GNU Linux-libre 5.19-gnu
[releases.git] / fs / btrfs / delayed-inode.c
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * Copyright (C) 2011 Fujitsu.  All rights reserved.
4  * Written by Miao Xie <miaox@cn.fujitsu.com>
5  */
6
7 #include <linux/slab.h>
8 #include <linux/iversion.h>
9 #include "misc.h"
10 #include "delayed-inode.h"
11 #include "disk-io.h"
12 #include "transaction.h"
13 #include "ctree.h"
14 #include "qgroup.h"
15 #include "locking.h"
16 #include "inode-item.h"
17
18 #define BTRFS_DELAYED_WRITEBACK         512
19 #define BTRFS_DELAYED_BACKGROUND        128
20 #define BTRFS_DELAYED_BATCH             16
21
22 static struct kmem_cache *delayed_node_cache;
23
24 int __init btrfs_delayed_inode_init(void)
25 {
26         delayed_node_cache = kmem_cache_create("btrfs_delayed_node",
27                                         sizeof(struct btrfs_delayed_node),
28                                         0,
29                                         SLAB_MEM_SPREAD,
30                                         NULL);
31         if (!delayed_node_cache)
32                 return -ENOMEM;
33         return 0;
34 }
35
36 void __cold btrfs_delayed_inode_exit(void)
37 {
38         kmem_cache_destroy(delayed_node_cache);
39 }
40
41 static inline void btrfs_init_delayed_node(
42                                 struct btrfs_delayed_node *delayed_node,
43                                 struct btrfs_root *root, u64 inode_id)
44 {
45         delayed_node->root = root;
46         delayed_node->inode_id = inode_id;
47         refcount_set(&delayed_node->refs, 0);
48         delayed_node->ins_root = RB_ROOT_CACHED;
49         delayed_node->del_root = RB_ROOT_CACHED;
50         mutex_init(&delayed_node->mutex);
51         INIT_LIST_HEAD(&delayed_node->n_list);
52         INIT_LIST_HEAD(&delayed_node->p_list);
53 }
54
55 static inline int btrfs_is_continuous_delayed_item(
56                                         struct btrfs_delayed_item *item1,
57                                         struct btrfs_delayed_item *item2)
58 {
59         if (item1->key.type == BTRFS_DIR_INDEX_KEY &&
60             item1->key.objectid == item2->key.objectid &&
61             item1->key.type == item2->key.type &&
62             item1->key.offset + 1 == item2->key.offset)
63                 return 1;
64         return 0;
65 }
66
67 static struct btrfs_delayed_node *btrfs_get_delayed_node(
68                 struct btrfs_inode *btrfs_inode)
69 {
70         struct btrfs_root *root = btrfs_inode->root;
71         u64 ino = btrfs_ino(btrfs_inode);
72         struct btrfs_delayed_node *node;
73
74         node = READ_ONCE(btrfs_inode->delayed_node);
75         if (node) {
76                 refcount_inc(&node->refs);
77                 return node;
78         }
79
80         spin_lock(&root->inode_lock);
81         node = radix_tree_lookup(&root->delayed_nodes_tree, ino);
82
83         if (node) {
84                 if (btrfs_inode->delayed_node) {
85                         refcount_inc(&node->refs);      /* can be accessed */
86                         BUG_ON(btrfs_inode->delayed_node != node);
87                         spin_unlock(&root->inode_lock);
88                         return node;
89                 }
90
91                 /*
92                  * It's possible that we're racing into the middle of removing
93                  * this node from the radix tree.  In this case, the refcount
94                  * was zero and it should never go back to one.  Just return
95                  * NULL like it was never in the radix at all; our release
96                  * function is in the process of removing it.
97                  *
98                  * Some implementations of refcount_inc refuse to bump the
99                  * refcount once it has hit zero.  If we don't do this dance
100                  * here, refcount_inc() may decide to just WARN_ONCE() instead
101                  * of actually bumping the refcount.
102                  *
103                  * If this node is properly in the radix, we want to bump the
104                  * refcount twice, once for the inode and once for this get
105                  * operation.
106                  */
107                 if (refcount_inc_not_zero(&node->refs)) {
108                         refcount_inc(&node->refs);
109                         btrfs_inode->delayed_node = node;
110                 } else {
111                         node = NULL;
112                 }
113
114                 spin_unlock(&root->inode_lock);
115                 return node;
116         }
117         spin_unlock(&root->inode_lock);
118
119         return NULL;
120 }
121
122 /* Will return either the node or PTR_ERR(-ENOMEM) */
123 static struct btrfs_delayed_node *btrfs_get_or_create_delayed_node(
124                 struct btrfs_inode *btrfs_inode)
125 {
126         struct btrfs_delayed_node *node;
127         struct btrfs_root *root = btrfs_inode->root;
128         u64 ino = btrfs_ino(btrfs_inode);
129         int ret;
130
131 again:
132         node = btrfs_get_delayed_node(btrfs_inode);
133         if (node)
134                 return node;
135
136         node = kmem_cache_zalloc(delayed_node_cache, GFP_NOFS);
137         if (!node)
138                 return ERR_PTR(-ENOMEM);
139         btrfs_init_delayed_node(node, root, ino);
140
141         /* cached in the btrfs inode and can be accessed */
142         refcount_set(&node->refs, 2);
143
144         ret = radix_tree_preload(GFP_NOFS);
145         if (ret) {
146                 kmem_cache_free(delayed_node_cache, node);
147                 return ERR_PTR(ret);
148         }
149
150         spin_lock(&root->inode_lock);
151         ret = radix_tree_insert(&root->delayed_nodes_tree, ino, node);
152         if (ret == -EEXIST) {
153                 spin_unlock(&root->inode_lock);
154                 kmem_cache_free(delayed_node_cache, node);
155                 radix_tree_preload_end();
156                 goto again;
157         }
158         btrfs_inode->delayed_node = node;
159         spin_unlock(&root->inode_lock);
160         radix_tree_preload_end();
161
162         return node;
163 }
164
165 /*
166  * Call it when holding delayed_node->mutex
167  *
168  * If mod = 1, add this node into the prepared list.
169  */
170 static void btrfs_queue_delayed_node(struct btrfs_delayed_root *root,
171                                      struct btrfs_delayed_node *node,
172                                      int mod)
173 {
174         spin_lock(&root->lock);
175         if (test_bit(BTRFS_DELAYED_NODE_IN_LIST, &node->flags)) {
176                 if (!list_empty(&node->p_list))
177                         list_move_tail(&node->p_list, &root->prepare_list);
178                 else if (mod)
179                         list_add_tail(&node->p_list, &root->prepare_list);
180         } else {
181                 list_add_tail(&node->n_list, &root->node_list);
182                 list_add_tail(&node->p_list, &root->prepare_list);
183                 refcount_inc(&node->refs);      /* inserted into list */
184                 root->nodes++;
185                 set_bit(BTRFS_DELAYED_NODE_IN_LIST, &node->flags);
186         }
187         spin_unlock(&root->lock);
188 }
189
190 /* Call it when holding delayed_node->mutex */
191 static void btrfs_dequeue_delayed_node(struct btrfs_delayed_root *root,
192                                        struct btrfs_delayed_node *node)
193 {
194         spin_lock(&root->lock);
195         if (test_bit(BTRFS_DELAYED_NODE_IN_LIST, &node->flags)) {
196                 root->nodes--;
197                 refcount_dec(&node->refs);      /* not in the list */
198                 list_del_init(&node->n_list);
199                 if (!list_empty(&node->p_list))
200                         list_del_init(&node->p_list);
201                 clear_bit(BTRFS_DELAYED_NODE_IN_LIST, &node->flags);
202         }
203         spin_unlock(&root->lock);
204 }
205
206 static struct btrfs_delayed_node *btrfs_first_delayed_node(
207                         struct btrfs_delayed_root *delayed_root)
208 {
209         struct list_head *p;
210         struct btrfs_delayed_node *node = NULL;
211
212         spin_lock(&delayed_root->lock);
213         if (list_empty(&delayed_root->node_list))
214                 goto out;
215
216         p = delayed_root->node_list.next;
217         node = list_entry(p, struct btrfs_delayed_node, n_list);
218         refcount_inc(&node->refs);
219 out:
220         spin_unlock(&delayed_root->lock);
221
222         return node;
223 }
224
225 static struct btrfs_delayed_node *btrfs_next_delayed_node(
226                                                 struct btrfs_delayed_node *node)
227 {
228         struct btrfs_delayed_root *delayed_root;
229         struct list_head *p;
230         struct btrfs_delayed_node *next = NULL;
231
232         delayed_root = node->root->fs_info->delayed_root;
233         spin_lock(&delayed_root->lock);
234         if (!test_bit(BTRFS_DELAYED_NODE_IN_LIST, &node->flags)) {
235                 /* not in the list */
236                 if (list_empty(&delayed_root->node_list))
237                         goto out;
238                 p = delayed_root->node_list.next;
239         } else if (list_is_last(&node->n_list, &delayed_root->node_list))
240                 goto out;
241         else
242                 p = node->n_list.next;
243
244         next = list_entry(p, struct btrfs_delayed_node, n_list);
245         refcount_inc(&next->refs);
246 out:
247         spin_unlock(&delayed_root->lock);
248
249         return next;
250 }
251
252 static void __btrfs_release_delayed_node(
253                                 struct btrfs_delayed_node *delayed_node,
254                                 int mod)
255 {
256         struct btrfs_delayed_root *delayed_root;
257
258         if (!delayed_node)
259                 return;
260
261         delayed_root = delayed_node->root->fs_info->delayed_root;
262
263         mutex_lock(&delayed_node->mutex);
264         if (delayed_node->count)
265                 btrfs_queue_delayed_node(delayed_root, delayed_node, mod);
266         else
267                 btrfs_dequeue_delayed_node(delayed_root, delayed_node);
268         mutex_unlock(&delayed_node->mutex);
269
270         if (refcount_dec_and_test(&delayed_node->refs)) {
271                 struct btrfs_root *root = delayed_node->root;
272
273                 spin_lock(&root->inode_lock);
274                 /*
275                  * Once our refcount goes to zero, nobody is allowed to bump it
276                  * back up.  We can delete it now.
277                  */
278                 ASSERT(refcount_read(&delayed_node->refs) == 0);
279                 radix_tree_delete(&root->delayed_nodes_tree,
280                                   delayed_node->inode_id);
281                 spin_unlock(&root->inode_lock);
282                 kmem_cache_free(delayed_node_cache, delayed_node);
283         }
284 }
285
286 static inline void btrfs_release_delayed_node(struct btrfs_delayed_node *node)
287 {
288         __btrfs_release_delayed_node(node, 0);
289 }
290
291 static struct btrfs_delayed_node *btrfs_first_prepared_delayed_node(
292                                         struct btrfs_delayed_root *delayed_root)
293 {
294         struct list_head *p;
295         struct btrfs_delayed_node *node = NULL;
296
297         spin_lock(&delayed_root->lock);
298         if (list_empty(&delayed_root->prepare_list))
299                 goto out;
300
301         p = delayed_root->prepare_list.next;
302         list_del_init(p);
303         node = list_entry(p, struct btrfs_delayed_node, p_list);
304         refcount_inc(&node->refs);
305 out:
306         spin_unlock(&delayed_root->lock);
307
308         return node;
309 }
310
311 static inline void btrfs_release_prepared_delayed_node(
312                                         struct btrfs_delayed_node *node)
313 {
314         __btrfs_release_delayed_node(node, 1);
315 }
316
317 static struct btrfs_delayed_item *btrfs_alloc_delayed_item(u32 data_len)
318 {
319         struct btrfs_delayed_item *item;
320         item = kmalloc(sizeof(*item) + data_len, GFP_NOFS);
321         if (item) {
322                 item->data_len = data_len;
323                 item->ins_or_del = 0;
324                 item->bytes_reserved = 0;
325                 item->delayed_node = NULL;
326                 refcount_set(&item->refs, 1);
327         }
328         return item;
329 }
330
331 /*
332  * __btrfs_lookup_delayed_item - look up the delayed item by key
333  * @delayed_node: pointer to the delayed node
334  * @key:          the key to look up
335  * @prev:         used to store the prev item if the right item isn't found
336  * @next:         used to store the next item if the right item isn't found
337  *
338  * Note: if we don't find the right item, we will return the prev item and
339  * the next item.
340  */
341 static struct btrfs_delayed_item *__btrfs_lookup_delayed_item(
342                                 struct rb_root *root,
343                                 struct btrfs_key *key,
344                                 struct btrfs_delayed_item **prev,
345                                 struct btrfs_delayed_item **next)
346 {
347         struct rb_node *node, *prev_node = NULL;
348         struct btrfs_delayed_item *delayed_item = NULL;
349         int ret = 0;
350
351         node = root->rb_node;
352
353         while (node) {
354                 delayed_item = rb_entry(node, struct btrfs_delayed_item,
355                                         rb_node);
356                 prev_node = node;
357                 ret = btrfs_comp_cpu_keys(&delayed_item->key, key);
358                 if (ret < 0)
359                         node = node->rb_right;
360                 else if (ret > 0)
361                         node = node->rb_left;
362                 else
363                         return delayed_item;
364         }
365
366         if (prev) {
367                 if (!prev_node)
368                         *prev = NULL;
369                 else if (ret < 0)
370                         *prev = delayed_item;
371                 else if ((node = rb_prev(prev_node)) != NULL) {
372                         *prev = rb_entry(node, struct btrfs_delayed_item,
373                                          rb_node);
374                 } else
375                         *prev = NULL;
376         }
377
378         if (next) {
379                 if (!prev_node)
380                         *next = NULL;
381                 else if (ret > 0)
382                         *next = delayed_item;
383                 else if ((node = rb_next(prev_node)) != NULL) {
384                         *next = rb_entry(node, struct btrfs_delayed_item,
385                                          rb_node);
386                 } else
387                         *next = NULL;
388         }
389         return NULL;
390 }
391
392 static struct btrfs_delayed_item *__btrfs_lookup_delayed_insertion_item(
393                                         struct btrfs_delayed_node *delayed_node,
394                                         struct btrfs_key *key)
395 {
396         return __btrfs_lookup_delayed_item(&delayed_node->ins_root.rb_root, key,
397                                            NULL, NULL);
398 }
399
400 static int __btrfs_add_delayed_item(struct btrfs_delayed_node *delayed_node,
401                                     struct btrfs_delayed_item *ins,
402                                     int action)
403 {
404         struct rb_node **p, *node;
405         struct rb_node *parent_node = NULL;
406         struct rb_root_cached *root;
407         struct btrfs_delayed_item *item;
408         int cmp;
409         bool leftmost = true;
410
411         if (action == BTRFS_DELAYED_INSERTION_ITEM)
412                 root = &delayed_node->ins_root;
413         else if (action == BTRFS_DELAYED_DELETION_ITEM)
414                 root = &delayed_node->del_root;
415         else
416                 BUG();
417         p = &root->rb_root.rb_node;
418         node = &ins->rb_node;
419
420         while (*p) {
421                 parent_node = *p;
422                 item = rb_entry(parent_node, struct btrfs_delayed_item,
423                                  rb_node);
424
425                 cmp = btrfs_comp_cpu_keys(&item->key, &ins->key);
426                 if (cmp < 0) {
427                         p = &(*p)->rb_right;
428                         leftmost = false;
429                 } else if (cmp > 0) {
430                         p = &(*p)->rb_left;
431                 } else {
432                         return -EEXIST;
433                 }
434         }
435
436         rb_link_node(node, parent_node, p);
437         rb_insert_color_cached(node, root, leftmost);
438         ins->delayed_node = delayed_node;
439         ins->ins_or_del = action;
440
441         if (ins->key.type == BTRFS_DIR_INDEX_KEY &&
442             action == BTRFS_DELAYED_INSERTION_ITEM &&
443             ins->key.offset >= delayed_node->index_cnt)
444                         delayed_node->index_cnt = ins->key.offset + 1;
445
446         delayed_node->count++;
447         atomic_inc(&delayed_node->root->fs_info->delayed_root->items);
448         return 0;
449 }
450
451 static int __btrfs_add_delayed_insertion_item(struct btrfs_delayed_node *node,
452                                               struct btrfs_delayed_item *item)
453 {
454         return __btrfs_add_delayed_item(node, item,
455                                         BTRFS_DELAYED_INSERTION_ITEM);
456 }
457
458 static int __btrfs_add_delayed_deletion_item(struct btrfs_delayed_node *node,
459                                              struct btrfs_delayed_item *item)
460 {
461         return __btrfs_add_delayed_item(node, item,
462                                         BTRFS_DELAYED_DELETION_ITEM);
463 }
464
465 static void finish_one_item(struct btrfs_delayed_root *delayed_root)
466 {
467         int seq = atomic_inc_return(&delayed_root->items_seq);
468
469         /* atomic_dec_return implies a barrier */
470         if ((atomic_dec_return(&delayed_root->items) <
471             BTRFS_DELAYED_BACKGROUND || seq % BTRFS_DELAYED_BATCH == 0))
472                 cond_wake_up_nomb(&delayed_root->wait);
473 }
474
475 static void __btrfs_remove_delayed_item(struct btrfs_delayed_item *delayed_item)
476 {
477         struct rb_root_cached *root;
478         struct btrfs_delayed_root *delayed_root;
479
480         /* Not associated with any delayed_node */
481         if (!delayed_item->delayed_node)
482                 return;
483         delayed_root = delayed_item->delayed_node->root->fs_info->delayed_root;
484
485         BUG_ON(!delayed_root);
486         BUG_ON(delayed_item->ins_or_del != BTRFS_DELAYED_DELETION_ITEM &&
487                delayed_item->ins_or_del != BTRFS_DELAYED_INSERTION_ITEM);
488
489         if (delayed_item->ins_or_del == BTRFS_DELAYED_INSERTION_ITEM)
490                 root = &delayed_item->delayed_node->ins_root;
491         else
492                 root = &delayed_item->delayed_node->del_root;
493
494         rb_erase_cached(&delayed_item->rb_node, root);
495         delayed_item->delayed_node->count--;
496
497         finish_one_item(delayed_root);
498 }
499
500 static void btrfs_release_delayed_item(struct btrfs_delayed_item *item)
501 {
502         if (item) {
503                 __btrfs_remove_delayed_item(item);
504                 if (refcount_dec_and_test(&item->refs))
505                         kfree(item);
506         }
507 }
508
509 static struct btrfs_delayed_item *__btrfs_first_delayed_insertion_item(
510                                         struct btrfs_delayed_node *delayed_node)
511 {
512         struct rb_node *p;
513         struct btrfs_delayed_item *item = NULL;
514
515         p = rb_first_cached(&delayed_node->ins_root);
516         if (p)
517                 item = rb_entry(p, struct btrfs_delayed_item, rb_node);
518
519         return item;
520 }
521
522 static struct btrfs_delayed_item *__btrfs_first_delayed_deletion_item(
523                                         struct btrfs_delayed_node *delayed_node)
524 {
525         struct rb_node *p;
526         struct btrfs_delayed_item *item = NULL;
527
528         p = rb_first_cached(&delayed_node->del_root);
529         if (p)
530                 item = rb_entry(p, struct btrfs_delayed_item, rb_node);
531
532         return item;
533 }
534
535 static struct btrfs_delayed_item *__btrfs_next_delayed_item(
536                                                 struct btrfs_delayed_item *item)
537 {
538         struct rb_node *p;
539         struct btrfs_delayed_item *next = NULL;
540
541         p = rb_next(&item->rb_node);
542         if (p)
543                 next = rb_entry(p, struct btrfs_delayed_item, rb_node);
544
545         return next;
546 }
547
548 static int btrfs_delayed_item_reserve_metadata(struct btrfs_trans_handle *trans,
549                                                struct btrfs_root *root,
550                                                struct btrfs_delayed_item *item)
551 {
552         struct btrfs_block_rsv *src_rsv;
553         struct btrfs_block_rsv *dst_rsv;
554         struct btrfs_fs_info *fs_info = root->fs_info;
555         u64 num_bytes;
556         int ret;
557
558         if (!trans->bytes_reserved)
559                 return 0;
560
561         src_rsv = trans->block_rsv;
562         dst_rsv = &fs_info->delayed_block_rsv;
563
564         num_bytes = btrfs_calc_insert_metadata_size(fs_info, 1);
565
566         /*
567          * Here we migrate space rsv from transaction rsv, since have already
568          * reserved space when starting a transaction.  So no need to reserve
569          * qgroup space here.
570          */
571         ret = btrfs_block_rsv_migrate(src_rsv, dst_rsv, num_bytes, true);
572         if (!ret) {
573                 trace_btrfs_space_reservation(fs_info, "delayed_item",
574                                               item->key.objectid,
575                                               num_bytes, 1);
576                 item->bytes_reserved = num_bytes;
577         }
578
579         return ret;
580 }
581
582 static void btrfs_delayed_item_release_metadata(struct btrfs_root *root,
583                                                 struct btrfs_delayed_item *item)
584 {
585         struct btrfs_block_rsv *rsv;
586         struct btrfs_fs_info *fs_info = root->fs_info;
587
588         if (!item->bytes_reserved)
589                 return;
590
591         rsv = &fs_info->delayed_block_rsv;
592         /*
593          * Check btrfs_delayed_item_reserve_metadata() to see why we don't need
594          * to release/reserve qgroup space.
595          */
596         trace_btrfs_space_reservation(fs_info, "delayed_item",
597                                       item->key.objectid, item->bytes_reserved,
598                                       0);
599         btrfs_block_rsv_release(fs_info, rsv, item->bytes_reserved, NULL);
600 }
601
602 static int btrfs_delayed_inode_reserve_metadata(
603                                         struct btrfs_trans_handle *trans,
604                                         struct btrfs_root *root,
605                                         struct btrfs_delayed_node *node)
606 {
607         struct btrfs_fs_info *fs_info = root->fs_info;
608         struct btrfs_block_rsv *src_rsv;
609         struct btrfs_block_rsv *dst_rsv;
610         u64 num_bytes;
611         int ret;
612
613         src_rsv = trans->block_rsv;
614         dst_rsv = &fs_info->delayed_block_rsv;
615
616         num_bytes = btrfs_calc_metadata_size(fs_info, 1);
617
618         /*
619          * btrfs_dirty_inode will update the inode under btrfs_join_transaction
620          * which doesn't reserve space for speed.  This is a problem since we
621          * still need to reserve space for this update, so try to reserve the
622          * space.
623          *
624          * Now if src_rsv == delalloc_block_rsv we'll let it just steal since
625          * we always reserve enough to update the inode item.
626          */
627         if (!src_rsv || (!trans->bytes_reserved &&
628                          src_rsv->type != BTRFS_BLOCK_RSV_DELALLOC)) {
629                 ret = btrfs_qgroup_reserve_meta(root, num_bytes,
630                                           BTRFS_QGROUP_RSV_META_PREALLOC, true);
631                 if (ret < 0)
632                         return ret;
633                 ret = btrfs_block_rsv_add(fs_info, dst_rsv, num_bytes,
634                                           BTRFS_RESERVE_NO_FLUSH);
635                 /* NO_FLUSH could only fail with -ENOSPC */
636                 ASSERT(ret == 0 || ret == -ENOSPC);
637                 if (ret)
638                         btrfs_qgroup_free_meta_prealloc(root, num_bytes);
639         } else {
640                 ret = btrfs_block_rsv_migrate(src_rsv, dst_rsv, num_bytes, true);
641         }
642
643         if (!ret) {
644                 trace_btrfs_space_reservation(fs_info, "delayed_inode",
645                                               node->inode_id, num_bytes, 1);
646                 node->bytes_reserved = num_bytes;
647         }
648
649         return ret;
650 }
651
652 static void btrfs_delayed_inode_release_metadata(struct btrfs_fs_info *fs_info,
653                                                 struct btrfs_delayed_node *node,
654                                                 bool qgroup_free)
655 {
656         struct btrfs_block_rsv *rsv;
657
658         if (!node->bytes_reserved)
659                 return;
660
661         rsv = &fs_info->delayed_block_rsv;
662         trace_btrfs_space_reservation(fs_info, "delayed_inode",
663                                       node->inode_id, node->bytes_reserved, 0);
664         btrfs_block_rsv_release(fs_info, rsv, node->bytes_reserved, NULL);
665         if (qgroup_free)
666                 btrfs_qgroup_free_meta_prealloc(node->root,
667                                 node->bytes_reserved);
668         else
669                 btrfs_qgroup_convert_reserved_meta(node->root,
670                                 node->bytes_reserved);
671         node->bytes_reserved = 0;
672 }
673
674 /*
675  * Insert a single delayed item or a batch of delayed items that have consecutive
676  * keys if they exist.
677  */
678 static int btrfs_insert_delayed_item(struct btrfs_trans_handle *trans,
679                                      struct btrfs_root *root,
680                                      struct btrfs_path *path,
681                                      struct btrfs_delayed_item *first_item)
682 {
683         LIST_HEAD(item_list);
684         struct btrfs_delayed_item *curr;
685         struct btrfs_delayed_item *next;
686         const int max_size = BTRFS_LEAF_DATA_SIZE(root->fs_info);
687         struct btrfs_item_batch batch;
688         int total_size;
689         char *ins_data = NULL;
690         int ret;
691
692         list_add_tail(&first_item->tree_list, &item_list);
693         batch.total_data_size = first_item->data_len;
694         batch.nr = 1;
695         total_size = first_item->data_len + sizeof(struct btrfs_item);
696         curr = first_item;
697
698         while (true) {
699                 int next_size;
700
701                 next = __btrfs_next_delayed_item(curr);
702                 if (!next || !btrfs_is_continuous_delayed_item(curr, next))
703                         break;
704
705                 next_size = next->data_len + sizeof(struct btrfs_item);
706                 if (total_size + next_size > max_size)
707                         break;
708
709                 list_add_tail(&next->tree_list, &item_list);
710                 batch.nr++;
711                 total_size += next_size;
712                 batch.total_data_size += next->data_len;
713                 curr = next;
714         }
715
716         if (batch.nr == 1) {
717                 batch.keys = &first_item->key;
718                 batch.data_sizes = &first_item->data_len;
719         } else {
720                 struct btrfs_key *ins_keys;
721                 u32 *ins_sizes;
722                 int i = 0;
723
724                 ins_data = kmalloc(batch.nr * sizeof(u32) +
725                                    batch.nr * sizeof(struct btrfs_key), GFP_NOFS);
726                 if (!ins_data) {
727                         ret = -ENOMEM;
728                         goto out;
729                 }
730                 ins_sizes = (u32 *)ins_data;
731                 ins_keys = (struct btrfs_key *)(ins_data + batch.nr * sizeof(u32));
732                 batch.keys = ins_keys;
733                 batch.data_sizes = ins_sizes;
734                 list_for_each_entry(curr, &item_list, tree_list) {
735                         ins_keys[i] = curr->key;
736                         ins_sizes[i] = curr->data_len;
737                         i++;
738                 }
739         }
740
741         ret = btrfs_insert_empty_items(trans, root, path, &batch);
742         if (ret)
743                 goto out;
744
745         list_for_each_entry(curr, &item_list, tree_list) {
746                 char *data_ptr;
747
748                 data_ptr = btrfs_item_ptr(path->nodes[0], path->slots[0], char);
749                 write_extent_buffer(path->nodes[0], &curr->data,
750                                     (unsigned long)data_ptr, curr->data_len);
751                 path->slots[0]++;
752         }
753
754         /*
755          * Now release our path before releasing the delayed items and their
756          * metadata reservations, so that we don't block other tasks for more
757          * time than needed.
758          */
759         btrfs_release_path(path);
760
761         list_for_each_entry_safe(curr, next, &item_list, tree_list) {
762                 list_del(&curr->tree_list);
763                 btrfs_delayed_item_release_metadata(root, curr);
764                 btrfs_release_delayed_item(curr);
765         }
766 out:
767         kfree(ins_data);
768         return ret;
769 }
770
771 static int btrfs_insert_delayed_items(struct btrfs_trans_handle *trans,
772                                       struct btrfs_path *path,
773                                       struct btrfs_root *root,
774                                       struct btrfs_delayed_node *node)
775 {
776         int ret = 0;
777
778         while (ret == 0) {
779                 struct btrfs_delayed_item *curr;
780
781                 mutex_lock(&node->mutex);
782                 curr = __btrfs_first_delayed_insertion_item(node);
783                 if (!curr) {
784                         mutex_unlock(&node->mutex);
785                         break;
786                 }
787                 ret = btrfs_insert_delayed_item(trans, root, path, curr);
788                 mutex_unlock(&node->mutex);
789         }
790
791         return ret;
792 }
793
794 static int btrfs_batch_delete_items(struct btrfs_trans_handle *trans,
795                                     struct btrfs_root *root,
796                                     struct btrfs_path *path,
797                                     struct btrfs_delayed_item *item)
798 {
799         struct btrfs_delayed_item *curr, *next;
800         struct extent_buffer *leaf;
801         struct btrfs_key key;
802         struct list_head head;
803         int nitems, i, last_item;
804         int ret = 0;
805
806         BUG_ON(!path->nodes[0]);
807
808         leaf = path->nodes[0];
809
810         i = path->slots[0];
811         last_item = btrfs_header_nritems(leaf) - 1;
812         if (i > last_item)
813                 return -ENOENT; /* FIXME: Is errno suitable? */
814
815         next = item;
816         INIT_LIST_HEAD(&head);
817         btrfs_item_key_to_cpu(leaf, &key, i);
818         nitems = 0;
819         /*
820          * count the number of the dir index items that we can delete in batch
821          */
822         while (btrfs_comp_cpu_keys(&next->key, &key) == 0) {
823                 list_add_tail(&next->tree_list, &head);
824                 nitems++;
825
826                 curr = next;
827                 next = __btrfs_next_delayed_item(curr);
828                 if (!next)
829                         break;
830
831                 if (!btrfs_is_continuous_delayed_item(curr, next))
832                         break;
833
834                 i++;
835                 if (i > last_item)
836                         break;
837                 btrfs_item_key_to_cpu(leaf, &key, i);
838         }
839
840         if (!nitems)
841                 return 0;
842
843         ret = btrfs_del_items(trans, root, path, path->slots[0], nitems);
844         if (ret)
845                 goto out;
846
847         list_for_each_entry_safe(curr, next, &head, tree_list) {
848                 btrfs_delayed_item_release_metadata(root, curr);
849                 list_del(&curr->tree_list);
850                 btrfs_release_delayed_item(curr);
851         }
852
853 out:
854         return ret;
855 }
856
857 static int btrfs_delete_delayed_items(struct btrfs_trans_handle *trans,
858                                       struct btrfs_path *path,
859                                       struct btrfs_root *root,
860                                       struct btrfs_delayed_node *node)
861 {
862         struct btrfs_delayed_item *curr, *prev;
863         int ret = 0;
864
865 do_again:
866         mutex_lock(&node->mutex);
867         curr = __btrfs_first_delayed_deletion_item(node);
868         if (!curr)
869                 goto delete_fail;
870
871         ret = btrfs_search_slot(trans, root, &curr->key, path, -1, 1);
872         if (ret < 0)
873                 goto delete_fail;
874         else if (ret > 0) {
875                 /*
876                  * can't find the item which the node points to, so this node
877                  * is invalid, just drop it.
878                  */
879                 prev = curr;
880                 curr = __btrfs_next_delayed_item(prev);
881                 btrfs_release_delayed_item(prev);
882                 ret = 0;
883                 btrfs_release_path(path);
884                 if (curr) {
885                         mutex_unlock(&node->mutex);
886                         goto do_again;
887                 } else
888                         goto delete_fail;
889         }
890
891         btrfs_batch_delete_items(trans, root, path, curr);
892         btrfs_release_path(path);
893         mutex_unlock(&node->mutex);
894         goto do_again;
895
896 delete_fail:
897         btrfs_release_path(path);
898         mutex_unlock(&node->mutex);
899         return ret;
900 }
901
902 static void btrfs_release_delayed_inode(struct btrfs_delayed_node *delayed_node)
903 {
904         struct btrfs_delayed_root *delayed_root;
905
906         if (delayed_node &&
907             test_bit(BTRFS_DELAYED_NODE_INODE_DIRTY, &delayed_node->flags)) {
908                 BUG_ON(!delayed_node->root);
909                 clear_bit(BTRFS_DELAYED_NODE_INODE_DIRTY, &delayed_node->flags);
910                 delayed_node->count--;
911
912                 delayed_root = delayed_node->root->fs_info->delayed_root;
913                 finish_one_item(delayed_root);
914         }
915 }
916
917 static void btrfs_release_delayed_iref(struct btrfs_delayed_node *delayed_node)
918 {
919
920         if (test_and_clear_bit(BTRFS_DELAYED_NODE_DEL_IREF, &delayed_node->flags)) {
921                 struct btrfs_delayed_root *delayed_root;
922
923                 ASSERT(delayed_node->root);
924                 delayed_node->count--;
925
926                 delayed_root = delayed_node->root->fs_info->delayed_root;
927                 finish_one_item(delayed_root);
928         }
929 }
930
931 static int __btrfs_update_delayed_inode(struct btrfs_trans_handle *trans,
932                                         struct btrfs_root *root,
933                                         struct btrfs_path *path,
934                                         struct btrfs_delayed_node *node)
935 {
936         struct btrfs_fs_info *fs_info = root->fs_info;
937         struct btrfs_key key;
938         struct btrfs_inode_item *inode_item;
939         struct extent_buffer *leaf;
940         int mod;
941         int ret;
942
943         key.objectid = node->inode_id;
944         key.type = BTRFS_INODE_ITEM_KEY;
945         key.offset = 0;
946
947         if (test_bit(BTRFS_DELAYED_NODE_DEL_IREF, &node->flags))
948                 mod = -1;
949         else
950                 mod = 1;
951
952         ret = btrfs_lookup_inode(trans, root, path, &key, mod);
953         if (ret > 0)
954                 ret = -ENOENT;
955         if (ret < 0)
956                 goto out;
957
958         leaf = path->nodes[0];
959         inode_item = btrfs_item_ptr(leaf, path->slots[0],
960                                     struct btrfs_inode_item);
961         write_extent_buffer(leaf, &node->inode_item, (unsigned long)inode_item,
962                             sizeof(struct btrfs_inode_item));
963         btrfs_mark_buffer_dirty(leaf);
964
965         if (!test_bit(BTRFS_DELAYED_NODE_DEL_IREF, &node->flags))
966                 goto out;
967
968         path->slots[0]++;
969         if (path->slots[0] >= btrfs_header_nritems(leaf))
970                 goto search;
971 again:
972         btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
973         if (key.objectid != node->inode_id)
974                 goto out;
975
976         if (key.type != BTRFS_INODE_REF_KEY &&
977             key.type != BTRFS_INODE_EXTREF_KEY)
978                 goto out;
979
980         /*
981          * Delayed iref deletion is for the inode who has only one link,
982          * so there is only one iref. The case that several irefs are
983          * in the same item doesn't exist.
984          */
985         btrfs_del_item(trans, root, path);
986 out:
987         btrfs_release_delayed_iref(node);
988         btrfs_release_path(path);
989 err_out:
990         btrfs_delayed_inode_release_metadata(fs_info, node, (ret < 0));
991         btrfs_release_delayed_inode(node);
992
993         /*
994          * If we fail to update the delayed inode we need to abort the
995          * transaction, because we could leave the inode with the improper
996          * counts behind.
997          */
998         if (ret && ret != -ENOENT)
999                 btrfs_abort_transaction(trans, ret);
1000
1001         return ret;
1002
1003 search:
1004         btrfs_release_path(path);
1005
1006         key.type = BTRFS_INODE_EXTREF_KEY;
1007         key.offset = -1;
1008
1009         ret = btrfs_search_slot(trans, root, &key, path, -1, 1);
1010         if (ret < 0)
1011                 goto err_out;
1012         ASSERT(ret);
1013
1014         ret = 0;
1015         leaf = path->nodes[0];
1016         path->slots[0]--;
1017         goto again;
1018 }
1019
1020 static inline int btrfs_update_delayed_inode(struct btrfs_trans_handle *trans,
1021                                              struct btrfs_root *root,
1022                                              struct btrfs_path *path,
1023                                              struct btrfs_delayed_node *node)
1024 {
1025         int ret;
1026
1027         mutex_lock(&node->mutex);
1028         if (!test_bit(BTRFS_DELAYED_NODE_INODE_DIRTY, &node->flags)) {
1029                 mutex_unlock(&node->mutex);
1030                 return 0;
1031         }
1032
1033         ret = __btrfs_update_delayed_inode(trans, root, path, node);
1034         mutex_unlock(&node->mutex);
1035         return ret;
1036 }
1037
1038 static inline int
1039 __btrfs_commit_inode_delayed_items(struct btrfs_trans_handle *trans,
1040                                    struct btrfs_path *path,
1041                                    struct btrfs_delayed_node *node)
1042 {
1043         int ret;
1044
1045         ret = btrfs_insert_delayed_items(trans, path, node->root, node);
1046         if (ret)
1047                 return ret;
1048
1049         ret = btrfs_delete_delayed_items(trans, path, node->root, node);
1050         if (ret)
1051                 return ret;
1052
1053         ret = btrfs_update_delayed_inode(trans, node->root, path, node);
1054         return ret;
1055 }
1056
1057 /*
1058  * Called when committing the transaction.
1059  * Returns 0 on success.
1060  * Returns < 0 on error and returns with an aborted transaction with any
1061  * outstanding delayed items cleaned up.
1062  */
1063 static int __btrfs_run_delayed_items(struct btrfs_trans_handle *trans, int nr)
1064 {
1065         struct btrfs_fs_info *fs_info = trans->fs_info;
1066         struct btrfs_delayed_root *delayed_root;
1067         struct btrfs_delayed_node *curr_node, *prev_node;
1068         struct btrfs_path *path;
1069         struct btrfs_block_rsv *block_rsv;
1070         int ret = 0;
1071         bool count = (nr > 0);
1072
1073         if (TRANS_ABORTED(trans))
1074                 return -EIO;
1075
1076         path = btrfs_alloc_path();
1077         if (!path)
1078                 return -ENOMEM;
1079
1080         block_rsv = trans->block_rsv;
1081         trans->block_rsv = &fs_info->delayed_block_rsv;
1082
1083         delayed_root = fs_info->delayed_root;
1084
1085         curr_node = btrfs_first_delayed_node(delayed_root);
1086         while (curr_node && (!count || nr--)) {
1087                 ret = __btrfs_commit_inode_delayed_items(trans, path,
1088                                                          curr_node);
1089                 if (ret) {
1090                         btrfs_release_delayed_node(curr_node);
1091                         curr_node = NULL;
1092                         btrfs_abort_transaction(trans, ret);
1093                         break;
1094                 }
1095
1096                 prev_node = curr_node;
1097                 curr_node = btrfs_next_delayed_node(curr_node);
1098                 btrfs_release_delayed_node(prev_node);
1099         }
1100
1101         if (curr_node)
1102                 btrfs_release_delayed_node(curr_node);
1103         btrfs_free_path(path);
1104         trans->block_rsv = block_rsv;
1105
1106         return ret;
1107 }
1108
1109 int btrfs_run_delayed_items(struct btrfs_trans_handle *trans)
1110 {
1111         return __btrfs_run_delayed_items(trans, -1);
1112 }
1113
1114 int btrfs_run_delayed_items_nr(struct btrfs_trans_handle *trans, int nr)
1115 {
1116         return __btrfs_run_delayed_items(trans, nr);
1117 }
1118
1119 int btrfs_commit_inode_delayed_items(struct btrfs_trans_handle *trans,
1120                                      struct btrfs_inode *inode)
1121 {
1122         struct btrfs_delayed_node *delayed_node = btrfs_get_delayed_node(inode);
1123         struct btrfs_path *path;
1124         struct btrfs_block_rsv *block_rsv;
1125         int ret;
1126
1127         if (!delayed_node)
1128                 return 0;
1129
1130         mutex_lock(&delayed_node->mutex);
1131         if (!delayed_node->count) {
1132                 mutex_unlock(&delayed_node->mutex);
1133                 btrfs_release_delayed_node(delayed_node);
1134                 return 0;
1135         }
1136         mutex_unlock(&delayed_node->mutex);
1137
1138         path = btrfs_alloc_path();
1139         if (!path) {
1140                 btrfs_release_delayed_node(delayed_node);
1141                 return -ENOMEM;
1142         }
1143
1144         block_rsv = trans->block_rsv;
1145         trans->block_rsv = &delayed_node->root->fs_info->delayed_block_rsv;
1146
1147         ret = __btrfs_commit_inode_delayed_items(trans, path, delayed_node);
1148
1149         btrfs_release_delayed_node(delayed_node);
1150         btrfs_free_path(path);
1151         trans->block_rsv = block_rsv;
1152
1153         return ret;
1154 }
1155
1156 int btrfs_commit_inode_delayed_inode(struct btrfs_inode *inode)
1157 {
1158         struct btrfs_fs_info *fs_info = inode->root->fs_info;
1159         struct btrfs_trans_handle *trans;
1160         struct btrfs_delayed_node *delayed_node = btrfs_get_delayed_node(inode);
1161         struct btrfs_path *path;
1162         struct btrfs_block_rsv *block_rsv;
1163         int ret;
1164
1165         if (!delayed_node)
1166                 return 0;
1167
1168         mutex_lock(&delayed_node->mutex);
1169         if (!test_bit(BTRFS_DELAYED_NODE_INODE_DIRTY, &delayed_node->flags)) {
1170                 mutex_unlock(&delayed_node->mutex);
1171                 btrfs_release_delayed_node(delayed_node);
1172                 return 0;
1173         }
1174         mutex_unlock(&delayed_node->mutex);
1175
1176         trans = btrfs_join_transaction(delayed_node->root);
1177         if (IS_ERR(trans)) {
1178                 ret = PTR_ERR(trans);
1179                 goto out;
1180         }
1181
1182         path = btrfs_alloc_path();
1183         if (!path) {
1184                 ret = -ENOMEM;
1185                 goto trans_out;
1186         }
1187
1188         block_rsv = trans->block_rsv;
1189         trans->block_rsv = &fs_info->delayed_block_rsv;
1190
1191         mutex_lock(&delayed_node->mutex);
1192         if (test_bit(BTRFS_DELAYED_NODE_INODE_DIRTY, &delayed_node->flags))
1193                 ret = __btrfs_update_delayed_inode(trans, delayed_node->root,
1194                                                    path, delayed_node);
1195         else
1196                 ret = 0;
1197         mutex_unlock(&delayed_node->mutex);
1198
1199         btrfs_free_path(path);
1200         trans->block_rsv = block_rsv;
1201 trans_out:
1202         btrfs_end_transaction(trans);
1203         btrfs_btree_balance_dirty(fs_info);
1204 out:
1205         btrfs_release_delayed_node(delayed_node);
1206
1207         return ret;
1208 }
1209
1210 void btrfs_remove_delayed_node(struct btrfs_inode *inode)
1211 {
1212         struct btrfs_delayed_node *delayed_node;
1213
1214         delayed_node = READ_ONCE(inode->delayed_node);
1215         if (!delayed_node)
1216                 return;
1217
1218         inode->delayed_node = NULL;
1219         btrfs_release_delayed_node(delayed_node);
1220 }
1221
1222 struct btrfs_async_delayed_work {
1223         struct btrfs_delayed_root *delayed_root;
1224         int nr;
1225         struct btrfs_work work;
1226 };
1227
1228 static void btrfs_async_run_delayed_root(struct btrfs_work *work)
1229 {
1230         struct btrfs_async_delayed_work *async_work;
1231         struct btrfs_delayed_root *delayed_root;
1232         struct btrfs_trans_handle *trans;
1233         struct btrfs_path *path;
1234         struct btrfs_delayed_node *delayed_node = NULL;
1235         struct btrfs_root *root;
1236         struct btrfs_block_rsv *block_rsv;
1237         int total_done = 0;
1238
1239         async_work = container_of(work, struct btrfs_async_delayed_work, work);
1240         delayed_root = async_work->delayed_root;
1241
1242         path = btrfs_alloc_path();
1243         if (!path)
1244                 goto out;
1245
1246         do {
1247                 if (atomic_read(&delayed_root->items) <
1248                     BTRFS_DELAYED_BACKGROUND / 2)
1249                         break;
1250
1251                 delayed_node = btrfs_first_prepared_delayed_node(delayed_root);
1252                 if (!delayed_node)
1253                         break;
1254
1255                 root = delayed_node->root;
1256
1257                 trans = btrfs_join_transaction(root);
1258                 if (IS_ERR(trans)) {
1259                         btrfs_release_path(path);
1260                         btrfs_release_prepared_delayed_node(delayed_node);
1261                         total_done++;
1262                         continue;
1263                 }
1264
1265                 block_rsv = trans->block_rsv;
1266                 trans->block_rsv = &root->fs_info->delayed_block_rsv;
1267
1268                 __btrfs_commit_inode_delayed_items(trans, path, delayed_node);
1269
1270                 trans->block_rsv = block_rsv;
1271                 btrfs_end_transaction(trans);
1272                 btrfs_btree_balance_dirty_nodelay(root->fs_info);
1273
1274                 btrfs_release_path(path);
1275                 btrfs_release_prepared_delayed_node(delayed_node);
1276                 total_done++;
1277
1278         } while ((async_work->nr == 0 && total_done < BTRFS_DELAYED_WRITEBACK)
1279                  || total_done < async_work->nr);
1280
1281         btrfs_free_path(path);
1282 out:
1283         wake_up(&delayed_root->wait);
1284         kfree(async_work);
1285 }
1286
1287
1288 static int btrfs_wq_run_delayed_node(struct btrfs_delayed_root *delayed_root,
1289                                      struct btrfs_fs_info *fs_info, int nr)
1290 {
1291         struct btrfs_async_delayed_work *async_work;
1292
1293         async_work = kmalloc(sizeof(*async_work), GFP_NOFS);
1294         if (!async_work)
1295                 return -ENOMEM;
1296
1297         async_work->delayed_root = delayed_root;
1298         btrfs_init_work(&async_work->work, btrfs_async_run_delayed_root, NULL,
1299                         NULL);
1300         async_work->nr = nr;
1301
1302         btrfs_queue_work(fs_info->delayed_workers, &async_work->work);
1303         return 0;
1304 }
1305
1306 void btrfs_assert_delayed_root_empty(struct btrfs_fs_info *fs_info)
1307 {
1308         WARN_ON(btrfs_first_delayed_node(fs_info->delayed_root));
1309 }
1310
1311 static int could_end_wait(struct btrfs_delayed_root *delayed_root, int seq)
1312 {
1313         int val = atomic_read(&delayed_root->items_seq);
1314
1315         if (val < seq || val >= seq + BTRFS_DELAYED_BATCH)
1316                 return 1;
1317
1318         if (atomic_read(&delayed_root->items) < BTRFS_DELAYED_BACKGROUND)
1319                 return 1;
1320
1321         return 0;
1322 }
1323
1324 void btrfs_balance_delayed_items(struct btrfs_fs_info *fs_info)
1325 {
1326         struct btrfs_delayed_root *delayed_root = fs_info->delayed_root;
1327
1328         if ((atomic_read(&delayed_root->items) < BTRFS_DELAYED_BACKGROUND) ||
1329                 btrfs_workqueue_normal_congested(fs_info->delayed_workers))
1330                 return;
1331
1332         if (atomic_read(&delayed_root->items) >= BTRFS_DELAYED_WRITEBACK) {
1333                 int seq;
1334                 int ret;
1335
1336                 seq = atomic_read(&delayed_root->items_seq);
1337
1338                 ret = btrfs_wq_run_delayed_node(delayed_root, fs_info, 0);
1339                 if (ret)
1340                         return;
1341
1342                 wait_event_interruptible(delayed_root->wait,
1343                                          could_end_wait(delayed_root, seq));
1344                 return;
1345         }
1346
1347         btrfs_wq_run_delayed_node(delayed_root, fs_info, BTRFS_DELAYED_BATCH);
1348 }
1349
1350 /* Will return 0 or -ENOMEM */
1351 int btrfs_insert_delayed_dir_index(struct btrfs_trans_handle *trans,
1352                                    const char *name, int name_len,
1353                                    struct btrfs_inode *dir,
1354                                    struct btrfs_disk_key *disk_key, u8 type,
1355                                    u64 index)
1356 {
1357         struct btrfs_delayed_node *delayed_node;
1358         struct btrfs_delayed_item *delayed_item;
1359         struct btrfs_dir_item *dir_item;
1360         int ret;
1361
1362         delayed_node = btrfs_get_or_create_delayed_node(dir);
1363         if (IS_ERR(delayed_node))
1364                 return PTR_ERR(delayed_node);
1365
1366         delayed_item = btrfs_alloc_delayed_item(sizeof(*dir_item) + name_len);
1367         if (!delayed_item) {
1368                 ret = -ENOMEM;
1369                 goto release_node;
1370         }
1371
1372         delayed_item->key.objectid = btrfs_ino(dir);
1373         delayed_item->key.type = BTRFS_DIR_INDEX_KEY;
1374         delayed_item->key.offset = index;
1375
1376         dir_item = (struct btrfs_dir_item *)delayed_item->data;
1377         dir_item->location = *disk_key;
1378         btrfs_set_stack_dir_transid(dir_item, trans->transid);
1379         btrfs_set_stack_dir_data_len(dir_item, 0);
1380         btrfs_set_stack_dir_name_len(dir_item, name_len);
1381         btrfs_set_stack_dir_type(dir_item, type);
1382         memcpy((char *)(dir_item + 1), name, name_len);
1383
1384         ret = btrfs_delayed_item_reserve_metadata(trans, dir->root, delayed_item);
1385         /*
1386          * we have reserved enough space when we start a new transaction,
1387          * so reserving metadata failure is impossible
1388          */
1389         BUG_ON(ret);
1390
1391         mutex_lock(&delayed_node->mutex);
1392         ret = __btrfs_add_delayed_insertion_item(delayed_node, delayed_item);
1393         if (unlikely(ret)) {
1394                 btrfs_err(trans->fs_info,
1395                           "err add delayed dir index item(name: %.*s) into the insertion tree of the delayed node(root id: %llu, inode id: %llu, errno: %d)",
1396                           name_len, name, delayed_node->root->root_key.objectid,
1397                           delayed_node->inode_id, ret);
1398                 BUG();
1399         }
1400         mutex_unlock(&delayed_node->mutex);
1401
1402 release_node:
1403         btrfs_release_delayed_node(delayed_node);
1404         return ret;
1405 }
1406
1407 static int btrfs_delete_delayed_insertion_item(struct btrfs_fs_info *fs_info,
1408                                                struct btrfs_delayed_node *node,
1409                                                struct btrfs_key *key)
1410 {
1411         struct btrfs_delayed_item *item;
1412
1413         mutex_lock(&node->mutex);
1414         item = __btrfs_lookup_delayed_insertion_item(node, key);
1415         if (!item) {
1416                 mutex_unlock(&node->mutex);
1417                 return 1;
1418         }
1419
1420         btrfs_delayed_item_release_metadata(node->root, item);
1421         btrfs_release_delayed_item(item);
1422         mutex_unlock(&node->mutex);
1423         return 0;
1424 }
1425
1426 int btrfs_delete_delayed_dir_index(struct btrfs_trans_handle *trans,
1427                                    struct btrfs_inode *dir, u64 index)
1428 {
1429         struct btrfs_delayed_node *node;
1430         struct btrfs_delayed_item *item;
1431         struct btrfs_key item_key;
1432         int ret;
1433
1434         node = btrfs_get_or_create_delayed_node(dir);
1435         if (IS_ERR(node))
1436                 return PTR_ERR(node);
1437
1438         item_key.objectid = btrfs_ino(dir);
1439         item_key.type = BTRFS_DIR_INDEX_KEY;
1440         item_key.offset = index;
1441
1442         ret = btrfs_delete_delayed_insertion_item(trans->fs_info, node,
1443                                                   &item_key);
1444         if (!ret)
1445                 goto end;
1446
1447         item = btrfs_alloc_delayed_item(0);
1448         if (!item) {
1449                 ret = -ENOMEM;
1450                 goto end;
1451         }
1452
1453         item->key = item_key;
1454
1455         ret = btrfs_delayed_item_reserve_metadata(trans, dir->root, item);
1456         /*
1457          * we have reserved enough space when we start a new transaction,
1458          * so reserving metadata failure is impossible.
1459          */
1460         if (ret < 0) {
1461                 btrfs_err(trans->fs_info,
1462 "metadata reservation failed for delayed dir item deltiona, should have been reserved");
1463                 btrfs_release_delayed_item(item);
1464                 goto end;
1465         }
1466
1467         mutex_lock(&node->mutex);
1468         ret = __btrfs_add_delayed_deletion_item(node, item);
1469         if (unlikely(ret)) {
1470                 btrfs_err(trans->fs_info,
1471                           "err add delayed dir index item(index: %llu) into the deletion tree of the delayed node(root id: %llu, inode id: %llu, errno: %d)",
1472                           index, node->root->root_key.objectid,
1473                           node->inode_id, ret);
1474                 btrfs_delayed_item_release_metadata(dir->root, item);
1475                 btrfs_release_delayed_item(item);
1476         }
1477         mutex_unlock(&node->mutex);
1478 end:
1479         btrfs_release_delayed_node(node);
1480         return ret;
1481 }
1482
1483 int btrfs_inode_delayed_dir_index_count(struct btrfs_inode *inode)
1484 {
1485         struct btrfs_delayed_node *delayed_node = btrfs_get_delayed_node(inode);
1486
1487         if (!delayed_node)
1488                 return -ENOENT;
1489
1490         /*
1491          * Since we have held i_mutex of this directory, it is impossible that
1492          * a new directory index is added into the delayed node and index_cnt
1493          * is updated now. So we needn't lock the delayed node.
1494          */
1495         if (!delayed_node->index_cnt) {
1496                 btrfs_release_delayed_node(delayed_node);
1497                 return -EINVAL;
1498         }
1499
1500         inode->index_cnt = delayed_node->index_cnt;
1501         btrfs_release_delayed_node(delayed_node);
1502         return 0;
1503 }
1504
1505 bool btrfs_readdir_get_delayed_items(struct inode *inode,
1506                                      struct list_head *ins_list,
1507                                      struct list_head *del_list)
1508 {
1509         struct btrfs_delayed_node *delayed_node;
1510         struct btrfs_delayed_item *item;
1511
1512         delayed_node = btrfs_get_delayed_node(BTRFS_I(inode));
1513         if (!delayed_node)
1514                 return false;
1515
1516         /*
1517          * We can only do one readdir with delayed items at a time because of
1518          * item->readdir_list.
1519          */
1520         btrfs_inode_unlock(inode, BTRFS_ILOCK_SHARED);
1521         btrfs_inode_lock(inode, 0);
1522
1523         mutex_lock(&delayed_node->mutex);
1524         item = __btrfs_first_delayed_insertion_item(delayed_node);
1525         while (item) {
1526                 refcount_inc(&item->refs);
1527                 list_add_tail(&item->readdir_list, ins_list);
1528                 item = __btrfs_next_delayed_item(item);
1529         }
1530
1531         item = __btrfs_first_delayed_deletion_item(delayed_node);
1532         while (item) {
1533                 refcount_inc(&item->refs);
1534                 list_add_tail(&item->readdir_list, del_list);
1535                 item = __btrfs_next_delayed_item(item);
1536         }
1537         mutex_unlock(&delayed_node->mutex);
1538         /*
1539          * This delayed node is still cached in the btrfs inode, so refs
1540          * must be > 1 now, and we needn't check it is going to be freed
1541          * or not.
1542          *
1543          * Besides that, this function is used to read dir, we do not
1544          * insert/delete delayed items in this period. So we also needn't
1545          * requeue or dequeue this delayed node.
1546          */
1547         refcount_dec(&delayed_node->refs);
1548
1549         return true;
1550 }
1551
1552 void btrfs_readdir_put_delayed_items(struct inode *inode,
1553                                      struct list_head *ins_list,
1554                                      struct list_head *del_list)
1555 {
1556         struct btrfs_delayed_item *curr, *next;
1557
1558         list_for_each_entry_safe(curr, next, ins_list, readdir_list) {
1559                 list_del(&curr->readdir_list);
1560                 if (refcount_dec_and_test(&curr->refs))
1561                         kfree(curr);
1562         }
1563
1564         list_for_each_entry_safe(curr, next, del_list, readdir_list) {
1565                 list_del(&curr->readdir_list);
1566                 if (refcount_dec_and_test(&curr->refs))
1567                         kfree(curr);
1568         }
1569
1570         /*
1571          * The VFS is going to do up_read(), so we need to downgrade back to a
1572          * read lock.
1573          */
1574         downgrade_write(&inode->i_rwsem);
1575 }
1576
1577 int btrfs_should_delete_dir_index(struct list_head *del_list,
1578                                   u64 index)
1579 {
1580         struct btrfs_delayed_item *curr;
1581         int ret = 0;
1582
1583         list_for_each_entry(curr, del_list, readdir_list) {
1584                 if (curr->key.offset > index)
1585                         break;
1586                 if (curr->key.offset == index) {
1587                         ret = 1;
1588                         break;
1589                 }
1590         }
1591         return ret;
1592 }
1593
1594 /*
1595  * btrfs_readdir_delayed_dir_index - read dir info stored in the delayed tree
1596  *
1597  */
1598 int btrfs_readdir_delayed_dir_index(struct dir_context *ctx,
1599                                     struct list_head *ins_list)
1600 {
1601         struct btrfs_dir_item *di;
1602         struct btrfs_delayed_item *curr, *next;
1603         struct btrfs_key location;
1604         char *name;
1605         int name_len;
1606         int over = 0;
1607         unsigned char d_type;
1608
1609         if (list_empty(ins_list))
1610                 return 0;
1611
1612         /*
1613          * Changing the data of the delayed item is impossible. So
1614          * we needn't lock them. And we have held i_mutex of the
1615          * directory, nobody can delete any directory indexes now.
1616          */
1617         list_for_each_entry_safe(curr, next, ins_list, readdir_list) {
1618                 list_del(&curr->readdir_list);
1619
1620                 if (curr->key.offset < ctx->pos) {
1621                         if (refcount_dec_and_test(&curr->refs))
1622                                 kfree(curr);
1623                         continue;
1624                 }
1625
1626                 ctx->pos = curr->key.offset;
1627
1628                 di = (struct btrfs_dir_item *)curr->data;
1629                 name = (char *)(di + 1);
1630                 name_len = btrfs_stack_dir_name_len(di);
1631
1632                 d_type = fs_ftype_to_dtype(di->type);
1633                 btrfs_disk_key_to_cpu(&location, &di->location);
1634
1635                 over = !dir_emit(ctx, name, name_len,
1636                                location.objectid, d_type);
1637
1638                 if (refcount_dec_and_test(&curr->refs))
1639                         kfree(curr);
1640
1641                 if (over)
1642                         return 1;
1643                 ctx->pos++;
1644         }
1645         return 0;
1646 }
1647
1648 static void fill_stack_inode_item(struct btrfs_trans_handle *trans,
1649                                   struct btrfs_inode_item *inode_item,
1650                                   struct inode *inode)
1651 {
1652         u64 flags;
1653
1654         btrfs_set_stack_inode_uid(inode_item, i_uid_read(inode));
1655         btrfs_set_stack_inode_gid(inode_item, i_gid_read(inode));
1656         btrfs_set_stack_inode_size(inode_item, BTRFS_I(inode)->disk_i_size);
1657         btrfs_set_stack_inode_mode(inode_item, inode->i_mode);
1658         btrfs_set_stack_inode_nlink(inode_item, inode->i_nlink);
1659         btrfs_set_stack_inode_nbytes(inode_item, inode_get_bytes(inode));
1660         btrfs_set_stack_inode_generation(inode_item,
1661                                          BTRFS_I(inode)->generation);
1662         btrfs_set_stack_inode_sequence(inode_item,
1663                                        inode_peek_iversion(inode));
1664         btrfs_set_stack_inode_transid(inode_item, trans->transid);
1665         btrfs_set_stack_inode_rdev(inode_item, inode->i_rdev);
1666         flags = btrfs_inode_combine_flags(BTRFS_I(inode)->flags,
1667                                           BTRFS_I(inode)->ro_flags);
1668         btrfs_set_stack_inode_flags(inode_item, flags);
1669         btrfs_set_stack_inode_block_group(inode_item, 0);
1670
1671         btrfs_set_stack_timespec_sec(&inode_item->atime,
1672                                      inode->i_atime.tv_sec);
1673         btrfs_set_stack_timespec_nsec(&inode_item->atime,
1674                                       inode->i_atime.tv_nsec);
1675
1676         btrfs_set_stack_timespec_sec(&inode_item->mtime,
1677                                      inode->i_mtime.tv_sec);
1678         btrfs_set_stack_timespec_nsec(&inode_item->mtime,
1679                                       inode->i_mtime.tv_nsec);
1680
1681         btrfs_set_stack_timespec_sec(&inode_item->ctime,
1682                                      inode->i_ctime.tv_sec);
1683         btrfs_set_stack_timespec_nsec(&inode_item->ctime,
1684                                       inode->i_ctime.tv_nsec);
1685
1686         btrfs_set_stack_timespec_sec(&inode_item->otime,
1687                                      BTRFS_I(inode)->i_otime.tv_sec);
1688         btrfs_set_stack_timespec_nsec(&inode_item->otime,
1689                                      BTRFS_I(inode)->i_otime.tv_nsec);
1690 }
1691
1692 int btrfs_fill_inode(struct inode *inode, u32 *rdev)
1693 {
1694         struct btrfs_fs_info *fs_info = BTRFS_I(inode)->root->fs_info;
1695         struct btrfs_delayed_node *delayed_node;
1696         struct btrfs_inode_item *inode_item;
1697
1698         delayed_node = btrfs_get_delayed_node(BTRFS_I(inode));
1699         if (!delayed_node)
1700                 return -ENOENT;
1701
1702         mutex_lock(&delayed_node->mutex);
1703         if (!test_bit(BTRFS_DELAYED_NODE_INODE_DIRTY, &delayed_node->flags)) {
1704                 mutex_unlock(&delayed_node->mutex);
1705                 btrfs_release_delayed_node(delayed_node);
1706                 return -ENOENT;
1707         }
1708
1709         inode_item = &delayed_node->inode_item;
1710
1711         i_uid_write(inode, btrfs_stack_inode_uid(inode_item));
1712         i_gid_write(inode, btrfs_stack_inode_gid(inode_item));
1713         btrfs_i_size_write(BTRFS_I(inode), btrfs_stack_inode_size(inode_item));
1714         btrfs_inode_set_file_extent_range(BTRFS_I(inode), 0,
1715                         round_up(i_size_read(inode), fs_info->sectorsize));
1716         inode->i_mode = btrfs_stack_inode_mode(inode_item);
1717         set_nlink(inode, btrfs_stack_inode_nlink(inode_item));
1718         inode_set_bytes(inode, btrfs_stack_inode_nbytes(inode_item));
1719         BTRFS_I(inode)->generation = btrfs_stack_inode_generation(inode_item);
1720         BTRFS_I(inode)->last_trans = btrfs_stack_inode_transid(inode_item);
1721
1722         inode_set_iversion_queried(inode,
1723                                    btrfs_stack_inode_sequence(inode_item));
1724         inode->i_rdev = 0;
1725         *rdev = btrfs_stack_inode_rdev(inode_item);
1726         btrfs_inode_split_flags(btrfs_stack_inode_flags(inode_item),
1727                                 &BTRFS_I(inode)->flags, &BTRFS_I(inode)->ro_flags);
1728
1729         inode->i_atime.tv_sec = btrfs_stack_timespec_sec(&inode_item->atime);
1730         inode->i_atime.tv_nsec = btrfs_stack_timespec_nsec(&inode_item->atime);
1731
1732         inode->i_mtime.tv_sec = btrfs_stack_timespec_sec(&inode_item->mtime);
1733         inode->i_mtime.tv_nsec = btrfs_stack_timespec_nsec(&inode_item->mtime);
1734
1735         inode->i_ctime.tv_sec = btrfs_stack_timespec_sec(&inode_item->ctime);
1736         inode->i_ctime.tv_nsec = btrfs_stack_timespec_nsec(&inode_item->ctime);
1737
1738         BTRFS_I(inode)->i_otime.tv_sec =
1739                 btrfs_stack_timespec_sec(&inode_item->otime);
1740         BTRFS_I(inode)->i_otime.tv_nsec =
1741                 btrfs_stack_timespec_nsec(&inode_item->otime);
1742
1743         inode->i_generation = BTRFS_I(inode)->generation;
1744         BTRFS_I(inode)->index_cnt = (u64)-1;
1745
1746         mutex_unlock(&delayed_node->mutex);
1747         btrfs_release_delayed_node(delayed_node);
1748         return 0;
1749 }
1750
1751 int btrfs_delayed_update_inode(struct btrfs_trans_handle *trans,
1752                                struct btrfs_root *root,
1753                                struct btrfs_inode *inode)
1754 {
1755         struct btrfs_delayed_node *delayed_node;
1756         int ret = 0;
1757
1758         delayed_node = btrfs_get_or_create_delayed_node(inode);
1759         if (IS_ERR(delayed_node))
1760                 return PTR_ERR(delayed_node);
1761
1762         mutex_lock(&delayed_node->mutex);
1763         if (test_bit(BTRFS_DELAYED_NODE_INODE_DIRTY, &delayed_node->flags)) {
1764                 fill_stack_inode_item(trans, &delayed_node->inode_item,
1765                                       &inode->vfs_inode);
1766                 goto release_node;
1767         }
1768
1769         ret = btrfs_delayed_inode_reserve_metadata(trans, root, delayed_node);
1770         if (ret)
1771                 goto release_node;
1772
1773         fill_stack_inode_item(trans, &delayed_node->inode_item, &inode->vfs_inode);
1774         set_bit(BTRFS_DELAYED_NODE_INODE_DIRTY, &delayed_node->flags);
1775         delayed_node->count++;
1776         atomic_inc(&root->fs_info->delayed_root->items);
1777 release_node:
1778         mutex_unlock(&delayed_node->mutex);
1779         btrfs_release_delayed_node(delayed_node);
1780         return ret;
1781 }
1782
1783 int btrfs_delayed_delete_inode_ref(struct btrfs_inode *inode)
1784 {
1785         struct btrfs_fs_info *fs_info = inode->root->fs_info;
1786         struct btrfs_delayed_node *delayed_node;
1787
1788         /*
1789          * we don't do delayed inode updates during log recovery because it
1790          * leads to enospc problems.  This means we also can't do
1791          * delayed inode refs
1792          */
1793         if (test_bit(BTRFS_FS_LOG_RECOVERING, &fs_info->flags))
1794                 return -EAGAIN;
1795
1796         delayed_node = btrfs_get_or_create_delayed_node(inode);
1797         if (IS_ERR(delayed_node))
1798                 return PTR_ERR(delayed_node);
1799
1800         /*
1801          * We don't reserve space for inode ref deletion is because:
1802          * - We ONLY do async inode ref deletion for the inode who has only
1803          *   one link(i_nlink == 1), it means there is only one inode ref.
1804          *   And in most case, the inode ref and the inode item are in the
1805          *   same leaf, and we will deal with them at the same time.
1806          *   Since we are sure we will reserve the space for the inode item,
1807          *   it is unnecessary to reserve space for inode ref deletion.
1808          * - If the inode ref and the inode item are not in the same leaf,
1809          *   We also needn't worry about enospc problem, because we reserve
1810          *   much more space for the inode update than it needs.
1811          * - At the worst, we can steal some space from the global reservation.
1812          *   It is very rare.
1813          */
1814         mutex_lock(&delayed_node->mutex);
1815         if (test_bit(BTRFS_DELAYED_NODE_DEL_IREF, &delayed_node->flags))
1816                 goto release_node;
1817
1818         set_bit(BTRFS_DELAYED_NODE_DEL_IREF, &delayed_node->flags);
1819         delayed_node->count++;
1820         atomic_inc(&fs_info->delayed_root->items);
1821 release_node:
1822         mutex_unlock(&delayed_node->mutex);
1823         btrfs_release_delayed_node(delayed_node);
1824         return 0;
1825 }
1826
1827 static void __btrfs_kill_delayed_node(struct btrfs_delayed_node *delayed_node)
1828 {
1829         struct btrfs_root *root = delayed_node->root;
1830         struct btrfs_fs_info *fs_info = root->fs_info;
1831         struct btrfs_delayed_item *curr_item, *prev_item;
1832
1833         mutex_lock(&delayed_node->mutex);
1834         curr_item = __btrfs_first_delayed_insertion_item(delayed_node);
1835         while (curr_item) {
1836                 btrfs_delayed_item_release_metadata(root, curr_item);
1837                 prev_item = curr_item;
1838                 curr_item = __btrfs_next_delayed_item(prev_item);
1839                 btrfs_release_delayed_item(prev_item);
1840         }
1841
1842         curr_item = __btrfs_first_delayed_deletion_item(delayed_node);
1843         while (curr_item) {
1844                 btrfs_delayed_item_release_metadata(root, curr_item);
1845                 prev_item = curr_item;
1846                 curr_item = __btrfs_next_delayed_item(prev_item);
1847                 btrfs_release_delayed_item(prev_item);
1848         }
1849
1850         btrfs_release_delayed_iref(delayed_node);
1851
1852         if (test_bit(BTRFS_DELAYED_NODE_INODE_DIRTY, &delayed_node->flags)) {
1853                 btrfs_delayed_inode_release_metadata(fs_info, delayed_node, false);
1854                 btrfs_release_delayed_inode(delayed_node);
1855         }
1856         mutex_unlock(&delayed_node->mutex);
1857 }
1858
1859 void btrfs_kill_delayed_inode_items(struct btrfs_inode *inode)
1860 {
1861         struct btrfs_delayed_node *delayed_node;
1862
1863         delayed_node = btrfs_get_delayed_node(inode);
1864         if (!delayed_node)
1865                 return;
1866
1867         __btrfs_kill_delayed_node(delayed_node);
1868         btrfs_release_delayed_node(delayed_node);
1869 }
1870
1871 void btrfs_kill_all_delayed_nodes(struct btrfs_root *root)
1872 {
1873         u64 inode_id = 0;
1874         struct btrfs_delayed_node *delayed_nodes[8];
1875         int i, n;
1876
1877         while (1) {
1878                 spin_lock(&root->inode_lock);
1879                 n = radix_tree_gang_lookup(&root->delayed_nodes_tree,
1880                                            (void **)delayed_nodes, inode_id,
1881                                            ARRAY_SIZE(delayed_nodes));
1882                 if (!n) {
1883                         spin_unlock(&root->inode_lock);
1884                         break;
1885                 }
1886
1887                 inode_id = delayed_nodes[n - 1]->inode_id + 1;
1888                 for (i = 0; i < n; i++) {
1889                         /*
1890                          * Don't increase refs in case the node is dead and
1891                          * about to be removed from the tree in the loop below
1892                          */
1893                         if (!refcount_inc_not_zero(&delayed_nodes[i]->refs))
1894                                 delayed_nodes[i] = NULL;
1895                 }
1896                 spin_unlock(&root->inode_lock);
1897
1898                 for (i = 0; i < n; i++) {
1899                         if (!delayed_nodes[i])
1900                                 continue;
1901                         __btrfs_kill_delayed_node(delayed_nodes[i]);
1902                         btrfs_release_delayed_node(delayed_nodes[i]);
1903                 }
1904         }
1905 }
1906
1907 void btrfs_destroy_delayed_inodes(struct btrfs_fs_info *fs_info)
1908 {
1909         struct btrfs_delayed_node *curr_node, *prev_node;
1910
1911         curr_node = btrfs_first_delayed_node(fs_info->delayed_root);
1912         while (curr_node) {
1913                 __btrfs_kill_delayed_node(curr_node);
1914
1915                 prev_node = curr_node;
1916                 curr_node = btrfs_next_delayed_node(curr_node);
1917                 btrfs_release_delayed_node(prev_node);
1918         }
1919 }
1920