2 * Copyright (C) 2011 Fujitsu. All rights reserved.
3 * Written by Miao Xie <miaox@cn.fujitsu.com>
5 * This program is free software; you can redistribute it and/or
6 * modify it under the terms of the GNU General Public
7 * License v2 as published by the Free Software Foundation.
9 * This program is distributed in the hope that it will be useful,
10 * but WITHOUT ANY WARRANTY; without even the implied warranty of
11 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
12 * General Public License for more details.
14 * You should have received a copy of the GNU General Public
15 * License along with this program; if not, write to the
16 * Free Software Foundation, Inc., 59 Temple Place - Suite 330,
17 * Boston, MA 021110-1307, USA.
20 #include <linux/slab.h>
21 #include "delayed-inode.h"
23 #include "transaction.h"
26 #define BTRFS_DELAYED_WRITEBACK 512
27 #define BTRFS_DELAYED_BACKGROUND 128
28 #define BTRFS_DELAYED_BATCH 16
30 static struct kmem_cache *delayed_node_cache;
32 int __init btrfs_delayed_inode_init(void)
34 delayed_node_cache = kmem_cache_create("btrfs_delayed_node",
35 sizeof(struct btrfs_delayed_node),
39 if (!delayed_node_cache)
44 void btrfs_delayed_inode_exit(void)
46 kmem_cache_destroy(delayed_node_cache);
49 static inline void btrfs_init_delayed_node(
50 struct btrfs_delayed_node *delayed_node,
51 struct btrfs_root *root, u64 inode_id)
53 delayed_node->root = root;
54 delayed_node->inode_id = inode_id;
55 atomic_set(&delayed_node->refs, 0);
56 delayed_node->ins_root = RB_ROOT;
57 delayed_node->del_root = RB_ROOT;
58 mutex_init(&delayed_node->mutex);
59 INIT_LIST_HEAD(&delayed_node->n_list);
60 INIT_LIST_HEAD(&delayed_node->p_list);
63 static inline int btrfs_is_continuous_delayed_item(
64 struct btrfs_delayed_item *item1,
65 struct btrfs_delayed_item *item2)
67 if (item1->key.type == BTRFS_DIR_INDEX_KEY &&
68 item1->key.objectid == item2->key.objectid &&
69 item1->key.type == item2->key.type &&
70 item1->key.offset + 1 == item2->key.offset)
75 static inline struct btrfs_delayed_root *btrfs_get_delayed_root(
76 struct btrfs_root *root)
78 return root->fs_info->delayed_root;
81 static struct btrfs_delayed_node *btrfs_get_delayed_node(struct inode *inode)
83 struct btrfs_inode *btrfs_inode = BTRFS_I(inode);
84 struct btrfs_root *root = btrfs_inode->root;
85 u64 ino = btrfs_ino(inode);
86 struct btrfs_delayed_node *node;
88 node = ACCESS_ONCE(btrfs_inode->delayed_node);
90 atomic_inc(&node->refs);
94 spin_lock(&root->inode_lock);
95 node = radix_tree_lookup(&root->delayed_nodes_tree, ino);
97 if (btrfs_inode->delayed_node) {
98 atomic_inc(&node->refs); /* can be accessed */
99 BUG_ON(btrfs_inode->delayed_node != node);
100 spin_unlock(&root->inode_lock);
103 btrfs_inode->delayed_node = node;
104 /* can be accessed and cached in the inode */
105 atomic_add(2, &node->refs);
106 spin_unlock(&root->inode_lock);
109 spin_unlock(&root->inode_lock);
114 /* Will return either the node or PTR_ERR(-ENOMEM) */
115 static struct btrfs_delayed_node *btrfs_get_or_create_delayed_node(
118 struct btrfs_delayed_node *node;
119 struct btrfs_inode *btrfs_inode = BTRFS_I(inode);
120 struct btrfs_root *root = btrfs_inode->root;
121 u64 ino = btrfs_ino(inode);
125 node = btrfs_get_delayed_node(inode);
129 node = kmem_cache_zalloc(delayed_node_cache, GFP_NOFS);
131 return ERR_PTR(-ENOMEM);
132 btrfs_init_delayed_node(node, root, ino);
134 /* cached in the btrfs inode and can be accessed */
135 atomic_add(2, &node->refs);
137 ret = radix_tree_preload(GFP_NOFS);
139 kmem_cache_free(delayed_node_cache, node);
143 spin_lock(&root->inode_lock);
144 ret = radix_tree_insert(&root->delayed_nodes_tree, ino, node);
145 if (ret == -EEXIST) {
146 spin_unlock(&root->inode_lock);
147 kmem_cache_free(delayed_node_cache, node);
148 radix_tree_preload_end();
151 btrfs_inode->delayed_node = node;
152 spin_unlock(&root->inode_lock);
153 radix_tree_preload_end();
159 * Call it when holding delayed_node->mutex
161 * If mod = 1, add this node into the prepared list.
163 static void btrfs_queue_delayed_node(struct btrfs_delayed_root *root,
164 struct btrfs_delayed_node *node,
167 spin_lock(&root->lock);
168 if (test_bit(BTRFS_DELAYED_NODE_IN_LIST, &node->flags)) {
169 if (!list_empty(&node->p_list))
170 list_move_tail(&node->p_list, &root->prepare_list);
172 list_add_tail(&node->p_list, &root->prepare_list);
174 list_add_tail(&node->n_list, &root->node_list);
175 list_add_tail(&node->p_list, &root->prepare_list);
176 atomic_inc(&node->refs); /* inserted into list */
178 set_bit(BTRFS_DELAYED_NODE_IN_LIST, &node->flags);
180 spin_unlock(&root->lock);
183 /* Call it when holding delayed_node->mutex */
184 static void btrfs_dequeue_delayed_node(struct btrfs_delayed_root *root,
185 struct btrfs_delayed_node *node)
187 spin_lock(&root->lock);
188 if (test_bit(BTRFS_DELAYED_NODE_IN_LIST, &node->flags)) {
190 atomic_dec(&node->refs); /* not in the list */
191 list_del_init(&node->n_list);
192 if (!list_empty(&node->p_list))
193 list_del_init(&node->p_list);
194 clear_bit(BTRFS_DELAYED_NODE_IN_LIST, &node->flags);
196 spin_unlock(&root->lock);
199 static struct btrfs_delayed_node *btrfs_first_delayed_node(
200 struct btrfs_delayed_root *delayed_root)
203 struct btrfs_delayed_node *node = NULL;
205 spin_lock(&delayed_root->lock);
206 if (list_empty(&delayed_root->node_list))
209 p = delayed_root->node_list.next;
210 node = list_entry(p, struct btrfs_delayed_node, n_list);
211 atomic_inc(&node->refs);
213 spin_unlock(&delayed_root->lock);
218 static struct btrfs_delayed_node *btrfs_next_delayed_node(
219 struct btrfs_delayed_node *node)
221 struct btrfs_delayed_root *delayed_root;
223 struct btrfs_delayed_node *next = NULL;
225 delayed_root = node->root->fs_info->delayed_root;
226 spin_lock(&delayed_root->lock);
227 if (!test_bit(BTRFS_DELAYED_NODE_IN_LIST, &node->flags)) {
228 /* not in the list */
229 if (list_empty(&delayed_root->node_list))
231 p = delayed_root->node_list.next;
232 } else if (list_is_last(&node->n_list, &delayed_root->node_list))
235 p = node->n_list.next;
237 next = list_entry(p, struct btrfs_delayed_node, n_list);
238 atomic_inc(&next->refs);
240 spin_unlock(&delayed_root->lock);
245 static void __btrfs_release_delayed_node(
246 struct btrfs_delayed_node *delayed_node,
249 struct btrfs_delayed_root *delayed_root;
254 delayed_root = delayed_node->root->fs_info->delayed_root;
256 mutex_lock(&delayed_node->mutex);
257 if (delayed_node->count)
258 btrfs_queue_delayed_node(delayed_root, delayed_node, mod);
260 btrfs_dequeue_delayed_node(delayed_root, delayed_node);
261 mutex_unlock(&delayed_node->mutex);
263 if (atomic_dec_and_test(&delayed_node->refs)) {
265 struct btrfs_root *root = delayed_node->root;
266 spin_lock(&root->inode_lock);
267 if (atomic_read(&delayed_node->refs) == 0) {
268 radix_tree_delete(&root->delayed_nodes_tree,
269 delayed_node->inode_id);
272 spin_unlock(&root->inode_lock);
274 kmem_cache_free(delayed_node_cache, delayed_node);
278 static inline void btrfs_release_delayed_node(struct btrfs_delayed_node *node)
280 __btrfs_release_delayed_node(node, 0);
283 static struct btrfs_delayed_node *btrfs_first_prepared_delayed_node(
284 struct btrfs_delayed_root *delayed_root)
287 struct btrfs_delayed_node *node = NULL;
289 spin_lock(&delayed_root->lock);
290 if (list_empty(&delayed_root->prepare_list))
293 p = delayed_root->prepare_list.next;
295 node = list_entry(p, struct btrfs_delayed_node, p_list);
296 atomic_inc(&node->refs);
298 spin_unlock(&delayed_root->lock);
303 static inline void btrfs_release_prepared_delayed_node(
304 struct btrfs_delayed_node *node)
306 __btrfs_release_delayed_node(node, 1);
309 static struct btrfs_delayed_item *btrfs_alloc_delayed_item(u32 data_len)
311 struct btrfs_delayed_item *item;
312 item = kmalloc(sizeof(*item) + data_len, GFP_NOFS);
314 item->data_len = data_len;
315 item->ins_or_del = 0;
316 item->bytes_reserved = 0;
317 item->delayed_node = NULL;
318 atomic_set(&item->refs, 1);
324 * __btrfs_lookup_delayed_item - look up the delayed item by key
325 * @delayed_node: pointer to the delayed node
326 * @key: the key to look up
327 * @prev: used to store the prev item if the right item isn't found
328 * @next: used to store the next item if the right item isn't found
330 * Note: if we don't find the right item, we will return the prev item and
333 static struct btrfs_delayed_item *__btrfs_lookup_delayed_item(
334 struct rb_root *root,
335 struct btrfs_key *key,
336 struct btrfs_delayed_item **prev,
337 struct btrfs_delayed_item **next)
339 struct rb_node *node, *prev_node = NULL;
340 struct btrfs_delayed_item *delayed_item = NULL;
343 node = root->rb_node;
346 delayed_item = rb_entry(node, struct btrfs_delayed_item,
349 ret = btrfs_comp_cpu_keys(&delayed_item->key, key);
351 node = node->rb_right;
353 node = node->rb_left;
362 *prev = delayed_item;
363 else if ((node = rb_prev(prev_node)) != NULL) {
364 *prev = rb_entry(node, struct btrfs_delayed_item,
374 *next = delayed_item;
375 else if ((node = rb_next(prev_node)) != NULL) {
376 *next = rb_entry(node, struct btrfs_delayed_item,
384 static struct btrfs_delayed_item *__btrfs_lookup_delayed_insertion_item(
385 struct btrfs_delayed_node *delayed_node,
386 struct btrfs_key *key)
388 return __btrfs_lookup_delayed_item(&delayed_node->ins_root, key,
392 static int __btrfs_add_delayed_item(struct btrfs_delayed_node *delayed_node,
393 struct btrfs_delayed_item *ins,
396 struct rb_node **p, *node;
397 struct rb_node *parent_node = NULL;
398 struct rb_root *root;
399 struct btrfs_delayed_item *item;
402 if (action == BTRFS_DELAYED_INSERTION_ITEM)
403 root = &delayed_node->ins_root;
404 else if (action == BTRFS_DELAYED_DELETION_ITEM)
405 root = &delayed_node->del_root;
409 node = &ins->rb_node;
413 item = rb_entry(parent_node, struct btrfs_delayed_item,
416 cmp = btrfs_comp_cpu_keys(&item->key, &ins->key);
425 rb_link_node(node, parent_node, p);
426 rb_insert_color(node, root);
427 ins->delayed_node = delayed_node;
428 ins->ins_or_del = action;
430 if (ins->key.type == BTRFS_DIR_INDEX_KEY &&
431 action == BTRFS_DELAYED_INSERTION_ITEM &&
432 ins->key.offset >= delayed_node->index_cnt)
433 delayed_node->index_cnt = ins->key.offset + 1;
435 delayed_node->count++;
436 atomic_inc(&delayed_node->root->fs_info->delayed_root->items);
440 static int __btrfs_add_delayed_insertion_item(struct btrfs_delayed_node *node,
441 struct btrfs_delayed_item *item)
443 return __btrfs_add_delayed_item(node, item,
444 BTRFS_DELAYED_INSERTION_ITEM);
447 static int __btrfs_add_delayed_deletion_item(struct btrfs_delayed_node *node,
448 struct btrfs_delayed_item *item)
450 return __btrfs_add_delayed_item(node, item,
451 BTRFS_DELAYED_DELETION_ITEM);
454 static void finish_one_item(struct btrfs_delayed_root *delayed_root)
456 int seq = atomic_inc_return(&delayed_root->items_seq);
459 * atomic_dec_return implies a barrier for waitqueue_active
461 if ((atomic_dec_return(&delayed_root->items) <
462 BTRFS_DELAYED_BACKGROUND || seq % BTRFS_DELAYED_BATCH == 0) &&
463 waitqueue_active(&delayed_root->wait))
464 wake_up(&delayed_root->wait);
467 static void __btrfs_remove_delayed_item(struct btrfs_delayed_item *delayed_item)
469 struct rb_root *root;
470 struct btrfs_delayed_root *delayed_root;
472 delayed_root = delayed_item->delayed_node->root->fs_info->delayed_root;
474 BUG_ON(!delayed_root);
475 BUG_ON(delayed_item->ins_or_del != BTRFS_DELAYED_DELETION_ITEM &&
476 delayed_item->ins_or_del != BTRFS_DELAYED_INSERTION_ITEM);
478 if (delayed_item->ins_or_del == BTRFS_DELAYED_INSERTION_ITEM)
479 root = &delayed_item->delayed_node->ins_root;
481 root = &delayed_item->delayed_node->del_root;
483 rb_erase(&delayed_item->rb_node, root);
484 delayed_item->delayed_node->count--;
486 finish_one_item(delayed_root);
489 static void btrfs_release_delayed_item(struct btrfs_delayed_item *item)
492 __btrfs_remove_delayed_item(item);
493 if (atomic_dec_and_test(&item->refs))
498 static struct btrfs_delayed_item *__btrfs_first_delayed_insertion_item(
499 struct btrfs_delayed_node *delayed_node)
502 struct btrfs_delayed_item *item = NULL;
504 p = rb_first(&delayed_node->ins_root);
506 item = rb_entry(p, struct btrfs_delayed_item, rb_node);
511 static struct btrfs_delayed_item *__btrfs_first_delayed_deletion_item(
512 struct btrfs_delayed_node *delayed_node)
515 struct btrfs_delayed_item *item = NULL;
517 p = rb_first(&delayed_node->del_root);
519 item = rb_entry(p, struct btrfs_delayed_item, rb_node);
524 static struct btrfs_delayed_item *__btrfs_next_delayed_item(
525 struct btrfs_delayed_item *item)
528 struct btrfs_delayed_item *next = NULL;
530 p = rb_next(&item->rb_node);
532 next = rb_entry(p, struct btrfs_delayed_item, rb_node);
537 static int btrfs_delayed_item_reserve_metadata(struct btrfs_trans_handle *trans,
538 struct btrfs_root *root,
539 struct btrfs_delayed_item *item)
541 struct btrfs_block_rsv *src_rsv;
542 struct btrfs_block_rsv *dst_rsv;
546 if (!trans->bytes_reserved)
549 src_rsv = trans->block_rsv;
550 dst_rsv = &root->fs_info->delayed_block_rsv;
552 num_bytes = btrfs_calc_trans_metadata_size(root, 1);
553 ret = btrfs_block_rsv_migrate(src_rsv, dst_rsv, num_bytes, 1);
555 trace_btrfs_space_reservation(root->fs_info, "delayed_item",
558 item->bytes_reserved = num_bytes;
564 static void btrfs_delayed_item_release_metadata(struct btrfs_root *root,
565 struct btrfs_delayed_item *item)
567 struct btrfs_block_rsv *rsv;
569 if (!item->bytes_reserved)
572 rsv = &root->fs_info->delayed_block_rsv;
573 trace_btrfs_space_reservation(root->fs_info, "delayed_item",
574 item->key.objectid, item->bytes_reserved,
576 btrfs_block_rsv_release(root, rsv,
577 item->bytes_reserved);
580 static int btrfs_delayed_inode_reserve_metadata(
581 struct btrfs_trans_handle *trans,
582 struct btrfs_root *root,
584 struct btrfs_delayed_node *node)
586 struct btrfs_block_rsv *src_rsv;
587 struct btrfs_block_rsv *dst_rsv;
590 bool release = false;
592 src_rsv = trans->block_rsv;
593 dst_rsv = &root->fs_info->delayed_block_rsv;
595 num_bytes = btrfs_calc_trans_metadata_size(root, 1);
598 * If our block_rsv is the delalloc block reserve then check and see if
599 * we have our extra reservation for updating the inode. If not fall
600 * through and try to reserve space quickly.
602 * We used to try and steal from the delalloc block rsv or the global
603 * reserve, but we'd steal a full reservation, which isn't kind. We are
604 * here through delalloc which means we've likely just cowed down close
605 * to the leaf that contains the inode, so we would steal less just
606 * doing the fallback inode update, so if we do end up having to steal
607 * from the global block rsv we hopefully only steal one or two blocks
608 * worth which is less likely to hurt us.
610 if (src_rsv && src_rsv->type == BTRFS_BLOCK_RSV_DELALLOC) {
611 spin_lock(&BTRFS_I(inode)->lock);
612 if (test_and_clear_bit(BTRFS_INODE_DELALLOC_META_RESERVED,
613 &BTRFS_I(inode)->runtime_flags))
617 spin_unlock(&BTRFS_I(inode)->lock);
621 * btrfs_dirty_inode will update the inode under btrfs_join_transaction
622 * which doesn't reserve space for speed. This is a problem since we
623 * still need to reserve space for this update, so try to reserve the
626 * Now if src_rsv == delalloc_block_rsv we'll let it just steal since
627 * we're accounted for.
629 if (!src_rsv || (!trans->bytes_reserved &&
630 src_rsv->type != BTRFS_BLOCK_RSV_DELALLOC)) {
631 ret = btrfs_block_rsv_add(root, dst_rsv, num_bytes,
632 BTRFS_RESERVE_NO_FLUSH);
634 * Since we're under a transaction reserve_metadata_bytes could
635 * try to commit the transaction which will make it return
636 * EAGAIN to make us stop the transaction we have, so return
637 * ENOSPC instead so that btrfs_dirty_inode knows what to do.
642 node->bytes_reserved = num_bytes;
643 trace_btrfs_space_reservation(root->fs_info,
651 ret = btrfs_block_rsv_migrate(src_rsv, dst_rsv, num_bytes, 1);
654 * Migrate only takes a reservation, it doesn't touch the size of the
655 * block_rsv. This is to simplify people who don't normally have things
656 * migrated from their block rsv. If they go to release their
657 * reservation, that will decrease the size as well, so if migrate
658 * reduced size we'd end up with a negative size. But for the
659 * delalloc_meta_reserved stuff we will only know to drop 1 reservation,
660 * but we could in fact do this reserve/migrate dance several times
661 * between the time we did the original reservation and we'd clean it
662 * up. So to take care of this, release the space for the meta
663 * reservation here. I think it may be time for a documentation page on
664 * how block rsvs. work.
667 trace_btrfs_space_reservation(root->fs_info, "delayed_inode",
668 btrfs_ino(inode), num_bytes, 1);
669 node->bytes_reserved = num_bytes;
673 trace_btrfs_space_reservation(root->fs_info, "delalloc",
674 btrfs_ino(inode), num_bytes, 0);
675 btrfs_block_rsv_release(root, src_rsv, num_bytes);
681 static void btrfs_delayed_inode_release_metadata(struct btrfs_root *root,
682 struct btrfs_delayed_node *node)
684 struct btrfs_block_rsv *rsv;
686 if (!node->bytes_reserved)
689 rsv = &root->fs_info->delayed_block_rsv;
690 trace_btrfs_space_reservation(root->fs_info, "delayed_inode",
691 node->inode_id, node->bytes_reserved, 0);
692 btrfs_block_rsv_release(root, rsv,
693 node->bytes_reserved);
694 node->bytes_reserved = 0;
698 * This helper will insert some continuous items into the same leaf according
699 * to the free space of the leaf.
701 static int btrfs_batch_insert_items(struct btrfs_root *root,
702 struct btrfs_path *path,
703 struct btrfs_delayed_item *item)
705 struct btrfs_delayed_item *curr, *next;
707 int total_data_size = 0, total_size = 0;
708 struct extent_buffer *leaf;
710 struct btrfs_key *keys;
712 struct list_head head;
718 BUG_ON(!path->nodes[0]);
720 leaf = path->nodes[0];
721 free_space = btrfs_leaf_free_space(root, leaf);
722 INIT_LIST_HEAD(&head);
728 * count the number of the continuous items that we can insert in batch
730 while (total_size + next->data_len + sizeof(struct btrfs_item) <=
732 total_data_size += next->data_len;
733 total_size += next->data_len + sizeof(struct btrfs_item);
734 list_add_tail(&next->tree_list, &head);
738 next = __btrfs_next_delayed_item(curr);
742 if (!btrfs_is_continuous_delayed_item(curr, next))
752 * we need allocate some memory space, but it might cause the task
753 * to sleep, so we set all locked nodes in the path to blocking locks
756 btrfs_set_path_blocking(path);
758 keys = kmalloc_array(nitems, sizeof(struct btrfs_key), GFP_NOFS);
764 data_size = kmalloc_array(nitems, sizeof(u32), GFP_NOFS);
770 /* get keys of all the delayed items */
772 list_for_each_entry(next, &head, tree_list) {
774 data_size[i] = next->data_len;
778 /* reset all the locked nodes in the patch to spinning locks. */
779 btrfs_clear_path_blocking(path, NULL, 0);
781 /* insert the keys of the items */
782 setup_items_for_insert(root, path, keys, data_size,
783 total_data_size, total_size, nitems);
785 /* insert the dir index items */
786 slot = path->slots[0];
787 list_for_each_entry_safe(curr, next, &head, tree_list) {
788 data_ptr = btrfs_item_ptr(leaf, slot, char);
789 write_extent_buffer(leaf, &curr->data,
790 (unsigned long)data_ptr,
794 btrfs_delayed_item_release_metadata(root, curr);
796 list_del(&curr->tree_list);
797 btrfs_release_delayed_item(curr);
808 * This helper can just do simple insertion that needn't extend item for new
809 * data, such as directory name index insertion, inode insertion.
811 static int btrfs_insert_delayed_item(struct btrfs_trans_handle *trans,
812 struct btrfs_root *root,
813 struct btrfs_path *path,
814 struct btrfs_delayed_item *delayed_item)
816 struct extent_buffer *leaf;
820 ret = btrfs_insert_empty_item(trans, root, path, &delayed_item->key,
821 delayed_item->data_len);
822 if (ret < 0 && ret != -EEXIST)
825 leaf = path->nodes[0];
827 ptr = btrfs_item_ptr(leaf, path->slots[0], char);
829 write_extent_buffer(leaf, delayed_item->data, (unsigned long)ptr,
830 delayed_item->data_len);
831 btrfs_mark_buffer_dirty(leaf);
833 btrfs_delayed_item_release_metadata(root, delayed_item);
838 * we insert an item first, then if there are some continuous items, we try
839 * to insert those items into the same leaf.
841 static int btrfs_insert_delayed_items(struct btrfs_trans_handle *trans,
842 struct btrfs_path *path,
843 struct btrfs_root *root,
844 struct btrfs_delayed_node *node)
846 struct btrfs_delayed_item *curr, *prev;
850 mutex_lock(&node->mutex);
851 curr = __btrfs_first_delayed_insertion_item(node);
855 ret = btrfs_insert_delayed_item(trans, root, path, curr);
857 btrfs_release_path(path);
862 curr = __btrfs_next_delayed_item(prev);
863 if (curr && btrfs_is_continuous_delayed_item(prev, curr)) {
864 /* insert the continuous items into the same leaf */
866 btrfs_batch_insert_items(root, path, curr);
868 btrfs_release_delayed_item(prev);
869 btrfs_mark_buffer_dirty(path->nodes[0]);
871 btrfs_release_path(path);
872 mutex_unlock(&node->mutex);
876 mutex_unlock(&node->mutex);
880 static int btrfs_batch_delete_items(struct btrfs_trans_handle *trans,
881 struct btrfs_root *root,
882 struct btrfs_path *path,
883 struct btrfs_delayed_item *item)
885 struct btrfs_delayed_item *curr, *next;
886 struct extent_buffer *leaf;
887 struct btrfs_key key;
888 struct list_head head;
889 int nitems, i, last_item;
892 BUG_ON(!path->nodes[0]);
894 leaf = path->nodes[0];
897 last_item = btrfs_header_nritems(leaf) - 1;
899 return -ENOENT; /* FIXME: Is errno suitable? */
902 INIT_LIST_HEAD(&head);
903 btrfs_item_key_to_cpu(leaf, &key, i);
906 * count the number of the dir index items that we can delete in batch
908 while (btrfs_comp_cpu_keys(&next->key, &key) == 0) {
909 list_add_tail(&next->tree_list, &head);
913 next = __btrfs_next_delayed_item(curr);
917 if (!btrfs_is_continuous_delayed_item(curr, next))
923 btrfs_item_key_to_cpu(leaf, &key, i);
929 ret = btrfs_del_items(trans, root, path, path->slots[0], nitems);
933 list_for_each_entry_safe(curr, next, &head, tree_list) {
934 btrfs_delayed_item_release_metadata(root, curr);
935 list_del(&curr->tree_list);
936 btrfs_release_delayed_item(curr);
943 static int btrfs_delete_delayed_items(struct btrfs_trans_handle *trans,
944 struct btrfs_path *path,
945 struct btrfs_root *root,
946 struct btrfs_delayed_node *node)
948 struct btrfs_delayed_item *curr, *prev;
952 mutex_lock(&node->mutex);
953 curr = __btrfs_first_delayed_deletion_item(node);
957 ret = btrfs_search_slot(trans, root, &curr->key, path, -1, 1);
962 * can't find the item which the node points to, so this node
963 * is invalid, just drop it.
966 curr = __btrfs_next_delayed_item(prev);
967 btrfs_release_delayed_item(prev);
969 btrfs_release_path(path);
971 mutex_unlock(&node->mutex);
977 btrfs_batch_delete_items(trans, root, path, curr);
978 btrfs_release_path(path);
979 mutex_unlock(&node->mutex);
983 btrfs_release_path(path);
984 mutex_unlock(&node->mutex);
988 static void btrfs_release_delayed_inode(struct btrfs_delayed_node *delayed_node)
990 struct btrfs_delayed_root *delayed_root;
993 test_bit(BTRFS_DELAYED_NODE_INODE_DIRTY, &delayed_node->flags)) {
994 BUG_ON(!delayed_node->root);
995 clear_bit(BTRFS_DELAYED_NODE_INODE_DIRTY, &delayed_node->flags);
996 delayed_node->count--;
998 delayed_root = delayed_node->root->fs_info->delayed_root;
999 finish_one_item(delayed_root);
1003 static void btrfs_release_delayed_iref(struct btrfs_delayed_node *delayed_node)
1005 struct btrfs_delayed_root *delayed_root;
1007 ASSERT(delayed_node->root);
1008 clear_bit(BTRFS_DELAYED_NODE_DEL_IREF, &delayed_node->flags);
1009 delayed_node->count--;
1011 delayed_root = delayed_node->root->fs_info->delayed_root;
1012 finish_one_item(delayed_root);
1015 static int __btrfs_update_delayed_inode(struct btrfs_trans_handle *trans,
1016 struct btrfs_root *root,
1017 struct btrfs_path *path,
1018 struct btrfs_delayed_node *node)
1020 struct btrfs_key key;
1021 struct btrfs_inode_item *inode_item;
1022 struct extent_buffer *leaf;
1026 key.objectid = node->inode_id;
1027 key.type = BTRFS_INODE_ITEM_KEY;
1030 if (test_bit(BTRFS_DELAYED_NODE_DEL_IREF, &node->flags))
1035 ret = btrfs_lookup_inode(trans, root, path, &key, mod);
1037 btrfs_release_path(path);
1039 } else if (ret < 0) {
1043 leaf = path->nodes[0];
1044 inode_item = btrfs_item_ptr(leaf, path->slots[0],
1045 struct btrfs_inode_item);
1046 write_extent_buffer(leaf, &node->inode_item, (unsigned long)inode_item,
1047 sizeof(struct btrfs_inode_item));
1048 btrfs_mark_buffer_dirty(leaf);
1050 if (!test_bit(BTRFS_DELAYED_NODE_DEL_IREF, &node->flags))
1054 if (path->slots[0] >= btrfs_header_nritems(leaf))
1057 btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
1058 if (key.objectid != node->inode_id)
1061 if (key.type != BTRFS_INODE_REF_KEY &&
1062 key.type != BTRFS_INODE_EXTREF_KEY)
1066 * Delayed iref deletion is for the inode who has only one link,
1067 * so there is only one iref. The case that several irefs are
1068 * in the same item doesn't exist.
1070 btrfs_del_item(trans, root, path);
1072 btrfs_release_delayed_iref(node);
1074 btrfs_release_path(path);
1076 btrfs_delayed_inode_release_metadata(root, node);
1077 btrfs_release_delayed_inode(node);
1080 * If we fail to update the delayed inode we need to abort the
1081 * transaction, because we could leave the inode with the improper
1084 if (ret && ret != -ENOENT)
1085 btrfs_abort_transaction(trans, ret);
1090 btrfs_release_path(path);
1092 key.type = BTRFS_INODE_EXTREF_KEY;
1094 ret = btrfs_search_slot(trans, root, &key, path, -1, 1);
1100 leaf = path->nodes[0];
1105 static inline int btrfs_update_delayed_inode(struct btrfs_trans_handle *trans,
1106 struct btrfs_root *root,
1107 struct btrfs_path *path,
1108 struct btrfs_delayed_node *node)
1112 mutex_lock(&node->mutex);
1113 if (!test_bit(BTRFS_DELAYED_NODE_INODE_DIRTY, &node->flags)) {
1114 mutex_unlock(&node->mutex);
1118 ret = __btrfs_update_delayed_inode(trans, root, path, node);
1119 mutex_unlock(&node->mutex);
1124 __btrfs_commit_inode_delayed_items(struct btrfs_trans_handle *trans,
1125 struct btrfs_path *path,
1126 struct btrfs_delayed_node *node)
1130 ret = btrfs_insert_delayed_items(trans, path, node->root, node);
1134 ret = btrfs_delete_delayed_items(trans, path, node->root, node);
1138 ret = btrfs_update_delayed_inode(trans, node->root, path, node);
1143 * Called when committing the transaction.
1144 * Returns 0 on success.
1145 * Returns < 0 on error and returns with an aborted transaction with any
1146 * outstanding delayed items cleaned up.
1148 static int __btrfs_run_delayed_items(struct btrfs_trans_handle *trans,
1149 struct btrfs_root *root, int nr)
1151 struct btrfs_delayed_root *delayed_root;
1152 struct btrfs_delayed_node *curr_node, *prev_node;
1153 struct btrfs_path *path;
1154 struct btrfs_block_rsv *block_rsv;
1156 bool count = (nr > 0);
1161 path = btrfs_alloc_path();
1164 path->leave_spinning = 1;
1166 block_rsv = trans->block_rsv;
1167 trans->block_rsv = &root->fs_info->delayed_block_rsv;
1169 delayed_root = btrfs_get_delayed_root(root);
1171 curr_node = btrfs_first_delayed_node(delayed_root);
1172 while (curr_node && (!count || (count && nr--))) {
1173 ret = __btrfs_commit_inode_delayed_items(trans, path,
1176 btrfs_release_delayed_node(curr_node);
1178 btrfs_abort_transaction(trans, ret);
1182 prev_node = curr_node;
1183 curr_node = btrfs_next_delayed_node(curr_node);
1184 btrfs_release_delayed_node(prev_node);
1188 btrfs_release_delayed_node(curr_node);
1189 btrfs_free_path(path);
1190 trans->block_rsv = block_rsv;
1195 int btrfs_run_delayed_items(struct btrfs_trans_handle *trans,
1196 struct btrfs_root *root)
1198 return __btrfs_run_delayed_items(trans, root, -1);
1201 int btrfs_run_delayed_items_nr(struct btrfs_trans_handle *trans,
1202 struct btrfs_root *root, int nr)
1204 return __btrfs_run_delayed_items(trans, root, nr);
1207 int btrfs_commit_inode_delayed_items(struct btrfs_trans_handle *trans,
1208 struct inode *inode)
1210 struct btrfs_delayed_node *delayed_node = btrfs_get_delayed_node(inode);
1211 struct btrfs_path *path;
1212 struct btrfs_block_rsv *block_rsv;
1218 mutex_lock(&delayed_node->mutex);
1219 if (!delayed_node->count) {
1220 mutex_unlock(&delayed_node->mutex);
1221 btrfs_release_delayed_node(delayed_node);
1224 mutex_unlock(&delayed_node->mutex);
1226 path = btrfs_alloc_path();
1228 btrfs_release_delayed_node(delayed_node);
1231 path->leave_spinning = 1;
1233 block_rsv = trans->block_rsv;
1234 trans->block_rsv = &delayed_node->root->fs_info->delayed_block_rsv;
1236 ret = __btrfs_commit_inode_delayed_items(trans, path, delayed_node);
1238 btrfs_release_delayed_node(delayed_node);
1239 btrfs_free_path(path);
1240 trans->block_rsv = block_rsv;
1245 int btrfs_commit_inode_delayed_inode(struct inode *inode)
1247 struct btrfs_trans_handle *trans;
1248 struct btrfs_delayed_node *delayed_node = btrfs_get_delayed_node(inode);
1249 struct btrfs_path *path;
1250 struct btrfs_block_rsv *block_rsv;
1256 mutex_lock(&delayed_node->mutex);
1257 if (!test_bit(BTRFS_DELAYED_NODE_INODE_DIRTY, &delayed_node->flags)) {
1258 mutex_unlock(&delayed_node->mutex);
1259 btrfs_release_delayed_node(delayed_node);
1262 mutex_unlock(&delayed_node->mutex);
1264 trans = btrfs_join_transaction(delayed_node->root);
1265 if (IS_ERR(trans)) {
1266 ret = PTR_ERR(trans);
1270 path = btrfs_alloc_path();
1275 path->leave_spinning = 1;
1277 block_rsv = trans->block_rsv;
1278 trans->block_rsv = &delayed_node->root->fs_info->delayed_block_rsv;
1280 mutex_lock(&delayed_node->mutex);
1281 if (test_bit(BTRFS_DELAYED_NODE_INODE_DIRTY, &delayed_node->flags))
1282 ret = __btrfs_update_delayed_inode(trans, delayed_node->root,
1283 path, delayed_node);
1286 mutex_unlock(&delayed_node->mutex);
1288 btrfs_free_path(path);
1289 trans->block_rsv = block_rsv;
1291 btrfs_end_transaction(trans, delayed_node->root);
1292 btrfs_btree_balance_dirty(delayed_node->root);
1294 btrfs_release_delayed_node(delayed_node);
1299 void btrfs_remove_delayed_node(struct inode *inode)
1301 struct btrfs_delayed_node *delayed_node;
1303 delayed_node = ACCESS_ONCE(BTRFS_I(inode)->delayed_node);
1307 BTRFS_I(inode)->delayed_node = NULL;
1308 btrfs_release_delayed_node(delayed_node);
1311 struct btrfs_async_delayed_work {
1312 struct btrfs_delayed_root *delayed_root;
1314 struct btrfs_work work;
1317 static void btrfs_async_run_delayed_root(struct btrfs_work *work)
1319 struct btrfs_async_delayed_work *async_work;
1320 struct btrfs_delayed_root *delayed_root;
1321 struct btrfs_trans_handle *trans;
1322 struct btrfs_path *path;
1323 struct btrfs_delayed_node *delayed_node = NULL;
1324 struct btrfs_root *root;
1325 struct btrfs_block_rsv *block_rsv;
1328 async_work = container_of(work, struct btrfs_async_delayed_work, work);
1329 delayed_root = async_work->delayed_root;
1331 path = btrfs_alloc_path();
1336 if (atomic_read(&delayed_root->items) < BTRFS_DELAYED_BACKGROUND / 2)
1339 delayed_node = btrfs_first_prepared_delayed_node(delayed_root);
1343 path->leave_spinning = 1;
1344 root = delayed_node->root;
1346 trans = btrfs_join_transaction(root);
1350 block_rsv = trans->block_rsv;
1351 trans->block_rsv = &root->fs_info->delayed_block_rsv;
1353 __btrfs_commit_inode_delayed_items(trans, path, delayed_node);
1355 trans->block_rsv = block_rsv;
1356 btrfs_end_transaction(trans, root);
1357 btrfs_btree_balance_dirty_nodelay(root);
1360 btrfs_release_path(path);
1363 btrfs_release_prepared_delayed_node(delayed_node);
1364 if ((async_work->nr == 0 && total_done < BTRFS_DELAYED_WRITEBACK) ||
1365 total_done < async_work->nr)
1369 btrfs_free_path(path);
1371 wake_up(&delayed_root->wait);
1376 static int btrfs_wq_run_delayed_node(struct btrfs_delayed_root *delayed_root,
1377 struct btrfs_fs_info *fs_info, int nr)
1379 struct btrfs_async_delayed_work *async_work;
1381 if (atomic_read(&delayed_root->items) < BTRFS_DELAYED_BACKGROUND ||
1382 btrfs_workqueue_normal_congested(fs_info->delayed_workers))
1385 async_work = kmalloc(sizeof(*async_work), GFP_NOFS);
1389 async_work->delayed_root = delayed_root;
1390 btrfs_init_work(&async_work->work, btrfs_delayed_meta_helper,
1391 btrfs_async_run_delayed_root, NULL, NULL);
1392 async_work->nr = nr;
1394 btrfs_queue_work(fs_info->delayed_workers, &async_work->work);
1398 void btrfs_assert_delayed_root_empty(struct btrfs_root *root)
1400 struct btrfs_delayed_root *delayed_root;
1401 delayed_root = btrfs_get_delayed_root(root);
1402 WARN_ON(btrfs_first_delayed_node(delayed_root));
1405 static int could_end_wait(struct btrfs_delayed_root *delayed_root, int seq)
1407 int val = atomic_read(&delayed_root->items_seq);
1409 if (val < seq || val >= seq + BTRFS_DELAYED_BATCH)
1412 if (atomic_read(&delayed_root->items) < BTRFS_DELAYED_BACKGROUND)
1418 void btrfs_balance_delayed_items(struct btrfs_root *root)
1420 struct btrfs_delayed_root *delayed_root;
1421 struct btrfs_fs_info *fs_info = root->fs_info;
1423 delayed_root = btrfs_get_delayed_root(root);
1425 if (atomic_read(&delayed_root->items) < BTRFS_DELAYED_BACKGROUND)
1428 if (atomic_read(&delayed_root->items) >= BTRFS_DELAYED_WRITEBACK) {
1432 seq = atomic_read(&delayed_root->items_seq);
1434 ret = btrfs_wq_run_delayed_node(delayed_root, fs_info, 0);
1438 wait_event_interruptible(delayed_root->wait,
1439 could_end_wait(delayed_root, seq));
1443 btrfs_wq_run_delayed_node(delayed_root, fs_info, BTRFS_DELAYED_BATCH);
1446 /* Will return 0 or -ENOMEM */
1447 int btrfs_insert_delayed_dir_index(struct btrfs_trans_handle *trans,
1448 struct btrfs_root *root, const char *name,
1449 int name_len, struct inode *dir,
1450 struct btrfs_disk_key *disk_key, u8 type,
1453 struct btrfs_delayed_node *delayed_node;
1454 struct btrfs_delayed_item *delayed_item;
1455 struct btrfs_dir_item *dir_item;
1458 delayed_node = btrfs_get_or_create_delayed_node(dir);
1459 if (IS_ERR(delayed_node))
1460 return PTR_ERR(delayed_node);
1462 delayed_item = btrfs_alloc_delayed_item(sizeof(*dir_item) + name_len);
1463 if (!delayed_item) {
1468 delayed_item->key.objectid = btrfs_ino(dir);
1469 delayed_item->key.type = BTRFS_DIR_INDEX_KEY;
1470 delayed_item->key.offset = index;
1472 dir_item = (struct btrfs_dir_item *)delayed_item->data;
1473 dir_item->location = *disk_key;
1474 btrfs_set_stack_dir_transid(dir_item, trans->transid);
1475 btrfs_set_stack_dir_data_len(dir_item, 0);
1476 btrfs_set_stack_dir_name_len(dir_item, name_len);
1477 btrfs_set_stack_dir_type(dir_item, type);
1478 memcpy((char *)(dir_item + 1), name, name_len);
1480 ret = btrfs_delayed_item_reserve_metadata(trans, root, delayed_item);
1482 * we have reserved enough space when we start a new transaction,
1483 * so reserving metadata failure is impossible
1488 mutex_lock(&delayed_node->mutex);
1489 ret = __btrfs_add_delayed_insertion_item(delayed_node, delayed_item);
1490 if (unlikely(ret)) {
1491 btrfs_err(root->fs_info,
1492 "err add delayed dir index item(name: %.*s) into the insertion tree of the delayed node(root id: %llu, inode id: %llu, errno: %d)",
1493 name_len, name, delayed_node->root->objectid,
1494 delayed_node->inode_id, ret);
1497 mutex_unlock(&delayed_node->mutex);
1500 btrfs_release_delayed_node(delayed_node);
1504 static int btrfs_delete_delayed_insertion_item(struct btrfs_root *root,
1505 struct btrfs_delayed_node *node,
1506 struct btrfs_key *key)
1508 struct btrfs_delayed_item *item;
1510 mutex_lock(&node->mutex);
1511 item = __btrfs_lookup_delayed_insertion_item(node, key);
1513 mutex_unlock(&node->mutex);
1517 btrfs_delayed_item_release_metadata(root, item);
1518 btrfs_release_delayed_item(item);
1519 mutex_unlock(&node->mutex);
1523 int btrfs_delete_delayed_dir_index(struct btrfs_trans_handle *trans,
1524 struct btrfs_root *root, struct inode *dir,
1527 struct btrfs_delayed_node *node;
1528 struct btrfs_delayed_item *item;
1529 struct btrfs_key item_key;
1532 node = btrfs_get_or_create_delayed_node(dir);
1534 return PTR_ERR(node);
1536 item_key.objectid = btrfs_ino(dir);
1537 item_key.type = BTRFS_DIR_INDEX_KEY;
1538 item_key.offset = index;
1540 ret = btrfs_delete_delayed_insertion_item(root, node, &item_key);
1544 item = btrfs_alloc_delayed_item(0);
1550 item->key = item_key;
1552 ret = btrfs_delayed_item_reserve_metadata(trans, root, item);
1554 * we have reserved enough space when we start a new transaction,
1555 * so reserving metadata failure is impossible.
1559 mutex_lock(&node->mutex);
1560 ret = __btrfs_add_delayed_deletion_item(node, item);
1561 if (unlikely(ret)) {
1562 btrfs_err(root->fs_info,
1563 "err add delayed dir index item(index: %llu) into the deletion tree of the delayed node(root id: %llu, inode id: %llu, errno: %d)",
1564 index, node->root->objectid, node->inode_id, ret);
1567 mutex_unlock(&node->mutex);
1569 btrfs_release_delayed_node(node);
1573 int btrfs_inode_delayed_dir_index_count(struct inode *inode)
1575 struct btrfs_delayed_node *delayed_node = btrfs_get_delayed_node(inode);
1581 * Since we have held i_mutex of this directory, it is impossible that
1582 * a new directory index is added into the delayed node and index_cnt
1583 * is updated now. So we needn't lock the delayed node.
1585 if (!delayed_node->index_cnt) {
1586 btrfs_release_delayed_node(delayed_node);
1590 BTRFS_I(inode)->index_cnt = delayed_node->index_cnt;
1591 btrfs_release_delayed_node(delayed_node);
1595 bool btrfs_readdir_get_delayed_items(struct inode *inode,
1596 struct list_head *ins_list,
1597 struct list_head *del_list)
1599 struct btrfs_delayed_node *delayed_node;
1600 struct btrfs_delayed_item *item;
1602 delayed_node = btrfs_get_delayed_node(inode);
1607 * We can only do one readdir with delayed items at a time because of
1608 * item->readdir_list.
1610 inode_unlock_shared(inode);
1613 mutex_lock(&delayed_node->mutex);
1614 item = __btrfs_first_delayed_insertion_item(delayed_node);
1616 atomic_inc(&item->refs);
1617 list_add_tail(&item->readdir_list, ins_list);
1618 item = __btrfs_next_delayed_item(item);
1621 item = __btrfs_first_delayed_deletion_item(delayed_node);
1623 atomic_inc(&item->refs);
1624 list_add_tail(&item->readdir_list, del_list);
1625 item = __btrfs_next_delayed_item(item);
1627 mutex_unlock(&delayed_node->mutex);
1629 * This delayed node is still cached in the btrfs inode, so refs
1630 * must be > 1 now, and we needn't check it is going to be freed
1633 * Besides that, this function is used to read dir, we do not
1634 * insert/delete delayed items in this period. So we also needn't
1635 * requeue or dequeue this delayed node.
1637 atomic_dec(&delayed_node->refs);
1642 void btrfs_readdir_put_delayed_items(struct inode *inode,
1643 struct list_head *ins_list,
1644 struct list_head *del_list)
1646 struct btrfs_delayed_item *curr, *next;
1648 list_for_each_entry_safe(curr, next, ins_list, readdir_list) {
1649 list_del(&curr->readdir_list);
1650 if (atomic_dec_and_test(&curr->refs))
1654 list_for_each_entry_safe(curr, next, del_list, readdir_list) {
1655 list_del(&curr->readdir_list);
1656 if (atomic_dec_and_test(&curr->refs))
1661 * The VFS is going to do up_read(), so we need to downgrade back to a
1664 downgrade_write(&inode->i_rwsem);
1667 int btrfs_should_delete_dir_index(struct list_head *del_list,
1670 struct btrfs_delayed_item *curr, *next;
1673 if (list_empty(del_list))
1676 list_for_each_entry_safe(curr, next, del_list, readdir_list) {
1677 if (curr->key.offset > index)
1680 list_del(&curr->readdir_list);
1681 ret = (curr->key.offset == index);
1683 if (atomic_dec_and_test(&curr->refs))
1695 * btrfs_readdir_delayed_dir_index - read dir info stored in the delayed tree
1698 int btrfs_readdir_delayed_dir_index(struct dir_context *ctx,
1699 struct list_head *ins_list, bool *emitted)
1701 struct btrfs_dir_item *di;
1702 struct btrfs_delayed_item *curr, *next;
1703 struct btrfs_key location;
1707 unsigned char d_type;
1709 if (list_empty(ins_list))
1713 * Changing the data of the delayed item is impossible. So
1714 * we needn't lock them. And we have held i_mutex of the
1715 * directory, nobody can delete any directory indexes now.
1717 list_for_each_entry_safe(curr, next, ins_list, readdir_list) {
1718 list_del(&curr->readdir_list);
1720 if (curr->key.offset < ctx->pos) {
1721 if (atomic_dec_and_test(&curr->refs))
1726 ctx->pos = curr->key.offset;
1728 di = (struct btrfs_dir_item *)curr->data;
1729 name = (char *)(di + 1);
1730 name_len = btrfs_stack_dir_name_len(di);
1732 d_type = btrfs_filetype_table[di->type];
1733 btrfs_disk_key_to_cpu(&location, &di->location);
1735 over = !dir_emit(ctx, name, name_len,
1736 location.objectid, d_type);
1738 if (atomic_dec_and_test(&curr->refs))
1748 static void fill_stack_inode_item(struct btrfs_trans_handle *trans,
1749 struct btrfs_inode_item *inode_item,
1750 struct inode *inode)
1752 btrfs_set_stack_inode_uid(inode_item, i_uid_read(inode));
1753 btrfs_set_stack_inode_gid(inode_item, i_gid_read(inode));
1754 btrfs_set_stack_inode_size(inode_item, BTRFS_I(inode)->disk_i_size);
1755 btrfs_set_stack_inode_mode(inode_item, inode->i_mode);
1756 btrfs_set_stack_inode_nlink(inode_item, inode->i_nlink);
1757 btrfs_set_stack_inode_nbytes(inode_item, inode_get_bytes(inode));
1758 btrfs_set_stack_inode_generation(inode_item,
1759 BTRFS_I(inode)->generation);
1760 btrfs_set_stack_inode_sequence(inode_item, inode->i_version);
1761 btrfs_set_stack_inode_transid(inode_item, trans->transid);
1762 btrfs_set_stack_inode_rdev(inode_item, inode->i_rdev);
1763 btrfs_set_stack_inode_flags(inode_item, BTRFS_I(inode)->flags);
1764 btrfs_set_stack_inode_block_group(inode_item, 0);
1766 btrfs_set_stack_timespec_sec(&inode_item->atime,
1767 inode->i_atime.tv_sec);
1768 btrfs_set_stack_timespec_nsec(&inode_item->atime,
1769 inode->i_atime.tv_nsec);
1771 btrfs_set_stack_timespec_sec(&inode_item->mtime,
1772 inode->i_mtime.tv_sec);
1773 btrfs_set_stack_timespec_nsec(&inode_item->mtime,
1774 inode->i_mtime.tv_nsec);
1776 btrfs_set_stack_timespec_sec(&inode_item->ctime,
1777 inode->i_ctime.tv_sec);
1778 btrfs_set_stack_timespec_nsec(&inode_item->ctime,
1779 inode->i_ctime.tv_nsec);
1781 btrfs_set_stack_timespec_sec(&inode_item->otime,
1782 BTRFS_I(inode)->i_otime.tv_sec);
1783 btrfs_set_stack_timespec_nsec(&inode_item->otime,
1784 BTRFS_I(inode)->i_otime.tv_nsec);
1787 int btrfs_fill_inode(struct inode *inode, u32 *rdev)
1789 struct btrfs_delayed_node *delayed_node;
1790 struct btrfs_inode_item *inode_item;
1792 delayed_node = btrfs_get_delayed_node(inode);
1796 mutex_lock(&delayed_node->mutex);
1797 if (!test_bit(BTRFS_DELAYED_NODE_INODE_DIRTY, &delayed_node->flags)) {
1798 mutex_unlock(&delayed_node->mutex);
1799 btrfs_release_delayed_node(delayed_node);
1803 inode_item = &delayed_node->inode_item;
1805 i_uid_write(inode, btrfs_stack_inode_uid(inode_item));
1806 i_gid_write(inode, btrfs_stack_inode_gid(inode_item));
1807 btrfs_i_size_write(inode, btrfs_stack_inode_size(inode_item));
1808 inode->i_mode = btrfs_stack_inode_mode(inode_item);
1809 set_nlink(inode, btrfs_stack_inode_nlink(inode_item));
1810 inode_set_bytes(inode, btrfs_stack_inode_nbytes(inode_item));
1811 BTRFS_I(inode)->generation = btrfs_stack_inode_generation(inode_item);
1812 BTRFS_I(inode)->last_trans = btrfs_stack_inode_transid(inode_item);
1814 inode->i_version = btrfs_stack_inode_sequence(inode_item);
1816 *rdev = btrfs_stack_inode_rdev(inode_item);
1817 BTRFS_I(inode)->flags = btrfs_stack_inode_flags(inode_item);
1819 inode->i_atime.tv_sec = btrfs_stack_timespec_sec(&inode_item->atime);
1820 inode->i_atime.tv_nsec = btrfs_stack_timespec_nsec(&inode_item->atime);
1822 inode->i_mtime.tv_sec = btrfs_stack_timespec_sec(&inode_item->mtime);
1823 inode->i_mtime.tv_nsec = btrfs_stack_timespec_nsec(&inode_item->mtime);
1825 inode->i_ctime.tv_sec = btrfs_stack_timespec_sec(&inode_item->ctime);
1826 inode->i_ctime.tv_nsec = btrfs_stack_timespec_nsec(&inode_item->ctime);
1828 BTRFS_I(inode)->i_otime.tv_sec =
1829 btrfs_stack_timespec_sec(&inode_item->otime);
1830 BTRFS_I(inode)->i_otime.tv_nsec =
1831 btrfs_stack_timespec_nsec(&inode_item->otime);
1833 inode->i_generation = BTRFS_I(inode)->generation;
1834 BTRFS_I(inode)->index_cnt = (u64)-1;
1836 mutex_unlock(&delayed_node->mutex);
1837 btrfs_release_delayed_node(delayed_node);
1841 int btrfs_delayed_update_inode(struct btrfs_trans_handle *trans,
1842 struct btrfs_root *root, struct inode *inode)
1844 struct btrfs_delayed_node *delayed_node;
1847 delayed_node = btrfs_get_or_create_delayed_node(inode);
1848 if (IS_ERR(delayed_node))
1849 return PTR_ERR(delayed_node);
1851 mutex_lock(&delayed_node->mutex);
1852 if (test_bit(BTRFS_DELAYED_NODE_INODE_DIRTY, &delayed_node->flags)) {
1853 fill_stack_inode_item(trans, &delayed_node->inode_item, inode);
1857 ret = btrfs_delayed_inode_reserve_metadata(trans, root, inode,
1862 fill_stack_inode_item(trans, &delayed_node->inode_item, inode);
1863 set_bit(BTRFS_DELAYED_NODE_INODE_DIRTY, &delayed_node->flags);
1864 delayed_node->count++;
1865 atomic_inc(&root->fs_info->delayed_root->items);
1867 mutex_unlock(&delayed_node->mutex);
1868 btrfs_release_delayed_node(delayed_node);
1872 int btrfs_delayed_delete_inode_ref(struct inode *inode)
1874 struct btrfs_delayed_node *delayed_node;
1877 * we don't do delayed inode updates during log recovery because it
1878 * leads to enospc problems. This means we also can't do
1879 * delayed inode refs
1881 if (test_bit(BTRFS_FS_LOG_RECOVERING,
1882 &BTRFS_I(inode)->root->fs_info->flags))
1885 delayed_node = btrfs_get_or_create_delayed_node(inode);
1886 if (IS_ERR(delayed_node))
1887 return PTR_ERR(delayed_node);
1890 * We don't reserve space for inode ref deletion is because:
1891 * - We ONLY do async inode ref deletion for the inode who has only
1892 * one link(i_nlink == 1), it means there is only one inode ref.
1893 * And in most case, the inode ref and the inode item are in the
1894 * same leaf, and we will deal with them at the same time.
1895 * Since we are sure we will reserve the space for the inode item,
1896 * it is unnecessary to reserve space for inode ref deletion.
1897 * - If the inode ref and the inode item are not in the same leaf,
1898 * We also needn't worry about enospc problem, because we reserve
1899 * much more space for the inode update than it needs.
1900 * - At the worst, we can steal some space from the global reservation.
1903 mutex_lock(&delayed_node->mutex);
1904 if (test_bit(BTRFS_DELAYED_NODE_DEL_IREF, &delayed_node->flags))
1907 set_bit(BTRFS_DELAYED_NODE_DEL_IREF, &delayed_node->flags);
1908 delayed_node->count++;
1909 atomic_inc(&BTRFS_I(inode)->root->fs_info->delayed_root->items);
1911 mutex_unlock(&delayed_node->mutex);
1912 btrfs_release_delayed_node(delayed_node);
1916 static void __btrfs_kill_delayed_node(struct btrfs_delayed_node *delayed_node)
1918 struct btrfs_root *root = delayed_node->root;
1919 struct btrfs_delayed_item *curr_item, *prev_item;
1921 mutex_lock(&delayed_node->mutex);
1922 curr_item = __btrfs_first_delayed_insertion_item(delayed_node);
1924 btrfs_delayed_item_release_metadata(root, curr_item);
1925 prev_item = curr_item;
1926 curr_item = __btrfs_next_delayed_item(prev_item);
1927 btrfs_release_delayed_item(prev_item);
1930 curr_item = __btrfs_first_delayed_deletion_item(delayed_node);
1932 btrfs_delayed_item_release_metadata(root, curr_item);
1933 prev_item = curr_item;
1934 curr_item = __btrfs_next_delayed_item(prev_item);
1935 btrfs_release_delayed_item(prev_item);
1938 if (test_bit(BTRFS_DELAYED_NODE_DEL_IREF, &delayed_node->flags))
1939 btrfs_release_delayed_iref(delayed_node);
1941 if (test_bit(BTRFS_DELAYED_NODE_INODE_DIRTY, &delayed_node->flags)) {
1942 btrfs_delayed_inode_release_metadata(root, delayed_node);
1943 btrfs_release_delayed_inode(delayed_node);
1945 mutex_unlock(&delayed_node->mutex);
1948 void btrfs_kill_delayed_inode_items(struct inode *inode)
1950 struct btrfs_delayed_node *delayed_node;
1952 delayed_node = btrfs_get_delayed_node(inode);
1956 __btrfs_kill_delayed_node(delayed_node);
1957 btrfs_release_delayed_node(delayed_node);
1960 void btrfs_kill_all_delayed_nodes(struct btrfs_root *root)
1963 struct btrfs_delayed_node *delayed_nodes[8];
1967 spin_lock(&root->inode_lock);
1968 n = radix_tree_gang_lookup(&root->delayed_nodes_tree,
1969 (void **)delayed_nodes, inode_id,
1970 ARRAY_SIZE(delayed_nodes));
1972 spin_unlock(&root->inode_lock);
1976 inode_id = delayed_nodes[n - 1]->inode_id + 1;
1978 for (i = 0; i < n; i++)
1979 atomic_inc(&delayed_nodes[i]->refs);
1980 spin_unlock(&root->inode_lock);
1982 for (i = 0; i < n; i++) {
1983 __btrfs_kill_delayed_node(delayed_nodes[i]);
1984 btrfs_release_delayed_node(delayed_nodes[i]);
1989 void btrfs_destroy_delayed_inodes(struct btrfs_root *root)
1991 struct btrfs_delayed_root *delayed_root;
1992 struct btrfs_delayed_node *curr_node, *prev_node;
1994 delayed_root = btrfs_get_delayed_root(root);
1996 curr_node = btrfs_first_delayed_node(delayed_root);
1998 __btrfs_kill_delayed_node(curr_node);
2000 prev_node = curr_node;
2001 curr_node = btrfs_next_delayed_node(curr_node);
2002 btrfs_release_delayed_node(prev_node);