GNU Linux-libre 4.14.290-gnu1
[releases.git] / fs / btrfs / disk-io.c
1 /*
2  * Copyright (C) 2007 Oracle.  All rights reserved.
3  *
4  * This program is free software; you can redistribute it and/or
5  * modify it under the terms of the GNU General Public
6  * License v2 as published by the Free Software Foundation.
7  *
8  * This program is distributed in the hope that it will be useful,
9  * but WITHOUT ANY WARRANTY; without even the implied warranty of
10  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
11  * General Public License for more details.
12  *
13  * You should have received a copy of the GNU General Public
14  * License along with this program; if not, write to the
15  * Free Software Foundation, Inc., 59 Temple Place - Suite 330,
16  * Boston, MA 021110-1307, USA.
17  */
18
19 #include <linux/fs.h>
20 #include <linux/blkdev.h>
21 #include <linux/scatterlist.h>
22 #include <linux/swap.h>
23 #include <linux/radix-tree.h>
24 #include <linux/writeback.h>
25 #include <linux/buffer_head.h>
26 #include <linux/workqueue.h>
27 #include <linux/kthread.h>
28 #include <linux/slab.h>
29 #include <linux/migrate.h>
30 #include <linux/ratelimit.h>
31 #include <linux/uuid.h>
32 #include <linux/semaphore.h>
33 #include <asm/unaligned.h>
34 #include "ctree.h"
35 #include "disk-io.h"
36 #include "hash.h"
37 #include "transaction.h"
38 #include "btrfs_inode.h"
39 #include "volumes.h"
40 #include "print-tree.h"
41 #include "locking.h"
42 #include "tree-log.h"
43 #include "free-space-cache.h"
44 #include "free-space-tree.h"
45 #include "inode-map.h"
46 #include "check-integrity.h"
47 #include "rcu-string.h"
48 #include "dev-replace.h"
49 #include "raid56.h"
50 #include "sysfs.h"
51 #include "qgroup.h"
52 #include "compression.h"
53 #include "tree-checker.h"
54
55 #ifdef CONFIG_X86
56 #include <asm/cpufeature.h>
57 #endif
58
59 #define BTRFS_SUPER_FLAG_SUPP   (BTRFS_HEADER_FLAG_WRITTEN |\
60                                  BTRFS_HEADER_FLAG_RELOC |\
61                                  BTRFS_SUPER_FLAG_ERROR |\
62                                  BTRFS_SUPER_FLAG_SEEDING |\
63                                  BTRFS_SUPER_FLAG_METADUMP |\
64                                  BTRFS_SUPER_FLAG_METADUMP_V2)
65
66 static const struct extent_io_ops btree_extent_io_ops;
67 static void end_workqueue_fn(struct btrfs_work *work);
68 static void free_fs_root(struct btrfs_root *root);
69 static int btrfs_check_super_valid(struct btrfs_fs_info *fs_info);
70 static void btrfs_destroy_ordered_extents(struct btrfs_root *root);
71 static int btrfs_destroy_delayed_refs(struct btrfs_transaction *trans,
72                                       struct btrfs_fs_info *fs_info);
73 static void btrfs_destroy_delalloc_inodes(struct btrfs_root *root);
74 static int btrfs_destroy_marked_extents(struct btrfs_fs_info *fs_info,
75                                         struct extent_io_tree *dirty_pages,
76                                         int mark);
77 static int btrfs_destroy_pinned_extent(struct btrfs_fs_info *fs_info,
78                                        struct extent_io_tree *pinned_extents);
79 static int btrfs_cleanup_transaction(struct btrfs_fs_info *fs_info);
80 static void btrfs_error_commit_super(struct btrfs_fs_info *fs_info);
81
82 /*
83  * btrfs_end_io_wq structs are used to do processing in task context when an IO
84  * is complete.  This is used during reads to verify checksums, and it is used
85  * by writes to insert metadata for new file extents after IO is complete.
86  */
87 struct btrfs_end_io_wq {
88         struct bio *bio;
89         bio_end_io_t *end_io;
90         void *private;
91         struct btrfs_fs_info *info;
92         blk_status_t status;
93         enum btrfs_wq_endio_type metadata;
94         struct btrfs_work work;
95 };
96
97 static struct kmem_cache *btrfs_end_io_wq_cache;
98
99 int __init btrfs_end_io_wq_init(void)
100 {
101         btrfs_end_io_wq_cache = kmem_cache_create("btrfs_end_io_wq",
102                                         sizeof(struct btrfs_end_io_wq),
103                                         0,
104                                         SLAB_MEM_SPREAD,
105                                         NULL);
106         if (!btrfs_end_io_wq_cache)
107                 return -ENOMEM;
108         return 0;
109 }
110
111 void btrfs_end_io_wq_exit(void)
112 {
113         kmem_cache_destroy(btrfs_end_io_wq_cache);
114 }
115
116 /*
117  * async submit bios are used to offload expensive checksumming
118  * onto the worker threads.  They checksum file and metadata bios
119  * just before they are sent down the IO stack.
120  */
121 struct async_submit_bio {
122         void *private_data;
123         struct btrfs_fs_info *fs_info;
124         struct bio *bio;
125         extent_submit_bio_hook_t *submit_bio_start;
126         extent_submit_bio_hook_t *submit_bio_done;
127         int mirror_num;
128         unsigned long bio_flags;
129         /*
130          * bio_offset is optional, can be used if the pages in the bio
131          * can't tell us where in the file the bio should go
132          */
133         u64 bio_offset;
134         struct btrfs_work work;
135         blk_status_t status;
136 };
137
138 /*
139  * Lockdep class keys for extent_buffer->lock's in this root.  For a given
140  * eb, the lockdep key is determined by the btrfs_root it belongs to and
141  * the level the eb occupies in the tree.
142  *
143  * Different roots are used for different purposes and may nest inside each
144  * other and they require separate keysets.  As lockdep keys should be
145  * static, assign keysets according to the purpose of the root as indicated
146  * by btrfs_root->objectid.  This ensures that all special purpose roots
147  * have separate keysets.
148  *
149  * Lock-nesting across peer nodes is always done with the immediate parent
150  * node locked thus preventing deadlock.  As lockdep doesn't know this, use
151  * subclass to avoid triggering lockdep warning in such cases.
152  *
153  * The key is set by the readpage_end_io_hook after the buffer has passed
154  * csum validation but before the pages are unlocked.  It is also set by
155  * btrfs_init_new_buffer on freshly allocated blocks.
156  *
157  * We also add a check to make sure the highest level of the tree is the
158  * same as our lockdep setup here.  If BTRFS_MAX_LEVEL changes, this code
159  * needs update as well.
160  */
161 #ifdef CONFIG_DEBUG_LOCK_ALLOC
162 # if BTRFS_MAX_LEVEL != 8
163 #  error
164 # endif
165
166 static struct btrfs_lockdep_keyset {
167         u64                     id;             /* root objectid */
168         const char              *name_stem;     /* lock name stem */
169         char                    names[BTRFS_MAX_LEVEL + 1][20];
170         struct lock_class_key   keys[BTRFS_MAX_LEVEL + 1];
171 } btrfs_lockdep_keysets[] = {
172         { .id = BTRFS_ROOT_TREE_OBJECTID,       .name_stem = "root"     },
173         { .id = BTRFS_EXTENT_TREE_OBJECTID,     .name_stem = "extent"   },
174         { .id = BTRFS_CHUNK_TREE_OBJECTID,      .name_stem = "chunk"    },
175         { .id = BTRFS_DEV_TREE_OBJECTID,        .name_stem = "dev"      },
176         { .id = BTRFS_FS_TREE_OBJECTID,         .name_stem = "fs"       },
177         { .id = BTRFS_CSUM_TREE_OBJECTID,       .name_stem = "csum"     },
178         { .id = BTRFS_QUOTA_TREE_OBJECTID,      .name_stem = "quota"    },
179         { .id = BTRFS_TREE_LOG_OBJECTID,        .name_stem = "log"      },
180         { .id = BTRFS_TREE_RELOC_OBJECTID,      .name_stem = "treloc"   },
181         { .id = BTRFS_DATA_RELOC_TREE_OBJECTID, .name_stem = "dreloc"   },
182         { .id = BTRFS_UUID_TREE_OBJECTID,       .name_stem = "uuid"     },
183         { .id = BTRFS_FREE_SPACE_TREE_OBJECTID, .name_stem = "free-space" },
184         { .id = 0,                              .name_stem = "tree"     },
185 };
186
187 void __init btrfs_init_lockdep(void)
188 {
189         int i, j;
190
191         /* initialize lockdep class names */
192         for (i = 0; i < ARRAY_SIZE(btrfs_lockdep_keysets); i++) {
193                 struct btrfs_lockdep_keyset *ks = &btrfs_lockdep_keysets[i];
194
195                 for (j = 0; j < ARRAY_SIZE(ks->names); j++)
196                         snprintf(ks->names[j], sizeof(ks->names[j]),
197                                  "btrfs-%s-%02d", ks->name_stem, j);
198         }
199 }
200
201 void btrfs_set_buffer_lockdep_class(u64 objectid, struct extent_buffer *eb,
202                                     int level)
203 {
204         struct btrfs_lockdep_keyset *ks;
205
206         BUG_ON(level >= ARRAY_SIZE(ks->keys));
207
208         /* find the matching keyset, id 0 is the default entry */
209         for (ks = btrfs_lockdep_keysets; ks->id; ks++)
210                 if (ks->id == objectid)
211                         break;
212
213         lockdep_set_class_and_name(&eb->lock,
214                                    &ks->keys[level], ks->names[level]);
215 }
216
217 #endif
218
219 /*
220  * extents on the btree inode are pretty simple, there's one extent
221  * that covers the entire device
222  */
223 static struct extent_map *btree_get_extent(struct btrfs_inode *inode,
224                 struct page *page, size_t pg_offset, u64 start, u64 len,
225                 int create)
226 {
227         struct btrfs_fs_info *fs_info = btrfs_sb(inode->vfs_inode.i_sb);
228         struct extent_map_tree *em_tree = &inode->extent_tree;
229         struct extent_map *em;
230         int ret;
231
232         read_lock(&em_tree->lock);
233         em = lookup_extent_mapping(em_tree, start, len);
234         if (em) {
235                 em->bdev = fs_info->fs_devices->latest_bdev;
236                 read_unlock(&em_tree->lock);
237                 goto out;
238         }
239         read_unlock(&em_tree->lock);
240
241         em = alloc_extent_map();
242         if (!em) {
243                 em = ERR_PTR(-ENOMEM);
244                 goto out;
245         }
246         em->start = 0;
247         em->len = (u64)-1;
248         em->block_len = (u64)-1;
249         em->block_start = 0;
250         em->bdev = fs_info->fs_devices->latest_bdev;
251
252         write_lock(&em_tree->lock);
253         ret = add_extent_mapping(em_tree, em, 0);
254         if (ret == -EEXIST) {
255                 free_extent_map(em);
256                 em = lookup_extent_mapping(em_tree, start, len);
257                 if (!em)
258                         em = ERR_PTR(-EIO);
259         } else if (ret) {
260                 free_extent_map(em);
261                 em = ERR_PTR(ret);
262         }
263         write_unlock(&em_tree->lock);
264
265 out:
266         return em;
267 }
268
269 u32 btrfs_csum_data(const char *data, u32 seed, size_t len)
270 {
271         return btrfs_crc32c(seed, data, len);
272 }
273
274 void btrfs_csum_final(u32 crc, u8 *result)
275 {
276         put_unaligned_le32(~crc, result);
277 }
278
279 /*
280  * compute the csum for a btree block, and either verify it or write it
281  * into the csum field of the block.
282  */
283 static int csum_tree_block(struct btrfs_fs_info *fs_info,
284                            struct extent_buffer *buf,
285                            int verify)
286 {
287         u16 csum_size = btrfs_super_csum_size(fs_info->super_copy);
288         char *result = NULL;
289         unsigned long len;
290         unsigned long cur_len;
291         unsigned long offset = BTRFS_CSUM_SIZE;
292         char *kaddr;
293         unsigned long map_start;
294         unsigned long map_len;
295         int err;
296         u32 crc = ~(u32)0;
297         unsigned long inline_result;
298
299         len = buf->len - offset;
300         while (len > 0) {
301                 err = map_private_extent_buffer(buf, offset, 32,
302                                         &kaddr, &map_start, &map_len);
303                 if (err)
304                         return err;
305                 cur_len = min(len, map_len - (offset - map_start));
306                 crc = btrfs_csum_data(kaddr + offset - map_start,
307                                       crc, cur_len);
308                 len -= cur_len;
309                 offset += cur_len;
310         }
311         if (csum_size > sizeof(inline_result)) {
312                 result = kzalloc(csum_size, GFP_NOFS);
313                 if (!result)
314                         return -ENOMEM;
315         } else {
316                 result = (char *)&inline_result;
317         }
318
319         btrfs_csum_final(crc, result);
320
321         if (verify) {
322                 if (memcmp_extent_buffer(buf, result, 0, csum_size)) {
323                         u32 val;
324                         u32 found = 0;
325                         memcpy(&found, result, csum_size);
326
327                         read_extent_buffer(buf, &val, 0, csum_size);
328                         btrfs_warn_rl(fs_info,
329                                 "%s checksum verify failed on %llu wanted %X found %X level %d",
330                                 fs_info->sb->s_id, buf->start,
331                                 val, found, btrfs_header_level(buf));
332                         if (result != (char *)&inline_result)
333                                 kfree(result);
334                         return -EUCLEAN;
335                 }
336         } else {
337                 write_extent_buffer(buf, result, 0, csum_size);
338         }
339         if (result != (char *)&inline_result)
340                 kfree(result);
341         return 0;
342 }
343
344 /*
345  * we can't consider a given block up to date unless the transid of the
346  * block matches the transid in the parent node's pointer.  This is how we
347  * detect blocks that either didn't get written at all or got written
348  * in the wrong place.
349  */
350 static int verify_parent_transid(struct extent_io_tree *io_tree,
351                                  struct extent_buffer *eb, u64 parent_transid,
352                                  int atomic)
353 {
354         struct extent_state *cached_state = NULL;
355         int ret;
356         bool need_lock = (current->journal_info == BTRFS_SEND_TRANS_STUB);
357
358         if (!parent_transid || btrfs_header_generation(eb) == parent_transid)
359                 return 0;
360
361         if (atomic)
362                 return -EAGAIN;
363
364         if (need_lock) {
365                 btrfs_tree_read_lock(eb);
366                 btrfs_set_lock_blocking_rw(eb, BTRFS_READ_LOCK);
367         }
368
369         lock_extent_bits(io_tree, eb->start, eb->start + eb->len - 1,
370                          &cached_state);
371         if (extent_buffer_uptodate(eb) &&
372             btrfs_header_generation(eb) == parent_transid) {
373                 ret = 0;
374                 goto out;
375         }
376         btrfs_err_rl(eb->fs_info,
377                 "parent transid verify failed on %llu wanted %llu found %llu",
378                         eb->start,
379                         parent_transid, btrfs_header_generation(eb));
380         ret = 1;
381
382         /*
383          * Things reading via commit roots that don't have normal protection,
384          * like send, can have a really old block in cache that may point at a
385          * block that has been freed and re-allocated.  So don't clear uptodate
386          * if we find an eb that is under IO (dirty/writeback) because we could
387          * end up reading in the stale data and then writing it back out and
388          * making everybody very sad.
389          */
390         if (!extent_buffer_under_io(eb))
391                 clear_extent_buffer_uptodate(eb);
392 out:
393         unlock_extent_cached(io_tree, eb->start, eb->start + eb->len - 1,
394                              &cached_state, GFP_NOFS);
395         if (need_lock)
396                 btrfs_tree_read_unlock_blocking(eb);
397         return ret;
398 }
399
400 /*
401  * Return 0 if the superblock checksum type matches the checksum value of that
402  * algorithm. Pass the raw disk superblock data.
403  */
404 static int btrfs_check_super_csum(struct btrfs_fs_info *fs_info,
405                                   char *raw_disk_sb)
406 {
407         struct btrfs_super_block *disk_sb =
408                 (struct btrfs_super_block *)raw_disk_sb;
409         u16 csum_type = btrfs_super_csum_type(disk_sb);
410         int ret = 0;
411
412         if (csum_type == BTRFS_CSUM_TYPE_CRC32) {
413                 u32 crc = ~(u32)0;
414                 const int csum_size = sizeof(crc);
415                 char result[csum_size];
416
417                 /*
418                  * The super_block structure does not span the whole
419                  * BTRFS_SUPER_INFO_SIZE range, we expect that the unused space
420                  * is filled with zeros and is included in the checksum.
421                  */
422                 crc = btrfs_csum_data(raw_disk_sb + BTRFS_CSUM_SIZE,
423                                 crc, BTRFS_SUPER_INFO_SIZE - BTRFS_CSUM_SIZE);
424                 btrfs_csum_final(crc, result);
425
426                 if (memcmp(raw_disk_sb, result, csum_size))
427                         ret = 1;
428         }
429
430         if (csum_type >= ARRAY_SIZE(btrfs_csum_sizes)) {
431                 btrfs_err(fs_info, "unsupported checksum algorithm %u",
432                                 csum_type);
433                 ret = 1;
434         }
435
436         return ret;
437 }
438
439 /*
440  * helper to read a given tree block, doing retries as required when
441  * the checksums don't match and we have alternate mirrors to try.
442  */
443 static int btree_read_extent_buffer_pages(struct btrfs_fs_info *fs_info,
444                                           struct extent_buffer *eb,
445                                           u64 parent_transid)
446 {
447         struct extent_io_tree *io_tree;
448         int failed = 0;
449         int ret;
450         int num_copies = 0;
451         int mirror_num = 0;
452         int failed_mirror = 0;
453
454         io_tree = &BTRFS_I(fs_info->btree_inode)->io_tree;
455         while (1) {
456                 clear_bit(EXTENT_BUFFER_CORRUPT, &eb->bflags);
457                 ret = read_extent_buffer_pages(io_tree, eb, WAIT_COMPLETE,
458                                                btree_get_extent, mirror_num);
459                 if (!ret) {
460                         if (!verify_parent_transid(io_tree, eb,
461                                                    parent_transid, 0))
462                                 break;
463                         else
464                                 ret = -EIO;
465                 }
466
467                 num_copies = btrfs_num_copies(fs_info,
468                                               eb->start, eb->len);
469                 if (num_copies == 1)
470                         break;
471
472                 if (!failed_mirror) {
473                         failed = 1;
474                         failed_mirror = eb->read_mirror;
475                 }
476
477                 mirror_num++;
478                 if (mirror_num == failed_mirror)
479                         mirror_num++;
480
481                 if (mirror_num > num_copies)
482                         break;
483         }
484
485         if (failed && !ret && failed_mirror)
486                 repair_eb_io_failure(fs_info, eb, failed_mirror);
487
488         return ret;
489 }
490
491 /*
492  * checksum a dirty tree block before IO.  This has extra checks to make sure
493  * we only fill in the checksum field in the first page of a multi-page block
494  */
495
496 static int csum_dirty_buffer(struct btrfs_fs_info *fs_info, struct page *page)
497 {
498         u64 start = page_offset(page);
499         u64 found_start;
500         struct extent_buffer *eb;
501
502         eb = (struct extent_buffer *)page->private;
503         if (page != eb->pages[0])
504                 return 0;
505
506         found_start = btrfs_header_bytenr(eb);
507         /*
508          * Please do not consolidate these warnings into a single if.
509          * It is useful to know what went wrong.
510          */
511         if (WARN_ON(found_start != start))
512                 return -EUCLEAN;
513         if (WARN_ON(!PageUptodate(page)))
514                 return -EUCLEAN;
515
516         ASSERT(memcmp_extent_buffer(eb, fs_info->fsid,
517                         btrfs_header_fsid(), BTRFS_FSID_SIZE) == 0);
518
519         return csum_tree_block(fs_info, eb, 0);
520 }
521
522 static int check_tree_block_fsid(struct btrfs_fs_info *fs_info,
523                                  struct extent_buffer *eb)
524 {
525         struct btrfs_fs_devices *fs_devices = fs_info->fs_devices;
526         u8 fsid[BTRFS_FSID_SIZE];
527         int ret = 1;
528
529         read_extent_buffer(eb, fsid, btrfs_header_fsid(), BTRFS_FSID_SIZE);
530         while (fs_devices) {
531                 if (!memcmp(fsid, fs_devices->fsid, BTRFS_FSID_SIZE)) {
532                         ret = 0;
533                         break;
534                 }
535                 fs_devices = fs_devices->seed;
536         }
537         return ret;
538 }
539
540 static int btree_readpage_end_io_hook(struct btrfs_io_bio *io_bio,
541                                       u64 phy_offset, struct page *page,
542                                       u64 start, u64 end, int mirror)
543 {
544         u64 found_start;
545         int found_level;
546         struct extent_buffer *eb;
547         struct btrfs_root *root = BTRFS_I(page->mapping->host)->root;
548         struct btrfs_fs_info *fs_info = root->fs_info;
549         int ret = 0;
550         int reads_done;
551
552         if (!page->private)
553                 goto out;
554
555         eb = (struct extent_buffer *)page->private;
556
557         /* the pending IO might have been the only thing that kept this buffer
558          * in memory.  Make sure we have a ref for all this other checks
559          */
560         extent_buffer_get(eb);
561
562         reads_done = atomic_dec_and_test(&eb->io_pages);
563         if (!reads_done)
564                 goto err;
565
566         eb->read_mirror = mirror;
567         if (test_bit(EXTENT_BUFFER_READ_ERR, &eb->bflags)) {
568                 ret = -EIO;
569                 goto err;
570         }
571
572         found_start = btrfs_header_bytenr(eb);
573         if (found_start != eb->start) {
574                 btrfs_err_rl(fs_info, "bad tree block start %llu %llu",
575                              found_start, eb->start);
576                 ret = -EIO;
577                 goto err;
578         }
579         if (check_tree_block_fsid(fs_info, eb)) {
580                 btrfs_err_rl(fs_info, "bad fsid on block %llu",
581                              eb->start);
582                 ret = -EIO;
583                 goto err;
584         }
585         found_level = btrfs_header_level(eb);
586         if (found_level >= BTRFS_MAX_LEVEL) {
587                 btrfs_err(fs_info, "bad tree block level %d",
588                           (int)btrfs_header_level(eb));
589                 ret = -EIO;
590                 goto err;
591         }
592
593         btrfs_set_buffer_lockdep_class(btrfs_header_owner(eb),
594                                        eb, found_level);
595
596         ret = csum_tree_block(fs_info, eb, 1);
597         if (ret)
598                 goto err;
599
600         /*
601          * If this is a leaf block and it is corrupt, set the corrupt bit so
602          * that we don't try and read the other copies of this block, just
603          * return -EIO.
604          */
605         if (found_level == 0 && btrfs_check_leaf_full(root, eb)) {
606                 set_bit(EXTENT_BUFFER_CORRUPT, &eb->bflags);
607                 ret = -EIO;
608         }
609
610         if (found_level > 0 && btrfs_check_node(root, eb))
611                 ret = -EIO;
612
613         if (!ret)
614                 set_extent_buffer_uptodate(eb);
615 err:
616         if (reads_done &&
617             test_and_clear_bit(EXTENT_BUFFER_READAHEAD, &eb->bflags))
618                 btree_readahead_hook(eb, ret);
619
620         if (ret) {
621                 /*
622                  * our io error hook is going to dec the io pages
623                  * again, we have to make sure it has something
624                  * to decrement
625                  */
626                 atomic_inc(&eb->io_pages);
627                 clear_extent_buffer_uptodate(eb);
628         }
629         free_extent_buffer(eb);
630 out:
631         return ret;
632 }
633
634 static int btree_io_failed_hook(struct page *page, int failed_mirror)
635 {
636         struct extent_buffer *eb;
637
638         eb = (struct extent_buffer *)page->private;
639         set_bit(EXTENT_BUFFER_READ_ERR, &eb->bflags);
640         eb->read_mirror = failed_mirror;
641         atomic_dec(&eb->io_pages);
642         if (test_and_clear_bit(EXTENT_BUFFER_READAHEAD, &eb->bflags))
643                 btree_readahead_hook(eb, -EIO);
644         return -EIO;    /* we fixed nothing */
645 }
646
647 static void end_workqueue_bio(struct bio *bio)
648 {
649         struct btrfs_end_io_wq *end_io_wq = bio->bi_private;
650         struct btrfs_fs_info *fs_info;
651         struct btrfs_workqueue *wq;
652         btrfs_work_func_t func;
653
654         fs_info = end_io_wq->info;
655         end_io_wq->status = bio->bi_status;
656
657         if (bio_op(bio) == REQ_OP_WRITE) {
658                 if (end_io_wq->metadata == BTRFS_WQ_ENDIO_METADATA) {
659                         wq = fs_info->endio_meta_write_workers;
660                         func = btrfs_endio_meta_write_helper;
661                 } else if (end_io_wq->metadata == BTRFS_WQ_ENDIO_FREE_SPACE) {
662                         wq = fs_info->endio_freespace_worker;
663                         func = btrfs_freespace_write_helper;
664                 } else if (end_io_wq->metadata == BTRFS_WQ_ENDIO_RAID56) {
665                         wq = fs_info->endio_raid56_workers;
666                         func = btrfs_endio_raid56_helper;
667                 } else {
668                         wq = fs_info->endio_write_workers;
669                         func = btrfs_endio_write_helper;
670                 }
671         } else {
672                 if (unlikely(end_io_wq->metadata ==
673                              BTRFS_WQ_ENDIO_DIO_REPAIR)) {
674                         wq = fs_info->endio_repair_workers;
675                         func = btrfs_endio_repair_helper;
676                 } else if (end_io_wq->metadata == BTRFS_WQ_ENDIO_RAID56) {
677                         wq = fs_info->endio_raid56_workers;
678                         func = btrfs_endio_raid56_helper;
679                 } else if (end_io_wq->metadata) {
680                         wq = fs_info->endio_meta_workers;
681                         func = btrfs_endio_meta_helper;
682                 } else {
683                         wq = fs_info->endio_workers;
684                         func = btrfs_endio_helper;
685                 }
686         }
687
688         btrfs_init_work(&end_io_wq->work, func, end_workqueue_fn, NULL, NULL);
689         btrfs_queue_work(wq, &end_io_wq->work);
690 }
691
692 blk_status_t btrfs_bio_wq_end_io(struct btrfs_fs_info *info, struct bio *bio,
693                         enum btrfs_wq_endio_type metadata)
694 {
695         struct btrfs_end_io_wq *end_io_wq;
696
697         end_io_wq = kmem_cache_alloc(btrfs_end_io_wq_cache, GFP_NOFS);
698         if (!end_io_wq)
699                 return BLK_STS_RESOURCE;
700
701         end_io_wq->private = bio->bi_private;
702         end_io_wq->end_io = bio->bi_end_io;
703         end_io_wq->info = info;
704         end_io_wq->status = 0;
705         end_io_wq->bio = bio;
706         end_io_wq->metadata = metadata;
707
708         bio->bi_private = end_io_wq;
709         bio->bi_end_io = end_workqueue_bio;
710         return 0;
711 }
712
713 unsigned long btrfs_async_submit_limit(struct btrfs_fs_info *info)
714 {
715         unsigned long limit = min_t(unsigned long,
716                                     info->thread_pool_size,
717                                     info->fs_devices->open_devices);
718         return 256 * limit;
719 }
720
721 static void run_one_async_start(struct btrfs_work *work)
722 {
723         struct async_submit_bio *async;
724         blk_status_t ret;
725
726         async = container_of(work, struct  async_submit_bio, work);
727         ret = async->submit_bio_start(async->private_data, async->bio,
728                                       async->mirror_num, async->bio_flags,
729                                       async->bio_offset);
730         if (ret)
731                 async->status = ret;
732 }
733
734 static void run_one_async_done(struct btrfs_work *work)
735 {
736         struct btrfs_fs_info *fs_info;
737         struct async_submit_bio *async;
738         int limit;
739
740         async = container_of(work, struct  async_submit_bio, work);
741         fs_info = async->fs_info;
742
743         limit = btrfs_async_submit_limit(fs_info);
744         limit = limit * 2 / 3;
745
746         /*
747          * atomic_dec_return implies a barrier for waitqueue_active
748          */
749         if (atomic_dec_return(&fs_info->nr_async_submits) < limit &&
750             waitqueue_active(&fs_info->async_submit_wait))
751                 wake_up(&fs_info->async_submit_wait);
752
753         /* If an error occurred we just want to clean up the bio and move on */
754         if (async->status) {
755                 async->bio->bi_status = async->status;
756                 bio_endio(async->bio);
757                 return;
758         }
759
760         async->submit_bio_done(async->private_data, async->bio, async->mirror_num,
761                                async->bio_flags, async->bio_offset);
762 }
763
764 static void run_one_async_free(struct btrfs_work *work)
765 {
766         struct async_submit_bio *async;
767
768         async = container_of(work, struct  async_submit_bio, work);
769         kfree(async);
770 }
771
772 blk_status_t btrfs_wq_submit_bio(struct btrfs_fs_info *fs_info, struct bio *bio,
773                                  int mirror_num, unsigned long bio_flags,
774                                  u64 bio_offset, void *private_data,
775                                  extent_submit_bio_hook_t *submit_bio_start,
776                                  extent_submit_bio_hook_t *submit_bio_done)
777 {
778         struct async_submit_bio *async;
779
780         async = kmalloc(sizeof(*async), GFP_NOFS);
781         if (!async)
782                 return BLK_STS_RESOURCE;
783
784         async->private_data = private_data;
785         async->fs_info = fs_info;
786         async->bio = bio;
787         async->mirror_num = mirror_num;
788         async->submit_bio_start = submit_bio_start;
789         async->submit_bio_done = submit_bio_done;
790
791         btrfs_init_work(&async->work, btrfs_worker_helper, run_one_async_start,
792                         run_one_async_done, run_one_async_free);
793
794         async->bio_flags = bio_flags;
795         async->bio_offset = bio_offset;
796
797         async->status = 0;
798
799         atomic_inc(&fs_info->nr_async_submits);
800
801         if (op_is_sync(bio->bi_opf))
802                 btrfs_set_work_high_priority(&async->work);
803
804         btrfs_queue_work(fs_info->workers, &async->work);
805
806         while (atomic_read(&fs_info->async_submit_draining) &&
807               atomic_read(&fs_info->nr_async_submits)) {
808                 wait_event(fs_info->async_submit_wait,
809                            (atomic_read(&fs_info->nr_async_submits) == 0));
810         }
811
812         return 0;
813 }
814
815 static blk_status_t btree_csum_one_bio(struct bio *bio)
816 {
817         struct bio_vec *bvec;
818         struct btrfs_root *root;
819         int i, ret = 0;
820
821         ASSERT(!bio_flagged(bio, BIO_CLONED));
822         bio_for_each_segment_all(bvec, bio, i) {
823                 root = BTRFS_I(bvec->bv_page->mapping->host)->root;
824                 ret = csum_dirty_buffer(root->fs_info, bvec->bv_page);
825                 if (ret)
826                         break;
827         }
828
829         return errno_to_blk_status(ret);
830 }
831
832 static blk_status_t __btree_submit_bio_start(void *private_data, struct bio *bio,
833                                              int mirror_num, unsigned long bio_flags,
834                                              u64 bio_offset)
835 {
836         /*
837          * when we're called for a write, we're already in the async
838          * submission context.  Just jump into btrfs_map_bio
839          */
840         return btree_csum_one_bio(bio);
841 }
842
843 static blk_status_t __btree_submit_bio_done(void *private_data, struct bio *bio,
844                                             int mirror_num, unsigned long bio_flags,
845                                             u64 bio_offset)
846 {
847         struct inode *inode = private_data;
848         blk_status_t ret;
849
850         /*
851          * when we're called for a write, we're already in the async
852          * submission context.  Just jump into btrfs_map_bio
853          */
854         ret = btrfs_map_bio(btrfs_sb(inode->i_sb), bio, mirror_num, 1);
855         if (ret) {
856                 bio->bi_status = ret;
857                 bio_endio(bio);
858         }
859         return ret;
860 }
861
862 static int check_async_write(unsigned long bio_flags)
863 {
864         if (bio_flags & EXTENT_BIO_TREE_LOG)
865                 return 0;
866 #ifdef CONFIG_X86
867         if (static_cpu_has(X86_FEATURE_XMM4_2))
868                 return 0;
869 #endif
870         return 1;
871 }
872
873 static blk_status_t btree_submit_bio_hook(void *private_data, struct bio *bio,
874                                           int mirror_num, unsigned long bio_flags,
875                                           u64 bio_offset)
876 {
877         struct inode *inode = private_data;
878         struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
879         int async = check_async_write(bio_flags);
880         blk_status_t ret;
881
882         if (bio_op(bio) != REQ_OP_WRITE) {
883                 /*
884                  * called for a read, do the setup so that checksum validation
885                  * can happen in the async kernel threads
886                  */
887                 ret = btrfs_bio_wq_end_io(fs_info, bio,
888                                           BTRFS_WQ_ENDIO_METADATA);
889                 if (ret)
890                         goto out_w_error;
891                 ret = btrfs_map_bio(fs_info, bio, mirror_num, 0);
892         } else if (!async) {
893                 ret = btree_csum_one_bio(bio);
894                 if (ret)
895                         goto out_w_error;
896                 ret = btrfs_map_bio(fs_info, bio, mirror_num, 0);
897         } else {
898                 /*
899                  * kthread helpers are used to submit writes so that
900                  * checksumming can happen in parallel across all CPUs
901                  */
902                 ret = btrfs_wq_submit_bio(fs_info, bio, mirror_num, 0,
903                                           bio_offset, private_data,
904                                           __btree_submit_bio_start,
905                                           __btree_submit_bio_done);
906         }
907
908         if (ret)
909                 goto out_w_error;
910         return 0;
911
912 out_w_error:
913         bio->bi_status = ret;
914         bio_endio(bio);
915         return ret;
916 }
917
918 #ifdef CONFIG_MIGRATION
919 static int btree_migratepage(struct address_space *mapping,
920                         struct page *newpage, struct page *page,
921                         enum migrate_mode mode)
922 {
923         /*
924          * we can't safely write a btree page from here,
925          * we haven't done the locking hook
926          */
927         if (PageDirty(page))
928                 return -EAGAIN;
929         /*
930          * Buffers may be managed in a filesystem specific way.
931          * We must have no buffers or drop them.
932          */
933         if (page_has_private(page) &&
934             !try_to_release_page(page, GFP_KERNEL))
935                 return -EAGAIN;
936         return migrate_page(mapping, newpage, page, mode);
937 }
938 #endif
939
940
941 static int btree_writepages(struct address_space *mapping,
942                             struct writeback_control *wbc)
943 {
944         struct btrfs_fs_info *fs_info;
945         int ret;
946
947         if (wbc->sync_mode == WB_SYNC_NONE) {
948
949                 if (wbc->for_kupdate)
950                         return 0;
951
952                 fs_info = BTRFS_I(mapping->host)->root->fs_info;
953                 /* this is a bit racy, but that's ok */
954                 ret = __percpu_counter_compare(&fs_info->dirty_metadata_bytes,
955                                              BTRFS_DIRTY_METADATA_THRESH,
956                                              fs_info->dirty_metadata_batch);
957                 if (ret < 0)
958                         return 0;
959         }
960         return btree_write_cache_pages(mapping, wbc);
961 }
962
963 static int btree_readpage(struct file *file, struct page *page)
964 {
965         struct extent_io_tree *tree;
966         tree = &BTRFS_I(page->mapping->host)->io_tree;
967         return extent_read_full_page(tree, page, btree_get_extent, 0);
968 }
969
970 static int btree_releasepage(struct page *page, gfp_t gfp_flags)
971 {
972         if (PageWriteback(page) || PageDirty(page))
973                 return 0;
974
975         return try_release_extent_buffer(page);
976 }
977
978 static void btree_invalidatepage(struct page *page, unsigned int offset,
979                                  unsigned int length)
980 {
981         struct extent_io_tree *tree;
982         tree = &BTRFS_I(page->mapping->host)->io_tree;
983         extent_invalidatepage(tree, page, offset);
984         btree_releasepage(page, GFP_NOFS);
985         if (PagePrivate(page)) {
986                 btrfs_warn(BTRFS_I(page->mapping->host)->root->fs_info,
987                            "page private not zero on page %llu",
988                            (unsigned long long)page_offset(page));
989                 ClearPagePrivate(page);
990                 set_page_private(page, 0);
991                 put_page(page);
992         }
993 }
994
995 static int btree_set_page_dirty(struct page *page)
996 {
997 #ifdef DEBUG
998         struct extent_buffer *eb;
999
1000         BUG_ON(!PagePrivate(page));
1001         eb = (struct extent_buffer *)page->private;
1002         BUG_ON(!eb);
1003         BUG_ON(!test_bit(EXTENT_BUFFER_DIRTY, &eb->bflags));
1004         BUG_ON(!atomic_read(&eb->refs));
1005         btrfs_assert_tree_locked(eb);
1006 #endif
1007         return __set_page_dirty_nobuffers(page);
1008 }
1009
1010 static const struct address_space_operations btree_aops = {
1011         .readpage       = btree_readpage,
1012         .writepages     = btree_writepages,
1013         .releasepage    = btree_releasepage,
1014         .invalidatepage = btree_invalidatepage,
1015 #ifdef CONFIG_MIGRATION
1016         .migratepage    = btree_migratepage,
1017 #endif
1018         .set_page_dirty = btree_set_page_dirty,
1019 };
1020
1021 void readahead_tree_block(struct btrfs_fs_info *fs_info, u64 bytenr)
1022 {
1023         struct extent_buffer *buf = NULL;
1024         struct inode *btree_inode = fs_info->btree_inode;
1025
1026         buf = btrfs_find_create_tree_block(fs_info, bytenr);
1027         if (IS_ERR(buf))
1028                 return;
1029         read_extent_buffer_pages(&BTRFS_I(btree_inode)->io_tree,
1030                                  buf, WAIT_NONE, btree_get_extent, 0);
1031         free_extent_buffer(buf);
1032 }
1033
1034 int reada_tree_block_flagged(struct btrfs_fs_info *fs_info, u64 bytenr,
1035                          int mirror_num, struct extent_buffer **eb)
1036 {
1037         struct extent_buffer *buf = NULL;
1038         struct inode *btree_inode = fs_info->btree_inode;
1039         struct extent_io_tree *io_tree = &BTRFS_I(btree_inode)->io_tree;
1040         int ret;
1041
1042         buf = btrfs_find_create_tree_block(fs_info, bytenr);
1043         if (IS_ERR(buf))
1044                 return 0;
1045
1046         set_bit(EXTENT_BUFFER_READAHEAD, &buf->bflags);
1047
1048         ret = read_extent_buffer_pages(io_tree, buf, WAIT_PAGE_LOCK,
1049                                        btree_get_extent, mirror_num);
1050         if (ret) {
1051                 free_extent_buffer(buf);
1052                 return ret;
1053         }
1054
1055         if (test_bit(EXTENT_BUFFER_CORRUPT, &buf->bflags)) {
1056                 free_extent_buffer(buf);
1057                 return -EIO;
1058         } else if (extent_buffer_uptodate(buf)) {
1059                 *eb = buf;
1060         } else {
1061                 free_extent_buffer(buf);
1062         }
1063         return 0;
1064 }
1065
1066 struct extent_buffer *btrfs_find_create_tree_block(
1067                                                 struct btrfs_fs_info *fs_info,
1068                                                 u64 bytenr)
1069 {
1070         if (btrfs_is_testing(fs_info))
1071                 return alloc_test_extent_buffer(fs_info, bytenr);
1072         return alloc_extent_buffer(fs_info, bytenr);
1073 }
1074
1075
1076 int btrfs_write_tree_block(struct extent_buffer *buf)
1077 {
1078         return filemap_fdatawrite_range(buf->pages[0]->mapping, buf->start,
1079                                         buf->start + buf->len - 1);
1080 }
1081
1082 void btrfs_wait_tree_block_writeback(struct extent_buffer *buf)
1083 {
1084         filemap_fdatawait_range(buf->pages[0]->mapping,
1085                                 buf->start, buf->start + buf->len - 1);
1086 }
1087
1088 struct extent_buffer *read_tree_block(struct btrfs_fs_info *fs_info, u64 bytenr,
1089                                       u64 parent_transid)
1090 {
1091         struct extent_buffer *buf = NULL;
1092         int ret;
1093
1094         buf = btrfs_find_create_tree_block(fs_info, bytenr);
1095         if (IS_ERR(buf))
1096                 return buf;
1097
1098         ret = btree_read_extent_buffer_pages(fs_info, buf, parent_transid);
1099         if (ret) {
1100                 free_extent_buffer(buf);
1101                 return ERR_PTR(ret);
1102         }
1103         return buf;
1104
1105 }
1106
1107 void clean_tree_block(struct btrfs_fs_info *fs_info,
1108                       struct extent_buffer *buf)
1109 {
1110         if (btrfs_header_generation(buf) ==
1111             fs_info->running_transaction->transid) {
1112                 btrfs_assert_tree_locked(buf);
1113
1114                 if (test_and_clear_bit(EXTENT_BUFFER_DIRTY, &buf->bflags)) {
1115                         percpu_counter_add_batch(&fs_info->dirty_metadata_bytes,
1116                                                  -buf->len,
1117                                                  fs_info->dirty_metadata_batch);
1118                         /* ugh, clear_extent_buffer_dirty needs to lock the page */
1119                         btrfs_set_lock_blocking(buf);
1120                         clear_extent_buffer_dirty(buf);
1121                 }
1122         }
1123 }
1124
1125 static struct btrfs_subvolume_writers *btrfs_alloc_subvolume_writers(void)
1126 {
1127         struct btrfs_subvolume_writers *writers;
1128         int ret;
1129
1130         writers = kmalloc(sizeof(*writers), GFP_NOFS);
1131         if (!writers)
1132                 return ERR_PTR(-ENOMEM);
1133
1134         ret = percpu_counter_init(&writers->counter, 0, GFP_NOFS);
1135         if (ret < 0) {
1136                 kfree(writers);
1137                 return ERR_PTR(ret);
1138         }
1139
1140         init_waitqueue_head(&writers->wait);
1141         return writers;
1142 }
1143
1144 static void
1145 btrfs_free_subvolume_writers(struct btrfs_subvolume_writers *writers)
1146 {
1147         percpu_counter_destroy(&writers->counter);
1148         kfree(writers);
1149 }
1150
1151 static void __setup_root(struct btrfs_root *root, struct btrfs_fs_info *fs_info,
1152                          u64 objectid)
1153 {
1154         bool dummy = test_bit(BTRFS_FS_STATE_DUMMY_FS_INFO, &fs_info->fs_state);
1155         root->node = NULL;
1156         root->commit_root = NULL;
1157         root->state = 0;
1158         root->orphan_cleanup_state = 0;
1159
1160         root->objectid = objectid;
1161         root->last_trans = 0;
1162         root->highest_objectid = 0;
1163         root->nr_delalloc_inodes = 0;
1164         root->nr_ordered_extents = 0;
1165         root->name = NULL;
1166         root->inode_tree = RB_ROOT;
1167         INIT_RADIX_TREE(&root->delayed_nodes_tree, GFP_ATOMIC);
1168         root->block_rsv = NULL;
1169         root->orphan_block_rsv = NULL;
1170
1171         INIT_LIST_HEAD(&root->dirty_list);
1172         INIT_LIST_HEAD(&root->root_list);
1173         INIT_LIST_HEAD(&root->delalloc_inodes);
1174         INIT_LIST_HEAD(&root->delalloc_root);
1175         INIT_LIST_HEAD(&root->ordered_extents);
1176         INIT_LIST_HEAD(&root->ordered_root);
1177         INIT_LIST_HEAD(&root->logged_list[0]);
1178         INIT_LIST_HEAD(&root->logged_list[1]);
1179         spin_lock_init(&root->orphan_lock);
1180         spin_lock_init(&root->inode_lock);
1181         spin_lock_init(&root->delalloc_lock);
1182         spin_lock_init(&root->ordered_extent_lock);
1183         spin_lock_init(&root->accounting_lock);
1184         spin_lock_init(&root->log_extents_lock[0]);
1185         spin_lock_init(&root->log_extents_lock[1]);
1186         mutex_init(&root->objectid_mutex);
1187         mutex_init(&root->log_mutex);
1188         mutex_init(&root->ordered_extent_mutex);
1189         mutex_init(&root->delalloc_mutex);
1190         init_waitqueue_head(&root->log_writer_wait);
1191         init_waitqueue_head(&root->log_commit_wait[0]);
1192         init_waitqueue_head(&root->log_commit_wait[1]);
1193         INIT_LIST_HEAD(&root->log_ctxs[0]);
1194         INIT_LIST_HEAD(&root->log_ctxs[1]);
1195         atomic_set(&root->log_commit[0], 0);
1196         atomic_set(&root->log_commit[1], 0);
1197         atomic_set(&root->log_writers, 0);
1198         atomic_set(&root->log_batch, 0);
1199         atomic_set(&root->orphan_inodes, 0);
1200         refcount_set(&root->refs, 1);
1201         atomic_set(&root->will_be_snapshotted, 0);
1202         atomic64_set(&root->qgroup_meta_rsv, 0);
1203         atomic_set(&root->snapshot_force_cow, 0);
1204         root->log_transid = 0;
1205         root->log_transid_committed = -1;
1206         root->last_log_commit = 0;
1207         if (!dummy)
1208                 extent_io_tree_init(&root->dirty_log_pages, NULL);
1209
1210         memset(&root->root_key, 0, sizeof(root->root_key));
1211         memset(&root->root_item, 0, sizeof(root->root_item));
1212         memset(&root->defrag_progress, 0, sizeof(root->defrag_progress));
1213         if (!dummy)
1214                 root->defrag_trans_start = fs_info->generation;
1215         else
1216                 root->defrag_trans_start = 0;
1217         root->root_key.objectid = objectid;
1218         root->anon_dev = 0;
1219
1220         spin_lock_init(&root->root_item_lock);
1221 }
1222
1223 static struct btrfs_root *btrfs_alloc_root(struct btrfs_fs_info *fs_info,
1224                 gfp_t flags)
1225 {
1226         struct btrfs_root *root = kzalloc(sizeof(*root), flags);
1227         if (root)
1228                 root->fs_info = fs_info;
1229         return root;
1230 }
1231
1232 #ifdef CONFIG_BTRFS_FS_RUN_SANITY_TESTS
1233 /* Should only be used by the testing infrastructure */
1234 struct btrfs_root *btrfs_alloc_dummy_root(struct btrfs_fs_info *fs_info)
1235 {
1236         struct btrfs_root *root;
1237
1238         if (!fs_info)
1239                 return ERR_PTR(-EINVAL);
1240
1241         root = btrfs_alloc_root(fs_info, GFP_KERNEL);
1242         if (!root)
1243                 return ERR_PTR(-ENOMEM);
1244
1245         /* We don't use the stripesize in selftest, set it as sectorsize */
1246         __setup_root(root, fs_info, BTRFS_ROOT_TREE_OBJECTID);
1247         root->alloc_bytenr = 0;
1248
1249         return root;
1250 }
1251 #endif
1252
1253 struct btrfs_root *btrfs_create_tree(struct btrfs_trans_handle *trans,
1254                                      struct btrfs_fs_info *fs_info,
1255                                      u64 objectid)
1256 {
1257         struct extent_buffer *leaf;
1258         struct btrfs_root *tree_root = fs_info->tree_root;
1259         struct btrfs_root *root;
1260         struct btrfs_key key;
1261         int ret = 0;
1262         uuid_le uuid;
1263
1264         root = btrfs_alloc_root(fs_info, GFP_KERNEL);
1265         if (!root)
1266                 return ERR_PTR(-ENOMEM);
1267
1268         __setup_root(root, fs_info, objectid);
1269         root->root_key.objectid = objectid;
1270         root->root_key.type = BTRFS_ROOT_ITEM_KEY;
1271         root->root_key.offset = 0;
1272
1273         leaf = btrfs_alloc_tree_block(trans, root, 0, objectid, NULL, 0, 0, 0);
1274         if (IS_ERR(leaf)) {
1275                 ret = PTR_ERR(leaf);
1276                 leaf = NULL;
1277                 goto fail;
1278         }
1279
1280         memzero_extent_buffer(leaf, 0, sizeof(struct btrfs_header));
1281         btrfs_set_header_bytenr(leaf, leaf->start);
1282         btrfs_set_header_generation(leaf, trans->transid);
1283         btrfs_set_header_backref_rev(leaf, BTRFS_MIXED_BACKREF_REV);
1284         btrfs_set_header_owner(leaf, objectid);
1285         root->node = leaf;
1286
1287         write_extent_buffer_fsid(leaf, fs_info->fsid);
1288         write_extent_buffer_chunk_tree_uuid(leaf, fs_info->chunk_tree_uuid);
1289         btrfs_mark_buffer_dirty(leaf);
1290
1291         root->commit_root = btrfs_root_node(root);
1292         set_bit(BTRFS_ROOT_TRACK_DIRTY, &root->state);
1293
1294         root->root_item.flags = 0;
1295         root->root_item.byte_limit = 0;
1296         btrfs_set_root_bytenr(&root->root_item, leaf->start);
1297         btrfs_set_root_generation(&root->root_item, trans->transid);
1298         btrfs_set_root_level(&root->root_item, 0);
1299         btrfs_set_root_refs(&root->root_item, 1);
1300         btrfs_set_root_used(&root->root_item, leaf->len);
1301         btrfs_set_root_last_snapshot(&root->root_item, 0);
1302         btrfs_set_root_dirid(&root->root_item, 0);
1303         uuid_le_gen(&uuid);
1304         memcpy(root->root_item.uuid, uuid.b, BTRFS_UUID_SIZE);
1305         root->root_item.drop_level = 0;
1306
1307         key.objectid = objectid;
1308         key.type = BTRFS_ROOT_ITEM_KEY;
1309         key.offset = 0;
1310         ret = btrfs_insert_root(trans, tree_root, &key, &root->root_item);
1311         if (ret)
1312                 goto fail;
1313
1314         btrfs_tree_unlock(leaf);
1315
1316         return root;
1317
1318 fail:
1319         if (leaf) {
1320                 btrfs_tree_unlock(leaf);
1321                 free_extent_buffer(root->commit_root);
1322                 free_extent_buffer(leaf);
1323         }
1324         kfree(root);
1325
1326         return ERR_PTR(ret);
1327 }
1328
1329 static struct btrfs_root *alloc_log_tree(struct btrfs_trans_handle *trans,
1330                                          struct btrfs_fs_info *fs_info)
1331 {
1332         struct btrfs_root *root;
1333         struct extent_buffer *leaf;
1334
1335         root = btrfs_alloc_root(fs_info, GFP_NOFS);
1336         if (!root)
1337                 return ERR_PTR(-ENOMEM);
1338
1339         __setup_root(root, fs_info, BTRFS_TREE_LOG_OBJECTID);
1340
1341         root->root_key.objectid = BTRFS_TREE_LOG_OBJECTID;
1342         root->root_key.type = BTRFS_ROOT_ITEM_KEY;
1343         root->root_key.offset = BTRFS_TREE_LOG_OBJECTID;
1344
1345         /*
1346          * DON'T set REF_COWS for log trees
1347          *
1348          * log trees do not get reference counted because they go away
1349          * before a real commit is actually done.  They do store pointers
1350          * to file data extents, and those reference counts still get
1351          * updated (along with back refs to the log tree).
1352          */
1353
1354         leaf = btrfs_alloc_tree_block(trans, root, 0, BTRFS_TREE_LOG_OBJECTID,
1355                         NULL, 0, 0, 0);
1356         if (IS_ERR(leaf)) {
1357                 kfree(root);
1358                 return ERR_CAST(leaf);
1359         }
1360
1361         memzero_extent_buffer(leaf, 0, sizeof(struct btrfs_header));
1362         btrfs_set_header_bytenr(leaf, leaf->start);
1363         btrfs_set_header_generation(leaf, trans->transid);
1364         btrfs_set_header_backref_rev(leaf, BTRFS_MIXED_BACKREF_REV);
1365         btrfs_set_header_owner(leaf, BTRFS_TREE_LOG_OBJECTID);
1366         root->node = leaf;
1367
1368         write_extent_buffer_fsid(root->node, fs_info->fsid);
1369         btrfs_mark_buffer_dirty(root->node);
1370         btrfs_tree_unlock(root->node);
1371         return root;
1372 }
1373
1374 int btrfs_init_log_root_tree(struct btrfs_trans_handle *trans,
1375                              struct btrfs_fs_info *fs_info)
1376 {
1377         struct btrfs_root *log_root;
1378
1379         log_root = alloc_log_tree(trans, fs_info);
1380         if (IS_ERR(log_root))
1381                 return PTR_ERR(log_root);
1382         WARN_ON(fs_info->log_root_tree);
1383         fs_info->log_root_tree = log_root;
1384         return 0;
1385 }
1386
1387 int btrfs_add_log_tree(struct btrfs_trans_handle *trans,
1388                        struct btrfs_root *root)
1389 {
1390         struct btrfs_fs_info *fs_info = root->fs_info;
1391         struct btrfs_root *log_root;
1392         struct btrfs_inode_item *inode_item;
1393
1394         log_root = alloc_log_tree(trans, fs_info);
1395         if (IS_ERR(log_root))
1396                 return PTR_ERR(log_root);
1397
1398         log_root->last_trans = trans->transid;
1399         log_root->root_key.offset = root->root_key.objectid;
1400
1401         inode_item = &log_root->root_item.inode;
1402         btrfs_set_stack_inode_generation(inode_item, 1);
1403         btrfs_set_stack_inode_size(inode_item, 3);
1404         btrfs_set_stack_inode_nlink(inode_item, 1);
1405         btrfs_set_stack_inode_nbytes(inode_item,
1406                                      fs_info->nodesize);
1407         btrfs_set_stack_inode_mode(inode_item, S_IFDIR | 0755);
1408
1409         btrfs_set_root_node(&log_root->root_item, log_root->node);
1410
1411         WARN_ON(root->log_root);
1412         root->log_root = log_root;
1413         root->log_transid = 0;
1414         root->log_transid_committed = -1;
1415         root->last_log_commit = 0;
1416         return 0;
1417 }
1418
1419 static struct btrfs_root *btrfs_read_tree_root(struct btrfs_root *tree_root,
1420                                                struct btrfs_key *key)
1421 {
1422         struct btrfs_root *root;
1423         struct btrfs_fs_info *fs_info = tree_root->fs_info;
1424         struct btrfs_path *path;
1425         u64 generation;
1426         int ret;
1427
1428         path = btrfs_alloc_path();
1429         if (!path)
1430                 return ERR_PTR(-ENOMEM);
1431
1432         root = btrfs_alloc_root(fs_info, GFP_NOFS);
1433         if (!root) {
1434                 ret = -ENOMEM;
1435                 goto alloc_fail;
1436         }
1437
1438         __setup_root(root, fs_info, key->objectid);
1439
1440         ret = btrfs_find_root(tree_root, key, path,
1441                               &root->root_item, &root->root_key);
1442         if (ret) {
1443                 if (ret > 0)
1444                         ret = -ENOENT;
1445                 goto find_fail;
1446         }
1447
1448         generation = btrfs_root_generation(&root->root_item);
1449         root->node = read_tree_block(fs_info,
1450                                      btrfs_root_bytenr(&root->root_item),
1451                                      generation);
1452         if (IS_ERR(root->node)) {
1453                 ret = PTR_ERR(root->node);
1454                 goto find_fail;
1455         } else if (!btrfs_buffer_uptodate(root->node, generation, 0)) {
1456                 ret = -EIO;
1457                 free_extent_buffer(root->node);
1458                 goto find_fail;
1459         }
1460         root->commit_root = btrfs_root_node(root);
1461 out:
1462         btrfs_free_path(path);
1463         return root;
1464
1465 find_fail:
1466         kfree(root);
1467 alloc_fail:
1468         root = ERR_PTR(ret);
1469         goto out;
1470 }
1471
1472 struct btrfs_root *btrfs_read_fs_root(struct btrfs_root *tree_root,
1473                                       struct btrfs_key *location)
1474 {
1475         struct btrfs_root *root;
1476
1477         root = btrfs_read_tree_root(tree_root, location);
1478         if (IS_ERR(root))
1479                 return root;
1480
1481         if (root->root_key.objectid != BTRFS_TREE_LOG_OBJECTID) {
1482                 set_bit(BTRFS_ROOT_REF_COWS, &root->state);
1483                 btrfs_check_and_init_root_item(&root->root_item);
1484         }
1485
1486         return root;
1487 }
1488
1489 int btrfs_init_fs_root(struct btrfs_root *root)
1490 {
1491         int ret;
1492         struct btrfs_subvolume_writers *writers;
1493
1494         root->free_ino_ctl = kzalloc(sizeof(*root->free_ino_ctl), GFP_NOFS);
1495         root->free_ino_pinned = kzalloc(sizeof(*root->free_ino_pinned),
1496                                         GFP_NOFS);
1497         if (!root->free_ino_pinned || !root->free_ino_ctl) {
1498                 ret = -ENOMEM;
1499                 goto fail;
1500         }
1501
1502         writers = btrfs_alloc_subvolume_writers();
1503         if (IS_ERR(writers)) {
1504                 ret = PTR_ERR(writers);
1505                 goto fail;
1506         }
1507         root->subv_writers = writers;
1508
1509         btrfs_init_free_ino_ctl(root);
1510         spin_lock_init(&root->ino_cache_lock);
1511         init_waitqueue_head(&root->ino_cache_wait);
1512
1513         /*
1514          * Don't assign anonymous block device to roots that are not exposed to
1515          * userspace, the id pool is limited to 1M
1516          */
1517         if (is_fstree(root->root_key.objectid) &&
1518             btrfs_root_refs(&root->root_item) > 0) {
1519                 ret = get_anon_bdev(&root->anon_dev);
1520                 if (ret)
1521                         goto fail;
1522         }
1523
1524         mutex_lock(&root->objectid_mutex);
1525         ret = btrfs_find_highest_objectid(root,
1526                                         &root->highest_objectid);
1527         if (ret) {
1528                 mutex_unlock(&root->objectid_mutex);
1529                 goto fail;
1530         }
1531
1532         ASSERT(root->highest_objectid <= BTRFS_LAST_FREE_OBJECTID);
1533
1534         mutex_unlock(&root->objectid_mutex);
1535
1536         return 0;
1537 fail:
1538         /* the caller is responsible to call free_fs_root */
1539         return ret;
1540 }
1541
1542 struct btrfs_root *btrfs_lookup_fs_root(struct btrfs_fs_info *fs_info,
1543                                         u64 root_id)
1544 {
1545         struct btrfs_root *root;
1546
1547         spin_lock(&fs_info->fs_roots_radix_lock);
1548         root = radix_tree_lookup(&fs_info->fs_roots_radix,
1549                                  (unsigned long)root_id);
1550         spin_unlock(&fs_info->fs_roots_radix_lock);
1551         return root;
1552 }
1553
1554 int btrfs_insert_fs_root(struct btrfs_fs_info *fs_info,
1555                          struct btrfs_root *root)
1556 {
1557         int ret;
1558
1559         ret = radix_tree_preload(GFP_NOFS);
1560         if (ret)
1561                 return ret;
1562
1563         spin_lock(&fs_info->fs_roots_radix_lock);
1564         ret = radix_tree_insert(&fs_info->fs_roots_radix,
1565                                 (unsigned long)root->root_key.objectid,
1566                                 root);
1567         if (ret == 0)
1568                 set_bit(BTRFS_ROOT_IN_RADIX, &root->state);
1569         spin_unlock(&fs_info->fs_roots_radix_lock);
1570         radix_tree_preload_end();
1571
1572         return ret;
1573 }
1574
1575 struct btrfs_root *btrfs_get_fs_root(struct btrfs_fs_info *fs_info,
1576                                      struct btrfs_key *location,
1577                                      bool check_ref)
1578 {
1579         struct btrfs_root *root;
1580         struct btrfs_path *path;
1581         struct btrfs_key key;
1582         int ret;
1583
1584         if (location->objectid == BTRFS_ROOT_TREE_OBJECTID)
1585                 return fs_info->tree_root;
1586         if (location->objectid == BTRFS_EXTENT_TREE_OBJECTID)
1587                 return fs_info->extent_root;
1588         if (location->objectid == BTRFS_CHUNK_TREE_OBJECTID)
1589                 return fs_info->chunk_root;
1590         if (location->objectid == BTRFS_DEV_TREE_OBJECTID)
1591                 return fs_info->dev_root;
1592         if (location->objectid == BTRFS_CSUM_TREE_OBJECTID)
1593                 return fs_info->csum_root;
1594         if (location->objectid == BTRFS_QUOTA_TREE_OBJECTID)
1595                 return fs_info->quota_root ? fs_info->quota_root :
1596                                              ERR_PTR(-ENOENT);
1597         if (location->objectid == BTRFS_UUID_TREE_OBJECTID)
1598                 return fs_info->uuid_root ? fs_info->uuid_root :
1599                                             ERR_PTR(-ENOENT);
1600         if (location->objectid == BTRFS_FREE_SPACE_TREE_OBJECTID)
1601                 return fs_info->free_space_root ? fs_info->free_space_root :
1602                                                   ERR_PTR(-ENOENT);
1603 again:
1604         root = btrfs_lookup_fs_root(fs_info, location->objectid);
1605         if (root) {
1606                 if (check_ref && btrfs_root_refs(&root->root_item) == 0)
1607                         return ERR_PTR(-ENOENT);
1608                 return root;
1609         }
1610
1611         root = btrfs_read_fs_root(fs_info->tree_root, location);
1612         if (IS_ERR(root))
1613                 return root;
1614
1615         if (check_ref && btrfs_root_refs(&root->root_item) == 0) {
1616                 ret = -ENOENT;
1617                 goto fail;
1618         }
1619
1620         ret = btrfs_init_fs_root(root);
1621         if (ret)
1622                 goto fail;
1623
1624         path = btrfs_alloc_path();
1625         if (!path) {
1626                 ret = -ENOMEM;
1627                 goto fail;
1628         }
1629         key.objectid = BTRFS_ORPHAN_OBJECTID;
1630         key.type = BTRFS_ORPHAN_ITEM_KEY;
1631         key.offset = location->objectid;
1632
1633         ret = btrfs_search_slot(NULL, fs_info->tree_root, &key, path, 0, 0);
1634         btrfs_free_path(path);
1635         if (ret < 0)
1636                 goto fail;
1637         if (ret == 0)
1638                 set_bit(BTRFS_ROOT_ORPHAN_ITEM_INSERTED, &root->state);
1639
1640         ret = btrfs_insert_fs_root(fs_info, root);
1641         if (ret) {
1642                 if (ret == -EEXIST) {
1643                         free_fs_root(root);
1644                         goto again;
1645                 }
1646                 goto fail;
1647         }
1648         return root;
1649 fail:
1650         free_fs_root(root);
1651         return ERR_PTR(ret);
1652 }
1653
1654 static int btrfs_congested_fn(void *congested_data, int bdi_bits)
1655 {
1656         struct btrfs_fs_info *info = (struct btrfs_fs_info *)congested_data;
1657         int ret = 0;
1658         struct btrfs_device *device;
1659         struct backing_dev_info *bdi;
1660
1661         rcu_read_lock();
1662         list_for_each_entry_rcu(device, &info->fs_devices->devices, dev_list) {
1663                 if (!device->bdev)
1664                         continue;
1665                 bdi = device->bdev->bd_bdi;
1666                 if (bdi_congested(bdi, bdi_bits)) {
1667                         ret = 1;
1668                         break;
1669                 }
1670         }
1671         rcu_read_unlock();
1672         return ret;
1673 }
1674
1675 /*
1676  * called by the kthread helper functions to finally call the bio end_io
1677  * functions.  This is where read checksum verification actually happens
1678  */
1679 static void end_workqueue_fn(struct btrfs_work *work)
1680 {
1681         struct bio *bio;
1682         struct btrfs_end_io_wq *end_io_wq;
1683
1684         end_io_wq = container_of(work, struct btrfs_end_io_wq, work);
1685         bio = end_io_wq->bio;
1686
1687         bio->bi_status = end_io_wq->status;
1688         bio->bi_private = end_io_wq->private;
1689         bio->bi_end_io = end_io_wq->end_io;
1690         bio_endio(bio);
1691         kmem_cache_free(btrfs_end_io_wq_cache, end_io_wq);
1692 }
1693
1694 static int cleaner_kthread(void *arg)
1695 {
1696         struct btrfs_root *root = arg;
1697         struct btrfs_fs_info *fs_info = root->fs_info;
1698         int again;
1699
1700         while (1) {
1701                 again = 0;
1702
1703                 /* Make the cleaner go to sleep early. */
1704                 if (btrfs_need_cleaner_sleep(fs_info))
1705                         goto sleep;
1706
1707                 /*
1708                  * Do not do anything if we might cause open_ctree() to block
1709                  * before we have finished mounting the filesystem.
1710                  */
1711                 if (!test_bit(BTRFS_FS_OPEN, &fs_info->flags))
1712                         goto sleep;
1713
1714                 if (!mutex_trylock(&fs_info->cleaner_mutex))
1715                         goto sleep;
1716
1717                 /*
1718                  * Avoid the problem that we change the status of the fs
1719                  * during the above check and trylock.
1720                  */
1721                 if (btrfs_need_cleaner_sleep(fs_info)) {
1722                         mutex_unlock(&fs_info->cleaner_mutex);
1723                         goto sleep;
1724                 }
1725
1726                 mutex_lock(&fs_info->cleaner_delayed_iput_mutex);
1727                 btrfs_run_delayed_iputs(fs_info);
1728                 mutex_unlock(&fs_info->cleaner_delayed_iput_mutex);
1729
1730                 again = btrfs_clean_one_deleted_snapshot(root);
1731                 mutex_unlock(&fs_info->cleaner_mutex);
1732
1733                 /*
1734                  * The defragger has dealt with the R/O remount and umount,
1735                  * needn't do anything special here.
1736                  */
1737                 btrfs_run_defrag_inodes(fs_info);
1738
1739                 /*
1740                  * Acquires fs_info->delete_unused_bgs_mutex to avoid racing
1741                  * with relocation (btrfs_relocate_chunk) and relocation
1742                  * acquires fs_info->cleaner_mutex (btrfs_relocate_block_group)
1743                  * after acquiring fs_info->delete_unused_bgs_mutex. So we
1744                  * can't hold, nor need to, fs_info->cleaner_mutex when deleting
1745                  * unused block groups.
1746                  */
1747                 btrfs_delete_unused_bgs(fs_info);
1748 sleep:
1749                 if (kthread_should_park())
1750                         kthread_parkme();
1751                 if (kthread_should_stop())
1752                         return 0;
1753                 if (!again) {
1754                         set_current_state(TASK_INTERRUPTIBLE);
1755                         schedule();
1756                         __set_current_state(TASK_RUNNING);
1757                 }
1758         }
1759 }
1760
1761 static int transaction_kthread(void *arg)
1762 {
1763         struct btrfs_root *root = arg;
1764         struct btrfs_fs_info *fs_info = root->fs_info;
1765         struct btrfs_trans_handle *trans;
1766         struct btrfs_transaction *cur;
1767         u64 transid;
1768         unsigned long now;
1769         unsigned long delay;
1770         bool cannot_commit;
1771
1772         do {
1773                 cannot_commit = false;
1774                 delay = HZ * fs_info->commit_interval;
1775                 mutex_lock(&fs_info->transaction_kthread_mutex);
1776
1777                 spin_lock(&fs_info->trans_lock);
1778                 cur = fs_info->running_transaction;
1779                 if (!cur) {
1780                         spin_unlock(&fs_info->trans_lock);
1781                         goto sleep;
1782                 }
1783
1784                 now = get_seconds();
1785                 if (cur->state < TRANS_STATE_BLOCKED &&
1786                     (now < cur->start_time ||
1787                      now - cur->start_time < fs_info->commit_interval)) {
1788                         spin_unlock(&fs_info->trans_lock);
1789                         delay = HZ * 5;
1790                         goto sleep;
1791                 }
1792                 transid = cur->transid;
1793                 spin_unlock(&fs_info->trans_lock);
1794
1795                 /* If the file system is aborted, this will always fail. */
1796                 trans = btrfs_attach_transaction(root);
1797                 if (IS_ERR(trans)) {
1798                         if (PTR_ERR(trans) != -ENOENT)
1799                                 cannot_commit = true;
1800                         goto sleep;
1801                 }
1802                 if (transid == trans->transid) {
1803                         btrfs_commit_transaction(trans);
1804                 } else {
1805                         btrfs_end_transaction(trans);
1806                 }
1807 sleep:
1808                 wake_up_process(fs_info->cleaner_kthread);
1809                 mutex_unlock(&fs_info->transaction_kthread_mutex);
1810
1811                 if (unlikely(test_bit(BTRFS_FS_STATE_ERROR,
1812                                       &fs_info->fs_state)))
1813                         btrfs_cleanup_transaction(fs_info);
1814                 set_current_state(TASK_INTERRUPTIBLE);
1815                 if (!kthread_should_stop() &&
1816                                 (!btrfs_transaction_blocked(fs_info) ||
1817                                  cannot_commit))
1818                         schedule_timeout(delay);
1819                 __set_current_state(TASK_RUNNING);
1820         } while (!kthread_should_stop());
1821         return 0;
1822 }
1823
1824 /*
1825  * this will find the highest generation in the array of
1826  * root backups.  The index of the highest array is returned,
1827  * or -1 if we can't find anything.
1828  *
1829  * We check to make sure the array is valid by comparing the
1830  * generation of the latest  root in the array with the generation
1831  * in the super block.  If they don't match we pitch it.
1832  */
1833 static int find_newest_super_backup(struct btrfs_fs_info *info, u64 newest_gen)
1834 {
1835         u64 cur;
1836         int newest_index = -1;
1837         struct btrfs_root_backup *root_backup;
1838         int i;
1839
1840         for (i = 0; i < BTRFS_NUM_BACKUP_ROOTS; i++) {
1841                 root_backup = info->super_copy->super_roots + i;
1842                 cur = btrfs_backup_tree_root_gen(root_backup);
1843                 if (cur == newest_gen)
1844                         newest_index = i;
1845         }
1846
1847         /* check to see if we actually wrapped around */
1848         if (newest_index == BTRFS_NUM_BACKUP_ROOTS - 1) {
1849                 root_backup = info->super_copy->super_roots;
1850                 cur = btrfs_backup_tree_root_gen(root_backup);
1851                 if (cur == newest_gen)
1852                         newest_index = 0;
1853         }
1854         return newest_index;
1855 }
1856
1857
1858 /*
1859  * find the oldest backup so we know where to store new entries
1860  * in the backup array.  This will set the backup_root_index
1861  * field in the fs_info struct
1862  */
1863 static void find_oldest_super_backup(struct btrfs_fs_info *info,
1864                                      u64 newest_gen)
1865 {
1866         int newest_index = -1;
1867
1868         newest_index = find_newest_super_backup(info, newest_gen);
1869         /* if there was garbage in there, just move along */
1870         if (newest_index == -1) {
1871                 info->backup_root_index = 0;
1872         } else {
1873                 info->backup_root_index = (newest_index + 1) % BTRFS_NUM_BACKUP_ROOTS;
1874         }
1875 }
1876
1877 /*
1878  * copy all the root pointers into the super backup array.
1879  * this will bump the backup pointer by one when it is
1880  * done
1881  */
1882 static void backup_super_roots(struct btrfs_fs_info *info)
1883 {
1884         int next_backup;
1885         struct btrfs_root_backup *root_backup;
1886         int last_backup;
1887
1888         next_backup = info->backup_root_index;
1889         last_backup = (next_backup + BTRFS_NUM_BACKUP_ROOTS - 1) %
1890                 BTRFS_NUM_BACKUP_ROOTS;
1891
1892         /*
1893          * just overwrite the last backup if we're at the same generation
1894          * this happens only at umount
1895          */
1896         root_backup = info->super_for_commit->super_roots + last_backup;
1897         if (btrfs_backup_tree_root_gen(root_backup) ==
1898             btrfs_header_generation(info->tree_root->node))
1899                 next_backup = last_backup;
1900
1901         root_backup = info->super_for_commit->super_roots + next_backup;
1902
1903         /*
1904          * make sure all of our padding and empty slots get zero filled
1905          * regardless of which ones we use today
1906          */
1907         memset(root_backup, 0, sizeof(*root_backup));
1908
1909         info->backup_root_index = (next_backup + 1) % BTRFS_NUM_BACKUP_ROOTS;
1910
1911         btrfs_set_backup_tree_root(root_backup, info->tree_root->node->start);
1912         btrfs_set_backup_tree_root_gen(root_backup,
1913                                btrfs_header_generation(info->tree_root->node));
1914
1915         btrfs_set_backup_tree_root_level(root_backup,
1916                                btrfs_header_level(info->tree_root->node));
1917
1918         btrfs_set_backup_chunk_root(root_backup, info->chunk_root->node->start);
1919         btrfs_set_backup_chunk_root_gen(root_backup,
1920                                btrfs_header_generation(info->chunk_root->node));
1921         btrfs_set_backup_chunk_root_level(root_backup,
1922                                btrfs_header_level(info->chunk_root->node));
1923
1924         btrfs_set_backup_extent_root(root_backup, info->extent_root->node->start);
1925         btrfs_set_backup_extent_root_gen(root_backup,
1926                                btrfs_header_generation(info->extent_root->node));
1927         btrfs_set_backup_extent_root_level(root_backup,
1928                                btrfs_header_level(info->extent_root->node));
1929
1930         /*
1931          * we might commit during log recovery, which happens before we set
1932          * the fs_root.  Make sure it is valid before we fill it in.
1933          */
1934         if (info->fs_root && info->fs_root->node) {
1935                 btrfs_set_backup_fs_root(root_backup,
1936                                          info->fs_root->node->start);
1937                 btrfs_set_backup_fs_root_gen(root_backup,
1938                                btrfs_header_generation(info->fs_root->node));
1939                 btrfs_set_backup_fs_root_level(root_backup,
1940                                btrfs_header_level(info->fs_root->node));
1941         }
1942
1943         btrfs_set_backup_dev_root(root_backup, info->dev_root->node->start);
1944         btrfs_set_backup_dev_root_gen(root_backup,
1945                                btrfs_header_generation(info->dev_root->node));
1946         btrfs_set_backup_dev_root_level(root_backup,
1947                                        btrfs_header_level(info->dev_root->node));
1948
1949         btrfs_set_backup_csum_root(root_backup, info->csum_root->node->start);
1950         btrfs_set_backup_csum_root_gen(root_backup,
1951                                btrfs_header_generation(info->csum_root->node));
1952         btrfs_set_backup_csum_root_level(root_backup,
1953                                btrfs_header_level(info->csum_root->node));
1954
1955         btrfs_set_backup_total_bytes(root_backup,
1956                              btrfs_super_total_bytes(info->super_copy));
1957         btrfs_set_backup_bytes_used(root_backup,
1958                              btrfs_super_bytes_used(info->super_copy));
1959         btrfs_set_backup_num_devices(root_backup,
1960                              btrfs_super_num_devices(info->super_copy));
1961
1962         /*
1963          * if we don't copy this out to the super_copy, it won't get remembered
1964          * for the next commit
1965          */
1966         memcpy(&info->super_copy->super_roots,
1967                &info->super_for_commit->super_roots,
1968                sizeof(*root_backup) * BTRFS_NUM_BACKUP_ROOTS);
1969 }
1970
1971 /*
1972  * this copies info out of the root backup array and back into
1973  * the in-memory super block.  It is meant to help iterate through
1974  * the array, so you send it the number of backups you've already
1975  * tried and the last backup index you used.
1976  *
1977  * this returns -1 when it has tried all the backups
1978  */
1979 static noinline int next_root_backup(struct btrfs_fs_info *info,
1980                                      struct btrfs_super_block *super,
1981                                      int *num_backups_tried, int *backup_index)
1982 {
1983         struct btrfs_root_backup *root_backup;
1984         int newest = *backup_index;
1985
1986         if (*num_backups_tried == 0) {
1987                 u64 gen = btrfs_super_generation(super);
1988
1989                 newest = find_newest_super_backup(info, gen);
1990                 if (newest == -1)
1991                         return -1;
1992
1993                 *backup_index = newest;
1994                 *num_backups_tried = 1;
1995         } else if (*num_backups_tried == BTRFS_NUM_BACKUP_ROOTS) {
1996                 /* we've tried all the backups, all done */
1997                 return -1;
1998         } else {
1999                 /* jump to the next oldest backup */
2000                 newest = (*backup_index + BTRFS_NUM_BACKUP_ROOTS - 1) %
2001                         BTRFS_NUM_BACKUP_ROOTS;
2002                 *backup_index = newest;
2003                 *num_backups_tried += 1;
2004         }
2005         root_backup = super->super_roots + newest;
2006
2007         btrfs_set_super_generation(super,
2008                                    btrfs_backup_tree_root_gen(root_backup));
2009         btrfs_set_super_root(super, btrfs_backup_tree_root(root_backup));
2010         btrfs_set_super_root_level(super,
2011                                    btrfs_backup_tree_root_level(root_backup));
2012         btrfs_set_super_bytes_used(super, btrfs_backup_bytes_used(root_backup));
2013
2014         /*
2015          * fixme: the total bytes and num_devices need to match or we should
2016          * need a fsck
2017          */
2018         btrfs_set_super_total_bytes(super, btrfs_backup_total_bytes(root_backup));
2019         btrfs_set_super_num_devices(super, btrfs_backup_num_devices(root_backup));
2020         return 0;
2021 }
2022
2023 /* helper to cleanup workers */
2024 static void btrfs_stop_all_workers(struct btrfs_fs_info *fs_info)
2025 {
2026         btrfs_destroy_workqueue(fs_info->fixup_workers);
2027         btrfs_destroy_workqueue(fs_info->delalloc_workers);
2028         btrfs_destroy_workqueue(fs_info->workers);
2029         btrfs_destroy_workqueue(fs_info->endio_workers);
2030         btrfs_destroy_workqueue(fs_info->endio_raid56_workers);
2031         btrfs_destroy_workqueue(fs_info->endio_repair_workers);
2032         btrfs_destroy_workqueue(fs_info->rmw_workers);
2033         btrfs_destroy_workqueue(fs_info->endio_write_workers);
2034         btrfs_destroy_workqueue(fs_info->endio_freespace_worker);
2035         btrfs_destroy_workqueue(fs_info->submit_workers);
2036         btrfs_destroy_workqueue(fs_info->delayed_workers);
2037         btrfs_destroy_workqueue(fs_info->caching_workers);
2038         btrfs_destroy_workqueue(fs_info->readahead_workers);
2039         btrfs_destroy_workqueue(fs_info->flush_workers);
2040         btrfs_destroy_workqueue(fs_info->qgroup_rescan_workers);
2041         btrfs_destroy_workqueue(fs_info->extent_workers);
2042         /*
2043          * Now that all other work queues are destroyed, we can safely destroy
2044          * the queues used for metadata I/O, since tasks from those other work
2045          * queues can do metadata I/O operations.
2046          */
2047         btrfs_destroy_workqueue(fs_info->endio_meta_workers);
2048         btrfs_destroy_workqueue(fs_info->endio_meta_write_workers);
2049 }
2050
2051 static void free_root_extent_buffers(struct btrfs_root *root)
2052 {
2053         if (root) {
2054                 free_extent_buffer(root->node);
2055                 free_extent_buffer(root->commit_root);
2056                 root->node = NULL;
2057                 root->commit_root = NULL;
2058         }
2059 }
2060
2061 /* helper to cleanup tree roots */
2062 static void free_root_pointers(struct btrfs_fs_info *info, bool free_chunk_root)
2063 {
2064         free_root_extent_buffers(info->tree_root);
2065
2066         free_root_extent_buffers(info->dev_root);
2067         free_root_extent_buffers(info->extent_root);
2068         free_root_extent_buffers(info->csum_root);
2069         free_root_extent_buffers(info->quota_root);
2070         free_root_extent_buffers(info->uuid_root);
2071         if (free_chunk_root)
2072                 free_root_extent_buffers(info->chunk_root);
2073         free_root_extent_buffers(info->free_space_root);
2074 }
2075
2076 void btrfs_free_fs_roots(struct btrfs_fs_info *fs_info)
2077 {
2078         int ret;
2079         struct btrfs_root *gang[8];
2080         int i;
2081
2082         while (!list_empty(&fs_info->dead_roots)) {
2083                 gang[0] = list_entry(fs_info->dead_roots.next,
2084                                      struct btrfs_root, root_list);
2085                 list_del(&gang[0]->root_list);
2086
2087                 if (test_bit(BTRFS_ROOT_IN_RADIX, &gang[0]->state)) {
2088                         btrfs_drop_and_free_fs_root(fs_info, gang[0]);
2089                 } else {
2090                         free_extent_buffer(gang[0]->node);
2091                         free_extent_buffer(gang[0]->commit_root);
2092                         btrfs_put_fs_root(gang[0]);
2093                 }
2094         }
2095
2096         while (1) {
2097                 ret = radix_tree_gang_lookup(&fs_info->fs_roots_radix,
2098                                              (void **)gang, 0,
2099                                              ARRAY_SIZE(gang));
2100                 if (!ret)
2101                         break;
2102                 for (i = 0; i < ret; i++)
2103                         btrfs_drop_and_free_fs_root(fs_info, gang[i]);
2104         }
2105
2106         if (test_bit(BTRFS_FS_STATE_ERROR, &fs_info->fs_state)) {
2107                 btrfs_free_log_root_tree(NULL, fs_info);
2108                 btrfs_destroy_pinned_extent(fs_info, fs_info->pinned_extents);
2109         }
2110 }
2111
2112 static void btrfs_init_scrub(struct btrfs_fs_info *fs_info)
2113 {
2114         mutex_init(&fs_info->scrub_lock);
2115         atomic_set(&fs_info->scrubs_running, 0);
2116         atomic_set(&fs_info->scrub_pause_req, 0);
2117         atomic_set(&fs_info->scrubs_paused, 0);
2118         atomic_set(&fs_info->scrub_cancel_req, 0);
2119         init_waitqueue_head(&fs_info->scrub_pause_wait);
2120         fs_info->scrub_workers_refcnt = 0;
2121 }
2122
2123 static void btrfs_init_balance(struct btrfs_fs_info *fs_info)
2124 {
2125         spin_lock_init(&fs_info->balance_lock);
2126         mutex_init(&fs_info->balance_mutex);
2127         atomic_set(&fs_info->balance_running, 0);
2128         atomic_set(&fs_info->balance_pause_req, 0);
2129         atomic_set(&fs_info->balance_cancel_req, 0);
2130         fs_info->balance_ctl = NULL;
2131         init_waitqueue_head(&fs_info->balance_wait_q);
2132 }
2133
2134 static void btrfs_init_btree_inode(struct btrfs_fs_info *fs_info)
2135 {
2136         struct inode *inode = fs_info->btree_inode;
2137
2138         inode->i_ino = BTRFS_BTREE_INODE_OBJECTID;
2139         set_nlink(inode, 1);
2140         /*
2141          * we set the i_size on the btree inode to the max possible int.
2142          * the real end of the address space is determined by all of
2143          * the devices in the system
2144          */
2145         inode->i_size = OFFSET_MAX;
2146         inode->i_mapping->a_ops = &btree_aops;
2147
2148         RB_CLEAR_NODE(&BTRFS_I(inode)->rb_node);
2149         extent_io_tree_init(&BTRFS_I(inode)->io_tree, inode);
2150         BTRFS_I(inode)->io_tree.track_uptodate = 0;
2151         extent_map_tree_init(&BTRFS_I(inode)->extent_tree);
2152
2153         BTRFS_I(inode)->io_tree.ops = &btree_extent_io_ops;
2154
2155         BTRFS_I(inode)->root = fs_info->tree_root;
2156         memset(&BTRFS_I(inode)->location, 0, sizeof(struct btrfs_key));
2157         set_bit(BTRFS_INODE_DUMMY, &BTRFS_I(inode)->runtime_flags);
2158         btrfs_insert_inode_hash(inode);
2159 }
2160
2161 static void btrfs_init_dev_replace_locks(struct btrfs_fs_info *fs_info)
2162 {
2163         fs_info->dev_replace.lock_owner = 0;
2164         atomic_set(&fs_info->dev_replace.nesting_level, 0);
2165         mutex_init(&fs_info->dev_replace.lock_finishing_cancel_unmount);
2166         rwlock_init(&fs_info->dev_replace.lock);
2167         atomic_set(&fs_info->dev_replace.read_locks, 0);
2168         atomic_set(&fs_info->dev_replace.blocking_readers, 0);
2169         init_waitqueue_head(&fs_info->replace_wait);
2170         init_waitqueue_head(&fs_info->dev_replace.read_lock_wq);
2171 }
2172
2173 static void btrfs_init_qgroup(struct btrfs_fs_info *fs_info)
2174 {
2175         spin_lock_init(&fs_info->qgroup_lock);
2176         mutex_init(&fs_info->qgroup_ioctl_lock);
2177         fs_info->qgroup_tree = RB_ROOT;
2178         fs_info->qgroup_op_tree = RB_ROOT;
2179         INIT_LIST_HEAD(&fs_info->dirty_qgroups);
2180         fs_info->qgroup_seq = 1;
2181         fs_info->qgroup_ulist = NULL;
2182         fs_info->qgroup_rescan_running = false;
2183         mutex_init(&fs_info->qgroup_rescan_lock);
2184 }
2185
2186 static int btrfs_init_workqueues(struct btrfs_fs_info *fs_info,
2187                 struct btrfs_fs_devices *fs_devices)
2188 {
2189         int max_active = fs_info->thread_pool_size;
2190         unsigned int flags = WQ_MEM_RECLAIM | WQ_FREEZABLE | WQ_UNBOUND;
2191
2192         fs_info->workers =
2193                 btrfs_alloc_workqueue(fs_info, "worker",
2194                                       flags | WQ_HIGHPRI, max_active, 16);
2195
2196         fs_info->delalloc_workers =
2197                 btrfs_alloc_workqueue(fs_info, "delalloc",
2198                                       flags, max_active, 2);
2199
2200         fs_info->flush_workers =
2201                 btrfs_alloc_workqueue(fs_info, "flush_delalloc",
2202                                       flags, max_active, 0);
2203
2204         fs_info->caching_workers =
2205                 btrfs_alloc_workqueue(fs_info, "cache", flags, max_active, 0);
2206
2207         /*
2208          * a higher idle thresh on the submit workers makes it much more
2209          * likely that bios will be send down in a sane order to the
2210          * devices
2211          */
2212         fs_info->submit_workers =
2213                 btrfs_alloc_workqueue(fs_info, "submit", flags,
2214                                       min_t(u64, fs_devices->num_devices,
2215                                             max_active), 64);
2216
2217         fs_info->fixup_workers =
2218                 btrfs_alloc_workqueue(fs_info, "fixup", flags, 1, 0);
2219
2220         /*
2221          * endios are largely parallel and should have a very
2222          * low idle thresh
2223          */
2224         fs_info->endio_workers =
2225                 btrfs_alloc_workqueue(fs_info, "endio", flags, max_active, 4);
2226         fs_info->endio_meta_workers =
2227                 btrfs_alloc_workqueue(fs_info, "endio-meta", flags,
2228                                       max_active, 4);
2229         fs_info->endio_meta_write_workers =
2230                 btrfs_alloc_workqueue(fs_info, "endio-meta-write", flags,
2231                                       max_active, 2);
2232         fs_info->endio_raid56_workers =
2233                 btrfs_alloc_workqueue(fs_info, "endio-raid56", flags,
2234                                       max_active, 4);
2235         fs_info->endio_repair_workers =
2236                 btrfs_alloc_workqueue(fs_info, "endio-repair", flags, 1, 0);
2237         fs_info->rmw_workers =
2238                 btrfs_alloc_workqueue(fs_info, "rmw", flags, max_active, 2);
2239         fs_info->endio_write_workers =
2240                 btrfs_alloc_workqueue(fs_info, "endio-write", flags,
2241                                       max_active, 2);
2242         fs_info->endio_freespace_worker =
2243                 btrfs_alloc_workqueue(fs_info, "freespace-write", flags,
2244                                       max_active, 0);
2245         fs_info->delayed_workers =
2246                 btrfs_alloc_workqueue(fs_info, "delayed-meta", flags,
2247                                       max_active, 0);
2248         fs_info->readahead_workers =
2249                 btrfs_alloc_workqueue(fs_info, "readahead", flags,
2250                                       max_active, 2);
2251         fs_info->qgroup_rescan_workers =
2252                 btrfs_alloc_workqueue(fs_info, "qgroup-rescan", flags, 1, 0);
2253         fs_info->extent_workers =
2254                 btrfs_alloc_workqueue(fs_info, "extent-refs", flags,
2255                                       min_t(u64, fs_devices->num_devices,
2256                                             max_active), 8);
2257
2258         if (!(fs_info->workers && fs_info->delalloc_workers &&
2259               fs_info->submit_workers && fs_info->flush_workers &&
2260               fs_info->endio_workers && fs_info->endio_meta_workers &&
2261               fs_info->endio_meta_write_workers &&
2262               fs_info->endio_repair_workers &&
2263               fs_info->endio_write_workers && fs_info->endio_raid56_workers &&
2264               fs_info->endio_freespace_worker && fs_info->rmw_workers &&
2265               fs_info->caching_workers && fs_info->readahead_workers &&
2266               fs_info->fixup_workers && fs_info->delayed_workers &&
2267               fs_info->extent_workers &&
2268               fs_info->qgroup_rescan_workers)) {
2269                 return -ENOMEM;
2270         }
2271
2272         return 0;
2273 }
2274
2275 static int btrfs_replay_log(struct btrfs_fs_info *fs_info,
2276                             struct btrfs_fs_devices *fs_devices)
2277 {
2278         int ret;
2279         struct btrfs_root *log_tree_root;
2280         struct btrfs_super_block *disk_super = fs_info->super_copy;
2281         u64 bytenr = btrfs_super_log_root(disk_super);
2282
2283         if (fs_devices->rw_devices == 0) {
2284                 btrfs_warn(fs_info, "log replay required on RO media");
2285                 return -EIO;
2286         }
2287
2288         log_tree_root = btrfs_alloc_root(fs_info, GFP_KERNEL);
2289         if (!log_tree_root)
2290                 return -ENOMEM;
2291
2292         __setup_root(log_tree_root, fs_info, BTRFS_TREE_LOG_OBJECTID);
2293
2294         log_tree_root->node = read_tree_block(fs_info, bytenr,
2295                                               fs_info->generation + 1);
2296         if (IS_ERR(log_tree_root->node)) {
2297                 btrfs_warn(fs_info, "failed to read log tree");
2298                 ret = PTR_ERR(log_tree_root->node);
2299                 kfree(log_tree_root);
2300                 return ret;
2301         } else if (!extent_buffer_uptodate(log_tree_root->node)) {
2302                 btrfs_err(fs_info, "failed to read log tree");
2303                 free_extent_buffer(log_tree_root->node);
2304                 kfree(log_tree_root);
2305                 return -EIO;
2306         }
2307         /* returns with log_tree_root freed on success */
2308         ret = btrfs_recover_log_trees(log_tree_root);
2309         if (ret) {
2310                 btrfs_handle_fs_error(fs_info, ret,
2311                                       "Failed to recover log tree");
2312                 free_extent_buffer(log_tree_root->node);
2313                 kfree(log_tree_root);
2314                 return ret;
2315         }
2316
2317         if (sb_rdonly(fs_info->sb)) {
2318                 ret = btrfs_commit_super(fs_info);
2319                 if (ret)
2320                         return ret;
2321         }
2322
2323         return 0;
2324 }
2325
2326 static int btrfs_read_roots(struct btrfs_fs_info *fs_info)
2327 {
2328         struct btrfs_root *tree_root = fs_info->tree_root;
2329         struct btrfs_root *root;
2330         struct btrfs_key location;
2331         int ret;
2332
2333         BUG_ON(!fs_info->tree_root);
2334
2335         location.objectid = BTRFS_EXTENT_TREE_OBJECTID;
2336         location.type = BTRFS_ROOT_ITEM_KEY;
2337         location.offset = 0;
2338
2339         root = btrfs_read_tree_root(tree_root, &location);
2340         if (IS_ERR(root))
2341                 return PTR_ERR(root);
2342         set_bit(BTRFS_ROOT_TRACK_DIRTY, &root->state);
2343         fs_info->extent_root = root;
2344
2345         location.objectid = BTRFS_DEV_TREE_OBJECTID;
2346         root = btrfs_read_tree_root(tree_root, &location);
2347         if (IS_ERR(root))
2348                 return PTR_ERR(root);
2349         set_bit(BTRFS_ROOT_TRACK_DIRTY, &root->state);
2350         fs_info->dev_root = root;
2351         btrfs_init_devices_late(fs_info);
2352
2353         location.objectid = BTRFS_CSUM_TREE_OBJECTID;
2354         root = btrfs_read_tree_root(tree_root, &location);
2355         if (IS_ERR(root))
2356                 return PTR_ERR(root);
2357         set_bit(BTRFS_ROOT_TRACK_DIRTY, &root->state);
2358         fs_info->csum_root = root;
2359
2360         location.objectid = BTRFS_QUOTA_TREE_OBJECTID;
2361         root = btrfs_read_tree_root(tree_root, &location);
2362         if (!IS_ERR(root)) {
2363                 set_bit(BTRFS_ROOT_TRACK_DIRTY, &root->state);
2364                 set_bit(BTRFS_FS_QUOTA_ENABLED, &fs_info->flags);
2365                 fs_info->quota_root = root;
2366         }
2367
2368         location.objectid = BTRFS_UUID_TREE_OBJECTID;
2369         root = btrfs_read_tree_root(tree_root, &location);
2370         if (IS_ERR(root)) {
2371                 ret = PTR_ERR(root);
2372                 if (ret != -ENOENT)
2373                         return ret;
2374         } else {
2375                 set_bit(BTRFS_ROOT_TRACK_DIRTY, &root->state);
2376                 fs_info->uuid_root = root;
2377         }
2378
2379         if (btrfs_fs_compat_ro(fs_info, FREE_SPACE_TREE)) {
2380                 location.objectid = BTRFS_FREE_SPACE_TREE_OBJECTID;
2381                 root = btrfs_read_tree_root(tree_root, &location);
2382                 if (IS_ERR(root))
2383                         return PTR_ERR(root);
2384                 set_bit(BTRFS_ROOT_TRACK_DIRTY, &root->state);
2385                 fs_info->free_space_root = root;
2386         }
2387
2388         return 0;
2389 }
2390
2391 int open_ctree(struct super_block *sb,
2392                struct btrfs_fs_devices *fs_devices,
2393                char *options)
2394 {
2395         u32 sectorsize;
2396         u32 nodesize;
2397         u32 stripesize;
2398         u64 generation;
2399         u64 features;
2400         struct btrfs_key location;
2401         struct buffer_head *bh;
2402         struct btrfs_super_block *disk_super;
2403         struct btrfs_fs_info *fs_info = btrfs_sb(sb);
2404         struct btrfs_root *tree_root;
2405         struct btrfs_root *chunk_root;
2406         int ret;
2407         int err = -EINVAL;
2408         int num_backups_tried = 0;
2409         int backup_index = 0;
2410         int max_active;
2411         int clear_free_space_tree = 0;
2412
2413         tree_root = fs_info->tree_root = btrfs_alloc_root(fs_info, GFP_KERNEL);
2414         chunk_root = fs_info->chunk_root = btrfs_alloc_root(fs_info, GFP_KERNEL);
2415         if (!tree_root || !chunk_root) {
2416                 err = -ENOMEM;
2417                 goto fail;
2418         }
2419
2420         ret = init_srcu_struct(&fs_info->subvol_srcu);
2421         if (ret) {
2422                 err = ret;
2423                 goto fail;
2424         }
2425
2426         ret = percpu_counter_init(&fs_info->dirty_metadata_bytes, 0, GFP_KERNEL);
2427         if (ret) {
2428                 err = ret;
2429                 goto fail_srcu;
2430         }
2431         fs_info->dirty_metadata_batch = PAGE_SIZE *
2432                                         (1 + ilog2(nr_cpu_ids));
2433
2434         ret = percpu_counter_init(&fs_info->delalloc_bytes, 0, GFP_KERNEL);
2435         if (ret) {
2436                 err = ret;
2437                 goto fail_dirty_metadata_bytes;
2438         }
2439
2440         ret = percpu_counter_init(&fs_info->bio_counter, 0, GFP_KERNEL);
2441         if (ret) {
2442                 err = ret;
2443                 goto fail_delalloc_bytes;
2444         }
2445
2446         fs_info->btree_inode = new_inode(sb);
2447         if (!fs_info->btree_inode) {
2448                 err = -ENOMEM;
2449                 goto fail_bio_counter;
2450         }
2451
2452         mapping_set_gfp_mask(fs_info->btree_inode->i_mapping, GFP_NOFS);
2453
2454         INIT_RADIX_TREE(&fs_info->fs_roots_radix, GFP_ATOMIC);
2455         INIT_RADIX_TREE(&fs_info->buffer_radix, GFP_ATOMIC);
2456         INIT_LIST_HEAD(&fs_info->trans_list);
2457         INIT_LIST_HEAD(&fs_info->dead_roots);
2458         INIT_LIST_HEAD(&fs_info->delayed_iputs);
2459         INIT_LIST_HEAD(&fs_info->delalloc_roots);
2460         INIT_LIST_HEAD(&fs_info->caching_block_groups);
2461         spin_lock_init(&fs_info->delalloc_root_lock);
2462         spin_lock_init(&fs_info->trans_lock);
2463         spin_lock_init(&fs_info->fs_roots_radix_lock);
2464         spin_lock_init(&fs_info->delayed_iput_lock);
2465         spin_lock_init(&fs_info->defrag_inodes_lock);
2466         spin_lock_init(&fs_info->super_lock);
2467         spin_lock_init(&fs_info->qgroup_op_lock);
2468         spin_lock_init(&fs_info->buffer_lock);
2469         spin_lock_init(&fs_info->unused_bgs_lock);
2470         rwlock_init(&fs_info->tree_mod_log_lock);
2471         mutex_init(&fs_info->unused_bg_unpin_mutex);
2472         mutex_init(&fs_info->delete_unused_bgs_mutex);
2473         mutex_init(&fs_info->reloc_mutex);
2474         mutex_init(&fs_info->delalloc_root_mutex);
2475         mutex_init(&fs_info->cleaner_delayed_iput_mutex);
2476         seqlock_init(&fs_info->profiles_lock);
2477
2478         INIT_LIST_HEAD(&fs_info->dirty_cowonly_roots);
2479         INIT_LIST_HEAD(&fs_info->space_info);
2480         INIT_LIST_HEAD(&fs_info->tree_mod_seq_list);
2481         INIT_LIST_HEAD(&fs_info->unused_bgs);
2482         btrfs_mapping_init(&fs_info->mapping_tree);
2483         btrfs_init_block_rsv(&fs_info->global_block_rsv,
2484                              BTRFS_BLOCK_RSV_GLOBAL);
2485         btrfs_init_block_rsv(&fs_info->delalloc_block_rsv,
2486                              BTRFS_BLOCK_RSV_DELALLOC);
2487         btrfs_init_block_rsv(&fs_info->trans_block_rsv, BTRFS_BLOCK_RSV_TRANS);
2488         btrfs_init_block_rsv(&fs_info->chunk_block_rsv, BTRFS_BLOCK_RSV_CHUNK);
2489         btrfs_init_block_rsv(&fs_info->empty_block_rsv, BTRFS_BLOCK_RSV_EMPTY);
2490         btrfs_init_block_rsv(&fs_info->delayed_block_rsv,
2491                              BTRFS_BLOCK_RSV_DELOPS);
2492         atomic_set(&fs_info->nr_async_submits, 0);
2493         atomic_set(&fs_info->async_delalloc_pages, 0);
2494         atomic_set(&fs_info->async_submit_draining, 0);
2495         atomic_set(&fs_info->nr_async_bios, 0);
2496         atomic_set(&fs_info->defrag_running, 0);
2497         atomic_set(&fs_info->qgroup_op_seq, 0);
2498         atomic_set(&fs_info->reada_works_cnt, 0);
2499         atomic64_set(&fs_info->tree_mod_seq, 0);
2500         fs_info->sb = sb;
2501         fs_info->max_inline = BTRFS_DEFAULT_MAX_INLINE;
2502         fs_info->metadata_ratio = 0;
2503         fs_info->defrag_inodes = RB_ROOT;
2504         atomic64_set(&fs_info->free_chunk_space, 0);
2505         fs_info->tree_mod_log = RB_ROOT;
2506         fs_info->commit_interval = BTRFS_DEFAULT_COMMIT_INTERVAL;
2507         fs_info->avg_delayed_ref_runtime = NSEC_PER_SEC >> 6; /* div by 64 */
2508         /* readahead state */
2509         INIT_RADIX_TREE(&fs_info->reada_tree, GFP_NOFS & ~__GFP_DIRECT_RECLAIM);
2510         spin_lock_init(&fs_info->reada_lock);
2511
2512         fs_info->thread_pool_size = min_t(unsigned long,
2513                                           num_online_cpus() + 2, 8);
2514
2515         INIT_LIST_HEAD(&fs_info->ordered_roots);
2516         spin_lock_init(&fs_info->ordered_root_lock);
2517         fs_info->delayed_root = kmalloc(sizeof(struct btrfs_delayed_root),
2518                                         GFP_KERNEL);
2519         if (!fs_info->delayed_root) {
2520                 err = -ENOMEM;
2521                 goto fail_iput;
2522         }
2523         btrfs_init_delayed_root(fs_info->delayed_root);
2524
2525         btrfs_init_scrub(fs_info);
2526 #ifdef CONFIG_BTRFS_FS_CHECK_INTEGRITY
2527         fs_info->check_integrity_print_mask = 0;
2528 #endif
2529         btrfs_init_balance(fs_info);
2530         btrfs_init_async_reclaim_work(&fs_info->async_reclaim_work);
2531
2532         sb->s_blocksize = BTRFS_BDEV_BLOCKSIZE;
2533         sb->s_blocksize_bits = blksize_bits(BTRFS_BDEV_BLOCKSIZE);
2534
2535         btrfs_init_btree_inode(fs_info);
2536
2537         spin_lock_init(&fs_info->block_group_cache_lock);
2538         fs_info->block_group_cache_tree = RB_ROOT;
2539         fs_info->first_logical_byte = (u64)-1;
2540
2541         extent_io_tree_init(&fs_info->freed_extents[0], NULL);
2542         extent_io_tree_init(&fs_info->freed_extents[1], NULL);
2543         fs_info->pinned_extents = &fs_info->freed_extents[0];
2544         set_bit(BTRFS_FS_BARRIER, &fs_info->flags);
2545
2546         mutex_init(&fs_info->ordered_operations_mutex);
2547         mutex_init(&fs_info->tree_log_mutex);
2548         mutex_init(&fs_info->chunk_mutex);
2549         mutex_init(&fs_info->transaction_kthread_mutex);
2550         mutex_init(&fs_info->cleaner_mutex);
2551         mutex_init(&fs_info->volume_mutex);
2552         mutex_init(&fs_info->ro_block_group_mutex);
2553         init_rwsem(&fs_info->commit_root_sem);
2554         init_rwsem(&fs_info->cleanup_work_sem);
2555         init_rwsem(&fs_info->subvol_sem);
2556         sema_init(&fs_info->uuid_tree_rescan_sem, 1);
2557
2558         btrfs_init_dev_replace_locks(fs_info);
2559         btrfs_init_qgroup(fs_info);
2560
2561         btrfs_init_free_cluster(&fs_info->meta_alloc_cluster);
2562         btrfs_init_free_cluster(&fs_info->data_alloc_cluster);
2563
2564         init_waitqueue_head(&fs_info->transaction_throttle);
2565         init_waitqueue_head(&fs_info->transaction_wait);
2566         init_waitqueue_head(&fs_info->transaction_blocked_wait);
2567         init_waitqueue_head(&fs_info->async_submit_wait);
2568
2569         INIT_LIST_HEAD(&fs_info->pinned_chunks);
2570
2571         /* Usable values until the real ones are cached from the superblock */
2572         fs_info->nodesize = 4096;
2573         fs_info->sectorsize = 4096;
2574         fs_info->stripesize = 4096;
2575
2576         ret = btrfs_alloc_stripe_hash_table(fs_info);
2577         if (ret) {
2578                 err = ret;
2579                 goto fail_alloc;
2580         }
2581
2582         __setup_root(tree_root, fs_info, BTRFS_ROOT_TREE_OBJECTID);
2583
2584         invalidate_bdev(fs_devices->latest_bdev);
2585
2586         /*
2587          * Read super block and check the signature bytes only
2588          */
2589         bh = btrfs_read_dev_super(fs_devices->latest_bdev);
2590         if (IS_ERR(bh)) {
2591                 err = PTR_ERR(bh);
2592                 goto fail_alloc;
2593         }
2594
2595         /*
2596          * We want to check superblock checksum, the type is stored inside.
2597          * Pass the whole disk block of size BTRFS_SUPER_INFO_SIZE (4k).
2598          */
2599         if (btrfs_check_super_csum(fs_info, bh->b_data)) {
2600                 btrfs_err(fs_info, "superblock checksum mismatch");
2601                 err = -EINVAL;
2602                 brelse(bh);
2603                 goto fail_alloc;
2604         }
2605
2606         /*
2607          * super_copy is zeroed at allocation time and we never touch the
2608          * following bytes up to INFO_SIZE, the checksum is calculated from
2609          * the whole block of INFO_SIZE
2610          */
2611         memcpy(fs_info->super_copy, bh->b_data, sizeof(*fs_info->super_copy));
2612         memcpy(fs_info->super_for_commit, fs_info->super_copy,
2613                sizeof(*fs_info->super_for_commit));
2614         brelse(bh);
2615
2616         memcpy(fs_info->fsid, fs_info->super_copy->fsid, BTRFS_FSID_SIZE);
2617
2618         ret = btrfs_check_super_valid(fs_info);
2619         if (ret) {
2620                 btrfs_err(fs_info, "superblock contains fatal errors");
2621                 err = -EINVAL;
2622                 goto fail_alloc;
2623         }
2624
2625         disk_super = fs_info->super_copy;
2626         if (!btrfs_super_root(disk_super))
2627                 goto fail_alloc;
2628
2629         /* check FS state, whether FS is broken. */
2630         if (btrfs_super_flags(disk_super) & BTRFS_SUPER_FLAG_ERROR)
2631                 set_bit(BTRFS_FS_STATE_ERROR, &fs_info->fs_state);
2632
2633         /*
2634          * run through our array of backup supers and setup
2635          * our ring pointer to the oldest one
2636          */
2637         generation = btrfs_super_generation(disk_super);
2638         find_oldest_super_backup(fs_info, generation);
2639
2640         /*
2641          * In the long term, we'll store the compression type in the super
2642          * block, and it'll be used for per file compression control.
2643          */
2644         fs_info->compress_type = BTRFS_COMPRESS_ZLIB;
2645
2646         ret = btrfs_parse_options(fs_info, options, sb->s_flags);
2647         if (ret) {
2648                 err = ret;
2649                 goto fail_alloc;
2650         }
2651
2652         features = btrfs_super_incompat_flags(disk_super) &
2653                 ~BTRFS_FEATURE_INCOMPAT_SUPP;
2654         if (features) {
2655                 btrfs_err(fs_info,
2656                     "cannot mount because of unsupported optional features (0x%llx)",
2657                     features);
2658                 err = -EINVAL;
2659                 goto fail_alloc;
2660         }
2661
2662         features = btrfs_super_incompat_flags(disk_super);
2663         features |= BTRFS_FEATURE_INCOMPAT_MIXED_BACKREF;
2664         if (fs_info->compress_type == BTRFS_COMPRESS_LZO)
2665                 features |= BTRFS_FEATURE_INCOMPAT_COMPRESS_LZO;
2666         else if (fs_info->compress_type == BTRFS_COMPRESS_ZSTD)
2667                 features |= BTRFS_FEATURE_INCOMPAT_COMPRESS_ZSTD;
2668
2669         if (features & BTRFS_FEATURE_INCOMPAT_SKINNY_METADATA)
2670                 btrfs_info(fs_info, "has skinny extents");
2671
2672         /*
2673          * flag our filesystem as having big metadata blocks if
2674          * they are bigger than the page size
2675          */
2676         if (btrfs_super_nodesize(disk_super) > PAGE_SIZE) {
2677                 if (!(features & BTRFS_FEATURE_INCOMPAT_BIG_METADATA))
2678                         btrfs_info(fs_info,
2679                                 "flagging fs with big metadata feature");
2680                 features |= BTRFS_FEATURE_INCOMPAT_BIG_METADATA;
2681         }
2682
2683         nodesize = btrfs_super_nodesize(disk_super);
2684         sectorsize = btrfs_super_sectorsize(disk_super);
2685         stripesize = sectorsize;
2686         fs_info->dirty_metadata_batch = nodesize * (1 + ilog2(nr_cpu_ids));
2687         fs_info->delalloc_batch = sectorsize * 512 * (1 + ilog2(nr_cpu_ids));
2688
2689         /* Cache block sizes */
2690         fs_info->nodesize = nodesize;
2691         fs_info->sectorsize = sectorsize;
2692         fs_info->stripesize = stripesize;
2693
2694         /*
2695          * mixed block groups end up with duplicate but slightly offset
2696          * extent buffers for the same range.  It leads to corruptions
2697          */
2698         if ((features & BTRFS_FEATURE_INCOMPAT_MIXED_GROUPS) &&
2699             (sectorsize != nodesize)) {
2700                 btrfs_err(fs_info,
2701 "unequal nodesize/sectorsize (%u != %u) are not allowed for mixed block groups",
2702                         nodesize, sectorsize);
2703                 goto fail_alloc;
2704         }
2705
2706         /*
2707          * Needn't use the lock because there is no other task which will
2708          * update the flag.
2709          */
2710         btrfs_set_super_incompat_flags(disk_super, features);
2711
2712         features = btrfs_super_compat_ro_flags(disk_super) &
2713                 ~BTRFS_FEATURE_COMPAT_RO_SUPP;
2714         if (!sb_rdonly(sb) && features) {
2715                 btrfs_err(fs_info,
2716         "cannot mount read-write because of unsupported optional features (0x%llx)",
2717                        features);
2718                 err = -EINVAL;
2719                 goto fail_alloc;
2720         }
2721
2722         max_active = fs_info->thread_pool_size;
2723
2724         ret = btrfs_init_workqueues(fs_info, fs_devices);
2725         if (ret) {
2726                 err = ret;
2727                 goto fail_sb_buffer;
2728         }
2729
2730         sb->s_bdi->congested_fn = btrfs_congested_fn;
2731         sb->s_bdi->congested_data = fs_info;
2732         sb->s_bdi->capabilities |= BDI_CAP_CGROUP_WRITEBACK;
2733         sb->s_bdi->ra_pages = VM_MAX_READAHEAD * 1024 / PAGE_SIZE;
2734         sb->s_bdi->ra_pages *= btrfs_super_num_devices(disk_super);
2735         sb->s_bdi->ra_pages = max(sb->s_bdi->ra_pages, SZ_4M / PAGE_SIZE);
2736
2737         sb->s_blocksize = sectorsize;
2738         sb->s_blocksize_bits = blksize_bits(sectorsize);
2739
2740         mutex_lock(&fs_info->chunk_mutex);
2741         ret = btrfs_read_sys_array(fs_info);
2742         mutex_unlock(&fs_info->chunk_mutex);
2743         if (ret) {
2744                 btrfs_err(fs_info, "failed to read the system array: %d", ret);
2745                 goto fail_sb_buffer;
2746         }
2747
2748         generation = btrfs_super_chunk_root_generation(disk_super);
2749
2750         __setup_root(chunk_root, fs_info, BTRFS_CHUNK_TREE_OBJECTID);
2751
2752         chunk_root->node = read_tree_block(fs_info,
2753                                            btrfs_super_chunk_root(disk_super),
2754                                            generation);
2755         if (IS_ERR(chunk_root->node) ||
2756             !extent_buffer_uptodate(chunk_root->node)) {
2757                 btrfs_err(fs_info, "failed to read chunk root");
2758                 if (!IS_ERR(chunk_root->node))
2759                         free_extent_buffer(chunk_root->node);
2760                 chunk_root->node = NULL;
2761                 goto fail_tree_roots;
2762         }
2763         btrfs_set_root_node(&chunk_root->root_item, chunk_root->node);
2764         chunk_root->commit_root = btrfs_root_node(chunk_root);
2765
2766         read_extent_buffer(chunk_root->node, fs_info->chunk_tree_uuid,
2767            btrfs_header_chunk_tree_uuid(chunk_root->node), BTRFS_UUID_SIZE);
2768
2769         ret = btrfs_read_chunk_tree(fs_info);
2770         if (ret) {
2771                 btrfs_err(fs_info, "failed to read chunk tree: %d", ret);
2772                 goto fail_tree_roots;
2773         }
2774
2775         /*
2776          * keep the device that is marked to be the target device for the
2777          * dev_replace procedure
2778          */
2779         btrfs_close_extra_devices(fs_devices, 0);
2780
2781         if (!fs_devices->latest_bdev) {
2782                 btrfs_err(fs_info, "failed to read devices");
2783                 goto fail_tree_roots;
2784         }
2785
2786 retry_root_backup:
2787         generation = btrfs_super_generation(disk_super);
2788
2789         tree_root->node = read_tree_block(fs_info,
2790                                           btrfs_super_root(disk_super),
2791                                           generation);
2792         if (IS_ERR(tree_root->node) ||
2793             !extent_buffer_uptodate(tree_root->node)) {
2794                 btrfs_warn(fs_info, "failed to read tree root");
2795                 if (!IS_ERR(tree_root->node))
2796                         free_extent_buffer(tree_root->node);
2797                 tree_root->node = NULL;
2798                 goto recovery_tree_root;
2799         }
2800
2801         btrfs_set_root_node(&tree_root->root_item, tree_root->node);
2802         tree_root->commit_root = btrfs_root_node(tree_root);
2803         btrfs_set_root_refs(&tree_root->root_item, 1);
2804
2805         mutex_lock(&tree_root->objectid_mutex);
2806         ret = btrfs_find_highest_objectid(tree_root,
2807                                         &tree_root->highest_objectid);
2808         if (ret) {
2809                 mutex_unlock(&tree_root->objectid_mutex);
2810                 goto recovery_tree_root;
2811         }
2812
2813         ASSERT(tree_root->highest_objectid <= BTRFS_LAST_FREE_OBJECTID);
2814
2815         mutex_unlock(&tree_root->objectid_mutex);
2816
2817         ret = btrfs_read_roots(fs_info);
2818         if (ret)
2819                 goto recovery_tree_root;
2820
2821         fs_info->generation = generation;
2822         fs_info->last_trans_committed = generation;
2823
2824         ret = btrfs_recover_balance(fs_info);
2825         if (ret) {
2826                 btrfs_err(fs_info, "failed to recover balance: %d", ret);
2827                 goto fail_block_groups;
2828         }
2829
2830         ret = btrfs_init_dev_stats(fs_info);
2831         if (ret) {
2832                 btrfs_err(fs_info, "failed to init dev_stats: %d", ret);
2833                 goto fail_block_groups;
2834         }
2835
2836         ret = btrfs_init_dev_replace(fs_info);
2837         if (ret) {
2838                 btrfs_err(fs_info, "failed to init dev_replace: %d", ret);
2839                 goto fail_block_groups;
2840         }
2841
2842         btrfs_close_extra_devices(fs_devices, 1);
2843
2844         ret = btrfs_sysfs_add_fsid(fs_devices, NULL);
2845         if (ret) {
2846                 btrfs_err(fs_info, "failed to init sysfs fsid interface: %d",
2847                                 ret);
2848                 goto fail_block_groups;
2849         }
2850
2851         ret = btrfs_sysfs_add_device(fs_devices);
2852         if (ret) {
2853                 btrfs_err(fs_info, "failed to init sysfs device interface: %d",
2854                                 ret);
2855                 goto fail_fsdev_sysfs;
2856         }
2857
2858         ret = btrfs_sysfs_add_mounted(fs_info);
2859         if (ret) {
2860                 btrfs_err(fs_info, "failed to init sysfs interface: %d", ret);
2861                 goto fail_fsdev_sysfs;
2862         }
2863
2864         ret = btrfs_init_space_info(fs_info);
2865         if (ret) {
2866                 btrfs_err(fs_info, "failed to initialize space info: %d", ret);
2867                 goto fail_sysfs;
2868         }
2869
2870         ret = btrfs_read_block_groups(fs_info);
2871         if (ret) {
2872                 btrfs_err(fs_info, "failed to read block groups: %d", ret);
2873                 goto fail_sysfs;
2874         }
2875
2876         if (!sb_rdonly(sb) && !btrfs_check_rw_degradable(fs_info)) {
2877                 btrfs_warn(fs_info,
2878                 "writeable mount is not allowed due to too many missing devices");
2879                 goto fail_sysfs;
2880         }
2881
2882         fs_info->cleaner_kthread = kthread_run(cleaner_kthread, tree_root,
2883                                                "btrfs-cleaner");
2884         if (IS_ERR(fs_info->cleaner_kthread))
2885                 goto fail_sysfs;
2886
2887         fs_info->transaction_kthread = kthread_run(transaction_kthread,
2888                                                    tree_root,
2889                                                    "btrfs-transaction");
2890         if (IS_ERR(fs_info->transaction_kthread))
2891                 goto fail_cleaner;
2892
2893         if (!btrfs_test_opt(fs_info, NOSSD) &&
2894             !fs_info->fs_devices->rotating) {
2895                 btrfs_set_and_info(fs_info, SSD, "enabling ssd optimizations");
2896         }
2897
2898         /*
2899          * Mount does not set all options immediately, we can do it now and do
2900          * not have to wait for transaction commit
2901          */
2902         btrfs_apply_pending_changes(fs_info);
2903
2904 #ifdef CONFIG_BTRFS_FS_CHECK_INTEGRITY
2905         if (btrfs_test_opt(fs_info, CHECK_INTEGRITY)) {
2906                 ret = btrfsic_mount(fs_info, fs_devices,
2907                                     btrfs_test_opt(fs_info,
2908                                         CHECK_INTEGRITY_INCLUDING_EXTENT_DATA) ?
2909                                     1 : 0,
2910                                     fs_info->check_integrity_print_mask);
2911                 if (ret)
2912                         btrfs_warn(fs_info,
2913                                 "failed to initialize integrity check module: %d",
2914                                 ret);
2915         }
2916 #endif
2917         ret = btrfs_read_qgroup_config(fs_info);
2918         if (ret)
2919                 goto fail_trans_kthread;
2920
2921         /* do not make disk changes in broken FS or nologreplay is given */
2922         if (btrfs_super_log_root(disk_super) != 0 &&
2923             !btrfs_test_opt(fs_info, NOLOGREPLAY)) {
2924                 btrfs_info(fs_info, "start tree-log replay");
2925                 ret = btrfs_replay_log(fs_info, fs_devices);
2926                 if (ret) {
2927                         err = ret;
2928                         goto fail_qgroup;
2929                 }
2930         }
2931
2932         ret = btrfs_find_orphan_roots(fs_info);
2933         if (ret)
2934                 goto fail_qgroup;
2935
2936         if (!sb_rdonly(sb)) {
2937                 ret = btrfs_cleanup_fs_roots(fs_info);
2938                 if (ret)
2939                         goto fail_qgroup;
2940
2941                 mutex_lock(&fs_info->cleaner_mutex);
2942                 ret = btrfs_recover_relocation(tree_root);
2943                 mutex_unlock(&fs_info->cleaner_mutex);
2944                 if (ret < 0) {
2945                         btrfs_warn(fs_info, "failed to recover relocation: %d",
2946                                         ret);
2947                         err = -EINVAL;
2948                         goto fail_qgroup;
2949                 }
2950         }
2951
2952         location.objectid = BTRFS_FS_TREE_OBJECTID;
2953         location.type = BTRFS_ROOT_ITEM_KEY;
2954         location.offset = 0;
2955
2956         fs_info->fs_root = btrfs_read_fs_root_no_name(fs_info, &location);
2957         if (IS_ERR(fs_info->fs_root)) {
2958                 err = PTR_ERR(fs_info->fs_root);
2959                 goto fail_qgroup;
2960         }
2961
2962         if (sb_rdonly(sb))
2963                 return 0;
2964
2965         if (btrfs_test_opt(fs_info, CLEAR_CACHE) &&
2966             btrfs_fs_compat_ro(fs_info, FREE_SPACE_TREE)) {
2967                 clear_free_space_tree = 1;
2968         } else if (btrfs_fs_compat_ro(fs_info, FREE_SPACE_TREE) &&
2969                    !btrfs_fs_compat_ro(fs_info, FREE_SPACE_TREE_VALID)) {
2970                 btrfs_warn(fs_info, "free space tree is invalid");
2971                 clear_free_space_tree = 1;
2972         }
2973
2974         if (clear_free_space_tree) {
2975                 btrfs_info(fs_info, "clearing free space tree");
2976                 ret = btrfs_clear_free_space_tree(fs_info);
2977                 if (ret) {
2978                         btrfs_warn(fs_info,
2979                                    "failed to clear free space tree: %d", ret);
2980                         close_ctree(fs_info);
2981                         return ret;
2982                 }
2983         }
2984
2985         if (btrfs_test_opt(fs_info, FREE_SPACE_TREE) &&
2986             !btrfs_fs_compat_ro(fs_info, FREE_SPACE_TREE)) {
2987                 btrfs_info(fs_info, "creating free space tree");
2988                 ret = btrfs_create_free_space_tree(fs_info);
2989                 if (ret) {
2990                         btrfs_warn(fs_info,
2991                                 "failed to create free space tree: %d", ret);
2992                         close_ctree(fs_info);
2993                         return ret;
2994                 }
2995         }
2996
2997         down_read(&fs_info->cleanup_work_sem);
2998         if ((ret = btrfs_orphan_cleanup(fs_info->fs_root)) ||
2999             (ret = btrfs_orphan_cleanup(fs_info->tree_root))) {
3000                 up_read(&fs_info->cleanup_work_sem);
3001                 close_ctree(fs_info);
3002                 return ret;
3003         }
3004         up_read(&fs_info->cleanup_work_sem);
3005
3006         ret = btrfs_resume_balance_async(fs_info);
3007         if (ret) {
3008                 btrfs_warn(fs_info, "failed to resume balance: %d", ret);
3009                 close_ctree(fs_info);
3010                 return ret;
3011         }
3012
3013         ret = btrfs_resume_dev_replace_async(fs_info);
3014         if (ret) {
3015                 btrfs_warn(fs_info, "failed to resume device replace: %d", ret);
3016                 close_ctree(fs_info);
3017                 return ret;
3018         }
3019
3020         btrfs_qgroup_rescan_resume(fs_info);
3021
3022         if (!fs_info->uuid_root) {
3023                 btrfs_info(fs_info, "creating UUID tree");
3024                 ret = btrfs_create_uuid_tree(fs_info);
3025                 if (ret) {
3026                         btrfs_warn(fs_info,
3027                                 "failed to create the UUID tree: %d", ret);
3028                         close_ctree(fs_info);
3029                         return ret;
3030                 }
3031         } else if (btrfs_test_opt(fs_info, RESCAN_UUID_TREE) ||
3032                    fs_info->generation !=
3033                                 btrfs_super_uuid_tree_generation(disk_super)) {
3034                 btrfs_info(fs_info, "checking UUID tree");
3035                 ret = btrfs_check_uuid_tree(fs_info);
3036                 if (ret) {
3037                         btrfs_warn(fs_info,
3038                                 "failed to check the UUID tree: %d", ret);
3039                         close_ctree(fs_info);
3040                         return ret;
3041                 }
3042         } else {
3043                 set_bit(BTRFS_FS_UPDATE_UUID_TREE_GEN, &fs_info->flags);
3044         }
3045         set_bit(BTRFS_FS_OPEN, &fs_info->flags);
3046
3047         /*
3048          * backuproot only affect mount behavior, and if open_ctree succeeded,
3049          * no need to keep the flag
3050          */
3051         btrfs_clear_opt(fs_info->mount_opt, USEBACKUPROOT);
3052
3053         return 0;
3054
3055 fail_qgroup:
3056         btrfs_free_qgroup_config(fs_info);
3057 fail_trans_kthread:
3058         kthread_stop(fs_info->transaction_kthread);
3059         btrfs_cleanup_transaction(fs_info);
3060         btrfs_free_fs_roots(fs_info);
3061 fail_cleaner:
3062         kthread_stop(fs_info->cleaner_kthread);
3063
3064         /*
3065          * make sure we're done with the btree inode before we stop our
3066          * kthreads
3067          */
3068         filemap_write_and_wait(fs_info->btree_inode->i_mapping);
3069
3070 fail_sysfs:
3071         btrfs_sysfs_remove_mounted(fs_info);
3072
3073 fail_fsdev_sysfs:
3074         btrfs_sysfs_remove_fsid(fs_info->fs_devices);
3075
3076 fail_block_groups:
3077         btrfs_put_block_group_cache(fs_info);
3078
3079 fail_tree_roots:
3080         free_root_pointers(fs_info, true);
3081         invalidate_inode_pages2(fs_info->btree_inode->i_mapping);
3082
3083 fail_sb_buffer:
3084         btrfs_stop_all_workers(fs_info);
3085         btrfs_free_block_groups(fs_info);
3086 fail_alloc:
3087 fail_iput:
3088         btrfs_mapping_tree_free(&fs_info->mapping_tree);
3089
3090         iput(fs_info->btree_inode);
3091 fail_bio_counter:
3092         percpu_counter_destroy(&fs_info->bio_counter);
3093 fail_delalloc_bytes:
3094         percpu_counter_destroy(&fs_info->delalloc_bytes);
3095 fail_dirty_metadata_bytes:
3096         percpu_counter_destroy(&fs_info->dirty_metadata_bytes);
3097 fail_srcu:
3098         cleanup_srcu_struct(&fs_info->subvol_srcu);
3099 fail:
3100         btrfs_free_stripe_hash_table(fs_info);
3101         btrfs_close_devices(fs_info->fs_devices);
3102         return err;
3103
3104 recovery_tree_root:
3105         if (!btrfs_test_opt(fs_info, USEBACKUPROOT))
3106                 goto fail_tree_roots;
3107
3108         free_root_pointers(fs_info, false);
3109
3110         /* don't use the log in recovery mode, it won't be valid */
3111         btrfs_set_super_log_root(disk_super, 0);
3112
3113         /* we can't trust the free space cache either */
3114         btrfs_set_opt(fs_info->mount_opt, CLEAR_CACHE);
3115
3116         ret = next_root_backup(fs_info, fs_info->super_copy,
3117                                &num_backups_tried, &backup_index);
3118         if (ret == -1)
3119                 goto fail_block_groups;
3120         goto retry_root_backup;
3121 }
3122
3123 static void btrfs_end_buffer_write_sync(struct buffer_head *bh, int uptodate)
3124 {
3125         if (uptodate) {
3126                 set_buffer_uptodate(bh);
3127         } else {
3128                 struct btrfs_device *device = (struct btrfs_device *)
3129                         bh->b_private;
3130
3131                 btrfs_warn_rl_in_rcu(device->fs_info,
3132                                 "lost page write due to IO error on %s",
3133                                           rcu_str_deref(device->name));
3134                 /* note, we don't set_buffer_write_io_error because we have
3135                  * our own ways of dealing with the IO errors
3136                  */
3137                 clear_buffer_uptodate(bh);
3138                 btrfs_dev_stat_inc_and_print(device, BTRFS_DEV_STAT_WRITE_ERRS);
3139         }
3140         unlock_buffer(bh);
3141         put_bh(bh);
3142 }
3143
3144 int btrfs_read_dev_one_super(struct block_device *bdev, int copy_num,
3145                         struct buffer_head **bh_ret)
3146 {
3147         struct buffer_head *bh;
3148         struct btrfs_super_block *super;
3149         u64 bytenr;
3150
3151         bytenr = btrfs_sb_offset(copy_num);
3152         if (bytenr + BTRFS_SUPER_INFO_SIZE >= i_size_read(bdev->bd_inode))
3153                 return -EINVAL;
3154
3155         bh = __bread(bdev, bytenr / BTRFS_BDEV_BLOCKSIZE, BTRFS_SUPER_INFO_SIZE);
3156         /*
3157          * If we fail to read from the underlying devices, as of now
3158          * the best option we have is to mark it EIO.
3159          */
3160         if (!bh)
3161                 return -EIO;
3162
3163         super = (struct btrfs_super_block *)bh->b_data;
3164         if (btrfs_super_bytenr(super) != bytenr ||
3165                     btrfs_super_magic(super) != BTRFS_MAGIC) {
3166                 brelse(bh);
3167                 return -EINVAL;
3168         }
3169
3170         *bh_ret = bh;
3171         return 0;
3172 }
3173
3174
3175 struct buffer_head *btrfs_read_dev_super(struct block_device *bdev)
3176 {
3177         struct buffer_head *bh;
3178         struct buffer_head *latest = NULL;
3179         struct btrfs_super_block *super;
3180         int i;
3181         u64 transid = 0;
3182         int ret = -EINVAL;
3183
3184         /* we would like to check all the supers, but that would make
3185          * a btrfs mount succeed after a mkfs from a different FS.
3186          * So, we need to add a special mount option to scan for
3187          * later supers, using BTRFS_SUPER_MIRROR_MAX instead
3188          */
3189         for (i = 0; i < 1; i++) {
3190                 ret = btrfs_read_dev_one_super(bdev, i, &bh);
3191                 if (ret)
3192                         continue;
3193
3194                 super = (struct btrfs_super_block *)bh->b_data;
3195
3196                 if (!latest || btrfs_super_generation(super) > transid) {
3197                         brelse(latest);
3198                         latest = bh;
3199                         transid = btrfs_super_generation(super);
3200                 } else {
3201                         brelse(bh);
3202                 }
3203         }
3204
3205         if (!latest)
3206                 return ERR_PTR(ret);
3207
3208         return latest;
3209 }
3210
3211 /*
3212  * Write superblock @sb to the @device. Do not wait for completion, all the
3213  * buffer heads we write are pinned.
3214  *
3215  * Write @max_mirrors copies of the superblock, where 0 means default that fit
3216  * the expected device size at commit time. Note that max_mirrors must be
3217  * same for write and wait phases.
3218  *
3219  * Return number of errors when buffer head is not found or submission fails.
3220  */
3221 static int write_dev_supers(struct btrfs_device *device,
3222                             struct btrfs_super_block *sb, int max_mirrors)
3223 {
3224         struct buffer_head *bh;
3225         int i;
3226         int ret;
3227         int errors = 0;
3228         u32 crc;
3229         u64 bytenr;
3230         int op_flags;
3231
3232         if (max_mirrors == 0)
3233                 max_mirrors = BTRFS_SUPER_MIRROR_MAX;
3234
3235         for (i = 0; i < max_mirrors; i++) {
3236                 bytenr = btrfs_sb_offset(i);
3237                 if (bytenr + BTRFS_SUPER_INFO_SIZE >=
3238                     device->commit_total_bytes)
3239                         break;
3240
3241                 btrfs_set_super_bytenr(sb, bytenr);
3242
3243                 crc = ~(u32)0;
3244                 crc = btrfs_csum_data((const char *)sb + BTRFS_CSUM_SIZE, crc,
3245                                       BTRFS_SUPER_INFO_SIZE - BTRFS_CSUM_SIZE);
3246                 btrfs_csum_final(crc, sb->csum);
3247
3248                 /* One reference for us, and we leave it for the caller */
3249                 bh = __getblk(device->bdev, bytenr / BTRFS_BDEV_BLOCKSIZE,
3250                               BTRFS_SUPER_INFO_SIZE);
3251                 if (!bh) {
3252                         btrfs_err(device->fs_info,
3253                             "couldn't get super buffer head for bytenr %llu",
3254                             bytenr);
3255                         errors++;
3256                         continue;
3257                 }
3258
3259                 memcpy(bh->b_data, sb, BTRFS_SUPER_INFO_SIZE);
3260
3261                 /* one reference for submit_bh */
3262                 get_bh(bh);
3263
3264                 set_buffer_uptodate(bh);
3265                 lock_buffer(bh);
3266                 bh->b_end_io = btrfs_end_buffer_write_sync;
3267                 bh->b_private = device;
3268
3269                 /*
3270                  * we fua the first super.  The others we allow
3271                  * to go down lazy.
3272                  */
3273                 op_flags = REQ_SYNC | REQ_META | REQ_PRIO;
3274                 if (i == 0 && !btrfs_test_opt(device->fs_info, NOBARRIER))
3275                         op_flags |= REQ_FUA;
3276                 ret = btrfsic_submit_bh(REQ_OP_WRITE, op_flags, bh);
3277                 if (ret)
3278                         errors++;
3279         }
3280         return errors < i ? 0 : -1;
3281 }
3282
3283 /*
3284  * Wait for write completion of superblocks done by write_dev_supers,
3285  * @max_mirrors same for write and wait phases.
3286  *
3287  * Return number of errors when buffer head is not found or not marked up to
3288  * date.
3289  */
3290 static int wait_dev_supers(struct btrfs_device *device, int max_mirrors)
3291 {
3292         struct buffer_head *bh;
3293         int i;
3294         int errors = 0;
3295         u64 bytenr;
3296
3297         if (max_mirrors == 0)
3298                 max_mirrors = BTRFS_SUPER_MIRROR_MAX;
3299
3300         for (i = 0; i < max_mirrors; i++) {
3301                 bytenr = btrfs_sb_offset(i);
3302                 if (bytenr + BTRFS_SUPER_INFO_SIZE >=
3303                     device->commit_total_bytes)
3304                         break;
3305
3306                 bh = __find_get_block(device->bdev,
3307                                       bytenr / BTRFS_BDEV_BLOCKSIZE,
3308                                       BTRFS_SUPER_INFO_SIZE);
3309                 if (!bh) {
3310                         errors++;
3311                         continue;
3312                 }
3313                 wait_on_buffer(bh);
3314                 if (!buffer_uptodate(bh))
3315                         errors++;
3316
3317                 /* drop our reference */
3318                 brelse(bh);
3319
3320                 /* drop the reference from the writing run */
3321                 brelse(bh);
3322         }
3323
3324         return errors < i ? 0 : -1;
3325 }
3326
3327 /*
3328  * endio for the write_dev_flush, this will wake anyone waiting
3329  * for the barrier when it is done
3330  */
3331 static void btrfs_end_empty_barrier(struct bio *bio)
3332 {
3333         complete(bio->bi_private);
3334 }
3335
3336 /*
3337  * Submit a flush request to the device if it supports it. Error handling is
3338  * done in the waiting counterpart.
3339  */
3340 static void write_dev_flush(struct btrfs_device *device)
3341 {
3342         struct bio *bio = device->flush_bio;
3343
3344 #ifndef CONFIG_BTRFS_FS_CHECK_INTEGRITY
3345         /*
3346          * When a disk has write caching disabled, we skip submission of a bio
3347          * with flush and sync requests before writing the superblock, since
3348          * it's not needed. However when the integrity checker is enabled, this
3349          * results in reports that there are metadata blocks referred by a
3350          * superblock that were not properly flushed. So don't skip the bio
3351          * submission only when the integrity checker is enabled for the sake
3352          * of simplicity, since this is a debug tool and not meant for use in
3353          * non-debug builds.
3354          */
3355         struct request_queue *q = bdev_get_queue(device->bdev);
3356         if (!test_bit(QUEUE_FLAG_WC, &q->queue_flags))
3357                 return;
3358 #endif
3359
3360         bio_reset(bio);
3361         bio->bi_end_io = btrfs_end_empty_barrier;
3362         bio_set_dev(bio, device->bdev);
3363         bio->bi_opf = REQ_OP_WRITE | REQ_SYNC | REQ_PREFLUSH;
3364         init_completion(&device->flush_wait);
3365         bio->bi_private = &device->flush_wait;
3366
3367         btrfsic_submit_bio(bio);
3368         device->flush_bio_sent = 1;
3369 }
3370
3371 /*
3372  * If the flush bio has been submitted by write_dev_flush, wait for it.
3373  */
3374 static blk_status_t wait_dev_flush(struct btrfs_device *device)
3375 {
3376         struct bio *bio = device->flush_bio;
3377
3378         if (!device->flush_bio_sent)
3379                 return BLK_STS_OK;
3380
3381         device->flush_bio_sent = 0;
3382         wait_for_completion_io(&device->flush_wait);
3383
3384         return bio->bi_status;
3385 }
3386
3387 static int check_barrier_error(struct btrfs_fs_info *fs_info)
3388 {
3389         if (!btrfs_check_rw_degradable(fs_info))
3390                 return -EIO;
3391         return 0;
3392 }
3393
3394 /*
3395  * send an empty flush down to each device in parallel,
3396  * then wait for them
3397  */
3398 static int barrier_all_devices(struct btrfs_fs_info *info)
3399 {
3400         struct list_head *head;
3401         struct btrfs_device *dev;
3402         int errors_wait = 0;
3403         blk_status_t ret;
3404
3405         /* send down all the barriers */
3406         head = &info->fs_devices->devices;
3407         list_for_each_entry_rcu(dev, head, dev_list) {
3408                 if (dev->missing)
3409                         continue;
3410                 if (!dev->bdev)
3411                         continue;
3412                 if (!dev->in_fs_metadata || !dev->writeable)
3413                         continue;
3414
3415                 write_dev_flush(dev);
3416                 dev->last_flush_error = BLK_STS_OK;
3417         }
3418
3419         /* wait for all the barriers */
3420         list_for_each_entry_rcu(dev, head, dev_list) {
3421                 if (dev->missing)
3422                         continue;
3423                 if (!dev->bdev) {
3424                         errors_wait++;
3425                         continue;
3426                 }
3427                 if (!dev->in_fs_metadata || !dev->writeable)
3428                         continue;
3429
3430                 ret = wait_dev_flush(dev);
3431                 if (ret) {
3432                         dev->last_flush_error = ret;
3433                         btrfs_dev_stat_inc_and_print(dev,
3434                                         BTRFS_DEV_STAT_FLUSH_ERRS);
3435                         errors_wait++;
3436                 }
3437         }
3438
3439         if (errors_wait) {
3440                 /*
3441                  * At some point we need the status of all disks
3442                  * to arrive at the volume status. So error checking
3443                  * is being pushed to a separate loop.
3444                  */
3445                 return check_barrier_error(info);
3446         }
3447         return 0;
3448 }
3449
3450 int btrfs_get_num_tolerated_disk_barrier_failures(u64 flags)
3451 {
3452         int raid_type;
3453         int min_tolerated = INT_MAX;
3454
3455         if ((flags & BTRFS_BLOCK_GROUP_PROFILE_MASK) == 0 ||
3456             (flags & BTRFS_AVAIL_ALLOC_BIT_SINGLE))
3457                 min_tolerated = min(min_tolerated,
3458                                     btrfs_raid_array[BTRFS_RAID_SINGLE].
3459                                     tolerated_failures);
3460
3461         for (raid_type = 0; raid_type < BTRFS_NR_RAID_TYPES; raid_type++) {
3462                 if (raid_type == BTRFS_RAID_SINGLE)
3463                         continue;
3464                 if (!(flags & btrfs_raid_group[raid_type]))
3465                         continue;
3466                 min_tolerated = min(min_tolerated,
3467                                     btrfs_raid_array[raid_type].
3468                                     tolerated_failures);
3469         }
3470
3471         if (min_tolerated == INT_MAX) {
3472                 pr_warn("BTRFS: unknown raid flag: %llu", flags);
3473                 min_tolerated = 0;
3474         }
3475
3476         return min_tolerated;
3477 }
3478
3479 int write_all_supers(struct btrfs_fs_info *fs_info, int max_mirrors)
3480 {
3481         struct list_head *head;
3482         struct btrfs_device *dev;
3483         struct btrfs_super_block *sb;
3484         struct btrfs_dev_item *dev_item;
3485         int ret;
3486         int do_barriers;
3487         int max_errors;
3488         int total_errors = 0;
3489         u64 flags;
3490
3491         do_barriers = !btrfs_test_opt(fs_info, NOBARRIER);
3492
3493         /*
3494          * max_mirrors == 0 indicates we're from commit_transaction,
3495          * not from fsync where the tree roots in fs_info have not
3496          * been consistent on disk.
3497          */
3498         if (max_mirrors == 0)
3499                 backup_super_roots(fs_info);
3500
3501         sb = fs_info->super_for_commit;
3502         dev_item = &sb->dev_item;
3503
3504         mutex_lock(&fs_info->fs_devices->device_list_mutex);
3505         head = &fs_info->fs_devices->devices;
3506         max_errors = btrfs_super_num_devices(fs_info->super_copy) - 1;
3507
3508         if (do_barriers) {
3509                 ret = barrier_all_devices(fs_info);
3510                 if (ret) {
3511                         mutex_unlock(
3512                                 &fs_info->fs_devices->device_list_mutex);
3513                         btrfs_handle_fs_error(fs_info, ret,
3514                                               "errors while submitting device barriers.");
3515                         return ret;
3516                 }
3517         }
3518
3519         list_for_each_entry_rcu(dev, head, dev_list) {
3520                 if (!dev->bdev) {
3521                         total_errors++;
3522                         continue;
3523                 }
3524                 if (!dev->in_fs_metadata || !dev->writeable)
3525                         continue;
3526
3527                 btrfs_set_stack_device_generation(dev_item, 0);
3528                 btrfs_set_stack_device_type(dev_item, dev->type);
3529                 btrfs_set_stack_device_id(dev_item, dev->devid);
3530                 btrfs_set_stack_device_total_bytes(dev_item,
3531                                                    dev->commit_total_bytes);
3532                 btrfs_set_stack_device_bytes_used(dev_item,
3533                                                   dev->commit_bytes_used);
3534                 btrfs_set_stack_device_io_align(dev_item, dev->io_align);
3535                 btrfs_set_stack_device_io_width(dev_item, dev->io_width);
3536                 btrfs_set_stack_device_sector_size(dev_item, dev->sector_size);
3537                 memcpy(dev_item->uuid, dev->uuid, BTRFS_UUID_SIZE);
3538                 memcpy(dev_item->fsid, dev->fs_devices->fsid, BTRFS_FSID_SIZE);
3539
3540                 flags = btrfs_super_flags(sb);
3541                 btrfs_set_super_flags(sb, flags | BTRFS_HEADER_FLAG_WRITTEN);
3542
3543                 ret = write_dev_supers(dev, sb, max_mirrors);
3544                 if (ret)
3545                         total_errors++;
3546         }
3547         if (total_errors > max_errors) {
3548                 btrfs_err(fs_info, "%d errors while writing supers",
3549                           total_errors);
3550                 mutex_unlock(&fs_info->fs_devices->device_list_mutex);
3551
3552                 /* FUA is masked off if unsupported and can't be the reason */
3553                 btrfs_handle_fs_error(fs_info, -EIO,
3554                                       "%d errors while writing supers",
3555                                       total_errors);
3556                 return -EIO;
3557         }
3558
3559         total_errors = 0;
3560         list_for_each_entry_rcu(dev, head, dev_list) {
3561                 if (!dev->bdev)
3562                         continue;
3563                 if (!dev->in_fs_metadata || !dev->writeable)
3564                         continue;
3565
3566                 ret = wait_dev_supers(dev, max_mirrors);
3567                 if (ret)
3568                         total_errors++;
3569         }
3570         mutex_unlock(&fs_info->fs_devices->device_list_mutex);
3571         if (total_errors > max_errors) {
3572                 btrfs_handle_fs_error(fs_info, -EIO,
3573                                       "%d errors while writing supers",
3574                                       total_errors);
3575                 return -EIO;
3576         }
3577         return 0;
3578 }
3579
3580 /* Drop a fs root from the radix tree and free it. */
3581 void btrfs_drop_and_free_fs_root(struct btrfs_fs_info *fs_info,
3582                                   struct btrfs_root *root)
3583 {
3584         spin_lock(&fs_info->fs_roots_radix_lock);
3585         radix_tree_delete(&fs_info->fs_roots_radix,
3586                           (unsigned long)root->root_key.objectid);
3587         spin_unlock(&fs_info->fs_roots_radix_lock);
3588
3589         if (btrfs_root_refs(&root->root_item) == 0)
3590                 synchronize_srcu(&fs_info->subvol_srcu);
3591
3592         if (test_bit(BTRFS_FS_STATE_ERROR, &fs_info->fs_state)) {
3593                 btrfs_free_log(NULL, root);
3594                 if (root->reloc_root) {
3595                         free_extent_buffer(root->reloc_root->node);
3596                         free_extent_buffer(root->reloc_root->commit_root);
3597                         btrfs_put_fs_root(root->reloc_root);
3598                         root->reloc_root = NULL;
3599                 }
3600         }
3601
3602         if (root->free_ino_pinned)
3603                 __btrfs_remove_free_space_cache(root->free_ino_pinned);
3604         if (root->free_ino_ctl)
3605                 __btrfs_remove_free_space_cache(root->free_ino_ctl);
3606         free_fs_root(root);
3607 }
3608
3609 static void free_fs_root(struct btrfs_root *root)
3610 {
3611         iput(root->ino_cache_inode);
3612         WARN_ON(!RB_EMPTY_ROOT(&root->inode_tree));
3613         btrfs_free_block_rsv(root->fs_info, root->orphan_block_rsv);
3614         root->orphan_block_rsv = NULL;
3615         if (root->anon_dev)
3616                 free_anon_bdev(root->anon_dev);
3617         if (root->subv_writers)
3618                 btrfs_free_subvolume_writers(root->subv_writers);
3619         free_extent_buffer(root->node);
3620         free_extent_buffer(root->commit_root);
3621         kfree(root->free_ino_ctl);
3622         kfree(root->free_ino_pinned);
3623         kfree(root->name);
3624         btrfs_put_fs_root(root);
3625 }
3626
3627 void btrfs_free_fs_root(struct btrfs_root *root)
3628 {
3629         free_fs_root(root);
3630 }
3631
3632 int btrfs_cleanup_fs_roots(struct btrfs_fs_info *fs_info)
3633 {
3634         u64 root_objectid = 0;
3635         struct btrfs_root *gang[8];
3636         int i = 0;
3637         int err = 0;
3638         unsigned int ret = 0;
3639         int index;
3640
3641         while (1) {
3642                 index = srcu_read_lock(&fs_info->subvol_srcu);
3643                 ret = radix_tree_gang_lookup(&fs_info->fs_roots_radix,
3644                                              (void **)gang, root_objectid,
3645                                              ARRAY_SIZE(gang));
3646                 if (!ret) {
3647                         srcu_read_unlock(&fs_info->subvol_srcu, index);
3648                         break;
3649                 }
3650                 root_objectid = gang[ret - 1]->root_key.objectid + 1;
3651
3652                 for (i = 0; i < ret; i++) {
3653                         /* Avoid to grab roots in dead_roots */
3654                         if (btrfs_root_refs(&gang[i]->root_item) == 0) {
3655                                 gang[i] = NULL;
3656                                 continue;
3657                         }
3658                         /* grab all the search result for later use */
3659                         gang[i] = btrfs_grab_fs_root(gang[i]);
3660                 }
3661                 srcu_read_unlock(&fs_info->subvol_srcu, index);
3662
3663                 for (i = 0; i < ret; i++) {
3664                         if (!gang[i])
3665                                 continue;
3666                         root_objectid = gang[i]->root_key.objectid;
3667                         err = btrfs_orphan_cleanup(gang[i]);
3668                         if (err)
3669                                 break;
3670                         btrfs_put_fs_root(gang[i]);
3671                 }
3672                 root_objectid++;
3673         }
3674
3675         /* release the uncleaned roots due to error */
3676         for (; i < ret; i++) {
3677                 if (gang[i])
3678                         btrfs_put_fs_root(gang[i]);
3679         }
3680         return err;
3681 }
3682
3683 int btrfs_commit_super(struct btrfs_fs_info *fs_info)
3684 {
3685         struct btrfs_root *root = fs_info->tree_root;
3686         struct btrfs_trans_handle *trans;
3687
3688         mutex_lock(&fs_info->cleaner_mutex);
3689         btrfs_run_delayed_iputs(fs_info);
3690         mutex_unlock(&fs_info->cleaner_mutex);
3691         wake_up_process(fs_info->cleaner_kthread);
3692
3693         /* wait until ongoing cleanup work done */
3694         down_write(&fs_info->cleanup_work_sem);
3695         up_write(&fs_info->cleanup_work_sem);
3696
3697         trans = btrfs_join_transaction(root);
3698         if (IS_ERR(trans))
3699                 return PTR_ERR(trans);
3700         return btrfs_commit_transaction(trans);
3701 }
3702
3703 void close_ctree(struct btrfs_fs_info *fs_info)
3704 {
3705         struct btrfs_root *root = fs_info->tree_root;
3706         int ret;
3707
3708         set_bit(BTRFS_FS_CLOSING_START, &fs_info->flags);
3709         /*
3710          * We don't want the cleaner to start new transactions, add more delayed
3711          * iputs, etc. while we're closing. We can't use kthread_stop() yet
3712          * because that frees the task_struct, and the transaction kthread might
3713          * still try to wake up the cleaner.
3714          */
3715         kthread_park(fs_info->cleaner_kthread);
3716
3717         /* wait for the qgroup rescan worker to stop */
3718         btrfs_qgroup_wait_for_completion(fs_info, false);
3719
3720         /* wait for the uuid_scan task to finish */
3721         down(&fs_info->uuid_tree_rescan_sem);
3722         /* avoid complains from lockdep et al., set sem back to initial state */
3723         up(&fs_info->uuid_tree_rescan_sem);
3724
3725         /* pause restriper - we want to resume on mount */
3726         btrfs_pause_balance(fs_info);
3727
3728         btrfs_dev_replace_suspend_for_unmount(fs_info);
3729
3730         btrfs_scrub_cancel(fs_info);
3731
3732         /* wait for any defraggers to finish */
3733         wait_event(fs_info->transaction_wait,
3734                    (atomic_read(&fs_info->defrag_running) == 0));
3735
3736         /* clear out the rbtree of defraggable inodes */
3737         btrfs_cleanup_defrag_inodes(fs_info);
3738
3739         cancel_work_sync(&fs_info->async_reclaim_work);
3740
3741         if (!sb_rdonly(fs_info->sb)) {
3742                 /*
3743                  * The cleaner kthread is stopped, so do one final pass over
3744                  * unused block groups.
3745                  */
3746                 btrfs_delete_unused_bgs(fs_info);
3747
3748                 /*
3749                  * There might be existing delayed inode workers still running
3750                  * and holding an empty delayed inode item. We must wait for
3751                  * them to complete first because they can create a transaction.
3752                  * This happens when someone calls btrfs_balance_delayed_items()
3753                  * and then a transaction commit runs the same delayed nodes
3754                  * before any delayed worker has done something with the nodes.
3755                  * We must wait for any worker here and not at transaction
3756                  * commit time since that could cause a deadlock.
3757                  * This is a very rare case.
3758                  */
3759                 btrfs_flush_workqueue(fs_info->delayed_workers);
3760
3761                 ret = btrfs_commit_super(fs_info);
3762                 if (ret)
3763                         btrfs_err(fs_info, "commit super ret %d", ret);
3764         }
3765
3766         if (test_bit(BTRFS_FS_STATE_ERROR, &fs_info->fs_state) ||
3767             test_bit(BTRFS_FS_STATE_TRANS_ABORTED, &fs_info->fs_state))
3768                 btrfs_error_commit_super(fs_info);
3769
3770         kthread_stop(fs_info->transaction_kthread);
3771         kthread_stop(fs_info->cleaner_kthread);
3772
3773         set_bit(BTRFS_FS_CLOSING_DONE, &fs_info->flags);
3774
3775         btrfs_free_qgroup_config(fs_info);
3776         ASSERT(list_empty(&fs_info->delalloc_roots));
3777
3778         if (percpu_counter_sum(&fs_info->delalloc_bytes)) {
3779                 btrfs_info(fs_info, "at unmount delalloc count %lld",
3780                        percpu_counter_sum(&fs_info->delalloc_bytes));
3781         }
3782
3783         btrfs_sysfs_remove_mounted(fs_info);
3784         btrfs_sysfs_remove_fsid(fs_info->fs_devices);
3785
3786         btrfs_free_fs_roots(fs_info);
3787
3788         btrfs_put_block_group_cache(fs_info);
3789
3790         /*
3791          * we must make sure there is not any read request to
3792          * submit after we stopping all workers.
3793          */
3794         invalidate_inode_pages2(fs_info->btree_inode->i_mapping);
3795         btrfs_stop_all_workers(fs_info);
3796
3797         clear_bit(BTRFS_FS_OPEN, &fs_info->flags);
3798         free_root_pointers(fs_info, true);
3799
3800         /*
3801          * We must free the block groups after dropping the fs_roots as we could
3802          * have had an IO error and have left over tree log blocks that aren't
3803          * cleaned up until the fs roots are freed.  This makes the block group
3804          * accounting appear to be wrong because there's pending reserved bytes,
3805          * so make sure we do the block group cleanup afterwards.
3806          */
3807         btrfs_free_block_groups(fs_info);
3808
3809         iput(fs_info->btree_inode);
3810
3811 #ifdef CONFIG_BTRFS_FS_CHECK_INTEGRITY
3812         if (btrfs_test_opt(fs_info, CHECK_INTEGRITY))
3813                 btrfsic_unmount(fs_info->fs_devices);
3814 #endif
3815
3816         btrfs_close_devices(fs_info->fs_devices);
3817         btrfs_mapping_tree_free(&fs_info->mapping_tree);
3818
3819         percpu_counter_destroy(&fs_info->dirty_metadata_bytes);
3820         percpu_counter_destroy(&fs_info->delalloc_bytes);
3821         percpu_counter_destroy(&fs_info->bio_counter);
3822         cleanup_srcu_struct(&fs_info->subvol_srcu);
3823
3824         btrfs_free_stripe_hash_table(fs_info);
3825
3826         __btrfs_free_block_rsv(root->orphan_block_rsv);
3827         root->orphan_block_rsv = NULL;
3828
3829         while (!list_empty(&fs_info->pinned_chunks)) {
3830                 struct extent_map *em;
3831
3832                 em = list_first_entry(&fs_info->pinned_chunks,
3833                                       struct extent_map, list);
3834                 list_del_init(&em->list);
3835                 free_extent_map(em);
3836         }
3837 }
3838
3839 int btrfs_buffer_uptodate(struct extent_buffer *buf, u64 parent_transid,
3840                           int atomic)
3841 {
3842         int ret;
3843         struct inode *btree_inode = buf->pages[0]->mapping->host;
3844
3845         ret = extent_buffer_uptodate(buf);
3846         if (!ret)
3847                 return ret;
3848
3849         ret = verify_parent_transid(&BTRFS_I(btree_inode)->io_tree, buf,
3850                                     parent_transid, atomic);
3851         if (ret == -EAGAIN)
3852                 return ret;
3853         return !ret;
3854 }
3855
3856 void btrfs_mark_buffer_dirty(struct extent_buffer *buf)
3857 {
3858         struct btrfs_fs_info *fs_info;
3859         struct btrfs_root *root;
3860         u64 transid = btrfs_header_generation(buf);
3861         int was_dirty;
3862
3863 #ifdef CONFIG_BTRFS_FS_RUN_SANITY_TESTS
3864         /*
3865          * This is a fast path so only do this check if we have sanity tests
3866          * enabled.  Normal people shouldn't be marking dummy buffers as dirty
3867          * outside of the sanity tests.
3868          */
3869         if (unlikely(test_bit(EXTENT_BUFFER_DUMMY, &buf->bflags)))
3870                 return;
3871 #endif
3872         root = BTRFS_I(buf->pages[0]->mapping->host)->root;
3873         fs_info = root->fs_info;
3874         btrfs_assert_tree_locked(buf);
3875         if (transid != fs_info->generation)
3876                 WARN(1, KERN_CRIT "btrfs transid mismatch buffer %llu, found %llu running %llu\n",
3877                         buf->start, transid, fs_info->generation);
3878         was_dirty = set_extent_buffer_dirty(buf);
3879         if (!was_dirty)
3880                 percpu_counter_add_batch(&fs_info->dirty_metadata_bytes,
3881                                          buf->len,
3882                                          fs_info->dirty_metadata_batch);
3883 #ifdef CONFIG_BTRFS_FS_CHECK_INTEGRITY
3884         /*
3885          * Since btrfs_mark_buffer_dirty() can be called with item pointer set
3886          * but item data not updated.
3887          * So here we should only check item pointers, not item data.
3888          */
3889         if (btrfs_header_level(buf) == 0 &&
3890             btrfs_check_leaf_relaxed(root, buf)) {
3891                 btrfs_print_leaf(buf);
3892                 ASSERT(0);
3893         }
3894 #endif
3895 }
3896
3897 static void __btrfs_btree_balance_dirty(struct btrfs_fs_info *fs_info,
3898                                         int flush_delayed)
3899 {
3900         /*
3901          * looks as though older kernels can get into trouble with
3902          * this code, they end up stuck in balance_dirty_pages forever
3903          */
3904         int ret;
3905
3906         if (current->flags & PF_MEMALLOC)
3907                 return;
3908
3909         if (flush_delayed)
3910                 btrfs_balance_delayed_items(fs_info);
3911
3912         ret = __percpu_counter_compare(&fs_info->dirty_metadata_bytes,
3913                                      BTRFS_DIRTY_METADATA_THRESH,
3914                                      fs_info->dirty_metadata_batch);
3915         if (ret > 0) {
3916                 balance_dirty_pages_ratelimited(fs_info->btree_inode->i_mapping);
3917         }
3918 }
3919
3920 void btrfs_btree_balance_dirty(struct btrfs_fs_info *fs_info)
3921 {
3922         __btrfs_btree_balance_dirty(fs_info, 1);
3923 }
3924
3925 void btrfs_btree_balance_dirty_nodelay(struct btrfs_fs_info *fs_info)
3926 {
3927         __btrfs_btree_balance_dirty(fs_info, 0);
3928 }
3929
3930 int btrfs_read_buffer(struct extent_buffer *buf, u64 parent_transid)
3931 {
3932         struct btrfs_root *root = BTRFS_I(buf->pages[0]->mapping->host)->root;
3933         struct btrfs_fs_info *fs_info = root->fs_info;
3934
3935         return btree_read_extent_buffer_pages(fs_info, buf, parent_transid);
3936 }
3937
3938 static int btrfs_check_super_valid(struct btrfs_fs_info *fs_info)
3939 {
3940         struct btrfs_super_block *sb = fs_info->super_copy;
3941         u64 nodesize = btrfs_super_nodesize(sb);
3942         u64 sectorsize = btrfs_super_sectorsize(sb);
3943         int ret = 0;
3944
3945         if (btrfs_super_magic(sb) != BTRFS_MAGIC) {
3946                 btrfs_err(fs_info, "no valid FS found");
3947                 ret = -EINVAL;
3948         }
3949         if (btrfs_super_flags(sb) & ~BTRFS_SUPER_FLAG_SUPP) {
3950                 btrfs_err(fs_info, "unrecognized or unsupported super flag: %llu",
3951                                 btrfs_super_flags(sb) & ~BTRFS_SUPER_FLAG_SUPP);
3952                 ret = -EINVAL;
3953         }
3954         if (btrfs_super_root_level(sb) >= BTRFS_MAX_LEVEL) {
3955                 btrfs_err(fs_info, "tree_root level too big: %d >= %d",
3956                                 btrfs_super_root_level(sb), BTRFS_MAX_LEVEL);
3957                 ret = -EINVAL;
3958         }
3959         if (btrfs_super_chunk_root_level(sb) >= BTRFS_MAX_LEVEL) {
3960                 btrfs_err(fs_info, "chunk_root level too big: %d >= %d",
3961                                 btrfs_super_chunk_root_level(sb), BTRFS_MAX_LEVEL);
3962                 ret = -EINVAL;
3963         }
3964         if (btrfs_super_log_root_level(sb) >= BTRFS_MAX_LEVEL) {
3965                 btrfs_err(fs_info, "log_root level too big: %d >= %d",
3966                                 btrfs_super_log_root_level(sb), BTRFS_MAX_LEVEL);
3967                 ret = -EINVAL;
3968         }
3969
3970         /*
3971          * Check sectorsize and nodesize first, other check will need it.
3972          * Check all possible sectorsize(4K, 8K, 16K, 32K, 64K) here.
3973          */
3974         if (!is_power_of_2(sectorsize) || sectorsize < 4096 ||
3975             sectorsize > BTRFS_MAX_METADATA_BLOCKSIZE) {
3976                 btrfs_err(fs_info, "invalid sectorsize %llu", sectorsize);
3977                 ret = -EINVAL;
3978         }
3979         /* Only PAGE SIZE is supported yet */
3980         if (sectorsize != PAGE_SIZE) {
3981                 btrfs_err(fs_info,
3982                         "sectorsize %llu not supported yet, only support %lu",
3983                         sectorsize, PAGE_SIZE);
3984                 ret = -EINVAL;
3985         }
3986         if (!is_power_of_2(nodesize) || nodesize < sectorsize ||
3987             nodesize > BTRFS_MAX_METADATA_BLOCKSIZE) {
3988                 btrfs_err(fs_info, "invalid nodesize %llu", nodesize);
3989                 ret = -EINVAL;
3990         }
3991         if (nodesize != le32_to_cpu(sb->__unused_leafsize)) {
3992                 btrfs_err(fs_info, "invalid leafsize %u, should be %llu",
3993                           le32_to_cpu(sb->__unused_leafsize), nodesize);
3994                 ret = -EINVAL;
3995         }
3996
3997         /* Root alignment check */
3998         if (!IS_ALIGNED(btrfs_super_root(sb), sectorsize)) {
3999                 btrfs_warn(fs_info, "tree_root block unaligned: %llu",
4000                            btrfs_super_root(sb));
4001                 ret = -EINVAL;
4002         }
4003         if (!IS_ALIGNED(btrfs_super_chunk_root(sb), sectorsize)) {
4004                 btrfs_warn(fs_info, "chunk_root block unaligned: %llu",
4005                            btrfs_super_chunk_root(sb));
4006                 ret = -EINVAL;
4007         }
4008         if (!IS_ALIGNED(btrfs_super_log_root(sb), sectorsize)) {
4009                 btrfs_warn(fs_info, "log_root block unaligned: %llu",
4010                            btrfs_super_log_root(sb));
4011                 ret = -EINVAL;
4012         }
4013
4014         if (memcmp(fs_info->fsid, sb->dev_item.fsid, BTRFS_FSID_SIZE) != 0) {
4015                 btrfs_err(fs_info,
4016                            "dev_item UUID does not match fsid: %pU != %pU",
4017                            fs_info->fsid, sb->dev_item.fsid);
4018                 ret = -EINVAL;
4019         }
4020
4021         /*
4022          * Hint to catch really bogus numbers, bitflips or so, more exact checks are
4023          * done later
4024          */
4025         if (btrfs_super_bytes_used(sb) < 6 * btrfs_super_nodesize(sb)) {
4026                 btrfs_err(fs_info, "bytes_used is too small %llu",
4027                           btrfs_super_bytes_used(sb));
4028                 ret = -EINVAL;
4029         }
4030         if (!is_power_of_2(btrfs_super_stripesize(sb))) {
4031                 btrfs_err(fs_info, "invalid stripesize %u",
4032                           btrfs_super_stripesize(sb));
4033                 ret = -EINVAL;
4034         }
4035         if (btrfs_super_num_devices(sb) > (1UL << 31))
4036                 btrfs_warn(fs_info, "suspicious number of devices: %llu",
4037                            btrfs_super_num_devices(sb));
4038         if (btrfs_super_num_devices(sb) == 0) {
4039                 btrfs_err(fs_info, "number of devices is 0");
4040                 ret = -EINVAL;
4041         }
4042
4043         if (btrfs_super_bytenr(sb) != BTRFS_SUPER_INFO_OFFSET) {
4044                 btrfs_err(fs_info, "super offset mismatch %llu != %u",
4045                           btrfs_super_bytenr(sb), BTRFS_SUPER_INFO_OFFSET);
4046                 ret = -EINVAL;
4047         }
4048
4049         /*
4050          * Obvious sys_chunk_array corruptions, it must hold at least one key
4051          * and one chunk
4052          */
4053         if (btrfs_super_sys_array_size(sb) > BTRFS_SYSTEM_CHUNK_ARRAY_SIZE) {
4054                 btrfs_err(fs_info, "system chunk array too big %u > %u",
4055                           btrfs_super_sys_array_size(sb),
4056                           BTRFS_SYSTEM_CHUNK_ARRAY_SIZE);
4057                 ret = -EINVAL;
4058         }
4059         if (btrfs_super_sys_array_size(sb) < sizeof(struct btrfs_disk_key)
4060                         + sizeof(struct btrfs_chunk)) {
4061                 btrfs_err(fs_info, "system chunk array too small %u < %zu",
4062                           btrfs_super_sys_array_size(sb),
4063                           sizeof(struct btrfs_disk_key)
4064                           + sizeof(struct btrfs_chunk));
4065                 ret = -EINVAL;
4066         }
4067
4068         /*
4069          * The generation is a global counter, we'll trust it more than the others
4070          * but it's still possible that it's the one that's wrong.
4071          */
4072         if (btrfs_super_generation(sb) < btrfs_super_chunk_root_generation(sb))
4073                 btrfs_warn(fs_info,
4074                         "suspicious: generation < chunk_root_generation: %llu < %llu",
4075                         btrfs_super_generation(sb),
4076                         btrfs_super_chunk_root_generation(sb));
4077         if (btrfs_super_generation(sb) < btrfs_super_cache_generation(sb)
4078             && btrfs_super_cache_generation(sb) != (u64)-1)
4079                 btrfs_warn(fs_info,
4080                         "suspicious: generation < cache_generation: %llu < %llu",
4081                         btrfs_super_generation(sb),
4082                         btrfs_super_cache_generation(sb));
4083
4084         return ret;
4085 }
4086
4087 static void btrfs_error_commit_super(struct btrfs_fs_info *fs_info)
4088 {
4089         /* cleanup FS via transaction */
4090         btrfs_cleanup_transaction(fs_info);
4091
4092         mutex_lock(&fs_info->cleaner_mutex);
4093         btrfs_run_delayed_iputs(fs_info);
4094         mutex_unlock(&fs_info->cleaner_mutex);
4095
4096         down_write(&fs_info->cleanup_work_sem);
4097         up_write(&fs_info->cleanup_work_sem);
4098 }
4099
4100 static void btrfs_destroy_ordered_extents(struct btrfs_root *root)
4101 {
4102         struct btrfs_ordered_extent *ordered;
4103
4104         spin_lock(&root->ordered_extent_lock);
4105         /*
4106          * This will just short circuit the ordered completion stuff which will
4107          * make sure the ordered extent gets properly cleaned up.
4108          */
4109         list_for_each_entry(ordered, &root->ordered_extents,
4110                             root_extent_list)
4111                 set_bit(BTRFS_ORDERED_IOERR, &ordered->flags);
4112         spin_unlock(&root->ordered_extent_lock);
4113 }
4114
4115 static void btrfs_destroy_all_ordered_extents(struct btrfs_fs_info *fs_info)
4116 {
4117         struct btrfs_root *root;
4118         struct list_head splice;
4119
4120         INIT_LIST_HEAD(&splice);
4121
4122         spin_lock(&fs_info->ordered_root_lock);
4123         list_splice_init(&fs_info->ordered_roots, &splice);
4124         while (!list_empty(&splice)) {
4125                 root = list_first_entry(&splice, struct btrfs_root,
4126                                         ordered_root);
4127                 list_move_tail(&root->ordered_root,
4128                                &fs_info->ordered_roots);
4129
4130                 spin_unlock(&fs_info->ordered_root_lock);
4131                 btrfs_destroy_ordered_extents(root);
4132
4133                 cond_resched();
4134                 spin_lock(&fs_info->ordered_root_lock);
4135         }
4136         spin_unlock(&fs_info->ordered_root_lock);
4137
4138         /*
4139          * We need this here because if we've been flipped read-only we won't
4140          * get sync() from the umount, so we need to make sure any ordered
4141          * extents that haven't had their dirty pages IO start writeout yet
4142          * actually get run and error out properly.
4143          */
4144         btrfs_wait_ordered_roots(fs_info, U64_MAX, 0, (u64)-1);
4145 }
4146
4147 static int btrfs_destroy_delayed_refs(struct btrfs_transaction *trans,
4148                                       struct btrfs_fs_info *fs_info)
4149 {
4150         struct rb_node *node;
4151         struct btrfs_delayed_ref_root *delayed_refs;
4152         struct btrfs_delayed_ref_node *ref;
4153         int ret = 0;
4154
4155         delayed_refs = &trans->delayed_refs;
4156
4157         spin_lock(&delayed_refs->lock);
4158         if (atomic_read(&delayed_refs->num_entries) == 0) {
4159                 spin_unlock(&delayed_refs->lock);
4160                 btrfs_info(fs_info, "delayed_refs has NO entry");
4161                 return ret;
4162         }
4163
4164         while ((node = rb_first(&delayed_refs->href_root)) != NULL) {
4165                 struct btrfs_delayed_ref_head *head;
4166                 struct btrfs_delayed_ref_node *tmp;
4167                 bool pin_bytes = false;
4168
4169                 head = rb_entry(node, struct btrfs_delayed_ref_head,
4170                                 href_node);
4171                 if (!mutex_trylock(&head->mutex)) {
4172                         refcount_inc(&head->node.refs);
4173                         spin_unlock(&delayed_refs->lock);
4174
4175                         mutex_lock(&head->mutex);
4176                         mutex_unlock(&head->mutex);
4177                         btrfs_put_delayed_ref(&head->node);
4178                         spin_lock(&delayed_refs->lock);
4179                         continue;
4180                 }
4181                 spin_lock(&head->lock);
4182                 list_for_each_entry_safe_reverse(ref, tmp, &head->ref_list,
4183                                                  list) {
4184                         ref->in_tree = 0;
4185                         list_del(&ref->list);
4186                         if (!list_empty(&ref->add_list))
4187                                 list_del(&ref->add_list);
4188                         atomic_dec(&delayed_refs->num_entries);
4189                         btrfs_put_delayed_ref(ref);
4190                 }
4191                 if (head->must_insert_reserved)
4192                         pin_bytes = true;
4193                 btrfs_free_delayed_extent_op(head->extent_op);
4194                 delayed_refs->num_heads--;
4195                 if (head->processing == 0)
4196                         delayed_refs->num_heads_ready--;
4197                 atomic_dec(&delayed_refs->num_entries);
4198                 head->node.in_tree = 0;
4199                 rb_erase(&head->href_node, &delayed_refs->href_root);
4200                 spin_unlock(&head->lock);
4201                 spin_unlock(&delayed_refs->lock);
4202                 mutex_unlock(&head->mutex);
4203
4204                 if (pin_bytes)
4205                         btrfs_pin_extent(fs_info, head->node.bytenr,
4206                                          head->node.num_bytes, 1);
4207                 btrfs_put_delayed_ref(&head->node);
4208                 cond_resched();
4209                 spin_lock(&delayed_refs->lock);
4210         }
4211
4212         spin_unlock(&delayed_refs->lock);
4213
4214         return ret;
4215 }
4216
4217 static void btrfs_destroy_delalloc_inodes(struct btrfs_root *root)
4218 {
4219         struct btrfs_inode *btrfs_inode;
4220         struct list_head splice;
4221
4222         INIT_LIST_HEAD(&splice);
4223
4224         spin_lock(&root->delalloc_lock);
4225         list_splice_init(&root->delalloc_inodes, &splice);
4226
4227         while (!list_empty(&splice)) {
4228                 struct inode *inode = NULL;
4229                 btrfs_inode = list_first_entry(&splice, struct btrfs_inode,
4230                                                delalloc_inodes);
4231                 __btrfs_del_delalloc_inode(root, btrfs_inode);
4232                 spin_unlock(&root->delalloc_lock);
4233
4234                 /*
4235                  * Make sure we get a live inode and that it'll not disappear
4236                  * meanwhile.
4237                  */
4238                 inode = igrab(&btrfs_inode->vfs_inode);
4239                 if (inode) {
4240                         invalidate_inode_pages2(inode->i_mapping);
4241                         iput(inode);
4242                 }
4243                 spin_lock(&root->delalloc_lock);
4244         }
4245         spin_unlock(&root->delalloc_lock);
4246 }
4247
4248 static void btrfs_destroy_all_delalloc_inodes(struct btrfs_fs_info *fs_info)
4249 {
4250         struct btrfs_root *root;
4251         struct list_head splice;
4252
4253         INIT_LIST_HEAD(&splice);
4254
4255         spin_lock(&fs_info->delalloc_root_lock);
4256         list_splice_init(&fs_info->delalloc_roots, &splice);
4257         while (!list_empty(&splice)) {
4258                 root = list_first_entry(&splice, struct btrfs_root,
4259                                          delalloc_root);
4260                 root = btrfs_grab_fs_root(root);
4261                 BUG_ON(!root);
4262                 spin_unlock(&fs_info->delalloc_root_lock);
4263
4264                 btrfs_destroy_delalloc_inodes(root);
4265                 btrfs_put_fs_root(root);
4266
4267                 spin_lock(&fs_info->delalloc_root_lock);
4268         }
4269         spin_unlock(&fs_info->delalloc_root_lock);
4270 }
4271
4272 static int btrfs_destroy_marked_extents(struct btrfs_fs_info *fs_info,
4273                                         struct extent_io_tree *dirty_pages,
4274                                         int mark)
4275 {
4276         int ret;
4277         struct extent_buffer *eb;
4278         u64 start = 0;
4279         u64 end;
4280
4281         while (1) {
4282                 ret = find_first_extent_bit(dirty_pages, start, &start, &end,
4283                                             mark, NULL);
4284                 if (ret)
4285                         break;
4286
4287                 clear_extent_bits(dirty_pages, start, end, mark);
4288                 while (start <= end) {
4289                         eb = find_extent_buffer(fs_info, start);
4290                         start += fs_info->nodesize;
4291                         if (!eb)
4292                                 continue;
4293                         wait_on_extent_buffer_writeback(eb);
4294
4295                         if (test_and_clear_bit(EXTENT_BUFFER_DIRTY,
4296                                                &eb->bflags))
4297                                 clear_extent_buffer_dirty(eb);
4298                         free_extent_buffer_stale(eb);
4299                 }
4300         }
4301
4302         return ret;
4303 }
4304
4305 static int btrfs_destroy_pinned_extent(struct btrfs_fs_info *fs_info,
4306                                        struct extent_io_tree *pinned_extents)
4307 {
4308         struct extent_io_tree *unpin;
4309         u64 start;
4310         u64 end;
4311         int ret;
4312         bool loop = true;
4313
4314         unpin = pinned_extents;
4315 again:
4316         while (1) {
4317                 /*
4318                  * The btrfs_finish_extent_commit() may get the same range as
4319                  * ours between find_first_extent_bit and clear_extent_dirty.
4320                  * Hence, hold the unused_bg_unpin_mutex to avoid double unpin
4321                  * the same extent range.
4322                  */
4323                 mutex_lock(&fs_info->unused_bg_unpin_mutex);
4324                 ret = find_first_extent_bit(unpin, 0, &start, &end,
4325                                             EXTENT_DIRTY, NULL);
4326                 if (ret) {
4327                         mutex_unlock(&fs_info->unused_bg_unpin_mutex);
4328                         break;
4329                 }
4330
4331                 clear_extent_dirty(unpin, start, end);
4332                 btrfs_error_unpin_extent_range(fs_info, start, end);
4333                 mutex_unlock(&fs_info->unused_bg_unpin_mutex);
4334                 cond_resched();
4335         }
4336
4337         if (loop) {
4338                 if (unpin == &fs_info->freed_extents[0])
4339                         unpin = &fs_info->freed_extents[1];
4340                 else
4341                         unpin = &fs_info->freed_extents[0];
4342                 loop = false;
4343                 goto again;
4344         }
4345
4346         return 0;
4347 }
4348
4349 static void btrfs_cleanup_bg_io(struct btrfs_block_group_cache *cache)
4350 {
4351         struct inode *inode;
4352
4353         inode = cache->io_ctl.inode;
4354         if (inode) {
4355                 invalidate_inode_pages2(inode->i_mapping);
4356                 BTRFS_I(inode)->generation = 0;
4357                 cache->io_ctl.inode = NULL;
4358                 iput(inode);
4359         }
4360         ASSERT(cache->io_ctl.pages == NULL);
4361         btrfs_put_block_group(cache);
4362 }
4363
4364 void btrfs_cleanup_dirty_bgs(struct btrfs_transaction *cur_trans,
4365                              struct btrfs_fs_info *fs_info)
4366 {
4367         struct btrfs_block_group_cache *cache;
4368
4369         spin_lock(&cur_trans->dirty_bgs_lock);
4370         while (!list_empty(&cur_trans->dirty_bgs)) {
4371                 cache = list_first_entry(&cur_trans->dirty_bgs,
4372                                          struct btrfs_block_group_cache,
4373                                          dirty_list);
4374                 if (!cache) {
4375                         btrfs_err(fs_info, "orphan block group dirty_bgs list");
4376                         spin_unlock(&cur_trans->dirty_bgs_lock);
4377                         return;
4378                 }
4379
4380                 if (!list_empty(&cache->io_list)) {
4381                         spin_unlock(&cur_trans->dirty_bgs_lock);
4382                         list_del_init(&cache->io_list);
4383                         btrfs_cleanup_bg_io(cache);
4384                         spin_lock(&cur_trans->dirty_bgs_lock);
4385                 }
4386
4387                 list_del_init(&cache->dirty_list);
4388                 spin_lock(&cache->lock);
4389                 cache->disk_cache_state = BTRFS_DC_ERROR;
4390                 spin_unlock(&cache->lock);
4391
4392                 spin_unlock(&cur_trans->dirty_bgs_lock);
4393                 btrfs_put_block_group(cache);
4394                 spin_lock(&cur_trans->dirty_bgs_lock);
4395         }
4396         spin_unlock(&cur_trans->dirty_bgs_lock);
4397
4398         while (!list_empty(&cur_trans->io_bgs)) {
4399                 cache = list_first_entry(&cur_trans->io_bgs,
4400                                          struct btrfs_block_group_cache,
4401                                          io_list);
4402                 if (!cache) {
4403                         btrfs_err(fs_info, "orphan block group on io_bgs list");
4404                         return;
4405                 }
4406
4407                 list_del_init(&cache->io_list);
4408                 spin_lock(&cache->lock);
4409                 cache->disk_cache_state = BTRFS_DC_ERROR;
4410                 spin_unlock(&cache->lock);
4411                 btrfs_cleanup_bg_io(cache);
4412         }
4413 }
4414
4415 void btrfs_cleanup_one_transaction(struct btrfs_transaction *cur_trans,
4416                                    struct btrfs_fs_info *fs_info)
4417 {
4418         btrfs_cleanup_dirty_bgs(cur_trans, fs_info);
4419         ASSERT(list_empty(&cur_trans->dirty_bgs));
4420         ASSERT(list_empty(&cur_trans->io_bgs));
4421
4422         btrfs_destroy_delayed_refs(cur_trans, fs_info);
4423
4424         cur_trans->state = TRANS_STATE_COMMIT_START;
4425         wake_up(&fs_info->transaction_blocked_wait);
4426
4427         cur_trans->state = TRANS_STATE_UNBLOCKED;
4428         wake_up(&fs_info->transaction_wait);
4429
4430         btrfs_destroy_delayed_inodes(fs_info);
4431
4432         btrfs_destroy_marked_extents(fs_info, &cur_trans->dirty_pages,
4433                                      EXTENT_DIRTY);
4434         btrfs_destroy_pinned_extent(fs_info,
4435                                     fs_info->pinned_extents);
4436
4437         cur_trans->state =TRANS_STATE_COMPLETED;
4438         wake_up(&cur_trans->commit_wait);
4439 }
4440
4441 static int btrfs_cleanup_transaction(struct btrfs_fs_info *fs_info)
4442 {
4443         struct btrfs_transaction *t;
4444
4445         mutex_lock(&fs_info->transaction_kthread_mutex);
4446
4447         spin_lock(&fs_info->trans_lock);
4448         while (!list_empty(&fs_info->trans_list)) {
4449                 t = list_first_entry(&fs_info->trans_list,
4450                                      struct btrfs_transaction, list);
4451                 if (t->state >= TRANS_STATE_COMMIT_START) {
4452                         refcount_inc(&t->use_count);
4453                         spin_unlock(&fs_info->trans_lock);
4454                         btrfs_wait_for_commit(fs_info, t->transid);
4455                         btrfs_put_transaction(t);
4456                         spin_lock(&fs_info->trans_lock);
4457                         continue;
4458                 }
4459                 if (t == fs_info->running_transaction) {
4460                         t->state = TRANS_STATE_COMMIT_DOING;
4461                         spin_unlock(&fs_info->trans_lock);
4462                         /*
4463                          * We wait for 0 num_writers since we don't hold a trans
4464                          * handle open currently for this transaction.
4465                          */
4466                         wait_event(t->writer_wait,
4467                                    atomic_read(&t->num_writers) == 0);
4468                 } else {
4469                         spin_unlock(&fs_info->trans_lock);
4470                 }
4471                 btrfs_cleanup_one_transaction(t, fs_info);
4472
4473                 spin_lock(&fs_info->trans_lock);
4474                 if (t == fs_info->running_transaction)
4475                         fs_info->running_transaction = NULL;
4476                 list_del_init(&t->list);
4477                 spin_unlock(&fs_info->trans_lock);
4478
4479                 btrfs_put_transaction(t);
4480                 trace_btrfs_transaction_commit(fs_info->tree_root);
4481                 spin_lock(&fs_info->trans_lock);
4482         }
4483         spin_unlock(&fs_info->trans_lock);
4484         btrfs_destroy_all_ordered_extents(fs_info);
4485         btrfs_destroy_delayed_inodes(fs_info);
4486         btrfs_assert_delayed_root_empty(fs_info);
4487         btrfs_destroy_pinned_extent(fs_info, fs_info->pinned_extents);
4488         btrfs_destroy_all_delalloc_inodes(fs_info);
4489         mutex_unlock(&fs_info->transaction_kthread_mutex);
4490
4491         return 0;
4492 }
4493
4494 static struct btrfs_fs_info *btree_fs_info(void *private_data)
4495 {
4496         struct inode *inode = private_data;
4497         return btrfs_sb(inode->i_sb);
4498 }
4499
4500 static const struct extent_io_ops btree_extent_io_ops = {
4501         /* mandatory callbacks */
4502         .submit_bio_hook = btree_submit_bio_hook,
4503         .readpage_end_io_hook = btree_readpage_end_io_hook,
4504         /* note we're sharing with inode.c for the merge bio hook */
4505         .merge_bio_hook = btrfs_merge_bio_hook,
4506         .readpage_io_failed_hook = btree_io_failed_hook,
4507         .set_range_writeback = btrfs_set_range_writeback,
4508         .tree_fs_info = btree_fs_info,
4509
4510         /* optional callbacks */
4511 };