2 * Copyright (C) 2007 Oracle. All rights reserved.
4 * This program is free software; you can redistribute it and/or
5 * modify it under the terms of the GNU General Public
6 * License v2 as published by the Free Software Foundation.
8 * This program is distributed in the hope that it will be useful,
9 * but WITHOUT ANY WARRANTY; without even the implied warranty of
10 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
11 * General Public License for more details.
13 * You should have received a copy of the GNU General Public
14 * License along with this program; if not, write to the
15 * Free Software Foundation, Inc., 59 Temple Place - Suite 330,
16 * Boston, MA 021110-1307, USA.
20 #include <linux/blkdev.h>
21 #include <linux/scatterlist.h>
22 #include <linux/swap.h>
23 #include <linux/radix-tree.h>
24 #include <linux/writeback.h>
25 #include <linux/buffer_head.h>
26 #include <linux/workqueue.h>
27 #include <linux/kthread.h>
28 #include <linux/slab.h>
29 #include <linux/migrate.h>
30 #include <linux/ratelimit.h>
31 #include <linux/uuid.h>
32 #include <linux/semaphore.h>
33 #include <asm/unaligned.h>
37 #include "transaction.h"
38 #include "btrfs_inode.h"
40 #include "print-tree.h"
43 #include "free-space-cache.h"
44 #include "free-space-tree.h"
45 #include "inode-map.h"
46 #include "check-integrity.h"
47 #include "rcu-string.h"
48 #include "dev-replace.h"
52 #include "compression.h"
53 #include "tree-checker.h"
56 #include <asm/cpufeature.h>
59 #define BTRFS_SUPER_FLAG_SUPP (BTRFS_HEADER_FLAG_WRITTEN |\
60 BTRFS_HEADER_FLAG_RELOC |\
61 BTRFS_SUPER_FLAG_ERROR |\
62 BTRFS_SUPER_FLAG_SEEDING |\
63 BTRFS_SUPER_FLAG_METADUMP |\
64 BTRFS_SUPER_FLAG_METADUMP_V2)
66 static const struct extent_io_ops btree_extent_io_ops;
67 static void end_workqueue_fn(struct btrfs_work *work);
68 static void free_fs_root(struct btrfs_root *root);
69 static int btrfs_check_super_valid(struct btrfs_fs_info *fs_info,
71 static void btrfs_destroy_ordered_extents(struct btrfs_root *root);
72 static int btrfs_destroy_delayed_refs(struct btrfs_transaction *trans,
73 struct btrfs_root *root);
74 static void btrfs_destroy_delalloc_inodes(struct btrfs_root *root);
75 static int btrfs_destroy_marked_extents(struct btrfs_root *root,
76 struct extent_io_tree *dirty_pages,
78 static int btrfs_destroy_pinned_extent(struct btrfs_root *root,
79 struct extent_io_tree *pinned_extents);
80 static int btrfs_cleanup_transaction(struct btrfs_root *root);
81 static void btrfs_error_commit_super(struct btrfs_root *root);
84 * btrfs_end_io_wq structs are used to do processing in task context when an IO
85 * is complete. This is used during reads to verify checksums, and it is used
86 * by writes to insert metadata for new file extents after IO is complete.
88 struct btrfs_end_io_wq {
92 struct btrfs_fs_info *info;
94 enum btrfs_wq_endio_type metadata;
95 struct list_head list;
96 struct btrfs_work work;
99 static struct kmem_cache *btrfs_end_io_wq_cache;
101 int __init btrfs_end_io_wq_init(void)
103 btrfs_end_io_wq_cache = kmem_cache_create("btrfs_end_io_wq",
104 sizeof(struct btrfs_end_io_wq),
108 if (!btrfs_end_io_wq_cache)
113 void btrfs_end_io_wq_exit(void)
115 kmem_cache_destroy(btrfs_end_io_wq_cache);
119 * async submit bios are used to offload expensive checksumming
120 * onto the worker threads. They checksum file and metadata bios
121 * just before they are sent down the IO stack.
123 struct async_submit_bio {
126 struct list_head list;
127 extent_submit_bio_hook_t *submit_bio_start;
128 extent_submit_bio_hook_t *submit_bio_done;
130 unsigned long bio_flags;
132 * bio_offset is optional, can be used if the pages in the bio
133 * can't tell us where in the file the bio should go
136 struct btrfs_work work;
141 * Lockdep class keys for extent_buffer->lock's in this root. For a given
142 * eb, the lockdep key is determined by the btrfs_root it belongs to and
143 * the level the eb occupies in the tree.
145 * Different roots are used for different purposes and may nest inside each
146 * other and they require separate keysets. As lockdep keys should be
147 * static, assign keysets according to the purpose of the root as indicated
148 * by btrfs_root->objectid. This ensures that all special purpose roots
149 * have separate keysets.
151 * Lock-nesting across peer nodes is always done with the immediate parent
152 * node locked thus preventing deadlock. As lockdep doesn't know this, use
153 * subclass to avoid triggering lockdep warning in such cases.
155 * The key is set by the readpage_end_io_hook after the buffer has passed
156 * csum validation but before the pages are unlocked. It is also set by
157 * btrfs_init_new_buffer on freshly allocated blocks.
159 * We also add a check to make sure the highest level of the tree is the
160 * same as our lockdep setup here. If BTRFS_MAX_LEVEL changes, this code
161 * needs update as well.
163 #ifdef CONFIG_DEBUG_LOCK_ALLOC
164 # if BTRFS_MAX_LEVEL != 8
168 static struct btrfs_lockdep_keyset {
169 u64 id; /* root objectid */
170 const char *name_stem; /* lock name stem */
171 char names[BTRFS_MAX_LEVEL + 1][20];
172 struct lock_class_key keys[BTRFS_MAX_LEVEL + 1];
173 } btrfs_lockdep_keysets[] = {
174 { .id = BTRFS_ROOT_TREE_OBJECTID, .name_stem = "root" },
175 { .id = BTRFS_EXTENT_TREE_OBJECTID, .name_stem = "extent" },
176 { .id = BTRFS_CHUNK_TREE_OBJECTID, .name_stem = "chunk" },
177 { .id = BTRFS_DEV_TREE_OBJECTID, .name_stem = "dev" },
178 { .id = BTRFS_FS_TREE_OBJECTID, .name_stem = "fs" },
179 { .id = BTRFS_CSUM_TREE_OBJECTID, .name_stem = "csum" },
180 { .id = BTRFS_QUOTA_TREE_OBJECTID, .name_stem = "quota" },
181 { .id = BTRFS_TREE_LOG_OBJECTID, .name_stem = "log" },
182 { .id = BTRFS_TREE_RELOC_OBJECTID, .name_stem = "treloc" },
183 { .id = BTRFS_DATA_RELOC_TREE_OBJECTID, .name_stem = "dreloc" },
184 { .id = BTRFS_UUID_TREE_OBJECTID, .name_stem = "uuid" },
185 { .id = BTRFS_FREE_SPACE_TREE_OBJECTID, .name_stem = "free-space" },
186 { .id = 0, .name_stem = "tree" },
189 void __init btrfs_init_lockdep(void)
193 /* initialize lockdep class names */
194 for (i = 0; i < ARRAY_SIZE(btrfs_lockdep_keysets); i++) {
195 struct btrfs_lockdep_keyset *ks = &btrfs_lockdep_keysets[i];
197 for (j = 0; j < ARRAY_SIZE(ks->names); j++)
198 snprintf(ks->names[j], sizeof(ks->names[j]),
199 "btrfs-%s-%02d", ks->name_stem, j);
203 void btrfs_set_buffer_lockdep_class(u64 objectid, struct extent_buffer *eb,
206 struct btrfs_lockdep_keyset *ks;
208 BUG_ON(level >= ARRAY_SIZE(ks->keys));
210 /* find the matching keyset, id 0 is the default entry */
211 for (ks = btrfs_lockdep_keysets; ks->id; ks++)
212 if (ks->id == objectid)
215 lockdep_set_class_and_name(&eb->lock,
216 &ks->keys[level], ks->names[level]);
222 * extents on the btree inode are pretty simple, there's one extent
223 * that covers the entire device
225 static struct extent_map *btree_get_extent(struct inode *inode,
226 struct page *page, size_t pg_offset, u64 start, u64 len,
229 struct extent_map_tree *em_tree = &BTRFS_I(inode)->extent_tree;
230 struct extent_map *em;
233 read_lock(&em_tree->lock);
234 em = lookup_extent_mapping(em_tree, start, len);
237 BTRFS_I(inode)->root->fs_info->fs_devices->latest_bdev;
238 read_unlock(&em_tree->lock);
241 read_unlock(&em_tree->lock);
243 em = alloc_extent_map();
245 em = ERR_PTR(-ENOMEM);
250 em->block_len = (u64)-1;
252 em->bdev = BTRFS_I(inode)->root->fs_info->fs_devices->latest_bdev;
254 write_lock(&em_tree->lock);
255 ret = add_extent_mapping(em_tree, em, 0);
256 if (ret == -EEXIST) {
258 em = lookup_extent_mapping(em_tree, start, len);
265 write_unlock(&em_tree->lock);
271 u32 btrfs_csum_data(char *data, u32 seed, size_t len)
273 return btrfs_crc32c(seed, data, len);
276 void btrfs_csum_final(u32 crc, char *result)
278 put_unaligned_le32(~crc, result);
282 * compute the csum for a btree block, and either verify it or write it
283 * into the csum field of the block.
285 static int csum_tree_block(struct btrfs_fs_info *fs_info,
286 struct extent_buffer *buf,
289 u16 csum_size = btrfs_super_csum_size(fs_info->super_copy);
292 unsigned long cur_len;
293 unsigned long offset = BTRFS_CSUM_SIZE;
295 unsigned long map_start;
296 unsigned long map_len;
299 unsigned long inline_result;
301 len = buf->len - offset;
303 err = map_private_extent_buffer(buf, offset, 32,
304 &kaddr, &map_start, &map_len);
307 cur_len = min(len, map_len - (offset - map_start));
308 crc = btrfs_csum_data(kaddr + offset - map_start,
313 if (csum_size > sizeof(inline_result)) {
314 result = kzalloc(csum_size, GFP_NOFS);
318 result = (char *)&inline_result;
321 btrfs_csum_final(crc, result);
324 if (memcmp_extent_buffer(buf, result, 0, csum_size)) {
327 memcpy(&found, result, csum_size);
329 read_extent_buffer(buf, &val, 0, csum_size);
330 btrfs_warn_rl(fs_info,
331 "%s checksum verify failed on %llu wanted %X found %X level %d",
332 fs_info->sb->s_id, buf->start,
333 val, found, btrfs_header_level(buf));
334 if (result != (char *)&inline_result)
339 write_extent_buffer(buf, result, 0, csum_size);
341 if (result != (char *)&inline_result)
347 * we can't consider a given block up to date unless the transid of the
348 * block matches the transid in the parent node's pointer. This is how we
349 * detect blocks that either didn't get written at all or got written
350 * in the wrong place.
352 static int verify_parent_transid(struct extent_io_tree *io_tree,
353 struct extent_buffer *eb, u64 parent_transid,
356 struct extent_state *cached_state = NULL;
358 bool need_lock = (current->journal_info == BTRFS_SEND_TRANS_STUB);
360 if (!parent_transid || btrfs_header_generation(eb) == parent_transid)
367 btrfs_tree_read_lock(eb);
368 btrfs_set_lock_blocking_rw(eb, BTRFS_READ_LOCK);
371 lock_extent_bits(io_tree, eb->start, eb->start + eb->len - 1,
373 if (extent_buffer_uptodate(eb) &&
374 btrfs_header_generation(eb) == parent_transid) {
378 btrfs_err_rl(eb->fs_info,
379 "parent transid verify failed on %llu wanted %llu found %llu",
381 parent_transid, btrfs_header_generation(eb));
385 * Things reading via commit roots that don't have normal protection,
386 * like send, can have a really old block in cache that may point at a
387 * block that has been freed and re-allocated. So don't clear uptodate
388 * if we find an eb that is under IO (dirty/writeback) because we could
389 * end up reading in the stale data and then writing it back out and
390 * making everybody very sad.
392 if (!extent_buffer_under_io(eb))
393 clear_extent_buffer_uptodate(eb);
395 unlock_extent_cached(io_tree, eb->start, eb->start + eb->len - 1,
396 &cached_state, GFP_NOFS);
398 btrfs_tree_read_unlock_blocking(eb);
403 * Return 0 if the superblock checksum type matches the checksum value of that
404 * algorithm. Pass the raw disk superblock data.
406 static int btrfs_check_super_csum(struct btrfs_fs_info *fs_info,
409 struct btrfs_super_block *disk_sb =
410 (struct btrfs_super_block *)raw_disk_sb;
411 u16 csum_type = btrfs_super_csum_type(disk_sb);
414 if (csum_type == BTRFS_CSUM_TYPE_CRC32) {
416 const int csum_size = sizeof(crc);
417 char result[csum_size];
420 * The super_block structure does not span the whole
421 * BTRFS_SUPER_INFO_SIZE range, we expect that the unused space
422 * is filled with zeros and is included in the checksum.
424 crc = btrfs_csum_data(raw_disk_sb + BTRFS_CSUM_SIZE,
425 crc, BTRFS_SUPER_INFO_SIZE - BTRFS_CSUM_SIZE);
426 btrfs_csum_final(crc, result);
428 if (memcmp(raw_disk_sb, result, csum_size))
432 if (csum_type >= ARRAY_SIZE(btrfs_csum_sizes)) {
433 btrfs_err(fs_info, "unsupported checksum algorithm %u",
442 * helper to read a given tree block, doing retries as required when
443 * the checksums don't match and we have alternate mirrors to try.
445 static int btree_read_extent_buffer_pages(struct btrfs_root *root,
446 struct extent_buffer *eb,
449 struct extent_io_tree *io_tree;
454 int failed_mirror = 0;
456 io_tree = &BTRFS_I(root->fs_info->btree_inode)->io_tree;
458 clear_bit(EXTENT_BUFFER_CORRUPT, &eb->bflags);
459 ret = read_extent_buffer_pages(io_tree, eb, WAIT_COMPLETE,
460 btree_get_extent, mirror_num);
462 if (!verify_parent_transid(io_tree, eb,
469 num_copies = btrfs_num_copies(root->fs_info,
474 if (!failed_mirror) {
476 failed_mirror = eb->read_mirror;
480 if (mirror_num == failed_mirror)
483 if (mirror_num > num_copies)
487 if (failed && !ret && failed_mirror)
488 repair_eb_io_failure(root, eb, failed_mirror);
494 * checksum a dirty tree block before IO. This has extra checks to make sure
495 * we only fill in the checksum field in the first page of a multi-page block
498 static int csum_dirty_buffer(struct btrfs_fs_info *fs_info, struct page *page)
500 u64 start = page_offset(page);
502 struct extent_buffer *eb;
504 eb = (struct extent_buffer *)page->private;
505 if (page != eb->pages[0])
508 found_start = btrfs_header_bytenr(eb);
510 * Please do not consolidate these warnings into a single if.
511 * It is useful to know what went wrong.
513 if (WARN_ON(found_start != start))
515 if (WARN_ON(!PageUptodate(page)))
518 ASSERT(memcmp_extent_buffer(eb, fs_info->fsid,
519 btrfs_header_fsid(), BTRFS_FSID_SIZE) == 0);
521 return csum_tree_block(fs_info, eb, 0);
524 static int check_tree_block_fsid(struct btrfs_fs_info *fs_info,
525 struct extent_buffer *eb)
527 struct btrfs_fs_devices *fs_devices = fs_info->fs_devices;
528 u8 fsid[BTRFS_UUID_SIZE];
531 read_extent_buffer(eb, fsid, btrfs_header_fsid(), BTRFS_FSID_SIZE);
533 if (!memcmp(fsid, fs_devices->fsid, BTRFS_FSID_SIZE)) {
537 fs_devices = fs_devices->seed;
542 static int btree_readpage_end_io_hook(struct btrfs_io_bio *io_bio,
543 u64 phy_offset, struct page *page,
544 u64 start, u64 end, int mirror)
548 struct extent_buffer *eb;
549 struct btrfs_root *root = BTRFS_I(page->mapping->host)->root;
550 struct btrfs_fs_info *fs_info = root->fs_info;
557 eb = (struct extent_buffer *)page->private;
559 /* the pending IO might have been the only thing that kept this buffer
560 * in memory. Make sure we have a ref for all this other checks
562 extent_buffer_get(eb);
564 reads_done = atomic_dec_and_test(&eb->io_pages);
568 eb->read_mirror = mirror;
569 if (test_bit(EXTENT_BUFFER_READ_ERR, &eb->bflags)) {
574 found_start = btrfs_header_bytenr(eb);
575 if (found_start != eb->start) {
576 btrfs_err_rl(fs_info, "bad tree block start %llu %llu",
577 found_start, eb->start);
581 if (check_tree_block_fsid(fs_info, eb)) {
582 btrfs_err_rl(fs_info, "bad fsid on block %llu",
587 found_level = btrfs_header_level(eb);
588 if (found_level >= BTRFS_MAX_LEVEL) {
589 btrfs_err(fs_info, "bad tree block level %d",
590 (int)btrfs_header_level(eb));
595 btrfs_set_buffer_lockdep_class(btrfs_header_owner(eb),
598 ret = csum_tree_block(fs_info, eb, 1);
603 * If this is a leaf block and it is corrupt, set the corrupt bit so
604 * that we don't try and read the other copies of this block, just
607 if (found_level == 0 && btrfs_check_leaf_full(root, eb)) {
608 set_bit(EXTENT_BUFFER_CORRUPT, &eb->bflags);
612 if (found_level > 0 && btrfs_check_node(root, eb))
616 set_extent_buffer_uptodate(eb);
619 test_and_clear_bit(EXTENT_BUFFER_READAHEAD, &eb->bflags))
620 btree_readahead_hook(fs_info, eb, eb->start, ret);
624 * our io error hook is going to dec the io pages
625 * again, we have to make sure it has something
628 atomic_inc(&eb->io_pages);
629 clear_extent_buffer_uptodate(eb);
631 free_extent_buffer(eb);
636 static int btree_io_failed_hook(struct page *page, int failed_mirror)
638 struct extent_buffer *eb;
640 eb = (struct extent_buffer *)page->private;
641 set_bit(EXTENT_BUFFER_READ_ERR, &eb->bflags);
642 eb->read_mirror = failed_mirror;
643 atomic_dec(&eb->io_pages);
644 if (test_and_clear_bit(EXTENT_BUFFER_READAHEAD, &eb->bflags))
645 btree_readahead_hook(eb->fs_info, eb, eb->start, -EIO);
646 return -EIO; /* we fixed nothing */
649 static void end_workqueue_bio(struct bio *bio)
651 struct btrfs_end_io_wq *end_io_wq = bio->bi_private;
652 struct btrfs_fs_info *fs_info;
653 struct btrfs_workqueue *wq;
654 btrfs_work_func_t func;
656 fs_info = end_io_wq->info;
657 end_io_wq->error = bio->bi_error;
659 if (bio_op(bio) == REQ_OP_WRITE) {
660 if (end_io_wq->metadata == BTRFS_WQ_ENDIO_METADATA) {
661 wq = fs_info->endio_meta_write_workers;
662 func = btrfs_endio_meta_write_helper;
663 } else if (end_io_wq->metadata == BTRFS_WQ_ENDIO_FREE_SPACE) {
664 wq = fs_info->endio_freespace_worker;
665 func = btrfs_freespace_write_helper;
666 } else if (end_io_wq->metadata == BTRFS_WQ_ENDIO_RAID56) {
667 wq = fs_info->endio_raid56_workers;
668 func = btrfs_endio_raid56_helper;
670 wq = fs_info->endio_write_workers;
671 func = btrfs_endio_write_helper;
674 if (unlikely(end_io_wq->metadata ==
675 BTRFS_WQ_ENDIO_DIO_REPAIR)) {
676 wq = fs_info->endio_repair_workers;
677 func = btrfs_endio_repair_helper;
678 } else if (end_io_wq->metadata == BTRFS_WQ_ENDIO_RAID56) {
679 wq = fs_info->endio_raid56_workers;
680 func = btrfs_endio_raid56_helper;
681 } else if (end_io_wq->metadata) {
682 wq = fs_info->endio_meta_workers;
683 func = btrfs_endio_meta_helper;
685 wq = fs_info->endio_workers;
686 func = btrfs_endio_helper;
690 btrfs_init_work(&end_io_wq->work, func, end_workqueue_fn, NULL, NULL);
691 btrfs_queue_work(wq, &end_io_wq->work);
694 int btrfs_bio_wq_end_io(struct btrfs_fs_info *info, struct bio *bio,
695 enum btrfs_wq_endio_type metadata)
697 struct btrfs_end_io_wq *end_io_wq;
699 end_io_wq = kmem_cache_alloc(btrfs_end_io_wq_cache, GFP_NOFS);
703 end_io_wq->private = bio->bi_private;
704 end_io_wq->end_io = bio->bi_end_io;
705 end_io_wq->info = info;
706 end_io_wq->error = 0;
707 end_io_wq->bio = bio;
708 end_io_wq->metadata = metadata;
710 bio->bi_private = end_io_wq;
711 bio->bi_end_io = end_workqueue_bio;
715 unsigned long btrfs_async_submit_limit(struct btrfs_fs_info *info)
717 unsigned long limit = min_t(unsigned long,
718 info->thread_pool_size,
719 info->fs_devices->open_devices);
723 static void run_one_async_start(struct btrfs_work *work)
725 struct async_submit_bio *async;
728 async = container_of(work, struct async_submit_bio, work);
729 ret = async->submit_bio_start(async->inode, async->bio,
730 async->mirror_num, async->bio_flags,
736 static void run_one_async_done(struct btrfs_work *work)
738 struct btrfs_fs_info *fs_info;
739 struct async_submit_bio *async;
742 async = container_of(work, struct async_submit_bio, work);
743 fs_info = BTRFS_I(async->inode)->root->fs_info;
745 limit = btrfs_async_submit_limit(fs_info);
746 limit = limit * 2 / 3;
749 * atomic_dec_return implies a barrier for waitqueue_active
751 if (atomic_dec_return(&fs_info->nr_async_submits) < limit &&
752 waitqueue_active(&fs_info->async_submit_wait))
753 wake_up(&fs_info->async_submit_wait);
755 /* If an error occurred we just want to clean up the bio and move on */
757 async->bio->bi_error = async->error;
758 bio_endio(async->bio);
762 async->submit_bio_done(async->inode, async->bio, async->mirror_num,
763 async->bio_flags, async->bio_offset);
766 static void run_one_async_free(struct btrfs_work *work)
768 struct async_submit_bio *async;
770 async = container_of(work, struct async_submit_bio, work);
774 int btrfs_wq_submit_bio(struct btrfs_fs_info *fs_info, struct inode *inode,
775 struct bio *bio, int mirror_num,
776 unsigned long bio_flags,
778 extent_submit_bio_hook_t *submit_bio_start,
779 extent_submit_bio_hook_t *submit_bio_done)
781 struct async_submit_bio *async;
783 async = kmalloc(sizeof(*async), GFP_NOFS);
787 async->inode = inode;
789 async->mirror_num = mirror_num;
790 async->submit_bio_start = submit_bio_start;
791 async->submit_bio_done = submit_bio_done;
793 btrfs_init_work(&async->work, btrfs_worker_helper, run_one_async_start,
794 run_one_async_done, run_one_async_free);
796 async->bio_flags = bio_flags;
797 async->bio_offset = bio_offset;
801 atomic_inc(&fs_info->nr_async_submits);
803 if (bio->bi_opf & REQ_SYNC)
804 btrfs_set_work_high_priority(&async->work);
806 btrfs_queue_work(fs_info->workers, &async->work);
808 while (atomic_read(&fs_info->async_submit_draining) &&
809 atomic_read(&fs_info->nr_async_submits)) {
810 wait_event(fs_info->async_submit_wait,
811 (atomic_read(&fs_info->nr_async_submits) == 0));
817 static int btree_csum_one_bio(struct bio *bio)
819 struct bio_vec *bvec;
820 struct btrfs_root *root;
823 bio_for_each_segment_all(bvec, bio, i) {
824 root = BTRFS_I(bvec->bv_page->mapping->host)->root;
825 ret = csum_dirty_buffer(root->fs_info, bvec->bv_page);
833 static int __btree_submit_bio_start(struct inode *inode, struct bio *bio,
834 int mirror_num, unsigned long bio_flags,
838 * when we're called for a write, we're already in the async
839 * submission context. Just jump into btrfs_map_bio
841 return btree_csum_one_bio(bio);
844 static int __btree_submit_bio_done(struct inode *inode, struct bio *bio,
845 int mirror_num, unsigned long bio_flags,
851 * when we're called for a write, we're already in the async
852 * submission context. Just jump into btrfs_map_bio
854 ret = btrfs_map_bio(BTRFS_I(inode)->root, bio, mirror_num, 1);
862 static int check_async_write(struct inode *inode, unsigned long bio_flags)
864 if (bio_flags & EXTENT_BIO_TREE_LOG)
867 if (static_cpu_has(X86_FEATURE_XMM4_2))
873 static int btree_submit_bio_hook(struct inode *inode, struct bio *bio,
874 int mirror_num, unsigned long bio_flags,
877 int async = check_async_write(inode, bio_flags);
880 if (bio_op(bio) != REQ_OP_WRITE) {
882 * called for a read, do the setup so that checksum validation
883 * can happen in the async kernel threads
885 ret = btrfs_bio_wq_end_io(BTRFS_I(inode)->root->fs_info,
886 bio, BTRFS_WQ_ENDIO_METADATA);
889 ret = btrfs_map_bio(BTRFS_I(inode)->root, bio, mirror_num, 0);
891 ret = btree_csum_one_bio(bio);
894 ret = btrfs_map_bio(BTRFS_I(inode)->root, bio, mirror_num, 0);
897 * kthread helpers are used to submit writes so that
898 * checksumming can happen in parallel across all CPUs
900 ret = btrfs_wq_submit_bio(BTRFS_I(inode)->root->fs_info,
901 inode, bio, mirror_num, 0,
903 __btree_submit_bio_start,
904 __btree_submit_bio_done);
917 #ifdef CONFIG_MIGRATION
918 static int btree_migratepage(struct address_space *mapping,
919 struct page *newpage, struct page *page,
920 enum migrate_mode mode)
923 * we can't safely write a btree page from here,
924 * we haven't done the locking hook
929 * Buffers may be managed in a filesystem specific way.
930 * We must have no buffers or drop them.
932 if (page_has_private(page) &&
933 !try_to_release_page(page, GFP_KERNEL))
935 return migrate_page(mapping, newpage, page, mode);
940 static int btree_writepages(struct address_space *mapping,
941 struct writeback_control *wbc)
943 struct btrfs_fs_info *fs_info;
946 if (wbc->sync_mode == WB_SYNC_NONE) {
948 if (wbc->for_kupdate)
951 fs_info = BTRFS_I(mapping->host)->root->fs_info;
952 /* this is a bit racy, but that's ok */
953 ret = __percpu_counter_compare(&fs_info->dirty_metadata_bytes,
954 BTRFS_DIRTY_METADATA_THRESH,
955 fs_info->dirty_metadata_batch);
959 return btree_write_cache_pages(mapping, wbc);
962 static int btree_readpage(struct file *file, struct page *page)
964 struct extent_io_tree *tree;
965 tree = &BTRFS_I(page->mapping->host)->io_tree;
966 return extent_read_full_page(tree, page, btree_get_extent, 0);
969 static int btree_releasepage(struct page *page, gfp_t gfp_flags)
971 if (PageWriteback(page) || PageDirty(page))
974 return try_release_extent_buffer(page);
977 static void btree_invalidatepage(struct page *page, unsigned int offset,
980 struct extent_io_tree *tree;
981 tree = &BTRFS_I(page->mapping->host)->io_tree;
982 extent_invalidatepage(tree, page, offset);
983 btree_releasepage(page, GFP_NOFS);
984 if (PagePrivate(page)) {
985 btrfs_warn(BTRFS_I(page->mapping->host)->root->fs_info,
986 "page private not zero on page %llu",
987 (unsigned long long)page_offset(page));
988 ClearPagePrivate(page);
989 set_page_private(page, 0);
994 static int btree_set_page_dirty(struct page *page)
997 struct extent_buffer *eb;
999 BUG_ON(!PagePrivate(page));
1000 eb = (struct extent_buffer *)page->private;
1002 BUG_ON(!test_bit(EXTENT_BUFFER_DIRTY, &eb->bflags));
1003 BUG_ON(!atomic_read(&eb->refs));
1004 btrfs_assert_tree_locked(eb);
1006 return __set_page_dirty_nobuffers(page);
1009 static const struct address_space_operations btree_aops = {
1010 .readpage = btree_readpage,
1011 .writepages = btree_writepages,
1012 .releasepage = btree_releasepage,
1013 .invalidatepage = btree_invalidatepage,
1014 #ifdef CONFIG_MIGRATION
1015 .migratepage = btree_migratepage,
1017 .set_page_dirty = btree_set_page_dirty,
1020 void readahead_tree_block(struct btrfs_root *root, u64 bytenr)
1022 struct extent_buffer *buf = NULL;
1023 struct inode *btree_inode = root->fs_info->btree_inode;
1025 buf = btrfs_find_create_tree_block(root, bytenr);
1028 read_extent_buffer_pages(&BTRFS_I(btree_inode)->io_tree,
1029 buf, WAIT_NONE, btree_get_extent, 0);
1030 free_extent_buffer(buf);
1033 int reada_tree_block_flagged(struct btrfs_root *root, u64 bytenr,
1034 int mirror_num, struct extent_buffer **eb)
1036 struct extent_buffer *buf = NULL;
1037 struct inode *btree_inode = root->fs_info->btree_inode;
1038 struct extent_io_tree *io_tree = &BTRFS_I(btree_inode)->io_tree;
1041 buf = btrfs_find_create_tree_block(root, bytenr);
1045 set_bit(EXTENT_BUFFER_READAHEAD, &buf->bflags);
1047 ret = read_extent_buffer_pages(io_tree, buf, WAIT_PAGE_LOCK,
1048 btree_get_extent, mirror_num);
1050 free_extent_buffer(buf);
1054 if (test_bit(EXTENT_BUFFER_CORRUPT, &buf->bflags)) {
1055 free_extent_buffer(buf);
1057 } else if (extent_buffer_uptodate(buf)) {
1060 free_extent_buffer(buf);
1065 struct extent_buffer *btrfs_find_tree_block(struct btrfs_fs_info *fs_info,
1068 return find_extent_buffer(fs_info, bytenr);
1071 struct extent_buffer *btrfs_find_create_tree_block(struct btrfs_root *root,
1074 if (btrfs_is_testing(root->fs_info))
1075 return alloc_test_extent_buffer(root->fs_info, bytenr,
1077 return alloc_extent_buffer(root->fs_info, bytenr);
1081 int btrfs_write_tree_block(struct extent_buffer *buf)
1083 return filemap_fdatawrite_range(buf->pages[0]->mapping, buf->start,
1084 buf->start + buf->len - 1);
1087 int btrfs_wait_tree_block_writeback(struct extent_buffer *buf)
1089 return filemap_fdatawait_range(buf->pages[0]->mapping,
1090 buf->start, buf->start + buf->len - 1);
1093 struct extent_buffer *read_tree_block(struct btrfs_root *root, u64 bytenr,
1096 struct extent_buffer *buf = NULL;
1099 buf = btrfs_find_create_tree_block(root, bytenr);
1103 ret = btree_read_extent_buffer_pages(root, buf, parent_transid);
1105 free_extent_buffer(buf);
1106 return ERR_PTR(ret);
1112 void clean_tree_block(struct btrfs_trans_handle *trans,
1113 struct btrfs_fs_info *fs_info,
1114 struct extent_buffer *buf)
1116 if (btrfs_header_generation(buf) ==
1117 fs_info->running_transaction->transid) {
1118 btrfs_assert_tree_locked(buf);
1120 if (test_and_clear_bit(EXTENT_BUFFER_DIRTY, &buf->bflags)) {
1121 __percpu_counter_add(&fs_info->dirty_metadata_bytes,
1123 fs_info->dirty_metadata_batch);
1124 /* ugh, clear_extent_buffer_dirty needs to lock the page */
1125 btrfs_set_lock_blocking(buf);
1126 clear_extent_buffer_dirty(buf);
1131 static struct btrfs_subvolume_writers *btrfs_alloc_subvolume_writers(void)
1133 struct btrfs_subvolume_writers *writers;
1136 writers = kmalloc(sizeof(*writers), GFP_NOFS);
1138 return ERR_PTR(-ENOMEM);
1140 ret = percpu_counter_init(&writers->counter, 0, GFP_NOFS);
1143 return ERR_PTR(ret);
1146 init_waitqueue_head(&writers->wait);
1151 btrfs_free_subvolume_writers(struct btrfs_subvolume_writers *writers)
1153 percpu_counter_destroy(&writers->counter);
1157 static void __setup_root(u32 nodesize, u32 sectorsize, u32 stripesize,
1158 struct btrfs_root *root, struct btrfs_fs_info *fs_info,
1161 bool dummy = test_bit(BTRFS_FS_STATE_DUMMY_FS_INFO, &fs_info->fs_state);
1163 root->commit_root = NULL;
1164 root->sectorsize = sectorsize;
1165 root->nodesize = nodesize;
1166 root->stripesize = stripesize;
1168 root->orphan_cleanup_state = 0;
1170 root->objectid = objectid;
1171 root->last_trans = 0;
1172 root->highest_objectid = 0;
1173 root->nr_delalloc_inodes = 0;
1174 root->nr_ordered_extents = 0;
1176 root->inode_tree = RB_ROOT;
1177 INIT_RADIX_TREE(&root->delayed_nodes_tree, GFP_ATOMIC);
1178 root->block_rsv = NULL;
1179 root->orphan_block_rsv = NULL;
1181 INIT_LIST_HEAD(&root->dirty_list);
1182 INIT_LIST_HEAD(&root->root_list);
1183 INIT_LIST_HEAD(&root->delalloc_inodes);
1184 INIT_LIST_HEAD(&root->delalloc_root);
1185 INIT_LIST_HEAD(&root->ordered_extents);
1186 INIT_LIST_HEAD(&root->ordered_root);
1187 INIT_LIST_HEAD(&root->logged_list[0]);
1188 INIT_LIST_HEAD(&root->logged_list[1]);
1189 spin_lock_init(&root->orphan_lock);
1190 spin_lock_init(&root->inode_lock);
1191 spin_lock_init(&root->delalloc_lock);
1192 spin_lock_init(&root->ordered_extent_lock);
1193 spin_lock_init(&root->accounting_lock);
1194 spin_lock_init(&root->log_extents_lock[0]);
1195 spin_lock_init(&root->log_extents_lock[1]);
1196 mutex_init(&root->objectid_mutex);
1197 mutex_init(&root->log_mutex);
1198 mutex_init(&root->ordered_extent_mutex);
1199 mutex_init(&root->delalloc_mutex);
1200 init_waitqueue_head(&root->log_writer_wait);
1201 init_waitqueue_head(&root->log_commit_wait[0]);
1202 init_waitqueue_head(&root->log_commit_wait[1]);
1203 INIT_LIST_HEAD(&root->log_ctxs[0]);
1204 INIT_LIST_HEAD(&root->log_ctxs[1]);
1205 atomic_set(&root->log_commit[0], 0);
1206 atomic_set(&root->log_commit[1], 0);
1207 atomic_set(&root->log_writers, 0);
1208 atomic_set(&root->log_batch, 0);
1209 atomic_set(&root->orphan_inodes, 0);
1210 atomic_set(&root->refs, 1);
1211 atomic_set(&root->will_be_snapshoted, 0);
1212 atomic_set(&root->qgroup_meta_rsv, 0);
1213 root->log_transid = 0;
1214 root->log_transid_committed = -1;
1215 root->last_log_commit = 0;
1217 extent_io_tree_init(&root->dirty_log_pages,
1218 fs_info->btree_inode->i_mapping);
1220 memset(&root->root_key, 0, sizeof(root->root_key));
1221 memset(&root->root_item, 0, sizeof(root->root_item));
1222 memset(&root->defrag_progress, 0, sizeof(root->defrag_progress));
1224 root->defrag_trans_start = fs_info->generation;
1226 root->defrag_trans_start = 0;
1227 root->root_key.objectid = objectid;
1230 spin_lock_init(&root->root_item_lock);
1233 static struct btrfs_root *btrfs_alloc_root(struct btrfs_fs_info *fs_info,
1236 struct btrfs_root *root = kzalloc(sizeof(*root), flags);
1238 root->fs_info = fs_info;
1242 #ifdef CONFIG_BTRFS_FS_RUN_SANITY_TESTS
1243 /* Should only be used by the testing infrastructure */
1244 struct btrfs_root *btrfs_alloc_dummy_root(struct btrfs_fs_info *fs_info,
1245 u32 sectorsize, u32 nodesize)
1247 struct btrfs_root *root;
1250 return ERR_PTR(-EINVAL);
1252 root = btrfs_alloc_root(fs_info, GFP_KERNEL);
1254 return ERR_PTR(-ENOMEM);
1255 /* We don't use the stripesize in selftest, set it as sectorsize */
1256 __setup_root(nodesize, sectorsize, sectorsize, root, fs_info,
1257 BTRFS_ROOT_TREE_OBJECTID);
1258 root->alloc_bytenr = 0;
1264 struct btrfs_root *btrfs_create_tree(struct btrfs_trans_handle *trans,
1265 struct btrfs_fs_info *fs_info,
1268 struct extent_buffer *leaf;
1269 struct btrfs_root *tree_root = fs_info->tree_root;
1270 struct btrfs_root *root;
1271 struct btrfs_key key;
1275 root = btrfs_alloc_root(fs_info, GFP_KERNEL);
1277 return ERR_PTR(-ENOMEM);
1279 __setup_root(tree_root->nodesize, tree_root->sectorsize,
1280 tree_root->stripesize, root, fs_info, objectid);
1281 root->root_key.objectid = objectid;
1282 root->root_key.type = BTRFS_ROOT_ITEM_KEY;
1283 root->root_key.offset = 0;
1285 leaf = btrfs_alloc_tree_block(trans, root, 0, objectid, NULL, 0, 0, 0);
1287 ret = PTR_ERR(leaf);
1292 memset_extent_buffer(leaf, 0, 0, sizeof(struct btrfs_header));
1293 btrfs_set_header_bytenr(leaf, leaf->start);
1294 btrfs_set_header_generation(leaf, trans->transid);
1295 btrfs_set_header_backref_rev(leaf, BTRFS_MIXED_BACKREF_REV);
1296 btrfs_set_header_owner(leaf, objectid);
1299 write_extent_buffer(leaf, fs_info->fsid, btrfs_header_fsid(),
1301 write_extent_buffer(leaf, fs_info->chunk_tree_uuid,
1302 btrfs_header_chunk_tree_uuid(leaf),
1304 btrfs_mark_buffer_dirty(leaf);
1306 root->commit_root = btrfs_root_node(root);
1307 set_bit(BTRFS_ROOT_TRACK_DIRTY, &root->state);
1309 root->root_item.flags = 0;
1310 root->root_item.byte_limit = 0;
1311 btrfs_set_root_bytenr(&root->root_item, leaf->start);
1312 btrfs_set_root_generation(&root->root_item, trans->transid);
1313 btrfs_set_root_level(&root->root_item, 0);
1314 btrfs_set_root_refs(&root->root_item, 1);
1315 btrfs_set_root_used(&root->root_item, leaf->len);
1316 btrfs_set_root_last_snapshot(&root->root_item, 0);
1317 btrfs_set_root_dirid(&root->root_item, 0);
1319 memcpy(root->root_item.uuid, uuid.b, BTRFS_UUID_SIZE);
1320 root->root_item.drop_level = 0;
1322 key.objectid = objectid;
1323 key.type = BTRFS_ROOT_ITEM_KEY;
1325 ret = btrfs_insert_root(trans, tree_root, &key, &root->root_item);
1329 btrfs_tree_unlock(leaf);
1335 btrfs_tree_unlock(leaf);
1336 free_extent_buffer(root->commit_root);
1337 free_extent_buffer(leaf);
1341 return ERR_PTR(ret);
1344 static struct btrfs_root *alloc_log_tree(struct btrfs_trans_handle *trans,
1345 struct btrfs_fs_info *fs_info)
1347 struct btrfs_root *root;
1348 struct btrfs_root *tree_root = fs_info->tree_root;
1349 struct extent_buffer *leaf;
1351 root = btrfs_alloc_root(fs_info, GFP_NOFS);
1353 return ERR_PTR(-ENOMEM);
1355 __setup_root(tree_root->nodesize, tree_root->sectorsize,
1356 tree_root->stripesize, root, fs_info,
1357 BTRFS_TREE_LOG_OBJECTID);
1359 root->root_key.objectid = BTRFS_TREE_LOG_OBJECTID;
1360 root->root_key.type = BTRFS_ROOT_ITEM_KEY;
1361 root->root_key.offset = BTRFS_TREE_LOG_OBJECTID;
1364 * DON'T set REF_COWS for log trees
1366 * log trees do not get reference counted because they go away
1367 * before a real commit is actually done. They do store pointers
1368 * to file data extents, and those reference counts still get
1369 * updated (along with back refs to the log tree).
1372 leaf = btrfs_alloc_tree_block(trans, root, 0, BTRFS_TREE_LOG_OBJECTID,
1376 return ERR_CAST(leaf);
1379 memset_extent_buffer(leaf, 0, 0, sizeof(struct btrfs_header));
1380 btrfs_set_header_bytenr(leaf, leaf->start);
1381 btrfs_set_header_generation(leaf, trans->transid);
1382 btrfs_set_header_backref_rev(leaf, BTRFS_MIXED_BACKREF_REV);
1383 btrfs_set_header_owner(leaf, BTRFS_TREE_LOG_OBJECTID);
1386 write_extent_buffer(root->node, root->fs_info->fsid,
1387 btrfs_header_fsid(), BTRFS_FSID_SIZE);
1388 btrfs_mark_buffer_dirty(root->node);
1389 btrfs_tree_unlock(root->node);
1393 int btrfs_init_log_root_tree(struct btrfs_trans_handle *trans,
1394 struct btrfs_fs_info *fs_info)
1396 struct btrfs_root *log_root;
1398 log_root = alloc_log_tree(trans, fs_info);
1399 if (IS_ERR(log_root))
1400 return PTR_ERR(log_root);
1401 WARN_ON(fs_info->log_root_tree);
1402 fs_info->log_root_tree = log_root;
1406 int btrfs_add_log_tree(struct btrfs_trans_handle *trans,
1407 struct btrfs_root *root)
1409 struct btrfs_root *log_root;
1410 struct btrfs_inode_item *inode_item;
1412 log_root = alloc_log_tree(trans, root->fs_info);
1413 if (IS_ERR(log_root))
1414 return PTR_ERR(log_root);
1416 log_root->last_trans = trans->transid;
1417 log_root->root_key.offset = root->root_key.objectid;
1419 inode_item = &log_root->root_item.inode;
1420 btrfs_set_stack_inode_generation(inode_item, 1);
1421 btrfs_set_stack_inode_size(inode_item, 3);
1422 btrfs_set_stack_inode_nlink(inode_item, 1);
1423 btrfs_set_stack_inode_nbytes(inode_item, root->nodesize);
1424 btrfs_set_stack_inode_mode(inode_item, S_IFDIR | 0755);
1426 btrfs_set_root_node(&log_root->root_item, log_root->node);
1428 WARN_ON(root->log_root);
1429 root->log_root = log_root;
1430 root->log_transid = 0;
1431 root->log_transid_committed = -1;
1432 root->last_log_commit = 0;
1436 static struct btrfs_root *btrfs_read_tree_root(struct btrfs_root *tree_root,
1437 struct btrfs_key *key)
1439 struct btrfs_root *root;
1440 struct btrfs_fs_info *fs_info = tree_root->fs_info;
1441 struct btrfs_path *path;
1445 path = btrfs_alloc_path();
1447 return ERR_PTR(-ENOMEM);
1449 root = btrfs_alloc_root(fs_info, GFP_NOFS);
1455 __setup_root(tree_root->nodesize, tree_root->sectorsize,
1456 tree_root->stripesize, root, fs_info, key->objectid);
1458 ret = btrfs_find_root(tree_root, key, path,
1459 &root->root_item, &root->root_key);
1466 generation = btrfs_root_generation(&root->root_item);
1467 root->node = read_tree_block(root, btrfs_root_bytenr(&root->root_item),
1469 if (IS_ERR(root->node)) {
1470 ret = PTR_ERR(root->node);
1472 } else if (!btrfs_buffer_uptodate(root->node, generation, 0)) {
1474 free_extent_buffer(root->node);
1477 root->commit_root = btrfs_root_node(root);
1479 btrfs_free_path(path);
1485 root = ERR_PTR(ret);
1489 struct btrfs_root *btrfs_read_fs_root(struct btrfs_root *tree_root,
1490 struct btrfs_key *location)
1492 struct btrfs_root *root;
1494 root = btrfs_read_tree_root(tree_root, location);
1498 if (root->root_key.objectid != BTRFS_TREE_LOG_OBJECTID) {
1499 set_bit(BTRFS_ROOT_REF_COWS, &root->state);
1500 btrfs_check_and_init_root_item(&root->root_item);
1506 int btrfs_init_fs_root(struct btrfs_root *root)
1509 struct btrfs_subvolume_writers *writers;
1511 root->free_ino_ctl = kzalloc(sizeof(*root->free_ino_ctl), GFP_NOFS);
1512 root->free_ino_pinned = kzalloc(sizeof(*root->free_ino_pinned),
1514 if (!root->free_ino_pinned || !root->free_ino_ctl) {
1519 writers = btrfs_alloc_subvolume_writers();
1520 if (IS_ERR(writers)) {
1521 ret = PTR_ERR(writers);
1524 root->subv_writers = writers;
1526 btrfs_init_free_ino_ctl(root);
1527 spin_lock_init(&root->ino_cache_lock);
1528 init_waitqueue_head(&root->ino_cache_wait);
1531 * Don't assign anonymous block device to roots that are not exposed to
1532 * userspace, the id pool is limited to 1M
1534 if (is_fstree(root->root_key.objectid) &&
1535 btrfs_root_refs(&root->root_item) > 0) {
1536 ret = get_anon_bdev(&root->anon_dev);
1541 mutex_lock(&root->objectid_mutex);
1542 ret = btrfs_find_highest_objectid(root,
1543 &root->highest_objectid);
1545 mutex_unlock(&root->objectid_mutex);
1549 ASSERT(root->highest_objectid <= BTRFS_LAST_FREE_OBJECTID);
1551 mutex_unlock(&root->objectid_mutex);
1555 /* the caller is responsible to call free_fs_root */
1559 struct btrfs_root *btrfs_lookup_fs_root(struct btrfs_fs_info *fs_info,
1562 struct btrfs_root *root;
1564 spin_lock(&fs_info->fs_roots_radix_lock);
1565 root = radix_tree_lookup(&fs_info->fs_roots_radix,
1566 (unsigned long)root_id);
1567 spin_unlock(&fs_info->fs_roots_radix_lock);
1571 int btrfs_insert_fs_root(struct btrfs_fs_info *fs_info,
1572 struct btrfs_root *root)
1576 ret = radix_tree_preload(GFP_NOFS);
1580 spin_lock(&fs_info->fs_roots_radix_lock);
1581 ret = radix_tree_insert(&fs_info->fs_roots_radix,
1582 (unsigned long)root->root_key.objectid,
1585 set_bit(BTRFS_ROOT_IN_RADIX, &root->state);
1586 spin_unlock(&fs_info->fs_roots_radix_lock);
1587 radix_tree_preload_end();
1592 struct btrfs_root *btrfs_get_fs_root(struct btrfs_fs_info *fs_info,
1593 struct btrfs_key *location,
1596 struct btrfs_root *root;
1597 struct btrfs_path *path;
1598 struct btrfs_key key;
1601 if (location->objectid == BTRFS_ROOT_TREE_OBJECTID)
1602 return fs_info->tree_root;
1603 if (location->objectid == BTRFS_EXTENT_TREE_OBJECTID)
1604 return fs_info->extent_root;
1605 if (location->objectid == BTRFS_CHUNK_TREE_OBJECTID)
1606 return fs_info->chunk_root;
1607 if (location->objectid == BTRFS_DEV_TREE_OBJECTID)
1608 return fs_info->dev_root;
1609 if (location->objectid == BTRFS_CSUM_TREE_OBJECTID)
1610 return fs_info->csum_root;
1611 if (location->objectid == BTRFS_QUOTA_TREE_OBJECTID)
1612 return fs_info->quota_root ? fs_info->quota_root :
1614 if (location->objectid == BTRFS_UUID_TREE_OBJECTID)
1615 return fs_info->uuid_root ? fs_info->uuid_root :
1617 if (location->objectid == BTRFS_FREE_SPACE_TREE_OBJECTID)
1618 return fs_info->free_space_root ? fs_info->free_space_root :
1621 root = btrfs_lookup_fs_root(fs_info, location->objectid);
1623 if (check_ref && btrfs_root_refs(&root->root_item) == 0)
1624 return ERR_PTR(-ENOENT);
1628 root = btrfs_read_fs_root(fs_info->tree_root, location);
1632 if (check_ref && btrfs_root_refs(&root->root_item) == 0) {
1637 ret = btrfs_init_fs_root(root);
1641 path = btrfs_alloc_path();
1646 key.objectid = BTRFS_ORPHAN_OBJECTID;
1647 key.type = BTRFS_ORPHAN_ITEM_KEY;
1648 key.offset = location->objectid;
1650 ret = btrfs_search_slot(NULL, fs_info->tree_root, &key, path, 0, 0);
1651 btrfs_free_path(path);
1655 set_bit(BTRFS_ROOT_ORPHAN_ITEM_INSERTED, &root->state);
1657 ret = btrfs_insert_fs_root(fs_info, root);
1659 if (ret == -EEXIST) {
1668 return ERR_PTR(ret);
1671 static int btrfs_congested_fn(void *congested_data, int bdi_bits)
1673 struct btrfs_fs_info *info = (struct btrfs_fs_info *)congested_data;
1675 struct btrfs_device *device;
1676 struct backing_dev_info *bdi;
1679 list_for_each_entry_rcu(device, &info->fs_devices->devices, dev_list) {
1682 bdi = blk_get_backing_dev_info(device->bdev);
1683 if (bdi_congested(bdi, bdi_bits)) {
1692 static int setup_bdi(struct btrfs_fs_info *info, struct backing_dev_info *bdi)
1696 err = bdi_setup_and_register(bdi, "btrfs");
1700 bdi->ra_pages = VM_MAX_READAHEAD * 1024 / PAGE_SIZE;
1701 bdi->congested_fn = btrfs_congested_fn;
1702 bdi->congested_data = info;
1703 bdi->capabilities |= BDI_CAP_CGROUP_WRITEBACK;
1708 * called by the kthread helper functions to finally call the bio end_io
1709 * functions. This is where read checksum verification actually happens
1711 static void end_workqueue_fn(struct btrfs_work *work)
1714 struct btrfs_end_io_wq *end_io_wq;
1716 end_io_wq = container_of(work, struct btrfs_end_io_wq, work);
1717 bio = end_io_wq->bio;
1719 bio->bi_error = end_io_wq->error;
1720 bio->bi_private = end_io_wq->private;
1721 bio->bi_end_io = end_io_wq->end_io;
1723 kmem_cache_free(btrfs_end_io_wq_cache, end_io_wq);
1726 static int cleaner_kthread(void *arg)
1728 struct btrfs_root *root = arg;
1730 struct btrfs_trans_handle *trans;
1735 /* Make the cleaner go to sleep early. */
1736 if (btrfs_need_cleaner_sleep(root))
1740 * Do not do anything if we might cause open_ctree() to block
1741 * before we have finished mounting the filesystem.
1743 if (!test_bit(BTRFS_FS_OPEN, &root->fs_info->flags))
1746 if (!mutex_trylock(&root->fs_info->cleaner_mutex))
1750 * Avoid the problem that we change the status of the fs
1751 * during the above check and trylock.
1753 if (btrfs_need_cleaner_sleep(root)) {
1754 mutex_unlock(&root->fs_info->cleaner_mutex);
1758 mutex_lock(&root->fs_info->cleaner_delayed_iput_mutex);
1759 btrfs_run_delayed_iputs(root);
1760 mutex_unlock(&root->fs_info->cleaner_delayed_iput_mutex);
1762 again = btrfs_clean_one_deleted_snapshot(root);
1763 mutex_unlock(&root->fs_info->cleaner_mutex);
1766 * The defragger has dealt with the R/O remount and umount,
1767 * needn't do anything special here.
1769 btrfs_run_defrag_inodes(root->fs_info);
1772 * Acquires fs_info->delete_unused_bgs_mutex to avoid racing
1773 * with relocation (btrfs_relocate_chunk) and relocation
1774 * acquires fs_info->cleaner_mutex (btrfs_relocate_block_group)
1775 * after acquiring fs_info->delete_unused_bgs_mutex. So we
1776 * can't hold, nor need to, fs_info->cleaner_mutex when deleting
1777 * unused block groups.
1779 btrfs_delete_unused_bgs(root->fs_info);
1782 set_current_state(TASK_INTERRUPTIBLE);
1783 if (!kthread_should_stop())
1785 __set_current_state(TASK_RUNNING);
1787 } while (!kthread_should_stop());
1790 * Transaction kthread is stopped before us and wakes us up.
1791 * However we might have started a new transaction and COWed some
1792 * tree blocks when deleting unused block groups for example. So
1793 * make sure we commit the transaction we started to have a clean
1794 * shutdown when evicting the btree inode - if it has dirty pages
1795 * when we do the final iput() on it, eviction will trigger a
1796 * writeback for it which will fail with null pointer dereferences
1797 * since work queues and other resources were already released and
1798 * destroyed by the time the iput/eviction/writeback is made.
1800 trans = btrfs_attach_transaction(root);
1801 if (IS_ERR(trans)) {
1802 if (PTR_ERR(trans) != -ENOENT)
1803 btrfs_err(root->fs_info,
1804 "cleaner transaction attach returned %ld",
1809 ret = btrfs_commit_transaction(trans, root);
1811 btrfs_err(root->fs_info,
1812 "cleaner open transaction commit returned %d",
1819 static int transaction_kthread(void *arg)
1821 struct btrfs_root *root = arg;
1822 struct btrfs_trans_handle *trans;
1823 struct btrfs_transaction *cur;
1826 unsigned long delay;
1830 cannot_commit = false;
1831 delay = HZ * root->fs_info->commit_interval;
1832 mutex_lock(&root->fs_info->transaction_kthread_mutex);
1834 spin_lock(&root->fs_info->trans_lock);
1835 cur = root->fs_info->running_transaction;
1837 spin_unlock(&root->fs_info->trans_lock);
1841 now = get_seconds();
1842 if (cur->state < TRANS_STATE_BLOCKED &&
1843 (now < cur->start_time ||
1844 now - cur->start_time < root->fs_info->commit_interval)) {
1845 spin_unlock(&root->fs_info->trans_lock);
1849 transid = cur->transid;
1850 spin_unlock(&root->fs_info->trans_lock);
1852 /* If the file system is aborted, this will always fail. */
1853 trans = btrfs_attach_transaction(root);
1854 if (IS_ERR(trans)) {
1855 if (PTR_ERR(trans) != -ENOENT)
1856 cannot_commit = true;
1859 if (transid == trans->transid) {
1860 btrfs_commit_transaction(trans, root);
1862 btrfs_end_transaction(trans, root);
1865 wake_up_process(root->fs_info->cleaner_kthread);
1866 mutex_unlock(&root->fs_info->transaction_kthread_mutex);
1868 if (unlikely(test_bit(BTRFS_FS_STATE_ERROR,
1869 &root->fs_info->fs_state)))
1870 btrfs_cleanup_transaction(root);
1871 set_current_state(TASK_INTERRUPTIBLE);
1872 if (!kthread_should_stop() &&
1873 (!btrfs_transaction_blocked(root->fs_info) ||
1875 schedule_timeout(delay);
1876 __set_current_state(TASK_RUNNING);
1877 } while (!kthread_should_stop());
1882 * this will find the highest generation in the array of
1883 * root backups. The index of the highest array is returned,
1884 * or -1 if we can't find anything.
1886 * We check to make sure the array is valid by comparing the
1887 * generation of the latest root in the array with the generation
1888 * in the super block. If they don't match we pitch it.
1890 static int find_newest_super_backup(struct btrfs_fs_info *info, u64 newest_gen)
1893 int newest_index = -1;
1894 struct btrfs_root_backup *root_backup;
1897 for (i = 0; i < BTRFS_NUM_BACKUP_ROOTS; i++) {
1898 root_backup = info->super_copy->super_roots + i;
1899 cur = btrfs_backup_tree_root_gen(root_backup);
1900 if (cur == newest_gen)
1904 /* check to see if we actually wrapped around */
1905 if (newest_index == BTRFS_NUM_BACKUP_ROOTS - 1) {
1906 root_backup = info->super_copy->super_roots;
1907 cur = btrfs_backup_tree_root_gen(root_backup);
1908 if (cur == newest_gen)
1911 return newest_index;
1916 * find the oldest backup so we know where to store new entries
1917 * in the backup array. This will set the backup_root_index
1918 * field in the fs_info struct
1920 static void find_oldest_super_backup(struct btrfs_fs_info *info,
1923 int newest_index = -1;
1925 newest_index = find_newest_super_backup(info, newest_gen);
1926 /* if there was garbage in there, just move along */
1927 if (newest_index == -1) {
1928 info->backup_root_index = 0;
1930 info->backup_root_index = (newest_index + 1) % BTRFS_NUM_BACKUP_ROOTS;
1935 * copy all the root pointers into the super backup array.
1936 * this will bump the backup pointer by one when it is
1939 static void backup_super_roots(struct btrfs_fs_info *info)
1942 struct btrfs_root_backup *root_backup;
1945 next_backup = info->backup_root_index;
1946 last_backup = (next_backup + BTRFS_NUM_BACKUP_ROOTS - 1) %
1947 BTRFS_NUM_BACKUP_ROOTS;
1950 * just overwrite the last backup if we're at the same generation
1951 * this happens only at umount
1953 root_backup = info->super_for_commit->super_roots + last_backup;
1954 if (btrfs_backup_tree_root_gen(root_backup) ==
1955 btrfs_header_generation(info->tree_root->node))
1956 next_backup = last_backup;
1958 root_backup = info->super_for_commit->super_roots + next_backup;
1961 * make sure all of our padding and empty slots get zero filled
1962 * regardless of which ones we use today
1964 memset(root_backup, 0, sizeof(*root_backup));
1966 info->backup_root_index = (next_backup + 1) % BTRFS_NUM_BACKUP_ROOTS;
1968 btrfs_set_backup_tree_root(root_backup, info->tree_root->node->start);
1969 btrfs_set_backup_tree_root_gen(root_backup,
1970 btrfs_header_generation(info->tree_root->node));
1972 btrfs_set_backup_tree_root_level(root_backup,
1973 btrfs_header_level(info->tree_root->node));
1975 btrfs_set_backup_chunk_root(root_backup, info->chunk_root->node->start);
1976 btrfs_set_backup_chunk_root_gen(root_backup,
1977 btrfs_header_generation(info->chunk_root->node));
1978 btrfs_set_backup_chunk_root_level(root_backup,
1979 btrfs_header_level(info->chunk_root->node));
1981 btrfs_set_backup_extent_root(root_backup, info->extent_root->node->start);
1982 btrfs_set_backup_extent_root_gen(root_backup,
1983 btrfs_header_generation(info->extent_root->node));
1984 btrfs_set_backup_extent_root_level(root_backup,
1985 btrfs_header_level(info->extent_root->node));
1988 * we might commit during log recovery, which happens before we set
1989 * the fs_root. Make sure it is valid before we fill it in.
1991 if (info->fs_root && info->fs_root->node) {
1992 btrfs_set_backup_fs_root(root_backup,
1993 info->fs_root->node->start);
1994 btrfs_set_backup_fs_root_gen(root_backup,
1995 btrfs_header_generation(info->fs_root->node));
1996 btrfs_set_backup_fs_root_level(root_backup,
1997 btrfs_header_level(info->fs_root->node));
2000 btrfs_set_backup_dev_root(root_backup, info->dev_root->node->start);
2001 btrfs_set_backup_dev_root_gen(root_backup,
2002 btrfs_header_generation(info->dev_root->node));
2003 btrfs_set_backup_dev_root_level(root_backup,
2004 btrfs_header_level(info->dev_root->node));
2006 btrfs_set_backup_csum_root(root_backup, info->csum_root->node->start);
2007 btrfs_set_backup_csum_root_gen(root_backup,
2008 btrfs_header_generation(info->csum_root->node));
2009 btrfs_set_backup_csum_root_level(root_backup,
2010 btrfs_header_level(info->csum_root->node));
2012 btrfs_set_backup_total_bytes(root_backup,
2013 btrfs_super_total_bytes(info->super_copy));
2014 btrfs_set_backup_bytes_used(root_backup,
2015 btrfs_super_bytes_used(info->super_copy));
2016 btrfs_set_backup_num_devices(root_backup,
2017 btrfs_super_num_devices(info->super_copy));
2020 * if we don't copy this out to the super_copy, it won't get remembered
2021 * for the next commit
2023 memcpy(&info->super_copy->super_roots,
2024 &info->super_for_commit->super_roots,
2025 sizeof(*root_backup) * BTRFS_NUM_BACKUP_ROOTS);
2029 * this copies info out of the root backup array and back into
2030 * the in-memory super block. It is meant to help iterate through
2031 * the array, so you send it the number of backups you've already
2032 * tried and the last backup index you used.
2034 * this returns -1 when it has tried all the backups
2036 static noinline int next_root_backup(struct btrfs_fs_info *info,
2037 struct btrfs_super_block *super,
2038 int *num_backups_tried, int *backup_index)
2040 struct btrfs_root_backup *root_backup;
2041 int newest = *backup_index;
2043 if (*num_backups_tried == 0) {
2044 u64 gen = btrfs_super_generation(super);
2046 newest = find_newest_super_backup(info, gen);
2050 *backup_index = newest;
2051 *num_backups_tried = 1;
2052 } else if (*num_backups_tried == BTRFS_NUM_BACKUP_ROOTS) {
2053 /* we've tried all the backups, all done */
2056 /* jump to the next oldest backup */
2057 newest = (*backup_index + BTRFS_NUM_BACKUP_ROOTS - 1) %
2058 BTRFS_NUM_BACKUP_ROOTS;
2059 *backup_index = newest;
2060 *num_backups_tried += 1;
2062 root_backup = super->super_roots + newest;
2064 btrfs_set_super_generation(super,
2065 btrfs_backup_tree_root_gen(root_backup));
2066 btrfs_set_super_root(super, btrfs_backup_tree_root(root_backup));
2067 btrfs_set_super_root_level(super,
2068 btrfs_backup_tree_root_level(root_backup));
2069 btrfs_set_super_bytes_used(super, btrfs_backup_bytes_used(root_backup));
2072 * fixme: the total bytes and num_devices need to match or we should
2075 btrfs_set_super_total_bytes(super, btrfs_backup_total_bytes(root_backup));
2076 btrfs_set_super_num_devices(super, btrfs_backup_num_devices(root_backup));
2080 /* helper to cleanup workers */
2081 static void btrfs_stop_all_workers(struct btrfs_fs_info *fs_info)
2083 btrfs_destroy_workqueue(fs_info->fixup_workers);
2084 btrfs_destroy_workqueue(fs_info->delalloc_workers);
2085 btrfs_destroy_workqueue(fs_info->workers);
2086 btrfs_destroy_workqueue(fs_info->endio_workers);
2087 btrfs_destroy_workqueue(fs_info->endio_meta_workers);
2088 btrfs_destroy_workqueue(fs_info->endio_raid56_workers);
2089 btrfs_destroy_workqueue(fs_info->endio_repair_workers);
2090 btrfs_destroy_workqueue(fs_info->rmw_workers);
2091 btrfs_destroy_workqueue(fs_info->endio_meta_write_workers);
2092 btrfs_destroy_workqueue(fs_info->endio_write_workers);
2093 btrfs_destroy_workqueue(fs_info->endio_freespace_worker);
2094 btrfs_destroy_workqueue(fs_info->submit_workers);
2095 btrfs_destroy_workqueue(fs_info->delayed_workers);
2096 btrfs_destroy_workqueue(fs_info->caching_workers);
2097 btrfs_destroy_workqueue(fs_info->readahead_workers);
2098 btrfs_destroy_workqueue(fs_info->flush_workers);
2099 btrfs_destroy_workqueue(fs_info->qgroup_rescan_workers);
2100 btrfs_destroy_workqueue(fs_info->extent_workers);
2103 static void free_root_extent_buffers(struct btrfs_root *root)
2106 free_extent_buffer(root->node);
2107 free_extent_buffer(root->commit_root);
2109 root->commit_root = NULL;
2113 /* helper to cleanup tree roots */
2114 static void free_root_pointers(struct btrfs_fs_info *info, bool free_chunk_root)
2116 free_root_extent_buffers(info->tree_root);
2118 free_root_extent_buffers(info->dev_root);
2119 free_root_extent_buffers(info->extent_root);
2120 free_root_extent_buffers(info->csum_root);
2121 free_root_extent_buffers(info->quota_root);
2122 free_root_extent_buffers(info->uuid_root);
2123 if (free_chunk_root)
2124 free_root_extent_buffers(info->chunk_root);
2125 free_root_extent_buffers(info->free_space_root);
2128 void btrfs_free_fs_roots(struct btrfs_fs_info *fs_info)
2131 struct btrfs_root *gang[8];
2134 while (!list_empty(&fs_info->dead_roots)) {
2135 gang[0] = list_entry(fs_info->dead_roots.next,
2136 struct btrfs_root, root_list);
2137 list_del(&gang[0]->root_list);
2139 if (test_bit(BTRFS_ROOT_IN_RADIX, &gang[0]->state)) {
2140 btrfs_drop_and_free_fs_root(fs_info, gang[0]);
2142 free_extent_buffer(gang[0]->node);
2143 free_extent_buffer(gang[0]->commit_root);
2144 btrfs_put_fs_root(gang[0]);
2149 ret = radix_tree_gang_lookup(&fs_info->fs_roots_radix,
2154 for (i = 0; i < ret; i++)
2155 btrfs_drop_and_free_fs_root(fs_info, gang[i]);
2158 if (test_bit(BTRFS_FS_STATE_ERROR, &fs_info->fs_state)) {
2159 btrfs_free_log_root_tree(NULL, fs_info);
2160 btrfs_destroy_pinned_extent(fs_info->tree_root,
2161 fs_info->pinned_extents);
2165 static void btrfs_init_scrub(struct btrfs_fs_info *fs_info)
2167 mutex_init(&fs_info->scrub_lock);
2168 atomic_set(&fs_info->scrubs_running, 0);
2169 atomic_set(&fs_info->scrub_pause_req, 0);
2170 atomic_set(&fs_info->scrubs_paused, 0);
2171 atomic_set(&fs_info->scrub_cancel_req, 0);
2172 init_waitqueue_head(&fs_info->scrub_pause_wait);
2173 fs_info->scrub_workers_refcnt = 0;
2176 static void btrfs_init_balance(struct btrfs_fs_info *fs_info)
2178 spin_lock_init(&fs_info->balance_lock);
2179 mutex_init(&fs_info->balance_mutex);
2180 atomic_set(&fs_info->balance_running, 0);
2181 atomic_set(&fs_info->balance_pause_req, 0);
2182 atomic_set(&fs_info->balance_cancel_req, 0);
2183 fs_info->balance_ctl = NULL;
2184 init_waitqueue_head(&fs_info->balance_wait_q);
2187 static void btrfs_init_btree_inode(struct btrfs_fs_info *fs_info,
2188 struct btrfs_root *tree_root)
2190 fs_info->btree_inode->i_ino = BTRFS_BTREE_INODE_OBJECTID;
2191 set_nlink(fs_info->btree_inode, 1);
2193 * we set the i_size on the btree inode to the max possible int.
2194 * the real end of the address space is determined by all of
2195 * the devices in the system
2197 fs_info->btree_inode->i_size = OFFSET_MAX;
2198 fs_info->btree_inode->i_mapping->a_ops = &btree_aops;
2200 RB_CLEAR_NODE(&BTRFS_I(fs_info->btree_inode)->rb_node);
2201 extent_io_tree_init(&BTRFS_I(fs_info->btree_inode)->io_tree,
2202 fs_info->btree_inode->i_mapping);
2203 BTRFS_I(fs_info->btree_inode)->io_tree.track_uptodate = 0;
2204 extent_map_tree_init(&BTRFS_I(fs_info->btree_inode)->extent_tree);
2206 BTRFS_I(fs_info->btree_inode)->io_tree.ops = &btree_extent_io_ops;
2208 BTRFS_I(fs_info->btree_inode)->root = tree_root;
2209 memset(&BTRFS_I(fs_info->btree_inode)->location, 0,
2210 sizeof(struct btrfs_key));
2211 set_bit(BTRFS_INODE_DUMMY,
2212 &BTRFS_I(fs_info->btree_inode)->runtime_flags);
2213 btrfs_insert_inode_hash(fs_info->btree_inode);
2216 static void btrfs_init_dev_replace_locks(struct btrfs_fs_info *fs_info)
2218 fs_info->dev_replace.lock_owner = 0;
2219 atomic_set(&fs_info->dev_replace.nesting_level, 0);
2220 mutex_init(&fs_info->dev_replace.lock_finishing_cancel_unmount);
2221 rwlock_init(&fs_info->dev_replace.lock);
2222 atomic_set(&fs_info->dev_replace.read_locks, 0);
2223 atomic_set(&fs_info->dev_replace.blocking_readers, 0);
2224 init_waitqueue_head(&fs_info->replace_wait);
2225 init_waitqueue_head(&fs_info->dev_replace.read_lock_wq);
2228 static void btrfs_init_qgroup(struct btrfs_fs_info *fs_info)
2230 spin_lock_init(&fs_info->qgroup_lock);
2231 mutex_init(&fs_info->qgroup_ioctl_lock);
2232 fs_info->qgroup_tree = RB_ROOT;
2233 fs_info->qgroup_op_tree = RB_ROOT;
2234 INIT_LIST_HEAD(&fs_info->dirty_qgroups);
2235 fs_info->qgroup_seq = 1;
2236 fs_info->qgroup_ulist = NULL;
2237 fs_info->qgroup_rescan_running = false;
2238 mutex_init(&fs_info->qgroup_rescan_lock);
2241 static int btrfs_init_workqueues(struct btrfs_fs_info *fs_info,
2242 struct btrfs_fs_devices *fs_devices)
2244 int max_active = fs_info->thread_pool_size;
2245 unsigned int flags = WQ_MEM_RECLAIM | WQ_FREEZABLE | WQ_UNBOUND;
2248 btrfs_alloc_workqueue(fs_info, "worker",
2249 flags | WQ_HIGHPRI, max_active, 16);
2251 fs_info->delalloc_workers =
2252 btrfs_alloc_workqueue(fs_info, "delalloc",
2253 flags, max_active, 2);
2255 fs_info->flush_workers =
2256 btrfs_alloc_workqueue(fs_info, "flush_delalloc",
2257 flags, max_active, 0);
2259 fs_info->caching_workers =
2260 btrfs_alloc_workqueue(fs_info, "cache", flags, max_active, 0);
2263 * a higher idle thresh on the submit workers makes it much more
2264 * likely that bios will be send down in a sane order to the
2267 fs_info->submit_workers =
2268 btrfs_alloc_workqueue(fs_info, "submit", flags,
2269 min_t(u64, fs_devices->num_devices,
2272 fs_info->fixup_workers =
2273 btrfs_alloc_workqueue(fs_info, "fixup", flags, 1, 0);
2276 * endios are largely parallel and should have a very
2279 fs_info->endio_workers =
2280 btrfs_alloc_workqueue(fs_info, "endio", flags, max_active, 4);
2281 fs_info->endio_meta_workers =
2282 btrfs_alloc_workqueue(fs_info, "endio-meta", flags,
2284 fs_info->endio_meta_write_workers =
2285 btrfs_alloc_workqueue(fs_info, "endio-meta-write", flags,
2287 fs_info->endio_raid56_workers =
2288 btrfs_alloc_workqueue(fs_info, "endio-raid56", flags,
2290 fs_info->endio_repair_workers =
2291 btrfs_alloc_workqueue(fs_info, "endio-repair", flags, 1, 0);
2292 fs_info->rmw_workers =
2293 btrfs_alloc_workqueue(fs_info, "rmw", flags, max_active, 2);
2294 fs_info->endio_write_workers =
2295 btrfs_alloc_workqueue(fs_info, "endio-write", flags,
2297 fs_info->endio_freespace_worker =
2298 btrfs_alloc_workqueue(fs_info, "freespace-write", flags,
2300 fs_info->delayed_workers =
2301 btrfs_alloc_workqueue(fs_info, "delayed-meta", flags,
2303 fs_info->readahead_workers =
2304 btrfs_alloc_workqueue(fs_info, "readahead", flags,
2306 fs_info->qgroup_rescan_workers =
2307 btrfs_alloc_workqueue(fs_info, "qgroup-rescan", flags, 1, 0);
2308 fs_info->extent_workers =
2309 btrfs_alloc_workqueue(fs_info, "extent-refs", flags,
2310 min_t(u64, fs_devices->num_devices,
2313 if (!(fs_info->workers && fs_info->delalloc_workers &&
2314 fs_info->submit_workers && fs_info->flush_workers &&
2315 fs_info->endio_workers && fs_info->endio_meta_workers &&
2316 fs_info->endio_meta_write_workers &&
2317 fs_info->endio_repair_workers &&
2318 fs_info->endio_write_workers && fs_info->endio_raid56_workers &&
2319 fs_info->endio_freespace_worker && fs_info->rmw_workers &&
2320 fs_info->caching_workers && fs_info->readahead_workers &&
2321 fs_info->fixup_workers && fs_info->delayed_workers &&
2322 fs_info->extent_workers &&
2323 fs_info->qgroup_rescan_workers)) {
2330 static int btrfs_replay_log(struct btrfs_fs_info *fs_info,
2331 struct btrfs_fs_devices *fs_devices)
2334 struct btrfs_root *tree_root = fs_info->tree_root;
2335 struct btrfs_root *log_tree_root;
2336 struct btrfs_super_block *disk_super = fs_info->super_copy;
2337 u64 bytenr = btrfs_super_log_root(disk_super);
2339 if (fs_devices->rw_devices == 0) {
2340 btrfs_warn(fs_info, "log replay required on RO media");
2344 log_tree_root = btrfs_alloc_root(fs_info, GFP_KERNEL);
2348 __setup_root(tree_root->nodesize, tree_root->sectorsize,
2349 tree_root->stripesize, log_tree_root, fs_info,
2350 BTRFS_TREE_LOG_OBJECTID);
2352 log_tree_root->node = read_tree_block(tree_root, bytenr,
2353 fs_info->generation + 1);
2354 if (IS_ERR(log_tree_root->node)) {
2355 btrfs_warn(fs_info, "failed to read log tree");
2356 ret = PTR_ERR(log_tree_root->node);
2357 kfree(log_tree_root);
2359 } else if (!extent_buffer_uptodate(log_tree_root->node)) {
2360 btrfs_err(fs_info, "failed to read log tree");
2361 free_extent_buffer(log_tree_root->node);
2362 kfree(log_tree_root);
2365 /* returns with log_tree_root freed on success */
2366 ret = btrfs_recover_log_trees(log_tree_root);
2368 btrfs_handle_fs_error(tree_root->fs_info, ret,
2369 "Failed to recover log tree");
2370 free_extent_buffer(log_tree_root->node);
2371 kfree(log_tree_root);
2375 if (fs_info->sb->s_flags & MS_RDONLY) {
2376 ret = btrfs_commit_super(tree_root);
2384 static int btrfs_read_roots(struct btrfs_fs_info *fs_info,
2385 struct btrfs_root *tree_root)
2387 struct btrfs_root *root;
2388 struct btrfs_key location;
2391 location.objectid = BTRFS_EXTENT_TREE_OBJECTID;
2392 location.type = BTRFS_ROOT_ITEM_KEY;
2393 location.offset = 0;
2395 root = btrfs_read_tree_root(tree_root, &location);
2397 return PTR_ERR(root);
2398 set_bit(BTRFS_ROOT_TRACK_DIRTY, &root->state);
2399 fs_info->extent_root = root;
2401 location.objectid = BTRFS_DEV_TREE_OBJECTID;
2402 root = btrfs_read_tree_root(tree_root, &location);
2404 return PTR_ERR(root);
2405 set_bit(BTRFS_ROOT_TRACK_DIRTY, &root->state);
2406 fs_info->dev_root = root;
2407 btrfs_init_devices_late(fs_info);
2409 location.objectid = BTRFS_CSUM_TREE_OBJECTID;
2410 root = btrfs_read_tree_root(tree_root, &location);
2412 return PTR_ERR(root);
2413 set_bit(BTRFS_ROOT_TRACK_DIRTY, &root->state);
2414 fs_info->csum_root = root;
2416 location.objectid = BTRFS_QUOTA_TREE_OBJECTID;
2417 root = btrfs_read_tree_root(tree_root, &location);
2418 if (!IS_ERR(root)) {
2419 set_bit(BTRFS_ROOT_TRACK_DIRTY, &root->state);
2420 set_bit(BTRFS_FS_QUOTA_ENABLED, &fs_info->flags);
2421 fs_info->quota_root = root;
2424 location.objectid = BTRFS_UUID_TREE_OBJECTID;
2425 root = btrfs_read_tree_root(tree_root, &location);
2427 ret = PTR_ERR(root);
2431 set_bit(BTRFS_ROOT_TRACK_DIRTY, &root->state);
2432 fs_info->uuid_root = root;
2435 if (btrfs_fs_compat_ro(fs_info, FREE_SPACE_TREE)) {
2436 location.objectid = BTRFS_FREE_SPACE_TREE_OBJECTID;
2437 root = btrfs_read_tree_root(tree_root, &location);
2439 return PTR_ERR(root);
2440 set_bit(BTRFS_ROOT_TRACK_DIRTY, &root->state);
2441 fs_info->free_space_root = root;
2447 int open_ctree(struct super_block *sb,
2448 struct btrfs_fs_devices *fs_devices,
2456 struct btrfs_key location;
2457 struct buffer_head *bh;
2458 struct btrfs_super_block *disk_super;
2459 struct btrfs_fs_info *fs_info = btrfs_sb(sb);
2460 struct btrfs_root *tree_root;
2461 struct btrfs_root *chunk_root;
2464 int num_backups_tried = 0;
2465 int backup_index = 0;
2467 int clear_free_space_tree = 0;
2469 tree_root = fs_info->tree_root = btrfs_alloc_root(fs_info, GFP_KERNEL);
2470 chunk_root = fs_info->chunk_root = btrfs_alloc_root(fs_info, GFP_KERNEL);
2471 if (!tree_root || !chunk_root) {
2476 ret = init_srcu_struct(&fs_info->subvol_srcu);
2482 ret = setup_bdi(fs_info, &fs_info->bdi);
2488 ret = percpu_counter_init(&fs_info->dirty_metadata_bytes, 0, GFP_KERNEL);
2493 fs_info->dirty_metadata_batch = PAGE_SIZE *
2494 (1 + ilog2(nr_cpu_ids));
2496 ret = percpu_counter_init(&fs_info->delalloc_bytes, 0, GFP_KERNEL);
2499 goto fail_dirty_metadata_bytes;
2502 ret = percpu_counter_init(&fs_info->bio_counter, 0, GFP_KERNEL);
2505 goto fail_delalloc_bytes;
2508 fs_info->btree_inode = new_inode(sb);
2509 if (!fs_info->btree_inode) {
2511 goto fail_bio_counter;
2514 mapping_set_gfp_mask(fs_info->btree_inode->i_mapping, GFP_NOFS);
2516 INIT_RADIX_TREE(&fs_info->fs_roots_radix, GFP_ATOMIC);
2517 INIT_RADIX_TREE(&fs_info->buffer_radix, GFP_ATOMIC);
2518 INIT_LIST_HEAD(&fs_info->trans_list);
2519 INIT_LIST_HEAD(&fs_info->dead_roots);
2520 INIT_LIST_HEAD(&fs_info->delayed_iputs);
2521 INIT_LIST_HEAD(&fs_info->delalloc_roots);
2522 INIT_LIST_HEAD(&fs_info->caching_block_groups);
2523 spin_lock_init(&fs_info->delalloc_root_lock);
2524 spin_lock_init(&fs_info->trans_lock);
2525 spin_lock_init(&fs_info->fs_roots_radix_lock);
2526 spin_lock_init(&fs_info->delayed_iput_lock);
2527 spin_lock_init(&fs_info->defrag_inodes_lock);
2528 spin_lock_init(&fs_info->free_chunk_lock);
2529 spin_lock_init(&fs_info->super_lock);
2530 spin_lock_init(&fs_info->qgroup_op_lock);
2531 spin_lock_init(&fs_info->buffer_lock);
2532 spin_lock_init(&fs_info->unused_bgs_lock);
2533 rwlock_init(&fs_info->tree_mod_log_lock);
2534 mutex_init(&fs_info->unused_bg_unpin_mutex);
2535 mutex_init(&fs_info->delete_unused_bgs_mutex);
2536 mutex_init(&fs_info->reloc_mutex);
2537 mutex_init(&fs_info->delalloc_root_mutex);
2538 mutex_init(&fs_info->cleaner_delayed_iput_mutex);
2539 seqlock_init(&fs_info->profiles_lock);
2541 INIT_LIST_HEAD(&fs_info->dirty_cowonly_roots);
2542 INIT_LIST_HEAD(&fs_info->space_info);
2543 INIT_LIST_HEAD(&fs_info->tree_mod_seq_list);
2544 INIT_LIST_HEAD(&fs_info->unused_bgs);
2545 btrfs_mapping_init(&fs_info->mapping_tree);
2546 btrfs_init_block_rsv(&fs_info->global_block_rsv,
2547 BTRFS_BLOCK_RSV_GLOBAL);
2548 btrfs_init_block_rsv(&fs_info->delalloc_block_rsv,
2549 BTRFS_BLOCK_RSV_DELALLOC);
2550 btrfs_init_block_rsv(&fs_info->trans_block_rsv, BTRFS_BLOCK_RSV_TRANS);
2551 btrfs_init_block_rsv(&fs_info->chunk_block_rsv, BTRFS_BLOCK_RSV_CHUNK);
2552 btrfs_init_block_rsv(&fs_info->empty_block_rsv, BTRFS_BLOCK_RSV_EMPTY);
2553 btrfs_init_block_rsv(&fs_info->delayed_block_rsv,
2554 BTRFS_BLOCK_RSV_DELOPS);
2555 atomic_set(&fs_info->nr_async_submits, 0);
2556 atomic_set(&fs_info->async_delalloc_pages, 0);
2557 atomic_set(&fs_info->async_submit_draining, 0);
2558 atomic_set(&fs_info->nr_async_bios, 0);
2559 atomic_set(&fs_info->defrag_running, 0);
2560 atomic_set(&fs_info->qgroup_op_seq, 0);
2561 atomic_set(&fs_info->reada_works_cnt, 0);
2562 atomic64_set(&fs_info->tree_mod_seq, 0);
2563 fs_info->fs_frozen = 0;
2565 fs_info->max_inline = BTRFS_DEFAULT_MAX_INLINE;
2566 fs_info->metadata_ratio = 0;
2567 fs_info->defrag_inodes = RB_ROOT;
2568 fs_info->free_chunk_space = 0;
2569 fs_info->tree_mod_log = RB_ROOT;
2570 fs_info->commit_interval = BTRFS_DEFAULT_COMMIT_INTERVAL;
2571 fs_info->avg_delayed_ref_runtime = NSEC_PER_SEC >> 6; /* div by 64 */
2572 /* readahead state */
2573 INIT_RADIX_TREE(&fs_info->reada_tree, GFP_NOFS & ~__GFP_DIRECT_RECLAIM);
2574 spin_lock_init(&fs_info->reada_lock);
2576 fs_info->thread_pool_size = min_t(unsigned long,
2577 num_online_cpus() + 2, 8);
2579 INIT_LIST_HEAD(&fs_info->ordered_roots);
2580 spin_lock_init(&fs_info->ordered_root_lock);
2581 fs_info->delayed_root = kmalloc(sizeof(struct btrfs_delayed_root),
2583 if (!fs_info->delayed_root) {
2587 btrfs_init_delayed_root(fs_info->delayed_root);
2589 btrfs_init_scrub(fs_info);
2590 #ifdef CONFIG_BTRFS_FS_CHECK_INTEGRITY
2591 fs_info->check_integrity_print_mask = 0;
2593 btrfs_init_balance(fs_info);
2594 btrfs_init_async_reclaim_work(&fs_info->async_reclaim_work);
2596 sb->s_blocksize = 4096;
2597 sb->s_blocksize_bits = blksize_bits(4096);
2598 sb->s_bdi = &fs_info->bdi;
2600 btrfs_init_btree_inode(fs_info, tree_root);
2602 spin_lock_init(&fs_info->block_group_cache_lock);
2603 fs_info->block_group_cache_tree = RB_ROOT;
2604 fs_info->first_logical_byte = (u64)-1;
2606 extent_io_tree_init(&fs_info->freed_extents[0],
2607 fs_info->btree_inode->i_mapping);
2608 extent_io_tree_init(&fs_info->freed_extents[1],
2609 fs_info->btree_inode->i_mapping);
2610 fs_info->pinned_extents = &fs_info->freed_extents[0];
2611 set_bit(BTRFS_FS_BARRIER, &fs_info->flags);
2613 mutex_init(&fs_info->ordered_operations_mutex);
2614 mutex_init(&fs_info->tree_log_mutex);
2615 mutex_init(&fs_info->chunk_mutex);
2616 mutex_init(&fs_info->transaction_kthread_mutex);
2617 mutex_init(&fs_info->cleaner_mutex);
2618 mutex_init(&fs_info->volume_mutex);
2619 mutex_init(&fs_info->ro_block_group_mutex);
2620 init_rwsem(&fs_info->commit_root_sem);
2621 init_rwsem(&fs_info->cleanup_work_sem);
2622 init_rwsem(&fs_info->subvol_sem);
2623 sema_init(&fs_info->uuid_tree_rescan_sem, 1);
2625 btrfs_init_dev_replace_locks(fs_info);
2626 btrfs_init_qgroup(fs_info);
2628 btrfs_init_free_cluster(&fs_info->meta_alloc_cluster);
2629 btrfs_init_free_cluster(&fs_info->data_alloc_cluster);
2631 init_waitqueue_head(&fs_info->transaction_throttle);
2632 init_waitqueue_head(&fs_info->transaction_wait);
2633 init_waitqueue_head(&fs_info->transaction_blocked_wait);
2634 init_waitqueue_head(&fs_info->async_submit_wait);
2636 INIT_LIST_HEAD(&fs_info->pinned_chunks);
2638 ret = btrfs_alloc_stripe_hash_table(fs_info);
2644 __setup_root(4096, 4096, 4096, tree_root,
2645 fs_info, BTRFS_ROOT_TREE_OBJECTID);
2647 invalidate_bdev(fs_devices->latest_bdev);
2650 * Read super block and check the signature bytes only
2652 bh = btrfs_read_dev_super(fs_devices->latest_bdev);
2659 * We want to check superblock checksum, the type is stored inside.
2660 * Pass the whole disk block of size BTRFS_SUPER_INFO_SIZE (4k).
2662 if (btrfs_check_super_csum(fs_info, bh->b_data)) {
2663 btrfs_err(fs_info, "superblock checksum mismatch");
2670 * super_copy is zeroed at allocation time and we never touch the
2671 * following bytes up to INFO_SIZE, the checksum is calculated from
2672 * the whole block of INFO_SIZE
2674 memcpy(fs_info->super_copy, bh->b_data, sizeof(*fs_info->super_copy));
2675 memcpy(fs_info->super_for_commit, fs_info->super_copy,
2676 sizeof(*fs_info->super_for_commit));
2679 memcpy(fs_info->fsid, fs_info->super_copy->fsid, BTRFS_FSID_SIZE);
2681 ret = btrfs_check_super_valid(fs_info, sb->s_flags & MS_RDONLY);
2683 btrfs_err(fs_info, "superblock contains fatal errors");
2688 disk_super = fs_info->super_copy;
2689 if (!btrfs_super_root(disk_super))
2692 /* check FS state, whether FS is broken. */
2693 if (btrfs_super_flags(disk_super) & BTRFS_SUPER_FLAG_ERROR)
2694 set_bit(BTRFS_FS_STATE_ERROR, &fs_info->fs_state);
2697 * run through our array of backup supers and setup
2698 * our ring pointer to the oldest one
2700 generation = btrfs_super_generation(disk_super);
2701 find_oldest_super_backup(fs_info, generation);
2704 * In the long term, we'll store the compression type in the super
2705 * block, and it'll be used for per file compression control.
2707 fs_info->compress_type = BTRFS_COMPRESS_ZLIB;
2709 ret = btrfs_parse_options(tree_root, options, sb->s_flags);
2715 features = btrfs_super_incompat_flags(disk_super) &
2716 ~BTRFS_FEATURE_INCOMPAT_SUPP;
2719 "cannot mount because of unsupported optional features (%llx)",
2725 features = btrfs_super_incompat_flags(disk_super);
2726 features |= BTRFS_FEATURE_INCOMPAT_MIXED_BACKREF;
2727 if (tree_root->fs_info->compress_type == BTRFS_COMPRESS_LZO)
2728 features |= BTRFS_FEATURE_INCOMPAT_COMPRESS_LZO;
2730 if (features & BTRFS_FEATURE_INCOMPAT_SKINNY_METADATA)
2731 btrfs_info(fs_info, "has skinny extents");
2734 * flag our filesystem as having big metadata blocks if
2735 * they are bigger than the page size
2737 if (btrfs_super_nodesize(disk_super) > PAGE_SIZE) {
2738 if (!(features & BTRFS_FEATURE_INCOMPAT_BIG_METADATA))
2740 "flagging fs with big metadata feature");
2741 features |= BTRFS_FEATURE_INCOMPAT_BIG_METADATA;
2744 nodesize = btrfs_super_nodesize(disk_super);
2745 sectorsize = btrfs_super_sectorsize(disk_super);
2746 stripesize = sectorsize;
2747 fs_info->dirty_metadata_batch = nodesize * (1 + ilog2(nr_cpu_ids));
2748 fs_info->delalloc_batch = sectorsize * 512 * (1 + ilog2(nr_cpu_ids));
2751 * mixed block groups end up with duplicate but slightly offset
2752 * extent buffers for the same range. It leads to corruptions
2754 if ((features & BTRFS_FEATURE_INCOMPAT_MIXED_GROUPS) &&
2755 (sectorsize != nodesize)) {
2757 "unequal nodesize/sectorsize (%u != %u) are not allowed for mixed block groups",
2758 nodesize, sectorsize);
2763 * Needn't use the lock because there is no other task which will
2766 btrfs_set_super_incompat_flags(disk_super, features);
2768 features = btrfs_super_compat_ro_flags(disk_super) &
2769 ~BTRFS_FEATURE_COMPAT_RO_SUPP;
2770 if (!(sb->s_flags & MS_RDONLY) && features) {
2772 "cannot mount read-write because of unsupported optional features (%llx)",
2778 max_active = fs_info->thread_pool_size;
2780 ret = btrfs_init_workqueues(fs_info, fs_devices);
2783 goto fail_sb_buffer;
2786 fs_info->bdi.ra_pages *= btrfs_super_num_devices(disk_super);
2787 fs_info->bdi.ra_pages = max(fs_info->bdi.ra_pages,
2790 tree_root->nodesize = nodesize;
2791 tree_root->sectorsize = sectorsize;
2792 tree_root->stripesize = stripesize;
2794 sb->s_blocksize = sectorsize;
2795 sb->s_blocksize_bits = blksize_bits(sectorsize);
2797 mutex_lock(&fs_info->chunk_mutex);
2798 ret = btrfs_read_sys_array(tree_root);
2799 mutex_unlock(&fs_info->chunk_mutex);
2801 btrfs_err(fs_info, "failed to read the system array: %d", ret);
2802 goto fail_sb_buffer;
2805 generation = btrfs_super_chunk_root_generation(disk_super);
2807 __setup_root(nodesize, sectorsize, stripesize, chunk_root,
2808 fs_info, BTRFS_CHUNK_TREE_OBJECTID);
2810 chunk_root->node = read_tree_block(chunk_root,
2811 btrfs_super_chunk_root(disk_super),
2813 if (IS_ERR(chunk_root->node) ||
2814 !extent_buffer_uptodate(chunk_root->node)) {
2815 btrfs_err(fs_info, "failed to read chunk root");
2816 if (!IS_ERR(chunk_root->node))
2817 free_extent_buffer(chunk_root->node);
2818 chunk_root->node = NULL;
2819 goto fail_tree_roots;
2821 btrfs_set_root_node(&chunk_root->root_item, chunk_root->node);
2822 chunk_root->commit_root = btrfs_root_node(chunk_root);
2824 read_extent_buffer(chunk_root->node, fs_info->chunk_tree_uuid,
2825 btrfs_header_chunk_tree_uuid(chunk_root->node), BTRFS_UUID_SIZE);
2827 ret = btrfs_read_chunk_tree(chunk_root);
2829 btrfs_err(fs_info, "failed to read chunk tree: %d", ret);
2830 goto fail_tree_roots;
2834 * keep the device that is marked to be the target device for the
2835 * dev_replace procedure
2837 btrfs_close_extra_devices(fs_devices, 0);
2839 if (!fs_devices->latest_bdev) {
2840 btrfs_err(fs_info, "failed to read devices");
2841 goto fail_tree_roots;
2845 generation = btrfs_super_generation(disk_super);
2847 tree_root->node = read_tree_block(tree_root,
2848 btrfs_super_root(disk_super),
2850 if (IS_ERR(tree_root->node) ||
2851 !extent_buffer_uptodate(tree_root->node)) {
2852 btrfs_warn(fs_info, "failed to read tree root");
2853 if (!IS_ERR(tree_root->node))
2854 free_extent_buffer(tree_root->node);
2855 tree_root->node = NULL;
2856 goto recovery_tree_root;
2859 btrfs_set_root_node(&tree_root->root_item, tree_root->node);
2860 tree_root->commit_root = btrfs_root_node(tree_root);
2861 btrfs_set_root_refs(&tree_root->root_item, 1);
2863 mutex_lock(&tree_root->objectid_mutex);
2864 ret = btrfs_find_highest_objectid(tree_root,
2865 &tree_root->highest_objectid);
2867 mutex_unlock(&tree_root->objectid_mutex);
2868 goto recovery_tree_root;
2871 ASSERT(tree_root->highest_objectid <= BTRFS_LAST_FREE_OBJECTID);
2873 mutex_unlock(&tree_root->objectid_mutex);
2875 ret = btrfs_read_roots(fs_info, tree_root);
2877 goto recovery_tree_root;
2879 fs_info->generation = generation;
2880 fs_info->last_trans_committed = generation;
2882 ret = btrfs_recover_balance(fs_info);
2884 btrfs_err(fs_info, "failed to recover balance: %d", ret);
2885 goto fail_block_groups;
2888 ret = btrfs_init_dev_stats(fs_info);
2890 btrfs_err(fs_info, "failed to init dev_stats: %d", ret);
2891 goto fail_block_groups;
2894 ret = btrfs_init_dev_replace(fs_info);
2896 btrfs_err(fs_info, "failed to init dev_replace: %d", ret);
2897 goto fail_block_groups;
2900 btrfs_close_extra_devices(fs_devices, 1);
2902 ret = btrfs_sysfs_add_fsid(fs_devices, NULL);
2904 btrfs_err(fs_info, "failed to init sysfs fsid interface: %d",
2906 goto fail_block_groups;
2909 ret = btrfs_sysfs_add_device(fs_devices);
2911 btrfs_err(fs_info, "failed to init sysfs device interface: %d",
2913 goto fail_fsdev_sysfs;
2916 ret = btrfs_sysfs_add_mounted(fs_info);
2918 btrfs_err(fs_info, "failed to init sysfs interface: %d", ret);
2919 goto fail_fsdev_sysfs;
2922 ret = btrfs_init_space_info(fs_info);
2924 btrfs_err(fs_info, "failed to initialize space info: %d", ret);
2928 ret = btrfs_read_block_groups(fs_info->extent_root);
2930 btrfs_err(fs_info, "failed to read block groups: %d", ret);
2933 fs_info->num_tolerated_disk_barrier_failures =
2934 btrfs_calc_num_tolerated_disk_barrier_failures(fs_info);
2935 if (fs_info->fs_devices->missing_devices >
2936 fs_info->num_tolerated_disk_barrier_failures &&
2937 !(sb->s_flags & MS_RDONLY)) {
2939 "missing devices (%llu) exceeds the limit (%d), writeable mount is not allowed",
2940 fs_info->fs_devices->missing_devices,
2941 fs_info->num_tolerated_disk_barrier_failures);
2945 fs_info->cleaner_kthread = kthread_run(cleaner_kthread, tree_root,
2947 if (IS_ERR(fs_info->cleaner_kthread))
2950 fs_info->transaction_kthread = kthread_run(transaction_kthread,
2952 "btrfs-transaction");
2953 if (IS_ERR(fs_info->transaction_kthread))
2956 if (!btrfs_test_opt(tree_root->fs_info, SSD) &&
2957 !btrfs_test_opt(tree_root->fs_info, NOSSD) &&
2958 !fs_info->fs_devices->rotating) {
2959 btrfs_info(fs_info, "detected SSD devices, enabling SSD mode");
2960 btrfs_set_opt(fs_info->mount_opt, SSD);
2964 * Mount does not set all options immediately, we can do it now and do
2965 * not have to wait for transaction commit
2967 btrfs_apply_pending_changes(fs_info);
2969 #ifdef CONFIG_BTRFS_FS_CHECK_INTEGRITY
2970 if (btrfs_test_opt(tree_root->fs_info, CHECK_INTEGRITY)) {
2971 ret = btrfsic_mount(tree_root, fs_devices,
2972 btrfs_test_opt(tree_root->fs_info,
2973 CHECK_INTEGRITY_INCLUDING_EXTENT_DATA) ?
2975 fs_info->check_integrity_print_mask);
2978 "failed to initialize integrity check module: %d",
2982 ret = btrfs_read_qgroup_config(fs_info);
2984 goto fail_trans_kthread;
2986 /* do not make disk changes in broken FS or nologreplay is given */
2987 if (btrfs_super_log_root(disk_super) != 0 &&
2988 !btrfs_test_opt(tree_root->fs_info, NOLOGREPLAY)) {
2989 btrfs_info(fs_info, "start tree-log replay");
2990 ret = btrfs_replay_log(fs_info, fs_devices);
2997 ret = btrfs_find_orphan_roots(tree_root);
3001 if (!(sb->s_flags & MS_RDONLY)) {
3002 ret = btrfs_cleanup_fs_roots(fs_info);
3006 mutex_lock(&fs_info->cleaner_mutex);
3007 ret = btrfs_recover_relocation(tree_root);
3008 mutex_unlock(&fs_info->cleaner_mutex);
3010 btrfs_warn(fs_info, "failed to recover relocation: %d",
3017 location.objectid = BTRFS_FS_TREE_OBJECTID;
3018 location.type = BTRFS_ROOT_ITEM_KEY;
3019 location.offset = 0;
3021 fs_info->fs_root = btrfs_read_fs_root_no_name(fs_info, &location);
3022 if (IS_ERR(fs_info->fs_root)) {
3023 err = PTR_ERR(fs_info->fs_root);
3027 if (sb->s_flags & MS_RDONLY)
3030 if (btrfs_test_opt(fs_info, CLEAR_CACHE) &&
3031 btrfs_fs_compat_ro(fs_info, FREE_SPACE_TREE)) {
3032 clear_free_space_tree = 1;
3033 } else if (btrfs_fs_compat_ro(fs_info, FREE_SPACE_TREE) &&
3034 !btrfs_fs_compat_ro(fs_info, FREE_SPACE_TREE_VALID)) {
3035 btrfs_warn(fs_info, "free space tree is invalid");
3036 clear_free_space_tree = 1;
3039 if (clear_free_space_tree) {
3040 btrfs_info(fs_info, "clearing free space tree");
3041 ret = btrfs_clear_free_space_tree(fs_info);
3044 "failed to clear free space tree: %d", ret);
3045 close_ctree(tree_root);
3050 if (btrfs_test_opt(tree_root->fs_info, FREE_SPACE_TREE) &&
3051 !btrfs_fs_compat_ro(fs_info, FREE_SPACE_TREE)) {
3052 btrfs_info(fs_info, "creating free space tree");
3053 ret = btrfs_create_free_space_tree(fs_info);
3056 "failed to create free space tree: %d", ret);
3057 close_ctree(tree_root);
3062 down_read(&fs_info->cleanup_work_sem);
3063 if ((ret = btrfs_orphan_cleanup(fs_info->fs_root)) ||
3064 (ret = btrfs_orphan_cleanup(fs_info->tree_root))) {
3065 up_read(&fs_info->cleanup_work_sem);
3066 close_ctree(tree_root);
3069 up_read(&fs_info->cleanup_work_sem);
3071 ret = btrfs_resume_balance_async(fs_info);
3073 btrfs_warn(fs_info, "failed to resume balance: %d", ret);
3074 close_ctree(tree_root);
3078 ret = btrfs_resume_dev_replace_async(fs_info);
3080 btrfs_warn(fs_info, "failed to resume device replace: %d", ret);
3081 close_ctree(tree_root);
3085 btrfs_qgroup_rescan_resume(fs_info);
3087 if (!fs_info->uuid_root) {
3088 btrfs_info(fs_info, "creating UUID tree");
3089 ret = btrfs_create_uuid_tree(fs_info);
3092 "failed to create the UUID tree: %d", ret);
3093 close_ctree(tree_root);
3096 } else if (btrfs_test_opt(tree_root->fs_info, RESCAN_UUID_TREE) ||
3097 fs_info->generation !=
3098 btrfs_super_uuid_tree_generation(disk_super)) {
3099 btrfs_info(fs_info, "checking UUID tree");
3100 ret = btrfs_check_uuid_tree(fs_info);
3103 "failed to check the UUID tree: %d", ret);
3104 close_ctree(tree_root);
3108 set_bit(BTRFS_FS_UPDATE_UUID_TREE_GEN, &fs_info->flags);
3110 set_bit(BTRFS_FS_OPEN, &fs_info->flags);
3113 * backuproot only affect mount behavior, and if open_ctree succeeded,
3114 * no need to keep the flag
3116 btrfs_clear_opt(fs_info->mount_opt, USEBACKUPROOT);
3121 btrfs_free_qgroup_config(fs_info);
3123 kthread_stop(fs_info->transaction_kthread);
3124 btrfs_cleanup_transaction(fs_info->tree_root);
3125 btrfs_free_fs_roots(fs_info);
3127 kthread_stop(fs_info->cleaner_kthread);
3130 * make sure we're done with the btree inode before we stop our
3133 filemap_write_and_wait(fs_info->btree_inode->i_mapping);
3136 btrfs_sysfs_remove_mounted(fs_info);
3139 btrfs_sysfs_remove_fsid(fs_info->fs_devices);
3142 btrfs_put_block_group_cache(fs_info);
3143 btrfs_free_block_groups(fs_info);
3146 free_root_pointers(fs_info, true);
3147 invalidate_inode_pages2(fs_info->btree_inode->i_mapping);
3150 btrfs_stop_all_workers(fs_info);
3153 btrfs_mapping_tree_free(&fs_info->mapping_tree);
3155 iput(fs_info->btree_inode);
3157 percpu_counter_destroy(&fs_info->bio_counter);
3158 fail_delalloc_bytes:
3159 percpu_counter_destroy(&fs_info->delalloc_bytes);
3160 fail_dirty_metadata_bytes:
3161 percpu_counter_destroy(&fs_info->dirty_metadata_bytes);
3163 bdi_destroy(&fs_info->bdi);
3165 cleanup_srcu_struct(&fs_info->subvol_srcu);
3167 btrfs_free_stripe_hash_table(fs_info);
3168 btrfs_close_devices(fs_info->fs_devices);
3172 if (!btrfs_test_opt(tree_root->fs_info, USEBACKUPROOT))
3173 goto fail_tree_roots;
3175 free_root_pointers(fs_info, false);
3177 /* don't use the log in recovery mode, it won't be valid */
3178 btrfs_set_super_log_root(disk_super, 0);
3180 /* we can't trust the free space cache either */
3181 btrfs_set_opt(fs_info->mount_opt, CLEAR_CACHE);
3183 ret = next_root_backup(fs_info, fs_info->super_copy,
3184 &num_backups_tried, &backup_index);
3186 goto fail_block_groups;
3187 goto retry_root_backup;
3190 static void btrfs_end_buffer_write_sync(struct buffer_head *bh, int uptodate)
3193 set_buffer_uptodate(bh);
3195 struct btrfs_device *device = (struct btrfs_device *)
3198 btrfs_warn_rl_in_rcu(device->dev_root->fs_info,
3199 "lost page write due to IO error on %s",
3200 rcu_str_deref(device->name));
3201 /* note, we don't set_buffer_write_io_error because we have
3202 * our own ways of dealing with the IO errors
3204 clear_buffer_uptodate(bh);
3205 btrfs_dev_stat_inc_and_print(device, BTRFS_DEV_STAT_WRITE_ERRS);
3211 int btrfs_read_dev_one_super(struct block_device *bdev, int copy_num,
3212 struct buffer_head **bh_ret)
3214 struct buffer_head *bh;
3215 struct btrfs_super_block *super;
3218 bytenr = btrfs_sb_offset(copy_num);
3219 if (bytenr + BTRFS_SUPER_INFO_SIZE >= i_size_read(bdev->bd_inode))
3222 bh = __bread(bdev, bytenr / 4096, BTRFS_SUPER_INFO_SIZE);
3224 * If we fail to read from the underlying devices, as of now
3225 * the best option we have is to mark it EIO.
3230 super = (struct btrfs_super_block *)bh->b_data;
3231 if (btrfs_super_bytenr(super) != bytenr ||
3232 btrfs_super_magic(super) != BTRFS_MAGIC) {
3242 struct buffer_head *btrfs_read_dev_super(struct block_device *bdev)
3244 struct buffer_head *bh;
3245 struct buffer_head *latest = NULL;
3246 struct btrfs_super_block *super;
3251 /* we would like to check all the supers, but that would make
3252 * a btrfs mount succeed after a mkfs from a different FS.
3253 * So, we need to add a special mount option to scan for
3254 * later supers, using BTRFS_SUPER_MIRROR_MAX instead
3256 for (i = 0; i < 1; i++) {
3257 ret = btrfs_read_dev_one_super(bdev, i, &bh);
3261 super = (struct btrfs_super_block *)bh->b_data;
3263 if (!latest || btrfs_super_generation(super) > transid) {
3266 transid = btrfs_super_generation(super);
3273 return ERR_PTR(ret);
3279 * this should be called twice, once with wait == 0 and
3280 * once with wait == 1. When wait == 0 is done, all the buffer heads
3281 * we write are pinned.
3283 * They are released when wait == 1 is done.
3284 * max_mirrors must be the same for both runs, and it indicates how
3285 * many supers on this one device should be written.
3287 * max_mirrors == 0 means to write them all.
3289 static int write_dev_supers(struct btrfs_device *device,
3290 struct btrfs_super_block *sb,
3291 int do_barriers, int wait, int max_mirrors)
3293 struct buffer_head *bh;
3300 if (max_mirrors == 0)
3301 max_mirrors = BTRFS_SUPER_MIRROR_MAX;
3303 for (i = 0; i < max_mirrors; i++) {
3304 bytenr = btrfs_sb_offset(i);
3305 if (bytenr + BTRFS_SUPER_INFO_SIZE >=
3306 device->commit_total_bytes)
3310 bh = __find_get_block(device->bdev, bytenr / 4096,
3311 BTRFS_SUPER_INFO_SIZE);
3317 if (!buffer_uptodate(bh))
3320 /* drop our reference */
3323 /* drop the reference from the wait == 0 run */
3327 btrfs_set_super_bytenr(sb, bytenr);
3330 crc = btrfs_csum_data((char *)sb +
3331 BTRFS_CSUM_SIZE, crc,
3332 BTRFS_SUPER_INFO_SIZE -
3334 btrfs_csum_final(crc, sb->csum);
3337 * one reference for us, and we leave it for the
3340 bh = __getblk(device->bdev, bytenr / 4096,
3341 BTRFS_SUPER_INFO_SIZE);
3343 btrfs_err(device->dev_root->fs_info,
3344 "couldn't get super buffer head for bytenr %llu",
3350 memcpy(bh->b_data, sb, BTRFS_SUPER_INFO_SIZE);
3352 /* one reference for submit_bh */
3355 set_buffer_uptodate(bh);
3357 bh->b_end_io = btrfs_end_buffer_write_sync;
3358 bh->b_private = device;
3362 * we fua the first super. The others we allow
3366 ret = btrfsic_submit_bh(REQ_OP_WRITE, WRITE_FUA, bh);
3368 ret = btrfsic_submit_bh(REQ_OP_WRITE, WRITE_SYNC, bh);
3372 return errors < i ? 0 : -1;
3376 * endio for the write_dev_flush, this will wake anyone waiting
3377 * for the barrier when it is done
3379 static void btrfs_end_empty_barrier(struct bio *bio)
3381 if (bio->bi_private)
3382 complete(bio->bi_private);
3387 * trigger flushes for one the devices. If you pass wait == 0, the flushes are
3388 * sent down. With wait == 1, it waits for the previous flush.
3390 * any device where the flush fails with eopnotsupp are flagged as not-barrier
3393 static int write_dev_flush(struct btrfs_device *device, int wait)
3398 if (device->nobarriers)
3402 bio = device->flush_bio;
3406 wait_for_completion(&device->flush_wait);
3408 if (bio->bi_error) {
3409 ret = bio->bi_error;
3410 btrfs_dev_stat_inc_and_print(device,
3411 BTRFS_DEV_STAT_FLUSH_ERRS);
3414 /* drop the reference from the wait == 0 run */
3416 device->flush_bio = NULL;
3422 * one reference for us, and we leave it for the
3425 device->flush_bio = NULL;
3426 bio = btrfs_io_bio_alloc(GFP_NOFS, 0);
3430 bio->bi_end_io = btrfs_end_empty_barrier;
3431 bio->bi_bdev = device->bdev;
3432 bio_set_op_attrs(bio, REQ_OP_WRITE, WRITE_FLUSH);
3433 init_completion(&device->flush_wait);
3434 bio->bi_private = &device->flush_wait;
3435 device->flush_bio = bio;
3438 btrfsic_submit_bio(bio);
3444 * send an empty flush down to each device in parallel,
3445 * then wait for them
3447 static int barrier_all_devices(struct btrfs_fs_info *info)
3449 struct list_head *head;
3450 struct btrfs_device *dev;
3451 int errors_send = 0;
3452 int errors_wait = 0;
3455 /* send down all the barriers */
3456 head = &info->fs_devices->devices;
3457 list_for_each_entry_rcu(dev, head, dev_list) {
3464 if (!dev->in_fs_metadata || !dev->writeable)
3467 ret = write_dev_flush(dev, 0);
3472 /* wait for all the barriers */
3473 list_for_each_entry_rcu(dev, head, dev_list) {
3480 if (!dev->in_fs_metadata || !dev->writeable)
3483 ret = write_dev_flush(dev, 1);
3487 if (errors_send > info->num_tolerated_disk_barrier_failures ||
3488 errors_wait > info->num_tolerated_disk_barrier_failures)
3493 int btrfs_get_num_tolerated_disk_barrier_failures(u64 flags)
3496 int min_tolerated = INT_MAX;
3498 if ((flags & BTRFS_BLOCK_GROUP_PROFILE_MASK) == 0 ||
3499 (flags & BTRFS_AVAIL_ALLOC_BIT_SINGLE))
3500 min_tolerated = min(min_tolerated,
3501 btrfs_raid_array[BTRFS_RAID_SINGLE].
3502 tolerated_failures);
3504 for (raid_type = 0; raid_type < BTRFS_NR_RAID_TYPES; raid_type++) {
3505 if (raid_type == BTRFS_RAID_SINGLE)
3507 if (!(flags & btrfs_raid_group[raid_type]))
3509 min_tolerated = min(min_tolerated,
3510 btrfs_raid_array[raid_type].
3511 tolerated_failures);
3514 if (min_tolerated == INT_MAX) {
3515 pr_warn("BTRFS: unknown raid flag: %llu", flags);
3519 return min_tolerated;
3522 int btrfs_calc_num_tolerated_disk_barrier_failures(
3523 struct btrfs_fs_info *fs_info)
3525 struct btrfs_ioctl_space_info space;
3526 struct btrfs_space_info *sinfo;
3527 u64 types[] = {BTRFS_BLOCK_GROUP_DATA,
3528 BTRFS_BLOCK_GROUP_SYSTEM,
3529 BTRFS_BLOCK_GROUP_METADATA,
3530 BTRFS_BLOCK_GROUP_DATA | BTRFS_BLOCK_GROUP_METADATA};
3533 int num_tolerated_disk_barrier_failures =
3534 (int)fs_info->fs_devices->num_devices;
3536 for (i = 0; i < ARRAY_SIZE(types); i++) {
3537 struct btrfs_space_info *tmp;
3541 list_for_each_entry_rcu(tmp, &fs_info->space_info, list) {
3542 if (tmp->flags == types[i]) {
3552 down_read(&sinfo->groups_sem);
3553 for (c = 0; c < BTRFS_NR_RAID_TYPES; c++) {
3556 if (list_empty(&sinfo->block_groups[c]))
3559 btrfs_get_block_group_info(&sinfo->block_groups[c],
3561 if (space.total_bytes == 0 || space.used_bytes == 0)
3563 flags = space.flags;
3565 num_tolerated_disk_barrier_failures = min(
3566 num_tolerated_disk_barrier_failures,
3567 btrfs_get_num_tolerated_disk_barrier_failures(
3570 up_read(&sinfo->groups_sem);
3573 return num_tolerated_disk_barrier_failures;
3576 static int write_all_supers(struct btrfs_root *root, int max_mirrors)
3578 struct list_head *head;
3579 struct btrfs_device *dev;
3580 struct btrfs_super_block *sb;
3581 struct btrfs_dev_item *dev_item;
3585 int total_errors = 0;
3588 do_barriers = !btrfs_test_opt(root->fs_info, NOBARRIER);
3589 backup_super_roots(root->fs_info);
3591 sb = root->fs_info->super_for_commit;
3592 dev_item = &sb->dev_item;
3594 mutex_lock(&root->fs_info->fs_devices->device_list_mutex);
3595 head = &root->fs_info->fs_devices->devices;
3596 max_errors = btrfs_super_num_devices(root->fs_info->super_copy) - 1;
3599 ret = barrier_all_devices(root->fs_info);
3602 &root->fs_info->fs_devices->device_list_mutex);
3603 btrfs_handle_fs_error(root->fs_info, ret,
3604 "errors while submitting device barriers.");
3609 list_for_each_entry_rcu(dev, head, dev_list) {
3614 if (!dev->in_fs_metadata || !dev->writeable)
3617 btrfs_set_stack_device_generation(dev_item, 0);
3618 btrfs_set_stack_device_type(dev_item, dev->type);
3619 btrfs_set_stack_device_id(dev_item, dev->devid);
3620 btrfs_set_stack_device_total_bytes(dev_item,
3621 dev->commit_total_bytes);
3622 btrfs_set_stack_device_bytes_used(dev_item,
3623 dev->commit_bytes_used);
3624 btrfs_set_stack_device_io_align(dev_item, dev->io_align);
3625 btrfs_set_stack_device_io_width(dev_item, dev->io_width);
3626 btrfs_set_stack_device_sector_size(dev_item, dev->sector_size);
3627 memcpy(dev_item->uuid, dev->uuid, BTRFS_UUID_SIZE);
3628 memcpy(dev_item->fsid, dev->fs_devices->fsid, BTRFS_UUID_SIZE);
3630 flags = btrfs_super_flags(sb);
3631 btrfs_set_super_flags(sb, flags | BTRFS_HEADER_FLAG_WRITTEN);
3633 ret = write_dev_supers(dev, sb, do_barriers, 0, max_mirrors);
3637 if (total_errors > max_errors) {
3638 btrfs_err(root->fs_info, "%d errors while writing supers",
3640 mutex_unlock(&root->fs_info->fs_devices->device_list_mutex);
3642 /* FUA is masked off if unsupported and can't be the reason */
3643 btrfs_handle_fs_error(root->fs_info, -EIO,
3644 "%d errors while writing supers", total_errors);
3649 list_for_each_entry_rcu(dev, head, dev_list) {
3652 if (!dev->in_fs_metadata || !dev->writeable)
3655 ret = write_dev_supers(dev, sb, do_barriers, 1, max_mirrors);
3659 mutex_unlock(&root->fs_info->fs_devices->device_list_mutex);
3660 if (total_errors > max_errors) {
3661 btrfs_handle_fs_error(root->fs_info, -EIO,
3662 "%d errors while writing supers", total_errors);
3668 int write_ctree_super(struct btrfs_trans_handle *trans,
3669 struct btrfs_root *root, int max_mirrors)
3671 return write_all_supers(root, max_mirrors);
3674 /* Drop a fs root from the radix tree and free it. */
3675 void btrfs_drop_and_free_fs_root(struct btrfs_fs_info *fs_info,
3676 struct btrfs_root *root)
3678 spin_lock(&fs_info->fs_roots_radix_lock);
3679 radix_tree_delete(&fs_info->fs_roots_radix,
3680 (unsigned long)root->root_key.objectid);
3681 spin_unlock(&fs_info->fs_roots_radix_lock);
3683 if (btrfs_root_refs(&root->root_item) == 0)
3684 synchronize_srcu(&fs_info->subvol_srcu);
3686 if (test_bit(BTRFS_FS_STATE_ERROR, &fs_info->fs_state)) {
3687 btrfs_free_log(NULL, root);
3688 if (root->reloc_root) {
3689 free_extent_buffer(root->reloc_root->node);
3690 free_extent_buffer(root->reloc_root->commit_root);
3691 btrfs_put_fs_root(root->reloc_root);
3692 root->reloc_root = NULL;
3696 if (root->free_ino_pinned)
3697 __btrfs_remove_free_space_cache(root->free_ino_pinned);
3698 if (root->free_ino_ctl)
3699 __btrfs_remove_free_space_cache(root->free_ino_ctl);
3703 static void free_fs_root(struct btrfs_root *root)
3705 iput(root->ino_cache_inode);
3706 WARN_ON(!RB_EMPTY_ROOT(&root->inode_tree));
3707 btrfs_free_block_rsv(root, root->orphan_block_rsv);
3708 root->orphan_block_rsv = NULL;
3710 free_anon_bdev(root->anon_dev);
3711 if (root->subv_writers)
3712 btrfs_free_subvolume_writers(root->subv_writers);
3713 free_extent_buffer(root->node);
3714 free_extent_buffer(root->commit_root);
3715 kfree(root->free_ino_ctl);
3716 kfree(root->free_ino_pinned);
3718 btrfs_put_fs_root(root);
3721 void btrfs_free_fs_root(struct btrfs_root *root)
3726 int btrfs_cleanup_fs_roots(struct btrfs_fs_info *fs_info)
3728 u64 root_objectid = 0;
3729 struct btrfs_root *gang[8];
3732 unsigned int ret = 0;
3736 index = srcu_read_lock(&fs_info->subvol_srcu);
3737 ret = radix_tree_gang_lookup(&fs_info->fs_roots_radix,
3738 (void **)gang, root_objectid,
3741 srcu_read_unlock(&fs_info->subvol_srcu, index);
3744 root_objectid = gang[ret - 1]->root_key.objectid + 1;
3746 for (i = 0; i < ret; i++) {
3747 /* Avoid to grab roots in dead_roots */
3748 if (btrfs_root_refs(&gang[i]->root_item) == 0) {
3752 /* grab all the search result for later use */
3753 gang[i] = btrfs_grab_fs_root(gang[i]);
3755 srcu_read_unlock(&fs_info->subvol_srcu, index);
3757 for (i = 0; i < ret; i++) {
3760 root_objectid = gang[i]->root_key.objectid;
3761 err = btrfs_orphan_cleanup(gang[i]);
3764 btrfs_put_fs_root(gang[i]);
3769 /* release the uncleaned roots due to error */
3770 for (; i < ret; i++) {
3772 btrfs_put_fs_root(gang[i]);
3777 int btrfs_commit_super(struct btrfs_root *root)
3779 struct btrfs_trans_handle *trans;
3781 mutex_lock(&root->fs_info->cleaner_mutex);
3782 btrfs_run_delayed_iputs(root);
3783 mutex_unlock(&root->fs_info->cleaner_mutex);
3784 wake_up_process(root->fs_info->cleaner_kthread);
3786 /* wait until ongoing cleanup work done */
3787 down_write(&root->fs_info->cleanup_work_sem);
3788 up_write(&root->fs_info->cleanup_work_sem);
3790 trans = btrfs_join_transaction(root);
3792 return PTR_ERR(trans);
3793 return btrfs_commit_transaction(trans, root);
3796 void close_ctree(struct btrfs_root *root)
3798 struct btrfs_fs_info *fs_info = root->fs_info;
3801 set_bit(BTRFS_FS_CLOSING_START, &fs_info->flags);
3803 /* wait for the qgroup rescan worker to stop */
3804 btrfs_qgroup_wait_for_completion(fs_info, false);
3806 /* wait for the uuid_scan task to finish */
3807 down(&fs_info->uuid_tree_rescan_sem);
3808 /* avoid complains from lockdep et al., set sem back to initial state */
3809 up(&fs_info->uuid_tree_rescan_sem);
3811 /* pause restriper - we want to resume on mount */
3812 btrfs_pause_balance(fs_info);
3814 btrfs_dev_replace_suspend_for_unmount(fs_info);
3816 btrfs_scrub_cancel(fs_info);
3818 /* wait for any defraggers to finish */
3819 wait_event(fs_info->transaction_wait,
3820 (atomic_read(&fs_info->defrag_running) == 0));
3822 /* clear out the rbtree of defraggable inodes */
3823 btrfs_cleanup_defrag_inodes(fs_info);
3825 cancel_work_sync(&fs_info->async_reclaim_work);
3827 if (!(fs_info->sb->s_flags & MS_RDONLY)) {
3829 * If the cleaner thread is stopped and there are
3830 * block groups queued for removal, the deletion will be
3831 * skipped when we quit the cleaner thread.
3833 btrfs_delete_unused_bgs(root->fs_info);
3836 * There might be existing delayed inode workers still running
3837 * and holding an empty delayed inode item. We must wait for
3838 * them to complete first because they can create a transaction.
3839 * This happens when someone calls btrfs_balance_delayed_items()
3840 * and then a transaction commit runs the same delayed nodes
3841 * before any delayed worker has done something with the nodes.
3842 * We must wait for any worker here and not at transaction
3843 * commit time since that could cause a deadlock.
3844 * This is a very rare case.
3846 btrfs_flush_workqueue(fs_info->delayed_workers);
3848 ret = btrfs_commit_super(root);
3850 btrfs_err(fs_info, "commit super ret %d", ret);
3853 if (test_bit(BTRFS_FS_STATE_ERROR, &fs_info->fs_state))
3854 btrfs_error_commit_super(root);
3856 kthread_stop(fs_info->transaction_kthread);
3857 kthread_stop(fs_info->cleaner_kthread);
3859 set_bit(BTRFS_FS_CLOSING_DONE, &fs_info->flags);
3861 btrfs_free_qgroup_config(fs_info);
3863 if (percpu_counter_sum(&fs_info->delalloc_bytes)) {
3864 btrfs_info(fs_info, "at unmount delalloc count %lld",
3865 percpu_counter_sum(&fs_info->delalloc_bytes));
3868 btrfs_sysfs_remove_mounted(fs_info);
3869 btrfs_sysfs_remove_fsid(fs_info->fs_devices);
3871 btrfs_free_fs_roots(fs_info);
3873 btrfs_put_block_group_cache(fs_info);
3875 btrfs_free_block_groups(fs_info);
3878 * we must make sure there is not any read request to
3879 * submit after we stopping all workers.
3881 invalidate_inode_pages2(fs_info->btree_inode->i_mapping);
3882 btrfs_stop_all_workers(fs_info);
3884 clear_bit(BTRFS_FS_OPEN, &fs_info->flags);
3885 free_root_pointers(fs_info, true);
3887 iput(fs_info->btree_inode);
3889 #ifdef CONFIG_BTRFS_FS_CHECK_INTEGRITY
3890 if (btrfs_test_opt(root->fs_info, CHECK_INTEGRITY))
3891 btrfsic_unmount(root, fs_info->fs_devices);
3894 btrfs_close_devices(fs_info->fs_devices);
3895 btrfs_mapping_tree_free(&fs_info->mapping_tree);
3897 percpu_counter_destroy(&fs_info->dirty_metadata_bytes);
3898 percpu_counter_destroy(&fs_info->delalloc_bytes);
3899 percpu_counter_destroy(&fs_info->bio_counter);
3900 bdi_destroy(&fs_info->bdi);
3901 cleanup_srcu_struct(&fs_info->subvol_srcu);
3903 btrfs_free_stripe_hash_table(fs_info);
3905 __btrfs_free_block_rsv(root->orphan_block_rsv);
3906 root->orphan_block_rsv = NULL;
3909 while (!list_empty(&fs_info->pinned_chunks)) {
3910 struct extent_map *em;
3912 em = list_first_entry(&fs_info->pinned_chunks,
3913 struct extent_map, list);
3914 list_del_init(&em->list);
3915 free_extent_map(em);
3917 unlock_chunks(root);
3920 int btrfs_buffer_uptodate(struct extent_buffer *buf, u64 parent_transid,
3924 struct inode *btree_inode = buf->pages[0]->mapping->host;
3926 ret = extent_buffer_uptodate(buf);
3930 ret = verify_parent_transid(&BTRFS_I(btree_inode)->io_tree, buf,
3931 parent_transid, atomic);
3937 void btrfs_mark_buffer_dirty(struct extent_buffer *buf)
3939 struct btrfs_root *root;
3940 u64 transid = btrfs_header_generation(buf);
3943 #ifdef CONFIG_BTRFS_FS_RUN_SANITY_TESTS
3945 * This is a fast path so only do this check if we have sanity tests
3946 * enabled. Normal people shouldn't be marking dummy buffers as dirty
3947 * outside of the sanity tests.
3949 if (unlikely(test_bit(EXTENT_BUFFER_DUMMY, &buf->bflags)))
3952 root = BTRFS_I(buf->pages[0]->mapping->host)->root;
3953 btrfs_assert_tree_locked(buf);
3954 if (transid != root->fs_info->generation)
3955 WARN(1, KERN_CRIT "btrfs transid mismatch buffer %llu, found %llu running %llu\n",
3956 buf->start, transid, root->fs_info->generation);
3957 was_dirty = set_extent_buffer_dirty(buf);
3959 __percpu_counter_add(&root->fs_info->dirty_metadata_bytes,
3961 root->fs_info->dirty_metadata_batch);
3962 #ifdef CONFIG_BTRFS_FS_CHECK_INTEGRITY
3964 * Since btrfs_mark_buffer_dirty() can be called with item pointer set
3965 * but item data not updated.
3966 * So here we should only check item pointers, not item data.
3968 if (btrfs_header_level(buf) == 0 &&
3969 btrfs_check_leaf_relaxed(root, buf)) {
3970 btrfs_print_leaf(root, buf);
3976 static void __btrfs_btree_balance_dirty(struct btrfs_root *root,
3980 * looks as though older kernels can get into trouble with
3981 * this code, they end up stuck in balance_dirty_pages forever
3985 if (current->flags & PF_MEMALLOC)
3989 btrfs_balance_delayed_items(root);
3991 ret = __percpu_counter_compare(&root->fs_info->dirty_metadata_bytes,
3992 BTRFS_DIRTY_METADATA_THRESH,
3993 root->fs_info->dirty_metadata_batch);
3995 balance_dirty_pages_ratelimited(
3996 root->fs_info->btree_inode->i_mapping);
4000 void btrfs_btree_balance_dirty(struct btrfs_root *root)
4002 __btrfs_btree_balance_dirty(root, 1);
4005 void btrfs_btree_balance_dirty_nodelay(struct btrfs_root *root)
4007 __btrfs_btree_balance_dirty(root, 0);
4010 int btrfs_read_buffer(struct extent_buffer *buf, u64 parent_transid)
4012 struct btrfs_root *root = BTRFS_I(buf->pages[0]->mapping->host)->root;
4013 return btree_read_extent_buffer_pages(root, buf, parent_transid);
4016 static int btrfs_check_super_valid(struct btrfs_fs_info *fs_info,
4019 struct btrfs_super_block *sb = fs_info->super_copy;
4020 u64 nodesize = btrfs_super_nodesize(sb);
4021 u64 sectorsize = btrfs_super_sectorsize(sb);
4024 if (btrfs_super_magic(sb) != BTRFS_MAGIC) {
4025 btrfs_err(fs_info, "no valid FS found");
4028 if (btrfs_super_flags(sb) & ~BTRFS_SUPER_FLAG_SUPP) {
4029 btrfs_err(fs_info, "unrecognized or unsupported super flag: %llu",
4030 btrfs_super_flags(sb) & ~BTRFS_SUPER_FLAG_SUPP);
4033 if (btrfs_super_root_level(sb) >= BTRFS_MAX_LEVEL) {
4034 btrfs_err(fs_info, "tree_root level too big: %d >= %d",
4035 btrfs_super_root_level(sb), BTRFS_MAX_LEVEL);
4038 if (btrfs_super_chunk_root_level(sb) >= BTRFS_MAX_LEVEL) {
4039 btrfs_err(fs_info, "chunk_root level too big: %d >= %d",
4040 btrfs_super_chunk_root_level(sb), BTRFS_MAX_LEVEL);
4043 if (btrfs_super_log_root_level(sb) >= BTRFS_MAX_LEVEL) {
4044 btrfs_err(fs_info, "log_root level too big: %d >= %d",
4045 btrfs_super_log_root_level(sb), BTRFS_MAX_LEVEL);
4050 * Check sectorsize and nodesize first, other check will need it.
4051 * Check all possible sectorsize(4K, 8K, 16K, 32K, 64K) here.
4053 if (!is_power_of_2(sectorsize) || sectorsize < 4096 ||
4054 sectorsize > BTRFS_MAX_METADATA_BLOCKSIZE) {
4055 btrfs_err(fs_info, "invalid sectorsize %llu", sectorsize);
4058 /* Only PAGE SIZE is supported yet */
4059 if (sectorsize != PAGE_SIZE) {
4061 "sectorsize %llu not supported yet, only support %lu",
4062 sectorsize, PAGE_SIZE);
4065 if (!is_power_of_2(nodesize) || nodesize < sectorsize ||
4066 nodesize > BTRFS_MAX_METADATA_BLOCKSIZE) {
4067 btrfs_err(fs_info, "invalid nodesize %llu", nodesize);
4070 if (nodesize != le32_to_cpu(sb->__unused_leafsize)) {
4071 btrfs_err(fs_info, "invalid leafsize %u, should be %llu",
4072 le32_to_cpu(sb->__unused_leafsize), nodesize);
4076 /* Root alignment check */
4077 if (!IS_ALIGNED(btrfs_super_root(sb), sectorsize)) {
4078 btrfs_warn(fs_info, "tree_root block unaligned: %llu",
4079 btrfs_super_root(sb));
4082 if (!IS_ALIGNED(btrfs_super_chunk_root(sb), sectorsize)) {
4083 btrfs_warn(fs_info, "chunk_root block unaligned: %llu",
4084 btrfs_super_chunk_root(sb));
4087 if (!IS_ALIGNED(btrfs_super_log_root(sb), sectorsize)) {
4088 btrfs_warn(fs_info, "log_root block unaligned: %llu",
4089 btrfs_super_log_root(sb));
4093 if (memcmp(fs_info->fsid, sb->dev_item.fsid, BTRFS_UUID_SIZE) != 0) {
4095 "dev_item UUID does not match fsid: %pU != %pU",
4096 fs_info->fsid, sb->dev_item.fsid);
4101 * Hint to catch really bogus numbers, bitflips or so, more exact checks are
4104 if (btrfs_super_bytes_used(sb) < 6 * btrfs_super_nodesize(sb)) {
4105 btrfs_err(fs_info, "bytes_used is too small %llu",
4106 btrfs_super_bytes_used(sb));
4109 if (!is_power_of_2(btrfs_super_stripesize(sb))) {
4110 btrfs_err(fs_info, "invalid stripesize %u",
4111 btrfs_super_stripesize(sb));
4114 if (btrfs_super_num_devices(sb) > (1UL << 31))
4115 btrfs_warn(fs_info, "suspicious number of devices: %llu",
4116 btrfs_super_num_devices(sb));
4117 if (btrfs_super_num_devices(sb) == 0) {
4118 btrfs_err(fs_info, "number of devices is 0");
4122 if (btrfs_super_bytenr(sb) != BTRFS_SUPER_INFO_OFFSET) {
4123 btrfs_err(fs_info, "super offset mismatch %llu != %u",
4124 btrfs_super_bytenr(sb), BTRFS_SUPER_INFO_OFFSET);
4129 * Obvious sys_chunk_array corruptions, it must hold at least one key
4132 if (btrfs_super_sys_array_size(sb) > BTRFS_SYSTEM_CHUNK_ARRAY_SIZE) {
4133 btrfs_err(fs_info, "system chunk array too big %u > %u",
4134 btrfs_super_sys_array_size(sb),
4135 BTRFS_SYSTEM_CHUNK_ARRAY_SIZE);
4138 if (btrfs_super_sys_array_size(sb) < sizeof(struct btrfs_disk_key)
4139 + sizeof(struct btrfs_chunk)) {
4140 btrfs_err(fs_info, "system chunk array too small %u < %zu",
4141 btrfs_super_sys_array_size(sb),
4142 sizeof(struct btrfs_disk_key)
4143 + sizeof(struct btrfs_chunk));
4148 * The generation is a global counter, we'll trust it more than the others
4149 * but it's still possible that it's the one that's wrong.
4151 if (btrfs_super_generation(sb) < btrfs_super_chunk_root_generation(sb))
4153 "suspicious: generation < chunk_root_generation: %llu < %llu",
4154 btrfs_super_generation(sb),
4155 btrfs_super_chunk_root_generation(sb));
4156 if (btrfs_super_generation(sb) < btrfs_super_cache_generation(sb)
4157 && btrfs_super_cache_generation(sb) != (u64)-1)
4159 "suspicious: generation < cache_generation: %llu < %llu",
4160 btrfs_super_generation(sb),
4161 btrfs_super_cache_generation(sb));
4166 static void btrfs_error_commit_super(struct btrfs_root *root)
4168 mutex_lock(&root->fs_info->cleaner_mutex);
4169 btrfs_run_delayed_iputs(root);
4170 mutex_unlock(&root->fs_info->cleaner_mutex);
4172 down_write(&root->fs_info->cleanup_work_sem);
4173 up_write(&root->fs_info->cleanup_work_sem);
4175 /* cleanup FS via transaction */
4176 btrfs_cleanup_transaction(root);
4179 static void btrfs_destroy_ordered_extents(struct btrfs_root *root)
4181 struct btrfs_ordered_extent *ordered;
4183 spin_lock(&root->ordered_extent_lock);
4185 * This will just short circuit the ordered completion stuff which will
4186 * make sure the ordered extent gets properly cleaned up.
4188 list_for_each_entry(ordered, &root->ordered_extents,
4190 set_bit(BTRFS_ORDERED_IOERR, &ordered->flags);
4191 spin_unlock(&root->ordered_extent_lock);
4194 static void btrfs_destroy_all_ordered_extents(struct btrfs_fs_info *fs_info)
4196 struct btrfs_root *root;
4197 struct list_head splice;
4199 INIT_LIST_HEAD(&splice);
4201 spin_lock(&fs_info->ordered_root_lock);
4202 list_splice_init(&fs_info->ordered_roots, &splice);
4203 while (!list_empty(&splice)) {
4204 root = list_first_entry(&splice, struct btrfs_root,
4206 list_move_tail(&root->ordered_root,
4207 &fs_info->ordered_roots);
4209 spin_unlock(&fs_info->ordered_root_lock);
4210 btrfs_destroy_ordered_extents(root);
4213 spin_lock(&fs_info->ordered_root_lock);
4215 spin_unlock(&fs_info->ordered_root_lock);
4218 * We need this here because if we've been flipped read-only we won't
4219 * get sync() from the umount, so we need to make sure any ordered
4220 * extents that haven't had their dirty pages IO start writeout yet
4221 * actually get run and error out properly.
4223 btrfs_wait_ordered_roots(fs_info, -1, 0, (u64)-1);
4226 static int btrfs_destroy_delayed_refs(struct btrfs_transaction *trans,
4227 struct btrfs_root *root)
4229 struct rb_node *node;
4230 struct btrfs_delayed_ref_root *delayed_refs;
4231 struct btrfs_delayed_ref_node *ref;
4234 delayed_refs = &trans->delayed_refs;
4236 spin_lock(&delayed_refs->lock);
4237 if (atomic_read(&delayed_refs->num_entries) == 0) {
4238 spin_unlock(&delayed_refs->lock);
4239 btrfs_info(root->fs_info, "delayed_refs has NO entry");
4243 while ((node = rb_first(&delayed_refs->href_root)) != NULL) {
4244 struct btrfs_delayed_ref_head *head;
4245 struct btrfs_delayed_ref_node *tmp;
4246 bool pin_bytes = false;
4248 head = rb_entry(node, struct btrfs_delayed_ref_head,
4250 if (!mutex_trylock(&head->mutex)) {
4251 atomic_inc(&head->node.refs);
4252 spin_unlock(&delayed_refs->lock);
4254 mutex_lock(&head->mutex);
4255 mutex_unlock(&head->mutex);
4256 btrfs_put_delayed_ref(&head->node);
4257 spin_lock(&delayed_refs->lock);
4260 spin_lock(&head->lock);
4261 list_for_each_entry_safe_reverse(ref, tmp, &head->ref_list,
4264 list_del(&ref->list);
4265 atomic_dec(&delayed_refs->num_entries);
4266 btrfs_put_delayed_ref(ref);
4268 if (head->must_insert_reserved)
4270 btrfs_free_delayed_extent_op(head->extent_op);
4271 delayed_refs->num_heads--;
4272 if (head->processing == 0)
4273 delayed_refs->num_heads_ready--;
4274 atomic_dec(&delayed_refs->num_entries);
4275 head->node.in_tree = 0;
4276 rb_erase(&head->href_node, &delayed_refs->href_root);
4277 spin_unlock(&head->lock);
4278 spin_unlock(&delayed_refs->lock);
4279 mutex_unlock(&head->mutex);
4282 btrfs_pin_extent(root, head->node.bytenr,
4283 head->node.num_bytes, 1);
4284 btrfs_put_delayed_ref(&head->node);
4286 spin_lock(&delayed_refs->lock);
4289 spin_unlock(&delayed_refs->lock);
4294 static void btrfs_destroy_delalloc_inodes(struct btrfs_root *root)
4296 struct btrfs_inode *btrfs_inode;
4297 struct list_head splice;
4299 INIT_LIST_HEAD(&splice);
4301 spin_lock(&root->delalloc_lock);
4302 list_splice_init(&root->delalloc_inodes, &splice);
4304 while (!list_empty(&splice)) {
4305 btrfs_inode = list_first_entry(&splice, struct btrfs_inode,
4308 list_del_init(&btrfs_inode->delalloc_inodes);
4309 clear_bit(BTRFS_INODE_IN_DELALLOC_LIST,
4310 &btrfs_inode->runtime_flags);
4311 spin_unlock(&root->delalloc_lock);
4313 btrfs_invalidate_inodes(btrfs_inode->root);
4315 spin_lock(&root->delalloc_lock);
4318 spin_unlock(&root->delalloc_lock);
4321 static void btrfs_destroy_all_delalloc_inodes(struct btrfs_fs_info *fs_info)
4323 struct btrfs_root *root;
4324 struct list_head splice;
4326 INIT_LIST_HEAD(&splice);
4328 spin_lock(&fs_info->delalloc_root_lock);
4329 list_splice_init(&fs_info->delalloc_roots, &splice);
4330 while (!list_empty(&splice)) {
4331 root = list_first_entry(&splice, struct btrfs_root,
4333 list_del_init(&root->delalloc_root);
4334 root = btrfs_grab_fs_root(root);
4336 spin_unlock(&fs_info->delalloc_root_lock);
4338 btrfs_destroy_delalloc_inodes(root);
4339 btrfs_put_fs_root(root);
4341 spin_lock(&fs_info->delalloc_root_lock);
4343 spin_unlock(&fs_info->delalloc_root_lock);
4346 static int btrfs_destroy_marked_extents(struct btrfs_root *root,
4347 struct extent_io_tree *dirty_pages,
4351 struct extent_buffer *eb;
4356 ret = find_first_extent_bit(dirty_pages, start, &start, &end,
4361 clear_extent_bits(dirty_pages, start, end, mark);
4362 while (start <= end) {
4363 eb = btrfs_find_tree_block(root->fs_info, start);
4364 start += root->nodesize;
4367 wait_on_extent_buffer_writeback(eb);
4369 if (test_and_clear_bit(EXTENT_BUFFER_DIRTY,
4371 clear_extent_buffer_dirty(eb);
4372 free_extent_buffer_stale(eb);
4379 static int btrfs_destroy_pinned_extent(struct btrfs_root *root,
4380 struct extent_io_tree *pinned_extents)
4382 struct btrfs_fs_info *fs_info = root->fs_info;
4383 struct extent_io_tree *unpin;
4389 unpin = pinned_extents;
4393 * The btrfs_finish_extent_commit() may get the same range as
4394 * ours between find_first_extent_bit and clear_extent_dirty.
4395 * Hence, hold the unused_bg_unpin_mutex to avoid double unpin
4396 * the same extent range.
4398 mutex_lock(&fs_info->unused_bg_unpin_mutex);
4399 ret = find_first_extent_bit(unpin, 0, &start, &end,
4400 EXTENT_DIRTY, NULL);
4402 mutex_unlock(&fs_info->unused_bg_unpin_mutex);
4406 clear_extent_dirty(unpin, start, end);
4407 btrfs_error_unpin_extent_range(root, start, end);
4408 mutex_unlock(&fs_info->unused_bg_unpin_mutex);
4413 if (unpin == &fs_info->freed_extents[0])
4414 unpin = &fs_info->freed_extents[1];
4416 unpin = &fs_info->freed_extents[0];
4424 static void btrfs_cleanup_bg_io(struct btrfs_block_group_cache *cache)
4426 struct inode *inode;
4428 inode = cache->io_ctl.inode;
4430 invalidate_inode_pages2(inode->i_mapping);
4431 BTRFS_I(inode)->generation = 0;
4432 cache->io_ctl.inode = NULL;
4435 ASSERT(cache->io_ctl.pages == NULL);
4436 btrfs_put_block_group(cache);
4439 void btrfs_cleanup_dirty_bgs(struct btrfs_transaction *cur_trans,
4440 struct btrfs_root *root)
4442 struct btrfs_block_group_cache *cache;
4444 spin_lock(&cur_trans->dirty_bgs_lock);
4445 while (!list_empty(&cur_trans->dirty_bgs)) {
4446 cache = list_first_entry(&cur_trans->dirty_bgs,
4447 struct btrfs_block_group_cache,
4450 btrfs_err(root->fs_info,
4451 "orphan block group dirty_bgs list");
4452 spin_unlock(&cur_trans->dirty_bgs_lock);
4456 if (!list_empty(&cache->io_list)) {
4457 spin_unlock(&cur_trans->dirty_bgs_lock);
4458 list_del_init(&cache->io_list);
4459 btrfs_cleanup_bg_io(cache);
4460 spin_lock(&cur_trans->dirty_bgs_lock);
4463 list_del_init(&cache->dirty_list);
4464 spin_lock(&cache->lock);
4465 cache->disk_cache_state = BTRFS_DC_ERROR;
4466 spin_unlock(&cache->lock);
4468 spin_unlock(&cur_trans->dirty_bgs_lock);
4469 btrfs_put_block_group(cache);
4470 spin_lock(&cur_trans->dirty_bgs_lock);
4472 spin_unlock(&cur_trans->dirty_bgs_lock);
4474 while (!list_empty(&cur_trans->io_bgs)) {
4475 cache = list_first_entry(&cur_trans->io_bgs,
4476 struct btrfs_block_group_cache,
4479 btrfs_err(root->fs_info,
4480 "orphan block group on io_bgs list");
4484 list_del_init(&cache->io_list);
4485 spin_lock(&cache->lock);
4486 cache->disk_cache_state = BTRFS_DC_ERROR;
4487 spin_unlock(&cache->lock);
4488 btrfs_cleanup_bg_io(cache);
4492 void btrfs_cleanup_one_transaction(struct btrfs_transaction *cur_trans,
4493 struct btrfs_root *root)
4495 btrfs_cleanup_dirty_bgs(cur_trans, root);
4496 ASSERT(list_empty(&cur_trans->dirty_bgs));
4497 ASSERT(list_empty(&cur_trans->io_bgs));
4499 btrfs_destroy_delayed_refs(cur_trans, root);
4501 cur_trans->state = TRANS_STATE_COMMIT_START;
4502 wake_up(&root->fs_info->transaction_blocked_wait);
4504 cur_trans->state = TRANS_STATE_UNBLOCKED;
4505 wake_up(&root->fs_info->transaction_wait);
4507 btrfs_destroy_delayed_inodes(root);
4508 btrfs_assert_delayed_root_empty(root);
4510 btrfs_destroy_marked_extents(root, &cur_trans->dirty_pages,
4512 btrfs_destroy_pinned_extent(root,
4513 root->fs_info->pinned_extents);
4515 cur_trans->state =TRANS_STATE_COMPLETED;
4516 wake_up(&cur_trans->commit_wait);
4519 memset(cur_trans, 0, sizeof(*cur_trans));
4520 kmem_cache_free(btrfs_transaction_cachep, cur_trans);
4524 static int btrfs_cleanup_transaction(struct btrfs_root *root)
4526 struct btrfs_transaction *t;
4528 mutex_lock(&root->fs_info->transaction_kthread_mutex);
4530 spin_lock(&root->fs_info->trans_lock);
4531 while (!list_empty(&root->fs_info->trans_list)) {
4532 t = list_first_entry(&root->fs_info->trans_list,
4533 struct btrfs_transaction, list);
4534 if (t->state >= TRANS_STATE_COMMIT_START) {
4535 atomic_inc(&t->use_count);
4536 spin_unlock(&root->fs_info->trans_lock);
4537 btrfs_wait_for_commit(root, t->transid);
4538 btrfs_put_transaction(t);
4539 spin_lock(&root->fs_info->trans_lock);
4542 if (t == root->fs_info->running_transaction) {
4543 t->state = TRANS_STATE_COMMIT_DOING;
4544 spin_unlock(&root->fs_info->trans_lock);
4546 * We wait for 0 num_writers since we don't hold a trans
4547 * handle open currently for this transaction.
4549 wait_event(t->writer_wait,
4550 atomic_read(&t->num_writers) == 0);
4552 spin_unlock(&root->fs_info->trans_lock);
4554 btrfs_cleanup_one_transaction(t, root);
4556 spin_lock(&root->fs_info->trans_lock);
4557 if (t == root->fs_info->running_transaction)
4558 root->fs_info->running_transaction = NULL;
4559 list_del_init(&t->list);
4560 spin_unlock(&root->fs_info->trans_lock);
4562 btrfs_put_transaction(t);
4563 trace_btrfs_transaction_commit(root);
4564 spin_lock(&root->fs_info->trans_lock);
4566 spin_unlock(&root->fs_info->trans_lock);
4567 btrfs_destroy_all_ordered_extents(root->fs_info);
4568 btrfs_destroy_delayed_inodes(root);
4569 btrfs_assert_delayed_root_empty(root);
4570 btrfs_destroy_pinned_extent(root, root->fs_info->pinned_extents);
4571 btrfs_destroy_all_delalloc_inodes(root->fs_info);
4572 mutex_unlock(&root->fs_info->transaction_kthread_mutex);
4577 static const struct extent_io_ops btree_extent_io_ops = {
4578 .readpage_end_io_hook = btree_readpage_end_io_hook,
4579 .readpage_io_failed_hook = btree_io_failed_hook,
4580 .submit_bio_hook = btree_submit_bio_hook,
4581 /* note we're sharing with inode.c for the merge bio hook */
4582 .merge_bio_hook = btrfs_merge_bio_hook,