GNU Linux-libre 5.10.217-gnu1
[releases.git] / fs / btrfs / disk-io.c
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * Copyright (C) 2007 Oracle.  All rights reserved.
4  */
5
6 #include <linux/fs.h>
7 #include <linux/blkdev.h>
8 #include <linux/radix-tree.h>
9 #include <linux/writeback.h>
10 #include <linux/workqueue.h>
11 #include <linux/kthread.h>
12 #include <linux/slab.h>
13 #include <linux/migrate.h>
14 #include <linux/ratelimit.h>
15 #include <linux/uuid.h>
16 #include <linux/semaphore.h>
17 #include <linux/error-injection.h>
18 #include <linux/crc32c.h>
19 #include <linux/sched/mm.h>
20 #include <asm/unaligned.h>
21 #include <crypto/hash.h>
22 #include "ctree.h"
23 #include "disk-io.h"
24 #include "transaction.h"
25 #include "btrfs_inode.h"
26 #include "volumes.h"
27 #include "print-tree.h"
28 #include "locking.h"
29 #include "tree-log.h"
30 #include "free-space-cache.h"
31 #include "free-space-tree.h"
32 #include "inode-map.h"
33 #include "check-integrity.h"
34 #include "rcu-string.h"
35 #include "dev-replace.h"
36 #include "raid56.h"
37 #include "sysfs.h"
38 #include "qgroup.h"
39 #include "compression.h"
40 #include "tree-checker.h"
41 #include "ref-verify.h"
42 #include "block-group.h"
43 #include "discard.h"
44 #include "space-info.h"
45
46 #define BTRFS_SUPER_FLAG_SUPP   (BTRFS_HEADER_FLAG_WRITTEN |\
47                                  BTRFS_HEADER_FLAG_RELOC |\
48                                  BTRFS_SUPER_FLAG_ERROR |\
49                                  BTRFS_SUPER_FLAG_SEEDING |\
50                                  BTRFS_SUPER_FLAG_METADUMP |\
51                                  BTRFS_SUPER_FLAG_METADUMP_V2)
52
53 static void end_workqueue_fn(struct btrfs_work *work);
54 static void btrfs_destroy_ordered_extents(struct btrfs_root *root);
55 static int btrfs_destroy_delayed_refs(struct btrfs_transaction *trans,
56                                       struct btrfs_fs_info *fs_info);
57 static void btrfs_destroy_delalloc_inodes(struct btrfs_root *root);
58 static int btrfs_destroy_marked_extents(struct btrfs_fs_info *fs_info,
59                                         struct extent_io_tree *dirty_pages,
60                                         int mark);
61 static int btrfs_destroy_pinned_extent(struct btrfs_fs_info *fs_info,
62                                        struct extent_io_tree *pinned_extents);
63 static int btrfs_cleanup_transaction(struct btrfs_fs_info *fs_info);
64 static void btrfs_error_commit_super(struct btrfs_fs_info *fs_info);
65
66 /*
67  * btrfs_end_io_wq structs are used to do processing in task context when an IO
68  * is complete.  This is used during reads to verify checksums, and it is used
69  * by writes to insert metadata for new file extents after IO is complete.
70  */
71 struct btrfs_end_io_wq {
72         struct bio *bio;
73         bio_end_io_t *end_io;
74         void *private;
75         struct btrfs_fs_info *info;
76         blk_status_t status;
77         enum btrfs_wq_endio_type metadata;
78         struct btrfs_work work;
79 };
80
81 static struct kmem_cache *btrfs_end_io_wq_cache;
82
83 int __init btrfs_end_io_wq_init(void)
84 {
85         btrfs_end_io_wq_cache = kmem_cache_create("btrfs_end_io_wq",
86                                         sizeof(struct btrfs_end_io_wq),
87                                         0,
88                                         SLAB_MEM_SPREAD,
89                                         NULL);
90         if (!btrfs_end_io_wq_cache)
91                 return -ENOMEM;
92         return 0;
93 }
94
95 void __cold btrfs_end_io_wq_exit(void)
96 {
97         kmem_cache_destroy(btrfs_end_io_wq_cache);
98 }
99
100 static void btrfs_free_csum_hash(struct btrfs_fs_info *fs_info)
101 {
102         if (fs_info->csum_shash)
103                 crypto_free_shash(fs_info->csum_shash);
104 }
105
106 /*
107  * async submit bios are used to offload expensive checksumming
108  * onto the worker threads.  They checksum file and metadata bios
109  * just before they are sent down the IO stack.
110  */
111 struct async_submit_bio {
112         void *private_data;
113         struct bio *bio;
114         extent_submit_bio_start_t *submit_bio_start;
115         int mirror_num;
116         /*
117          * bio_offset is optional, can be used if the pages in the bio
118          * can't tell us where in the file the bio should go
119          */
120         u64 bio_offset;
121         struct btrfs_work work;
122         blk_status_t status;
123 };
124
125 /*
126  * Lockdep class keys for extent_buffer->lock's in this root.  For a given
127  * eb, the lockdep key is determined by the btrfs_root it belongs to and
128  * the level the eb occupies in the tree.
129  *
130  * Different roots are used for different purposes and may nest inside each
131  * other and they require separate keysets.  As lockdep keys should be
132  * static, assign keysets according to the purpose of the root as indicated
133  * by btrfs_root->root_key.objectid.  This ensures that all special purpose
134  * roots have separate keysets.
135  *
136  * Lock-nesting across peer nodes is always done with the immediate parent
137  * node locked thus preventing deadlock.  As lockdep doesn't know this, use
138  * subclass to avoid triggering lockdep warning in such cases.
139  *
140  * The key is set by the readpage_end_io_hook after the buffer has passed
141  * csum validation but before the pages are unlocked.  It is also set by
142  * btrfs_init_new_buffer on freshly allocated blocks.
143  *
144  * We also add a check to make sure the highest level of the tree is the
145  * same as our lockdep setup here.  If BTRFS_MAX_LEVEL changes, this code
146  * needs update as well.
147  */
148 #ifdef CONFIG_DEBUG_LOCK_ALLOC
149 # if BTRFS_MAX_LEVEL != 8
150 #  error
151 # endif
152
153 static struct btrfs_lockdep_keyset {
154         u64                     id;             /* root objectid */
155         const char              *name_stem;     /* lock name stem */
156         char                    names[BTRFS_MAX_LEVEL + 1][20];
157         struct lock_class_key   keys[BTRFS_MAX_LEVEL + 1];
158 } btrfs_lockdep_keysets[] = {
159         { .id = BTRFS_ROOT_TREE_OBJECTID,       .name_stem = "root"     },
160         { .id = BTRFS_EXTENT_TREE_OBJECTID,     .name_stem = "extent"   },
161         { .id = BTRFS_CHUNK_TREE_OBJECTID,      .name_stem = "chunk"    },
162         { .id = BTRFS_DEV_TREE_OBJECTID,        .name_stem = "dev"      },
163         { .id = BTRFS_FS_TREE_OBJECTID,         .name_stem = "fs"       },
164         { .id = BTRFS_CSUM_TREE_OBJECTID,       .name_stem = "csum"     },
165         { .id = BTRFS_QUOTA_TREE_OBJECTID,      .name_stem = "quota"    },
166         { .id = BTRFS_TREE_LOG_OBJECTID,        .name_stem = "log"      },
167         { .id = BTRFS_TREE_RELOC_OBJECTID,      .name_stem = "treloc"   },
168         { .id = BTRFS_DATA_RELOC_TREE_OBJECTID, .name_stem = "dreloc"   },
169         { .id = BTRFS_UUID_TREE_OBJECTID,       .name_stem = "uuid"     },
170         { .id = BTRFS_FREE_SPACE_TREE_OBJECTID, .name_stem = "free-space" },
171         { .id = 0,                              .name_stem = "tree"     },
172 };
173
174 void __init btrfs_init_lockdep(void)
175 {
176         int i, j;
177
178         /* initialize lockdep class names */
179         for (i = 0; i < ARRAY_SIZE(btrfs_lockdep_keysets); i++) {
180                 struct btrfs_lockdep_keyset *ks = &btrfs_lockdep_keysets[i];
181
182                 for (j = 0; j < ARRAY_SIZE(ks->names); j++)
183                         snprintf(ks->names[j], sizeof(ks->names[j]),
184                                  "btrfs-%s-%02d", ks->name_stem, j);
185         }
186 }
187
188 void btrfs_set_buffer_lockdep_class(u64 objectid, struct extent_buffer *eb,
189                                     int level)
190 {
191         struct btrfs_lockdep_keyset *ks;
192
193         BUG_ON(level >= ARRAY_SIZE(ks->keys));
194
195         /* find the matching keyset, id 0 is the default entry */
196         for (ks = btrfs_lockdep_keysets; ks->id; ks++)
197                 if (ks->id == objectid)
198                         break;
199
200         lockdep_set_class_and_name(&eb->lock,
201                                    &ks->keys[level], ks->names[level]);
202 }
203
204 #endif
205
206 /*
207  * Compute the csum of a btree block and store the result to provided buffer.
208  */
209 static void csum_tree_block(struct extent_buffer *buf, u8 *result)
210 {
211         struct btrfs_fs_info *fs_info = buf->fs_info;
212         const int num_pages = fs_info->nodesize >> PAGE_SHIFT;
213         SHASH_DESC_ON_STACK(shash, fs_info->csum_shash);
214         char *kaddr;
215         int i;
216
217         shash->tfm = fs_info->csum_shash;
218         crypto_shash_init(shash);
219         kaddr = page_address(buf->pages[0]);
220         crypto_shash_update(shash, kaddr + BTRFS_CSUM_SIZE,
221                             PAGE_SIZE - BTRFS_CSUM_SIZE);
222
223         for (i = 1; i < num_pages && INLINE_EXTENT_BUFFER_PAGES > 1; i++) {
224                 kaddr = page_address(buf->pages[i]);
225                 crypto_shash_update(shash, kaddr, PAGE_SIZE);
226         }
227         memset(result, 0, BTRFS_CSUM_SIZE);
228         crypto_shash_final(shash, result);
229 }
230
231 /*
232  * we can't consider a given block up to date unless the transid of the
233  * block matches the transid in the parent node's pointer.  This is how we
234  * detect blocks that either didn't get written at all or got written
235  * in the wrong place.
236  */
237 static int verify_parent_transid(struct extent_io_tree *io_tree,
238                                  struct extent_buffer *eb, u64 parent_transid,
239                                  int atomic)
240 {
241         struct extent_state *cached_state = NULL;
242         int ret;
243         bool need_lock = (current->journal_info == BTRFS_SEND_TRANS_STUB);
244
245         if (!parent_transid || btrfs_header_generation(eb) == parent_transid)
246                 return 0;
247
248         if (atomic)
249                 return -EAGAIN;
250
251         if (need_lock) {
252                 btrfs_tree_read_lock(eb);
253                 btrfs_set_lock_blocking_read(eb);
254         }
255
256         lock_extent_bits(io_tree, eb->start, eb->start + eb->len - 1,
257                          &cached_state);
258         if (extent_buffer_uptodate(eb) &&
259             btrfs_header_generation(eb) == parent_transid) {
260                 ret = 0;
261                 goto out;
262         }
263         btrfs_err_rl(eb->fs_info,
264                 "parent transid verify failed on %llu wanted %llu found %llu",
265                         eb->start,
266                         parent_transid, btrfs_header_generation(eb));
267         ret = 1;
268
269         /*
270          * Things reading via commit roots that don't have normal protection,
271          * like send, can have a really old block in cache that may point at a
272          * block that has been freed and re-allocated.  So don't clear uptodate
273          * if we find an eb that is under IO (dirty/writeback) because we could
274          * end up reading in the stale data and then writing it back out and
275          * making everybody very sad.
276          */
277         if (!extent_buffer_under_io(eb))
278                 clear_extent_buffer_uptodate(eb);
279 out:
280         unlock_extent_cached(io_tree, eb->start, eb->start + eb->len - 1,
281                              &cached_state);
282         if (need_lock)
283                 btrfs_tree_read_unlock_blocking(eb);
284         return ret;
285 }
286
287 static bool btrfs_supported_super_csum(u16 csum_type)
288 {
289         switch (csum_type) {
290         case BTRFS_CSUM_TYPE_CRC32:
291         case BTRFS_CSUM_TYPE_XXHASH:
292         case BTRFS_CSUM_TYPE_SHA256:
293         case BTRFS_CSUM_TYPE_BLAKE2:
294                 return true;
295         default:
296                 return false;
297         }
298 }
299
300 /*
301  * Return 0 if the superblock checksum type matches the checksum value of that
302  * algorithm. Pass the raw disk superblock data.
303  */
304 static int btrfs_check_super_csum(struct btrfs_fs_info *fs_info,
305                                   char *raw_disk_sb)
306 {
307         struct btrfs_super_block *disk_sb =
308                 (struct btrfs_super_block *)raw_disk_sb;
309         char result[BTRFS_CSUM_SIZE];
310         SHASH_DESC_ON_STACK(shash, fs_info->csum_shash);
311
312         shash->tfm = fs_info->csum_shash;
313
314         /*
315          * The super_block structure does not span the whole
316          * BTRFS_SUPER_INFO_SIZE range, we expect that the unused space is
317          * filled with zeros and is included in the checksum.
318          */
319         crypto_shash_digest(shash, raw_disk_sb + BTRFS_CSUM_SIZE,
320                             BTRFS_SUPER_INFO_SIZE - BTRFS_CSUM_SIZE, result);
321
322         if (memcmp(disk_sb->csum, result, btrfs_super_csum_size(disk_sb)))
323                 return 1;
324
325         return 0;
326 }
327
328 int btrfs_verify_level_key(struct extent_buffer *eb, int level,
329                            struct btrfs_key *first_key, u64 parent_transid)
330 {
331         struct btrfs_fs_info *fs_info = eb->fs_info;
332         int found_level;
333         struct btrfs_key found_key;
334         int ret;
335
336         found_level = btrfs_header_level(eb);
337         if (found_level != level) {
338                 WARN(IS_ENABLED(CONFIG_BTRFS_DEBUG),
339                      KERN_ERR "BTRFS: tree level check failed\n");
340                 btrfs_err(fs_info,
341 "tree level mismatch detected, bytenr=%llu level expected=%u has=%u",
342                           eb->start, level, found_level);
343                 return -EIO;
344         }
345
346         if (!first_key)
347                 return 0;
348
349         /*
350          * For live tree block (new tree blocks in current transaction),
351          * we need proper lock context to avoid race, which is impossible here.
352          * So we only checks tree blocks which is read from disk, whose
353          * generation <= fs_info->last_trans_committed.
354          */
355         if (btrfs_header_generation(eb) > fs_info->last_trans_committed)
356                 return 0;
357
358         /* We have @first_key, so this @eb must have at least one item */
359         if (btrfs_header_nritems(eb) == 0) {
360                 btrfs_err(fs_info,
361                 "invalid tree nritems, bytenr=%llu nritems=0 expect >0",
362                           eb->start);
363                 WARN_ON(IS_ENABLED(CONFIG_BTRFS_DEBUG));
364                 return -EUCLEAN;
365         }
366
367         if (found_level)
368                 btrfs_node_key_to_cpu(eb, &found_key, 0);
369         else
370                 btrfs_item_key_to_cpu(eb, &found_key, 0);
371         ret = btrfs_comp_cpu_keys(first_key, &found_key);
372
373         if (ret) {
374                 WARN(IS_ENABLED(CONFIG_BTRFS_DEBUG),
375                      KERN_ERR "BTRFS: tree first key check failed\n");
376                 btrfs_err(fs_info,
377 "tree first key mismatch detected, bytenr=%llu parent_transid=%llu key expected=(%llu,%u,%llu) has=(%llu,%u,%llu)",
378                           eb->start, parent_transid, first_key->objectid,
379                           first_key->type, first_key->offset,
380                           found_key.objectid, found_key.type,
381                           found_key.offset);
382         }
383         return ret;
384 }
385
386 /*
387  * helper to read a given tree block, doing retries as required when
388  * the checksums don't match and we have alternate mirrors to try.
389  *
390  * @parent_transid:     expected transid, skip check if 0
391  * @level:              expected level, mandatory check
392  * @first_key:          expected key of first slot, skip check if NULL
393  */
394 static int btree_read_extent_buffer_pages(struct extent_buffer *eb,
395                                           u64 parent_transid, int level,
396                                           struct btrfs_key *first_key)
397 {
398         struct btrfs_fs_info *fs_info = eb->fs_info;
399         struct extent_io_tree *io_tree;
400         int failed = 0;
401         int ret;
402         int num_copies = 0;
403         int mirror_num = 0;
404         int failed_mirror = 0;
405
406         io_tree = &BTRFS_I(fs_info->btree_inode)->io_tree;
407         while (1) {
408                 clear_bit(EXTENT_BUFFER_CORRUPT, &eb->bflags);
409                 ret = read_extent_buffer_pages(eb, WAIT_COMPLETE, mirror_num);
410                 if (!ret) {
411                         if (verify_parent_transid(io_tree, eb,
412                                                    parent_transid, 0))
413                                 ret = -EIO;
414                         else if (btrfs_verify_level_key(eb, level,
415                                                 first_key, parent_transid))
416                                 ret = -EUCLEAN;
417                         else
418                                 break;
419                 }
420
421                 num_copies = btrfs_num_copies(fs_info,
422                                               eb->start, eb->len);
423                 if (num_copies == 1)
424                         break;
425
426                 if (!failed_mirror) {
427                         failed = 1;
428                         failed_mirror = eb->read_mirror;
429                 }
430
431                 mirror_num++;
432                 if (mirror_num == failed_mirror)
433                         mirror_num++;
434
435                 if (mirror_num > num_copies)
436                         break;
437         }
438
439         if (failed && !ret && failed_mirror)
440                 btrfs_repair_eb_io_failure(eb, failed_mirror);
441
442         return ret;
443 }
444
445 /*
446  * checksum a dirty tree block before IO.  This has extra checks to make sure
447  * we only fill in the checksum field in the first page of a multi-page block
448  */
449
450 static int csum_dirty_buffer(struct btrfs_fs_info *fs_info, struct page *page)
451 {
452         u64 start = page_offset(page);
453         u64 found_start;
454         u8 result[BTRFS_CSUM_SIZE];
455         u16 csum_size = btrfs_super_csum_size(fs_info->super_copy);
456         struct extent_buffer *eb;
457         int ret;
458
459         eb = (struct extent_buffer *)page->private;
460         if (page != eb->pages[0])
461                 return 0;
462
463         found_start = btrfs_header_bytenr(eb);
464         /*
465          * Please do not consolidate these warnings into a single if.
466          * It is useful to know what went wrong.
467          */
468         if (WARN_ON(found_start != start))
469                 return -EUCLEAN;
470         if (WARN_ON(!PageUptodate(page)))
471                 return -EUCLEAN;
472
473         ASSERT(memcmp_extent_buffer(eb, fs_info->fs_devices->metadata_uuid,
474                                     offsetof(struct btrfs_header, fsid),
475                                     BTRFS_FSID_SIZE) == 0);
476
477         csum_tree_block(eb, result);
478
479         if (btrfs_header_level(eb))
480                 ret = btrfs_check_node(eb);
481         else
482                 ret = btrfs_check_leaf_full(eb);
483
484         if (ret < 0) {
485                 btrfs_print_tree(eb, 0);
486                 btrfs_err(fs_info,
487                 "block=%llu write time tree block corruption detected",
488                           eb->start);
489                 WARN_ON(IS_ENABLED(CONFIG_BTRFS_DEBUG));
490                 return ret;
491         }
492         write_extent_buffer(eb, result, 0, csum_size);
493
494         return 0;
495 }
496
497 static int check_tree_block_fsid(struct extent_buffer *eb)
498 {
499         struct btrfs_fs_info *fs_info = eb->fs_info;
500         struct btrfs_fs_devices *fs_devices = fs_info->fs_devices, *seed_devs;
501         u8 fsid[BTRFS_FSID_SIZE];
502         u8 *metadata_uuid;
503
504         read_extent_buffer(eb, fsid, offsetof(struct btrfs_header, fsid),
505                            BTRFS_FSID_SIZE);
506         /*
507          * Checking the incompat flag is only valid for the current fs. For
508          * seed devices it's forbidden to have their uuid changed so reading
509          * ->fsid in this case is fine
510          */
511         if (btrfs_fs_incompat(fs_info, METADATA_UUID))
512                 metadata_uuid = fs_devices->metadata_uuid;
513         else
514                 metadata_uuid = fs_devices->fsid;
515
516         if (!memcmp(fsid, metadata_uuid, BTRFS_FSID_SIZE))
517                 return 0;
518
519         list_for_each_entry(seed_devs, &fs_devices->seed_list, seed_list)
520                 if (!memcmp(fsid, seed_devs->fsid, BTRFS_FSID_SIZE))
521                         return 0;
522
523         return 1;
524 }
525
526 int btrfs_validate_metadata_buffer(struct btrfs_io_bio *io_bio, u64 phy_offset,
527                                    struct page *page, u64 start, u64 end,
528                                    int mirror)
529 {
530         u64 found_start;
531         int found_level;
532         struct extent_buffer *eb;
533         struct btrfs_fs_info *fs_info;
534         u16 csum_size;
535         int ret = 0;
536         u8 result[BTRFS_CSUM_SIZE];
537         int reads_done;
538
539         if (!page->private)
540                 goto out;
541
542         eb = (struct extent_buffer *)page->private;
543         fs_info = eb->fs_info;
544         csum_size = btrfs_super_csum_size(fs_info->super_copy);
545
546         /* the pending IO might have been the only thing that kept this buffer
547          * in memory.  Make sure we have a ref for all this other checks
548          */
549         atomic_inc(&eb->refs);
550
551         reads_done = atomic_dec_and_test(&eb->io_pages);
552         if (!reads_done)
553                 goto err;
554
555         eb->read_mirror = mirror;
556         if (test_bit(EXTENT_BUFFER_READ_ERR, &eb->bflags)) {
557                 ret = -EIO;
558                 goto err;
559         }
560
561         found_start = btrfs_header_bytenr(eb);
562         if (found_start != eb->start) {
563                 btrfs_err_rl(fs_info, "bad tree block start, want %llu have %llu",
564                              eb->start, found_start);
565                 ret = -EIO;
566                 goto err;
567         }
568         if (check_tree_block_fsid(eb)) {
569                 btrfs_err_rl(fs_info, "bad fsid on block %llu",
570                              eb->start);
571                 ret = -EIO;
572                 goto err;
573         }
574         found_level = btrfs_header_level(eb);
575         if (found_level >= BTRFS_MAX_LEVEL) {
576                 btrfs_err(fs_info, "bad tree block level %d on %llu",
577                           (int)btrfs_header_level(eb), eb->start);
578                 ret = -EIO;
579                 goto err;
580         }
581
582         btrfs_set_buffer_lockdep_class(btrfs_header_owner(eb),
583                                        eb, found_level);
584
585         csum_tree_block(eb, result);
586
587         if (memcmp_extent_buffer(eb, result, 0, csum_size)) {
588                 u8 val[BTRFS_CSUM_SIZE] = { 0 };
589
590                 read_extent_buffer(eb, &val, 0, csum_size);
591                 btrfs_warn_rl(fs_info,
592         "%s checksum verify failed on %llu wanted " CSUM_FMT " found " CSUM_FMT " level %d",
593                               fs_info->sb->s_id, eb->start,
594                               CSUM_FMT_VALUE(csum_size, val),
595                               CSUM_FMT_VALUE(csum_size, result),
596                               btrfs_header_level(eb));
597                 ret = -EUCLEAN;
598                 goto err;
599         }
600
601         /*
602          * If this is a leaf block and it is corrupt, set the corrupt bit so
603          * that we don't try and read the other copies of this block, just
604          * return -EIO.
605          */
606         if (found_level == 0 && btrfs_check_leaf_full(eb)) {
607                 set_bit(EXTENT_BUFFER_CORRUPT, &eb->bflags);
608                 ret = -EIO;
609         }
610
611         if (found_level > 0 && btrfs_check_node(eb))
612                 ret = -EIO;
613
614         if (!ret)
615                 set_extent_buffer_uptodate(eb);
616         else
617                 btrfs_err(fs_info,
618                           "block=%llu read time tree block corruption detected",
619                           eb->start);
620 err:
621         if (reads_done &&
622             test_and_clear_bit(EXTENT_BUFFER_READAHEAD, &eb->bflags))
623                 btree_readahead_hook(eb, ret);
624
625         if (ret) {
626                 /*
627                  * our io error hook is going to dec the io pages
628                  * again, we have to make sure it has something
629                  * to decrement
630                  */
631                 atomic_inc(&eb->io_pages);
632                 clear_extent_buffer_uptodate(eb);
633         }
634         free_extent_buffer(eb);
635 out:
636         return ret;
637 }
638
639 static void end_workqueue_bio(struct bio *bio)
640 {
641         struct btrfs_end_io_wq *end_io_wq = bio->bi_private;
642         struct btrfs_fs_info *fs_info;
643         struct btrfs_workqueue *wq;
644
645         fs_info = end_io_wq->info;
646         end_io_wq->status = bio->bi_status;
647
648         if (bio_op(bio) == REQ_OP_WRITE) {
649                 if (end_io_wq->metadata == BTRFS_WQ_ENDIO_METADATA)
650                         wq = fs_info->endio_meta_write_workers;
651                 else if (end_io_wq->metadata == BTRFS_WQ_ENDIO_FREE_SPACE)
652                         wq = fs_info->endio_freespace_worker;
653                 else if (end_io_wq->metadata == BTRFS_WQ_ENDIO_RAID56)
654                         wq = fs_info->endio_raid56_workers;
655                 else
656                         wq = fs_info->endio_write_workers;
657         } else {
658                 if (end_io_wq->metadata == BTRFS_WQ_ENDIO_RAID56)
659                         wq = fs_info->endio_raid56_workers;
660                 else if (end_io_wq->metadata)
661                         wq = fs_info->endio_meta_workers;
662                 else
663                         wq = fs_info->endio_workers;
664         }
665
666         btrfs_init_work(&end_io_wq->work, end_workqueue_fn, NULL, NULL);
667         btrfs_queue_work(wq, &end_io_wq->work);
668 }
669
670 blk_status_t btrfs_bio_wq_end_io(struct btrfs_fs_info *info, struct bio *bio,
671                         enum btrfs_wq_endio_type metadata)
672 {
673         struct btrfs_end_io_wq *end_io_wq;
674
675         end_io_wq = kmem_cache_alloc(btrfs_end_io_wq_cache, GFP_NOFS);
676         if (!end_io_wq)
677                 return BLK_STS_RESOURCE;
678
679         end_io_wq->private = bio->bi_private;
680         end_io_wq->end_io = bio->bi_end_io;
681         end_io_wq->info = info;
682         end_io_wq->status = 0;
683         end_io_wq->bio = bio;
684         end_io_wq->metadata = metadata;
685
686         bio->bi_private = end_io_wq;
687         bio->bi_end_io = end_workqueue_bio;
688         return 0;
689 }
690
691 static void run_one_async_start(struct btrfs_work *work)
692 {
693         struct async_submit_bio *async;
694         blk_status_t ret;
695
696         async = container_of(work, struct  async_submit_bio, work);
697         ret = async->submit_bio_start(async->private_data, async->bio,
698                                       async->bio_offset);
699         if (ret)
700                 async->status = ret;
701 }
702
703 /*
704  * In order to insert checksums into the metadata in large chunks, we wait
705  * until bio submission time.   All the pages in the bio are checksummed and
706  * sums are attached onto the ordered extent record.
707  *
708  * At IO completion time the csums attached on the ordered extent record are
709  * inserted into the tree.
710  */
711 static void run_one_async_done(struct btrfs_work *work)
712 {
713         struct async_submit_bio *async;
714         struct inode *inode;
715         blk_status_t ret;
716
717         async = container_of(work, struct  async_submit_bio, work);
718         inode = async->private_data;
719
720         /* If an error occurred we just want to clean up the bio and move on */
721         if (async->status) {
722                 async->bio->bi_status = async->status;
723                 bio_endio(async->bio);
724                 return;
725         }
726
727         /*
728          * All of the bios that pass through here are from async helpers.
729          * Use REQ_CGROUP_PUNT to issue them from the owning cgroup's context.
730          * This changes nothing when cgroups aren't in use.
731          */
732         async->bio->bi_opf |= REQ_CGROUP_PUNT;
733         ret = btrfs_map_bio(btrfs_sb(inode->i_sb), async->bio, async->mirror_num);
734         if (ret) {
735                 async->bio->bi_status = ret;
736                 bio_endio(async->bio);
737         }
738 }
739
740 static void run_one_async_free(struct btrfs_work *work)
741 {
742         struct async_submit_bio *async;
743
744         async = container_of(work, struct  async_submit_bio, work);
745         kfree(async);
746 }
747
748 blk_status_t btrfs_wq_submit_bio(struct btrfs_fs_info *fs_info, struct bio *bio,
749                                  int mirror_num, unsigned long bio_flags,
750                                  u64 bio_offset, void *private_data,
751                                  extent_submit_bio_start_t *submit_bio_start)
752 {
753         struct async_submit_bio *async;
754
755         async = kmalloc(sizeof(*async), GFP_NOFS);
756         if (!async)
757                 return BLK_STS_RESOURCE;
758
759         async->private_data = private_data;
760         async->bio = bio;
761         async->mirror_num = mirror_num;
762         async->submit_bio_start = submit_bio_start;
763
764         btrfs_init_work(&async->work, run_one_async_start, run_one_async_done,
765                         run_one_async_free);
766
767         async->bio_offset = bio_offset;
768
769         async->status = 0;
770
771         if (op_is_sync(bio->bi_opf))
772                 btrfs_set_work_high_priority(&async->work);
773
774         btrfs_queue_work(fs_info->workers, &async->work);
775         return 0;
776 }
777
778 static blk_status_t btree_csum_one_bio(struct bio *bio)
779 {
780         struct bio_vec *bvec;
781         struct btrfs_root *root;
782         int ret = 0;
783         struct bvec_iter_all iter_all;
784
785         ASSERT(!bio_flagged(bio, BIO_CLONED));
786         bio_for_each_segment_all(bvec, bio, iter_all) {
787                 root = BTRFS_I(bvec->bv_page->mapping->host)->root;
788                 ret = csum_dirty_buffer(root->fs_info, bvec->bv_page);
789                 if (ret)
790                         break;
791         }
792
793         return errno_to_blk_status(ret);
794 }
795
796 static blk_status_t btree_submit_bio_start(void *private_data, struct bio *bio,
797                                              u64 bio_offset)
798 {
799         /*
800          * when we're called for a write, we're already in the async
801          * submission context.  Just jump into btrfs_map_bio
802          */
803         return btree_csum_one_bio(bio);
804 }
805
806 static int check_async_write(struct btrfs_fs_info *fs_info,
807                              struct btrfs_inode *bi)
808 {
809         if (atomic_read(&bi->sync_writers))
810                 return 0;
811         if (test_bit(BTRFS_FS_CSUM_IMPL_FAST, &fs_info->flags))
812                 return 0;
813         return 1;
814 }
815
816 blk_status_t btrfs_submit_metadata_bio(struct inode *inode, struct bio *bio,
817                                        int mirror_num, unsigned long bio_flags)
818 {
819         struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
820         int async = check_async_write(fs_info, BTRFS_I(inode));
821         blk_status_t ret;
822
823         if (bio_op(bio) != REQ_OP_WRITE) {
824                 /*
825                  * called for a read, do the setup so that checksum validation
826                  * can happen in the async kernel threads
827                  */
828                 ret = btrfs_bio_wq_end_io(fs_info, bio,
829                                           BTRFS_WQ_ENDIO_METADATA);
830                 if (ret)
831                         goto out_w_error;
832                 ret = btrfs_map_bio(fs_info, bio, mirror_num);
833         } else if (!async) {
834                 ret = btree_csum_one_bio(bio);
835                 if (ret)
836                         goto out_w_error;
837                 ret = btrfs_map_bio(fs_info, bio, mirror_num);
838         } else {
839                 /*
840                  * kthread helpers are used to submit writes so that
841                  * checksumming can happen in parallel across all CPUs
842                  */
843                 ret = btrfs_wq_submit_bio(fs_info, bio, mirror_num, 0,
844                                           0, inode, btree_submit_bio_start);
845         }
846
847         if (ret)
848                 goto out_w_error;
849         return 0;
850
851 out_w_error:
852         bio->bi_status = ret;
853         bio_endio(bio);
854         return ret;
855 }
856
857 #ifdef CONFIG_MIGRATION
858 static int btree_migratepage(struct address_space *mapping,
859                         struct page *newpage, struct page *page,
860                         enum migrate_mode mode)
861 {
862         /*
863          * we can't safely write a btree page from here,
864          * we haven't done the locking hook
865          */
866         if (PageDirty(page))
867                 return -EAGAIN;
868         /*
869          * Buffers may be managed in a filesystem specific way.
870          * We must have no buffers or drop them.
871          */
872         if (page_has_private(page) &&
873             !try_to_release_page(page, GFP_KERNEL))
874                 return -EAGAIN;
875         return migrate_page(mapping, newpage, page, mode);
876 }
877 #endif
878
879
880 static int btree_writepages(struct address_space *mapping,
881                             struct writeback_control *wbc)
882 {
883         struct btrfs_fs_info *fs_info;
884         int ret;
885
886         if (wbc->sync_mode == WB_SYNC_NONE) {
887
888                 if (wbc->for_kupdate)
889                         return 0;
890
891                 fs_info = BTRFS_I(mapping->host)->root->fs_info;
892                 /* this is a bit racy, but that's ok */
893                 ret = __percpu_counter_compare(&fs_info->dirty_metadata_bytes,
894                                              BTRFS_DIRTY_METADATA_THRESH,
895                                              fs_info->dirty_metadata_batch);
896                 if (ret < 0)
897                         return 0;
898         }
899         return btree_write_cache_pages(mapping, wbc);
900 }
901
902 static int btree_releasepage(struct page *page, gfp_t gfp_flags)
903 {
904         if (PageWriteback(page) || PageDirty(page))
905                 return 0;
906
907         return try_release_extent_buffer(page);
908 }
909
910 static void btree_invalidatepage(struct page *page, unsigned int offset,
911                                  unsigned int length)
912 {
913         struct extent_io_tree *tree;
914         tree = &BTRFS_I(page->mapping->host)->io_tree;
915         extent_invalidatepage(tree, page, offset);
916         btree_releasepage(page, GFP_NOFS);
917         if (PagePrivate(page)) {
918                 btrfs_warn(BTRFS_I(page->mapping->host)->root->fs_info,
919                            "page private not zero on page %llu",
920                            (unsigned long long)page_offset(page));
921                 detach_page_private(page);
922         }
923 }
924
925 static int btree_set_page_dirty(struct page *page)
926 {
927 #ifdef DEBUG
928         struct extent_buffer *eb;
929
930         BUG_ON(!PagePrivate(page));
931         eb = (struct extent_buffer *)page->private;
932         BUG_ON(!eb);
933         BUG_ON(!test_bit(EXTENT_BUFFER_DIRTY, &eb->bflags));
934         BUG_ON(!atomic_read(&eb->refs));
935         btrfs_assert_tree_locked(eb);
936 #endif
937         return __set_page_dirty_nobuffers(page);
938 }
939
940 static const struct address_space_operations btree_aops = {
941         .writepages     = btree_writepages,
942         .releasepage    = btree_releasepage,
943         .invalidatepage = btree_invalidatepage,
944 #ifdef CONFIG_MIGRATION
945         .migratepage    = btree_migratepage,
946 #endif
947         .set_page_dirty = btree_set_page_dirty,
948 };
949
950 void readahead_tree_block(struct btrfs_fs_info *fs_info, u64 bytenr)
951 {
952         struct extent_buffer *buf = NULL;
953         int ret;
954
955         buf = btrfs_find_create_tree_block(fs_info, bytenr);
956         if (IS_ERR(buf))
957                 return;
958
959         ret = read_extent_buffer_pages(buf, WAIT_NONE, 0);
960         if (ret < 0)
961                 free_extent_buffer_stale(buf);
962         else
963                 free_extent_buffer(buf);
964 }
965
966 struct extent_buffer *btrfs_find_create_tree_block(
967                                                 struct btrfs_fs_info *fs_info,
968                                                 u64 bytenr)
969 {
970         if (btrfs_is_testing(fs_info))
971                 return alloc_test_extent_buffer(fs_info, bytenr);
972         return alloc_extent_buffer(fs_info, bytenr);
973 }
974
975 /*
976  * Read tree block at logical address @bytenr and do variant basic but critical
977  * verification.
978  *
979  * @parent_transid:     expected transid of this tree block, skip check if 0
980  * @level:              expected level, mandatory check
981  * @first_key:          expected key in slot 0, skip check if NULL
982  */
983 struct extent_buffer *read_tree_block(struct btrfs_fs_info *fs_info, u64 bytenr,
984                                       u64 parent_transid, int level,
985                                       struct btrfs_key *first_key)
986 {
987         struct extent_buffer *buf = NULL;
988         int ret;
989
990         buf = btrfs_find_create_tree_block(fs_info, bytenr);
991         if (IS_ERR(buf))
992                 return buf;
993
994         ret = btree_read_extent_buffer_pages(buf, parent_transid,
995                                              level, first_key);
996         if (ret) {
997                 free_extent_buffer_stale(buf);
998                 return ERR_PTR(ret);
999         }
1000         return buf;
1001
1002 }
1003
1004 void btrfs_clean_tree_block(struct extent_buffer *buf)
1005 {
1006         struct btrfs_fs_info *fs_info = buf->fs_info;
1007         if (btrfs_header_generation(buf) ==
1008             fs_info->running_transaction->transid) {
1009                 btrfs_assert_tree_locked(buf);
1010
1011                 if (test_and_clear_bit(EXTENT_BUFFER_DIRTY, &buf->bflags)) {
1012                         percpu_counter_add_batch(&fs_info->dirty_metadata_bytes,
1013                                                  -buf->len,
1014                                                  fs_info->dirty_metadata_batch);
1015                         /* ugh, clear_extent_buffer_dirty needs to lock the page */
1016                         btrfs_set_lock_blocking_write(buf);
1017                         clear_extent_buffer_dirty(buf);
1018                 }
1019         }
1020 }
1021
1022 static void __setup_root(struct btrfs_root *root, struct btrfs_fs_info *fs_info,
1023                          u64 objectid)
1024 {
1025         bool dummy = test_bit(BTRFS_FS_STATE_DUMMY_FS_INFO, &fs_info->fs_state);
1026         root->fs_info = fs_info;
1027         root->node = NULL;
1028         root->commit_root = NULL;
1029         root->state = 0;
1030         root->orphan_cleanup_state = 0;
1031
1032         root->last_trans = 0;
1033         root->highest_objectid = 0;
1034         root->nr_delalloc_inodes = 0;
1035         root->nr_ordered_extents = 0;
1036         root->inode_tree = RB_ROOT;
1037         INIT_RADIX_TREE(&root->delayed_nodes_tree, GFP_ATOMIC);
1038         root->block_rsv = NULL;
1039
1040         INIT_LIST_HEAD(&root->dirty_list);
1041         INIT_LIST_HEAD(&root->root_list);
1042         INIT_LIST_HEAD(&root->delalloc_inodes);
1043         INIT_LIST_HEAD(&root->delalloc_root);
1044         INIT_LIST_HEAD(&root->ordered_extents);
1045         INIT_LIST_HEAD(&root->ordered_root);
1046         INIT_LIST_HEAD(&root->reloc_dirty_list);
1047         INIT_LIST_HEAD(&root->logged_list[0]);
1048         INIT_LIST_HEAD(&root->logged_list[1]);
1049         spin_lock_init(&root->inode_lock);
1050         spin_lock_init(&root->delalloc_lock);
1051         spin_lock_init(&root->ordered_extent_lock);
1052         spin_lock_init(&root->accounting_lock);
1053         spin_lock_init(&root->log_extents_lock[0]);
1054         spin_lock_init(&root->log_extents_lock[1]);
1055         spin_lock_init(&root->qgroup_meta_rsv_lock);
1056         mutex_init(&root->objectid_mutex);
1057         mutex_init(&root->log_mutex);
1058         mutex_init(&root->ordered_extent_mutex);
1059         mutex_init(&root->delalloc_mutex);
1060         init_waitqueue_head(&root->qgroup_flush_wait);
1061         init_waitqueue_head(&root->log_writer_wait);
1062         init_waitqueue_head(&root->log_commit_wait[0]);
1063         init_waitqueue_head(&root->log_commit_wait[1]);
1064         INIT_LIST_HEAD(&root->log_ctxs[0]);
1065         INIT_LIST_HEAD(&root->log_ctxs[1]);
1066         atomic_set(&root->log_commit[0], 0);
1067         atomic_set(&root->log_commit[1], 0);
1068         atomic_set(&root->log_writers, 0);
1069         atomic_set(&root->log_batch, 0);
1070         refcount_set(&root->refs, 1);
1071         atomic_set(&root->snapshot_force_cow, 0);
1072         atomic_set(&root->nr_swapfiles, 0);
1073         root->log_transid = 0;
1074         root->log_transid_committed = -1;
1075         root->last_log_commit = 0;
1076         if (!dummy) {
1077                 extent_io_tree_init(fs_info, &root->dirty_log_pages,
1078                                     IO_TREE_ROOT_DIRTY_LOG_PAGES, NULL);
1079                 extent_io_tree_init(fs_info, &root->log_csum_range,
1080                                     IO_TREE_LOG_CSUM_RANGE, NULL);
1081         }
1082
1083         memset(&root->root_key, 0, sizeof(root->root_key));
1084         memset(&root->root_item, 0, sizeof(root->root_item));
1085         memset(&root->defrag_progress, 0, sizeof(root->defrag_progress));
1086         root->root_key.objectid = objectid;
1087         root->anon_dev = 0;
1088
1089         spin_lock_init(&root->root_item_lock);
1090         btrfs_qgroup_init_swapped_blocks(&root->swapped_blocks);
1091 #ifdef CONFIG_BTRFS_DEBUG
1092         INIT_LIST_HEAD(&root->leak_list);
1093         spin_lock(&fs_info->fs_roots_radix_lock);
1094         list_add_tail(&root->leak_list, &fs_info->allocated_roots);
1095         spin_unlock(&fs_info->fs_roots_radix_lock);
1096 #endif
1097 }
1098
1099 static struct btrfs_root *btrfs_alloc_root(struct btrfs_fs_info *fs_info,
1100                                            u64 objectid, gfp_t flags)
1101 {
1102         struct btrfs_root *root = kzalloc(sizeof(*root), flags);
1103         if (root)
1104                 __setup_root(root, fs_info, objectid);
1105         return root;
1106 }
1107
1108 #ifdef CONFIG_BTRFS_FS_RUN_SANITY_TESTS
1109 /* Should only be used by the testing infrastructure */
1110 struct btrfs_root *btrfs_alloc_dummy_root(struct btrfs_fs_info *fs_info)
1111 {
1112         struct btrfs_root *root;
1113
1114         if (!fs_info)
1115                 return ERR_PTR(-EINVAL);
1116
1117         root = btrfs_alloc_root(fs_info, BTRFS_ROOT_TREE_OBJECTID, GFP_KERNEL);
1118         if (!root)
1119                 return ERR_PTR(-ENOMEM);
1120
1121         /* We don't use the stripesize in selftest, set it as sectorsize */
1122         root->alloc_bytenr = 0;
1123
1124         return root;
1125 }
1126 #endif
1127
1128 struct btrfs_root *btrfs_create_tree(struct btrfs_trans_handle *trans,
1129                                      u64 objectid)
1130 {
1131         struct btrfs_fs_info *fs_info = trans->fs_info;
1132         struct extent_buffer *leaf;
1133         struct btrfs_root *tree_root = fs_info->tree_root;
1134         struct btrfs_root *root;
1135         struct btrfs_key key;
1136         unsigned int nofs_flag;
1137         int ret = 0;
1138
1139         /*
1140          * We're holding a transaction handle, so use a NOFS memory allocation
1141          * context to avoid deadlock if reclaim happens.
1142          */
1143         nofs_flag = memalloc_nofs_save();
1144         root = btrfs_alloc_root(fs_info, objectid, GFP_KERNEL);
1145         memalloc_nofs_restore(nofs_flag);
1146         if (!root)
1147                 return ERR_PTR(-ENOMEM);
1148
1149         root->root_key.objectid = objectid;
1150         root->root_key.type = BTRFS_ROOT_ITEM_KEY;
1151         root->root_key.offset = 0;
1152
1153         leaf = btrfs_alloc_tree_block(trans, root, 0, objectid, NULL, 0, 0, 0,
1154                                       BTRFS_NESTING_NORMAL);
1155         if (IS_ERR(leaf)) {
1156                 ret = PTR_ERR(leaf);
1157                 leaf = NULL;
1158                 goto fail;
1159         }
1160
1161         root->node = leaf;
1162         btrfs_mark_buffer_dirty(leaf);
1163
1164         root->commit_root = btrfs_root_node(root);
1165         set_bit(BTRFS_ROOT_TRACK_DIRTY, &root->state);
1166
1167         root->root_item.flags = 0;
1168         root->root_item.byte_limit = 0;
1169         btrfs_set_root_bytenr(&root->root_item, leaf->start);
1170         btrfs_set_root_generation(&root->root_item, trans->transid);
1171         btrfs_set_root_level(&root->root_item, 0);
1172         btrfs_set_root_refs(&root->root_item, 1);
1173         btrfs_set_root_used(&root->root_item, leaf->len);
1174         btrfs_set_root_last_snapshot(&root->root_item, 0);
1175         btrfs_set_root_dirid(&root->root_item, 0);
1176         if (is_fstree(objectid))
1177                 generate_random_guid(root->root_item.uuid);
1178         else
1179                 export_guid(root->root_item.uuid, &guid_null);
1180         root->root_item.drop_level = 0;
1181
1182         key.objectid = objectid;
1183         key.type = BTRFS_ROOT_ITEM_KEY;
1184         key.offset = 0;
1185         ret = btrfs_insert_root(trans, tree_root, &key, &root->root_item);
1186         if (ret)
1187                 goto fail;
1188
1189         btrfs_tree_unlock(leaf);
1190
1191         return root;
1192
1193 fail:
1194         if (leaf)
1195                 btrfs_tree_unlock(leaf);
1196         btrfs_put_root(root);
1197
1198         return ERR_PTR(ret);
1199 }
1200
1201 static struct btrfs_root *alloc_log_tree(struct btrfs_trans_handle *trans,
1202                                          struct btrfs_fs_info *fs_info)
1203 {
1204         struct btrfs_root *root;
1205         struct extent_buffer *leaf;
1206
1207         root = btrfs_alloc_root(fs_info, BTRFS_TREE_LOG_OBJECTID, GFP_NOFS);
1208         if (!root)
1209                 return ERR_PTR(-ENOMEM);
1210
1211         root->root_key.objectid = BTRFS_TREE_LOG_OBJECTID;
1212         root->root_key.type = BTRFS_ROOT_ITEM_KEY;
1213         root->root_key.offset = BTRFS_TREE_LOG_OBJECTID;
1214
1215         /*
1216          * DON'T set SHAREABLE bit for log trees.
1217          *
1218          * Log trees are not exposed to user space thus can't be snapshotted,
1219          * and they go away before a real commit is actually done.
1220          *
1221          * They do store pointers to file data extents, and those reference
1222          * counts still get updated (along with back refs to the log tree).
1223          */
1224
1225         leaf = btrfs_alloc_tree_block(trans, root, 0, BTRFS_TREE_LOG_OBJECTID,
1226                         NULL, 0, 0, 0, BTRFS_NESTING_NORMAL);
1227         if (IS_ERR(leaf)) {
1228                 btrfs_put_root(root);
1229                 return ERR_CAST(leaf);
1230         }
1231
1232         root->node = leaf;
1233
1234         btrfs_mark_buffer_dirty(root->node);
1235         btrfs_tree_unlock(root->node);
1236         return root;
1237 }
1238
1239 int btrfs_init_log_root_tree(struct btrfs_trans_handle *trans,
1240                              struct btrfs_fs_info *fs_info)
1241 {
1242         struct btrfs_root *log_root;
1243
1244         log_root = alloc_log_tree(trans, fs_info);
1245         if (IS_ERR(log_root))
1246                 return PTR_ERR(log_root);
1247         WARN_ON(fs_info->log_root_tree);
1248         fs_info->log_root_tree = log_root;
1249         return 0;
1250 }
1251
1252 int btrfs_add_log_tree(struct btrfs_trans_handle *trans,
1253                        struct btrfs_root *root)
1254 {
1255         struct btrfs_fs_info *fs_info = root->fs_info;
1256         struct btrfs_root *log_root;
1257         struct btrfs_inode_item *inode_item;
1258
1259         log_root = alloc_log_tree(trans, fs_info);
1260         if (IS_ERR(log_root))
1261                 return PTR_ERR(log_root);
1262
1263         log_root->last_trans = trans->transid;
1264         log_root->root_key.offset = root->root_key.objectid;
1265
1266         inode_item = &log_root->root_item.inode;
1267         btrfs_set_stack_inode_generation(inode_item, 1);
1268         btrfs_set_stack_inode_size(inode_item, 3);
1269         btrfs_set_stack_inode_nlink(inode_item, 1);
1270         btrfs_set_stack_inode_nbytes(inode_item,
1271                                      fs_info->nodesize);
1272         btrfs_set_stack_inode_mode(inode_item, S_IFDIR | 0755);
1273
1274         btrfs_set_root_node(&log_root->root_item, log_root->node);
1275
1276         WARN_ON(root->log_root);
1277         root->log_root = log_root;
1278         root->log_transid = 0;
1279         root->log_transid_committed = -1;
1280         root->last_log_commit = 0;
1281         return 0;
1282 }
1283
1284 static struct btrfs_root *read_tree_root_path(struct btrfs_root *tree_root,
1285                                               struct btrfs_path *path,
1286                                               struct btrfs_key *key)
1287 {
1288         struct btrfs_root *root;
1289         struct btrfs_fs_info *fs_info = tree_root->fs_info;
1290         u64 generation;
1291         int ret;
1292         int level;
1293
1294         root = btrfs_alloc_root(fs_info, key->objectid, GFP_NOFS);
1295         if (!root)
1296                 return ERR_PTR(-ENOMEM);
1297
1298         ret = btrfs_find_root(tree_root, key, path,
1299                               &root->root_item, &root->root_key);
1300         if (ret) {
1301                 if (ret > 0)
1302                         ret = -ENOENT;
1303                 goto fail;
1304         }
1305
1306         generation = btrfs_root_generation(&root->root_item);
1307         level = btrfs_root_level(&root->root_item);
1308         root->node = read_tree_block(fs_info,
1309                                      btrfs_root_bytenr(&root->root_item),
1310                                      generation, level, NULL);
1311         if (IS_ERR(root->node)) {
1312                 ret = PTR_ERR(root->node);
1313                 root->node = NULL;
1314                 goto fail;
1315         } else if (!btrfs_buffer_uptodate(root->node, generation, 0)) {
1316                 ret = -EIO;
1317                 goto fail;
1318         }
1319         root->commit_root = btrfs_root_node(root);
1320         return root;
1321 fail:
1322         btrfs_put_root(root);
1323         return ERR_PTR(ret);
1324 }
1325
1326 struct btrfs_root *btrfs_read_tree_root(struct btrfs_root *tree_root,
1327                                         struct btrfs_key *key)
1328 {
1329         struct btrfs_root *root;
1330         struct btrfs_path *path;
1331
1332         path = btrfs_alloc_path();
1333         if (!path)
1334                 return ERR_PTR(-ENOMEM);
1335         root = read_tree_root_path(tree_root, path, key);
1336         btrfs_free_path(path);
1337
1338         return root;
1339 }
1340
1341 /*
1342  * Initialize subvolume root in-memory structure
1343  *
1344  * @anon_dev:   anonymous device to attach to the root, if zero, allocate new
1345  */
1346 static int btrfs_init_fs_root(struct btrfs_root *root, dev_t anon_dev)
1347 {
1348         int ret;
1349         unsigned int nofs_flag;
1350
1351         root->free_ino_ctl = kzalloc(sizeof(*root->free_ino_ctl), GFP_NOFS);
1352         root->free_ino_pinned = kzalloc(sizeof(*root->free_ino_pinned),
1353                                         GFP_NOFS);
1354         if (!root->free_ino_pinned || !root->free_ino_ctl) {
1355                 ret = -ENOMEM;
1356                 goto fail;
1357         }
1358
1359         /*
1360          * We might be called under a transaction (e.g. indirect backref
1361          * resolution) which could deadlock if it triggers memory reclaim
1362          */
1363         nofs_flag = memalloc_nofs_save();
1364         ret = btrfs_drew_lock_init(&root->snapshot_lock);
1365         memalloc_nofs_restore(nofs_flag);
1366         if (ret)
1367                 goto fail;
1368
1369         if (root->root_key.objectid != BTRFS_TREE_LOG_OBJECTID &&
1370             root->root_key.objectid != BTRFS_DATA_RELOC_TREE_OBJECTID) {
1371                 set_bit(BTRFS_ROOT_SHAREABLE, &root->state);
1372                 btrfs_check_and_init_root_item(&root->root_item);
1373         }
1374
1375         btrfs_init_free_ino_ctl(root);
1376         spin_lock_init(&root->ino_cache_lock);
1377         init_waitqueue_head(&root->ino_cache_wait);
1378
1379         /*
1380          * Don't assign anonymous block device to roots that are not exposed to
1381          * userspace, the id pool is limited to 1M
1382          */
1383         if (is_fstree(root->root_key.objectid) &&
1384             btrfs_root_refs(&root->root_item) > 0) {
1385                 if (!anon_dev) {
1386                         ret = get_anon_bdev(&root->anon_dev);
1387                         if (ret)
1388                                 goto fail;
1389                 } else {
1390                         root->anon_dev = anon_dev;
1391                 }
1392         }
1393
1394         mutex_lock(&root->objectid_mutex);
1395         ret = btrfs_find_highest_objectid(root,
1396                                         &root->highest_objectid);
1397         if (ret) {
1398                 mutex_unlock(&root->objectid_mutex);
1399                 goto fail;
1400         }
1401
1402         ASSERT(root->highest_objectid <= BTRFS_LAST_FREE_OBJECTID);
1403
1404         mutex_unlock(&root->objectid_mutex);
1405
1406         return 0;
1407 fail:
1408         /* The caller is responsible to call btrfs_free_fs_root */
1409         return ret;
1410 }
1411
1412 static struct btrfs_root *btrfs_lookup_fs_root(struct btrfs_fs_info *fs_info,
1413                                                u64 root_id)
1414 {
1415         struct btrfs_root *root;
1416
1417         spin_lock(&fs_info->fs_roots_radix_lock);
1418         root = radix_tree_lookup(&fs_info->fs_roots_radix,
1419                                  (unsigned long)root_id);
1420         if (root)
1421                 root = btrfs_grab_root(root);
1422         spin_unlock(&fs_info->fs_roots_radix_lock);
1423         return root;
1424 }
1425
1426 static struct btrfs_root *btrfs_get_global_root(struct btrfs_fs_info *fs_info,
1427                                                 u64 objectid)
1428 {
1429         if (objectid == BTRFS_ROOT_TREE_OBJECTID)
1430                 return btrfs_grab_root(fs_info->tree_root);
1431         if (objectid == BTRFS_EXTENT_TREE_OBJECTID)
1432                 return btrfs_grab_root(fs_info->extent_root);
1433         if (objectid == BTRFS_CHUNK_TREE_OBJECTID)
1434                 return btrfs_grab_root(fs_info->chunk_root);
1435         if (objectid == BTRFS_DEV_TREE_OBJECTID)
1436                 return btrfs_grab_root(fs_info->dev_root);
1437         if (objectid == BTRFS_CSUM_TREE_OBJECTID)
1438                 return btrfs_grab_root(fs_info->csum_root);
1439         if (objectid == BTRFS_QUOTA_TREE_OBJECTID)
1440                 return btrfs_grab_root(fs_info->quota_root) ?
1441                         fs_info->quota_root : ERR_PTR(-ENOENT);
1442         if (objectid == BTRFS_UUID_TREE_OBJECTID)
1443                 return btrfs_grab_root(fs_info->uuid_root) ?
1444                         fs_info->uuid_root : ERR_PTR(-ENOENT);
1445         if (objectid == BTRFS_FREE_SPACE_TREE_OBJECTID)
1446                 return btrfs_grab_root(fs_info->free_space_root) ?
1447                         fs_info->free_space_root : ERR_PTR(-ENOENT);
1448         return NULL;
1449 }
1450
1451 int btrfs_insert_fs_root(struct btrfs_fs_info *fs_info,
1452                          struct btrfs_root *root)
1453 {
1454         int ret;
1455
1456         ret = radix_tree_preload(GFP_NOFS);
1457         if (ret)
1458                 return ret;
1459
1460         spin_lock(&fs_info->fs_roots_radix_lock);
1461         ret = radix_tree_insert(&fs_info->fs_roots_radix,
1462                                 (unsigned long)root->root_key.objectid,
1463                                 root);
1464         if (ret == 0) {
1465                 btrfs_grab_root(root);
1466                 set_bit(BTRFS_ROOT_IN_RADIX, &root->state);
1467         }
1468         spin_unlock(&fs_info->fs_roots_radix_lock);
1469         radix_tree_preload_end();
1470
1471         return ret;
1472 }
1473
1474 void btrfs_check_leaked_roots(struct btrfs_fs_info *fs_info)
1475 {
1476 #ifdef CONFIG_BTRFS_DEBUG
1477         struct btrfs_root *root;
1478
1479         while (!list_empty(&fs_info->allocated_roots)) {
1480                 char buf[BTRFS_ROOT_NAME_BUF_LEN];
1481
1482                 root = list_first_entry(&fs_info->allocated_roots,
1483                                         struct btrfs_root, leak_list);
1484                 btrfs_err(fs_info, "leaked root %s refcount %d",
1485                           btrfs_root_name(&root->root_key, buf),
1486                           refcount_read(&root->refs));
1487                 while (refcount_read(&root->refs) > 1)
1488                         btrfs_put_root(root);
1489                 btrfs_put_root(root);
1490         }
1491 #endif
1492 }
1493
1494 void btrfs_free_fs_info(struct btrfs_fs_info *fs_info)
1495 {
1496         percpu_counter_destroy(&fs_info->dirty_metadata_bytes);
1497         percpu_counter_destroy(&fs_info->delalloc_bytes);
1498         percpu_counter_destroy(&fs_info->dio_bytes);
1499         percpu_counter_destroy(&fs_info->dev_replace.bio_counter);
1500         btrfs_free_csum_hash(fs_info);
1501         btrfs_free_stripe_hash_table(fs_info);
1502         btrfs_free_ref_cache(fs_info);
1503         kfree(fs_info->balance_ctl);
1504         kfree(fs_info->delayed_root);
1505         btrfs_put_root(fs_info->extent_root);
1506         btrfs_put_root(fs_info->tree_root);
1507         btrfs_put_root(fs_info->chunk_root);
1508         btrfs_put_root(fs_info->dev_root);
1509         btrfs_put_root(fs_info->csum_root);
1510         btrfs_put_root(fs_info->quota_root);
1511         btrfs_put_root(fs_info->uuid_root);
1512         btrfs_put_root(fs_info->free_space_root);
1513         btrfs_put_root(fs_info->fs_root);
1514         btrfs_put_root(fs_info->data_reloc_root);
1515         btrfs_check_leaked_roots(fs_info);
1516         btrfs_extent_buffer_leak_debug_check(fs_info);
1517         kfree(fs_info->super_copy);
1518         kfree(fs_info->super_for_commit);
1519         kvfree(fs_info);
1520 }
1521
1522
1523 /*
1524  * Get an in-memory reference of a root structure.
1525  *
1526  * For essential trees like root/extent tree, we grab it from fs_info directly.
1527  * For subvolume trees, we check the cached filesystem roots first. If not
1528  * found, then read it from disk and add it to cached fs roots.
1529  *
1530  * Caller should release the root by calling btrfs_put_root() after the usage.
1531  *
1532  * NOTE: Reloc and log trees can't be read by this function as they share the
1533  *       same root objectid.
1534  *
1535  * @objectid:   root id
1536  * @anon_dev:   preallocated anonymous block device number for new roots,
1537  *              pass 0 for new allocation.
1538  * @check_ref:  whether to check root item references, If true, return -ENOENT
1539  *              for orphan roots
1540  */
1541 static struct btrfs_root *btrfs_get_root_ref(struct btrfs_fs_info *fs_info,
1542                                              u64 objectid, dev_t anon_dev,
1543                                              bool check_ref)
1544 {
1545         struct btrfs_root *root;
1546         struct btrfs_path *path;
1547         struct btrfs_key key;
1548         int ret;
1549
1550         root = btrfs_get_global_root(fs_info, objectid);
1551         if (root)
1552                 return root;
1553 again:
1554         root = btrfs_lookup_fs_root(fs_info, objectid);
1555         if (root) {
1556                 /*
1557                  * Some other caller may have read out the newly inserted
1558                  * subvolume already (for things like backref walk etc).  Not
1559                  * that common but still possible.  In that case, we just need
1560                  * to free the anon_dev.
1561                  */
1562                 if (unlikely(anon_dev)) {
1563                         free_anon_bdev(anon_dev);
1564                         anon_dev = 0;
1565                 }
1566
1567                 if (check_ref && btrfs_root_refs(&root->root_item) == 0) {
1568                         btrfs_put_root(root);
1569                         return ERR_PTR(-ENOENT);
1570                 }
1571                 return root;
1572         }
1573
1574         key.objectid = objectid;
1575         key.type = BTRFS_ROOT_ITEM_KEY;
1576         key.offset = (u64)-1;
1577         root = btrfs_read_tree_root(fs_info->tree_root, &key);
1578         if (IS_ERR(root))
1579                 return root;
1580
1581         if (check_ref && btrfs_root_refs(&root->root_item) == 0) {
1582                 ret = -ENOENT;
1583                 goto fail;
1584         }
1585
1586         ret = btrfs_init_fs_root(root, anon_dev);
1587         if (ret)
1588                 goto fail;
1589
1590         path = btrfs_alloc_path();
1591         if (!path) {
1592                 ret = -ENOMEM;
1593                 goto fail;
1594         }
1595         key.objectid = BTRFS_ORPHAN_OBJECTID;
1596         key.type = BTRFS_ORPHAN_ITEM_KEY;
1597         key.offset = objectid;
1598
1599         ret = btrfs_search_slot(NULL, fs_info->tree_root, &key, path, 0, 0);
1600         btrfs_free_path(path);
1601         if (ret < 0)
1602                 goto fail;
1603         if (ret == 0)
1604                 set_bit(BTRFS_ROOT_ORPHAN_ITEM_INSERTED, &root->state);
1605
1606         ret = btrfs_insert_fs_root(fs_info, root);
1607         if (ret) {
1608                 if (ret == -EEXIST) {
1609                         btrfs_put_root(root);
1610                         goto again;
1611                 }
1612                 goto fail;
1613         }
1614         return root;
1615 fail:
1616         /*
1617          * If our caller provided us an anonymous device, then it's his
1618          * responsability to free it in case we fail. So we have to set our
1619          * root's anon_dev to 0 to avoid a double free, once by btrfs_put_root()
1620          * and once again by our caller.
1621          */
1622         if (anon_dev)
1623                 root->anon_dev = 0;
1624         btrfs_put_root(root);
1625         return ERR_PTR(ret);
1626 }
1627
1628 /*
1629  * Get in-memory reference of a root structure
1630  *
1631  * @objectid:   tree objectid
1632  * @check_ref:  if set, verify that the tree exists and the item has at least
1633  *              one reference
1634  */
1635 struct btrfs_root *btrfs_get_fs_root(struct btrfs_fs_info *fs_info,
1636                                      u64 objectid, bool check_ref)
1637 {
1638         return btrfs_get_root_ref(fs_info, objectid, 0, check_ref);
1639 }
1640
1641 /*
1642  * Get in-memory reference of a root structure, created as new, optionally pass
1643  * the anonymous block device id
1644  *
1645  * @objectid:   tree objectid
1646  * @anon_dev:   if zero, allocate a new anonymous block device or use the
1647  *              parameter value
1648  */
1649 struct btrfs_root *btrfs_get_new_fs_root(struct btrfs_fs_info *fs_info,
1650                                          u64 objectid, dev_t anon_dev)
1651 {
1652         return btrfs_get_root_ref(fs_info, objectid, anon_dev, true);
1653 }
1654
1655 /*
1656  * btrfs_get_fs_root_commit_root - return a root for the given objectid
1657  * @fs_info:    the fs_info
1658  * @objectid:   the objectid we need to lookup
1659  *
1660  * This is exclusively used for backref walking, and exists specifically because
1661  * of how qgroups does lookups.  Qgroups will do a backref lookup at delayed ref
1662  * creation time, which means we may have to read the tree_root in order to look
1663  * up a fs root that is not in memory.  If the root is not in memory we will
1664  * read the tree root commit root and look up the fs root from there.  This is a
1665  * temporary root, it will not be inserted into the radix tree as it doesn't
1666  * have the most uptodate information, it'll simply be discarded once the
1667  * backref code is finished using the root.
1668  */
1669 struct btrfs_root *btrfs_get_fs_root_commit_root(struct btrfs_fs_info *fs_info,
1670                                                  struct btrfs_path *path,
1671                                                  u64 objectid)
1672 {
1673         struct btrfs_root *root;
1674         struct btrfs_key key;
1675
1676         ASSERT(path->search_commit_root && path->skip_locking);
1677
1678         /*
1679          * This can return -ENOENT if we ask for a root that doesn't exist, but
1680          * since this is called via the backref walking code we won't be looking
1681          * up a root that doesn't exist, unless there's corruption.  So if root
1682          * != NULL just return it.
1683          */
1684         root = btrfs_get_global_root(fs_info, objectid);
1685         if (root)
1686                 return root;
1687
1688         root = btrfs_lookup_fs_root(fs_info, objectid);
1689         if (root)
1690                 return root;
1691
1692         key.objectid = objectid;
1693         key.type = BTRFS_ROOT_ITEM_KEY;
1694         key.offset = (u64)-1;
1695         root = read_tree_root_path(fs_info->tree_root, path, &key);
1696         btrfs_release_path(path);
1697
1698         return root;
1699 }
1700
1701 /*
1702  * called by the kthread helper functions to finally call the bio end_io
1703  * functions.  This is where read checksum verification actually happens
1704  */
1705 static void end_workqueue_fn(struct btrfs_work *work)
1706 {
1707         struct bio *bio;
1708         struct btrfs_end_io_wq *end_io_wq;
1709
1710         end_io_wq = container_of(work, struct btrfs_end_io_wq, work);
1711         bio = end_io_wq->bio;
1712
1713         bio->bi_status = end_io_wq->status;
1714         bio->bi_private = end_io_wq->private;
1715         bio->bi_end_io = end_io_wq->end_io;
1716         bio_endio(bio);
1717         kmem_cache_free(btrfs_end_io_wq_cache, end_io_wq);
1718 }
1719
1720 static int cleaner_kthread(void *arg)
1721 {
1722         struct btrfs_root *root = arg;
1723         struct btrfs_fs_info *fs_info = root->fs_info;
1724         int again;
1725
1726         while (1) {
1727                 again = 0;
1728
1729                 set_bit(BTRFS_FS_CLEANER_RUNNING, &fs_info->flags);
1730
1731                 /* Make the cleaner go to sleep early. */
1732                 if (btrfs_need_cleaner_sleep(fs_info))
1733                         goto sleep;
1734
1735                 /*
1736                  * Do not do anything if we might cause open_ctree() to block
1737                  * before we have finished mounting the filesystem.
1738                  */
1739                 if (!test_bit(BTRFS_FS_OPEN, &fs_info->flags))
1740                         goto sleep;
1741
1742                 if (!mutex_trylock(&fs_info->cleaner_mutex))
1743                         goto sleep;
1744
1745                 /*
1746                  * Avoid the problem that we change the status of the fs
1747                  * during the above check and trylock.
1748                  */
1749                 if (btrfs_need_cleaner_sleep(fs_info)) {
1750                         mutex_unlock(&fs_info->cleaner_mutex);
1751                         goto sleep;
1752                 }
1753
1754                 btrfs_run_delayed_iputs(fs_info);
1755
1756                 again = btrfs_clean_one_deleted_snapshot(root);
1757                 mutex_unlock(&fs_info->cleaner_mutex);
1758
1759                 /*
1760                  * The defragger has dealt with the R/O remount and umount,
1761                  * needn't do anything special here.
1762                  */
1763                 btrfs_run_defrag_inodes(fs_info);
1764
1765                 /*
1766                  * Acquires fs_info->delete_unused_bgs_mutex to avoid racing
1767                  * with relocation (btrfs_relocate_chunk) and relocation
1768                  * acquires fs_info->cleaner_mutex (btrfs_relocate_block_group)
1769                  * after acquiring fs_info->delete_unused_bgs_mutex. So we
1770                  * can't hold, nor need to, fs_info->cleaner_mutex when deleting
1771                  * unused block groups.
1772                  */
1773                 btrfs_delete_unused_bgs(fs_info);
1774 sleep:
1775                 clear_bit(BTRFS_FS_CLEANER_RUNNING, &fs_info->flags);
1776                 if (kthread_should_park())
1777                         kthread_parkme();
1778                 if (kthread_should_stop())
1779                         return 0;
1780                 if (!again) {
1781                         set_current_state(TASK_INTERRUPTIBLE);
1782                         schedule();
1783                         __set_current_state(TASK_RUNNING);
1784                 }
1785         }
1786 }
1787
1788 static int transaction_kthread(void *arg)
1789 {
1790         struct btrfs_root *root = arg;
1791         struct btrfs_fs_info *fs_info = root->fs_info;
1792         struct btrfs_trans_handle *trans;
1793         struct btrfs_transaction *cur;
1794         u64 transid;
1795         time64_t now;
1796         unsigned long delay;
1797         bool cannot_commit;
1798
1799         do {
1800                 cannot_commit = false;
1801                 delay = HZ * fs_info->commit_interval;
1802                 mutex_lock(&fs_info->transaction_kthread_mutex);
1803
1804                 spin_lock(&fs_info->trans_lock);
1805                 cur = fs_info->running_transaction;
1806                 if (!cur) {
1807                         spin_unlock(&fs_info->trans_lock);
1808                         goto sleep;
1809                 }
1810
1811                 now = ktime_get_seconds();
1812                 if (cur->state < TRANS_STATE_COMMIT_START &&
1813                     (now < cur->start_time ||
1814                      now - cur->start_time < fs_info->commit_interval)) {
1815                         spin_unlock(&fs_info->trans_lock);
1816                         delay = HZ * 5;
1817                         goto sleep;
1818                 }
1819                 transid = cur->transid;
1820                 spin_unlock(&fs_info->trans_lock);
1821
1822                 /* If the file system is aborted, this will always fail. */
1823                 trans = btrfs_attach_transaction(root);
1824                 if (IS_ERR(trans)) {
1825                         if (PTR_ERR(trans) != -ENOENT)
1826                                 cannot_commit = true;
1827                         goto sleep;
1828                 }
1829                 if (transid == trans->transid) {
1830                         btrfs_commit_transaction(trans);
1831                 } else {
1832                         btrfs_end_transaction(trans);
1833                 }
1834 sleep:
1835                 wake_up_process(fs_info->cleaner_kthread);
1836                 mutex_unlock(&fs_info->transaction_kthread_mutex);
1837
1838                 if (unlikely(test_bit(BTRFS_FS_STATE_ERROR,
1839                                       &fs_info->fs_state)))
1840                         btrfs_cleanup_transaction(fs_info);
1841                 if (!kthread_should_stop() &&
1842                                 (!btrfs_transaction_blocked(fs_info) ||
1843                                  cannot_commit))
1844                         schedule_timeout_interruptible(delay);
1845         } while (!kthread_should_stop());
1846         return 0;
1847 }
1848
1849 /*
1850  * This will find the highest generation in the array of root backups.  The
1851  * index of the highest array is returned, or -EINVAL if we can't find
1852  * anything.
1853  *
1854  * We check to make sure the array is valid by comparing the
1855  * generation of the latest  root in the array with the generation
1856  * in the super block.  If they don't match we pitch it.
1857  */
1858 static int find_newest_super_backup(struct btrfs_fs_info *info)
1859 {
1860         const u64 newest_gen = btrfs_super_generation(info->super_copy);
1861         u64 cur;
1862         struct btrfs_root_backup *root_backup;
1863         int i;
1864
1865         for (i = 0; i < BTRFS_NUM_BACKUP_ROOTS; i++) {
1866                 root_backup = info->super_copy->super_roots + i;
1867                 cur = btrfs_backup_tree_root_gen(root_backup);
1868                 if (cur == newest_gen)
1869                         return i;
1870         }
1871
1872         return -EINVAL;
1873 }
1874
1875 /*
1876  * copy all the root pointers into the super backup array.
1877  * this will bump the backup pointer by one when it is
1878  * done
1879  */
1880 static void backup_super_roots(struct btrfs_fs_info *info)
1881 {
1882         const int next_backup = info->backup_root_index;
1883         struct btrfs_root_backup *root_backup;
1884
1885         root_backup = info->super_for_commit->super_roots + next_backup;
1886
1887         /*
1888          * make sure all of our padding and empty slots get zero filled
1889          * regardless of which ones we use today
1890          */
1891         memset(root_backup, 0, sizeof(*root_backup));
1892
1893         info->backup_root_index = (next_backup + 1) % BTRFS_NUM_BACKUP_ROOTS;
1894
1895         btrfs_set_backup_tree_root(root_backup, info->tree_root->node->start);
1896         btrfs_set_backup_tree_root_gen(root_backup,
1897                                btrfs_header_generation(info->tree_root->node));
1898
1899         btrfs_set_backup_tree_root_level(root_backup,
1900                                btrfs_header_level(info->tree_root->node));
1901
1902         btrfs_set_backup_chunk_root(root_backup, info->chunk_root->node->start);
1903         btrfs_set_backup_chunk_root_gen(root_backup,
1904                                btrfs_header_generation(info->chunk_root->node));
1905         btrfs_set_backup_chunk_root_level(root_backup,
1906                                btrfs_header_level(info->chunk_root->node));
1907
1908         btrfs_set_backup_extent_root(root_backup, info->extent_root->node->start);
1909         btrfs_set_backup_extent_root_gen(root_backup,
1910                                btrfs_header_generation(info->extent_root->node));
1911         btrfs_set_backup_extent_root_level(root_backup,
1912                                btrfs_header_level(info->extent_root->node));
1913
1914         /*
1915          * we might commit during log recovery, which happens before we set
1916          * the fs_root.  Make sure it is valid before we fill it in.
1917          */
1918         if (info->fs_root && info->fs_root->node) {
1919                 btrfs_set_backup_fs_root(root_backup,
1920                                          info->fs_root->node->start);
1921                 btrfs_set_backup_fs_root_gen(root_backup,
1922                                btrfs_header_generation(info->fs_root->node));
1923                 btrfs_set_backup_fs_root_level(root_backup,
1924                                btrfs_header_level(info->fs_root->node));
1925         }
1926
1927         btrfs_set_backup_dev_root(root_backup, info->dev_root->node->start);
1928         btrfs_set_backup_dev_root_gen(root_backup,
1929                                btrfs_header_generation(info->dev_root->node));
1930         btrfs_set_backup_dev_root_level(root_backup,
1931                                        btrfs_header_level(info->dev_root->node));
1932
1933         btrfs_set_backup_csum_root(root_backup, info->csum_root->node->start);
1934         btrfs_set_backup_csum_root_gen(root_backup,
1935                                btrfs_header_generation(info->csum_root->node));
1936         btrfs_set_backup_csum_root_level(root_backup,
1937                                btrfs_header_level(info->csum_root->node));
1938
1939         btrfs_set_backup_total_bytes(root_backup,
1940                              btrfs_super_total_bytes(info->super_copy));
1941         btrfs_set_backup_bytes_used(root_backup,
1942                              btrfs_super_bytes_used(info->super_copy));
1943         btrfs_set_backup_num_devices(root_backup,
1944                              btrfs_super_num_devices(info->super_copy));
1945
1946         /*
1947          * if we don't copy this out to the super_copy, it won't get remembered
1948          * for the next commit
1949          */
1950         memcpy(&info->super_copy->super_roots,
1951                &info->super_for_commit->super_roots,
1952                sizeof(*root_backup) * BTRFS_NUM_BACKUP_ROOTS);
1953 }
1954
1955 /*
1956  * read_backup_root - Reads a backup root based on the passed priority. Prio 0
1957  * is the newest, prio 1/2/3 are 2nd newest/3rd newest/4th (oldest) backup roots
1958  *
1959  * fs_info - filesystem whose backup roots need to be read
1960  * priority - priority of backup root required
1961  *
1962  * Returns backup root index on success and -EINVAL otherwise.
1963  */
1964 static int read_backup_root(struct btrfs_fs_info *fs_info, u8 priority)
1965 {
1966         int backup_index = find_newest_super_backup(fs_info);
1967         struct btrfs_super_block *super = fs_info->super_copy;
1968         struct btrfs_root_backup *root_backup;
1969
1970         if (priority < BTRFS_NUM_BACKUP_ROOTS && backup_index >= 0) {
1971                 if (priority == 0)
1972                         return backup_index;
1973
1974                 backup_index = backup_index + BTRFS_NUM_BACKUP_ROOTS - priority;
1975                 backup_index %= BTRFS_NUM_BACKUP_ROOTS;
1976         } else {
1977                 return -EINVAL;
1978         }
1979
1980         root_backup = super->super_roots + backup_index;
1981
1982         btrfs_set_super_generation(super,
1983                                    btrfs_backup_tree_root_gen(root_backup));
1984         btrfs_set_super_root(super, btrfs_backup_tree_root(root_backup));
1985         btrfs_set_super_root_level(super,
1986                                    btrfs_backup_tree_root_level(root_backup));
1987         btrfs_set_super_bytes_used(super, btrfs_backup_bytes_used(root_backup));
1988
1989         /*
1990          * Fixme: the total bytes and num_devices need to match or we should
1991          * need a fsck
1992          */
1993         btrfs_set_super_total_bytes(super, btrfs_backup_total_bytes(root_backup));
1994         btrfs_set_super_num_devices(super, btrfs_backup_num_devices(root_backup));
1995
1996         return backup_index;
1997 }
1998
1999 /* helper to cleanup workers */
2000 static void btrfs_stop_all_workers(struct btrfs_fs_info *fs_info)
2001 {
2002         btrfs_destroy_workqueue(fs_info->fixup_workers);
2003         btrfs_destroy_workqueue(fs_info->delalloc_workers);
2004         btrfs_destroy_workqueue(fs_info->workers);
2005         btrfs_destroy_workqueue(fs_info->endio_workers);
2006         btrfs_destroy_workqueue(fs_info->endio_raid56_workers);
2007         btrfs_destroy_workqueue(fs_info->rmw_workers);
2008         btrfs_destroy_workqueue(fs_info->endio_write_workers);
2009         btrfs_destroy_workqueue(fs_info->endio_freespace_worker);
2010         btrfs_destroy_workqueue(fs_info->delayed_workers);
2011         btrfs_destroy_workqueue(fs_info->caching_workers);
2012         btrfs_destroy_workqueue(fs_info->readahead_workers);
2013         btrfs_destroy_workqueue(fs_info->flush_workers);
2014         btrfs_destroy_workqueue(fs_info->qgroup_rescan_workers);
2015         if (fs_info->discard_ctl.discard_workers)
2016                 destroy_workqueue(fs_info->discard_ctl.discard_workers);
2017         /*
2018          * Now that all other work queues are destroyed, we can safely destroy
2019          * the queues used for metadata I/O, since tasks from those other work
2020          * queues can do metadata I/O operations.
2021          */
2022         btrfs_destroy_workqueue(fs_info->endio_meta_workers);
2023         btrfs_destroy_workqueue(fs_info->endio_meta_write_workers);
2024 }
2025
2026 static void free_root_extent_buffers(struct btrfs_root *root)
2027 {
2028         if (root) {
2029                 free_extent_buffer(root->node);
2030                 free_extent_buffer(root->commit_root);
2031                 root->node = NULL;
2032                 root->commit_root = NULL;
2033         }
2034 }
2035
2036 /* helper to cleanup tree roots */
2037 static void free_root_pointers(struct btrfs_fs_info *info, bool free_chunk_root)
2038 {
2039         free_root_extent_buffers(info->tree_root);
2040
2041         free_root_extent_buffers(info->dev_root);
2042         free_root_extent_buffers(info->extent_root);
2043         free_root_extent_buffers(info->csum_root);
2044         free_root_extent_buffers(info->quota_root);
2045         free_root_extent_buffers(info->uuid_root);
2046         free_root_extent_buffers(info->fs_root);
2047         free_root_extent_buffers(info->data_reloc_root);
2048         if (free_chunk_root)
2049                 free_root_extent_buffers(info->chunk_root);
2050         free_root_extent_buffers(info->free_space_root);
2051 }
2052
2053 void btrfs_put_root(struct btrfs_root *root)
2054 {
2055         if (!root)
2056                 return;
2057
2058         if (refcount_dec_and_test(&root->refs)) {
2059                 WARN_ON(!RB_EMPTY_ROOT(&root->inode_tree));
2060                 WARN_ON(test_bit(BTRFS_ROOT_DEAD_RELOC_TREE, &root->state));
2061                 if (root->anon_dev)
2062                         free_anon_bdev(root->anon_dev);
2063                 btrfs_drew_lock_destroy(&root->snapshot_lock);
2064                 free_root_extent_buffers(root);
2065                 kfree(root->free_ino_ctl);
2066                 kfree(root->free_ino_pinned);
2067 #ifdef CONFIG_BTRFS_DEBUG
2068                 spin_lock(&root->fs_info->fs_roots_radix_lock);
2069                 list_del_init(&root->leak_list);
2070                 spin_unlock(&root->fs_info->fs_roots_radix_lock);
2071 #endif
2072                 kfree(root);
2073         }
2074 }
2075
2076 void btrfs_free_fs_roots(struct btrfs_fs_info *fs_info)
2077 {
2078         int ret;
2079         struct btrfs_root *gang[8];
2080         int i;
2081
2082         while (!list_empty(&fs_info->dead_roots)) {
2083                 gang[0] = list_entry(fs_info->dead_roots.next,
2084                                      struct btrfs_root, root_list);
2085                 list_del(&gang[0]->root_list);
2086
2087                 if (test_bit(BTRFS_ROOT_IN_RADIX, &gang[0]->state))
2088                         btrfs_drop_and_free_fs_root(fs_info, gang[0]);
2089                 btrfs_put_root(gang[0]);
2090         }
2091
2092         while (1) {
2093                 ret = radix_tree_gang_lookup(&fs_info->fs_roots_radix,
2094                                              (void **)gang, 0,
2095                                              ARRAY_SIZE(gang));
2096                 if (!ret)
2097                         break;
2098                 for (i = 0; i < ret; i++)
2099                         btrfs_drop_and_free_fs_root(fs_info, gang[i]);
2100         }
2101 }
2102
2103 static void btrfs_init_scrub(struct btrfs_fs_info *fs_info)
2104 {
2105         mutex_init(&fs_info->scrub_lock);
2106         atomic_set(&fs_info->scrubs_running, 0);
2107         atomic_set(&fs_info->scrub_pause_req, 0);
2108         atomic_set(&fs_info->scrubs_paused, 0);
2109         atomic_set(&fs_info->scrub_cancel_req, 0);
2110         init_waitqueue_head(&fs_info->scrub_pause_wait);
2111         refcount_set(&fs_info->scrub_workers_refcnt, 0);
2112 }
2113
2114 static void btrfs_init_balance(struct btrfs_fs_info *fs_info)
2115 {
2116         spin_lock_init(&fs_info->balance_lock);
2117         mutex_init(&fs_info->balance_mutex);
2118         atomic_set(&fs_info->balance_pause_req, 0);
2119         atomic_set(&fs_info->balance_cancel_req, 0);
2120         fs_info->balance_ctl = NULL;
2121         init_waitqueue_head(&fs_info->balance_wait_q);
2122 }
2123
2124 static void btrfs_init_btree_inode(struct btrfs_fs_info *fs_info)
2125 {
2126         struct inode *inode = fs_info->btree_inode;
2127
2128         inode->i_ino = BTRFS_BTREE_INODE_OBJECTID;
2129         set_nlink(inode, 1);
2130         /*
2131          * we set the i_size on the btree inode to the max possible int.
2132          * the real end of the address space is determined by all of
2133          * the devices in the system
2134          */
2135         inode->i_size = OFFSET_MAX;
2136         inode->i_mapping->a_ops = &btree_aops;
2137
2138         RB_CLEAR_NODE(&BTRFS_I(inode)->rb_node);
2139         extent_io_tree_init(fs_info, &BTRFS_I(inode)->io_tree,
2140                             IO_TREE_BTREE_INODE_IO, inode);
2141         BTRFS_I(inode)->io_tree.track_uptodate = false;
2142         extent_map_tree_init(&BTRFS_I(inode)->extent_tree);
2143
2144         BTRFS_I(inode)->root = btrfs_grab_root(fs_info->tree_root);
2145         memset(&BTRFS_I(inode)->location, 0, sizeof(struct btrfs_key));
2146         set_bit(BTRFS_INODE_DUMMY, &BTRFS_I(inode)->runtime_flags);
2147         btrfs_insert_inode_hash(inode);
2148 }
2149
2150 static void btrfs_init_dev_replace_locks(struct btrfs_fs_info *fs_info)
2151 {
2152         mutex_init(&fs_info->dev_replace.lock_finishing_cancel_unmount);
2153         init_rwsem(&fs_info->dev_replace.rwsem);
2154         init_waitqueue_head(&fs_info->dev_replace.replace_wait);
2155 }
2156
2157 static void btrfs_init_qgroup(struct btrfs_fs_info *fs_info)
2158 {
2159         spin_lock_init(&fs_info->qgroup_lock);
2160         mutex_init(&fs_info->qgroup_ioctl_lock);
2161         fs_info->qgroup_tree = RB_ROOT;
2162         INIT_LIST_HEAD(&fs_info->dirty_qgroups);
2163         fs_info->qgroup_seq = 1;
2164         fs_info->qgroup_ulist = NULL;
2165         fs_info->qgroup_rescan_running = false;
2166         mutex_init(&fs_info->qgroup_rescan_lock);
2167 }
2168
2169 static int btrfs_init_workqueues(struct btrfs_fs_info *fs_info,
2170                 struct btrfs_fs_devices *fs_devices)
2171 {
2172         u32 max_active = fs_info->thread_pool_size;
2173         unsigned int flags = WQ_MEM_RECLAIM | WQ_FREEZABLE | WQ_UNBOUND;
2174
2175         fs_info->workers =
2176                 btrfs_alloc_workqueue(fs_info, "worker",
2177                                       flags | WQ_HIGHPRI, max_active, 16);
2178
2179         fs_info->delalloc_workers =
2180                 btrfs_alloc_workqueue(fs_info, "delalloc",
2181                                       flags, max_active, 2);
2182
2183         fs_info->flush_workers =
2184                 btrfs_alloc_workqueue(fs_info, "flush_delalloc",
2185                                       flags, max_active, 0);
2186
2187         fs_info->caching_workers =
2188                 btrfs_alloc_workqueue(fs_info, "cache", flags, max_active, 0);
2189
2190         fs_info->fixup_workers =
2191                 btrfs_alloc_workqueue(fs_info, "fixup", flags, 1, 0);
2192
2193         /*
2194          * endios are largely parallel and should have a very
2195          * low idle thresh
2196          */
2197         fs_info->endio_workers =
2198                 btrfs_alloc_workqueue(fs_info, "endio", flags, max_active, 4);
2199         fs_info->endio_meta_workers =
2200                 btrfs_alloc_workqueue(fs_info, "endio-meta", flags,
2201                                       max_active, 4);
2202         fs_info->endio_meta_write_workers =
2203                 btrfs_alloc_workqueue(fs_info, "endio-meta-write", flags,
2204                                       max_active, 2);
2205         fs_info->endio_raid56_workers =
2206                 btrfs_alloc_workqueue(fs_info, "endio-raid56", flags,
2207                                       max_active, 4);
2208         fs_info->rmw_workers =
2209                 btrfs_alloc_workqueue(fs_info, "rmw", flags, max_active, 2);
2210         fs_info->endio_write_workers =
2211                 btrfs_alloc_workqueue(fs_info, "endio-write", flags,
2212                                       max_active, 2);
2213         fs_info->endio_freespace_worker =
2214                 btrfs_alloc_workqueue(fs_info, "freespace-write", flags,
2215                                       max_active, 0);
2216         fs_info->delayed_workers =
2217                 btrfs_alloc_workqueue(fs_info, "delayed-meta", flags,
2218                                       max_active, 0);
2219         fs_info->readahead_workers =
2220                 btrfs_alloc_workqueue(fs_info, "readahead", flags,
2221                                       max_active, 2);
2222         fs_info->qgroup_rescan_workers =
2223                 btrfs_alloc_workqueue(fs_info, "qgroup-rescan", flags, 1, 0);
2224         fs_info->discard_ctl.discard_workers =
2225                 alloc_workqueue("btrfs_discard", WQ_UNBOUND | WQ_FREEZABLE, 1);
2226
2227         if (!(fs_info->workers && fs_info->delalloc_workers &&
2228               fs_info->flush_workers &&
2229               fs_info->endio_workers && fs_info->endio_meta_workers &&
2230               fs_info->endio_meta_write_workers &&
2231               fs_info->endio_write_workers && fs_info->endio_raid56_workers &&
2232               fs_info->endio_freespace_worker && fs_info->rmw_workers &&
2233               fs_info->caching_workers && fs_info->readahead_workers &&
2234               fs_info->fixup_workers && fs_info->delayed_workers &&
2235               fs_info->qgroup_rescan_workers &&
2236               fs_info->discard_ctl.discard_workers)) {
2237                 return -ENOMEM;
2238         }
2239
2240         return 0;
2241 }
2242
2243 static int btrfs_init_csum_hash(struct btrfs_fs_info *fs_info, u16 csum_type)
2244 {
2245         struct crypto_shash *csum_shash;
2246         const char *csum_driver = btrfs_super_csum_driver(csum_type);
2247
2248         csum_shash = crypto_alloc_shash(csum_driver, 0, 0);
2249
2250         if (IS_ERR(csum_shash)) {
2251                 btrfs_err(fs_info, "error allocating %s hash for checksum",
2252                           csum_driver);
2253                 return PTR_ERR(csum_shash);
2254         }
2255
2256         fs_info->csum_shash = csum_shash;
2257
2258         /*
2259          * Check if the checksum implementation is a fast accelerated one.
2260          * As-is this is a bit of a hack and should be replaced once the csum
2261          * implementations provide that information themselves.
2262          */
2263         switch (csum_type) {
2264         case BTRFS_CSUM_TYPE_CRC32:
2265                 if (!strstr(crypto_shash_driver_name(csum_shash), "generic"))
2266                         set_bit(BTRFS_FS_CSUM_IMPL_FAST, &fs_info->flags);
2267                 break;
2268         case BTRFS_CSUM_TYPE_XXHASH:
2269                 set_bit(BTRFS_FS_CSUM_IMPL_FAST, &fs_info->flags);
2270                 break;
2271         default:
2272                 break;
2273         }
2274
2275         btrfs_info(fs_info, "using %s (%s) checksum algorithm",
2276                         btrfs_super_csum_name(csum_type),
2277                         crypto_shash_driver_name(csum_shash));
2278         return 0;
2279 }
2280
2281 static int btrfs_replay_log(struct btrfs_fs_info *fs_info,
2282                             struct btrfs_fs_devices *fs_devices)
2283 {
2284         int ret;
2285         struct btrfs_root *log_tree_root;
2286         struct btrfs_super_block *disk_super = fs_info->super_copy;
2287         u64 bytenr = btrfs_super_log_root(disk_super);
2288         int level = btrfs_super_log_root_level(disk_super);
2289
2290         if (fs_devices->rw_devices == 0) {
2291                 btrfs_warn(fs_info, "log replay required on RO media");
2292                 return -EIO;
2293         }
2294
2295         log_tree_root = btrfs_alloc_root(fs_info, BTRFS_TREE_LOG_OBJECTID,
2296                                          GFP_KERNEL);
2297         if (!log_tree_root)
2298                 return -ENOMEM;
2299
2300         log_tree_root->node = read_tree_block(fs_info, bytenr,
2301                                               fs_info->generation + 1,
2302                                               level, NULL);
2303         if (IS_ERR(log_tree_root->node)) {
2304                 btrfs_warn(fs_info, "failed to read log tree");
2305                 ret = PTR_ERR(log_tree_root->node);
2306                 log_tree_root->node = NULL;
2307                 btrfs_put_root(log_tree_root);
2308                 return ret;
2309         } else if (!extent_buffer_uptodate(log_tree_root->node)) {
2310                 btrfs_err(fs_info, "failed to read log tree");
2311                 btrfs_put_root(log_tree_root);
2312                 return -EIO;
2313         }
2314         /* returns with log_tree_root freed on success */
2315         ret = btrfs_recover_log_trees(log_tree_root);
2316         if (ret) {
2317                 btrfs_handle_fs_error(fs_info, ret,
2318                                       "Failed to recover log tree");
2319                 btrfs_put_root(log_tree_root);
2320                 return ret;
2321         }
2322
2323         if (sb_rdonly(fs_info->sb)) {
2324                 ret = btrfs_commit_super(fs_info);
2325                 if (ret)
2326                         return ret;
2327         }
2328
2329         return 0;
2330 }
2331
2332 static int btrfs_read_roots(struct btrfs_fs_info *fs_info)
2333 {
2334         struct btrfs_root *tree_root = fs_info->tree_root;
2335         struct btrfs_root *root;
2336         struct btrfs_key location;
2337         int ret;
2338
2339         BUG_ON(!fs_info->tree_root);
2340
2341         location.objectid = BTRFS_EXTENT_TREE_OBJECTID;
2342         location.type = BTRFS_ROOT_ITEM_KEY;
2343         location.offset = 0;
2344
2345         root = btrfs_read_tree_root(tree_root, &location);
2346         if (IS_ERR(root)) {
2347                 ret = PTR_ERR(root);
2348                 goto out;
2349         }
2350         set_bit(BTRFS_ROOT_TRACK_DIRTY, &root->state);
2351         fs_info->extent_root = root;
2352
2353         location.objectid = BTRFS_DEV_TREE_OBJECTID;
2354         root = btrfs_read_tree_root(tree_root, &location);
2355         if (IS_ERR(root)) {
2356                 ret = PTR_ERR(root);
2357                 goto out;
2358         }
2359         set_bit(BTRFS_ROOT_TRACK_DIRTY, &root->state);
2360         fs_info->dev_root = root;
2361         btrfs_init_devices_late(fs_info);
2362
2363         location.objectid = BTRFS_CSUM_TREE_OBJECTID;
2364         root = btrfs_read_tree_root(tree_root, &location);
2365         if (IS_ERR(root)) {
2366                 ret = PTR_ERR(root);
2367                 goto out;
2368         }
2369         set_bit(BTRFS_ROOT_TRACK_DIRTY, &root->state);
2370         fs_info->csum_root = root;
2371
2372         /*
2373          * This tree can share blocks with some other fs tree during relocation
2374          * and we need a proper setup by btrfs_get_fs_root
2375          */
2376         root = btrfs_get_fs_root(tree_root->fs_info,
2377                                  BTRFS_DATA_RELOC_TREE_OBJECTID, true);
2378         if (IS_ERR(root)) {
2379                 ret = PTR_ERR(root);
2380                 goto out;
2381         }
2382         set_bit(BTRFS_ROOT_TRACK_DIRTY, &root->state);
2383         fs_info->data_reloc_root = root;
2384
2385         location.objectid = BTRFS_QUOTA_TREE_OBJECTID;
2386         root = btrfs_read_tree_root(tree_root, &location);
2387         if (!IS_ERR(root)) {
2388                 set_bit(BTRFS_ROOT_TRACK_DIRTY, &root->state);
2389                 set_bit(BTRFS_FS_QUOTA_ENABLED, &fs_info->flags);
2390                 fs_info->quota_root = root;
2391         }
2392
2393         location.objectid = BTRFS_UUID_TREE_OBJECTID;
2394         root = btrfs_read_tree_root(tree_root, &location);
2395         if (IS_ERR(root)) {
2396                 ret = PTR_ERR(root);
2397                 if (ret != -ENOENT)
2398                         goto out;
2399         } else {
2400                 set_bit(BTRFS_ROOT_TRACK_DIRTY, &root->state);
2401                 fs_info->uuid_root = root;
2402         }
2403
2404         if (btrfs_fs_compat_ro(fs_info, FREE_SPACE_TREE)) {
2405                 location.objectid = BTRFS_FREE_SPACE_TREE_OBJECTID;
2406                 root = btrfs_read_tree_root(tree_root, &location);
2407                 if (IS_ERR(root)) {
2408                         ret = PTR_ERR(root);
2409                         goto out;
2410                 }
2411                 set_bit(BTRFS_ROOT_TRACK_DIRTY, &root->state);
2412                 fs_info->free_space_root = root;
2413         }
2414
2415         return 0;
2416 out:
2417         btrfs_warn(fs_info, "failed to read root (objectid=%llu): %d",
2418                    location.objectid, ret);
2419         return ret;
2420 }
2421
2422 /*
2423  * Real super block validation
2424  * NOTE: super csum type and incompat features will not be checked here.
2425  *
2426  * @sb:         super block to check
2427  * @mirror_num: the super block number to check its bytenr:
2428  *              0       the primary (1st) sb
2429  *              1, 2    2nd and 3rd backup copy
2430  *             -1       skip bytenr check
2431  */
2432 static int validate_super(struct btrfs_fs_info *fs_info,
2433                             struct btrfs_super_block *sb, int mirror_num)
2434 {
2435         u64 nodesize = btrfs_super_nodesize(sb);
2436         u64 sectorsize = btrfs_super_sectorsize(sb);
2437         int ret = 0;
2438
2439         if (btrfs_super_magic(sb) != BTRFS_MAGIC) {
2440                 btrfs_err(fs_info, "no valid FS found");
2441                 ret = -EINVAL;
2442         }
2443         if (btrfs_super_flags(sb) & ~BTRFS_SUPER_FLAG_SUPP) {
2444                 btrfs_err(fs_info, "unrecognized or unsupported super flag: %llu",
2445                                 btrfs_super_flags(sb) & ~BTRFS_SUPER_FLAG_SUPP);
2446                 ret = -EINVAL;
2447         }
2448         if (btrfs_super_root_level(sb) >= BTRFS_MAX_LEVEL) {
2449                 btrfs_err(fs_info, "tree_root level too big: %d >= %d",
2450                                 btrfs_super_root_level(sb), BTRFS_MAX_LEVEL);
2451                 ret = -EINVAL;
2452         }
2453         if (btrfs_super_chunk_root_level(sb) >= BTRFS_MAX_LEVEL) {
2454                 btrfs_err(fs_info, "chunk_root level too big: %d >= %d",
2455                                 btrfs_super_chunk_root_level(sb), BTRFS_MAX_LEVEL);
2456                 ret = -EINVAL;
2457         }
2458         if (btrfs_super_log_root_level(sb) >= BTRFS_MAX_LEVEL) {
2459                 btrfs_err(fs_info, "log_root level too big: %d >= %d",
2460                                 btrfs_super_log_root_level(sb), BTRFS_MAX_LEVEL);
2461                 ret = -EINVAL;
2462         }
2463
2464         /*
2465          * Check sectorsize and nodesize first, other check will need it.
2466          * Check all possible sectorsize(4K, 8K, 16K, 32K, 64K) here.
2467          */
2468         if (!is_power_of_2(sectorsize) || sectorsize < 4096 ||
2469             sectorsize > BTRFS_MAX_METADATA_BLOCKSIZE) {
2470                 btrfs_err(fs_info, "invalid sectorsize %llu", sectorsize);
2471                 ret = -EINVAL;
2472         }
2473         /* Only PAGE SIZE is supported yet */
2474         if (sectorsize != PAGE_SIZE) {
2475                 btrfs_err(fs_info,
2476                         "sectorsize %llu not supported yet, only support %lu",
2477                         sectorsize, PAGE_SIZE);
2478                 ret = -EINVAL;
2479         }
2480         if (!is_power_of_2(nodesize) || nodesize < sectorsize ||
2481             nodesize > BTRFS_MAX_METADATA_BLOCKSIZE) {
2482                 btrfs_err(fs_info, "invalid nodesize %llu", nodesize);
2483                 ret = -EINVAL;
2484         }
2485         if (nodesize != le32_to_cpu(sb->__unused_leafsize)) {
2486                 btrfs_err(fs_info, "invalid leafsize %u, should be %llu",
2487                           le32_to_cpu(sb->__unused_leafsize), nodesize);
2488                 ret = -EINVAL;
2489         }
2490
2491         /* Root alignment check */
2492         if (!IS_ALIGNED(btrfs_super_root(sb), sectorsize)) {
2493                 btrfs_warn(fs_info, "tree_root block unaligned: %llu",
2494                            btrfs_super_root(sb));
2495                 ret = -EINVAL;
2496         }
2497         if (!IS_ALIGNED(btrfs_super_chunk_root(sb), sectorsize)) {
2498                 btrfs_warn(fs_info, "chunk_root block unaligned: %llu",
2499                            btrfs_super_chunk_root(sb));
2500                 ret = -EINVAL;
2501         }
2502         if (!IS_ALIGNED(btrfs_super_log_root(sb), sectorsize)) {
2503                 btrfs_warn(fs_info, "log_root block unaligned: %llu",
2504                            btrfs_super_log_root(sb));
2505                 ret = -EINVAL;
2506         }
2507
2508         if (memcmp(fs_info->fs_devices->fsid, sb->fsid, BTRFS_FSID_SIZE) != 0) {
2509                 btrfs_err(fs_info,
2510                 "superblock fsid doesn't match fsid of fs_devices: %pU != %pU",
2511                           sb->fsid, fs_info->fs_devices->fsid);
2512                 ret = -EINVAL;
2513         }
2514
2515         if (memcmp(fs_info->fs_devices->metadata_uuid, btrfs_sb_fsid_ptr(sb),
2516                    BTRFS_FSID_SIZE) != 0) {
2517                 btrfs_err(fs_info,
2518 "superblock metadata_uuid doesn't match metadata uuid of fs_devices: %pU != %pU",
2519                           btrfs_sb_fsid_ptr(sb), fs_info->fs_devices->metadata_uuid);
2520                 ret = -EINVAL;
2521         }
2522
2523         if (memcmp(fs_info->fs_devices->metadata_uuid, sb->dev_item.fsid,
2524                    BTRFS_FSID_SIZE) != 0) {
2525                 btrfs_err(fs_info,
2526                         "dev_item UUID does not match metadata fsid: %pU != %pU",
2527                         fs_info->fs_devices->metadata_uuid, sb->dev_item.fsid);
2528                 ret = -EINVAL;
2529         }
2530
2531         /*
2532          * Hint to catch really bogus numbers, bitflips or so, more exact checks are
2533          * done later
2534          */
2535         if (btrfs_super_bytes_used(sb) < 6 * btrfs_super_nodesize(sb)) {
2536                 btrfs_err(fs_info, "bytes_used is too small %llu",
2537                           btrfs_super_bytes_used(sb));
2538                 ret = -EINVAL;
2539         }
2540         if (!is_power_of_2(btrfs_super_stripesize(sb))) {
2541                 btrfs_err(fs_info, "invalid stripesize %u",
2542                           btrfs_super_stripesize(sb));
2543                 ret = -EINVAL;
2544         }
2545         if (btrfs_super_num_devices(sb) > (1UL << 31))
2546                 btrfs_warn(fs_info, "suspicious number of devices: %llu",
2547                            btrfs_super_num_devices(sb));
2548         if (btrfs_super_num_devices(sb) == 0) {
2549                 btrfs_err(fs_info, "number of devices is 0");
2550                 ret = -EINVAL;
2551         }
2552
2553         if (mirror_num >= 0 &&
2554             btrfs_super_bytenr(sb) != btrfs_sb_offset(mirror_num)) {
2555                 btrfs_err(fs_info, "super offset mismatch %llu != %u",
2556                           btrfs_super_bytenr(sb), BTRFS_SUPER_INFO_OFFSET);
2557                 ret = -EINVAL;
2558         }
2559
2560         /*
2561          * Obvious sys_chunk_array corruptions, it must hold at least one key
2562          * and one chunk
2563          */
2564         if (btrfs_super_sys_array_size(sb) > BTRFS_SYSTEM_CHUNK_ARRAY_SIZE) {
2565                 btrfs_err(fs_info, "system chunk array too big %u > %u",
2566                           btrfs_super_sys_array_size(sb),
2567                           BTRFS_SYSTEM_CHUNK_ARRAY_SIZE);
2568                 ret = -EINVAL;
2569         }
2570         if (btrfs_super_sys_array_size(sb) < sizeof(struct btrfs_disk_key)
2571                         + sizeof(struct btrfs_chunk)) {
2572                 btrfs_err(fs_info, "system chunk array too small %u < %zu",
2573                           btrfs_super_sys_array_size(sb),
2574                           sizeof(struct btrfs_disk_key)
2575                           + sizeof(struct btrfs_chunk));
2576                 ret = -EINVAL;
2577         }
2578
2579         /*
2580          * The generation is a global counter, we'll trust it more than the others
2581          * but it's still possible that it's the one that's wrong.
2582          */
2583         if (btrfs_super_generation(sb) < btrfs_super_chunk_root_generation(sb))
2584                 btrfs_warn(fs_info,
2585                         "suspicious: generation < chunk_root_generation: %llu < %llu",
2586                         btrfs_super_generation(sb),
2587                         btrfs_super_chunk_root_generation(sb));
2588         if (btrfs_super_generation(sb) < btrfs_super_cache_generation(sb)
2589             && btrfs_super_cache_generation(sb) != (u64)-1)
2590                 btrfs_warn(fs_info,
2591                         "suspicious: generation < cache_generation: %llu < %llu",
2592                         btrfs_super_generation(sb),
2593                         btrfs_super_cache_generation(sb));
2594
2595         return ret;
2596 }
2597
2598 /*
2599  * Validation of super block at mount time.
2600  * Some checks already done early at mount time, like csum type and incompat
2601  * flags will be skipped.
2602  */
2603 static int btrfs_validate_mount_super(struct btrfs_fs_info *fs_info)
2604 {
2605         return validate_super(fs_info, fs_info->super_copy, 0);
2606 }
2607
2608 /*
2609  * Validation of super block at write time.
2610  * Some checks like bytenr check will be skipped as their values will be
2611  * overwritten soon.
2612  * Extra checks like csum type and incompat flags will be done here.
2613  */
2614 static int btrfs_validate_write_super(struct btrfs_fs_info *fs_info,
2615                                       struct btrfs_super_block *sb)
2616 {
2617         int ret;
2618
2619         ret = validate_super(fs_info, sb, -1);
2620         if (ret < 0)
2621                 goto out;
2622         if (!btrfs_supported_super_csum(btrfs_super_csum_type(sb))) {
2623                 ret = -EUCLEAN;
2624                 btrfs_err(fs_info, "invalid csum type, has %u want %u",
2625                           btrfs_super_csum_type(sb), BTRFS_CSUM_TYPE_CRC32);
2626                 goto out;
2627         }
2628         if (btrfs_super_incompat_flags(sb) & ~BTRFS_FEATURE_INCOMPAT_SUPP) {
2629                 ret = -EUCLEAN;
2630                 btrfs_err(fs_info,
2631                 "invalid incompat flags, has 0x%llx valid mask 0x%llx",
2632                           btrfs_super_incompat_flags(sb),
2633                           (unsigned long long)BTRFS_FEATURE_INCOMPAT_SUPP);
2634                 goto out;
2635         }
2636 out:
2637         if (ret < 0)
2638                 btrfs_err(fs_info,
2639                 "super block corruption detected before writing it to disk");
2640         return ret;
2641 }
2642
2643 static int __cold init_tree_roots(struct btrfs_fs_info *fs_info)
2644 {
2645         int backup_index = find_newest_super_backup(fs_info);
2646         struct btrfs_super_block *sb = fs_info->super_copy;
2647         struct btrfs_root *tree_root = fs_info->tree_root;
2648         bool handle_error = false;
2649         int ret = 0;
2650         int i;
2651
2652         for (i = 0; i < BTRFS_NUM_BACKUP_ROOTS; i++) {
2653                 u64 generation;
2654                 int level;
2655
2656                 if (handle_error) {
2657                         if (!IS_ERR(tree_root->node))
2658                                 free_extent_buffer(tree_root->node);
2659                         tree_root->node = NULL;
2660
2661                         if (!btrfs_test_opt(fs_info, USEBACKUPROOT))
2662                                 break;
2663
2664                         free_root_pointers(fs_info, 0);
2665
2666                         /*
2667                          * Don't use the log in recovery mode, it won't be
2668                          * valid
2669                          */
2670                         btrfs_set_super_log_root(sb, 0);
2671
2672                         /* We can't trust the free space cache either */
2673                         btrfs_set_opt(fs_info->mount_opt, CLEAR_CACHE);
2674
2675                         ret = read_backup_root(fs_info, i);
2676                         backup_index = ret;
2677                         if (ret < 0)
2678                                 return ret;
2679                 }
2680                 generation = btrfs_super_generation(sb);
2681                 level = btrfs_super_root_level(sb);
2682                 tree_root->node = read_tree_block(fs_info, btrfs_super_root(sb),
2683                                                   generation, level, NULL);
2684                 if (IS_ERR(tree_root->node)) {
2685                         handle_error = true;
2686                         ret = PTR_ERR(tree_root->node);
2687                         tree_root->node = NULL;
2688                         btrfs_warn(fs_info, "couldn't read tree root");
2689                         continue;
2690
2691                 } else if (!extent_buffer_uptodate(tree_root->node)) {
2692                         handle_error = true;
2693                         ret = -EIO;
2694                         btrfs_warn(fs_info, "error while reading tree root");
2695                         continue;
2696                 }
2697
2698                 btrfs_set_root_node(&tree_root->root_item, tree_root->node);
2699                 tree_root->commit_root = btrfs_root_node(tree_root);
2700                 btrfs_set_root_refs(&tree_root->root_item, 1);
2701
2702                 /*
2703                  * No need to hold btrfs_root::objectid_mutex since the fs
2704                  * hasn't been fully initialised and we are the only user
2705                  */
2706                 ret = btrfs_find_highest_objectid(tree_root,
2707                                                 &tree_root->highest_objectid);
2708                 if (ret < 0) {
2709                         handle_error = true;
2710                         continue;
2711                 }
2712
2713                 ASSERT(tree_root->highest_objectid <= BTRFS_LAST_FREE_OBJECTID);
2714
2715                 ret = btrfs_read_roots(fs_info);
2716                 if (ret < 0) {
2717                         handle_error = true;
2718                         continue;
2719                 }
2720
2721                 /* All successful */
2722                 fs_info->generation = generation;
2723                 fs_info->last_trans_committed = generation;
2724
2725                 /* Always begin writing backup roots after the one being used */
2726                 if (backup_index < 0) {
2727                         fs_info->backup_root_index = 0;
2728                 } else {
2729                         fs_info->backup_root_index = backup_index + 1;
2730                         fs_info->backup_root_index %= BTRFS_NUM_BACKUP_ROOTS;
2731                 }
2732                 break;
2733         }
2734
2735         return ret;
2736 }
2737
2738 void btrfs_init_fs_info(struct btrfs_fs_info *fs_info)
2739 {
2740         INIT_RADIX_TREE(&fs_info->fs_roots_radix, GFP_ATOMIC);
2741         INIT_RADIX_TREE(&fs_info->buffer_radix, GFP_ATOMIC);
2742         INIT_LIST_HEAD(&fs_info->trans_list);
2743         INIT_LIST_HEAD(&fs_info->dead_roots);
2744         INIT_LIST_HEAD(&fs_info->delayed_iputs);
2745         INIT_LIST_HEAD(&fs_info->delalloc_roots);
2746         INIT_LIST_HEAD(&fs_info->caching_block_groups);
2747         spin_lock_init(&fs_info->delalloc_root_lock);
2748         spin_lock_init(&fs_info->trans_lock);
2749         spin_lock_init(&fs_info->fs_roots_radix_lock);
2750         spin_lock_init(&fs_info->delayed_iput_lock);
2751         spin_lock_init(&fs_info->defrag_inodes_lock);
2752         spin_lock_init(&fs_info->super_lock);
2753         spin_lock_init(&fs_info->buffer_lock);
2754         spin_lock_init(&fs_info->unused_bgs_lock);
2755         rwlock_init(&fs_info->tree_mod_log_lock);
2756         mutex_init(&fs_info->unused_bg_unpin_mutex);
2757         mutex_init(&fs_info->delete_unused_bgs_mutex);
2758         mutex_init(&fs_info->reloc_mutex);
2759         mutex_init(&fs_info->delalloc_root_mutex);
2760         seqlock_init(&fs_info->profiles_lock);
2761
2762         INIT_LIST_HEAD(&fs_info->dirty_cowonly_roots);
2763         INIT_LIST_HEAD(&fs_info->space_info);
2764         INIT_LIST_HEAD(&fs_info->tree_mod_seq_list);
2765         INIT_LIST_HEAD(&fs_info->unused_bgs);
2766 #ifdef CONFIG_BTRFS_DEBUG
2767         INIT_LIST_HEAD(&fs_info->allocated_roots);
2768         INIT_LIST_HEAD(&fs_info->allocated_ebs);
2769         spin_lock_init(&fs_info->eb_leak_lock);
2770 #endif
2771         extent_map_tree_init(&fs_info->mapping_tree);
2772         btrfs_init_block_rsv(&fs_info->global_block_rsv,
2773                              BTRFS_BLOCK_RSV_GLOBAL);
2774         btrfs_init_block_rsv(&fs_info->trans_block_rsv, BTRFS_BLOCK_RSV_TRANS);
2775         btrfs_init_block_rsv(&fs_info->chunk_block_rsv, BTRFS_BLOCK_RSV_CHUNK);
2776         btrfs_init_block_rsv(&fs_info->empty_block_rsv, BTRFS_BLOCK_RSV_EMPTY);
2777         btrfs_init_block_rsv(&fs_info->delayed_block_rsv,
2778                              BTRFS_BLOCK_RSV_DELOPS);
2779         btrfs_init_block_rsv(&fs_info->delayed_refs_rsv,
2780                              BTRFS_BLOCK_RSV_DELREFS);
2781
2782         atomic_set(&fs_info->async_delalloc_pages, 0);
2783         atomic_set(&fs_info->defrag_running, 0);
2784         atomic_set(&fs_info->reada_works_cnt, 0);
2785         atomic_set(&fs_info->nr_delayed_iputs, 0);
2786         atomic64_set(&fs_info->tree_mod_seq, 0);
2787         fs_info->max_inline = BTRFS_DEFAULT_MAX_INLINE;
2788         fs_info->metadata_ratio = 0;
2789         fs_info->defrag_inodes = RB_ROOT;
2790         atomic64_set(&fs_info->free_chunk_space, 0);
2791         fs_info->tree_mod_log = RB_ROOT;
2792         fs_info->commit_interval = BTRFS_DEFAULT_COMMIT_INTERVAL;
2793         fs_info->avg_delayed_ref_runtime = NSEC_PER_SEC >> 6; /* div by 64 */
2794         /* readahead state */
2795         INIT_RADIX_TREE(&fs_info->reada_tree, GFP_NOFS & ~__GFP_DIRECT_RECLAIM);
2796         spin_lock_init(&fs_info->reada_lock);
2797         btrfs_init_ref_verify(fs_info);
2798
2799         fs_info->thread_pool_size = min_t(unsigned long,
2800                                           num_online_cpus() + 2, 8);
2801
2802         INIT_LIST_HEAD(&fs_info->ordered_roots);
2803         spin_lock_init(&fs_info->ordered_root_lock);
2804
2805         btrfs_init_scrub(fs_info);
2806 #ifdef CONFIG_BTRFS_FS_CHECK_INTEGRITY
2807         fs_info->check_integrity_print_mask = 0;
2808 #endif
2809         btrfs_init_balance(fs_info);
2810         btrfs_init_async_reclaim_work(fs_info);
2811
2812         spin_lock_init(&fs_info->block_group_cache_lock);
2813         fs_info->block_group_cache_tree = RB_ROOT;
2814         fs_info->first_logical_byte = (u64)-1;
2815
2816         extent_io_tree_init(fs_info, &fs_info->excluded_extents,
2817                             IO_TREE_FS_EXCLUDED_EXTENTS, NULL);
2818         set_bit(BTRFS_FS_BARRIER, &fs_info->flags);
2819
2820         mutex_init(&fs_info->ordered_operations_mutex);
2821         mutex_init(&fs_info->tree_log_mutex);
2822         mutex_init(&fs_info->chunk_mutex);
2823         mutex_init(&fs_info->transaction_kthread_mutex);
2824         mutex_init(&fs_info->cleaner_mutex);
2825         mutex_init(&fs_info->ro_block_group_mutex);
2826         init_rwsem(&fs_info->commit_root_sem);
2827         init_rwsem(&fs_info->cleanup_work_sem);
2828         init_rwsem(&fs_info->subvol_sem);
2829         sema_init(&fs_info->uuid_tree_rescan_sem, 1);
2830
2831         btrfs_init_dev_replace_locks(fs_info);
2832         btrfs_init_qgroup(fs_info);
2833         btrfs_discard_init(fs_info);
2834
2835         btrfs_init_free_cluster(&fs_info->meta_alloc_cluster);
2836         btrfs_init_free_cluster(&fs_info->data_alloc_cluster);
2837
2838         init_waitqueue_head(&fs_info->transaction_throttle);
2839         init_waitqueue_head(&fs_info->transaction_wait);
2840         init_waitqueue_head(&fs_info->transaction_blocked_wait);
2841         init_waitqueue_head(&fs_info->async_submit_wait);
2842         init_waitqueue_head(&fs_info->delayed_iputs_wait);
2843
2844         /* Usable values until the real ones are cached from the superblock */
2845         fs_info->nodesize = 4096;
2846         fs_info->sectorsize = 4096;
2847         fs_info->stripesize = 4096;
2848
2849         spin_lock_init(&fs_info->swapfile_pins_lock);
2850         fs_info->swapfile_pins = RB_ROOT;
2851
2852         fs_info->send_in_progress = 0;
2853 }
2854
2855 static int init_mount_fs_info(struct btrfs_fs_info *fs_info, struct super_block *sb)
2856 {
2857         int ret;
2858
2859         fs_info->sb = sb;
2860         sb->s_blocksize = BTRFS_BDEV_BLOCKSIZE;
2861         sb->s_blocksize_bits = blksize_bits(BTRFS_BDEV_BLOCKSIZE);
2862
2863         ret = percpu_counter_init(&fs_info->dio_bytes, 0, GFP_KERNEL);
2864         if (ret)
2865                 return ret;
2866
2867         ret = percpu_counter_init(&fs_info->dirty_metadata_bytes, 0, GFP_KERNEL);
2868         if (ret)
2869                 return ret;
2870
2871         fs_info->dirty_metadata_batch = PAGE_SIZE *
2872                                         (1 + ilog2(nr_cpu_ids));
2873
2874         ret = percpu_counter_init(&fs_info->delalloc_bytes, 0, GFP_KERNEL);
2875         if (ret)
2876                 return ret;
2877
2878         ret = percpu_counter_init(&fs_info->dev_replace.bio_counter, 0,
2879                         GFP_KERNEL);
2880         if (ret)
2881                 return ret;
2882
2883         fs_info->delayed_root = kmalloc(sizeof(struct btrfs_delayed_root),
2884                                         GFP_KERNEL);
2885         if (!fs_info->delayed_root)
2886                 return -ENOMEM;
2887         btrfs_init_delayed_root(fs_info->delayed_root);
2888
2889         return btrfs_alloc_stripe_hash_table(fs_info);
2890 }
2891
2892 static int btrfs_uuid_rescan_kthread(void *data)
2893 {
2894         struct btrfs_fs_info *fs_info = (struct btrfs_fs_info *)data;
2895         int ret;
2896
2897         /*
2898          * 1st step is to iterate through the existing UUID tree and
2899          * to delete all entries that contain outdated data.
2900          * 2nd step is to add all missing entries to the UUID tree.
2901          */
2902         ret = btrfs_uuid_tree_iterate(fs_info);
2903         if (ret < 0) {
2904                 if (ret != -EINTR)
2905                         btrfs_warn(fs_info, "iterating uuid_tree failed %d",
2906                                    ret);
2907                 up(&fs_info->uuid_tree_rescan_sem);
2908                 return ret;
2909         }
2910         return btrfs_uuid_scan_kthread(data);
2911 }
2912
2913 static int btrfs_check_uuid_tree(struct btrfs_fs_info *fs_info)
2914 {
2915         struct task_struct *task;
2916
2917         down(&fs_info->uuid_tree_rescan_sem);
2918         task = kthread_run(btrfs_uuid_rescan_kthread, fs_info, "btrfs-uuid");
2919         if (IS_ERR(task)) {
2920                 /* fs_info->update_uuid_tree_gen remains 0 in all error case */
2921                 btrfs_warn(fs_info, "failed to start uuid_rescan task");
2922                 up(&fs_info->uuid_tree_rescan_sem);
2923                 return PTR_ERR(task);
2924         }
2925
2926         return 0;
2927 }
2928
2929 int __cold open_ctree(struct super_block *sb, struct btrfs_fs_devices *fs_devices,
2930                       char *options)
2931 {
2932         u32 sectorsize;
2933         u32 nodesize;
2934         u32 stripesize;
2935         u64 generation;
2936         u64 features;
2937         u16 csum_type;
2938         struct btrfs_super_block *disk_super;
2939         struct btrfs_fs_info *fs_info = btrfs_sb(sb);
2940         struct btrfs_root *tree_root;
2941         struct btrfs_root *chunk_root;
2942         int ret;
2943         int err = -EINVAL;
2944         int clear_free_space_tree = 0;
2945         int level;
2946
2947         ret = init_mount_fs_info(fs_info, sb);
2948         if (ret) {
2949                 err = ret;
2950                 goto fail;
2951         }
2952
2953         /* These need to be init'ed before we start creating inodes and such. */
2954         tree_root = btrfs_alloc_root(fs_info, BTRFS_ROOT_TREE_OBJECTID,
2955                                      GFP_KERNEL);
2956         fs_info->tree_root = tree_root;
2957         chunk_root = btrfs_alloc_root(fs_info, BTRFS_CHUNK_TREE_OBJECTID,
2958                                       GFP_KERNEL);
2959         fs_info->chunk_root = chunk_root;
2960         if (!tree_root || !chunk_root) {
2961                 err = -ENOMEM;
2962                 goto fail;
2963         }
2964
2965         fs_info->btree_inode = new_inode(sb);
2966         if (!fs_info->btree_inode) {
2967                 err = -ENOMEM;
2968                 goto fail;
2969         }
2970         mapping_set_gfp_mask(fs_info->btree_inode->i_mapping, GFP_NOFS);
2971         btrfs_init_btree_inode(fs_info);
2972
2973         invalidate_bdev(fs_devices->latest_bdev);
2974
2975         /*
2976          * Read super block and check the signature bytes only
2977          */
2978         disk_super = btrfs_read_dev_super(fs_devices->latest_bdev);
2979         if (IS_ERR(disk_super)) {
2980                 err = PTR_ERR(disk_super);
2981                 goto fail_alloc;
2982         }
2983
2984         /*
2985          * Verify the type first, if that or the checksum value are
2986          * corrupted, we'll find out
2987          */
2988         csum_type = btrfs_super_csum_type(disk_super);
2989         if (!btrfs_supported_super_csum(csum_type)) {
2990                 btrfs_err(fs_info, "unsupported checksum algorithm: %u",
2991                           csum_type);
2992                 err = -EINVAL;
2993                 btrfs_release_disk_super(disk_super);
2994                 goto fail_alloc;
2995         }
2996
2997         ret = btrfs_init_csum_hash(fs_info, csum_type);
2998         if (ret) {
2999                 err = ret;
3000                 btrfs_release_disk_super(disk_super);
3001                 goto fail_alloc;
3002         }
3003
3004         /*
3005          * We want to check superblock checksum, the type is stored inside.
3006          * Pass the whole disk block of size BTRFS_SUPER_INFO_SIZE (4k).
3007          */
3008         if (btrfs_check_super_csum(fs_info, (u8 *)disk_super)) {
3009                 btrfs_err(fs_info, "superblock checksum mismatch");
3010                 err = -EINVAL;
3011                 btrfs_release_disk_super(disk_super);
3012                 goto fail_alloc;
3013         }
3014
3015         /*
3016          * super_copy is zeroed at allocation time and we never touch the
3017          * following bytes up to INFO_SIZE, the checksum is calculated from
3018          * the whole block of INFO_SIZE
3019          */
3020         memcpy(fs_info->super_copy, disk_super, sizeof(*fs_info->super_copy));
3021         btrfs_release_disk_super(disk_super);
3022
3023         disk_super = fs_info->super_copy;
3024
3025
3026         features = btrfs_super_flags(disk_super);
3027         if (features & BTRFS_SUPER_FLAG_CHANGING_FSID_V2) {
3028                 features &= ~BTRFS_SUPER_FLAG_CHANGING_FSID_V2;
3029                 btrfs_set_super_flags(disk_super, features);
3030                 btrfs_info(fs_info,
3031                         "found metadata UUID change in progress flag, clearing");
3032         }
3033
3034         memcpy(fs_info->super_for_commit, fs_info->super_copy,
3035                sizeof(*fs_info->super_for_commit));
3036
3037         ret = btrfs_validate_mount_super(fs_info);
3038         if (ret) {
3039                 btrfs_err(fs_info, "superblock contains fatal errors");
3040                 err = -EINVAL;
3041                 goto fail_alloc;
3042         }
3043
3044         if (!btrfs_super_root(disk_super))
3045                 goto fail_alloc;
3046
3047         /* check FS state, whether FS is broken. */
3048         if (btrfs_super_flags(disk_super) & BTRFS_SUPER_FLAG_ERROR)
3049                 set_bit(BTRFS_FS_STATE_ERROR, &fs_info->fs_state);
3050
3051         /*
3052          * In the long term, we'll store the compression type in the super
3053          * block, and it'll be used for per file compression control.
3054          */
3055         fs_info->compress_type = BTRFS_COMPRESS_ZLIB;
3056
3057         /*
3058          * Flag our filesystem as having big metadata blocks if they are bigger
3059          * than the page size
3060          */
3061         if (btrfs_super_nodesize(disk_super) > PAGE_SIZE) {
3062                 if (!(features & BTRFS_FEATURE_INCOMPAT_BIG_METADATA))
3063                         btrfs_info(fs_info,
3064                                 "flagging fs with big metadata feature");
3065                 features |= BTRFS_FEATURE_INCOMPAT_BIG_METADATA;
3066         }
3067
3068         /* Set up fs_info before parsing mount options */
3069         nodesize = btrfs_super_nodesize(disk_super);
3070         sectorsize = btrfs_super_sectorsize(disk_super);
3071         stripesize = sectorsize;
3072         fs_info->dirty_metadata_batch = nodesize * (1 + ilog2(nr_cpu_ids));
3073         fs_info->delalloc_batch = sectorsize * 512 * (1 + ilog2(nr_cpu_ids));
3074
3075         /* Cache block sizes */
3076         fs_info->nodesize = nodesize;
3077         fs_info->sectorsize = sectorsize;
3078         fs_info->stripesize = stripesize;
3079
3080         ret = btrfs_parse_options(fs_info, options, sb->s_flags);
3081         if (ret) {
3082                 err = ret;
3083                 goto fail_alloc;
3084         }
3085
3086         features = btrfs_super_incompat_flags(disk_super) &
3087                 ~BTRFS_FEATURE_INCOMPAT_SUPP;
3088         if (features) {
3089                 btrfs_err(fs_info,
3090                     "cannot mount because of unsupported optional features (0x%llx)",
3091                     features);
3092                 err = -EINVAL;
3093                 goto fail_alloc;
3094         }
3095
3096         features = btrfs_super_incompat_flags(disk_super);
3097         features |= BTRFS_FEATURE_INCOMPAT_MIXED_BACKREF;
3098         if (fs_info->compress_type == BTRFS_COMPRESS_LZO)
3099                 features |= BTRFS_FEATURE_INCOMPAT_COMPRESS_LZO;
3100         else if (fs_info->compress_type == BTRFS_COMPRESS_ZSTD)
3101                 features |= BTRFS_FEATURE_INCOMPAT_COMPRESS_ZSTD;
3102
3103         if (features & BTRFS_FEATURE_INCOMPAT_SKINNY_METADATA)
3104                 btrfs_info(fs_info, "has skinny extents");
3105
3106         /*
3107          * mixed block groups end up with duplicate but slightly offset
3108          * extent buffers for the same range.  It leads to corruptions
3109          */
3110         if ((features & BTRFS_FEATURE_INCOMPAT_MIXED_GROUPS) &&
3111             (sectorsize != nodesize)) {
3112                 btrfs_err(fs_info,
3113 "unequal nodesize/sectorsize (%u != %u) are not allowed for mixed block groups",
3114                         nodesize, sectorsize);
3115                 goto fail_alloc;
3116         }
3117
3118         /*
3119          * Needn't use the lock because there is no other task which will
3120          * update the flag.
3121          */
3122         btrfs_set_super_incompat_flags(disk_super, features);
3123
3124         features = btrfs_super_compat_ro_flags(disk_super) &
3125                 ~BTRFS_FEATURE_COMPAT_RO_SUPP;
3126         if (!sb_rdonly(sb) && features) {
3127                 btrfs_err(fs_info,
3128         "cannot mount read-write because of unsupported optional features (0x%llx)",
3129                        features);
3130                 err = -EINVAL;
3131                 goto fail_alloc;
3132         }
3133         /*
3134          * We have unsupported RO compat features, although RO mounted, we
3135          * should not cause any metadata write, including log replay.
3136          * Or we could screw up whatever the new feature requires.
3137          */
3138         if (unlikely(features && btrfs_super_log_root(disk_super) &&
3139                      !btrfs_test_opt(fs_info, NOLOGREPLAY))) {
3140                 btrfs_err(fs_info,
3141 "cannot replay dirty log with unsupported compat_ro features (0x%llx), try rescue=nologreplay",
3142                           features);
3143                 err = -EINVAL;
3144                 goto fail_alloc;
3145         }
3146
3147
3148         ret = btrfs_init_workqueues(fs_info, fs_devices);
3149         if (ret) {
3150                 err = ret;
3151                 goto fail_sb_buffer;
3152         }
3153
3154         sb->s_bdi->ra_pages *= btrfs_super_num_devices(disk_super);
3155         sb->s_bdi->ra_pages = max(sb->s_bdi->ra_pages, SZ_4M / PAGE_SIZE);
3156
3157         sb->s_blocksize = sectorsize;
3158         sb->s_blocksize_bits = blksize_bits(sectorsize);
3159         memcpy(&sb->s_uuid, fs_info->fs_devices->fsid, BTRFS_FSID_SIZE);
3160
3161         mutex_lock(&fs_info->chunk_mutex);
3162         ret = btrfs_read_sys_array(fs_info);
3163         mutex_unlock(&fs_info->chunk_mutex);
3164         if (ret) {
3165                 btrfs_err(fs_info, "failed to read the system array: %d", ret);
3166                 goto fail_sb_buffer;
3167         }
3168
3169         generation = btrfs_super_chunk_root_generation(disk_super);
3170         level = btrfs_super_chunk_root_level(disk_super);
3171
3172         chunk_root->node = read_tree_block(fs_info,
3173                                            btrfs_super_chunk_root(disk_super),
3174                                            generation, level, NULL);
3175         if (IS_ERR(chunk_root->node) ||
3176             !extent_buffer_uptodate(chunk_root->node)) {
3177                 btrfs_err(fs_info, "failed to read chunk root");
3178                 if (!IS_ERR(chunk_root->node))
3179                         free_extent_buffer(chunk_root->node);
3180                 chunk_root->node = NULL;
3181                 goto fail_tree_roots;
3182         }
3183         btrfs_set_root_node(&chunk_root->root_item, chunk_root->node);
3184         chunk_root->commit_root = btrfs_root_node(chunk_root);
3185
3186         read_extent_buffer(chunk_root->node, fs_info->chunk_tree_uuid,
3187                            offsetof(struct btrfs_header, chunk_tree_uuid),
3188                            BTRFS_UUID_SIZE);
3189
3190         ret = btrfs_read_chunk_tree(fs_info);
3191         if (ret) {
3192                 btrfs_err(fs_info, "failed to read chunk tree: %d", ret);
3193                 goto fail_tree_roots;
3194         }
3195
3196         /*
3197          * Keep the devid that is marked to be the target device for the
3198          * device replace procedure
3199          */
3200         btrfs_free_extra_devids(fs_devices, 0);
3201
3202         if (!fs_devices->latest_bdev) {
3203                 btrfs_err(fs_info, "failed to read devices");
3204                 goto fail_tree_roots;
3205         }
3206
3207         ret = init_tree_roots(fs_info);
3208         if (ret)
3209                 goto fail_tree_roots;
3210
3211         /*
3212          * If we have a uuid root and we're not being told to rescan we need to
3213          * check the generation here so we can set the
3214          * BTRFS_FS_UPDATE_UUID_TREE_GEN bit.  Otherwise we could commit the
3215          * transaction during a balance or the log replay without updating the
3216          * uuid generation, and then if we crash we would rescan the uuid tree,
3217          * even though it was perfectly fine.
3218          */
3219         if (fs_info->uuid_root && !btrfs_test_opt(fs_info, RESCAN_UUID_TREE) &&
3220             fs_info->generation == btrfs_super_uuid_tree_generation(disk_super))
3221                 set_bit(BTRFS_FS_UPDATE_UUID_TREE_GEN, &fs_info->flags);
3222
3223         ret = btrfs_verify_dev_extents(fs_info);
3224         if (ret) {
3225                 btrfs_err(fs_info,
3226                           "failed to verify dev extents against chunks: %d",
3227                           ret);
3228                 goto fail_block_groups;
3229         }
3230         ret = btrfs_recover_balance(fs_info);
3231         if (ret) {
3232                 btrfs_err(fs_info, "failed to recover balance: %d", ret);
3233                 goto fail_block_groups;
3234         }
3235
3236         ret = btrfs_init_dev_stats(fs_info);
3237         if (ret) {
3238                 btrfs_err(fs_info, "failed to init dev_stats: %d", ret);
3239                 goto fail_block_groups;
3240         }
3241
3242         ret = btrfs_init_dev_replace(fs_info);
3243         if (ret) {
3244                 btrfs_err(fs_info, "failed to init dev_replace: %d", ret);
3245                 goto fail_block_groups;
3246         }
3247
3248         btrfs_free_extra_devids(fs_devices, 1);
3249
3250         ret = btrfs_sysfs_add_fsid(fs_devices);
3251         if (ret) {
3252                 btrfs_err(fs_info, "failed to init sysfs fsid interface: %d",
3253                                 ret);
3254                 goto fail_block_groups;
3255         }
3256
3257         ret = btrfs_sysfs_add_mounted(fs_info);
3258         if (ret) {
3259                 btrfs_err(fs_info, "failed to init sysfs interface: %d", ret);
3260                 goto fail_fsdev_sysfs;
3261         }
3262
3263         ret = btrfs_init_space_info(fs_info);
3264         if (ret) {
3265                 btrfs_err(fs_info, "failed to initialize space info: %d", ret);
3266                 goto fail_sysfs;
3267         }
3268
3269         ret = btrfs_read_block_groups(fs_info);
3270         if (ret) {
3271                 btrfs_err(fs_info, "failed to read block groups: %d", ret);
3272                 goto fail_sysfs;
3273         }
3274
3275         if (!sb_rdonly(sb) && fs_info->fs_devices->missing_devices &&
3276             !btrfs_check_rw_degradable(fs_info, NULL)) {
3277                 btrfs_warn(fs_info,
3278                 "writable mount is not allowed due to too many missing devices");
3279                 goto fail_sysfs;
3280         }
3281
3282         fs_info->cleaner_kthread = kthread_run(cleaner_kthread, tree_root,
3283                                                "btrfs-cleaner");
3284         if (IS_ERR(fs_info->cleaner_kthread))
3285                 goto fail_sysfs;
3286
3287         fs_info->transaction_kthread = kthread_run(transaction_kthread,
3288                                                    tree_root,
3289                                                    "btrfs-transaction");
3290         if (IS_ERR(fs_info->transaction_kthread))
3291                 goto fail_cleaner;
3292
3293         if (!btrfs_test_opt(fs_info, NOSSD) &&
3294             !fs_info->fs_devices->rotating) {
3295                 btrfs_set_and_info(fs_info, SSD, "enabling ssd optimizations");
3296         }
3297
3298         /*
3299          * Mount does not set all options immediately, we can do it now and do
3300          * not have to wait for transaction commit
3301          */
3302         btrfs_apply_pending_changes(fs_info);
3303
3304 #ifdef CONFIG_BTRFS_FS_CHECK_INTEGRITY
3305         if (btrfs_test_opt(fs_info, CHECK_INTEGRITY)) {
3306                 ret = btrfsic_mount(fs_info, fs_devices,
3307                                     btrfs_test_opt(fs_info,
3308                                         CHECK_INTEGRITY_INCLUDING_EXTENT_DATA) ?
3309                                     1 : 0,
3310                                     fs_info->check_integrity_print_mask);
3311                 if (ret)
3312                         btrfs_warn(fs_info,
3313                                 "failed to initialize integrity check module: %d",
3314                                 ret);
3315         }
3316 #endif
3317         ret = btrfs_read_qgroup_config(fs_info);
3318         if (ret)
3319                 goto fail_trans_kthread;
3320
3321         if (btrfs_build_ref_tree(fs_info))
3322                 btrfs_err(fs_info, "couldn't build ref tree");
3323
3324         /* do not make disk changes in broken FS or nologreplay is given */
3325         if (btrfs_super_log_root(disk_super) != 0 &&
3326             !btrfs_test_opt(fs_info, NOLOGREPLAY)) {
3327                 btrfs_info(fs_info, "start tree-log replay");
3328                 ret = btrfs_replay_log(fs_info, fs_devices);
3329                 if (ret) {
3330                         err = ret;
3331                         goto fail_qgroup;
3332                 }
3333         }
3334
3335         ret = btrfs_find_orphan_roots(fs_info);
3336         if (ret)
3337                 goto fail_qgroup;
3338
3339         if (!sb_rdonly(sb)) {
3340                 ret = btrfs_cleanup_fs_roots(fs_info);
3341                 if (ret)
3342                         goto fail_qgroup;
3343
3344                 mutex_lock(&fs_info->cleaner_mutex);
3345                 ret = btrfs_recover_relocation(tree_root);
3346                 mutex_unlock(&fs_info->cleaner_mutex);
3347                 if (ret < 0) {
3348                         btrfs_warn(fs_info, "failed to recover relocation: %d",
3349                                         ret);
3350                         err = -EINVAL;
3351                         goto fail_qgroup;
3352                 }
3353         }
3354
3355         fs_info->fs_root = btrfs_get_fs_root(fs_info, BTRFS_FS_TREE_OBJECTID, true);
3356         if (IS_ERR(fs_info->fs_root)) {
3357                 err = PTR_ERR(fs_info->fs_root);
3358                 btrfs_warn(fs_info, "failed to read fs tree: %d", err);
3359                 fs_info->fs_root = NULL;
3360                 goto fail_qgroup;
3361         }
3362
3363         if (sb_rdonly(sb))
3364                 return 0;
3365
3366         if (btrfs_test_opt(fs_info, CLEAR_CACHE) &&
3367             btrfs_fs_compat_ro(fs_info, FREE_SPACE_TREE)) {
3368                 clear_free_space_tree = 1;
3369         } else if (btrfs_fs_compat_ro(fs_info, FREE_SPACE_TREE) &&
3370                    !btrfs_fs_compat_ro(fs_info, FREE_SPACE_TREE_VALID)) {
3371                 btrfs_warn(fs_info, "free space tree is invalid");
3372                 clear_free_space_tree = 1;
3373         }
3374
3375         if (clear_free_space_tree) {
3376                 btrfs_info(fs_info, "clearing free space tree");
3377                 ret = btrfs_clear_free_space_tree(fs_info);
3378                 if (ret) {
3379                         btrfs_warn(fs_info,
3380                                    "failed to clear free space tree: %d", ret);
3381                         close_ctree(fs_info);
3382                         return ret;
3383                 }
3384         }
3385
3386         if (btrfs_test_opt(fs_info, FREE_SPACE_TREE) &&
3387             !btrfs_fs_compat_ro(fs_info, FREE_SPACE_TREE)) {
3388                 btrfs_info(fs_info, "creating free space tree");
3389                 ret = btrfs_create_free_space_tree(fs_info);
3390                 if (ret) {
3391                         btrfs_warn(fs_info,
3392                                 "failed to create free space tree: %d", ret);
3393                         close_ctree(fs_info);
3394                         return ret;
3395                 }
3396         }
3397
3398         down_read(&fs_info->cleanup_work_sem);
3399         if ((ret = btrfs_orphan_cleanup(fs_info->fs_root)) ||
3400             (ret = btrfs_orphan_cleanup(fs_info->tree_root))) {
3401                 up_read(&fs_info->cleanup_work_sem);
3402                 close_ctree(fs_info);
3403                 return ret;
3404         }
3405         up_read(&fs_info->cleanup_work_sem);
3406
3407         ret = btrfs_resume_balance_async(fs_info);
3408         if (ret) {
3409                 btrfs_warn(fs_info, "failed to resume balance: %d", ret);
3410                 close_ctree(fs_info);
3411                 return ret;
3412         }
3413
3414         ret = btrfs_resume_dev_replace_async(fs_info);
3415         if (ret) {
3416                 btrfs_warn(fs_info, "failed to resume device replace: %d", ret);
3417                 close_ctree(fs_info);
3418                 return ret;
3419         }
3420
3421         btrfs_qgroup_rescan_resume(fs_info);
3422         btrfs_discard_resume(fs_info);
3423
3424         if (!fs_info->uuid_root) {
3425                 btrfs_info(fs_info, "creating UUID tree");
3426                 ret = btrfs_create_uuid_tree(fs_info);
3427                 if (ret) {
3428                         btrfs_warn(fs_info,
3429                                 "failed to create the UUID tree: %d", ret);
3430                         close_ctree(fs_info);
3431                         return ret;
3432                 }
3433         } else if (btrfs_test_opt(fs_info, RESCAN_UUID_TREE) ||
3434                    fs_info->generation !=
3435                                 btrfs_super_uuid_tree_generation(disk_super)) {
3436                 btrfs_info(fs_info, "checking UUID tree");
3437                 ret = btrfs_check_uuid_tree(fs_info);
3438                 if (ret) {
3439                         btrfs_warn(fs_info,
3440                                 "failed to check the UUID tree: %d", ret);
3441                         close_ctree(fs_info);
3442                         return ret;
3443                 }
3444         }
3445         set_bit(BTRFS_FS_OPEN, &fs_info->flags);
3446
3447         /*
3448          * backuproot only affect mount behavior, and if open_ctree succeeded,
3449          * no need to keep the flag
3450          */
3451         btrfs_clear_opt(fs_info->mount_opt, USEBACKUPROOT);
3452
3453         return 0;
3454
3455 fail_qgroup:
3456         btrfs_free_qgroup_config(fs_info);
3457 fail_trans_kthread:
3458         kthread_stop(fs_info->transaction_kthread);
3459         btrfs_cleanup_transaction(fs_info);
3460         btrfs_free_fs_roots(fs_info);
3461 fail_cleaner:
3462         kthread_stop(fs_info->cleaner_kthread);
3463
3464         /*
3465          * make sure we're done with the btree inode before we stop our
3466          * kthreads
3467          */
3468         filemap_write_and_wait(fs_info->btree_inode->i_mapping);
3469
3470 fail_sysfs:
3471         btrfs_sysfs_remove_mounted(fs_info);
3472
3473 fail_fsdev_sysfs:
3474         btrfs_sysfs_remove_fsid(fs_info->fs_devices);
3475
3476 fail_block_groups:
3477         btrfs_put_block_group_cache(fs_info);
3478
3479 fail_tree_roots:
3480         if (fs_info->data_reloc_root)
3481                 btrfs_drop_and_free_fs_root(fs_info, fs_info->data_reloc_root);
3482         free_root_pointers(fs_info, true);
3483         invalidate_inode_pages2(fs_info->btree_inode->i_mapping);
3484
3485 fail_sb_buffer:
3486         btrfs_stop_all_workers(fs_info);
3487         btrfs_free_block_groups(fs_info);
3488 fail_alloc:
3489         btrfs_mapping_tree_free(&fs_info->mapping_tree);
3490
3491         iput(fs_info->btree_inode);
3492 fail:
3493         btrfs_close_devices(fs_info->fs_devices);
3494         return err;
3495 }
3496 ALLOW_ERROR_INJECTION(open_ctree, ERRNO);
3497
3498 static void btrfs_end_super_write(struct bio *bio)
3499 {
3500         struct btrfs_device *device = bio->bi_private;
3501         struct bio_vec *bvec;
3502         struct bvec_iter_all iter_all;
3503         struct page *page;
3504
3505         bio_for_each_segment_all(bvec, bio, iter_all) {
3506                 page = bvec->bv_page;
3507
3508                 if (bio->bi_status) {
3509                         btrfs_warn_rl_in_rcu(device->fs_info,
3510                                 "lost page write due to IO error on %s (%d)",
3511                                 rcu_str_deref(device->name),
3512                                 blk_status_to_errno(bio->bi_status));
3513                         ClearPageUptodate(page);
3514                         SetPageError(page);
3515                         btrfs_dev_stat_inc_and_print(device,
3516                                                      BTRFS_DEV_STAT_WRITE_ERRS);
3517                 } else {
3518                         SetPageUptodate(page);
3519                 }
3520
3521                 put_page(page);
3522                 unlock_page(page);
3523         }
3524
3525         bio_put(bio);
3526 }
3527
3528 struct btrfs_super_block *btrfs_read_dev_one_super(struct block_device *bdev,
3529                                                    int copy_num)
3530 {
3531         struct btrfs_super_block *super;
3532         struct page *page;
3533         u64 bytenr;
3534         struct address_space *mapping = bdev->bd_inode->i_mapping;
3535
3536         bytenr = btrfs_sb_offset(copy_num);
3537         if (bytenr + BTRFS_SUPER_INFO_SIZE >= i_size_read(bdev->bd_inode))
3538                 return ERR_PTR(-EINVAL);
3539
3540         page = read_cache_page_gfp(mapping, bytenr >> PAGE_SHIFT, GFP_NOFS);
3541         if (IS_ERR(page))
3542                 return ERR_CAST(page);
3543
3544         super = page_address(page);
3545         if (btrfs_super_magic(super) != BTRFS_MAGIC) {
3546                 btrfs_release_disk_super(super);
3547                 return ERR_PTR(-ENODATA);
3548         }
3549
3550         if (btrfs_super_bytenr(super) != bytenr) {
3551                 btrfs_release_disk_super(super);
3552                 return ERR_PTR(-EINVAL);
3553         }
3554
3555         return super;
3556 }
3557
3558
3559 struct btrfs_super_block *btrfs_read_dev_super(struct block_device *bdev)
3560 {
3561         struct btrfs_super_block *super, *latest = NULL;
3562         int i;
3563         u64 transid = 0;
3564
3565         /* we would like to check all the supers, but that would make
3566          * a btrfs mount succeed after a mkfs from a different FS.
3567          * So, we need to add a special mount option to scan for
3568          * later supers, using BTRFS_SUPER_MIRROR_MAX instead
3569          */
3570         for (i = 0; i < 1; i++) {
3571                 super = btrfs_read_dev_one_super(bdev, i);
3572                 if (IS_ERR(super))
3573                         continue;
3574
3575                 if (!latest || btrfs_super_generation(super) > transid) {
3576                         if (latest)
3577                                 btrfs_release_disk_super(super);
3578
3579                         latest = super;
3580                         transid = btrfs_super_generation(super);
3581                 }
3582         }
3583
3584         return super;
3585 }
3586
3587 /*
3588  * Write superblock @sb to the @device. Do not wait for completion, all the
3589  * pages we use for writing are locked.
3590  *
3591  * Write @max_mirrors copies of the superblock, where 0 means default that fit
3592  * the expected device size at commit time. Note that max_mirrors must be
3593  * same for write and wait phases.
3594  *
3595  * Return number of errors when page is not found or submission fails.
3596  */
3597 static int write_dev_supers(struct btrfs_device *device,
3598                             struct btrfs_super_block *sb, int max_mirrors)
3599 {
3600         struct btrfs_fs_info *fs_info = device->fs_info;
3601         struct address_space *mapping = device->bdev->bd_inode->i_mapping;
3602         SHASH_DESC_ON_STACK(shash, fs_info->csum_shash);
3603         int i;
3604         int errors = 0;
3605         u64 bytenr;
3606
3607         if (max_mirrors == 0)
3608                 max_mirrors = BTRFS_SUPER_MIRROR_MAX;
3609
3610         shash->tfm = fs_info->csum_shash;
3611
3612         for (i = 0; i < max_mirrors; i++) {
3613                 struct page *page;
3614                 struct bio *bio;
3615                 struct btrfs_super_block *disk_super;
3616
3617                 bytenr = btrfs_sb_offset(i);
3618                 if (bytenr + BTRFS_SUPER_INFO_SIZE >=
3619                     device->commit_total_bytes)
3620                         break;
3621
3622                 btrfs_set_super_bytenr(sb, bytenr);
3623
3624                 crypto_shash_digest(shash, (const char *)sb + BTRFS_CSUM_SIZE,
3625                                     BTRFS_SUPER_INFO_SIZE - BTRFS_CSUM_SIZE,
3626                                     sb->csum);
3627
3628                 page = find_or_create_page(mapping, bytenr >> PAGE_SHIFT,
3629                                            GFP_NOFS);
3630                 if (!page) {
3631                         btrfs_err(device->fs_info,
3632                             "couldn't get super block page for bytenr %llu",
3633                             bytenr);
3634                         errors++;
3635                         continue;
3636                 }
3637
3638                 /* Bump the refcount for wait_dev_supers() */
3639                 get_page(page);
3640
3641                 disk_super = page_address(page);
3642                 memcpy(disk_super, sb, BTRFS_SUPER_INFO_SIZE);
3643
3644                 /*
3645                  * Directly use bios here instead of relying on the page cache
3646                  * to do I/O, so we don't lose the ability to do integrity
3647                  * checking.
3648                  */
3649                 bio = bio_alloc(GFP_NOFS, 1);
3650                 bio_set_dev(bio, device->bdev);
3651                 bio->bi_iter.bi_sector = bytenr >> SECTOR_SHIFT;
3652                 bio->bi_private = device;
3653                 bio->bi_end_io = btrfs_end_super_write;
3654                 __bio_add_page(bio, page, BTRFS_SUPER_INFO_SIZE,
3655                                offset_in_page(bytenr));
3656
3657                 /*
3658                  * We FUA only the first super block.  The others we allow to
3659                  * go down lazy and there's a short window where the on-disk
3660                  * copies might still contain the older version.
3661                  */
3662                 bio->bi_opf = REQ_OP_WRITE | REQ_SYNC | REQ_META | REQ_PRIO;
3663                 if (i == 0 && !btrfs_test_opt(device->fs_info, NOBARRIER))
3664                         bio->bi_opf |= REQ_FUA;
3665
3666                 btrfsic_submit_bio(bio);
3667         }
3668         return errors < i ? 0 : -1;
3669 }
3670
3671 /*
3672  * Wait for write completion of superblocks done by write_dev_supers,
3673  * @max_mirrors same for write and wait phases.
3674  *
3675  * Return number of errors when page is not found or not marked up to
3676  * date.
3677  */
3678 static int wait_dev_supers(struct btrfs_device *device, int max_mirrors)
3679 {
3680         int i;
3681         int errors = 0;
3682         bool primary_failed = false;
3683         u64 bytenr;
3684
3685         if (max_mirrors == 0)
3686                 max_mirrors = BTRFS_SUPER_MIRROR_MAX;
3687
3688         for (i = 0; i < max_mirrors; i++) {
3689                 struct page *page;
3690
3691                 bytenr = btrfs_sb_offset(i);
3692                 if (bytenr + BTRFS_SUPER_INFO_SIZE >=
3693                     device->commit_total_bytes)
3694                         break;
3695
3696                 page = find_get_page(device->bdev->bd_inode->i_mapping,
3697                                      bytenr >> PAGE_SHIFT);
3698                 if (!page) {
3699                         errors++;
3700                         if (i == 0)
3701                                 primary_failed = true;
3702                         continue;
3703                 }
3704                 /* Page is submitted locked and unlocked once the IO completes */
3705                 wait_on_page_locked(page);
3706                 if (PageError(page)) {
3707                         errors++;
3708                         if (i == 0)
3709                                 primary_failed = true;
3710                 }
3711
3712                 /* Drop our reference */
3713                 put_page(page);
3714
3715                 /* Drop the reference from the writing run */
3716                 put_page(page);
3717         }
3718
3719         /* log error, force error return */
3720         if (primary_failed) {
3721                 btrfs_err(device->fs_info, "error writing primary super block to device %llu",
3722                           device->devid);
3723                 return -1;
3724         }
3725
3726         return errors < i ? 0 : -1;
3727 }
3728
3729 /*
3730  * endio for the write_dev_flush, this will wake anyone waiting
3731  * for the barrier when it is done
3732  */
3733 static void btrfs_end_empty_barrier(struct bio *bio)
3734 {
3735         complete(bio->bi_private);
3736 }
3737
3738 /*
3739  * Submit a flush request to the device if it supports it. Error handling is
3740  * done in the waiting counterpart.
3741  */
3742 static void write_dev_flush(struct btrfs_device *device)
3743 {
3744         struct bio *bio = device->flush_bio;
3745
3746 #ifndef CONFIG_BTRFS_FS_CHECK_INTEGRITY
3747         /*
3748          * When a disk has write caching disabled, we skip submission of a bio
3749          * with flush and sync requests before writing the superblock, since
3750          * it's not needed. However when the integrity checker is enabled, this
3751          * results in reports that there are metadata blocks referred by a
3752          * superblock that were not properly flushed. So don't skip the bio
3753          * submission only when the integrity checker is enabled for the sake
3754          * of simplicity, since this is a debug tool and not meant for use in
3755          * non-debug builds.
3756          */
3757         struct request_queue *q = bdev_get_queue(device->bdev);
3758         if (!test_bit(QUEUE_FLAG_WC, &q->queue_flags))
3759                 return;
3760 #endif
3761
3762         bio_reset(bio);
3763         bio->bi_end_io = btrfs_end_empty_barrier;
3764         bio_set_dev(bio, device->bdev);
3765         bio->bi_opf = REQ_OP_WRITE | REQ_SYNC | REQ_PREFLUSH;
3766         init_completion(&device->flush_wait);
3767         bio->bi_private = &device->flush_wait;
3768
3769         btrfsic_submit_bio(bio);
3770         set_bit(BTRFS_DEV_STATE_FLUSH_SENT, &device->dev_state);
3771 }
3772
3773 /*
3774  * If the flush bio has been submitted by write_dev_flush, wait for it.
3775  */
3776 static blk_status_t wait_dev_flush(struct btrfs_device *device)
3777 {
3778         struct bio *bio = device->flush_bio;
3779
3780         if (!test_bit(BTRFS_DEV_STATE_FLUSH_SENT, &device->dev_state))
3781                 return BLK_STS_OK;
3782
3783         clear_bit(BTRFS_DEV_STATE_FLUSH_SENT, &device->dev_state);
3784         wait_for_completion_io(&device->flush_wait);
3785
3786         return bio->bi_status;
3787 }
3788
3789 static int check_barrier_error(struct btrfs_fs_info *fs_info)
3790 {
3791         if (!btrfs_check_rw_degradable(fs_info, NULL))
3792                 return -EIO;
3793         return 0;
3794 }
3795
3796 /*
3797  * send an empty flush down to each device in parallel,
3798  * then wait for them
3799  */
3800 static int barrier_all_devices(struct btrfs_fs_info *info)
3801 {
3802         struct list_head *head;
3803         struct btrfs_device *dev;
3804         int errors_wait = 0;
3805         blk_status_t ret;
3806
3807         lockdep_assert_held(&info->fs_devices->device_list_mutex);
3808         /* send down all the barriers */
3809         head = &info->fs_devices->devices;
3810         list_for_each_entry(dev, head, dev_list) {
3811                 if (test_bit(BTRFS_DEV_STATE_MISSING, &dev->dev_state))
3812                         continue;
3813                 if (!dev->bdev)
3814                         continue;
3815                 if (!test_bit(BTRFS_DEV_STATE_IN_FS_METADATA, &dev->dev_state) ||
3816                     !test_bit(BTRFS_DEV_STATE_WRITEABLE, &dev->dev_state))
3817                         continue;
3818
3819                 write_dev_flush(dev);
3820                 dev->last_flush_error = BLK_STS_OK;
3821         }
3822
3823         /* wait for all the barriers */
3824         list_for_each_entry(dev, head, dev_list) {
3825                 if (test_bit(BTRFS_DEV_STATE_MISSING, &dev->dev_state))
3826                         continue;
3827                 if (!dev->bdev) {
3828                         errors_wait++;
3829                         continue;
3830                 }
3831                 if (!test_bit(BTRFS_DEV_STATE_IN_FS_METADATA, &dev->dev_state) ||
3832                     !test_bit(BTRFS_DEV_STATE_WRITEABLE, &dev->dev_state))
3833                         continue;
3834
3835                 ret = wait_dev_flush(dev);
3836                 if (ret) {
3837                         dev->last_flush_error = ret;
3838                         btrfs_dev_stat_inc_and_print(dev,
3839                                         BTRFS_DEV_STAT_FLUSH_ERRS);
3840                         errors_wait++;
3841                 }
3842         }
3843
3844         if (errors_wait) {
3845                 /*
3846                  * At some point we need the status of all disks
3847                  * to arrive at the volume status. So error checking
3848                  * is being pushed to a separate loop.
3849                  */
3850                 return check_barrier_error(info);
3851         }
3852         return 0;
3853 }
3854
3855 int btrfs_get_num_tolerated_disk_barrier_failures(u64 flags)
3856 {
3857         int raid_type;
3858         int min_tolerated = INT_MAX;
3859
3860         if ((flags & BTRFS_BLOCK_GROUP_PROFILE_MASK) == 0 ||
3861             (flags & BTRFS_AVAIL_ALLOC_BIT_SINGLE))
3862                 min_tolerated = min_t(int, min_tolerated,
3863                                     btrfs_raid_array[BTRFS_RAID_SINGLE].
3864                                     tolerated_failures);
3865
3866         for (raid_type = 0; raid_type < BTRFS_NR_RAID_TYPES; raid_type++) {
3867                 if (raid_type == BTRFS_RAID_SINGLE)
3868                         continue;
3869                 if (!(flags & btrfs_raid_array[raid_type].bg_flag))
3870                         continue;
3871                 min_tolerated = min_t(int, min_tolerated,
3872                                     btrfs_raid_array[raid_type].
3873                                     tolerated_failures);
3874         }
3875
3876         if (min_tolerated == INT_MAX) {
3877                 pr_warn("BTRFS: unknown raid flag: %llu", flags);
3878                 min_tolerated = 0;
3879         }
3880
3881         return min_tolerated;
3882 }
3883
3884 int write_all_supers(struct btrfs_fs_info *fs_info, int max_mirrors)
3885 {
3886         struct list_head *head;
3887         struct btrfs_device *dev;
3888         struct btrfs_super_block *sb;
3889         struct btrfs_dev_item *dev_item;
3890         int ret;
3891         int do_barriers;
3892         int max_errors;
3893         int total_errors = 0;
3894         u64 flags;
3895
3896         do_barriers = !btrfs_test_opt(fs_info, NOBARRIER);
3897
3898         /*
3899          * max_mirrors == 0 indicates we're from commit_transaction,
3900          * not from fsync where the tree roots in fs_info have not
3901          * been consistent on disk.
3902          */
3903         if (max_mirrors == 0)
3904                 backup_super_roots(fs_info);
3905
3906         sb = fs_info->super_for_commit;
3907         dev_item = &sb->dev_item;
3908
3909         mutex_lock(&fs_info->fs_devices->device_list_mutex);
3910         head = &fs_info->fs_devices->devices;
3911         max_errors = btrfs_super_num_devices(fs_info->super_copy) - 1;
3912
3913         if (do_barriers) {
3914                 ret = barrier_all_devices(fs_info);
3915                 if (ret) {
3916                         mutex_unlock(
3917                                 &fs_info->fs_devices->device_list_mutex);
3918                         btrfs_handle_fs_error(fs_info, ret,
3919                                               "errors while submitting device barriers.");
3920                         return ret;
3921                 }
3922         }
3923
3924         list_for_each_entry(dev, head, dev_list) {
3925                 if (!dev->bdev) {
3926                         total_errors++;
3927                         continue;
3928                 }
3929                 if (!test_bit(BTRFS_DEV_STATE_IN_FS_METADATA, &dev->dev_state) ||
3930                     !test_bit(BTRFS_DEV_STATE_WRITEABLE, &dev->dev_state))
3931                         continue;
3932
3933                 btrfs_set_stack_device_generation(dev_item, 0);
3934                 btrfs_set_stack_device_type(dev_item, dev->type);
3935                 btrfs_set_stack_device_id(dev_item, dev->devid);
3936                 btrfs_set_stack_device_total_bytes(dev_item,
3937                                                    dev->commit_total_bytes);
3938                 btrfs_set_stack_device_bytes_used(dev_item,
3939                                                   dev->commit_bytes_used);
3940                 btrfs_set_stack_device_io_align(dev_item, dev->io_align);
3941                 btrfs_set_stack_device_io_width(dev_item, dev->io_width);
3942                 btrfs_set_stack_device_sector_size(dev_item, dev->sector_size);
3943                 memcpy(dev_item->uuid, dev->uuid, BTRFS_UUID_SIZE);
3944                 memcpy(dev_item->fsid, dev->fs_devices->metadata_uuid,
3945                        BTRFS_FSID_SIZE);
3946
3947                 flags = btrfs_super_flags(sb);
3948                 btrfs_set_super_flags(sb, flags | BTRFS_HEADER_FLAG_WRITTEN);
3949
3950                 ret = btrfs_validate_write_super(fs_info, sb);
3951                 if (ret < 0) {
3952                         mutex_unlock(&fs_info->fs_devices->device_list_mutex);
3953                         btrfs_handle_fs_error(fs_info, -EUCLEAN,
3954                                 "unexpected superblock corruption detected");
3955                         return -EUCLEAN;
3956                 }
3957
3958                 ret = write_dev_supers(dev, sb, max_mirrors);
3959                 if (ret)
3960                         total_errors++;
3961         }
3962         if (total_errors > max_errors) {
3963                 btrfs_err(fs_info, "%d errors while writing supers",
3964                           total_errors);
3965                 mutex_unlock(&fs_info->fs_devices->device_list_mutex);
3966
3967                 /* FUA is masked off if unsupported and can't be the reason */
3968                 btrfs_handle_fs_error(fs_info, -EIO,
3969                                       "%d errors while writing supers",
3970                                       total_errors);
3971                 return -EIO;
3972         }
3973
3974         total_errors = 0;
3975         list_for_each_entry(dev, head, dev_list) {
3976                 if (!dev->bdev)
3977                         continue;
3978                 if (!test_bit(BTRFS_DEV_STATE_IN_FS_METADATA, &dev->dev_state) ||
3979                     !test_bit(BTRFS_DEV_STATE_WRITEABLE, &dev->dev_state))
3980                         continue;
3981
3982                 ret = wait_dev_supers(dev, max_mirrors);
3983                 if (ret)
3984                         total_errors++;
3985         }
3986         mutex_unlock(&fs_info->fs_devices->device_list_mutex);
3987         if (total_errors > max_errors) {
3988                 btrfs_handle_fs_error(fs_info, -EIO,
3989                                       "%d errors while writing supers",
3990                                       total_errors);
3991                 return -EIO;
3992         }
3993         return 0;
3994 }
3995
3996 /* Drop a fs root from the radix tree and free it. */
3997 void btrfs_drop_and_free_fs_root(struct btrfs_fs_info *fs_info,
3998                                   struct btrfs_root *root)
3999 {
4000         bool drop_ref = false;
4001
4002         spin_lock(&fs_info->fs_roots_radix_lock);
4003         radix_tree_delete(&fs_info->fs_roots_radix,
4004                           (unsigned long)root->root_key.objectid);
4005         if (test_and_clear_bit(BTRFS_ROOT_IN_RADIX, &root->state))
4006                 drop_ref = true;
4007         spin_unlock(&fs_info->fs_roots_radix_lock);
4008
4009         if (test_bit(BTRFS_FS_STATE_ERROR, &fs_info->fs_state)) {
4010                 ASSERT(root->log_root == NULL);
4011                 if (root->reloc_root) {
4012                         btrfs_put_root(root->reloc_root);
4013                         root->reloc_root = NULL;
4014                 }
4015         }
4016
4017         if (root->free_ino_pinned)
4018                 __btrfs_remove_free_space_cache(root->free_ino_pinned);
4019         if (root->free_ino_ctl)
4020                 __btrfs_remove_free_space_cache(root->free_ino_ctl);
4021         if (root->ino_cache_inode) {
4022                 iput(root->ino_cache_inode);
4023                 root->ino_cache_inode = NULL;
4024         }
4025         if (drop_ref)
4026                 btrfs_put_root(root);
4027 }
4028
4029 int btrfs_cleanup_fs_roots(struct btrfs_fs_info *fs_info)
4030 {
4031         u64 root_objectid = 0;
4032         struct btrfs_root *gang[8];
4033         int i = 0;
4034         int err = 0;
4035         unsigned int ret = 0;
4036
4037         while (1) {
4038                 spin_lock(&fs_info->fs_roots_radix_lock);
4039                 ret = radix_tree_gang_lookup(&fs_info->fs_roots_radix,
4040                                              (void **)gang, root_objectid,
4041                                              ARRAY_SIZE(gang));
4042                 if (!ret) {
4043                         spin_unlock(&fs_info->fs_roots_radix_lock);
4044                         break;
4045                 }
4046                 root_objectid = gang[ret - 1]->root_key.objectid + 1;
4047
4048                 for (i = 0; i < ret; i++) {
4049                         /* Avoid to grab roots in dead_roots */
4050                         if (btrfs_root_refs(&gang[i]->root_item) == 0) {
4051                                 gang[i] = NULL;
4052                                 continue;
4053                         }
4054                         /* grab all the search result for later use */
4055                         gang[i] = btrfs_grab_root(gang[i]);
4056                 }
4057                 spin_unlock(&fs_info->fs_roots_radix_lock);
4058
4059                 for (i = 0; i < ret; i++) {
4060                         if (!gang[i])
4061                                 continue;
4062                         root_objectid = gang[i]->root_key.objectid;
4063                         err = btrfs_orphan_cleanup(gang[i]);
4064                         if (err)
4065                                 break;
4066                         btrfs_put_root(gang[i]);
4067                 }
4068                 root_objectid++;
4069         }
4070
4071         /* release the uncleaned roots due to error */
4072         for (; i < ret; i++) {
4073                 if (gang[i])
4074                         btrfs_put_root(gang[i]);
4075         }
4076         return err;
4077 }
4078
4079 int btrfs_commit_super(struct btrfs_fs_info *fs_info)
4080 {
4081         struct btrfs_root *root = fs_info->tree_root;
4082         struct btrfs_trans_handle *trans;
4083
4084         mutex_lock(&fs_info->cleaner_mutex);
4085         btrfs_run_delayed_iputs(fs_info);
4086         mutex_unlock(&fs_info->cleaner_mutex);
4087         wake_up_process(fs_info->cleaner_kthread);
4088
4089         /* wait until ongoing cleanup work done */
4090         down_write(&fs_info->cleanup_work_sem);
4091         up_write(&fs_info->cleanup_work_sem);
4092
4093         trans = btrfs_join_transaction(root);
4094         if (IS_ERR(trans))
4095                 return PTR_ERR(trans);
4096         return btrfs_commit_transaction(trans);
4097 }
4098
4099 void __cold close_ctree(struct btrfs_fs_info *fs_info)
4100 {
4101         int ret;
4102
4103         set_bit(BTRFS_FS_CLOSING_START, &fs_info->flags);
4104         /*
4105          * We don't want the cleaner to start new transactions, add more delayed
4106          * iputs, etc. while we're closing. We can't use kthread_stop() yet
4107          * because that frees the task_struct, and the transaction kthread might
4108          * still try to wake up the cleaner.
4109          */
4110         kthread_park(fs_info->cleaner_kthread);
4111
4112         /* wait for the qgroup rescan worker to stop */
4113         btrfs_qgroup_wait_for_completion(fs_info, false);
4114
4115         /* wait for the uuid_scan task to finish */
4116         down(&fs_info->uuid_tree_rescan_sem);
4117         /* avoid complains from lockdep et al., set sem back to initial state */
4118         up(&fs_info->uuid_tree_rescan_sem);
4119
4120         /* pause restriper - we want to resume on mount */
4121         btrfs_pause_balance(fs_info);
4122
4123         btrfs_dev_replace_suspend_for_unmount(fs_info);
4124
4125         btrfs_scrub_cancel(fs_info);
4126
4127         /* wait for any defraggers to finish */
4128         wait_event(fs_info->transaction_wait,
4129                    (atomic_read(&fs_info->defrag_running) == 0));
4130
4131         /* clear out the rbtree of defraggable inodes */
4132         btrfs_cleanup_defrag_inodes(fs_info);
4133
4134         /*
4135          * After we parked the cleaner kthread, ordered extents may have
4136          * completed and created new delayed iputs. If one of the async reclaim
4137          * tasks is running and in the RUN_DELAYED_IPUTS flush state, then we
4138          * can hang forever trying to stop it, because if a delayed iput is
4139          * added after it ran btrfs_run_delayed_iputs() and before it called
4140          * btrfs_wait_on_delayed_iputs(), it will hang forever since there is
4141          * no one else to run iputs.
4142          *
4143          * So wait for all ongoing ordered extents to complete and then run
4144          * delayed iputs. This works because once we reach this point no one
4145          * can either create new ordered extents nor create delayed iputs
4146          * through some other means.
4147          *
4148          * Also note that btrfs_wait_ordered_roots() is not safe here, because
4149          * it waits for BTRFS_ORDERED_COMPLETE to be set on an ordered extent,
4150          * but the delayed iput for the respective inode is made only when doing
4151          * the final btrfs_put_ordered_extent() (which must happen at
4152          * btrfs_finish_ordered_io() when we are unmounting).
4153          */
4154         btrfs_flush_workqueue(fs_info->endio_write_workers);
4155         /* Ordered extents for free space inodes. */
4156         btrfs_flush_workqueue(fs_info->endio_freespace_worker);
4157         btrfs_run_delayed_iputs(fs_info);
4158
4159         cancel_work_sync(&fs_info->async_reclaim_work);
4160         cancel_work_sync(&fs_info->async_data_reclaim_work);
4161
4162         /* Cancel or finish ongoing discard work */
4163         btrfs_discard_cleanup(fs_info);
4164
4165         if (!sb_rdonly(fs_info->sb)) {
4166                 /*
4167                  * The cleaner kthread is stopped, so do one final pass over
4168                  * unused block groups.
4169                  */
4170                 btrfs_delete_unused_bgs(fs_info);
4171
4172                 /*
4173                  * There might be existing delayed inode workers still running
4174                  * and holding an empty delayed inode item. We must wait for
4175                  * them to complete first because they can create a transaction.
4176                  * This happens when someone calls btrfs_balance_delayed_items()
4177                  * and then a transaction commit runs the same delayed nodes
4178                  * before any delayed worker has done something with the nodes.
4179                  * We must wait for any worker here and not at transaction
4180                  * commit time since that could cause a deadlock.
4181                  * This is a very rare case.
4182                  */
4183                 btrfs_flush_workqueue(fs_info->delayed_workers);
4184
4185                 ret = btrfs_commit_super(fs_info);
4186                 if (ret)
4187                         btrfs_err(fs_info, "commit super ret %d", ret);
4188         }
4189
4190         if (test_bit(BTRFS_FS_STATE_ERROR, &fs_info->fs_state) ||
4191             test_bit(BTRFS_FS_STATE_TRANS_ABORTED, &fs_info->fs_state))
4192                 btrfs_error_commit_super(fs_info);
4193
4194         kthread_stop(fs_info->transaction_kthread);
4195         kthread_stop(fs_info->cleaner_kthread);
4196
4197         ASSERT(list_empty(&fs_info->delayed_iputs));
4198         set_bit(BTRFS_FS_CLOSING_DONE, &fs_info->flags);
4199
4200         if (btrfs_check_quota_leak(fs_info)) {
4201                 WARN_ON(IS_ENABLED(CONFIG_BTRFS_DEBUG));
4202                 btrfs_err(fs_info, "qgroup reserved space leaked");
4203         }
4204
4205         btrfs_free_qgroup_config(fs_info);
4206         ASSERT(list_empty(&fs_info->delalloc_roots));
4207
4208         if (percpu_counter_sum(&fs_info->delalloc_bytes)) {
4209                 btrfs_info(fs_info, "at unmount delalloc count %lld",
4210                        percpu_counter_sum(&fs_info->delalloc_bytes));
4211         }
4212
4213         if (percpu_counter_sum(&fs_info->dio_bytes))
4214                 btrfs_info(fs_info, "at unmount dio bytes count %lld",
4215                            percpu_counter_sum(&fs_info->dio_bytes));
4216
4217         btrfs_sysfs_remove_mounted(fs_info);
4218         btrfs_sysfs_remove_fsid(fs_info->fs_devices);
4219
4220         btrfs_put_block_group_cache(fs_info);
4221
4222         /*
4223          * we must make sure there is not any read request to
4224          * submit after we stopping all workers.
4225          */
4226         invalidate_inode_pages2(fs_info->btree_inode->i_mapping);
4227         btrfs_stop_all_workers(fs_info);
4228
4229         clear_bit(BTRFS_FS_OPEN, &fs_info->flags);
4230         free_root_pointers(fs_info, true);
4231         btrfs_free_fs_roots(fs_info);
4232
4233         /*
4234          * We must free the block groups after dropping the fs_roots as we could
4235          * have had an IO error and have left over tree log blocks that aren't
4236          * cleaned up until the fs roots are freed.  This makes the block group
4237          * accounting appear to be wrong because there's pending reserved bytes,
4238          * so make sure we do the block group cleanup afterwards.
4239          */
4240         btrfs_free_block_groups(fs_info);
4241
4242         iput(fs_info->btree_inode);
4243
4244 #ifdef CONFIG_BTRFS_FS_CHECK_INTEGRITY
4245         if (btrfs_test_opt(fs_info, CHECK_INTEGRITY))
4246                 btrfsic_unmount(fs_info->fs_devices);
4247 #endif
4248
4249         btrfs_mapping_tree_free(&fs_info->mapping_tree);
4250         btrfs_close_devices(fs_info->fs_devices);
4251 }
4252
4253 int btrfs_buffer_uptodate(struct extent_buffer *buf, u64 parent_transid,
4254                           int atomic)
4255 {
4256         int ret;
4257         struct inode *btree_inode = buf->pages[0]->mapping->host;
4258
4259         ret = extent_buffer_uptodate(buf);
4260         if (!ret)
4261                 return ret;
4262
4263         ret = verify_parent_transid(&BTRFS_I(btree_inode)->io_tree, buf,
4264                                     parent_transid, atomic);
4265         if (ret == -EAGAIN)
4266                 return ret;
4267         return !ret;
4268 }
4269
4270 void btrfs_mark_buffer_dirty(struct extent_buffer *buf)
4271 {
4272         struct btrfs_fs_info *fs_info;
4273         struct btrfs_root *root;
4274         u64 transid = btrfs_header_generation(buf);
4275         int was_dirty;
4276
4277 #ifdef CONFIG_BTRFS_FS_RUN_SANITY_TESTS
4278         /*
4279          * This is a fast path so only do this check if we have sanity tests
4280          * enabled.  Normal people shouldn't be using unmapped buffers as dirty
4281          * outside of the sanity tests.
4282          */
4283         if (unlikely(test_bit(EXTENT_BUFFER_UNMAPPED, &buf->bflags)))
4284                 return;
4285 #endif
4286         root = BTRFS_I(buf->pages[0]->mapping->host)->root;
4287         fs_info = root->fs_info;
4288         btrfs_assert_tree_locked(buf);
4289         if (transid != fs_info->generation)
4290                 WARN(1, KERN_CRIT "btrfs transid mismatch buffer %llu, found %llu running %llu\n",
4291                         buf->start, transid, fs_info->generation);
4292         was_dirty = set_extent_buffer_dirty(buf);
4293         if (!was_dirty)
4294                 percpu_counter_add_batch(&fs_info->dirty_metadata_bytes,
4295                                          buf->len,
4296                                          fs_info->dirty_metadata_batch);
4297 #ifdef CONFIG_BTRFS_FS_CHECK_INTEGRITY
4298         /*
4299          * Since btrfs_mark_buffer_dirty() can be called with item pointer set
4300          * but item data not updated.
4301          * So here we should only check item pointers, not item data.
4302          */
4303         if (btrfs_header_level(buf) == 0 &&
4304             btrfs_check_leaf_relaxed(buf)) {
4305                 btrfs_print_leaf(buf);
4306                 ASSERT(0);
4307         }
4308 #endif
4309 }
4310
4311 static void __btrfs_btree_balance_dirty(struct btrfs_fs_info *fs_info,
4312                                         int flush_delayed)
4313 {
4314         /*
4315          * looks as though older kernels can get into trouble with
4316          * this code, they end up stuck in balance_dirty_pages forever
4317          */
4318         int ret;
4319
4320         if (current->flags & PF_MEMALLOC)
4321                 return;
4322
4323         if (flush_delayed)
4324                 btrfs_balance_delayed_items(fs_info);
4325
4326         ret = __percpu_counter_compare(&fs_info->dirty_metadata_bytes,
4327                                      BTRFS_DIRTY_METADATA_THRESH,
4328                                      fs_info->dirty_metadata_batch);
4329         if (ret > 0) {
4330                 balance_dirty_pages_ratelimited(fs_info->btree_inode->i_mapping);
4331         }
4332 }
4333
4334 void btrfs_btree_balance_dirty(struct btrfs_fs_info *fs_info)
4335 {
4336         __btrfs_btree_balance_dirty(fs_info, 1);
4337 }
4338
4339 void btrfs_btree_balance_dirty_nodelay(struct btrfs_fs_info *fs_info)
4340 {
4341         __btrfs_btree_balance_dirty(fs_info, 0);
4342 }
4343
4344 int btrfs_read_buffer(struct extent_buffer *buf, u64 parent_transid, int level,
4345                       struct btrfs_key *first_key)
4346 {
4347         return btree_read_extent_buffer_pages(buf, parent_transid,
4348                                               level, first_key);
4349 }
4350
4351 static void btrfs_error_commit_super(struct btrfs_fs_info *fs_info)
4352 {
4353         /* cleanup FS via transaction */
4354         btrfs_cleanup_transaction(fs_info);
4355
4356         mutex_lock(&fs_info->cleaner_mutex);
4357         btrfs_run_delayed_iputs(fs_info);
4358         mutex_unlock(&fs_info->cleaner_mutex);
4359
4360         down_write(&fs_info->cleanup_work_sem);
4361         up_write(&fs_info->cleanup_work_sem);
4362 }
4363
4364 static void btrfs_drop_all_logs(struct btrfs_fs_info *fs_info)
4365 {
4366         struct btrfs_root *gang[8];
4367         u64 root_objectid = 0;
4368         int ret;
4369
4370         spin_lock(&fs_info->fs_roots_radix_lock);
4371         while ((ret = radix_tree_gang_lookup(&fs_info->fs_roots_radix,
4372                                              (void **)gang, root_objectid,
4373                                              ARRAY_SIZE(gang))) != 0) {
4374                 int i;
4375
4376                 for (i = 0; i < ret; i++)
4377                         gang[i] = btrfs_grab_root(gang[i]);
4378                 spin_unlock(&fs_info->fs_roots_radix_lock);
4379
4380                 for (i = 0; i < ret; i++) {
4381                         if (!gang[i])
4382                                 continue;
4383                         root_objectid = gang[i]->root_key.objectid;
4384                         btrfs_free_log(NULL, gang[i]);
4385                         btrfs_put_root(gang[i]);
4386                 }
4387                 root_objectid++;
4388                 spin_lock(&fs_info->fs_roots_radix_lock);
4389         }
4390         spin_unlock(&fs_info->fs_roots_radix_lock);
4391         btrfs_free_log_root_tree(NULL, fs_info);
4392 }
4393
4394 static void btrfs_destroy_ordered_extents(struct btrfs_root *root)
4395 {
4396         struct btrfs_ordered_extent *ordered;
4397
4398         spin_lock(&root->ordered_extent_lock);
4399         /*
4400          * This will just short circuit the ordered completion stuff which will
4401          * make sure the ordered extent gets properly cleaned up.
4402          */
4403         list_for_each_entry(ordered, &root->ordered_extents,
4404                             root_extent_list)
4405                 set_bit(BTRFS_ORDERED_IOERR, &ordered->flags);
4406         spin_unlock(&root->ordered_extent_lock);
4407 }
4408
4409 static void btrfs_destroy_all_ordered_extents(struct btrfs_fs_info *fs_info)
4410 {
4411         struct btrfs_root *root;
4412         struct list_head splice;
4413
4414         INIT_LIST_HEAD(&splice);
4415
4416         spin_lock(&fs_info->ordered_root_lock);
4417         list_splice_init(&fs_info->ordered_roots, &splice);
4418         while (!list_empty(&splice)) {
4419                 root = list_first_entry(&splice, struct btrfs_root,
4420                                         ordered_root);
4421                 list_move_tail(&root->ordered_root,
4422                                &fs_info->ordered_roots);
4423
4424                 spin_unlock(&fs_info->ordered_root_lock);
4425                 btrfs_destroy_ordered_extents(root);
4426
4427                 cond_resched();
4428                 spin_lock(&fs_info->ordered_root_lock);
4429         }
4430         spin_unlock(&fs_info->ordered_root_lock);
4431
4432         /*
4433          * We need this here because if we've been flipped read-only we won't
4434          * get sync() from the umount, so we need to make sure any ordered
4435          * extents that haven't had their dirty pages IO start writeout yet
4436          * actually get run and error out properly.
4437          */
4438         btrfs_wait_ordered_roots(fs_info, U64_MAX, 0, (u64)-1);
4439 }
4440
4441 static int btrfs_destroy_delayed_refs(struct btrfs_transaction *trans,
4442                                       struct btrfs_fs_info *fs_info)
4443 {
4444         struct rb_node *node;
4445         struct btrfs_delayed_ref_root *delayed_refs;
4446         struct btrfs_delayed_ref_node *ref;
4447         int ret = 0;
4448
4449         delayed_refs = &trans->delayed_refs;
4450
4451         spin_lock(&delayed_refs->lock);
4452         if (atomic_read(&delayed_refs->num_entries) == 0) {
4453                 spin_unlock(&delayed_refs->lock);
4454                 btrfs_debug(fs_info, "delayed_refs has NO entry");
4455                 return ret;
4456         }
4457
4458         while ((node = rb_first_cached(&delayed_refs->href_root)) != NULL) {
4459                 struct btrfs_delayed_ref_head *head;
4460                 struct rb_node *n;
4461                 bool pin_bytes = false;
4462
4463                 head = rb_entry(node, struct btrfs_delayed_ref_head,
4464                                 href_node);
4465                 if (btrfs_delayed_ref_lock(delayed_refs, head))
4466                         continue;
4467
4468                 spin_lock(&head->lock);
4469                 while ((n = rb_first_cached(&head->ref_tree)) != NULL) {
4470                         ref = rb_entry(n, struct btrfs_delayed_ref_node,
4471                                        ref_node);
4472                         ref->in_tree = 0;
4473                         rb_erase_cached(&ref->ref_node, &head->ref_tree);
4474                         RB_CLEAR_NODE(&ref->ref_node);
4475                         if (!list_empty(&ref->add_list))
4476                                 list_del(&ref->add_list);
4477                         atomic_dec(&delayed_refs->num_entries);
4478                         btrfs_put_delayed_ref(ref);
4479                 }
4480                 if (head->must_insert_reserved)
4481                         pin_bytes = true;
4482                 btrfs_free_delayed_extent_op(head->extent_op);
4483                 btrfs_delete_ref_head(delayed_refs, head);
4484                 spin_unlock(&head->lock);
4485                 spin_unlock(&delayed_refs->lock);
4486                 mutex_unlock(&head->mutex);
4487
4488                 if (pin_bytes) {
4489                         struct btrfs_block_group *cache;
4490
4491                         cache = btrfs_lookup_block_group(fs_info, head->bytenr);
4492                         BUG_ON(!cache);
4493
4494                         spin_lock(&cache->space_info->lock);
4495                         spin_lock(&cache->lock);
4496                         cache->pinned += head->num_bytes;
4497                         btrfs_space_info_update_bytes_pinned(fs_info,
4498                                 cache->space_info, head->num_bytes);
4499                         cache->reserved -= head->num_bytes;
4500                         cache->space_info->bytes_reserved -= head->num_bytes;
4501                         spin_unlock(&cache->lock);
4502                         spin_unlock(&cache->space_info->lock);
4503                         percpu_counter_add_batch(
4504                                 &cache->space_info->total_bytes_pinned,
4505                                 head->num_bytes, BTRFS_TOTAL_BYTES_PINNED_BATCH);
4506
4507                         btrfs_put_block_group(cache);
4508
4509                         btrfs_error_unpin_extent_range(fs_info, head->bytenr,
4510                                 head->bytenr + head->num_bytes - 1);
4511                 }
4512                 btrfs_cleanup_ref_head_accounting(fs_info, delayed_refs, head);
4513                 btrfs_put_delayed_ref_head(head);
4514                 cond_resched();
4515                 spin_lock(&delayed_refs->lock);
4516         }
4517         btrfs_qgroup_destroy_extent_records(trans);
4518
4519         spin_unlock(&delayed_refs->lock);
4520
4521         return ret;
4522 }
4523
4524 static void btrfs_destroy_delalloc_inodes(struct btrfs_root *root)
4525 {
4526         struct btrfs_inode *btrfs_inode;
4527         struct list_head splice;
4528
4529         INIT_LIST_HEAD(&splice);
4530
4531         spin_lock(&root->delalloc_lock);
4532         list_splice_init(&root->delalloc_inodes, &splice);
4533
4534         while (!list_empty(&splice)) {
4535                 struct inode *inode = NULL;
4536                 btrfs_inode = list_first_entry(&splice, struct btrfs_inode,
4537                                                delalloc_inodes);
4538                 __btrfs_del_delalloc_inode(root, btrfs_inode);
4539                 spin_unlock(&root->delalloc_lock);
4540
4541                 /*
4542                  * Make sure we get a live inode and that it'll not disappear
4543                  * meanwhile.
4544                  */
4545                 inode = igrab(&btrfs_inode->vfs_inode);
4546                 if (inode) {
4547                         unsigned int nofs_flag;
4548
4549                         nofs_flag = memalloc_nofs_save();
4550                         invalidate_inode_pages2(inode->i_mapping);
4551                         memalloc_nofs_restore(nofs_flag);
4552                         iput(inode);
4553                 }
4554                 spin_lock(&root->delalloc_lock);
4555         }
4556         spin_unlock(&root->delalloc_lock);
4557 }
4558
4559 static void btrfs_destroy_all_delalloc_inodes(struct btrfs_fs_info *fs_info)
4560 {
4561         struct btrfs_root *root;
4562         struct list_head splice;
4563
4564         INIT_LIST_HEAD(&splice);
4565
4566         spin_lock(&fs_info->delalloc_root_lock);
4567         list_splice_init(&fs_info->delalloc_roots, &splice);
4568         while (!list_empty(&splice)) {
4569                 root = list_first_entry(&splice, struct btrfs_root,
4570                                          delalloc_root);
4571                 root = btrfs_grab_root(root);
4572                 BUG_ON(!root);
4573                 spin_unlock(&fs_info->delalloc_root_lock);
4574
4575                 btrfs_destroy_delalloc_inodes(root);
4576                 btrfs_put_root(root);
4577
4578                 spin_lock(&fs_info->delalloc_root_lock);
4579         }
4580         spin_unlock(&fs_info->delalloc_root_lock);
4581 }
4582
4583 static int btrfs_destroy_marked_extents(struct btrfs_fs_info *fs_info,
4584                                         struct extent_io_tree *dirty_pages,
4585                                         int mark)
4586 {
4587         int ret;
4588         struct extent_buffer *eb;
4589         u64 start = 0;
4590         u64 end;
4591
4592         while (1) {
4593                 ret = find_first_extent_bit(dirty_pages, start, &start, &end,
4594                                             mark, NULL);
4595                 if (ret)
4596                         break;
4597
4598                 clear_extent_bits(dirty_pages, start, end, mark);
4599                 while (start <= end) {
4600                         eb = find_extent_buffer(fs_info, start);
4601                         start += fs_info->nodesize;
4602                         if (!eb)
4603                                 continue;
4604                         wait_on_extent_buffer_writeback(eb);
4605
4606                         if (test_and_clear_bit(EXTENT_BUFFER_DIRTY,
4607                                                &eb->bflags))
4608                                 clear_extent_buffer_dirty(eb);
4609                         free_extent_buffer_stale(eb);
4610                 }
4611         }
4612
4613         return ret;
4614 }
4615
4616 static int btrfs_destroy_pinned_extent(struct btrfs_fs_info *fs_info,
4617                                        struct extent_io_tree *unpin)
4618 {
4619         u64 start;
4620         u64 end;
4621         int ret;
4622
4623         while (1) {
4624                 struct extent_state *cached_state = NULL;
4625
4626                 /*
4627                  * The btrfs_finish_extent_commit() may get the same range as
4628                  * ours between find_first_extent_bit and clear_extent_dirty.
4629                  * Hence, hold the unused_bg_unpin_mutex to avoid double unpin
4630                  * the same extent range.
4631                  */
4632                 mutex_lock(&fs_info->unused_bg_unpin_mutex);
4633                 ret = find_first_extent_bit(unpin, 0, &start, &end,
4634                                             EXTENT_DIRTY, &cached_state);
4635                 if (ret) {
4636                         mutex_unlock(&fs_info->unused_bg_unpin_mutex);
4637                         break;
4638                 }
4639
4640                 clear_extent_dirty(unpin, start, end, &cached_state);
4641                 free_extent_state(cached_state);
4642                 btrfs_error_unpin_extent_range(fs_info, start, end);
4643                 mutex_unlock(&fs_info->unused_bg_unpin_mutex);
4644                 cond_resched();
4645         }
4646
4647         return 0;
4648 }
4649
4650 static void btrfs_cleanup_bg_io(struct btrfs_block_group *cache)
4651 {
4652         struct inode *inode;
4653
4654         inode = cache->io_ctl.inode;
4655         if (inode) {
4656                 unsigned int nofs_flag;
4657
4658                 nofs_flag = memalloc_nofs_save();
4659                 invalidate_inode_pages2(inode->i_mapping);
4660                 memalloc_nofs_restore(nofs_flag);
4661
4662                 BTRFS_I(inode)->generation = 0;
4663                 cache->io_ctl.inode = NULL;
4664                 iput(inode);
4665         }
4666         ASSERT(cache->io_ctl.pages == NULL);
4667         btrfs_put_block_group(cache);
4668 }
4669
4670 void btrfs_cleanup_dirty_bgs(struct btrfs_transaction *cur_trans,
4671                              struct btrfs_fs_info *fs_info)
4672 {
4673         struct btrfs_block_group *cache;
4674
4675         spin_lock(&cur_trans->dirty_bgs_lock);
4676         while (!list_empty(&cur_trans->dirty_bgs)) {
4677                 cache = list_first_entry(&cur_trans->dirty_bgs,
4678                                          struct btrfs_block_group,
4679                                          dirty_list);
4680
4681                 if (!list_empty(&cache->io_list)) {
4682                         spin_unlock(&cur_trans->dirty_bgs_lock);
4683                         list_del_init(&cache->io_list);
4684                         btrfs_cleanup_bg_io(cache);
4685                         spin_lock(&cur_trans->dirty_bgs_lock);
4686                 }
4687
4688                 list_del_init(&cache->dirty_list);
4689                 spin_lock(&cache->lock);
4690                 cache->disk_cache_state = BTRFS_DC_ERROR;
4691                 spin_unlock(&cache->lock);
4692
4693                 spin_unlock(&cur_trans->dirty_bgs_lock);
4694                 btrfs_put_block_group(cache);
4695                 btrfs_delayed_refs_rsv_release(fs_info, 1);
4696                 spin_lock(&cur_trans->dirty_bgs_lock);
4697         }
4698         spin_unlock(&cur_trans->dirty_bgs_lock);
4699
4700         /*
4701          * Refer to the definition of io_bgs member for details why it's safe
4702          * to use it without any locking
4703          */
4704         while (!list_empty(&cur_trans->io_bgs)) {
4705                 cache = list_first_entry(&cur_trans->io_bgs,
4706                                          struct btrfs_block_group,
4707                                          io_list);
4708
4709                 list_del_init(&cache->io_list);
4710                 spin_lock(&cache->lock);
4711                 cache->disk_cache_state = BTRFS_DC_ERROR;
4712                 spin_unlock(&cache->lock);
4713                 btrfs_cleanup_bg_io(cache);
4714         }
4715 }
4716
4717 void btrfs_cleanup_one_transaction(struct btrfs_transaction *cur_trans,
4718                                    struct btrfs_fs_info *fs_info)
4719 {
4720         struct btrfs_device *dev, *tmp;
4721
4722         btrfs_cleanup_dirty_bgs(cur_trans, fs_info);
4723         ASSERT(list_empty(&cur_trans->dirty_bgs));
4724         ASSERT(list_empty(&cur_trans->io_bgs));
4725
4726         list_for_each_entry_safe(dev, tmp, &cur_trans->dev_update_list,
4727                                  post_commit_list) {
4728                 list_del_init(&dev->post_commit_list);
4729         }
4730
4731         btrfs_destroy_delayed_refs(cur_trans, fs_info);
4732
4733         cur_trans->state = TRANS_STATE_COMMIT_START;
4734         wake_up(&fs_info->transaction_blocked_wait);
4735
4736         cur_trans->state = TRANS_STATE_UNBLOCKED;
4737         wake_up(&fs_info->transaction_wait);
4738
4739         btrfs_destroy_delayed_inodes(fs_info);
4740
4741         btrfs_destroy_marked_extents(fs_info, &cur_trans->dirty_pages,
4742                                      EXTENT_DIRTY);
4743         btrfs_destroy_pinned_extent(fs_info, &cur_trans->pinned_extents);
4744
4745         cur_trans->state =TRANS_STATE_COMPLETED;
4746         wake_up(&cur_trans->commit_wait);
4747 }
4748
4749 static int btrfs_cleanup_transaction(struct btrfs_fs_info *fs_info)
4750 {
4751         struct btrfs_transaction *t;
4752
4753         mutex_lock(&fs_info->transaction_kthread_mutex);
4754
4755         spin_lock(&fs_info->trans_lock);
4756         while (!list_empty(&fs_info->trans_list)) {
4757                 t = list_first_entry(&fs_info->trans_list,
4758                                      struct btrfs_transaction, list);
4759                 if (t->state >= TRANS_STATE_COMMIT_START) {
4760                         refcount_inc(&t->use_count);
4761                         spin_unlock(&fs_info->trans_lock);
4762                         btrfs_wait_for_commit(fs_info, t->transid);
4763                         btrfs_put_transaction(t);
4764                         spin_lock(&fs_info->trans_lock);
4765                         continue;
4766                 }
4767                 if (t == fs_info->running_transaction) {
4768                         t->state = TRANS_STATE_COMMIT_DOING;
4769                         spin_unlock(&fs_info->trans_lock);
4770                         /*
4771                          * We wait for 0 num_writers since we don't hold a trans
4772                          * handle open currently for this transaction.
4773                          */
4774                         wait_event(t->writer_wait,
4775                                    atomic_read(&t->num_writers) == 0);
4776                 } else {
4777                         spin_unlock(&fs_info->trans_lock);
4778                 }
4779                 btrfs_cleanup_one_transaction(t, fs_info);
4780
4781                 spin_lock(&fs_info->trans_lock);
4782                 if (t == fs_info->running_transaction)
4783                         fs_info->running_transaction = NULL;
4784                 list_del_init(&t->list);
4785                 spin_unlock(&fs_info->trans_lock);
4786
4787                 btrfs_put_transaction(t);
4788                 trace_btrfs_transaction_commit(fs_info->tree_root);
4789                 spin_lock(&fs_info->trans_lock);
4790         }
4791         spin_unlock(&fs_info->trans_lock);
4792         btrfs_destroy_all_ordered_extents(fs_info);
4793         btrfs_destroy_delayed_inodes(fs_info);
4794         btrfs_assert_delayed_root_empty(fs_info);
4795         btrfs_destroy_all_delalloc_inodes(fs_info);
4796         btrfs_drop_all_logs(fs_info);
4797         mutex_unlock(&fs_info->transaction_kthread_mutex);
4798
4799         return 0;
4800 }
4801
4802 int btrfs_find_highest_objectid(struct btrfs_root *root, u64 *objectid)
4803 {
4804         struct btrfs_path *path;
4805         int ret;
4806         struct extent_buffer *l;
4807         struct btrfs_key search_key;
4808         struct btrfs_key found_key;
4809         int slot;
4810
4811         path = btrfs_alloc_path();
4812         if (!path)
4813                 return -ENOMEM;
4814
4815         search_key.objectid = BTRFS_LAST_FREE_OBJECTID;
4816         search_key.type = -1;
4817         search_key.offset = (u64)-1;
4818         ret = btrfs_search_slot(NULL, root, &search_key, path, 0, 0);
4819         if (ret < 0)
4820                 goto error;
4821         BUG_ON(ret == 0); /* Corruption */
4822         if (path->slots[0] > 0) {
4823                 slot = path->slots[0] - 1;
4824                 l = path->nodes[0];
4825                 btrfs_item_key_to_cpu(l, &found_key, slot);
4826                 *objectid = max_t(u64, found_key.objectid,
4827                                   BTRFS_FIRST_FREE_OBJECTID - 1);
4828         } else {
4829                 *objectid = BTRFS_FIRST_FREE_OBJECTID - 1;
4830         }
4831         ret = 0;
4832 error:
4833         btrfs_free_path(path);
4834         return ret;
4835 }
4836
4837 int btrfs_find_free_objectid(struct btrfs_root *root, u64 *objectid)
4838 {
4839         int ret;
4840         mutex_lock(&root->objectid_mutex);
4841
4842         if (unlikely(root->highest_objectid >= BTRFS_LAST_FREE_OBJECTID)) {
4843                 btrfs_warn(root->fs_info,
4844                            "the objectid of root %llu reaches its highest value",
4845                            root->root_key.objectid);
4846                 ret = -ENOSPC;
4847                 goto out;
4848         }
4849
4850         *objectid = ++root->highest_objectid;
4851         ret = 0;
4852 out:
4853         mutex_unlock(&root->objectid_mutex);
4854         return ret;
4855 }