if (test_and_clear_bit(EXTENT_BUFFER_DIRTY,
4381 clear_extent_buffer_dirty(eb);
4382 free_extent_buffer_stale(eb);
4389 static int btrfs_destroy_pinned_extent(struct btrfs_fs_info *fs_info,
4390 struct extent_io_tree *pinned_extents)
4392 struct extent_io_tree *unpin;
4398 unpin = pinned_extents;
4401 struct extent_state *cached_state = NULL;
4404 * The btrfs_finish_extent_commit() may get the same range as
4405 * ours between find_first_extent_bit and clear_extent_dirty.
4406 * Hence, hold the unused_bg_unpin_mutex to avoid double unpin
4407 * the same extent range.
4409 mutex_lock(&fs_info->unused_bg_unpin_mutex);
4410 ret = find_first_extent_bit(unpin, 0, &start, &end,
4411 EXTENT_DIRTY, &cached_state);
4413 mutex_unlock(&fs_info->unused_bg_unpin_mutex);
4417 clear_extent_dirty(unpin, start, end, &cached_state);
4418 free_extent_state(cached_state);
4419 btrfs_error_unpin_extent_range(fs_info, start, end);
4420 mutex_unlock(&fs_info->unused_bg_unpin_mutex);
4425 if (unpin == &fs_info->freed_extents[0])
4426 unpin = &fs_info->freed_extents[1];
4428 unpin = &fs_info->freed_extents[0];
4436 static void btrfs_cleanup_bg_io(struct btrfs_block_group_cache *cache)
4438 struct inode *inode;
4440 inode = cache->io_ctl.inode;
4442 invalidate_inode_pages2(inode->i_mapping);
4443 BTRFS_I(inode)->generation = 0;
4444 cache->io_ctl.inode = NULL;
4447 ASSERT(cache->io_ctl.pages == NULL);
4448 btrfs_put_block_group(cache);
4451 void btrfs_cleanup_dirty_bgs(struct btrfs_transaction *cur_trans,
4452 struct btrfs_fs_info *fs_info)
4454 struct btrfs_block_group_cache *cache;
4456 spin_lock(&cur_trans->dirty_bgs_lock);
4457 while (!list_empty(&cur_trans->dirty_bgs)) {
4458 cache = list_first_entry(&cur_trans->dirty_bgs,
4459 struct btrfs_block_group_cache,
4462 if (!list_empty(&cache->io_list)) {
4463 spin_unlock(&cur_trans->dirty_bgs_lock);
4464 list_del_init(&cache->io_list);
4465 btrfs_cleanup_bg_io(cache);
4466 spin_lock(&cur_trans->dirty_bgs_lock);
4469 list_del_init(&cache->dirty_list);
4470 spin_lock(&cache->lock);
4471 cache->disk_cache_state = BTRFS_DC_ERROR;
4472 spin_unlock(&cache->lock);
4474 spin_unlock(&cur_trans->dirty_bgs_lock);
4475 btrfs_put_block_group(cache);
4476 spin_lock(&cur_trans->dirty_bgs_lock);
4478 spin_unlock(&cur_trans->dirty_bgs_lock);
4481 * Refer to the definition of io_bgs member for details why it's safe
4482 * to use it without any locking
4484 while (!list_empty(&cur_trans->io_bgs)) {
4485 cache = list_first_entry(&cur_trans->io_bgs,
4486 struct btrfs_block_group_cache,
4489 list_del_init(&cache->io_list);
4490 spin_lock(&cache->lock);
4491 cache->disk_cache_state = BTRFS_DC_ERROR;
4492 spin_unlock(&cache->lock);
4493 btrfs_cleanup_bg_io(cache);
4497 void btrfs_cleanup_one_transaction(struct btrfs_transaction *cur_trans,
4498 struct btrfs_fs_info *fs_info)
4500 btrfs_cleanup_dirty_bgs(cur_trans, fs_info);
4501 ASSERT(list_empty(&cur_trans->dirty_bgs));
4502 ASSERT(list_empty(&cur_trans->io_bgs));
4504 btrfs_destroy_delayed_refs(cur_trans, fs_info);
4506 cur_trans->state = TRANS_STATE_COMMIT_START;
4507 wake_up(&fs_info->transaction_blocked_wait);
4509 cur_trans->state = TRANS_STATE_UNBLOCKED;
4510 wake_up(&fs_info->transaction_wait);
4512 btrfs_destroy_delayed_inodes(fs_info);
4514 btrfs_destroy_marked_extents(fs_info, &cur_trans->dirty_pages,
4516 btrfs_destroy_pinned_extent(fs_info,
4517 fs_info->pinned_extents);
4519 cur_trans->state =TRANS_STATE_COMPLETED;
4520 wake_up(&cur_trans->commit_wait);
4523 static int btrfs_cleanup_transaction(struct btrfs_fs_info *fs_info)
4525 struct btrfs_transaction *t;
4527 mutex_lock(&fs_info->transaction_kthread_mutex);
4529 spin_lock(&fs_info->trans_lock);
4530 while (!list_empty(&fs_info->trans_list)) {
4531 t = list_first_entry(&fs_info->trans_list,
4532 struct btrfs_transaction, list);
4533 if (t->state >= TRANS_STATE_COMMIT_START) {
4534 refcount_inc(&t->use_count);
4535 spin_unlock(&fs_info->trans_lock);
4536 btrfs_wait_for_commit(fs_info, t->transid);
4537 btrfs_put_transaction(t);
4538 spin_lock(&fs_info->trans_lock);
4541 if (t == fs_info->running_transaction) {
4542 t->state = TRANS_STATE_COMMIT_DOING;
4543 spin_unlock(&fs_info->trans_lock);
4545 * We wait for 0 num_writers since we don't hold a trans
4546 * handle open currently for this transaction.
4548 wait_event(t->writer_wait,
4549 atomic_read(&t->num_writers) == 0);
4551 spin_unlock(&fs_info->trans_lock);
4553 btrfs_cleanup_one_transaction(t, fs_info);
4555 spin_lock(&fs_info->trans_lock);
4556 if (t == fs_info->running_transaction)
4557 fs_info->running_transaction = NULL;
4558 list_del_init(&t->list);
4559 spin_unlock(&fs_info->trans_lock);
4561 btrfs_put_transaction(t);
4562 trace_btrfs_transaction_commit(fs_info->tree_root);
4563 spin_lock(&fs_info->trans_lock);
4565 spin_unlock(&fs_info->trans_lock);
4566 btrfs_destroy_all_ordered_extents(fs_info);
4567 btrfs_destroy_delayed_inodes(fs_info);
4568 btrfs_assert_delayed_root_empty(fs_info);
4569 btrfs_destroy_pinned_extent(fs_info, fs_info->pinned_extents);
4570 btrfs_destroy_all_delalloc_inodes(fs_info);
4571 mutex_unlock(&fs_info->transaction_kthread_mutex);
4576 static const struct extent_io_ops btree_extent_io_ops = {
4577 /* mandatory callbacks */
4578 .submit_bio_hook = btree_submit_bio_hook,
4579 .readpage_end_io_hook = btree_readpage_end_io_hook,
4580 .readpage_io_failed_hook = btree_io_failed_hook,
4582 /* optional callbacks */