GNU Linux-libre 5.4.257-gnu1
[releases.git] / fs / btrfs / disk-io.c
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * Copyright (C) 2007 Oracle.  All rights reserved.
4  */
5
6 #include <linux/fs.h>
7 #include <linux/blkdev.h>
8 #include <linux/radix-tree.h>
9 #include <linux/writeback.h>
10 #include <linux/buffer_head.h>
11 #include <linux/workqueue.h>
12 #include <linux/kthread.h>
13 #include <linux/slab.h>
14 #include <linux/migrate.h>
15 #include <linux/ratelimit.h>
16 #include <linux/uuid.h>
17 #include <linux/semaphore.h>
18 #include <linux/error-injection.h>
19 #include <linux/crc32c.h>
20 #include <linux/sched/mm.h>
21 #include <asm/unaligned.h>
22 #include <crypto/hash.h>
23 #include "ctree.h"
24 #include "disk-io.h"
25 #include "transaction.h"
26 #include "btrfs_inode.h"
27 #include "volumes.h"
28 #include "print-tree.h"
29 #include "locking.h"
30 #include "tree-log.h"
31 #include "free-space-cache.h"
32 #include "free-space-tree.h"
33 #include "inode-map.h"
34 #include "check-integrity.h"
35 #include "rcu-string.h"
36 #include "dev-replace.h"
37 #include "raid56.h"
38 #include "sysfs.h"
39 #include "qgroup.h"
40 #include "compression.h"
41 #include "tree-checker.h"
42 #include "ref-verify.h"
43 #include "block-group.h"
44
45 #define BTRFS_SUPER_FLAG_SUPP   (BTRFS_HEADER_FLAG_WRITTEN |\
46                                  BTRFS_HEADER_FLAG_RELOC |\
47                                  BTRFS_SUPER_FLAG_ERROR |\
48                                  BTRFS_SUPER_FLAG_SEEDING |\
49                                  BTRFS_SUPER_FLAG_METADUMP |\
50                                  BTRFS_SUPER_FLAG_METADUMP_V2)
51
52 static const struct extent_io_ops btree_extent_io_ops;
53 static void end_workqueue_fn(struct btrfs_work *work);
54 static void btrfs_destroy_ordered_extents(struct btrfs_root *root);
55 static int btrfs_destroy_delayed_refs(struct btrfs_transaction *trans,
56                                       struct btrfs_fs_info *fs_info);
57 static void btrfs_destroy_delalloc_inodes(struct btrfs_root *root);
58 static int btrfs_destroy_marked_extents(struct btrfs_fs_info *fs_info,
59                                         struct extent_io_tree *dirty_pages,
60                                         int mark);
61 static int btrfs_destroy_pinned_extent(struct btrfs_fs_info *fs_info,
62                                        struct extent_io_tree *pinned_extents);
63 static int btrfs_cleanup_transaction(struct btrfs_fs_info *fs_info);
64 static void btrfs_error_commit_super(struct btrfs_fs_info *fs_info);
65
66 /*
67  * btrfs_end_io_wq structs are used to do processing in task context when an IO
68  * is complete.  This is used during reads to verify checksums, and it is used
69  * by writes to insert metadata for new file extents after IO is complete.
70  */
71 struct btrfs_end_io_wq {
72         struct bio *bio;
73         bio_end_io_t *end_io;
74         void *private;
75         struct btrfs_fs_info *info;
76         blk_status_t status;
77         enum btrfs_wq_endio_type metadata;
78         struct btrfs_work work;
79 };
80
81 static struct kmem_cache *btrfs_end_io_wq_cache;
82
83 int __init btrfs_end_io_wq_init(void)
84 {
85         btrfs_end_io_wq_cache = kmem_cache_create("btrfs_end_io_wq",
86                                         sizeof(struct btrfs_end_io_wq),
87                                         0,
88                                         SLAB_MEM_SPREAD,
89                                         NULL);
90         if (!btrfs_end_io_wq_cache)
91                 return -ENOMEM;
92         return 0;
93 }
94
95 void __cold btrfs_end_io_wq_exit(void)
96 {
97         kmem_cache_destroy(btrfs_end_io_wq_cache);
98 }
99
100 /*
101  * async submit bios are used to offload expensive checksumming
102  * onto the worker threads.  They checksum file and metadata bios
103  * just before they are sent down the IO stack.
104  */
105 struct async_submit_bio {
106         void *private_data;
107         struct bio *bio;
108         extent_submit_bio_start_t *submit_bio_start;
109         int mirror_num;
110         /*
111          * bio_offset is optional, can be used if the pages in the bio
112          * can't tell us where in the file the bio should go
113          */
114         u64 bio_offset;
115         struct btrfs_work work;
116         blk_status_t status;
117 };
118
119 /*
120  * Lockdep class keys for extent_buffer->lock's in this root.  For a given
121  * eb, the lockdep key is determined by the btrfs_root it belongs to and
122  * the level the eb occupies in the tree.
123  *
124  * Different roots are used for different purposes and may nest inside each
125  * other and they require separate keysets.  As lockdep keys should be
126  * static, assign keysets according to the purpose of the root as indicated
127  * by btrfs_root->root_key.objectid.  This ensures that all special purpose
128  * roots have separate keysets.
129  *
130  * Lock-nesting across peer nodes is always done with the immediate parent
131  * node locked thus preventing deadlock.  As lockdep doesn't know this, use
132  * subclass to avoid triggering lockdep warning in such cases.
133  *
134  * The key is set by the readpage_end_io_hook after the buffer has passed
135  * csum validation but before the pages are unlocked.  It is also set by
136  * btrfs_init_new_buffer on freshly allocated blocks.
137  *
138  * We also add a check to make sure the highest level of the tree is the
139  * same as our lockdep setup here.  If BTRFS_MAX_LEVEL changes, this code
140  * needs update as well.
141  */
142 #ifdef CONFIG_DEBUG_LOCK_ALLOC
143 # if BTRFS_MAX_LEVEL != 8
144 #  error
145 # endif
146
147 static struct btrfs_lockdep_keyset {
148         u64                     id;             /* root objectid */
149         const char              *name_stem;     /* lock name stem */
150         char                    names[BTRFS_MAX_LEVEL + 1][20];
151         struct lock_class_key   keys[BTRFS_MAX_LEVEL + 1];
152 } btrfs_lockdep_keysets[] = {
153         { .id = BTRFS_ROOT_TREE_OBJECTID,       .name_stem = "root"     },
154         { .id = BTRFS_EXTENT_TREE_OBJECTID,     .name_stem = "extent"   },
155         { .id = BTRFS_CHUNK_TREE_OBJECTID,      .name_stem = "chunk"    },
156         { .id = BTRFS_DEV_TREE_OBJECTID,        .name_stem = "dev"      },
157         { .id = BTRFS_FS_TREE_OBJECTID,         .name_stem = "fs"       },
158         { .id = BTRFS_CSUM_TREE_OBJECTID,       .name_stem = "csum"     },
159         { .id = BTRFS_QUOTA_TREE_OBJECTID,      .name_stem = "quota"    },
160         { .id = BTRFS_TREE_LOG_OBJECTID,        .name_stem = "log"      },
161         { .id = BTRFS_TREE_RELOC_OBJECTID,      .name_stem = "treloc"   },
162         { .id = BTRFS_DATA_RELOC_TREE_OBJECTID, .name_stem = "dreloc"   },
163         { .id = BTRFS_UUID_TREE_OBJECTID,       .name_stem = "uuid"     },
164         { .id = BTRFS_FREE_SPACE_TREE_OBJECTID, .name_stem = "free-space" },
165         { .id = 0,                              .name_stem = "tree"     },
166 };
167
168 void __init btrfs_init_lockdep(void)
169 {
170         int i, j;
171
172         /* initialize lockdep class names */
173         for (i = 0; i < ARRAY_SIZE(btrfs_lockdep_keysets); i++) {
174                 struct btrfs_lockdep_keyset *ks = &btrfs_lockdep_keysets[i];
175
176                 for (j = 0; j < ARRAY_SIZE(ks->names); j++)
177                         snprintf(ks->names[j], sizeof(ks->names[j]),
178                                  "btrfs-%s-%02d", ks->name_stem, j);
179         }
180 }
181
182 void btrfs_set_buffer_lockdep_class(u64 objectid, struct extent_buffer *eb,
183                                     int level)
184 {
185         struct btrfs_lockdep_keyset *ks;
186
187         BUG_ON(level >= ARRAY_SIZE(ks->keys));
188
189         /* find the matching keyset, id 0 is the default entry */
190         for (ks = btrfs_lockdep_keysets; ks->id; ks++)
191                 if (ks->id == objectid)
192                         break;
193
194         lockdep_set_class_and_name(&eb->lock,
195                                    &ks->keys[level], ks->names[level]);
196 }
197
198 #endif
199
200 /*
201  * extents on the btree inode are pretty simple, there's one extent
202  * that covers the entire device
203  */
204 struct extent_map *btree_get_extent(struct btrfs_inode *inode,
205                 struct page *page, size_t pg_offset, u64 start, u64 len,
206                 int create)
207 {
208         struct btrfs_fs_info *fs_info = inode->root->fs_info;
209         struct extent_map_tree *em_tree = &inode->extent_tree;
210         struct extent_map *em;
211         int ret;
212
213         read_lock(&em_tree->lock);
214         em = lookup_extent_mapping(em_tree, start, len);
215         if (em) {
216                 em->bdev = fs_info->fs_devices->latest_bdev;
217                 read_unlock(&em_tree->lock);
218                 goto out;
219         }
220         read_unlock(&em_tree->lock);
221
222         em = alloc_extent_map();
223         if (!em) {
224                 em = ERR_PTR(-ENOMEM);
225                 goto out;
226         }
227         em->start = 0;
228         em->len = (u64)-1;
229         em->block_len = (u64)-1;
230         em->block_start = 0;
231         em->bdev = fs_info->fs_devices->latest_bdev;
232
233         write_lock(&em_tree->lock);
234         ret = add_extent_mapping(em_tree, em, 0);
235         if (ret == -EEXIST) {
236                 free_extent_map(em);
237                 em = lookup_extent_mapping(em_tree, start, len);
238                 if (!em)
239                         em = ERR_PTR(-EIO);
240         } else if (ret) {
241                 free_extent_map(em);
242                 em = ERR_PTR(ret);
243         }
244         write_unlock(&em_tree->lock);
245
246 out:
247         return em;
248 }
249
250 /*
251  * Compute the csum of a btree block and store the result to provided buffer.
252  *
253  * Returns error if the extent buffer cannot be mapped.
254  */
255 static int csum_tree_block(struct extent_buffer *buf, u8 *result)
256 {
257         struct btrfs_fs_info *fs_info = buf->fs_info;
258         SHASH_DESC_ON_STACK(shash, fs_info->csum_shash);
259         unsigned long len;
260         unsigned long cur_len;
261         unsigned long offset = BTRFS_CSUM_SIZE;
262         char *kaddr;
263         unsigned long map_start;
264         unsigned long map_len;
265         int err;
266
267         shash->tfm = fs_info->csum_shash;
268         crypto_shash_init(shash);
269
270         len = buf->len - offset;
271
272         while (len > 0) {
273                 /*
274                  * Note: we don't need to check for the err == 1 case here, as
275                  * with the given combination of 'start = BTRFS_CSUM_SIZE (32)'
276                  * and 'min_len = 32' and the currently implemented mapping
277                  * algorithm we cannot cross a page boundary.
278                  */
279                 err = map_private_extent_buffer(buf, offset, 32,
280                                         &kaddr, &map_start, &map_len);
281                 if (WARN_ON(err))
282                         return err;
283                 cur_len = min(len, map_len - (offset - map_start));
284                 crypto_shash_update(shash, kaddr + offset - map_start, cur_len);
285                 len -= cur_len;
286                 offset += cur_len;
287         }
288         memset(result, 0, BTRFS_CSUM_SIZE);
289
290         crypto_shash_final(shash, result);
291
292         return 0;
293 }
294
295 /*
296  * we can't consider a given block up to date unless the transid of the
297  * block matches the transid in the parent node's pointer.  This is how we
298  * detect blocks that either didn't get written at all or got written
299  * in the wrong place.
300  */
301 static int verify_parent_transid(struct extent_io_tree *io_tree,
302                                  struct extent_buffer *eb, u64 parent_transid,
303                                  int atomic)
304 {
305         struct extent_state *cached_state = NULL;
306         int ret;
307         bool need_lock = (current->journal_info == BTRFS_SEND_TRANS_STUB);
308
309         if (!parent_transid || btrfs_header_generation(eb) == parent_transid)
310                 return 0;
311
312         if (atomic)
313                 return -EAGAIN;
314
315         if (need_lock) {
316                 btrfs_tree_read_lock(eb);
317                 btrfs_set_lock_blocking_read(eb);
318         }
319
320         lock_extent_bits(io_tree, eb->start, eb->start + eb->len - 1,
321                          &cached_state);
322         if (extent_buffer_uptodate(eb) &&
323             btrfs_header_generation(eb) == parent_transid) {
324                 ret = 0;
325                 goto out;
326         }
327         btrfs_err_rl(eb->fs_info,
328                 "parent transid verify failed on %llu wanted %llu found %llu",
329                         eb->start,
330                         parent_transid, btrfs_header_generation(eb));
331         ret = 1;
332
333         /*
334          * Things reading via commit roots that don't have normal protection,
335          * like send, can have a really old block in cache that may point at a
336          * block that has been freed and re-allocated.  So don't clear uptodate
337          * if we find an eb that is under IO (dirty/writeback) because we could
338          * end up reading in the stale data and then writing it back out and
339          * making everybody very sad.
340          */
341         if (!extent_buffer_under_io(eb))
342                 clear_extent_buffer_uptodate(eb);
343 out:
344         unlock_extent_cached(io_tree, eb->start, eb->start + eb->len - 1,
345                              &cached_state);
346         if (need_lock)
347                 btrfs_tree_read_unlock_blocking(eb);
348         return ret;
349 }
350
351 static bool btrfs_supported_super_csum(u16 csum_type)
352 {
353         switch (csum_type) {
354         case BTRFS_CSUM_TYPE_CRC32:
355                 return true;
356         default:
357                 return false;
358         }
359 }
360
361 /*
362  * Return 0 if the superblock checksum type matches the checksum value of that
363  * algorithm. Pass the raw disk superblock data.
364  */
365 static int btrfs_check_super_csum(struct btrfs_fs_info *fs_info,
366                                   char *raw_disk_sb)
367 {
368         struct btrfs_super_block *disk_sb =
369                 (struct btrfs_super_block *)raw_disk_sb;
370         char result[BTRFS_CSUM_SIZE];
371         SHASH_DESC_ON_STACK(shash, fs_info->csum_shash);
372
373         shash->tfm = fs_info->csum_shash;
374         crypto_shash_init(shash);
375
376         /*
377          * The super_block structure does not span the whole
378          * BTRFS_SUPER_INFO_SIZE range, we expect that the unused space is
379          * filled with zeros and is included in the checksum.
380          */
381         crypto_shash_update(shash, raw_disk_sb + BTRFS_CSUM_SIZE,
382                             BTRFS_SUPER_INFO_SIZE - BTRFS_CSUM_SIZE);
383         crypto_shash_final(shash, result);
384
385         if (memcmp(disk_sb->csum, result, btrfs_super_csum_size(disk_sb)))
386                 return 1;
387
388         return 0;
389 }
390
391 int btrfs_verify_level_key(struct extent_buffer *eb, int level,
392                            struct btrfs_key *first_key, u64 parent_transid)
393 {
394         struct btrfs_fs_info *fs_info = eb->fs_info;
395         int found_level;
396         struct btrfs_key found_key;
397         int ret;
398
399         found_level = btrfs_header_level(eb);
400         if (found_level != level) {
401                 WARN(IS_ENABLED(CONFIG_BTRFS_DEBUG),
402                      KERN_ERR "BTRFS: tree level check failed\n");
403                 btrfs_err(fs_info,
404 "tree level mismatch detected, bytenr=%llu level expected=%u has=%u",
405                           eb->start, level, found_level);
406                 return -EIO;
407         }
408
409         if (!first_key)
410                 return 0;
411
412         /*
413          * For live tree block (new tree blocks in current transaction),
414          * we need proper lock context to avoid race, which is impossible here.
415          * So we only checks tree blocks which is read from disk, whose
416          * generation <= fs_info->last_trans_committed.
417          */
418         if (btrfs_header_generation(eb) > fs_info->last_trans_committed)
419                 return 0;
420
421         /* We have @first_key, so this @eb must have at least one item */
422         if (btrfs_header_nritems(eb) == 0) {
423                 btrfs_err(fs_info,
424                 "invalid tree nritems, bytenr=%llu nritems=0 expect >0",
425                           eb->start);
426                 WARN_ON(IS_ENABLED(CONFIG_BTRFS_DEBUG));
427                 return -EUCLEAN;
428         }
429
430         if (found_level)
431                 btrfs_node_key_to_cpu(eb, &found_key, 0);
432         else
433                 btrfs_item_key_to_cpu(eb, &found_key, 0);
434         ret = btrfs_comp_cpu_keys(first_key, &found_key);
435
436         if (ret) {
437                 WARN(IS_ENABLED(CONFIG_BTRFS_DEBUG),
438                      KERN_ERR "BTRFS: tree first key check failed\n");
439                 btrfs_err(fs_info,
440 "tree first key mismatch detected, bytenr=%llu parent_transid=%llu key expected=(%llu,%u,%llu) has=(%llu,%u,%llu)",
441                           eb->start, parent_transid, first_key->objectid,
442                           first_key->type, first_key->offset,
443                           found_key.objectid, found_key.type,
444                           found_key.offset);
445         }
446         return ret;
447 }
448
449 /*
450  * helper to read a given tree block, doing retries as required when
451  * the checksums don't match and we have alternate mirrors to try.
452  *
453  * @parent_transid:     expected transid, skip check if 0
454  * @level:              expected level, mandatory check
455  * @first_key:          expected key of first slot, skip check if NULL
456  */
457 static int btree_read_extent_buffer_pages(struct extent_buffer *eb,
458                                           u64 parent_transid, int level,
459                                           struct btrfs_key *first_key)
460 {
461         struct btrfs_fs_info *fs_info = eb->fs_info;
462         struct extent_io_tree *io_tree;
463         int failed = 0;
464         int ret;
465         int num_copies = 0;
466         int mirror_num = 0;
467         int failed_mirror = 0;
468
469         io_tree = &BTRFS_I(fs_info->btree_inode)->io_tree;
470         while (1) {
471                 clear_bit(EXTENT_BUFFER_CORRUPT, &eb->bflags);
472                 ret = read_extent_buffer_pages(eb, WAIT_COMPLETE, mirror_num);
473                 if (!ret) {
474                         if (verify_parent_transid(io_tree, eb,
475                                                    parent_transid, 0))
476                                 ret = -EIO;
477                         else if (btrfs_verify_level_key(eb, level,
478                                                 first_key, parent_transid))
479                                 ret = -EUCLEAN;
480                         else
481                                 break;
482                 }
483
484                 num_copies = btrfs_num_copies(fs_info,
485                                               eb->start, eb->len);
486                 if (num_copies == 1)
487                         break;
488
489                 if (!failed_mirror) {
490                         failed = 1;
491                         failed_mirror = eb->read_mirror;
492                 }
493
494                 mirror_num++;
495                 if (mirror_num == failed_mirror)
496                         mirror_num++;
497
498                 if (mirror_num > num_copies)
499                         break;
500         }
501
502         if (failed && !ret && failed_mirror)
503                 btrfs_repair_eb_io_failure(eb, failed_mirror);
504
505         return ret;
506 }
507
508 /*
509  * checksum a dirty tree block before IO.  This has extra checks to make sure
510  * we only fill in the checksum field in the first page of a multi-page block
511  */
512
513 static int csum_dirty_buffer(struct btrfs_fs_info *fs_info, struct page *page)
514 {
515         u64 start = page_offset(page);
516         u64 found_start;
517         u8 result[BTRFS_CSUM_SIZE];
518         u16 csum_size = btrfs_super_csum_size(fs_info->super_copy);
519         struct extent_buffer *eb;
520         int ret;
521
522         eb = (struct extent_buffer *)page->private;
523         if (page != eb->pages[0])
524                 return 0;
525
526         found_start = btrfs_header_bytenr(eb);
527         /*
528          * Please do not consolidate these warnings into a single if.
529          * It is useful to know what went wrong.
530          */
531         if (WARN_ON(found_start != start))
532                 return -EUCLEAN;
533         if (WARN_ON(!PageUptodate(page)))
534                 return -EUCLEAN;
535
536         ASSERT(memcmp_extent_buffer(eb, fs_info->fs_devices->metadata_uuid,
537                         btrfs_header_fsid(), BTRFS_FSID_SIZE) == 0);
538
539         if (csum_tree_block(eb, result))
540                 return -EINVAL;
541
542         if (btrfs_header_level(eb))
543                 ret = btrfs_check_node(eb);
544         else
545                 ret = btrfs_check_leaf_full(eb);
546
547         if (ret < 0) {
548                 btrfs_err(fs_info,
549                 "block=%llu write time tree block corruption detected",
550                           eb->start);
551                 return ret;
552         }
553         write_extent_buffer(eb, result, 0, csum_size);
554
555         return 0;
556 }
557
558 static int check_tree_block_fsid(struct extent_buffer *eb)
559 {
560         struct btrfs_fs_info *fs_info = eb->fs_info;
561         struct btrfs_fs_devices *fs_devices = fs_info->fs_devices;
562         u8 fsid[BTRFS_FSID_SIZE];
563         int ret = 1;
564
565         read_extent_buffer(eb, fsid, btrfs_header_fsid(), BTRFS_FSID_SIZE);
566         while (fs_devices) {
567                 u8 *metadata_uuid;
568
569                 /*
570                  * Checking the incompat flag is only valid for the current
571                  * fs. For seed devices it's forbidden to have their uuid
572                  * changed so reading ->fsid in this case is fine
573                  */
574                 if (fs_devices == fs_info->fs_devices &&
575                     btrfs_fs_incompat(fs_info, METADATA_UUID))
576                         metadata_uuid = fs_devices->metadata_uuid;
577                 else
578                         metadata_uuid = fs_devices->fsid;
579
580                 if (!memcmp(fsid, metadata_uuid, BTRFS_FSID_SIZE)) {
581                         ret = 0;
582                         break;
583                 }
584                 fs_devices = fs_devices->seed;
585         }
586         return ret;
587 }
588
589 static int btree_readpage_end_io_hook(struct btrfs_io_bio *io_bio,
590                                       u64 phy_offset, struct page *page,
591                                       u64 start, u64 end, int mirror)
592 {
593         u64 found_start;
594         int found_level;
595         struct extent_buffer *eb;
596         struct btrfs_root *root = BTRFS_I(page->mapping->host)->root;
597         struct btrfs_fs_info *fs_info = root->fs_info;
598         u16 csum_size = btrfs_super_csum_size(fs_info->super_copy);
599         int ret = 0;
600         u8 result[BTRFS_CSUM_SIZE];
601         int reads_done;
602
603         if (!page->private)
604                 goto out;
605
606         eb = (struct extent_buffer *)page->private;
607
608         /* the pending IO might have been the only thing that kept this buffer
609          * in memory.  Make sure we have a ref for all this other checks
610          */
611         extent_buffer_get(eb);
612
613         reads_done = atomic_dec_and_test(&eb->io_pages);
614         if (!reads_done)
615                 goto err;
616
617         eb->read_mirror = mirror;
618         if (test_bit(EXTENT_BUFFER_READ_ERR, &eb->bflags)) {
619                 ret = -EIO;
620                 goto err;
621         }
622
623         found_start = btrfs_header_bytenr(eb);
624         if (found_start != eb->start) {
625                 btrfs_err_rl(fs_info, "bad tree block start, want %llu have %llu",
626                              eb->start, found_start);
627                 ret = -EIO;
628                 goto err;
629         }
630         if (check_tree_block_fsid(eb)) {
631                 btrfs_err_rl(fs_info, "bad fsid on block %llu",
632                              eb->start);
633                 ret = -EIO;
634                 goto err;
635         }
636         found_level = btrfs_header_level(eb);
637         if (found_level >= BTRFS_MAX_LEVEL) {
638                 btrfs_err(fs_info, "bad tree block level %d on %llu",
639                           (int)btrfs_header_level(eb), eb->start);
640                 ret = -EIO;
641                 goto err;
642         }
643
644         btrfs_set_buffer_lockdep_class(btrfs_header_owner(eb),
645                                        eb, found_level);
646
647         ret = csum_tree_block(eb, result);
648         if (ret)
649                 goto err;
650
651         if (memcmp_extent_buffer(eb, result, 0, csum_size)) {
652                 u8 val[BTRFS_CSUM_SIZE] = { 0 };
653
654                 read_extent_buffer(eb, &val, 0, csum_size);
655                 btrfs_warn_rl(fs_info,
656         "%s checksum verify failed on %llu wanted " CSUM_FMT " found " CSUM_FMT " level %d",
657                               fs_info->sb->s_id, eb->start,
658                               CSUM_FMT_VALUE(csum_size, val),
659                               CSUM_FMT_VALUE(csum_size, result),
660                               btrfs_header_level(eb));
661                 ret = -EUCLEAN;
662                 goto err;
663         }
664
665         /*
666          * If this is a leaf block and it is corrupt, set the corrupt bit so
667          * that we don't try and read the other copies of this block, just
668          * return -EIO.
669          */
670         if (found_level == 0 && btrfs_check_leaf_full(eb)) {
671                 set_bit(EXTENT_BUFFER_CORRUPT, &eb->bflags);
672                 ret = -EIO;
673         }
674
675         if (found_level > 0 && btrfs_check_node(eb))
676                 ret = -EIO;
677
678         if (!ret)
679                 set_extent_buffer_uptodate(eb);
680         else
681                 btrfs_err(fs_info,
682                           "block=%llu read time tree block corruption detected",
683                           eb->start);
684 err:
685         if (reads_done &&
686             test_and_clear_bit(EXTENT_BUFFER_READAHEAD, &eb->bflags))
687                 btree_readahead_hook(eb, ret);
688
689         if (ret) {
690                 /*
691                  * our io error hook is going to dec the io pages
692                  * again, we have to make sure it has something
693                  * to decrement
694                  */
695                 atomic_inc(&eb->io_pages);
696                 clear_extent_buffer_uptodate(eb);
697         }
698         free_extent_buffer(eb);
699 out:
700         return ret;
701 }
702
703 static void end_workqueue_bio(struct bio *bio)
704 {
705         struct btrfs_end_io_wq *end_io_wq = bio->bi_private;
706         struct btrfs_fs_info *fs_info;
707         struct btrfs_workqueue *wq;
708
709         fs_info = end_io_wq->info;
710         end_io_wq->status = bio->bi_status;
711
712         if (bio_op(bio) == REQ_OP_WRITE) {
713                 if (end_io_wq->metadata == BTRFS_WQ_ENDIO_METADATA)
714                         wq = fs_info->endio_meta_write_workers;
715                 else if (end_io_wq->metadata == BTRFS_WQ_ENDIO_FREE_SPACE)
716                         wq = fs_info->endio_freespace_worker;
717                 else if (end_io_wq->metadata == BTRFS_WQ_ENDIO_RAID56)
718                         wq = fs_info->endio_raid56_workers;
719                 else
720                         wq = fs_info->endio_write_workers;
721         } else {
722                 if (unlikely(end_io_wq->metadata == BTRFS_WQ_ENDIO_DIO_REPAIR))
723                         wq = fs_info->endio_repair_workers;
724                 else if (end_io_wq->metadata == BTRFS_WQ_ENDIO_RAID56)
725                         wq = fs_info->endio_raid56_workers;
726                 else if (end_io_wq->metadata)
727                         wq = fs_info->endio_meta_workers;
728                 else
729                         wq = fs_info->endio_workers;
730         }
731
732         btrfs_init_work(&end_io_wq->work, end_workqueue_fn, NULL, NULL);
733         btrfs_queue_work(wq, &end_io_wq->work);
734 }
735
736 blk_status_t btrfs_bio_wq_end_io(struct btrfs_fs_info *info, struct bio *bio,
737                         enum btrfs_wq_endio_type metadata)
738 {
739         struct btrfs_end_io_wq *end_io_wq;
740
741         end_io_wq = kmem_cache_alloc(btrfs_end_io_wq_cache, GFP_NOFS);
742         if (!end_io_wq)
743                 return BLK_STS_RESOURCE;
744
745         end_io_wq->private = bio->bi_private;
746         end_io_wq->end_io = bio->bi_end_io;
747         end_io_wq->info = info;
748         end_io_wq->status = 0;
749         end_io_wq->bio = bio;
750         end_io_wq->metadata = metadata;
751
752         bio->bi_private = end_io_wq;
753         bio->bi_end_io = end_workqueue_bio;
754         return 0;
755 }
756
757 static void run_one_async_start(struct btrfs_work *work)
758 {
759         struct async_submit_bio *async;
760         blk_status_t ret;
761
762         async = container_of(work, struct  async_submit_bio, work);
763         ret = async->submit_bio_start(async->private_data, async->bio,
764                                       async->bio_offset);
765         if (ret)
766                 async->status = ret;
767 }
768
769 /*
770  * In order to insert checksums into the metadata in large chunks, we wait
771  * until bio submission time.   All the pages in the bio are checksummed and
772  * sums are attached onto the ordered extent record.
773  *
774  * At IO completion time the csums attached on the ordered extent record are
775  * inserted into the tree.
776  */
777 static void run_one_async_done(struct btrfs_work *work)
778 {
779         struct async_submit_bio *async;
780         struct inode *inode;
781         blk_status_t ret;
782
783         async = container_of(work, struct  async_submit_bio, work);
784         inode = async->private_data;
785
786         /* If an error occurred we just want to clean up the bio and move on */
787         if (async->status) {
788                 async->bio->bi_status = async->status;
789                 bio_endio(async->bio);
790                 return;
791         }
792
793         ret = btrfs_map_bio(btrfs_sb(inode->i_sb), async->bio,
794                         async->mirror_num, 1);
795         if (ret) {
796                 async->bio->bi_status = ret;
797                 bio_endio(async->bio);
798         }
799 }
800
801 static void run_one_async_free(struct btrfs_work *work)
802 {
803         struct async_submit_bio *async;
804
805         async = container_of(work, struct  async_submit_bio, work);
806         kfree(async);
807 }
808
809 blk_status_t btrfs_wq_submit_bio(struct btrfs_fs_info *fs_info, struct bio *bio,
810                                  int mirror_num, unsigned long bio_flags,
811                                  u64 bio_offset, void *private_data,
812                                  extent_submit_bio_start_t *submit_bio_start)
813 {
814         struct async_submit_bio *async;
815
816         async = kmalloc(sizeof(*async), GFP_NOFS);
817         if (!async)
818                 return BLK_STS_RESOURCE;
819
820         async->private_data = private_data;
821         async->bio = bio;
822         async->mirror_num = mirror_num;
823         async->submit_bio_start = submit_bio_start;
824
825         btrfs_init_work(&async->work, run_one_async_start, run_one_async_done,
826                         run_one_async_free);
827
828         async->bio_offset = bio_offset;
829
830         async->status = 0;
831
832         if (op_is_sync(bio->bi_opf))
833                 btrfs_set_work_high_priority(&async->work);
834
835         btrfs_queue_work(fs_info->workers, &async->work);
836         return 0;
837 }
838
839 static blk_status_t btree_csum_one_bio(struct bio *bio)
840 {
841         struct bio_vec *bvec;
842         struct btrfs_root *root;
843         int ret = 0;
844         struct bvec_iter_all iter_all;
845
846         ASSERT(!bio_flagged(bio, BIO_CLONED));
847         bio_for_each_segment_all(bvec, bio, iter_all) {
848                 root = BTRFS_I(bvec->bv_page->mapping->host)->root;
849                 ret = csum_dirty_buffer(root->fs_info, bvec->bv_page);
850                 if (ret)
851                         break;
852         }
853
854         return errno_to_blk_status(ret);
855 }
856
857 static blk_status_t btree_submit_bio_start(void *private_data, struct bio *bio,
858                                              u64 bio_offset)
859 {
860         /*
861          * when we're called for a write, we're already in the async
862          * submission context.  Just jump into btrfs_map_bio
863          */
864         return btree_csum_one_bio(bio);
865 }
866
867 static int check_async_write(struct btrfs_fs_info *fs_info,
868                              struct btrfs_inode *bi)
869 {
870         if (atomic_read(&bi->sync_writers))
871                 return 0;
872         if (test_bit(BTRFS_FS_CSUM_IMPL_FAST, &fs_info->flags))
873                 return 0;
874         return 1;
875 }
876
877 static blk_status_t btree_submit_bio_hook(struct inode *inode, struct bio *bio,
878                                           int mirror_num,
879                                           unsigned long bio_flags)
880 {
881         struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
882         int async = check_async_write(fs_info, BTRFS_I(inode));
883         blk_status_t ret;
884
885         if (bio_op(bio) != REQ_OP_WRITE) {
886                 /*
887                  * called for a read, do the setup so that checksum validation
888                  * can happen in the async kernel threads
889                  */
890                 ret = btrfs_bio_wq_end_io(fs_info, bio,
891                                           BTRFS_WQ_ENDIO_METADATA);
892                 if (ret)
893                         goto out_w_error;
894                 ret = btrfs_map_bio(fs_info, bio, mirror_num, 0);
895         } else if (!async) {
896                 ret = btree_csum_one_bio(bio);
897                 if (ret)
898                         goto out_w_error;
899                 ret = btrfs_map_bio(fs_info, bio, mirror_num, 0);
900         } else {
901                 /*
902                  * kthread helpers are used to submit writes so that
903                  * checksumming can happen in parallel across all CPUs
904                  */
905                 ret = btrfs_wq_submit_bio(fs_info, bio, mirror_num, 0,
906                                           0, inode, btree_submit_bio_start);
907         }
908
909         if (ret)
910                 goto out_w_error;
911         return 0;
912
913 out_w_error:
914         bio->bi_status = ret;
915         bio_endio(bio);
916         return ret;
917 }
918
919 #ifdef CONFIG_MIGRATION
920 static int btree_migratepage(struct address_space *mapping,
921                         struct page *newpage, struct page *page,
922                         enum migrate_mode mode)
923 {
924         /*
925          * we can't safely write a btree page from here,
926          * we haven't done the locking hook
927          */
928         if (PageDirty(page))
929                 return -EAGAIN;
930         /*
931          * Buffers may be managed in a filesystem specific way.
932          * We must have no buffers or drop them.
933          */
934         if (page_has_private(page) &&
935             !try_to_release_page(page, GFP_KERNEL))
936                 return -EAGAIN;
937         return migrate_page(mapping, newpage, page, mode);
938 }
939 #endif
940
941
942 static int btree_writepages(struct address_space *mapping,
943                             struct writeback_control *wbc)
944 {
945         struct btrfs_fs_info *fs_info;
946         int ret;
947
948         if (wbc->sync_mode == WB_SYNC_NONE) {
949
950                 if (wbc->for_kupdate)
951                         return 0;
952
953                 fs_info = BTRFS_I(mapping->host)->root->fs_info;
954                 /* this is a bit racy, but that's ok */
955                 ret = __percpu_counter_compare(&fs_info->dirty_metadata_bytes,
956                                              BTRFS_DIRTY_METADATA_THRESH,
957                                              fs_info->dirty_metadata_batch);
958                 if (ret < 0)
959                         return 0;
960         }
961         return btree_write_cache_pages(mapping, wbc);
962 }
963
964 static int btree_readpage(struct file *file, struct page *page)
965 {
966         struct extent_io_tree *tree;
967         tree = &BTRFS_I(page->mapping->host)->io_tree;
968         return extent_read_full_page(tree, page, btree_get_extent, 0);
969 }
970
971 static int btree_releasepage(struct page *page, gfp_t gfp_flags)
972 {
973         if (PageWriteback(page) || PageDirty(page))
974                 return 0;
975
976         return try_release_extent_buffer(page);
977 }
978
979 static void btree_invalidatepage(struct page *page, unsigned int offset,
980                                  unsigned int length)
981 {
982         struct extent_io_tree *tree;
983         tree = &BTRFS_I(page->mapping->host)->io_tree;
984         extent_invalidatepage(tree, page, offset);
985         btree_releasepage(page, GFP_NOFS);
986         if (PagePrivate(page)) {
987                 btrfs_warn(BTRFS_I(page->mapping->host)->root->fs_info,
988                            "page private not zero on page %llu",
989                            (unsigned long long)page_offset(page));
990                 ClearPagePrivate(page);
991                 set_page_private(page, 0);
992                 put_page(page);
993         }
994 }
995
996 static int btree_set_page_dirty(struct page *page)
997 {
998 #ifdef DEBUG
999         struct extent_buffer *eb;
1000
1001         BUG_ON(!PagePrivate(page));
1002         eb = (struct extent_buffer *)page->private;
1003         BUG_ON(!eb);
1004         BUG_ON(!test_bit(EXTENT_BUFFER_DIRTY, &eb->bflags));
1005         BUG_ON(!atomic_read(&eb->refs));
1006         btrfs_assert_tree_locked(eb);
1007 #endif
1008         return __set_page_dirty_nobuffers(page);
1009 }
1010
1011 static const struct address_space_operations btree_aops = {
1012         .readpage       = btree_readpage,
1013         .writepages     = btree_writepages,
1014         .releasepage    = btree_releasepage,
1015         .invalidatepage = btree_invalidatepage,
1016 #ifdef CONFIG_MIGRATION
1017         .migratepage    = btree_migratepage,
1018 #endif
1019         .set_page_dirty = btree_set_page_dirty,
1020 };
1021
1022 void readahead_tree_block(struct btrfs_fs_info *fs_info, u64 bytenr)
1023 {
1024         struct extent_buffer *buf = NULL;
1025         int ret;
1026
1027         buf = btrfs_find_create_tree_block(fs_info, bytenr);
1028         if (IS_ERR(buf))
1029                 return;
1030
1031         ret = read_extent_buffer_pages(buf, WAIT_NONE, 0);
1032         if (ret < 0)
1033                 free_extent_buffer_stale(buf);
1034         else
1035                 free_extent_buffer(buf);
1036 }
1037
1038 struct extent_buffer *btrfs_find_create_tree_block(
1039                                                 struct btrfs_fs_info *fs_info,
1040                                                 u64 bytenr)
1041 {
1042         if (btrfs_is_testing(fs_info))
1043                 return alloc_test_extent_buffer(fs_info, bytenr);
1044         return alloc_extent_buffer(fs_info, bytenr);
1045 }
1046
1047 /*
1048  * Read tree block at logical address @bytenr and do variant basic but critical
1049  * verification.
1050  *
1051  * @parent_transid:     expected transid of this tree block, skip check if 0
1052  * @level:              expected level, mandatory check
1053  * @first_key:          expected key in slot 0, skip check if NULL
1054  */
1055 struct extent_buffer *read_tree_block(struct btrfs_fs_info *fs_info, u64 bytenr,
1056                                       u64 parent_transid, int level,
1057                                       struct btrfs_key *first_key)
1058 {
1059         struct extent_buffer *buf = NULL;
1060         int ret;
1061
1062         buf = btrfs_find_create_tree_block(fs_info, bytenr);
1063         if (IS_ERR(buf))
1064                 return buf;
1065
1066         ret = btree_read_extent_buffer_pages(buf, parent_transid,
1067                                              level, first_key);
1068         if (ret) {
1069                 free_extent_buffer_stale(buf);
1070                 return ERR_PTR(ret);
1071         }
1072         return buf;
1073
1074 }
1075
1076 void btrfs_clean_tree_block(struct extent_buffer *buf)
1077 {
1078         struct btrfs_fs_info *fs_info = buf->fs_info;
1079         if (btrfs_header_generation(buf) ==
1080             fs_info->running_transaction->transid) {
1081                 btrfs_assert_tree_locked(buf);
1082
1083                 if (test_and_clear_bit(EXTENT_BUFFER_DIRTY, &buf->bflags)) {
1084                         percpu_counter_add_batch(&fs_info->dirty_metadata_bytes,
1085                                                  -buf->len,
1086                                                  fs_info->dirty_metadata_batch);
1087                         /* ugh, clear_extent_buffer_dirty needs to lock the page */
1088                         btrfs_set_lock_blocking_write(buf);
1089                         clear_extent_buffer_dirty(buf);
1090                 }
1091         }
1092 }
1093
1094 static struct btrfs_subvolume_writers *btrfs_alloc_subvolume_writers(void)
1095 {
1096         struct btrfs_subvolume_writers *writers;
1097         int ret;
1098
1099         writers = kmalloc(sizeof(*writers), GFP_NOFS);
1100         if (!writers)
1101                 return ERR_PTR(-ENOMEM);
1102
1103         ret = percpu_counter_init(&writers->counter, 0, GFP_NOFS);
1104         if (ret < 0) {
1105                 kfree(writers);
1106                 return ERR_PTR(ret);
1107         }
1108
1109         init_waitqueue_head(&writers->wait);
1110         return writers;
1111 }
1112
1113 static void
1114 btrfs_free_subvolume_writers(struct btrfs_subvolume_writers *writers)
1115 {
1116         percpu_counter_destroy(&writers->counter);
1117         kfree(writers);
1118 }
1119
1120 static void __setup_root(struct btrfs_root *root, struct btrfs_fs_info *fs_info,
1121                          u64 objectid)
1122 {
1123         bool dummy = test_bit(BTRFS_FS_STATE_DUMMY_FS_INFO, &fs_info->fs_state);
1124         root->node = NULL;
1125         root->commit_root = NULL;
1126         root->state = 0;
1127         root->orphan_cleanup_state = 0;
1128
1129         root->last_trans = 0;
1130         root->highest_objectid = 0;
1131         root->nr_delalloc_inodes = 0;
1132         root->nr_ordered_extents = 0;
1133         root->inode_tree = RB_ROOT;
1134         INIT_RADIX_TREE(&root->delayed_nodes_tree, GFP_ATOMIC);
1135         root->block_rsv = NULL;
1136
1137         INIT_LIST_HEAD(&root->dirty_list);
1138         INIT_LIST_HEAD(&root->root_list);
1139         INIT_LIST_HEAD(&root->delalloc_inodes);
1140         INIT_LIST_HEAD(&root->delalloc_root);
1141         INIT_LIST_HEAD(&root->ordered_extents);
1142         INIT_LIST_HEAD(&root->ordered_root);
1143         INIT_LIST_HEAD(&root->reloc_dirty_list);
1144         INIT_LIST_HEAD(&root->logged_list[0]);
1145         INIT_LIST_HEAD(&root->logged_list[1]);
1146         spin_lock_init(&root->inode_lock);
1147         spin_lock_init(&root->delalloc_lock);
1148         spin_lock_init(&root->ordered_extent_lock);
1149         spin_lock_init(&root->accounting_lock);
1150         spin_lock_init(&root->log_extents_lock[0]);
1151         spin_lock_init(&root->log_extents_lock[1]);
1152         spin_lock_init(&root->qgroup_meta_rsv_lock);
1153         mutex_init(&root->objectid_mutex);
1154         mutex_init(&root->log_mutex);
1155         mutex_init(&root->ordered_extent_mutex);
1156         mutex_init(&root->delalloc_mutex);
1157         init_waitqueue_head(&root->qgroup_flush_wait);
1158         init_waitqueue_head(&root->log_writer_wait);
1159         init_waitqueue_head(&root->log_commit_wait[0]);
1160         init_waitqueue_head(&root->log_commit_wait[1]);
1161         INIT_LIST_HEAD(&root->log_ctxs[0]);
1162         INIT_LIST_HEAD(&root->log_ctxs[1]);
1163         atomic_set(&root->log_commit[0], 0);
1164         atomic_set(&root->log_commit[1], 0);
1165         atomic_set(&root->log_writers, 0);
1166         atomic_set(&root->log_batch, 0);
1167         refcount_set(&root->refs, 1);
1168         atomic_set(&root->will_be_snapshotted, 0);
1169         atomic_set(&root->snapshot_force_cow, 0);
1170         atomic_set(&root->nr_swapfiles, 0);
1171         root->log_transid = 0;
1172         root->log_transid_committed = -1;
1173         root->last_log_commit = 0;
1174         if (!dummy)
1175                 extent_io_tree_init(fs_info, &root->dirty_log_pages,
1176                                     IO_TREE_ROOT_DIRTY_LOG_PAGES, NULL);
1177
1178         memset(&root->root_key, 0, sizeof(root->root_key));
1179         memset(&root->root_item, 0, sizeof(root->root_item));
1180         memset(&root->defrag_progress, 0, sizeof(root->defrag_progress));
1181         if (!dummy)
1182                 root->defrag_trans_start = fs_info->generation;
1183         else
1184                 root->defrag_trans_start = 0;
1185         root->root_key.objectid = objectid;
1186         root->anon_dev = 0;
1187
1188         spin_lock_init(&root->root_item_lock);
1189         btrfs_qgroup_init_swapped_blocks(&root->swapped_blocks);
1190 }
1191
1192 static struct btrfs_root *btrfs_alloc_root(struct btrfs_fs_info *fs_info,
1193                 gfp_t flags)
1194 {
1195         struct btrfs_root *root = kzalloc(sizeof(*root), flags);
1196         if (root)
1197                 root->fs_info = fs_info;
1198         return root;
1199 }
1200
1201 #ifdef CONFIG_BTRFS_FS_RUN_SANITY_TESTS
1202 /* Should only be used by the testing infrastructure */
1203 struct btrfs_root *btrfs_alloc_dummy_root(struct btrfs_fs_info *fs_info)
1204 {
1205         struct btrfs_root *root;
1206
1207         if (!fs_info)
1208                 return ERR_PTR(-EINVAL);
1209
1210         root = btrfs_alloc_root(fs_info, GFP_KERNEL);
1211         if (!root)
1212                 return ERR_PTR(-ENOMEM);
1213
1214         /* We don't use the stripesize in selftest, set it as sectorsize */
1215         __setup_root(root, fs_info, BTRFS_ROOT_TREE_OBJECTID);
1216         root->alloc_bytenr = 0;
1217
1218         return root;
1219 }
1220 #endif
1221
1222 struct btrfs_root *btrfs_create_tree(struct btrfs_trans_handle *trans,
1223                                      u64 objectid)
1224 {
1225         struct btrfs_fs_info *fs_info = trans->fs_info;
1226         struct extent_buffer *leaf;
1227         struct btrfs_root *tree_root = fs_info->tree_root;
1228         struct btrfs_root *root;
1229         struct btrfs_key key;
1230         unsigned int nofs_flag;
1231         int ret = 0;
1232         uuid_le uuid = NULL_UUID_LE;
1233
1234         /*
1235          * We're holding a transaction handle, so use a NOFS memory allocation
1236          * context to avoid deadlock if reclaim happens.
1237          */
1238         nofs_flag = memalloc_nofs_save();
1239         root = btrfs_alloc_root(fs_info, GFP_KERNEL);
1240         memalloc_nofs_restore(nofs_flag);
1241         if (!root)
1242                 return ERR_PTR(-ENOMEM);
1243
1244         __setup_root(root, fs_info, objectid);
1245         root->root_key.objectid = objectid;
1246         root->root_key.type = BTRFS_ROOT_ITEM_KEY;
1247         root->root_key.offset = 0;
1248
1249         leaf = btrfs_alloc_tree_block(trans, root, 0, objectid, NULL, 0, 0, 0);
1250         if (IS_ERR(leaf)) {
1251                 ret = PTR_ERR(leaf);
1252                 leaf = NULL;
1253                 goto fail;
1254         }
1255
1256         root->node = leaf;
1257         btrfs_mark_buffer_dirty(leaf);
1258
1259         root->commit_root = btrfs_root_node(root);
1260         set_bit(BTRFS_ROOT_TRACK_DIRTY, &root->state);
1261
1262         root->root_item.flags = 0;
1263         root->root_item.byte_limit = 0;
1264         btrfs_set_root_bytenr(&root->root_item, leaf->start);
1265         btrfs_set_root_generation(&root->root_item, trans->transid);
1266         btrfs_set_root_level(&root->root_item, 0);
1267         btrfs_set_root_refs(&root->root_item, 1);
1268         btrfs_set_root_used(&root->root_item, leaf->len);
1269         btrfs_set_root_last_snapshot(&root->root_item, 0);
1270         btrfs_set_root_dirid(&root->root_item, 0);
1271         if (is_fstree(objectid))
1272                 uuid_le_gen(&uuid);
1273         memcpy(root->root_item.uuid, uuid.b, BTRFS_UUID_SIZE);
1274         root->root_item.drop_level = 0;
1275
1276         key.objectid = objectid;
1277         key.type = BTRFS_ROOT_ITEM_KEY;
1278         key.offset = 0;
1279         ret = btrfs_insert_root(trans, tree_root, &key, &root->root_item);
1280         if (ret)
1281                 goto fail;
1282
1283         btrfs_tree_unlock(leaf);
1284
1285         return root;
1286
1287 fail:
1288         if (leaf) {
1289                 btrfs_tree_unlock(leaf);
1290                 free_extent_buffer(root->commit_root);
1291                 free_extent_buffer(leaf);
1292         }
1293         kfree(root);
1294
1295         return ERR_PTR(ret);
1296 }
1297
1298 static struct btrfs_root *alloc_log_tree(struct btrfs_trans_handle *trans,
1299                                          struct btrfs_fs_info *fs_info)
1300 {
1301         struct btrfs_root *root;
1302         struct extent_buffer *leaf;
1303
1304         root = btrfs_alloc_root(fs_info, GFP_NOFS);
1305         if (!root)
1306                 return ERR_PTR(-ENOMEM);
1307
1308         __setup_root(root, fs_info, BTRFS_TREE_LOG_OBJECTID);
1309
1310         root->root_key.objectid = BTRFS_TREE_LOG_OBJECTID;
1311         root->root_key.type = BTRFS_ROOT_ITEM_KEY;
1312         root->root_key.offset = BTRFS_TREE_LOG_OBJECTID;
1313
1314         /*
1315          * DON'T set REF_COWS for log trees
1316          *
1317          * log trees do not get reference counted because they go away
1318          * before a real commit is actually done.  They do store pointers
1319          * to file data extents, and those reference counts still get
1320          * updated (along with back refs to the log tree).
1321          */
1322
1323         leaf = btrfs_alloc_tree_block(trans, root, 0, BTRFS_TREE_LOG_OBJECTID,
1324                         NULL, 0, 0, 0);
1325         if (IS_ERR(leaf)) {
1326                 kfree(root);
1327                 return ERR_CAST(leaf);
1328         }
1329
1330         root->node = leaf;
1331
1332         btrfs_mark_buffer_dirty(root->node);
1333         btrfs_tree_unlock(root->node);
1334         return root;
1335 }
1336
1337 int btrfs_init_log_root_tree(struct btrfs_trans_handle *trans,
1338                              struct btrfs_fs_info *fs_info)
1339 {
1340         struct btrfs_root *log_root;
1341
1342         log_root = alloc_log_tree(trans, fs_info);
1343         if (IS_ERR(log_root))
1344                 return PTR_ERR(log_root);
1345         WARN_ON(fs_info->log_root_tree);
1346         fs_info->log_root_tree = log_root;
1347         return 0;
1348 }
1349
1350 int btrfs_add_log_tree(struct btrfs_trans_handle *trans,
1351                        struct btrfs_root *root)
1352 {
1353         struct btrfs_fs_info *fs_info = root->fs_info;
1354         struct btrfs_root *log_root;
1355         struct btrfs_inode_item *inode_item;
1356
1357         log_root = alloc_log_tree(trans, fs_info);
1358         if (IS_ERR(log_root))
1359                 return PTR_ERR(log_root);
1360
1361         log_root->last_trans = trans->transid;
1362         log_root->root_key.offset = root->root_key.objectid;
1363
1364         inode_item = &log_root->root_item.inode;
1365         btrfs_set_stack_inode_generation(inode_item, 1);
1366         btrfs_set_stack_inode_size(inode_item, 3);
1367         btrfs_set_stack_inode_nlink(inode_item, 1);
1368         btrfs_set_stack_inode_nbytes(inode_item,
1369                                      fs_info->nodesize);
1370         btrfs_set_stack_inode_mode(inode_item, S_IFDIR | 0755);
1371
1372         btrfs_set_root_node(&log_root->root_item, log_root->node);
1373
1374         WARN_ON(root->log_root);
1375         root->log_root = log_root;
1376         root->log_transid = 0;
1377         root->log_transid_committed = -1;
1378         root->last_log_commit = 0;
1379         return 0;
1380 }
1381
1382 static struct btrfs_root *btrfs_read_tree_root(struct btrfs_root *tree_root,
1383                                                struct btrfs_key *key)
1384 {
1385         struct btrfs_root *root;
1386         struct btrfs_fs_info *fs_info = tree_root->fs_info;
1387         struct btrfs_path *path;
1388         u64 generation;
1389         int ret;
1390         int level;
1391
1392         path = btrfs_alloc_path();
1393         if (!path)
1394                 return ERR_PTR(-ENOMEM);
1395
1396         root = btrfs_alloc_root(fs_info, GFP_NOFS);
1397         if (!root) {
1398                 ret = -ENOMEM;
1399                 goto alloc_fail;
1400         }
1401
1402         __setup_root(root, fs_info, key->objectid);
1403
1404         ret = btrfs_find_root(tree_root, key, path,
1405                               &root->root_item, &root->root_key);
1406         if (ret) {
1407                 if (ret > 0)
1408                         ret = -ENOENT;
1409                 goto find_fail;
1410         }
1411
1412         generation = btrfs_root_generation(&root->root_item);
1413         level = btrfs_root_level(&root->root_item);
1414         root->node = read_tree_block(fs_info,
1415                                      btrfs_root_bytenr(&root->root_item),
1416                                      generation, level, NULL);
1417         if (IS_ERR(root->node)) {
1418                 ret = PTR_ERR(root->node);
1419                 goto find_fail;
1420         } else if (!btrfs_buffer_uptodate(root->node, generation, 0)) {
1421                 ret = -EIO;
1422                 free_extent_buffer(root->node);
1423                 goto find_fail;
1424         }
1425         root->commit_root = btrfs_root_node(root);
1426 out:
1427         btrfs_free_path(path);
1428         return root;
1429
1430 find_fail:
1431         kfree(root);
1432 alloc_fail:
1433         root = ERR_PTR(ret);
1434         goto out;
1435 }
1436
1437 struct btrfs_root *btrfs_read_fs_root(struct btrfs_root *tree_root,
1438                                       struct btrfs_key *location)
1439 {
1440         struct btrfs_root *root;
1441
1442         root = btrfs_read_tree_root(tree_root, location);
1443         if (IS_ERR(root))
1444                 return root;
1445
1446         if (root->root_key.objectid != BTRFS_TREE_LOG_OBJECTID) {
1447                 set_bit(BTRFS_ROOT_REF_COWS, &root->state);
1448                 btrfs_check_and_init_root_item(&root->root_item);
1449         }
1450
1451         return root;
1452 }
1453
1454 int btrfs_init_fs_root(struct btrfs_root *root)
1455 {
1456         int ret;
1457         struct btrfs_subvolume_writers *writers;
1458
1459         root->free_ino_ctl = kzalloc(sizeof(*root->free_ino_ctl), GFP_NOFS);
1460         root->free_ino_pinned = kzalloc(sizeof(*root->free_ino_pinned),
1461                                         GFP_NOFS);
1462         if (!root->free_ino_pinned || !root->free_ino_ctl) {
1463                 ret = -ENOMEM;
1464                 goto fail;
1465         }
1466
1467         writers = btrfs_alloc_subvolume_writers();
1468         if (IS_ERR(writers)) {
1469                 ret = PTR_ERR(writers);
1470                 goto fail;
1471         }
1472         root->subv_writers = writers;
1473
1474         btrfs_init_free_ino_ctl(root);
1475         spin_lock_init(&root->ino_cache_lock);
1476         init_waitqueue_head(&root->ino_cache_wait);
1477
1478         /*
1479          * Don't assign anonymous block device to roots that are not exposed to
1480          * userspace, the id pool is limited to 1M
1481          */
1482         if (is_fstree(root->root_key.objectid) &&
1483             btrfs_root_refs(&root->root_item) > 0) {
1484                 ret = get_anon_bdev(&root->anon_dev);
1485                 if (ret)
1486                         goto fail;
1487         }
1488
1489         mutex_lock(&root->objectid_mutex);
1490         ret = btrfs_find_highest_objectid(root,
1491                                         &root->highest_objectid);
1492         if (ret) {
1493                 mutex_unlock(&root->objectid_mutex);
1494                 goto fail;
1495         }
1496
1497         ASSERT(root->highest_objectid <= BTRFS_LAST_FREE_OBJECTID);
1498
1499         mutex_unlock(&root->objectid_mutex);
1500
1501         return 0;
1502 fail:
1503         /* The caller is responsible to call btrfs_free_fs_root */
1504         return ret;
1505 }
1506
1507 struct btrfs_root *btrfs_lookup_fs_root(struct btrfs_fs_info *fs_info,
1508                                         u64 root_id)
1509 {
1510         struct btrfs_root *root;
1511
1512         spin_lock(&fs_info->fs_roots_radix_lock);
1513         root = radix_tree_lookup(&fs_info->fs_roots_radix,
1514                                  (unsigned long)root_id);
1515         spin_unlock(&fs_info->fs_roots_radix_lock);
1516         return root;
1517 }
1518
1519 int btrfs_insert_fs_root(struct btrfs_fs_info *fs_info,
1520                          struct btrfs_root *root)
1521 {
1522         int ret;
1523
1524         ret = radix_tree_preload(GFP_NOFS);
1525         if (ret)
1526                 return ret;
1527
1528         spin_lock(&fs_info->fs_roots_radix_lock);
1529         ret = radix_tree_insert(&fs_info->fs_roots_radix,
1530                                 (unsigned long)root->root_key.objectid,
1531                                 root);
1532         if (ret == 0)
1533                 set_bit(BTRFS_ROOT_IN_RADIX, &root->state);
1534         spin_unlock(&fs_info->fs_roots_radix_lock);
1535         radix_tree_preload_end();
1536
1537         return ret;
1538 }
1539
1540 struct btrfs_root *btrfs_get_fs_root(struct btrfs_fs_info *fs_info,
1541                                      struct btrfs_key *location,
1542                                      bool check_ref)
1543 {
1544         struct btrfs_root *root;
1545         struct btrfs_path *path;
1546         struct btrfs_key key;
1547         int ret;
1548
1549         if (location->objectid == BTRFS_ROOT_TREE_OBJECTID)
1550                 return fs_info->tree_root;
1551         if (location->objectid == BTRFS_EXTENT_TREE_OBJECTID)
1552                 return fs_info->extent_root;
1553         if (location->objectid == BTRFS_CHUNK_TREE_OBJECTID)
1554                 return fs_info->chunk_root;
1555         if (location->objectid == BTRFS_DEV_TREE_OBJECTID)
1556                 return fs_info->dev_root;
1557         if (location->objectid == BTRFS_CSUM_TREE_OBJECTID)
1558                 return fs_info->csum_root;
1559         if (location->objectid == BTRFS_QUOTA_TREE_OBJECTID)
1560                 return fs_info->quota_root ? fs_info->quota_root :
1561                                              ERR_PTR(-ENOENT);
1562         if (location->objectid == BTRFS_UUID_TREE_OBJECTID)
1563                 return fs_info->uuid_root ? fs_info->uuid_root :
1564                                             ERR_PTR(-ENOENT);
1565         if (location->objectid == BTRFS_FREE_SPACE_TREE_OBJECTID)
1566                 return fs_info->free_space_root ? fs_info->free_space_root :
1567                                                   ERR_PTR(-ENOENT);
1568 again:
1569         root = btrfs_lookup_fs_root(fs_info, location->objectid);
1570         if (root) {
1571                 if (check_ref && btrfs_root_refs(&root->root_item) == 0)
1572                         return ERR_PTR(-ENOENT);
1573                 return root;
1574         }
1575
1576         root = btrfs_read_fs_root(fs_info->tree_root, location);
1577         if (IS_ERR(root))
1578                 return root;
1579
1580         if (check_ref && btrfs_root_refs(&root->root_item) == 0) {
1581                 ret = -ENOENT;
1582                 goto fail;
1583         }
1584
1585         ret = btrfs_init_fs_root(root);
1586         if (ret)
1587                 goto fail;
1588
1589         path = btrfs_alloc_path();
1590         if (!path) {
1591                 ret = -ENOMEM;
1592                 goto fail;
1593         }
1594         key.objectid = BTRFS_ORPHAN_OBJECTID;
1595         key.type = BTRFS_ORPHAN_ITEM_KEY;
1596         key.offset = location->objectid;
1597
1598         ret = btrfs_search_slot(NULL, fs_info->tree_root, &key, path, 0, 0);
1599         btrfs_free_path(path);
1600         if (ret < 0)
1601                 goto fail;
1602         if (ret == 0)
1603                 set_bit(BTRFS_ROOT_ORPHAN_ITEM_INSERTED, &root->state);
1604
1605         ret = btrfs_insert_fs_root(fs_info, root);
1606         if (ret) {
1607                 if (ret == -EEXIST) {
1608                         btrfs_free_fs_root(root);
1609                         goto again;
1610                 }
1611                 goto fail;
1612         }
1613         return root;
1614 fail:
1615         btrfs_free_fs_root(root);
1616         return ERR_PTR(ret);
1617 }
1618
1619 static int btrfs_congested_fn(void *congested_data, int bdi_bits)
1620 {
1621         struct btrfs_fs_info *info = (struct btrfs_fs_info *)congested_data;
1622         int ret = 0;
1623         struct btrfs_device *device;
1624         struct backing_dev_info *bdi;
1625
1626         rcu_read_lock();
1627         list_for_each_entry_rcu(device, &info->fs_devices->devices, dev_list) {
1628                 if (!device->bdev)
1629                         continue;
1630                 bdi = device->bdev->bd_bdi;
1631                 if (bdi_congested(bdi, bdi_bits)) {
1632                         ret = 1;
1633                         break;
1634                 }
1635         }
1636         rcu_read_unlock();
1637         return ret;
1638 }
1639
1640 /*
1641  * called by the kthread helper functions to finally call the bio end_io
1642  * functions.  This is where read checksum verification actually happens
1643  */
1644 static void end_workqueue_fn(struct btrfs_work *work)
1645 {
1646         struct bio *bio;
1647         struct btrfs_end_io_wq *end_io_wq;
1648
1649         end_io_wq = container_of(work, struct btrfs_end_io_wq, work);
1650         bio = end_io_wq->bio;
1651
1652         bio->bi_status = end_io_wq->status;
1653         bio->bi_private = end_io_wq->private;
1654         bio->bi_end_io = end_io_wq->end_io;
1655         bio_endio(bio);
1656         kmem_cache_free(btrfs_end_io_wq_cache, end_io_wq);
1657 }
1658
1659 static int cleaner_kthread(void *arg)
1660 {
1661         struct btrfs_root *root = arg;
1662         struct btrfs_fs_info *fs_info = root->fs_info;
1663         int again;
1664
1665         while (1) {
1666                 again = 0;
1667
1668                 set_bit(BTRFS_FS_CLEANER_RUNNING, &fs_info->flags);
1669
1670                 /* Make the cleaner go to sleep early. */
1671                 if (btrfs_need_cleaner_sleep(fs_info))
1672                         goto sleep;
1673
1674                 /*
1675                  * Do not do anything if we might cause open_ctree() to block
1676                  * before we have finished mounting the filesystem.
1677                  */
1678                 if (!test_bit(BTRFS_FS_OPEN, &fs_info->flags))
1679                         goto sleep;
1680
1681                 if (!mutex_trylock(&fs_info->cleaner_mutex))
1682                         goto sleep;
1683
1684                 /*
1685                  * Avoid the problem that we change the status of the fs
1686                  * during the above check and trylock.
1687                  */
1688                 if (btrfs_need_cleaner_sleep(fs_info)) {
1689                         mutex_unlock(&fs_info->cleaner_mutex);
1690                         goto sleep;
1691                 }
1692
1693                 btrfs_run_delayed_iputs(fs_info);
1694
1695                 again = btrfs_clean_one_deleted_snapshot(root);
1696                 mutex_unlock(&fs_info->cleaner_mutex);
1697
1698                 /*
1699                  * The defragger has dealt with the R/O remount and umount,
1700                  * needn't do anything special here.
1701                  */
1702                 btrfs_run_defrag_inodes(fs_info);
1703
1704                 /*
1705                  * Acquires fs_info->delete_unused_bgs_mutex to avoid racing
1706                  * with relocation (btrfs_relocate_chunk) and relocation
1707                  * acquires fs_info->cleaner_mutex (btrfs_relocate_block_group)
1708                  * after acquiring fs_info->delete_unused_bgs_mutex. So we
1709                  * can't hold, nor need to, fs_info->cleaner_mutex when deleting
1710                  * unused block groups.
1711                  */
1712                 btrfs_delete_unused_bgs(fs_info);
1713 sleep:
1714                 clear_bit(BTRFS_FS_CLEANER_RUNNING, &fs_info->flags);
1715                 if (kthread_should_park())
1716                         kthread_parkme();
1717                 if (kthread_should_stop())
1718                         return 0;
1719                 if (!again) {
1720                         set_current_state(TASK_INTERRUPTIBLE);
1721                         schedule();
1722                         __set_current_state(TASK_RUNNING);
1723                 }
1724         }
1725 }
1726
1727 static int transaction_kthread(void *arg)
1728 {
1729         struct btrfs_root *root = arg;
1730         struct btrfs_fs_info *fs_info = root->fs_info;
1731         struct btrfs_trans_handle *trans;
1732         struct btrfs_transaction *cur;
1733         u64 transid;
1734         time64_t now;
1735         unsigned long delay;
1736         bool cannot_commit;
1737
1738         do {
1739                 cannot_commit = false;
1740                 delay = HZ * fs_info->commit_interval;
1741                 mutex_lock(&fs_info->transaction_kthread_mutex);
1742
1743                 spin_lock(&fs_info->trans_lock);
1744                 cur = fs_info->running_transaction;
1745                 if (!cur) {
1746                         spin_unlock(&fs_info->trans_lock);
1747                         goto sleep;
1748                 }
1749
1750                 now = ktime_get_seconds();
1751                 if (cur->state < TRANS_STATE_COMMIT_START &&
1752                     (now < cur->start_time ||
1753                      now - cur->start_time < fs_info->commit_interval)) {
1754                         spin_unlock(&fs_info->trans_lock);
1755                         delay = HZ * 5;
1756                         goto sleep;
1757                 }
1758                 transid = cur->transid;
1759                 spin_unlock(&fs_info->trans_lock);
1760
1761                 /* If the file system is aborted, this will always fail. */
1762                 trans = btrfs_attach_transaction(root);
1763                 if (IS_ERR(trans)) {
1764                         if (PTR_ERR(trans) != -ENOENT)
1765                                 cannot_commit = true;
1766                         goto sleep;
1767                 }
1768                 if (transid == trans->transid) {
1769                         btrfs_commit_transaction(trans);
1770                 } else {
1771                         btrfs_end_transaction(trans);
1772                 }
1773 sleep:
1774                 wake_up_process(fs_info->cleaner_kthread);
1775                 mutex_unlock(&fs_info->transaction_kthread_mutex);
1776
1777                 if (unlikely(test_bit(BTRFS_FS_STATE_ERROR,
1778                                       &fs_info->fs_state)))
1779                         btrfs_cleanup_transaction(fs_info);
1780                 if (!kthread_should_stop() &&
1781                                 (!btrfs_transaction_blocked(fs_info) ||
1782                                  cannot_commit))
1783                         schedule_timeout_interruptible(delay);
1784         } while (!kthread_should_stop());
1785         return 0;
1786 }
1787
1788 /*
1789  * this will find the highest generation in the array of
1790  * root backups.  The index of the highest array is returned,
1791  * or -1 if we can't find anything.
1792  *
1793  * We check to make sure the array is valid by comparing the
1794  * generation of the latest  root in the array with the generation
1795  * in the super block.  If they don't match we pitch it.
1796  */
1797 static int find_newest_super_backup(struct btrfs_fs_info *info, u64 newest_gen)
1798 {
1799         u64 cur;
1800         int newest_index = -1;
1801         struct btrfs_root_backup *root_backup;
1802         int i;
1803
1804         for (i = 0; i < BTRFS_NUM_BACKUP_ROOTS; i++) {
1805                 root_backup = info->super_copy->super_roots + i;
1806                 cur = btrfs_backup_tree_root_gen(root_backup);
1807                 if (cur == newest_gen)
1808                         newest_index = i;
1809         }
1810
1811         /* check to see if we actually wrapped around */
1812         if (newest_index == BTRFS_NUM_BACKUP_ROOTS - 1) {
1813                 root_backup = info->super_copy->super_roots;
1814                 cur = btrfs_backup_tree_root_gen(root_backup);
1815                 if (cur == newest_gen)
1816                         newest_index = 0;
1817         }
1818         return newest_index;
1819 }
1820
1821
1822 /*
1823  * find the oldest backup so we know where to store new entries
1824  * in the backup array.  This will set the backup_root_index
1825  * field in the fs_info struct
1826  */
1827 static void find_oldest_super_backup(struct btrfs_fs_info *info,
1828                                      u64 newest_gen)
1829 {
1830         int newest_index = -1;
1831
1832         newest_index = find_newest_super_backup(info, newest_gen);
1833         /* if there was garbage in there, just move along */
1834         if (newest_index == -1) {
1835                 info->backup_root_index = 0;
1836         } else {
1837                 info->backup_root_index = (newest_index + 1) % BTRFS_NUM_BACKUP_ROOTS;
1838         }
1839 }
1840
1841 /*
1842  * copy all the root pointers into the super backup array.
1843  * this will bump the backup pointer by one when it is
1844  * done
1845  */
1846 static void backup_super_roots(struct btrfs_fs_info *info)
1847 {
1848         int next_backup;
1849         struct btrfs_root_backup *root_backup;
1850         int last_backup;
1851
1852         next_backup = info->backup_root_index;
1853         last_backup = (next_backup + BTRFS_NUM_BACKUP_ROOTS - 1) %
1854                 BTRFS_NUM_BACKUP_ROOTS;
1855
1856         /*
1857          * just overwrite the last backup if we're at the same generation
1858          * this happens only at umount
1859          */
1860         root_backup = info->super_for_commit->super_roots + last_backup;
1861         if (btrfs_backup_tree_root_gen(root_backup) ==
1862             btrfs_header_generation(info->tree_root->node))
1863                 next_backup = last_backup;
1864
1865         root_backup = info->super_for_commit->super_roots + next_backup;
1866
1867         /*
1868          * make sure all of our padding and empty slots get zero filled
1869          * regardless of which ones we use today
1870          */
1871         memset(root_backup, 0, sizeof(*root_backup));
1872
1873         info->backup_root_index = (next_backup + 1) % BTRFS_NUM_BACKUP_ROOTS;
1874
1875         btrfs_set_backup_tree_root(root_backup, info->tree_root->node->start);
1876         btrfs_set_backup_tree_root_gen(root_backup,
1877                                btrfs_header_generation(info->tree_root->node));
1878
1879         btrfs_set_backup_tree_root_level(root_backup,
1880                                btrfs_header_level(info->tree_root->node));
1881
1882         btrfs_set_backup_chunk_root(root_backup, info->chunk_root->node->start);
1883         btrfs_set_backup_chunk_root_gen(root_backup,
1884                                btrfs_header_generation(info->chunk_root->node));
1885         btrfs_set_backup_chunk_root_level(root_backup,
1886                                btrfs_header_level(info->chunk_root->node));
1887
1888         btrfs_set_backup_extent_root(root_backup, info->extent_root->node->start);
1889         btrfs_set_backup_extent_root_gen(root_backup,
1890                                btrfs_header_generation(info->extent_root->node));
1891         btrfs_set_backup_extent_root_level(root_backup,
1892                                btrfs_header_level(info->extent_root->node));
1893
1894         /*
1895          * we might commit during log recovery, which happens before we set
1896          * the fs_root.  Make sure it is valid before we fill it in.
1897          */
1898         if (info->fs_root && info->fs_root->node) {
1899                 btrfs_set_backup_fs_root(root_backup,
1900                                          info->fs_root->node->start);
1901                 btrfs_set_backup_fs_root_gen(root_backup,
1902                                btrfs_header_generation(info->fs_root->node));
1903                 btrfs_set_backup_fs_root_level(root_backup,
1904                                btrfs_header_level(info->fs_root->node));
1905         }
1906
1907         btrfs_set_backup_dev_root(root_backup, info->dev_root->node->start);
1908         btrfs_set_backup_dev_root_gen(root_backup,
1909                                btrfs_header_generation(info->dev_root->node));
1910         btrfs_set_backup_dev_root_level(root_backup,
1911                                        btrfs_header_level(info->dev_root->node));
1912
1913         btrfs_set_backup_csum_root(root_backup, info->csum_root->node->start);
1914         btrfs_set_backup_csum_root_gen(root_backup,
1915                                btrfs_header_generation(info->csum_root->node));
1916         btrfs_set_backup_csum_root_level(root_backup,
1917                                btrfs_header_level(info->csum_root->node));
1918
1919         btrfs_set_backup_total_bytes(root_backup,
1920                              btrfs_super_total_bytes(info->super_copy));
1921         btrfs_set_backup_bytes_used(root_backup,
1922                              btrfs_super_bytes_used(info->super_copy));
1923         btrfs_set_backup_num_devices(root_backup,
1924                              btrfs_super_num_devices(info->super_copy));
1925
1926         /*
1927          * if we don't copy this out to the super_copy, it won't get remembered
1928          * for the next commit
1929          */
1930         memcpy(&info->super_copy->super_roots,
1931                &info->super_for_commit->super_roots,
1932                sizeof(*root_backup) * BTRFS_NUM_BACKUP_ROOTS);
1933 }
1934
1935 /*
1936  * this copies info out of the root backup array and back into
1937  * the in-memory super block.  It is meant to help iterate through
1938  * the array, so you send it the number of backups you've already
1939  * tried and the last backup index you used.
1940  *
1941  * this returns -1 when it has tried all the backups
1942  */
1943 static noinline int next_root_backup(struct btrfs_fs_info *info,
1944                                      struct btrfs_super_block *super,
1945                                      int *num_backups_tried, int *backup_index)
1946 {
1947         struct btrfs_root_backup *root_backup;
1948         int newest = *backup_index;
1949
1950         if (*num_backups_tried == 0) {
1951                 u64 gen = btrfs_super_generation(super);
1952
1953                 newest = find_newest_super_backup(info, gen);
1954                 if (newest == -1)
1955                         return -1;
1956
1957                 *backup_index = newest;
1958                 *num_backups_tried = 1;
1959         } else if (*num_backups_tried == BTRFS_NUM_BACKUP_ROOTS) {
1960                 /* we've tried all the backups, all done */
1961                 return -1;
1962         } else {
1963                 /* jump to the next oldest backup */
1964                 newest = (*backup_index + BTRFS_NUM_BACKUP_ROOTS - 1) %
1965                         BTRFS_NUM_BACKUP_ROOTS;
1966                 *backup_index = newest;
1967                 *num_backups_tried += 1;
1968         }
1969         root_backup = super->super_roots + newest;
1970
1971         btrfs_set_super_generation(super,
1972                                    btrfs_backup_tree_root_gen(root_backup));
1973         btrfs_set_super_root(super, btrfs_backup_tree_root(root_backup));
1974         btrfs_set_super_root_level(super,
1975                                    btrfs_backup_tree_root_level(root_backup));
1976         btrfs_set_super_bytes_used(super, btrfs_backup_bytes_used(root_backup));
1977
1978         /*
1979          * fixme: the total bytes and num_devices need to match or we should
1980          * need a fsck
1981          */
1982         btrfs_set_super_total_bytes(super, btrfs_backup_total_bytes(root_backup));
1983         btrfs_set_super_num_devices(super, btrfs_backup_num_devices(root_backup));
1984         return 0;
1985 }
1986
1987 /* helper to cleanup workers */
1988 static void btrfs_stop_all_workers(struct btrfs_fs_info *fs_info)
1989 {
1990         btrfs_destroy_workqueue(fs_info->fixup_workers);
1991         btrfs_destroy_workqueue(fs_info->delalloc_workers);
1992         btrfs_destroy_workqueue(fs_info->workers);
1993         btrfs_destroy_workqueue(fs_info->endio_workers);
1994         btrfs_destroy_workqueue(fs_info->endio_raid56_workers);
1995         btrfs_destroy_workqueue(fs_info->endio_repair_workers);
1996         btrfs_destroy_workqueue(fs_info->rmw_workers);
1997         btrfs_destroy_workqueue(fs_info->endio_write_workers);
1998         btrfs_destroy_workqueue(fs_info->endio_freespace_worker);
1999         btrfs_destroy_workqueue(fs_info->submit_workers);
2000         btrfs_destroy_workqueue(fs_info->delayed_workers);
2001         btrfs_destroy_workqueue(fs_info->caching_workers);
2002         btrfs_destroy_workqueue(fs_info->readahead_workers);
2003         btrfs_destroy_workqueue(fs_info->flush_workers);
2004         btrfs_destroy_workqueue(fs_info->qgroup_rescan_workers);
2005         /*
2006          * Now that all other work queues are destroyed, we can safely destroy
2007          * the queues used for metadata I/O, since tasks from those other work
2008          * queues can do metadata I/O operations.
2009          */
2010         btrfs_destroy_workqueue(fs_info->endio_meta_workers);
2011         btrfs_destroy_workqueue(fs_info->endio_meta_write_workers);
2012 }
2013
2014 static void free_root_extent_buffers(struct btrfs_root *root)
2015 {
2016         if (root) {
2017                 free_extent_buffer(root->node);
2018                 free_extent_buffer(root->commit_root);
2019                 root->node = NULL;
2020                 root->commit_root = NULL;
2021         }
2022 }
2023
2024 /* helper to cleanup tree roots */
2025 static void free_root_pointers(struct btrfs_fs_info *info, bool free_chunk_root)
2026 {
2027         free_root_extent_buffers(info->tree_root);
2028
2029         free_root_extent_buffers(info->dev_root);
2030         free_root_extent_buffers(info->extent_root);
2031         free_root_extent_buffers(info->csum_root);
2032         free_root_extent_buffers(info->quota_root);
2033         free_root_extent_buffers(info->uuid_root);
2034         if (free_chunk_root)
2035                 free_root_extent_buffers(info->chunk_root);
2036         free_root_extent_buffers(info->free_space_root);
2037 }
2038
2039 void btrfs_free_fs_roots(struct btrfs_fs_info *fs_info)
2040 {
2041         int ret;
2042         struct btrfs_root *gang[8];
2043         int i;
2044
2045         while (!list_empty(&fs_info->dead_roots)) {
2046                 gang[0] = list_entry(fs_info->dead_roots.next,
2047                                      struct btrfs_root, root_list);
2048                 list_del(&gang[0]->root_list);
2049
2050                 if (test_bit(BTRFS_ROOT_IN_RADIX, &gang[0]->state)) {
2051                         btrfs_drop_and_free_fs_root(fs_info, gang[0]);
2052                 } else {
2053                         free_extent_buffer(gang[0]->node);
2054                         free_extent_buffer(gang[0]->commit_root);
2055                         btrfs_put_fs_root(gang[0]);
2056                 }
2057         }
2058
2059         while (1) {
2060                 ret = radix_tree_gang_lookup(&fs_info->fs_roots_radix,
2061                                              (void **)gang, 0,
2062                                              ARRAY_SIZE(gang));
2063                 if (!ret)
2064                         break;
2065                 for (i = 0; i < ret; i++)
2066                         btrfs_drop_and_free_fs_root(fs_info, gang[i]);
2067         }
2068
2069         if (test_bit(BTRFS_FS_STATE_ERROR, &fs_info->fs_state)) {
2070                 btrfs_free_log_root_tree(NULL, fs_info);
2071                 btrfs_destroy_pinned_extent(fs_info, fs_info->pinned_extents);
2072         }
2073 }
2074
2075 static void btrfs_init_scrub(struct btrfs_fs_info *fs_info)
2076 {
2077         mutex_init(&fs_info->scrub_lock);
2078         atomic_set(&fs_info->scrubs_running, 0);
2079         atomic_set(&fs_info->scrub_pause_req, 0);
2080         atomic_set(&fs_info->scrubs_paused, 0);
2081         atomic_set(&fs_info->scrub_cancel_req, 0);
2082         init_waitqueue_head(&fs_info->scrub_pause_wait);
2083         refcount_set(&fs_info->scrub_workers_refcnt, 0);
2084 }
2085
2086 static void btrfs_init_balance(struct btrfs_fs_info *fs_info)
2087 {
2088         spin_lock_init(&fs_info->balance_lock);
2089         mutex_init(&fs_info->balance_mutex);
2090         atomic_set(&fs_info->balance_pause_req, 0);
2091         atomic_set(&fs_info->balance_cancel_req, 0);
2092         fs_info->balance_ctl = NULL;
2093         init_waitqueue_head(&fs_info->balance_wait_q);
2094 }
2095
2096 static void btrfs_init_btree_inode(struct btrfs_fs_info *fs_info)
2097 {
2098         struct inode *inode = fs_info->btree_inode;
2099
2100         inode->i_ino = BTRFS_BTREE_INODE_OBJECTID;
2101         set_nlink(inode, 1);
2102         /*
2103          * we set the i_size on the btree inode to the max possible int.
2104          * the real end of the address space is determined by all of
2105          * the devices in the system
2106          */
2107         inode->i_size = OFFSET_MAX;
2108         inode->i_mapping->a_ops = &btree_aops;
2109
2110         RB_CLEAR_NODE(&BTRFS_I(inode)->rb_node);
2111         extent_io_tree_init(fs_info, &BTRFS_I(inode)->io_tree,
2112                             IO_TREE_INODE_IO, inode);
2113         BTRFS_I(inode)->io_tree.track_uptodate = false;
2114         extent_map_tree_init(&BTRFS_I(inode)->extent_tree);
2115
2116         BTRFS_I(inode)->io_tree.ops = &btree_extent_io_ops;
2117
2118         BTRFS_I(inode)->root = fs_info->tree_root;
2119         memset(&BTRFS_I(inode)->location, 0, sizeof(struct btrfs_key));
2120         set_bit(BTRFS_INODE_DUMMY, &BTRFS_I(inode)->runtime_flags);
2121         btrfs_insert_inode_hash(inode);
2122 }
2123
2124 static void btrfs_init_dev_replace_locks(struct btrfs_fs_info *fs_info)
2125 {
2126         mutex_init(&fs_info->dev_replace.lock_finishing_cancel_unmount);
2127         init_rwsem(&fs_info->dev_replace.rwsem);
2128         init_waitqueue_head(&fs_info->dev_replace.replace_wait);
2129 }
2130
2131 static void btrfs_init_qgroup(struct btrfs_fs_info *fs_info)
2132 {
2133         spin_lock_init(&fs_info->qgroup_lock);
2134         mutex_init(&fs_info->qgroup_ioctl_lock);
2135         fs_info->qgroup_tree = RB_ROOT;
2136         INIT_LIST_HEAD(&fs_info->dirty_qgroups);
2137         fs_info->qgroup_seq = 1;
2138         fs_info->qgroup_ulist = NULL;
2139         fs_info->qgroup_rescan_running = false;
2140         mutex_init(&fs_info->qgroup_rescan_lock);
2141 }
2142
2143 static int btrfs_init_workqueues(struct btrfs_fs_info *fs_info,
2144                 struct btrfs_fs_devices *fs_devices)
2145 {
2146         u32 max_active = fs_info->thread_pool_size;
2147         unsigned int flags = WQ_MEM_RECLAIM | WQ_FREEZABLE | WQ_UNBOUND;
2148
2149         fs_info->workers =
2150                 btrfs_alloc_workqueue(fs_info, "worker",
2151                                       flags | WQ_HIGHPRI, max_active, 16);
2152
2153         fs_info->delalloc_workers =
2154                 btrfs_alloc_workqueue(fs_info, "delalloc",
2155                                       flags, max_active, 2);
2156
2157         fs_info->flush_workers =
2158                 btrfs_alloc_workqueue(fs_info, "flush_delalloc",
2159                                       flags, max_active, 0);
2160
2161         fs_info->caching_workers =
2162                 btrfs_alloc_workqueue(fs_info, "cache", flags, max_active, 0);
2163
2164         /*
2165          * a higher idle thresh on the submit workers makes it much more
2166          * likely that bios will be send down in a sane order to the
2167          * devices
2168          */
2169         fs_info->submit_workers =
2170                 btrfs_alloc_workqueue(fs_info, "submit", flags,
2171                                       min_t(u64, fs_devices->num_devices,
2172                                             max_active), 64);
2173
2174         fs_info->fixup_workers =
2175                 btrfs_alloc_workqueue(fs_info, "fixup", flags, 1, 0);
2176
2177         /*
2178          * endios are largely parallel and should have a very
2179          * low idle thresh
2180          */
2181         fs_info->endio_workers =
2182                 btrfs_alloc_workqueue(fs_info, "endio", flags, max_active, 4);
2183         fs_info->endio_meta_workers =
2184                 btrfs_alloc_workqueue(fs_info, "endio-meta", flags,
2185                                       max_active, 4);
2186         fs_info->endio_meta_write_workers =
2187                 btrfs_alloc_workqueue(fs_info, "endio-meta-write", flags,
2188                                       max_active, 2);
2189         fs_info->endio_raid56_workers =
2190                 btrfs_alloc_workqueue(fs_info, "endio-raid56", flags,
2191                                       max_active, 4);
2192         fs_info->endio_repair_workers =
2193                 btrfs_alloc_workqueue(fs_info, "endio-repair", flags, 1, 0);
2194         fs_info->rmw_workers =
2195                 btrfs_alloc_workqueue(fs_info, "rmw", flags, max_active, 2);
2196         fs_info->endio_write_workers =
2197                 btrfs_alloc_workqueue(fs_info, "endio-write", flags,
2198                                       max_active, 2);
2199         fs_info->endio_freespace_worker =
2200                 btrfs_alloc_workqueue(fs_info, "freespace-write", flags,
2201                                       max_active, 0);
2202         fs_info->delayed_workers =
2203                 btrfs_alloc_workqueue(fs_info, "delayed-meta", flags,
2204                                       max_active, 0);
2205         fs_info->readahead_workers =
2206                 btrfs_alloc_workqueue(fs_info, "readahead", flags,
2207                                       max_active, 2);
2208         fs_info->qgroup_rescan_workers =
2209                 btrfs_alloc_workqueue(fs_info, "qgroup-rescan", flags, 1, 0);
2210
2211         if (!(fs_info->workers && fs_info->delalloc_workers &&
2212               fs_info->submit_workers && fs_info->flush_workers &&
2213               fs_info->endio_workers && fs_info->endio_meta_workers &&
2214               fs_info->endio_meta_write_workers &&
2215               fs_info->endio_repair_workers &&
2216               fs_info->endio_write_workers && fs_info->endio_raid56_workers &&
2217               fs_info->endio_freespace_worker && fs_info->rmw_workers &&
2218               fs_info->caching_workers && fs_info->readahead_workers &&
2219               fs_info->fixup_workers && fs_info->delayed_workers &&
2220               fs_info->qgroup_rescan_workers)) {
2221                 return -ENOMEM;
2222         }
2223
2224         return 0;
2225 }
2226
2227 static int btrfs_init_csum_hash(struct btrfs_fs_info *fs_info, u16 csum_type)
2228 {
2229         struct crypto_shash *csum_shash;
2230         const char *csum_name = btrfs_super_csum_name(csum_type);
2231
2232         csum_shash = crypto_alloc_shash(csum_name, 0, 0);
2233
2234         if (IS_ERR(csum_shash)) {
2235                 btrfs_err(fs_info, "error allocating %s hash for checksum",
2236                           csum_name);
2237                 return PTR_ERR(csum_shash);
2238         }
2239
2240         fs_info->csum_shash = csum_shash;
2241
2242         /*
2243          * Check if the checksum implementation is a fast accelerated one.
2244          * As-is this is a bit of a hack and should be replaced once the csum
2245          * implementations provide that information themselves.
2246          */
2247         switch (csum_type) {
2248         case BTRFS_CSUM_TYPE_CRC32:
2249                 if (!strstr(crypto_shash_driver_name(csum_shash), "generic"))
2250                         set_bit(BTRFS_FS_CSUM_IMPL_FAST, &fs_info->flags);
2251                 break;
2252         default:
2253                 break;
2254         }
2255
2256         btrfs_info(fs_info, "using %s (%s) checksum algorithm",
2257                         btrfs_super_csum_name(csum_type),
2258                         crypto_shash_driver_name(csum_shash));
2259         return 0;
2260 }
2261
2262 static void btrfs_free_csum_hash(struct btrfs_fs_info *fs_info)
2263 {
2264         crypto_free_shash(fs_info->csum_shash);
2265 }
2266
2267 static int btrfs_replay_log(struct btrfs_fs_info *fs_info,
2268                             struct btrfs_fs_devices *fs_devices)
2269 {
2270         int ret;
2271         struct btrfs_root *log_tree_root;
2272         struct btrfs_super_block *disk_super = fs_info->super_copy;
2273         u64 bytenr = btrfs_super_log_root(disk_super);
2274         int level = btrfs_super_log_root_level(disk_super);
2275
2276         if (fs_devices->rw_devices == 0) {
2277                 btrfs_warn(fs_info, "log replay required on RO media");
2278                 return -EIO;
2279         }
2280
2281         log_tree_root = btrfs_alloc_root(fs_info, GFP_KERNEL);
2282         if (!log_tree_root)
2283                 return -ENOMEM;
2284
2285         __setup_root(log_tree_root, fs_info, BTRFS_TREE_LOG_OBJECTID);
2286
2287         log_tree_root->node = read_tree_block(fs_info, bytenr,
2288                                               fs_info->generation + 1,
2289                                               level, NULL);
2290         if (IS_ERR(log_tree_root->node)) {
2291                 btrfs_warn(fs_info, "failed to read log tree");
2292                 ret = PTR_ERR(log_tree_root->node);
2293                 kfree(log_tree_root);
2294                 return ret;
2295         } else if (!extent_buffer_uptodate(log_tree_root->node)) {
2296                 btrfs_err(fs_info, "failed to read log tree");
2297                 free_extent_buffer(log_tree_root->node);
2298                 kfree(log_tree_root);
2299                 return -EIO;
2300         }
2301         /* returns with log_tree_root freed on success */
2302         ret = btrfs_recover_log_trees(log_tree_root);
2303         if (ret) {
2304                 btrfs_handle_fs_error(fs_info, ret,
2305                                       "Failed to recover log tree");
2306                 free_extent_buffer(log_tree_root->node);
2307                 kfree(log_tree_root);
2308                 return ret;
2309         }
2310
2311         if (sb_rdonly(fs_info->sb)) {
2312                 ret = btrfs_commit_super(fs_info);
2313                 if (ret)
2314                         return ret;
2315         }
2316
2317         return 0;
2318 }
2319
2320 static int btrfs_read_roots(struct btrfs_fs_info *fs_info)
2321 {
2322         struct btrfs_root *tree_root = fs_info->tree_root;
2323         struct btrfs_root *root;
2324         struct btrfs_key location;
2325         int ret;
2326
2327         BUG_ON(!fs_info->tree_root);
2328
2329         location.objectid = BTRFS_EXTENT_TREE_OBJECTID;
2330         location.type = BTRFS_ROOT_ITEM_KEY;
2331         location.offset = 0;
2332
2333         root = btrfs_read_tree_root(tree_root, &location);
2334         if (IS_ERR(root)) {
2335                 ret = PTR_ERR(root);
2336                 goto out;
2337         }
2338         set_bit(BTRFS_ROOT_TRACK_DIRTY, &root->state);
2339         fs_info->extent_root = root;
2340
2341         location.objectid = BTRFS_DEV_TREE_OBJECTID;
2342         root = btrfs_read_tree_root(tree_root, &location);
2343         if (IS_ERR(root)) {
2344                 ret = PTR_ERR(root);
2345                 goto out;
2346         }
2347         set_bit(BTRFS_ROOT_TRACK_DIRTY, &root->state);
2348         fs_info->dev_root = root;
2349         btrfs_init_devices_late(fs_info);
2350
2351         location.objectid = BTRFS_CSUM_TREE_OBJECTID;
2352         root = btrfs_read_tree_root(tree_root, &location);
2353         if (IS_ERR(root)) {
2354                 ret = PTR_ERR(root);
2355                 goto out;
2356         }
2357         set_bit(BTRFS_ROOT_TRACK_DIRTY, &root->state);
2358         fs_info->csum_root = root;
2359
2360         location.objectid = BTRFS_QUOTA_TREE_OBJECTID;
2361         root = btrfs_read_tree_root(tree_root, &location);
2362         if (!IS_ERR(root)) {
2363                 set_bit(BTRFS_ROOT_TRACK_DIRTY, &root->state);
2364                 set_bit(BTRFS_FS_QUOTA_ENABLED, &fs_info->flags);
2365                 fs_info->quota_root = root;
2366         }
2367
2368         location.objectid = BTRFS_UUID_TREE_OBJECTID;
2369         root = btrfs_read_tree_root(tree_root, &location);
2370         if (IS_ERR(root)) {
2371                 ret = PTR_ERR(root);
2372                 if (ret != -ENOENT)
2373                         goto out;
2374         } else {
2375                 set_bit(BTRFS_ROOT_TRACK_DIRTY, &root->state);
2376                 fs_info->uuid_root = root;
2377         }
2378
2379         if (btrfs_fs_compat_ro(fs_info, FREE_SPACE_TREE)) {
2380                 location.objectid = BTRFS_FREE_SPACE_TREE_OBJECTID;
2381                 root = btrfs_read_tree_root(tree_root, &location);
2382                 if (IS_ERR(root)) {
2383                         ret = PTR_ERR(root);
2384                         goto out;
2385                 }
2386                 set_bit(BTRFS_ROOT_TRACK_DIRTY, &root->state);
2387                 fs_info->free_space_root = root;
2388         }
2389
2390         return 0;
2391 out:
2392         btrfs_warn(fs_info, "failed to read root (objectid=%llu): %d",
2393                    location.objectid, ret);
2394         return ret;
2395 }
2396
2397 /*
2398  * Real super block validation
2399  * NOTE: super csum type and incompat features will not be checked here.
2400  *
2401  * @sb:         super block to check
2402  * @mirror_num: the super block number to check its bytenr:
2403  *              0       the primary (1st) sb
2404  *              1, 2    2nd and 3rd backup copy
2405  *             -1       skip bytenr check
2406  */
2407 static int validate_super(struct btrfs_fs_info *fs_info,
2408                             struct btrfs_super_block *sb, int mirror_num)
2409 {
2410         u64 nodesize = btrfs_super_nodesize(sb);
2411         u64 sectorsize = btrfs_super_sectorsize(sb);
2412         int ret = 0;
2413
2414         if (btrfs_super_magic(sb) != BTRFS_MAGIC) {
2415                 btrfs_err(fs_info, "no valid FS found");
2416                 ret = -EINVAL;
2417         }
2418         if (btrfs_super_flags(sb) & ~BTRFS_SUPER_FLAG_SUPP) {
2419                 btrfs_err(fs_info, "unrecognized or unsupported super flag: %llu",
2420                                 btrfs_super_flags(sb) & ~BTRFS_SUPER_FLAG_SUPP);
2421                 ret = -EINVAL;
2422         }
2423         if (btrfs_super_root_level(sb) >= BTRFS_MAX_LEVEL) {
2424                 btrfs_err(fs_info, "tree_root level too big: %d >= %d",
2425                                 btrfs_super_root_level(sb), BTRFS_MAX_LEVEL);
2426                 ret = -EINVAL;
2427         }
2428         if (btrfs_super_chunk_root_level(sb) >= BTRFS_MAX_LEVEL) {
2429                 btrfs_err(fs_info, "chunk_root level too big: %d >= %d",
2430                                 btrfs_super_chunk_root_level(sb), BTRFS_MAX_LEVEL);
2431                 ret = -EINVAL;
2432         }
2433         if (btrfs_super_log_root_level(sb) >= BTRFS_MAX_LEVEL) {
2434                 btrfs_err(fs_info, "log_root level too big: %d >= %d",
2435                                 btrfs_super_log_root_level(sb), BTRFS_MAX_LEVEL);
2436                 ret = -EINVAL;
2437         }
2438
2439         /*
2440          * Check sectorsize and nodesize first, other check will need it.
2441          * Check all possible sectorsize(4K, 8K, 16K, 32K, 64K) here.
2442          */
2443         if (!is_power_of_2(sectorsize) || sectorsize < 4096 ||
2444             sectorsize > BTRFS_MAX_METADATA_BLOCKSIZE) {
2445                 btrfs_err(fs_info, "invalid sectorsize %llu", sectorsize);
2446                 ret = -EINVAL;
2447         }
2448         /* Only PAGE SIZE is supported yet */
2449         if (sectorsize != PAGE_SIZE) {
2450                 btrfs_err(fs_info,
2451                         "sectorsize %llu not supported yet, only support %lu",
2452                         sectorsize, PAGE_SIZE);
2453                 ret = -EINVAL;
2454         }
2455         if (!is_power_of_2(nodesize) || nodesize < sectorsize ||
2456             nodesize > BTRFS_MAX_METADATA_BLOCKSIZE) {
2457                 btrfs_err(fs_info, "invalid nodesize %llu", nodesize);
2458                 ret = -EINVAL;
2459         }
2460         if (nodesize != le32_to_cpu(sb->__unused_leafsize)) {
2461                 btrfs_err(fs_info, "invalid leafsize %u, should be %llu",
2462                           le32_to_cpu(sb->__unused_leafsize), nodesize);
2463                 ret = -EINVAL;
2464         }
2465
2466         /* Root alignment check */
2467         if (!IS_ALIGNED(btrfs_super_root(sb), sectorsize)) {
2468                 btrfs_warn(fs_info, "tree_root block unaligned: %llu",
2469                            btrfs_super_root(sb));
2470                 ret = -EINVAL;
2471         }
2472         if (!IS_ALIGNED(btrfs_super_chunk_root(sb), sectorsize)) {
2473                 btrfs_warn(fs_info, "chunk_root block unaligned: %llu",
2474                            btrfs_super_chunk_root(sb));
2475                 ret = -EINVAL;
2476         }
2477         if (!IS_ALIGNED(btrfs_super_log_root(sb), sectorsize)) {
2478                 btrfs_warn(fs_info, "log_root block unaligned: %llu",
2479                            btrfs_super_log_root(sb));
2480                 ret = -EINVAL;
2481         }
2482
2483         if (memcmp(fs_info->fs_devices->fsid, sb->fsid, BTRFS_FSID_SIZE) != 0) {
2484                 btrfs_err(fs_info,
2485                 "superblock fsid doesn't match fsid of fs_devices: %pU != %pU",
2486                           sb->fsid, fs_info->fs_devices->fsid);
2487                 ret = -EINVAL;
2488         }
2489
2490         if (memcmp(fs_info->fs_devices->metadata_uuid, btrfs_sb_fsid_ptr(sb),
2491                    BTRFS_FSID_SIZE) != 0) {
2492                 btrfs_err(fs_info,
2493 "superblock metadata_uuid doesn't match metadata uuid of fs_devices: %pU != %pU",
2494                           btrfs_sb_fsid_ptr(sb), fs_info->fs_devices->metadata_uuid);
2495                 ret = -EINVAL;
2496         }
2497
2498         if (memcmp(fs_info->fs_devices->metadata_uuid, sb->dev_item.fsid,
2499                    BTRFS_FSID_SIZE) != 0) {
2500                 btrfs_err(fs_info,
2501                         "dev_item UUID does not match metadata fsid: %pU != %pU",
2502                         fs_info->fs_devices->metadata_uuid, sb->dev_item.fsid);
2503                 ret = -EINVAL;
2504         }
2505
2506         /*
2507          * Hint to catch really bogus numbers, bitflips or so, more exact checks are
2508          * done later
2509          */
2510         if (btrfs_super_bytes_used(sb) < 6 * btrfs_super_nodesize(sb)) {
2511                 btrfs_err(fs_info, "bytes_used is too small %llu",
2512                           btrfs_super_bytes_used(sb));
2513                 ret = -EINVAL;
2514         }
2515         if (!is_power_of_2(btrfs_super_stripesize(sb))) {
2516                 btrfs_err(fs_info, "invalid stripesize %u",
2517                           btrfs_super_stripesize(sb));
2518                 ret = -EINVAL;
2519         }
2520         if (btrfs_super_num_devices(sb) > (1UL << 31))
2521                 btrfs_warn(fs_info, "suspicious number of devices: %llu",
2522                            btrfs_super_num_devices(sb));
2523         if (btrfs_super_num_devices(sb) == 0) {
2524                 btrfs_err(fs_info, "number of devices is 0");
2525                 ret = -EINVAL;
2526         }
2527
2528         if (mirror_num >= 0 &&
2529             btrfs_super_bytenr(sb) != btrfs_sb_offset(mirror_num)) {
2530                 btrfs_err(fs_info, "super offset mismatch %llu != %u",
2531                           btrfs_super_bytenr(sb), BTRFS_SUPER_INFO_OFFSET);
2532                 ret = -EINVAL;
2533         }
2534
2535         /*
2536          * Obvious sys_chunk_array corruptions, it must hold at least one key
2537          * and one chunk
2538          */
2539         if (btrfs_super_sys_array_size(sb) > BTRFS_SYSTEM_CHUNK_ARRAY_SIZE) {
2540                 btrfs_err(fs_info, "system chunk array too big %u > %u",
2541                           btrfs_super_sys_array_size(sb),
2542                           BTRFS_SYSTEM_CHUNK_ARRAY_SIZE);
2543                 ret = -EINVAL;
2544         }
2545         if (btrfs_super_sys_array_size(sb) < sizeof(struct btrfs_disk_key)
2546                         + sizeof(struct btrfs_chunk)) {
2547                 btrfs_err(fs_info, "system chunk array too small %u < %zu",
2548                           btrfs_super_sys_array_size(sb),
2549                           sizeof(struct btrfs_disk_key)
2550                           + sizeof(struct btrfs_chunk));
2551                 ret = -EINVAL;
2552         }
2553
2554         /*
2555          * The generation is a global counter, we'll trust it more than the others
2556          * but it's still possible that it's the one that's wrong.
2557          */
2558         if (btrfs_super_generation(sb) < btrfs_super_chunk_root_generation(sb))
2559                 btrfs_warn(fs_info,
2560                         "suspicious: generation < chunk_root_generation: %llu < %llu",
2561                         btrfs_super_generation(sb),
2562                         btrfs_super_chunk_root_generation(sb));
2563         if (btrfs_super_generation(sb) < btrfs_super_cache_generation(sb)
2564             && btrfs_super_cache_generation(sb) != (u64)-1)
2565                 btrfs_warn(fs_info,
2566                         "suspicious: generation < cache_generation: %llu < %llu",
2567                         btrfs_super_generation(sb),
2568                         btrfs_super_cache_generation(sb));
2569
2570         return ret;
2571 }
2572
2573 /*
2574  * Validation of super block at mount time.
2575  * Some checks already done early at mount time, like csum type and incompat
2576  * flags will be skipped.
2577  */
2578 static int btrfs_validate_mount_super(struct btrfs_fs_info *fs_info)
2579 {
2580         return validate_super(fs_info, fs_info->super_copy, 0);
2581 }
2582
2583 /*
2584  * Validation of super block at write time.
2585  * Some checks like bytenr check will be skipped as their values will be
2586  * overwritten soon.
2587  * Extra checks like csum type and incompat flags will be done here.
2588  */
2589 static int btrfs_validate_write_super(struct btrfs_fs_info *fs_info,
2590                                       struct btrfs_super_block *sb)
2591 {
2592         int ret;
2593
2594         ret = validate_super(fs_info, sb, -1);
2595         if (ret < 0)
2596                 goto out;
2597         if (!btrfs_supported_super_csum(btrfs_super_csum_type(sb))) {
2598                 ret = -EUCLEAN;
2599                 btrfs_err(fs_info, "invalid csum type, has %u want %u",
2600                           btrfs_super_csum_type(sb), BTRFS_CSUM_TYPE_CRC32);
2601                 goto out;
2602         }
2603         if (btrfs_super_incompat_flags(sb) & ~BTRFS_FEATURE_INCOMPAT_SUPP) {
2604                 ret = -EUCLEAN;
2605                 btrfs_err(fs_info,
2606                 "invalid incompat flags, has 0x%llx valid mask 0x%llx",
2607                           btrfs_super_incompat_flags(sb),
2608                           (unsigned long long)BTRFS_FEATURE_INCOMPAT_SUPP);
2609                 goto out;
2610         }
2611 out:
2612         if (ret < 0)
2613                 btrfs_err(fs_info,
2614                 "super block corruption detected before writing it to disk");
2615         return ret;
2616 }
2617
2618 int open_ctree(struct super_block *sb,
2619                struct btrfs_fs_devices *fs_devices,
2620                char *options)
2621 {
2622         u32 sectorsize;
2623         u32 nodesize;
2624         u32 stripesize;
2625         u64 generation;
2626         u64 features;
2627         u16 csum_type;
2628         struct btrfs_key location;
2629         struct buffer_head *bh;
2630         struct btrfs_super_block *disk_super;
2631         struct btrfs_fs_info *fs_info = btrfs_sb(sb);
2632         struct btrfs_root *tree_root;
2633         struct btrfs_root *chunk_root;
2634         int ret;
2635         int err = -EINVAL;
2636         int num_backups_tried = 0;
2637         int backup_index = 0;
2638         int clear_free_space_tree = 0;
2639         int level;
2640
2641         tree_root = fs_info->tree_root = btrfs_alloc_root(fs_info, GFP_KERNEL);
2642         chunk_root = fs_info->chunk_root = btrfs_alloc_root(fs_info, GFP_KERNEL);
2643         if (!tree_root || !chunk_root) {
2644                 err = -ENOMEM;
2645                 goto fail;
2646         }
2647
2648         ret = init_srcu_struct(&fs_info->subvol_srcu);
2649         if (ret) {
2650                 err = ret;
2651                 goto fail;
2652         }
2653
2654         ret = percpu_counter_init(&fs_info->dio_bytes, 0, GFP_KERNEL);
2655         if (ret) {
2656                 err = ret;
2657                 goto fail_srcu;
2658         }
2659
2660         ret = percpu_counter_init(&fs_info->dirty_metadata_bytes, 0, GFP_KERNEL);
2661         if (ret) {
2662                 err = ret;
2663                 goto fail_dio_bytes;
2664         }
2665         fs_info->dirty_metadata_batch = PAGE_SIZE *
2666                                         (1 + ilog2(nr_cpu_ids));
2667
2668         ret = percpu_counter_init(&fs_info->delalloc_bytes, 0, GFP_KERNEL);
2669         if (ret) {
2670                 err = ret;
2671                 goto fail_dirty_metadata_bytes;
2672         }
2673
2674         ret = percpu_counter_init(&fs_info->dev_replace.bio_counter, 0,
2675                         GFP_KERNEL);
2676         if (ret) {
2677                 err = ret;
2678                 goto fail_delalloc_bytes;
2679         }
2680
2681         INIT_RADIX_TREE(&fs_info->fs_roots_radix, GFP_ATOMIC);
2682         INIT_RADIX_TREE(&fs_info->buffer_radix, GFP_ATOMIC);
2683         INIT_LIST_HEAD(&fs_info->trans_list);
2684         INIT_LIST_HEAD(&fs_info->dead_roots);
2685         INIT_LIST_HEAD(&fs_info->delayed_iputs);
2686         INIT_LIST_HEAD(&fs_info->delalloc_roots);
2687         INIT_LIST_HEAD(&fs_info->caching_block_groups);
2688         spin_lock_init(&fs_info->delalloc_root_lock);
2689         spin_lock_init(&fs_info->trans_lock);
2690         spin_lock_init(&fs_info->fs_roots_radix_lock);
2691         spin_lock_init(&fs_info->delayed_iput_lock);
2692         spin_lock_init(&fs_info->defrag_inodes_lock);
2693         spin_lock_init(&fs_info->super_lock);
2694         spin_lock_init(&fs_info->buffer_lock);
2695         spin_lock_init(&fs_info->unused_bgs_lock);
2696         rwlock_init(&fs_info->tree_mod_log_lock);
2697         mutex_init(&fs_info->unused_bg_unpin_mutex);
2698         mutex_init(&fs_info->delete_unused_bgs_mutex);
2699         mutex_init(&fs_info->reloc_mutex);
2700         mutex_init(&fs_info->delalloc_root_mutex);
2701         seqlock_init(&fs_info->profiles_lock);
2702
2703         INIT_LIST_HEAD(&fs_info->dirty_cowonly_roots);
2704         INIT_LIST_HEAD(&fs_info->space_info);
2705         INIT_LIST_HEAD(&fs_info->tree_mod_seq_list);
2706         INIT_LIST_HEAD(&fs_info->unused_bgs);
2707         extent_map_tree_init(&fs_info->mapping_tree);
2708         btrfs_init_block_rsv(&fs_info->global_block_rsv,
2709                              BTRFS_BLOCK_RSV_GLOBAL);
2710         btrfs_init_block_rsv(&fs_info->trans_block_rsv, BTRFS_BLOCK_RSV_TRANS);
2711         btrfs_init_block_rsv(&fs_info->chunk_block_rsv, BTRFS_BLOCK_RSV_CHUNK);
2712         btrfs_init_block_rsv(&fs_info->empty_block_rsv, BTRFS_BLOCK_RSV_EMPTY);
2713         btrfs_init_block_rsv(&fs_info->delayed_block_rsv,
2714                              BTRFS_BLOCK_RSV_DELOPS);
2715         btrfs_init_block_rsv(&fs_info->delayed_refs_rsv,
2716                              BTRFS_BLOCK_RSV_DELREFS);
2717
2718         atomic_set(&fs_info->async_delalloc_pages, 0);
2719         atomic_set(&fs_info->defrag_running, 0);
2720         atomic_set(&fs_info->reada_works_cnt, 0);
2721         atomic_set(&fs_info->nr_delayed_iputs, 0);
2722         atomic64_set(&fs_info->tree_mod_seq, 0);
2723         fs_info->sb = sb;
2724         fs_info->max_inline = BTRFS_DEFAULT_MAX_INLINE;
2725         fs_info->metadata_ratio = 0;
2726         fs_info->defrag_inodes = RB_ROOT;
2727         atomic64_set(&fs_info->free_chunk_space, 0);
2728         fs_info->tree_mod_log = RB_ROOT;
2729         fs_info->commit_interval = BTRFS_DEFAULT_COMMIT_INTERVAL;
2730         fs_info->avg_delayed_ref_runtime = NSEC_PER_SEC >> 6; /* div by 64 */
2731         /* readahead state */
2732         INIT_RADIX_TREE(&fs_info->reada_tree, GFP_NOFS & ~__GFP_DIRECT_RECLAIM);
2733         spin_lock_init(&fs_info->reada_lock);
2734         btrfs_init_ref_verify(fs_info);
2735
2736         fs_info->thread_pool_size = min_t(unsigned long,
2737                                           num_online_cpus() + 2, 8);
2738
2739         INIT_LIST_HEAD(&fs_info->ordered_roots);
2740         spin_lock_init(&fs_info->ordered_root_lock);
2741
2742         fs_info->btree_inode = new_inode(sb);
2743         if (!fs_info->btree_inode) {
2744                 err = -ENOMEM;
2745                 goto fail_bio_counter;
2746         }
2747         mapping_set_gfp_mask(fs_info->btree_inode->i_mapping, GFP_NOFS);
2748
2749         fs_info->delayed_root = kmalloc(sizeof(struct btrfs_delayed_root),
2750                                         GFP_KERNEL);
2751         if (!fs_info->delayed_root) {
2752                 err = -ENOMEM;
2753                 goto fail_iput;
2754         }
2755         btrfs_init_delayed_root(fs_info->delayed_root);
2756
2757         btrfs_init_scrub(fs_info);
2758 #ifdef CONFIG_BTRFS_FS_CHECK_INTEGRITY
2759         fs_info->check_integrity_print_mask = 0;
2760 #endif
2761         btrfs_init_balance(fs_info);
2762         btrfs_init_async_reclaim_work(&fs_info->async_reclaim_work);
2763
2764         sb->s_blocksize = BTRFS_BDEV_BLOCKSIZE;
2765         sb->s_blocksize_bits = blksize_bits(BTRFS_BDEV_BLOCKSIZE);
2766
2767         btrfs_init_btree_inode(fs_info);
2768
2769         spin_lock_init(&fs_info->block_group_cache_lock);
2770         fs_info->block_group_cache_tree = RB_ROOT;
2771         fs_info->first_logical_byte = (u64)-1;
2772
2773         extent_io_tree_init(fs_info, &fs_info->freed_extents[0],
2774                             IO_TREE_FS_INFO_FREED_EXTENTS0, NULL);
2775         extent_io_tree_init(fs_info, &fs_info->freed_extents[1],
2776                             IO_TREE_FS_INFO_FREED_EXTENTS1, NULL);
2777         fs_info->pinned_extents = &fs_info->freed_extents[0];
2778         set_bit(BTRFS_FS_BARRIER, &fs_info->flags);
2779
2780         mutex_init(&fs_info->ordered_operations_mutex);
2781         mutex_init(&fs_info->tree_log_mutex);
2782         mutex_init(&fs_info->chunk_mutex);
2783         mutex_init(&fs_info->transaction_kthread_mutex);
2784         mutex_init(&fs_info->cleaner_mutex);
2785         mutex_init(&fs_info->ro_block_group_mutex);
2786         init_rwsem(&fs_info->commit_root_sem);
2787         init_rwsem(&fs_info->cleanup_work_sem);
2788         init_rwsem(&fs_info->subvol_sem);
2789         sema_init(&fs_info->uuid_tree_rescan_sem, 1);
2790
2791         btrfs_init_dev_replace_locks(fs_info);
2792         btrfs_init_qgroup(fs_info);
2793
2794         btrfs_init_free_cluster(&fs_info->meta_alloc_cluster);
2795         btrfs_init_free_cluster(&fs_info->data_alloc_cluster);
2796
2797         init_waitqueue_head(&fs_info->transaction_throttle);
2798         init_waitqueue_head(&fs_info->transaction_wait);
2799         init_waitqueue_head(&fs_info->transaction_blocked_wait);
2800         init_waitqueue_head(&fs_info->async_submit_wait);
2801         init_waitqueue_head(&fs_info->delayed_iputs_wait);
2802
2803         /* Usable values until the real ones are cached from the superblock */
2804         fs_info->nodesize = 4096;
2805         fs_info->sectorsize = 4096;
2806         fs_info->stripesize = 4096;
2807
2808         spin_lock_init(&fs_info->swapfile_pins_lock);
2809         fs_info->swapfile_pins = RB_ROOT;
2810
2811         fs_info->send_in_progress = 0;
2812
2813         ret = btrfs_alloc_stripe_hash_table(fs_info);
2814         if (ret) {
2815                 err = ret;
2816                 goto fail_alloc;
2817         }
2818
2819         __setup_root(tree_root, fs_info, BTRFS_ROOT_TREE_OBJECTID);
2820
2821         invalidate_bdev(fs_devices->latest_bdev);
2822
2823         /*
2824          * Read super block and check the signature bytes only
2825          */
2826         bh = btrfs_read_dev_super(fs_devices->latest_bdev);
2827         if (IS_ERR(bh)) {
2828                 err = PTR_ERR(bh);
2829                 goto fail_alloc;
2830         }
2831
2832         /*
2833          * Verify the type first, if that or the checksum value are
2834          * corrupted, we'll find out
2835          */
2836         csum_type = btrfs_super_csum_type((struct btrfs_super_block *)bh->b_data);
2837         if (!btrfs_supported_super_csum(csum_type)) {
2838                 btrfs_err(fs_info, "unsupported checksum algorithm: %u",
2839                           csum_type);
2840                 err = -EINVAL;
2841                 brelse(bh);
2842                 goto fail_alloc;
2843         }
2844
2845         ret = btrfs_init_csum_hash(fs_info, csum_type);
2846         if (ret) {
2847                 err = ret;
2848                 goto fail_alloc;
2849         }
2850
2851         /*
2852          * We want to check superblock checksum, the type is stored inside.
2853          * Pass the whole disk block of size BTRFS_SUPER_INFO_SIZE (4k).
2854          */
2855         if (btrfs_check_super_csum(fs_info, bh->b_data)) {
2856                 btrfs_err(fs_info, "superblock checksum mismatch");
2857                 err = -EINVAL;
2858                 brelse(bh);
2859                 goto fail_csum;
2860         }
2861
2862         /*
2863          * super_copy is zeroed at allocation time and we never touch the
2864          * following bytes up to INFO_SIZE, the checksum is calculated from
2865          * the whole block of INFO_SIZE
2866          */
2867         memcpy(fs_info->super_copy, bh->b_data, sizeof(*fs_info->super_copy));
2868         brelse(bh);
2869
2870         disk_super = fs_info->super_copy;
2871
2872
2873         features = btrfs_super_flags(disk_super);
2874         if (features & BTRFS_SUPER_FLAG_CHANGING_FSID_V2) {
2875                 features &= ~BTRFS_SUPER_FLAG_CHANGING_FSID_V2;
2876                 btrfs_set_super_flags(disk_super, features);
2877                 btrfs_info(fs_info,
2878                         "found metadata UUID change in progress flag, clearing");
2879         }
2880
2881         memcpy(fs_info->super_for_commit, fs_info->super_copy,
2882                sizeof(*fs_info->super_for_commit));
2883
2884         ret = btrfs_validate_mount_super(fs_info);
2885         if (ret) {
2886                 btrfs_err(fs_info, "superblock contains fatal errors");
2887                 err = -EINVAL;
2888                 goto fail_csum;
2889         }
2890
2891         if (!btrfs_super_root(disk_super))
2892                 goto fail_csum;
2893
2894         /* check FS state, whether FS is broken. */
2895         if (btrfs_super_flags(disk_super) & BTRFS_SUPER_FLAG_ERROR)
2896                 set_bit(BTRFS_FS_STATE_ERROR, &fs_info->fs_state);
2897
2898         /*
2899          * run through our array of backup supers and setup
2900          * our ring pointer to the oldest one
2901          */
2902         generation = btrfs_super_generation(disk_super);
2903         find_oldest_super_backup(fs_info, generation);
2904
2905         /*
2906          * In the long term, we'll store the compression type in the super
2907          * block, and it'll be used for per file compression control.
2908          */
2909         fs_info->compress_type = BTRFS_COMPRESS_ZLIB;
2910
2911         /*
2912          * Flag our filesystem as having big metadata blocks if they are bigger
2913          * than the page size
2914          */
2915         if (btrfs_super_nodesize(disk_super) > PAGE_SIZE) {
2916                 if (!(features & BTRFS_FEATURE_INCOMPAT_BIG_METADATA))
2917                         btrfs_info(fs_info,
2918                                 "flagging fs with big metadata feature");
2919                 features |= BTRFS_FEATURE_INCOMPAT_BIG_METADATA;
2920         }
2921
2922         /* Set up fs_info before parsing mount options */
2923         nodesize = btrfs_super_nodesize(disk_super);
2924         sectorsize = btrfs_super_sectorsize(disk_super);
2925         stripesize = sectorsize;
2926         fs_info->dirty_metadata_batch = nodesize * (1 + ilog2(nr_cpu_ids));
2927         fs_info->delalloc_batch = sectorsize * 512 * (1 + ilog2(nr_cpu_ids));
2928
2929         /* Cache block sizes */
2930         fs_info->nodesize = nodesize;
2931         fs_info->sectorsize = sectorsize;
2932         fs_info->stripesize = stripesize;
2933
2934         ret = btrfs_parse_options(fs_info, options, sb->s_flags);
2935         if (ret) {
2936                 err = ret;
2937                 goto fail_csum;
2938         }
2939
2940         features = btrfs_super_incompat_flags(disk_super) &
2941                 ~BTRFS_FEATURE_INCOMPAT_SUPP;
2942         if (features) {
2943                 btrfs_err(fs_info,
2944                     "cannot mount because of unsupported optional features (0x%llx)",
2945                     features);
2946                 err = -EINVAL;
2947                 goto fail_csum;
2948         }
2949
2950         features = btrfs_super_incompat_flags(disk_super);
2951         features |= BTRFS_FEATURE_INCOMPAT_MIXED_BACKREF;
2952         if (fs_info->compress_type == BTRFS_COMPRESS_LZO)
2953                 features |= BTRFS_FEATURE_INCOMPAT_COMPRESS_LZO;
2954         else if (fs_info->compress_type == BTRFS_COMPRESS_ZSTD)
2955                 features |= BTRFS_FEATURE_INCOMPAT_COMPRESS_ZSTD;
2956
2957         if (features & BTRFS_FEATURE_INCOMPAT_SKINNY_METADATA)
2958                 btrfs_info(fs_info, "has skinny extents");
2959
2960         /*
2961          * mixed block groups end up with duplicate but slightly offset
2962          * extent buffers for the same range.  It leads to corruptions
2963          */
2964         if ((features & BTRFS_FEATURE_INCOMPAT_MIXED_GROUPS) &&
2965             (sectorsize != nodesize)) {
2966                 btrfs_err(fs_info,
2967 "unequal nodesize/sectorsize (%u != %u) are not allowed for mixed block groups",
2968                         nodesize, sectorsize);
2969                 goto fail_csum;
2970         }
2971
2972         /*
2973          * Needn't use the lock because there is no other task which will
2974          * update the flag.
2975          */
2976         btrfs_set_super_incompat_flags(disk_super, features);
2977
2978         features = btrfs_super_compat_ro_flags(disk_super) &
2979                 ~BTRFS_FEATURE_COMPAT_RO_SUPP;
2980         if (!sb_rdonly(sb) && features) {
2981                 btrfs_err(fs_info,
2982         "cannot mount read-write because of unsupported optional features (0x%llx)",
2983                        features);
2984                 err = -EINVAL;
2985                 goto fail_csum;
2986         }
2987         /*
2988          * We have unsupported RO compat features, although RO mounted, we
2989          * should not cause any metadata write, including log replay.
2990          * Or we could screw up whatever the new feature requires.
2991          */
2992         if (unlikely(features && btrfs_super_log_root(disk_super) &&
2993                      !btrfs_test_opt(fs_info, NOLOGREPLAY))) {
2994                 btrfs_err(fs_info,
2995 "cannot replay dirty log with unsupported compat_ro features (0x%llx), try rescue=nologreplay",
2996                           features);
2997                 err = -EINVAL;
2998                 goto fail_alloc;
2999         }
3000
3001
3002         ret = btrfs_init_workqueues(fs_info, fs_devices);
3003         if (ret) {
3004                 err = ret;
3005                 goto fail_sb_buffer;
3006         }
3007
3008         sb->s_bdi->congested_fn = btrfs_congested_fn;
3009         sb->s_bdi->congested_data = fs_info;
3010         sb->s_bdi->capabilities |= BDI_CAP_CGROUP_WRITEBACK;
3011         sb->s_bdi->ra_pages = VM_READAHEAD_PAGES;
3012         sb->s_bdi->ra_pages *= btrfs_super_num_devices(disk_super);
3013         sb->s_bdi->ra_pages = max(sb->s_bdi->ra_pages, SZ_4M / PAGE_SIZE);
3014
3015         sb->s_blocksize = sectorsize;
3016         sb->s_blocksize_bits = blksize_bits(sectorsize);
3017         memcpy(&sb->s_uuid, fs_info->fs_devices->fsid, BTRFS_FSID_SIZE);
3018
3019         mutex_lock(&fs_info->chunk_mutex);
3020         ret = btrfs_read_sys_array(fs_info);
3021         mutex_unlock(&fs_info->chunk_mutex);
3022         if (ret) {
3023                 btrfs_err(fs_info, "failed to read the system array: %d", ret);
3024                 goto fail_sb_buffer;
3025         }
3026
3027         generation = btrfs_super_chunk_root_generation(disk_super);
3028         level = btrfs_super_chunk_root_level(disk_super);
3029
3030         __setup_root(chunk_root, fs_info, BTRFS_CHUNK_TREE_OBJECTID);
3031
3032         chunk_root->node = read_tree_block(fs_info,
3033                                            btrfs_super_chunk_root(disk_super),
3034                                            generation, level, NULL);
3035         if (IS_ERR(chunk_root->node) ||
3036             !extent_buffer_uptodate(chunk_root->node)) {
3037                 btrfs_err(fs_info, "failed to read chunk root");
3038                 if (!IS_ERR(chunk_root->node))
3039                         free_extent_buffer(chunk_root->node);
3040                 chunk_root->node = NULL;
3041                 goto fail_tree_roots;
3042         }
3043         btrfs_set_root_node(&chunk_root->root_item, chunk_root->node);
3044         chunk_root->commit_root = btrfs_root_node(chunk_root);
3045
3046         read_extent_buffer(chunk_root->node, fs_info->chunk_tree_uuid,
3047            btrfs_header_chunk_tree_uuid(chunk_root->node), BTRFS_UUID_SIZE);
3048
3049         ret = btrfs_read_chunk_tree(fs_info);
3050         if (ret) {
3051                 btrfs_err(fs_info, "failed to read chunk tree: %d", ret);
3052                 goto fail_tree_roots;
3053         }
3054
3055         /*
3056          * Keep the devid that is marked to be the target device for the
3057          * device replace procedure
3058          */
3059         btrfs_free_extra_devids(fs_devices, 0);
3060
3061         if (!fs_devices->latest_bdev) {
3062                 btrfs_err(fs_info, "failed to read devices");
3063                 goto fail_tree_roots;
3064         }
3065
3066 retry_root_backup:
3067         generation = btrfs_super_generation(disk_super);
3068         level = btrfs_super_root_level(disk_super);
3069
3070         tree_root->node = read_tree_block(fs_info,
3071                                           btrfs_super_root(disk_super),
3072                                           generation, level, NULL);
3073         if (IS_ERR(tree_root->node) ||
3074             !extent_buffer_uptodate(tree_root->node)) {
3075                 btrfs_warn(fs_info, "failed to read tree root");
3076                 if (!IS_ERR(tree_root->node))
3077                         free_extent_buffer(tree_root->node);
3078                 tree_root->node = NULL;
3079                 goto recovery_tree_root;
3080         }
3081
3082         btrfs_set_root_node(&tree_root->root_item, tree_root->node);
3083         tree_root->commit_root = btrfs_root_node(tree_root);
3084         btrfs_set_root_refs(&tree_root->root_item, 1);
3085
3086         mutex_lock(&tree_root->objectid_mutex);
3087         ret = btrfs_find_highest_objectid(tree_root,
3088                                         &tree_root->highest_objectid);
3089         if (ret) {
3090                 mutex_unlock(&tree_root->objectid_mutex);
3091                 goto recovery_tree_root;
3092         }
3093
3094         ASSERT(tree_root->highest_objectid <= BTRFS_LAST_FREE_OBJECTID);
3095
3096         mutex_unlock(&tree_root->objectid_mutex);
3097
3098         ret = btrfs_read_roots(fs_info);
3099         if (ret)
3100                 goto recovery_tree_root;
3101
3102         fs_info->generation = generation;
3103         fs_info->last_trans_committed = generation;
3104
3105         /*
3106          * If we have a uuid root and we're not being told to rescan we need to
3107          * check the generation here so we can set the
3108          * BTRFS_FS_UPDATE_UUID_TREE_GEN bit.  Otherwise we could commit the
3109          * transaction during a balance or the log replay without updating the
3110          * uuid generation, and then if we crash we would rescan the uuid tree,
3111          * even though it was perfectly fine.
3112          */
3113         if (fs_info->uuid_root && !btrfs_test_opt(fs_info, RESCAN_UUID_TREE) &&
3114             fs_info->generation == btrfs_super_uuid_tree_generation(disk_super))
3115                 set_bit(BTRFS_FS_UPDATE_UUID_TREE_GEN, &fs_info->flags);
3116
3117         ret = btrfs_verify_dev_extents(fs_info);
3118         if (ret) {
3119                 btrfs_err(fs_info,
3120                           "failed to verify dev extents against chunks: %d",
3121                           ret);
3122                 goto fail_block_groups;
3123         }
3124         ret = btrfs_recover_balance(fs_info);
3125         if (ret) {
3126                 btrfs_err(fs_info, "failed to recover balance: %d", ret);
3127                 goto fail_block_groups;
3128         }
3129
3130         ret = btrfs_init_dev_stats(fs_info);
3131         if (ret) {
3132                 btrfs_err(fs_info, "failed to init dev_stats: %d", ret);
3133                 goto fail_block_groups;
3134         }
3135
3136         ret = btrfs_init_dev_replace(fs_info);
3137         if (ret) {
3138                 btrfs_err(fs_info, "failed to init dev_replace: %d", ret);
3139                 goto fail_block_groups;
3140         }
3141
3142         btrfs_free_extra_devids(fs_devices, 1);
3143
3144         ret = btrfs_sysfs_add_fsid(fs_devices, NULL);
3145         if (ret) {
3146                 btrfs_err(fs_info, "failed to init sysfs fsid interface: %d",
3147                                 ret);
3148                 goto fail_block_groups;
3149         }
3150
3151         ret = btrfs_sysfs_add_device(fs_devices);
3152         if (ret) {
3153                 btrfs_err(fs_info, "failed to init sysfs device interface: %d",
3154                                 ret);
3155                 goto fail_fsdev_sysfs;
3156         }
3157
3158         ret = btrfs_sysfs_add_mounted(fs_info);
3159         if (ret) {
3160                 btrfs_err(fs_info, "failed to init sysfs interface: %d", ret);
3161                 goto fail_fsdev_sysfs;
3162         }
3163
3164         ret = btrfs_init_space_info(fs_info);
3165         if (ret) {
3166                 btrfs_err(fs_info, "failed to initialize space info: %d", ret);
3167                 goto fail_sysfs;
3168         }
3169
3170         ret = btrfs_read_block_groups(fs_info);
3171         if (ret) {
3172                 btrfs_err(fs_info, "failed to read block groups: %d", ret);
3173                 goto fail_sysfs;
3174         }
3175
3176         if (!sb_rdonly(sb) && fs_info->fs_devices->missing_devices &&
3177             !btrfs_check_rw_degradable(fs_info, NULL)) {
3178                 btrfs_warn(fs_info,
3179                 "writable mount is not allowed due to too many missing devices");
3180                 goto fail_sysfs;
3181         }
3182
3183         fs_info->cleaner_kthread = kthread_run(cleaner_kthread, tree_root,
3184                                                "btrfs-cleaner");
3185         if (IS_ERR(fs_info->cleaner_kthread))
3186                 goto fail_sysfs;
3187
3188         fs_info->transaction_kthread = kthread_run(transaction_kthread,
3189                                                    tree_root,
3190                                                    "btrfs-transaction");
3191         if (IS_ERR(fs_info->transaction_kthread))
3192                 goto fail_cleaner;
3193
3194         if (!btrfs_test_opt(fs_info, NOSSD) &&
3195             !fs_info->fs_devices->rotating) {
3196                 btrfs_set_and_info(fs_info, SSD, "enabling ssd optimizations");
3197         }
3198
3199         /*
3200          * Mount does not set all options immediately, we can do it now and do
3201          * not have to wait for transaction commit
3202          */
3203         btrfs_apply_pending_changes(fs_info);
3204
3205 #ifdef CONFIG_BTRFS_FS_CHECK_INTEGRITY
3206         if (btrfs_test_opt(fs_info, CHECK_INTEGRITY)) {
3207                 ret = btrfsic_mount(fs_info, fs_devices,
3208                                     btrfs_test_opt(fs_info,
3209                                         CHECK_INTEGRITY_INCLUDING_EXTENT_DATA) ?
3210                                     1 : 0,
3211                                     fs_info->check_integrity_print_mask);
3212                 if (ret)
3213                         btrfs_warn(fs_info,
3214                                 "failed to initialize integrity check module: %d",
3215                                 ret);
3216         }
3217 #endif
3218         ret = btrfs_read_qgroup_config(fs_info);
3219         if (ret)
3220                 goto fail_trans_kthread;
3221
3222         if (btrfs_build_ref_tree(fs_info))
3223                 btrfs_err(fs_info, "couldn't build ref tree");
3224
3225         /* do not make disk changes in broken FS or nologreplay is given */
3226         if (btrfs_super_log_root(disk_super) != 0 &&
3227             !btrfs_test_opt(fs_info, NOLOGREPLAY)) {
3228                 btrfs_info(fs_info, "start tree-log replay");
3229                 ret = btrfs_replay_log(fs_info, fs_devices);
3230                 if (ret) {
3231                         err = ret;
3232                         goto fail_qgroup;
3233                 }
3234         }
3235
3236         ret = btrfs_find_orphan_roots(fs_info);
3237         if (ret)
3238                 goto fail_qgroup;
3239
3240         if (!sb_rdonly(sb)) {
3241                 ret = btrfs_cleanup_fs_roots(fs_info);
3242                 if (ret)
3243                         goto fail_qgroup;
3244
3245                 mutex_lock(&fs_info->cleaner_mutex);
3246                 ret = btrfs_recover_relocation(tree_root);
3247                 mutex_unlock(&fs_info->cleaner_mutex);
3248                 if (ret < 0) {
3249                         btrfs_warn(fs_info, "failed to recover relocation: %d",
3250                                         ret);
3251                         err = -EINVAL;
3252                         goto fail_qgroup;
3253                 }
3254         }
3255
3256         location.objectid = BTRFS_FS_TREE_OBJECTID;
3257         location.type = BTRFS_ROOT_ITEM_KEY;
3258         location.offset = 0;
3259
3260         fs_info->fs_root = btrfs_read_fs_root_no_name(fs_info, &location);
3261         if (IS_ERR(fs_info->fs_root)) {
3262                 err = PTR_ERR(fs_info->fs_root);
3263                 btrfs_warn(fs_info, "failed to read fs tree: %d", err);
3264                 fs_info->fs_root = NULL;
3265                 goto fail_qgroup;
3266         }
3267
3268         if (sb_rdonly(sb))
3269                 return 0;
3270
3271         if (btrfs_test_opt(fs_info, CLEAR_CACHE) &&
3272             btrfs_fs_compat_ro(fs_info, FREE_SPACE_TREE)) {
3273                 clear_free_space_tree = 1;
3274         } else if (btrfs_fs_compat_ro(fs_info, FREE_SPACE_TREE) &&
3275                    !btrfs_fs_compat_ro(fs_info, FREE_SPACE_TREE_VALID)) {
3276                 btrfs_warn(fs_info, "free space tree is invalid");
3277                 clear_free_space_tree = 1;
3278         }
3279
3280         if (clear_free_space_tree) {
3281                 btrfs_info(fs_info, "clearing free space tree");
3282                 ret = btrfs_clear_free_space_tree(fs_info);
3283                 if (ret) {
3284                         btrfs_warn(fs_info,
3285                                    "failed to clear free space tree: %d", ret);
3286                         close_ctree(fs_info);
3287                         return ret;
3288                 }
3289         }
3290
3291         if (btrfs_test_opt(fs_info, FREE_SPACE_TREE) &&
3292             !btrfs_fs_compat_ro(fs_info, FREE_SPACE_TREE)) {
3293                 btrfs_info(fs_info, "creating free space tree");
3294                 ret = btrfs_create_free_space_tree(fs_info);
3295                 if (ret) {
3296                         btrfs_warn(fs_info,
3297                                 "failed to create free space tree: %d", ret);
3298                         close_ctree(fs_info);
3299                         return ret;
3300                 }
3301         }
3302
3303         down_read(&fs_info->cleanup_work_sem);
3304         if ((ret = btrfs_orphan_cleanup(fs_info->fs_root)) ||
3305             (ret = btrfs_orphan_cleanup(fs_info->tree_root))) {
3306                 up_read(&fs_info->cleanup_work_sem);
3307                 close_ctree(fs_info);
3308                 return ret;
3309         }
3310         up_read(&fs_info->cleanup_work_sem);
3311
3312         ret = btrfs_resume_balance_async(fs_info);
3313         if (ret) {
3314                 btrfs_warn(fs_info, "failed to resume balance: %d", ret);
3315                 close_ctree(fs_info);
3316                 return ret;
3317         }
3318
3319         ret = btrfs_resume_dev_replace_async(fs_info);
3320         if (ret) {
3321                 btrfs_warn(fs_info, "failed to resume device replace: %d", ret);
3322                 close_ctree(fs_info);
3323                 return ret;
3324         }
3325
3326         btrfs_qgroup_rescan_resume(fs_info);
3327
3328         if (!fs_info->uuid_root) {
3329                 btrfs_info(fs_info, "creating UUID tree");
3330                 ret = btrfs_create_uuid_tree(fs_info);
3331                 if (ret) {
3332                         btrfs_warn(fs_info,
3333                                 "failed to create the UUID tree: %d", ret);
3334                         close_ctree(fs_info);
3335                         return ret;
3336                 }
3337         } else if (btrfs_test_opt(fs_info, RESCAN_UUID_TREE) ||
3338                    fs_info->generation !=
3339                                 btrfs_super_uuid_tree_generation(disk_super)) {
3340                 btrfs_info(fs_info, "checking UUID tree");
3341                 ret = btrfs_check_uuid_tree(fs_info);
3342                 if (ret) {
3343                         btrfs_warn(fs_info,
3344                                 "failed to check the UUID tree: %d", ret);
3345                         close_ctree(fs_info);
3346                         return ret;
3347                 }
3348         }
3349         set_bit(BTRFS_FS_OPEN, &fs_info->flags);
3350
3351         /*
3352          * backuproot only affect mount behavior, and if open_ctree succeeded,
3353          * no need to keep the flag
3354          */
3355         btrfs_clear_opt(fs_info->mount_opt, USEBACKUPROOT);
3356
3357         return 0;
3358
3359 fail_qgroup:
3360         btrfs_free_qgroup_config(fs_info);
3361 fail_trans_kthread:
3362         kthread_stop(fs_info->transaction_kthread);
3363         btrfs_cleanup_transaction(fs_info);
3364         btrfs_free_fs_roots(fs_info);
3365 fail_cleaner:
3366         kthread_stop(fs_info->cleaner_kthread);
3367
3368         /*
3369          * make sure we're done with the btree inode before we stop our
3370          * kthreads
3371          */
3372         filemap_write_and_wait(fs_info->btree_inode->i_mapping);
3373
3374 fail_sysfs:
3375         btrfs_sysfs_remove_mounted(fs_info);
3376
3377 fail_fsdev_sysfs:
3378         btrfs_sysfs_remove_fsid(fs_info->fs_devices);
3379
3380 fail_block_groups:
3381         btrfs_put_block_group_cache(fs_info);
3382
3383 fail_tree_roots:
3384         free_root_pointers(fs_info, true);
3385         invalidate_inode_pages2(fs_info->btree_inode->i_mapping);
3386
3387 fail_sb_buffer:
3388         btrfs_stop_all_workers(fs_info);
3389         btrfs_free_block_groups(fs_info);
3390 fail_csum:
3391         btrfs_free_csum_hash(fs_info);
3392 fail_alloc:
3393 fail_iput:
3394         btrfs_mapping_tree_free(&fs_info->mapping_tree);
3395
3396         iput(fs_info->btree_inode);
3397 fail_bio_counter:
3398         percpu_counter_destroy(&fs_info->dev_replace.bio_counter);
3399 fail_delalloc_bytes:
3400         percpu_counter_destroy(&fs_info->delalloc_bytes);
3401 fail_dirty_metadata_bytes:
3402         percpu_counter_destroy(&fs_info->dirty_metadata_bytes);
3403 fail_dio_bytes:
3404         percpu_counter_destroy(&fs_info->dio_bytes);
3405 fail_srcu:
3406         cleanup_srcu_struct(&fs_info->subvol_srcu);
3407 fail:
3408         btrfs_free_stripe_hash_table(fs_info);
3409         btrfs_close_devices(fs_info->fs_devices);
3410         return err;
3411
3412 recovery_tree_root:
3413         if (!btrfs_test_opt(fs_info, USEBACKUPROOT))
3414                 goto fail_tree_roots;
3415
3416         free_root_pointers(fs_info, false);
3417
3418         /* don't use the log in recovery mode, it won't be valid */
3419         btrfs_set_super_log_root(disk_super, 0);
3420
3421         /* we can't trust the free space cache either */
3422         btrfs_set_opt(fs_info->mount_opt, CLEAR_CACHE);
3423
3424         ret = next_root_backup(fs_info, fs_info->super_copy,
3425                                &num_backups_tried, &backup_index);
3426         if (ret == -1)
3427                 goto fail_block_groups;
3428         goto retry_root_backup;
3429 }
3430 ALLOW_ERROR_INJECTION(open_ctree, ERRNO);
3431
3432 static void btrfs_end_buffer_write_sync(struct buffer_head *bh, int uptodate)
3433 {
3434         if (uptodate) {
3435                 set_buffer_uptodate(bh);
3436         } else {
3437                 struct btrfs_device *device = (struct btrfs_device *)
3438                         bh->b_private;
3439
3440                 btrfs_warn_rl_in_rcu(device->fs_info,
3441                                 "lost page write due to IO error on %s",
3442                                           rcu_str_deref(device->name));
3443                 /* note, we don't set_buffer_write_io_error because we have
3444                  * our own ways of dealing with the IO errors
3445                  */
3446                 clear_buffer_uptodate(bh);
3447                 btrfs_dev_stat_inc_and_print(device, BTRFS_DEV_STAT_WRITE_ERRS);
3448         }
3449         unlock_buffer(bh);
3450         put_bh(bh);
3451 }
3452
3453 int btrfs_read_dev_one_super(struct block_device *bdev, int copy_num,
3454                         struct buffer_head **bh_ret)
3455 {
3456         struct buffer_head *bh;
3457         struct btrfs_super_block *super;
3458         u64 bytenr;
3459
3460         bytenr = btrfs_sb_offset(copy_num);
3461         if (bytenr + BTRFS_SUPER_INFO_SIZE >= i_size_read(bdev->bd_inode))
3462                 return -EINVAL;
3463
3464         bh = __bread(bdev, bytenr / BTRFS_BDEV_BLOCKSIZE, BTRFS_SUPER_INFO_SIZE);
3465         /*
3466          * If we fail to read from the underlying devices, as of now
3467          * the best option we have is to mark it EIO.
3468          */
3469         if (!bh)
3470                 return -EIO;
3471
3472         super = (struct btrfs_super_block *)bh->b_data;
3473         if (btrfs_super_bytenr(super) != bytenr ||
3474                     btrfs_super_magic(super) != BTRFS_MAGIC) {
3475                 brelse(bh);
3476                 return -EINVAL;
3477         }
3478
3479         *bh_ret = bh;
3480         return 0;
3481 }
3482
3483
3484 struct buffer_head *btrfs_read_dev_super(struct block_device *bdev)
3485 {
3486         struct buffer_head *bh;
3487         struct buffer_head *latest = NULL;
3488         struct btrfs_super_block *super;
3489         int i;
3490         u64 transid = 0;
3491         int ret = -EINVAL;
3492
3493         /* we would like to check all the supers, but that would make
3494          * a btrfs mount succeed after a mkfs from a different FS.
3495          * So, we need to add a special mount option to scan for
3496          * later supers, using BTRFS_SUPER_MIRROR_MAX instead
3497          */
3498         for (i = 0; i < 1; i++) {
3499                 ret = btrfs_read_dev_one_super(bdev, i, &bh);
3500                 if (ret)
3501                         continue;
3502
3503                 super = (struct btrfs_super_block *)bh->b_data;
3504
3505                 if (!latest || btrfs_super_generation(super) > transid) {
3506                         brelse(latest);
3507                         latest = bh;
3508                         transid = btrfs_super_generation(super);
3509                 } else {
3510                         brelse(bh);
3511                 }
3512         }
3513
3514         if (!latest)
3515                 return ERR_PTR(ret);
3516
3517         return latest;
3518 }
3519
3520 /*
3521  * Write superblock @sb to the @device. Do not wait for completion, all the
3522  * buffer heads we write are pinned.
3523  *
3524  * Write @max_mirrors copies of the superblock, where 0 means default that fit
3525  * the expected device size at commit time. Note that max_mirrors must be
3526  * same for write and wait phases.
3527  *
3528  * Return number of errors when buffer head is not found or submission fails.
3529  */
3530 static int write_dev_supers(struct btrfs_device *device,
3531                             struct btrfs_super_block *sb, int max_mirrors)
3532 {
3533         struct btrfs_fs_info *fs_info = device->fs_info;
3534         SHASH_DESC_ON_STACK(shash, fs_info->csum_shash);
3535         struct buffer_head *bh;
3536         int i;
3537         int ret;
3538         int errors = 0;
3539         u64 bytenr;
3540         int op_flags;
3541
3542         if (max_mirrors == 0)
3543                 max_mirrors = BTRFS_SUPER_MIRROR_MAX;
3544
3545         shash->tfm = fs_info->csum_shash;
3546
3547         for (i = 0; i < max_mirrors; i++) {
3548                 bytenr = btrfs_sb_offset(i);
3549                 if (bytenr + BTRFS_SUPER_INFO_SIZE >=
3550                     device->commit_total_bytes)
3551                         break;
3552
3553                 btrfs_set_super_bytenr(sb, bytenr);
3554
3555                 crypto_shash_init(shash);
3556                 crypto_shash_update(shash, (const char *)sb + BTRFS_CSUM_SIZE,
3557                                     BTRFS_SUPER_INFO_SIZE - BTRFS_CSUM_SIZE);
3558                 crypto_shash_final(shash, sb->csum);
3559
3560                 /* One reference for us, and we leave it for the caller */
3561                 bh = __getblk(device->bdev, bytenr / BTRFS_BDEV_BLOCKSIZE,
3562                               BTRFS_SUPER_INFO_SIZE);
3563                 if (!bh) {
3564                         btrfs_err(device->fs_info,
3565                             "couldn't get super buffer head for bytenr %llu",
3566                             bytenr);
3567                         errors++;
3568                         continue;
3569                 }
3570
3571                 memcpy(bh->b_data, sb, BTRFS_SUPER_INFO_SIZE);
3572
3573                 /* one reference for submit_bh */
3574                 get_bh(bh);
3575
3576                 set_buffer_uptodate(bh);
3577                 lock_buffer(bh);
3578                 bh->b_end_io = btrfs_end_buffer_write_sync;
3579                 bh->b_private = device;
3580
3581                 /*
3582                  * we fua the first super.  The others we allow
3583                  * to go down lazy.
3584                  */
3585                 op_flags = REQ_SYNC | REQ_META | REQ_PRIO;
3586                 if (i == 0 && !btrfs_test_opt(device->fs_info, NOBARRIER))
3587                         op_flags |= REQ_FUA;
3588                 ret = btrfsic_submit_bh(REQ_OP_WRITE, op_flags, bh);
3589                 if (ret)
3590                         errors++;
3591         }
3592         return errors < i ? 0 : -1;
3593 }
3594
3595 /*
3596  * Wait for write completion of superblocks done by write_dev_supers,
3597  * @max_mirrors same for write and wait phases.
3598  *
3599  * Return number of errors when buffer head is not found or not marked up to
3600  * date.
3601  */
3602 static int wait_dev_supers(struct btrfs_device *device, int max_mirrors)
3603 {
3604         struct buffer_head *bh;
3605         int i;
3606         int errors = 0;
3607         bool primary_failed = false;
3608         u64 bytenr;
3609
3610         if (max_mirrors == 0)
3611                 max_mirrors = BTRFS_SUPER_MIRROR_MAX;
3612
3613         for (i = 0; i < max_mirrors; i++) {
3614                 bytenr = btrfs_sb_offset(i);
3615                 if (bytenr + BTRFS_SUPER_INFO_SIZE >=
3616                     device->commit_total_bytes)
3617                         break;
3618
3619                 bh = __find_get_block(device->bdev,
3620                                       bytenr / BTRFS_BDEV_BLOCKSIZE,
3621                                       BTRFS_SUPER_INFO_SIZE);
3622                 if (!bh) {
3623                         errors++;
3624                         if (i == 0)
3625                                 primary_failed = true;
3626                         continue;
3627                 }
3628                 wait_on_buffer(bh);
3629                 if (!buffer_uptodate(bh)) {
3630                         errors++;
3631                         if (i == 0)
3632                                 primary_failed = true;
3633                 }
3634
3635                 /* drop our reference */
3636                 brelse(bh);
3637
3638                 /* drop the reference from the writing run */
3639                 brelse(bh);
3640         }
3641
3642         /* log error, force error return */
3643         if (primary_failed) {
3644                 btrfs_err(device->fs_info, "error writing primary super block to device %llu",
3645                           device->devid);
3646                 return -1;
3647         }
3648
3649         return errors < i ? 0 : -1;
3650 }
3651
3652 /*
3653  * endio for the write_dev_flush, this will wake anyone waiting
3654  * for the barrier when it is done
3655  */
3656 static void btrfs_end_empty_barrier(struct bio *bio)
3657 {
3658         complete(bio->bi_private);
3659 }
3660
3661 /*
3662  * Submit a flush request to the device if it supports it. Error handling is
3663  * done in the waiting counterpart.
3664  */
3665 static void write_dev_flush(struct btrfs_device *device)
3666 {
3667         struct bio *bio = device->flush_bio;
3668
3669 #ifndef CONFIG_BTRFS_FS_CHECK_INTEGRITY
3670         /*
3671          * When a disk has write caching disabled, we skip submission of a bio
3672          * with flush and sync requests before writing the superblock, since
3673          * it's not needed. However when the integrity checker is enabled, this
3674          * results in reports that there are metadata blocks referred by a
3675          * superblock that were not properly flushed. So don't skip the bio
3676          * submission only when the integrity checker is enabled for the sake
3677          * of simplicity, since this is a debug tool and not meant for use in
3678          * non-debug builds.
3679          */
3680         struct request_queue *q = bdev_get_queue(device->bdev);
3681         if (!test_bit(QUEUE_FLAG_WC, &q->queue_flags))
3682                 return;
3683 #endif
3684
3685         bio_reset(bio);
3686         bio->bi_end_io = btrfs_end_empty_barrier;
3687         bio_set_dev(bio, device->bdev);
3688         bio->bi_opf = REQ_OP_WRITE | REQ_SYNC | REQ_PREFLUSH;
3689         init_completion(&device->flush_wait);
3690         bio->bi_private = &device->flush_wait;
3691
3692         btrfsic_submit_bio(bio);
3693         set_bit(BTRFS_DEV_STATE_FLUSH_SENT, &device->dev_state);
3694 }
3695
3696 /*
3697  * If the flush bio has been submitted by write_dev_flush, wait for it.
3698  */
3699 static blk_status_t wait_dev_flush(struct btrfs_device *device)
3700 {
3701         struct bio *bio = device->flush_bio;
3702
3703         if (!test_bit(BTRFS_DEV_STATE_FLUSH_SENT, &device->dev_state))
3704                 return BLK_STS_OK;
3705
3706         clear_bit(BTRFS_DEV_STATE_FLUSH_SENT, &device->dev_state);
3707         wait_for_completion_io(&device->flush_wait);
3708
3709         return bio->bi_status;
3710 }
3711
3712 static int check_barrier_error(struct btrfs_fs_info *fs_info)
3713 {
3714         if (!btrfs_check_rw_degradable(fs_info, NULL))
3715                 return -EIO;
3716         return 0;
3717 }
3718
3719 /*
3720  * send an empty flush down to each device in parallel,
3721  * then wait for them
3722  */
3723 static int barrier_all_devices(struct btrfs_fs_info *info)
3724 {
3725         struct list_head *head;
3726         struct btrfs_device *dev;
3727         int errors_wait = 0;
3728         blk_status_t ret;
3729
3730         lockdep_assert_held(&info->fs_devices->device_list_mutex);
3731         /* send down all the barriers */
3732         head = &info->fs_devices->devices;
3733         list_for_each_entry(dev, head, dev_list) {
3734                 if (test_bit(BTRFS_DEV_STATE_MISSING, &dev->dev_state))
3735                         continue;
3736                 if (!dev->bdev)
3737                         continue;
3738                 if (!test_bit(BTRFS_DEV_STATE_IN_FS_METADATA, &dev->dev_state) ||
3739                     !test_bit(BTRFS_DEV_STATE_WRITEABLE, &dev->dev_state))
3740                         continue;
3741
3742                 write_dev_flush(dev);
3743                 dev->last_flush_error = BLK_STS_OK;
3744         }
3745
3746         /* wait for all the barriers */
3747         list_for_each_entry(dev, head, dev_list) {
3748                 if (test_bit(BTRFS_DEV_STATE_MISSING, &dev->dev_state))
3749                         continue;
3750                 if (!dev->bdev) {
3751                         errors_wait++;
3752                         continue;
3753                 }
3754                 if (!test_bit(BTRFS_DEV_STATE_IN_FS_METADATA, &dev->dev_state) ||
3755                     !test_bit(BTRFS_DEV_STATE_WRITEABLE, &dev->dev_state))
3756                         continue;
3757
3758                 ret = wait_dev_flush(dev);
3759                 if (ret) {
3760                         dev->last_flush_error = ret;
3761                         btrfs_dev_stat_inc_and_print(dev,
3762                                         BTRFS_DEV_STAT_FLUSH_ERRS);
3763                         errors_wait++;
3764                 }
3765         }
3766
3767         if (errors_wait) {
3768                 /*
3769                  * At some point we need the status of all disks
3770                  * to arrive at the volume status. So error checking
3771                  * is being pushed to a separate loop.
3772                  */
3773                 return check_barrier_error(info);
3774         }
3775         return 0;
3776 }
3777
3778 int btrfs_get_num_tolerated_disk_barrier_failures(u64 flags)
3779 {
3780         int raid_type;
3781         int min_tolerated = INT_MAX;
3782
3783         if ((flags & BTRFS_BLOCK_GROUP_PROFILE_MASK) == 0 ||
3784             (flags & BTRFS_AVAIL_ALLOC_BIT_SINGLE))
3785                 min_tolerated = min_t(int, min_tolerated,
3786                                     btrfs_raid_array[BTRFS_RAID_SINGLE].
3787                                     tolerated_failures);
3788
3789         for (raid_type = 0; raid_type < BTRFS_NR_RAID_TYPES; raid_type++) {
3790                 if (raid_type == BTRFS_RAID_SINGLE)
3791                         continue;
3792                 if (!(flags & btrfs_raid_array[raid_type].bg_flag))
3793                         continue;
3794                 min_tolerated = min_t(int, min_tolerated,
3795                                     btrfs_raid_array[raid_type].
3796                                     tolerated_failures);
3797         }
3798
3799         if (min_tolerated == INT_MAX) {
3800                 pr_warn("BTRFS: unknown raid flag: %llu", flags);
3801                 min_tolerated = 0;
3802         }
3803
3804         return min_tolerated;
3805 }
3806
3807 int write_all_supers(struct btrfs_fs_info *fs_info, int max_mirrors)
3808 {
3809         struct list_head *head;
3810         struct btrfs_device *dev;
3811         struct btrfs_super_block *sb;
3812         struct btrfs_dev_item *dev_item;
3813         int ret;
3814         int do_barriers;
3815         int max_errors;
3816         int total_errors = 0;
3817         u64 flags;
3818
3819         do_barriers = !btrfs_test_opt(fs_info, NOBARRIER);
3820
3821         /*
3822          * max_mirrors == 0 indicates we're from commit_transaction,
3823          * not from fsync where the tree roots in fs_info have not
3824          * been consistent on disk.
3825          */
3826         if (max_mirrors == 0)
3827                 backup_super_roots(fs_info);
3828
3829         sb = fs_info->super_for_commit;
3830         dev_item = &sb->dev_item;
3831
3832         mutex_lock(&fs_info->fs_devices->device_list_mutex);
3833         head = &fs_info->fs_devices->devices;
3834         max_errors = btrfs_super_num_devices(fs_info->super_copy) - 1;
3835
3836         if (do_barriers) {
3837                 ret = barrier_all_devices(fs_info);
3838                 if (ret) {
3839                         mutex_unlock(
3840                                 &fs_info->fs_devices->device_list_mutex);
3841                         btrfs_handle_fs_error(fs_info, ret,
3842                                               "errors while submitting device barriers.");
3843                         return ret;
3844                 }
3845         }
3846
3847         list_for_each_entry(dev, head, dev_list) {
3848                 if (!dev->bdev) {
3849                         total_errors++;
3850                         continue;
3851                 }
3852                 if (!test_bit(BTRFS_DEV_STATE_IN_FS_METADATA, &dev->dev_state) ||
3853                     !test_bit(BTRFS_DEV_STATE_WRITEABLE, &dev->dev_state))
3854                         continue;
3855
3856                 btrfs_set_stack_device_generation(dev_item, 0);
3857                 btrfs_set_stack_device_type(dev_item, dev->type);
3858                 btrfs_set_stack_device_id(dev_item, dev->devid);
3859                 btrfs_set_stack_device_total_bytes(dev_item,
3860                                                    dev->commit_total_bytes);
3861                 btrfs_set_stack_device_bytes_used(dev_item,
3862                                                   dev->commit_bytes_used);
3863                 btrfs_set_stack_device_io_align(dev_item, dev->io_align);
3864                 btrfs_set_stack_device_io_width(dev_item, dev->io_width);
3865                 btrfs_set_stack_device_sector_size(dev_item, dev->sector_size);
3866                 memcpy(dev_item->uuid, dev->uuid, BTRFS_UUID_SIZE);
3867                 memcpy(dev_item->fsid, dev->fs_devices->metadata_uuid,
3868                        BTRFS_FSID_SIZE);
3869
3870                 flags = btrfs_super_flags(sb);
3871                 btrfs_set_super_flags(sb, flags | BTRFS_HEADER_FLAG_WRITTEN);
3872
3873                 ret = btrfs_validate_write_super(fs_info, sb);
3874                 if (ret < 0) {
3875                         mutex_unlock(&fs_info->fs_devices->device_list_mutex);
3876                         btrfs_handle_fs_error(fs_info, -EUCLEAN,
3877                                 "unexpected superblock corruption detected");
3878                         return -EUCLEAN;
3879                 }
3880
3881                 ret = write_dev_supers(dev, sb, max_mirrors);
3882                 if (ret)
3883                         total_errors++;
3884         }
3885         if (total_errors > max_errors) {
3886                 btrfs_err(fs_info, "%d errors while writing supers",
3887                           total_errors);
3888                 mutex_unlock(&fs_info->fs_devices->device_list_mutex);
3889
3890                 /* FUA is masked off if unsupported and can't be the reason */
3891                 btrfs_handle_fs_error(fs_info, -EIO,
3892                                       "%d errors while writing supers",
3893                                       total_errors);
3894                 return -EIO;
3895         }
3896
3897         total_errors = 0;
3898         list_for_each_entry(dev, head, dev_list) {
3899                 if (!dev->bdev)
3900                         continue;
3901                 if (!test_bit(BTRFS_DEV_STATE_IN_FS_METADATA, &dev->dev_state) ||
3902                     !test_bit(BTRFS_DEV_STATE_WRITEABLE, &dev->dev_state))
3903                         continue;
3904
3905                 ret = wait_dev_supers(dev, max_mirrors);
3906                 if (ret)
3907                         total_errors++;
3908         }
3909         mutex_unlock(&fs_info->fs_devices->device_list_mutex);
3910         if (total_errors > max_errors) {
3911                 btrfs_handle_fs_error(fs_info, -EIO,
3912                                       "%d errors while writing supers",
3913                                       total_errors);
3914                 return -EIO;
3915         }
3916         return 0;
3917 }
3918
3919 /* Drop a fs root from the radix tree and free it. */
3920 void btrfs_drop_and_free_fs_root(struct btrfs_fs_info *fs_info,
3921                                   struct btrfs_root *root)
3922 {
3923         spin_lock(&fs_info->fs_roots_radix_lock);
3924         radix_tree_delete(&fs_info->fs_roots_radix,
3925                           (unsigned long)root->root_key.objectid);
3926         spin_unlock(&fs_info->fs_roots_radix_lock);
3927
3928         if (btrfs_root_refs(&root->root_item) == 0)
3929                 synchronize_srcu(&fs_info->subvol_srcu);
3930
3931         if (test_bit(BTRFS_FS_STATE_ERROR, &fs_info->fs_state)) {
3932                 btrfs_free_log(NULL, root);
3933                 if (root->reloc_root) {
3934                         free_extent_buffer(root->reloc_root->node);
3935                         free_extent_buffer(root->reloc_root->commit_root);
3936                         btrfs_put_fs_root(root->reloc_root);
3937                         root->reloc_root = NULL;
3938                 }
3939         }
3940
3941         if (root->free_ino_pinned)
3942                 __btrfs_remove_free_space_cache(root->free_ino_pinned);
3943         if (root->free_ino_ctl)
3944                 __btrfs_remove_free_space_cache(root->free_ino_ctl);
3945         btrfs_free_fs_root(root);
3946 }
3947
3948 void btrfs_free_fs_root(struct btrfs_root *root)
3949 {
3950         iput(root->ino_cache_inode);
3951         WARN_ON(!RB_EMPTY_ROOT(&root->inode_tree));
3952         if (root->anon_dev)
3953                 free_anon_bdev(root->anon_dev);
3954         if (root->subv_writers)
3955                 btrfs_free_subvolume_writers(root->subv_writers);
3956         free_extent_buffer(root->node);
3957         free_extent_buffer(root->commit_root);
3958         kfree(root->free_ino_ctl);
3959         kfree(root->free_ino_pinned);
3960         btrfs_put_fs_root(root);
3961 }
3962
3963 int btrfs_cleanup_fs_roots(struct btrfs_fs_info *fs_info)
3964 {
3965         u64 root_objectid = 0;
3966         struct btrfs_root *gang[8];
3967         int i = 0;
3968         int err = 0;
3969         unsigned int ret = 0;
3970         int index;
3971
3972         while (1) {
3973                 index = srcu_read_lock(&fs_info->subvol_srcu);
3974                 ret = radix_tree_gang_lookup(&fs_info->fs_roots_radix,
3975                                              (void **)gang, root_objectid,
3976                                              ARRAY_SIZE(gang));
3977                 if (!ret) {
3978                         srcu_read_unlock(&fs_info->subvol_srcu, index);
3979                         break;
3980                 }
3981                 root_objectid = gang[ret - 1]->root_key.objectid + 1;
3982
3983                 for (i = 0; i < ret; i++) {
3984                         /* Avoid to grab roots in dead_roots */
3985                         if (btrfs_root_refs(&gang[i]->root_item) == 0) {
3986                                 gang[i] = NULL;
3987                                 continue;
3988                         }
3989                         /* grab all the search result for later use */
3990                         gang[i] = btrfs_grab_fs_root(gang[i]);
3991                 }
3992                 srcu_read_unlock(&fs_info->subvol_srcu, index);
3993
3994                 for (i = 0; i < ret; i++) {
3995                         if (!gang[i])
3996                                 continue;
3997                         root_objectid = gang[i]->root_key.objectid;
3998                         err = btrfs_orphan_cleanup(gang[i]);
3999                         if (err)
4000                                 break;
4001                         btrfs_put_fs_root(gang[i]);
4002                 }
4003                 root_objectid++;
4004         }
4005
4006         /* release the uncleaned roots due to error */
4007         for (; i < ret; i++) {
4008                 if (gang[i])
4009                         btrfs_put_fs_root(gang[i]);
4010         }
4011         return err;
4012 }
4013
4014 int btrfs_commit_super(struct btrfs_fs_info *fs_info)
4015 {
4016         struct btrfs_root *root = fs_info->tree_root;
4017         struct btrfs_trans_handle *trans;
4018
4019         mutex_lock(&fs_info->cleaner_mutex);
4020         btrfs_run_delayed_iputs(fs_info);
4021         mutex_unlock(&fs_info->cleaner_mutex);
4022         wake_up_process(fs_info->cleaner_kthread);
4023
4024         /* wait until ongoing cleanup work done */
4025         down_write(&fs_info->cleanup_work_sem);
4026         up_write(&fs_info->cleanup_work_sem);
4027
4028         trans = btrfs_join_transaction(root);
4029         if (IS_ERR(trans))
4030                 return PTR_ERR(trans);
4031         return btrfs_commit_transaction(trans);
4032 }
4033
4034 void close_ctree(struct btrfs_fs_info *fs_info)
4035 {
4036         int ret;
4037
4038         set_bit(BTRFS_FS_CLOSING_START, &fs_info->flags);
4039         /*
4040          * We don't want the cleaner to start new transactions, add more delayed
4041          * iputs, etc. while we're closing. We can't use kthread_stop() yet
4042          * because that frees the task_struct, and the transaction kthread might
4043          * still try to wake up the cleaner.
4044          */
4045         kthread_park(fs_info->cleaner_kthread);
4046
4047         /* wait for the qgroup rescan worker to stop */
4048         btrfs_qgroup_wait_for_completion(fs_info, false);
4049
4050         /* wait for the uuid_scan task to finish */
4051         down(&fs_info->uuid_tree_rescan_sem);
4052         /* avoid complains from lockdep et al., set sem back to initial state */
4053         up(&fs_info->uuid_tree_rescan_sem);
4054
4055         /* pause restriper - we want to resume on mount */
4056         btrfs_pause_balance(fs_info);
4057
4058         btrfs_dev_replace_suspend_for_unmount(fs_info);
4059
4060         btrfs_scrub_cancel(fs_info);
4061
4062         /* wait for any defraggers to finish */
4063         wait_event(fs_info->transaction_wait,
4064                    (atomic_read(&fs_info->defrag_running) == 0));
4065
4066         /* clear out the rbtree of defraggable inodes */
4067         btrfs_cleanup_defrag_inodes(fs_info);
4068
4069         cancel_work_sync(&fs_info->async_reclaim_work);
4070
4071         if (!sb_rdonly(fs_info->sb)) {
4072                 /*
4073                  * The cleaner kthread is stopped, so do one final pass over
4074                  * unused block groups.
4075                  */
4076                 btrfs_delete_unused_bgs(fs_info);
4077
4078                 /*
4079                  * There might be existing delayed inode workers still running
4080                  * and holding an empty delayed inode item. We must wait for
4081                  * them to complete first because they can create a transaction.
4082                  * This happens when someone calls btrfs_balance_delayed_items()
4083                  * and then a transaction commit runs the same delayed nodes
4084                  * before any delayed worker has done something with the nodes.
4085                  * We must wait for any worker here and not at transaction
4086                  * commit time since that could cause a deadlock.
4087                  * This is a very rare case.
4088                  */
4089                 btrfs_flush_workqueue(fs_info->delayed_workers);
4090
4091                 ret = btrfs_commit_super(fs_info);
4092                 if (ret)
4093                         btrfs_err(fs_info, "commit super ret %d", ret);
4094         }
4095
4096         if (test_bit(BTRFS_FS_STATE_ERROR, &fs_info->fs_state) ||
4097             test_bit(BTRFS_FS_STATE_TRANS_ABORTED, &fs_info->fs_state))
4098                 btrfs_error_commit_super(fs_info);
4099
4100         kthread_stop(fs_info->transaction_kthread);
4101         kthread_stop(fs_info->cleaner_kthread);
4102
4103         ASSERT(list_empty(&fs_info->delayed_iputs));
4104         set_bit(BTRFS_FS_CLOSING_DONE, &fs_info->flags);
4105
4106         if (btrfs_check_quota_leak(fs_info)) {
4107                 WARN_ON(IS_ENABLED(CONFIG_BTRFS_DEBUG));
4108                 btrfs_err(fs_info, "qgroup reserved space leaked");
4109         }
4110
4111         btrfs_free_qgroup_config(fs_info);
4112         ASSERT(list_empty(&fs_info->delalloc_roots));
4113
4114         if (percpu_counter_sum(&fs_info->delalloc_bytes)) {
4115                 btrfs_info(fs_info, "at unmount delalloc count %lld",
4116                        percpu_counter_sum(&fs_info->delalloc_bytes));
4117         }
4118
4119         if (percpu_counter_sum(&fs_info->dio_bytes))
4120                 btrfs_info(fs_info, "at unmount dio bytes count %lld",
4121                            percpu_counter_sum(&fs_info->dio_bytes));
4122
4123         btrfs_sysfs_remove_mounted(fs_info);
4124         btrfs_sysfs_remove_fsid(fs_info->fs_devices);
4125
4126         btrfs_free_fs_roots(fs_info);
4127
4128         btrfs_put_block_group_cache(fs_info);
4129
4130         /*
4131          * we must make sure there is not any read request to
4132          * submit after we stopping all workers.
4133          */
4134         invalidate_inode_pages2(fs_info->btree_inode->i_mapping);
4135         btrfs_stop_all_workers(fs_info);
4136
4137         clear_bit(BTRFS_FS_OPEN, &fs_info->flags);
4138         free_root_pointers(fs_info, true);
4139
4140         /*
4141          * We must free the block groups after dropping the fs_roots as we could
4142          * have had an IO error and have left over tree log blocks that aren't
4143          * cleaned up until the fs roots are freed.  This makes the block group
4144          * accounting appear to be wrong because there's pending reserved bytes,
4145          * so make sure we do the block group cleanup afterwards.
4146          */
4147         btrfs_free_block_groups(fs_info);
4148
4149         iput(fs_info->btree_inode);
4150
4151 #ifdef CONFIG_BTRFS_FS_CHECK_INTEGRITY
4152         if (btrfs_test_opt(fs_info, CHECK_INTEGRITY))
4153                 btrfsic_unmount(fs_info->fs_devices);
4154 #endif
4155
4156         btrfs_mapping_tree_free(&fs_info->mapping_tree);
4157         btrfs_close_devices(fs_info->fs_devices);
4158
4159         percpu_counter_destroy(&fs_info->dirty_metadata_bytes);
4160         percpu_counter_destroy(&fs_info->delalloc_bytes);
4161         percpu_counter_destroy(&fs_info->dio_bytes);
4162         percpu_counter_destroy(&fs_info->dev_replace.bio_counter);
4163         cleanup_srcu_struct(&fs_info->subvol_srcu);
4164
4165         btrfs_free_csum_hash(fs_info);
4166         btrfs_free_stripe_hash_table(fs_info);
4167         btrfs_free_ref_cache(fs_info);
4168 }
4169
4170 int btrfs_buffer_uptodate(struct extent_buffer *buf, u64 parent_transid,
4171                           int atomic)
4172 {
4173         int ret;
4174         struct inode *btree_inode = buf->pages[0]->mapping->host;
4175
4176         ret = extent_buffer_uptodate(buf);
4177         if (!ret)
4178                 return ret;
4179
4180         ret = verify_parent_transid(&BTRFS_I(btree_inode)->io_tree, buf,
4181                                     parent_transid, atomic);
4182         if (ret == -EAGAIN)
4183                 return ret;
4184         return !ret;
4185 }
4186
4187 void btrfs_mark_buffer_dirty(struct extent_buffer *buf)
4188 {
4189         struct btrfs_fs_info *fs_info;
4190         struct btrfs_root *root;
4191         u64 transid = btrfs_header_generation(buf);
4192         int was_dirty;
4193
4194 #ifdef CONFIG_BTRFS_FS_RUN_SANITY_TESTS
4195         /*
4196          * This is a fast path so only do this check if we have sanity tests
4197          * enabled.  Normal people shouldn't be using unmapped buffers as dirty
4198          * outside of the sanity tests.
4199          */
4200         if (unlikely(test_bit(EXTENT_BUFFER_UNMAPPED, &buf->bflags)))
4201                 return;
4202 #endif
4203         root = BTRFS_I(buf->pages[0]->mapping->host)->root;
4204         fs_info = root->fs_info;
4205         btrfs_assert_tree_locked(buf);
4206         if (transid != fs_info->generation)
4207                 WARN(1, KERN_CRIT "btrfs transid mismatch buffer %llu, found %llu running %llu\n",
4208                         buf->start, transid, fs_info->generation);
4209         was_dirty = set_extent_buffer_dirty(buf);
4210         if (!was_dirty)
4211                 percpu_counter_add_batch(&fs_info->dirty_metadata_bytes,
4212                                          buf->len,
4213                                          fs_info->dirty_metadata_batch);
4214 #ifdef CONFIG_BTRFS_FS_CHECK_INTEGRITY
4215         /*
4216          * Since btrfs_mark_buffer_dirty() can be called with item pointer set
4217          * but item data not updated.
4218          * So here we should only check item pointers, not item data.
4219          */
4220         if (btrfs_header_level(buf) == 0 &&
4221             btrfs_check_leaf_relaxed(buf)) {
4222                 btrfs_print_leaf(buf);
4223                 ASSERT(0);
4224         }
4225 #endif
4226 }
4227
4228 static void __btrfs_btree_balance_dirty(struct btrfs_fs_info *fs_info,
4229                                         int flush_delayed)
4230 {
4231         /*
4232          * looks as though older kernels can get into trouble with
4233          * this code, they end up stuck in balance_dirty_pages forever
4234          */
4235         int ret;
4236
4237         if (current->flags & PF_MEMALLOC)
4238                 return;
4239
4240         if (flush_delayed)
4241                 btrfs_balance_delayed_items(fs_info);
4242
4243         ret = __percpu_counter_compare(&fs_info->dirty_metadata_bytes,
4244                                      BTRFS_DIRTY_METADATA_THRESH,
4245                                      fs_info->dirty_metadata_batch);
4246         if (ret > 0) {
4247                 balance_dirty_pages_ratelimited(fs_info->btree_inode->i_mapping);
4248         }
4249 }
4250
4251 void btrfs_btree_balance_dirty(struct btrfs_fs_info *fs_info)
4252 {
4253         __btrfs_btree_balance_dirty(fs_info, 1);
4254 }
4255
4256 void btrfs_btree_balance_dirty_nodelay(struct btrfs_fs_info *fs_info)
4257 {
4258         __btrfs_btree_balance_dirty(fs_info, 0);
4259 }
4260
4261 int btrfs_read_buffer(struct extent_buffer *buf, u64 parent_transid, int level,
4262                       struct btrfs_key *first_key)
4263 {
4264         return btree_read_extent_buffer_pages(buf, parent_transid,
4265                                               level, first_key);
4266 }
4267
4268 static void btrfs_error_commit_super(struct btrfs_fs_info *fs_info)
4269 {
4270         /* cleanup FS via transaction */
4271         btrfs_cleanup_transaction(fs_info);
4272
4273         mutex_lock(&fs_info->cleaner_mutex);
4274         btrfs_run_delayed_iputs(fs_info);
4275         mutex_unlock(&fs_info->cleaner_mutex);
4276
4277         down_write(&fs_info->cleanup_work_sem);
4278         up_write(&fs_info->cleanup_work_sem);
4279 }
4280
4281 static void btrfs_destroy_ordered_extents(struct btrfs_root *root)
4282 {
4283         struct btrfs_ordered_extent *ordered;
4284
4285         spin_lock(&root->ordered_extent_lock);
4286         /*
4287          * This will just short circuit the ordered completion stuff which will
4288          * make sure the ordered extent gets properly cleaned up.
4289          */
4290         list_for_each_entry(ordered, &root->ordered_extents,
4291                             root_extent_list)
4292                 set_bit(BTRFS_ORDERED_IOERR, &ordered->flags);
4293         spin_unlock(&root->ordered_extent_lock);
4294 }
4295
4296 static void btrfs_destroy_all_ordered_extents(struct btrfs_fs_info *fs_info)
4297 {
4298         struct btrfs_root *root;
4299         struct list_head splice;
4300
4301         INIT_LIST_HEAD(&splice);
4302
4303         spin_lock(&fs_info->ordered_root_lock);
4304         list_splice_init(&fs_info->ordered_roots, &splice);
4305         while (!list_empty(&splice)) {
4306                 root = list_first_entry(&splice, struct btrfs_root,
4307                                         ordered_root);
4308                 list_move_tail(&root->ordered_root,
4309                                &fs_info->ordered_roots);
4310
4311                 spin_unlock(&fs_info->ordered_root_lock);
4312                 btrfs_destroy_ordered_extents(root);
4313
4314                 cond_resched();
4315                 spin_lock(&fs_info->ordered_root_lock);
4316         }
4317         spin_unlock(&fs_info->ordered_root_lock);
4318
4319         /*
4320          * We need this here because if we've been flipped read-only we won't
4321          * get sync() from the umount, so we need to make sure any ordered
4322          * extents that haven't had their dirty pages IO start writeout yet
4323          * actually get run and error out properly.
4324          */
4325         btrfs_wait_ordered_roots(fs_info, U64_MAX, 0, (u64)-1);
4326 }
4327
4328 static int btrfs_destroy_delayed_refs(struct btrfs_transaction *trans,
4329                                       struct btrfs_fs_info *fs_info)
4330 {
4331         struct rb_node *node;
4332         struct btrfs_delayed_ref_root *delayed_refs;
4333         struct btrfs_delayed_ref_node *ref;
4334         int ret = 0;
4335
4336         delayed_refs = &trans->delayed_refs;
4337
4338         spin_lock(&delayed_refs->lock);
4339         if (atomic_read(&delayed_refs->num_entries) == 0) {
4340                 spin_unlock(&delayed_refs->lock);
4341                 btrfs_info(fs_info, "delayed_refs has NO entry");
4342                 return ret;
4343         }
4344
4345         while ((node = rb_first_cached(&delayed_refs->href_root)) != NULL) {
4346                 struct btrfs_delayed_ref_head *head;
4347                 struct rb_node *n;
4348                 bool pin_bytes = false;
4349
4350                 head = rb_entry(node, struct btrfs_delayed_ref_head,
4351                                 href_node);
4352                 if (btrfs_delayed_ref_lock(delayed_refs, head))
4353                         continue;
4354
4355                 spin_lock(&head->lock);
4356                 while ((n = rb_first_cached(&head->ref_tree)) != NULL) {
4357                         ref = rb_entry(n, struct btrfs_delayed_ref_node,
4358                                        ref_node);
4359                         ref->in_tree = 0;
4360                         rb_erase_cached(&ref->ref_node, &head->ref_tree);
4361                         RB_CLEAR_NODE(&ref->ref_node);
4362                         if (!list_empty(&ref->add_list))
4363                                 list_del(&ref->add_list);
4364                         atomic_dec(&delayed_refs->num_entries);
4365                         btrfs_put_delayed_ref(ref);
4366                 }
4367                 if (head->must_insert_reserved)
4368                         pin_bytes = true;
4369                 btrfs_free_delayed_extent_op(head->extent_op);
4370                 btrfs_delete_ref_head(delayed_refs, head);
4371                 spin_unlock(&head->lock);
4372                 spin_unlock(&delayed_refs->lock);
4373                 mutex_unlock(&head->mutex);
4374
4375                 if (pin_bytes)
4376                         btrfs_pin_extent(fs_info, head->bytenr,
4377                                          head->num_bytes, 1);
4378                 btrfs_cleanup_ref_head_accounting(fs_info, delayed_refs, head);
4379                 btrfs_put_delayed_ref_head(head);
4380                 cond_resched();
4381                 spin_lock(&delayed_refs->lock);
4382         }
4383         btrfs_qgroup_destroy_extent_records(trans);
4384
4385         spin_unlock(&delayed_refs->lock);
4386
4387         return ret;
4388 }
4389
4390 static void btrfs_destroy_delalloc_inodes(struct btrfs_root *root)
4391 {
4392         struct btrfs_inode *btrfs_inode;
4393         struct list_head splice;
4394
4395         INIT_LIST_HEAD(&splice);
4396
4397         spin_lock(&root->delalloc_lock);
4398         list_splice_init(&root->delalloc_inodes, &splice);
4399
4400         while (!list_empty(&splice)) {
4401                 struct inode *inode = NULL;
4402                 btrfs_inode = list_first_entry(&splice, struct btrfs_inode,
4403                                                delalloc_inodes);
4404                 __btrfs_del_delalloc_inode(root, btrfs_inode);
4405                 spin_unlock(&root->delalloc_lock);
4406
4407                 /*
4408                  * Make sure we get a live inode and that it'll not disappear
4409                  * meanwhile.
4410                  */
4411                 inode = igrab(&btrfs_inode->vfs_inode);
4412                 if (inode) {
4413                         unsigned int nofs_flag;
4414
4415                         nofs_flag = memalloc_nofs_save();
4416                         invalidate_inode_pages2(inode->i_mapping);
4417                         memalloc_nofs_restore(nofs_flag);
4418                         iput(inode);
4419                 }
4420                 spin_lock(&root->delalloc_lock);
4421         }
4422         spin_unlock(&root->delalloc_lock);
4423 }
4424
4425 static void btrfs_destroy_all_delalloc_inodes(struct btrfs_fs_info *fs_info)
4426 {
4427         struct btrfs_root *root;
4428         struct list_head splice;
4429
4430         INIT_LIST_HEAD(&splice);
4431
4432         spin_lock(&fs_info->delalloc_root_lock);
4433         list_splice_init(&fs_info->delalloc_roots, &splice);
4434         while (!list_empty(&splice)) {
4435                 root = list_first_entry(&splice, struct btrfs_root,
4436                                          delalloc_root);
4437                 root = btrfs_grab_fs_root(root);
4438                 BUG_ON(!root);
4439                 spin_unlock(&fs_info->delalloc_root_lock);
4440
4441                 btrfs_destroy_delalloc_inodes(root);
4442                 btrfs_put_fs_root(root);
4443
4444                 spin_lock(&fs_info->delalloc_root_lock);
4445         }
4446         spin_unlock(&fs_info->delalloc_root_lock);
4447 }
4448
4449 static int btrfs_destroy_marked_extents(struct btrfs_fs_info *fs_info,
4450                                         struct extent_io_tree *dirty_pages,
4451                                         int mark)
4452 {
4453         int ret;
4454         struct extent_buffer *eb;
4455         u64 start = 0;
4456         u64 end;
4457
4458         while (1) {
4459                 ret = find_first_extent_bit(dirty_pages, start, &start, &end,
4460                                             mark, NULL);
4461                 if (ret)
4462                         break;
4463
4464                 clear_extent_bits(dirty_pages, start, end, mark);
4465                 while (start <= end) {
4466                         eb = find_extent_buffer(fs_info, start);
4467                         start += fs_info->nodesize;
4468                         if (!eb)
4469                                 continue;
4470                         wait_on_extent_buffer_writeback(eb);
4471
4472                         if (test_and_clear_bit(EXTENT_BUFFER_DIRTY,
4473                                                &eb->bflags))
4474                                 clear_extent_buffer_dirty(eb);
4475                         free_extent_buffer_stale(eb);
4476                 }
4477         }
4478
4479         return ret;
4480 }
4481
4482 static int btrfs_destroy_pinned_extent(struct btrfs_fs_info *fs_info,
4483                                        struct extent_io_tree *pinned_extents)
4484 {
4485         struct extent_io_tree *unpin;
4486         u64 start;
4487         u64 end;
4488         int ret;
4489         bool loop = true;
4490
4491         unpin = pinned_extents;
4492 again:
4493         while (1) {
4494                 struct extent_state *cached_state = NULL;
4495
4496                 /*
4497                  * The btrfs_finish_extent_commit() may get the same range as
4498                  * ours between find_first_extent_bit and clear_extent_dirty.
4499                  * Hence, hold the unused_bg_unpin_mutex to avoid double unpin
4500                  * the same extent range.
4501                  */
4502                 mutex_lock(&fs_info->unused_bg_unpin_mutex);
4503                 ret = find_first_extent_bit(unpin, 0, &start, &end,
4504                                             EXTENT_DIRTY, &cached_state);
4505                 if (ret) {
4506                         mutex_unlock(&fs_info->unused_bg_unpin_mutex);
4507                         break;
4508                 }
4509
4510                 clear_extent_dirty(unpin, start, end, &cached_state);
4511                 free_extent_state(cached_state);
4512                 btrfs_error_unpin_extent_range(fs_info, start, end);
4513                 mutex_unlock(&fs_info->unused_bg_unpin_mutex);
4514                 cond_resched();
4515         }
4516
4517         if (loop) {
4518                 if (unpin == &fs_info->freed_extents[0])
4519                         unpin = &fs_info->freed_extents[1];
4520                 else
4521                         unpin = &fs_info->freed_extents[0];
4522                 loop = false;
4523                 goto again;
4524         }
4525
4526         return 0;
4527 }
4528
4529 static void btrfs_cleanup_bg_io(struct btrfs_block_group_cache *cache)
4530 {
4531         struct inode *inode;
4532
4533         inode = cache->io_ctl.inode;
4534         if (inode) {
4535                 unsigned int nofs_flag;
4536
4537                 nofs_flag = memalloc_nofs_save();
4538                 invalidate_inode_pages2(inode->i_mapping);
4539                 memalloc_nofs_restore(nofs_flag);
4540
4541                 BTRFS_I(inode)->generation = 0;
4542                 cache->io_ctl.inode = NULL;
4543                 iput(inode);
4544         }
4545         ASSERT(cache->io_ctl.pages == NULL);
4546         btrfs_put_block_group(cache);
4547 }
4548
4549 void btrfs_cleanup_dirty_bgs(struct btrfs_transaction *cur_trans,
4550                              struct btrfs_fs_info *fs_info)
4551 {
4552         struct btrfs_block_group_cache *cache;
4553
4554         spin_lock(&cur_trans->dirty_bgs_lock);
4555         while (!list_empty(&cur_trans->dirty_bgs)) {
4556                 cache = list_first_entry(&cur_trans->dirty_bgs,
4557                                          struct btrfs_block_group_cache,
4558                                          dirty_list);
4559
4560                 if (!list_empty(&cache->io_list)) {
4561                         spin_unlock(&cur_trans->dirty_bgs_lock);
4562                         list_del_init(&cache->io_list);
4563                         btrfs_cleanup_bg_io(cache);
4564                         spin_lock(&cur_trans->dirty_bgs_lock);
4565                 }
4566
4567                 list_del_init(&cache->dirty_list);
4568                 spin_lock(&cache->lock);
4569                 cache->disk_cache_state = BTRFS_DC_ERROR;
4570                 spin_unlock(&cache->lock);
4571
4572                 spin_unlock(&cur_trans->dirty_bgs_lock);
4573                 btrfs_put_block_group(cache);
4574                 btrfs_delayed_refs_rsv_release(fs_info, 1);
4575                 spin_lock(&cur_trans->dirty_bgs_lock);
4576         }
4577         spin_unlock(&cur_trans->dirty_bgs_lock);
4578
4579         /*
4580          * Refer to the definition of io_bgs member for details why it's safe
4581          * to use it without any locking
4582          */
4583         while (!list_empty(&cur_trans->io_bgs)) {
4584                 cache = list_first_entry(&cur_trans->io_bgs,
4585                                          struct btrfs_block_group_cache,
4586                                          io_list);
4587
4588                 list_del_init(&cache->io_list);
4589                 spin_lock(&cache->lock);
4590                 cache->disk_cache_state = BTRFS_DC_ERROR;
4591                 spin_unlock(&cache->lock);
4592                 btrfs_cleanup_bg_io(cache);
4593         }
4594 }
4595
4596 void btrfs_cleanup_one_transaction(struct btrfs_transaction *cur_trans,
4597                                    struct btrfs_fs_info *fs_info)
4598 {
4599         struct btrfs_device *dev, *tmp;
4600
4601         btrfs_cleanup_dirty_bgs(cur_trans, fs_info);
4602         ASSERT(list_empty(&cur_trans->dirty_bgs));
4603         ASSERT(list_empty(&cur_trans->io_bgs));
4604
4605         list_for_each_entry_safe(dev, tmp, &cur_trans->dev_update_list,
4606                                  post_commit_list) {
4607                 list_del_init(&dev->post_commit_list);
4608         }
4609
4610         btrfs_destroy_delayed_refs(cur_trans, fs_info);
4611
4612         cur_trans->state = TRANS_STATE_COMMIT_START;
4613         wake_up(&fs_info->transaction_blocked_wait);
4614
4615         cur_trans->state = TRANS_STATE_UNBLOCKED;
4616         wake_up(&fs_info->transaction_wait);
4617
4618         btrfs_destroy_delayed_inodes(fs_info);
4619
4620         btrfs_destroy_marked_extents(fs_info, &cur_trans->dirty_pages,
4621                                      EXTENT_DIRTY);
4622         btrfs_destroy_pinned_extent(fs_info,
4623                                     fs_info->pinned_extents);
4624
4625         cur_trans->state =TRANS_STATE_COMPLETED;
4626         wake_up(&cur_trans->commit_wait);
4627 }
4628
4629 static int btrfs_cleanup_transaction(struct btrfs_fs_info *fs_info)
4630 {
4631         struct btrfs_transaction *t;
4632
4633         mutex_lock(&fs_info->transaction_kthread_mutex);
4634
4635         spin_lock(&fs_info->trans_lock);
4636         while (!list_empty(&fs_info->trans_list)) {
4637                 t = list_first_entry(&fs_info->trans_list,
4638                                      struct btrfs_transaction, list);
4639                 if (t->state >= TRANS_STATE_COMMIT_START) {
4640                         refcount_inc(&t->use_count);
4641                         spin_unlock(&fs_info->trans_lock);
4642                         btrfs_wait_for_commit(fs_info, t->transid);
4643                         btrfs_put_transaction(t);
4644                         spin_lock(&fs_info->trans_lock);
4645                         continue;
4646                 }
4647                 if (t == fs_info->running_transaction) {
4648                         t->state = TRANS_STATE_COMMIT_DOING;
4649                         spin_unlock(&fs_info->trans_lock);
4650                         /*
4651                          * We wait for 0 num_writers since we don't hold a trans
4652                          * handle open currently for this transaction.
4653                          */
4654                         wait_event(t->writer_wait,
4655                                    atomic_read(&t->num_writers) == 0);
4656                 } else {
4657                         spin_unlock(&fs_info->trans_lock);
4658                 }
4659                 btrfs_cleanup_one_transaction(t, fs_info);
4660
4661                 spin_lock(&fs_info->trans_lock);
4662                 if (t == fs_info->running_transaction)
4663                         fs_info->running_transaction = NULL;
4664                 list_del_init(&t->list);
4665                 spin_unlock(&fs_info->trans_lock);
4666
4667                 btrfs_put_transaction(t);
4668                 trace_btrfs_transaction_commit(fs_info->tree_root);
4669                 spin_lock(&fs_info->trans_lock);
4670         }
4671         spin_unlock(&fs_info->trans_lock);
4672         btrfs_destroy_all_ordered_extents(fs_info);
4673         btrfs_destroy_delayed_inodes(fs_info);
4674         btrfs_assert_delayed_root_empty(fs_info);
4675         btrfs_destroy_pinned_extent(fs_info, fs_info->pinned_extents);
4676         btrfs_destroy_all_delalloc_inodes(fs_info);
4677         mutex_unlock(&fs_info->transaction_kthread_mutex);
4678
4679         return 0;
4680 }
4681
4682 static const struct extent_io_ops btree_extent_io_ops = {
4683         /* mandatory callbacks */
4684         .submit_bio_hook = btree_submit_bio_hook,
4685         .readpage_end_io_hook = btree_readpage_end_io_hook,
4686 };