1 // SPDX-License-Identifier: GPL-2.0
3 * Copyright (C) 2008 Oracle. All rights reserved.
6 #include <linux/kernel.h>
8 #include <linux/file.h>
10 #include <linux/pagemap.h>
11 #include <linux/highmem.h>
12 #include <linux/kthread.h>
13 #include <linux/time.h>
14 #include <linux/init.h>
15 #include <linux/string.h>
16 #include <linux/backing-dev.h>
17 #include <linux/writeback.h>
18 #include <linux/slab.h>
19 #include <linux/sched/mm.h>
20 #include <linux/log2.h>
21 #include <crypto/hash.h>
25 #include "transaction.h"
26 #include "btrfs_inode.h"
28 #include "ordered-data.h"
29 #include "compression.h"
30 #include "extent_io.h"
31 #include "extent_map.h"
35 static const char* const btrfs_compress_types[] = { "", "zlib", "lzo", "zstd" };
37 const char* btrfs_compress_type2str(enum btrfs_compression_type type)
40 case BTRFS_COMPRESS_ZLIB:
41 case BTRFS_COMPRESS_LZO:
42 case BTRFS_COMPRESS_ZSTD:
43 case BTRFS_COMPRESS_NONE:
44 return btrfs_compress_types[type];
52 bool btrfs_compress_is_valid_type(const char *str, size_t len)
56 for (i = 1; i < ARRAY_SIZE(btrfs_compress_types); i++) {
57 size_t comp_len = strlen(btrfs_compress_types[i]);
62 if (!strncmp(btrfs_compress_types[i], str, comp_len))
68 static int compression_compress_pages(int type, struct list_head *ws,
69 struct address_space *mapping, u64 start, struct page **pages,
70 unsigned long *out_pages, unsigned long *total_in,
71 unsigned long *total_out)
74 case BTRFS_COMPRESS_ZLIB:
75 return zlib_compress_pages(ws, mapping, start, pages,
76 out_pages, total_in, total_out);
77 case BTRFS_COMPRESS_LZO:
78 return lzo_compress_pages(ws, mapping, start, pages,
79 out_pages, total_in, total_out);
80 case BTRFS_COMPRESS_ZSTD:
81 return zstd_compress_pages(ws, mapping, start, pages,
82 out_pages, total_in, total_out);
83 case BTRFS_COMPRESS_NONE:
86 * This can happen when compression races with remount setting
87 * it to 'no compress', while caller doesn't call
88 * inode_need_compress() to check if we really need to
91 * Not a big deal, just need to inform caller that we
92 * haven't allocated any pages yet.
99 static int compression_decompress_bio(struct list_head *ws,
100 struct compressed_bio *cb)
102 switch (cb->compress_type) {
103 case BTRFS_COMPRESS_ZLIB: return zlib_decompress_bio(ws, cb);
104 case BTRFS_COMPRESS_LZO: return lzo_decompress_bio(ws, cb);
105 case BTRFS_COMPRESS_ZSTD: return zstd_decompress_bio(ws, cb);
106 case BTRFS_COMPRESS_NONE:
109 * This can't happen, the type is validated several times
110 * before we get here.
116 static int compression_decompress(int type, struct list_head *ws,
117 unsigned char *data_in, struct page *dest_page,
118 unsigned long start_byte, size_t srclen, size_t destlen)
121 case BTRFS_COMPRESS_ZLIB: return zlib_decompress(ws, data_in, dest_page,
122 start_byte, srclen, destlen);
123 case BTRFS_COMPRESS_LZO: return lzo_decompress(ws, data_in, dest_page,
124 start_byte, srclen, destlen);
125 case BTRFS_COMPRESS_ZSTD: return zstd_decompress(ws, data_in, dest_page,
126 start_byte, srclen, destlen);
127 case BTRFS_COMPRESS_NONE:
130 * This can't happen, the type is validated several times
131 * before we get here.
137 static int btrfs_decompress_bio(struct compressed_bio *cb);
139 static inline int compressed_bio_size(struct btrfs_fs_info *fs_info,
140 unsigned long disk_size)
142 return sizeof(struct compressed_bio) +
143 (DIV_ROUND_UP(disk_size, fs_info->sectorsize)) * fs_info->csum_size;
146 static int check_compressed_csum(struct btrfs_inode *inode, struct bio *bio,
149 struct btrfs_fs_info *fs_info = inode->root->fs_info;
150 SHASH_DESC_ON_STACK(shash, fs_info->csum_shash);
151 const u32 csum_size = fs_info->csum_size;
152 const u32 sectorsize = fs_info->sectorsize;
156 u8 csum[BTRFS_CSUM_SIZE];
157 struct compressed_bio *cb = bio->bi_private;
158 u8 *cb_sum = cb->sums;
160 if ((inode->flags & BTRFS_INODE_NODATASUM) ||
161 test_bit(BTRFS_FS_STATE_NO_CSUMS, &fs_info->fs_state))
164 shash->tfm = fs_info->csum_shash;
166 for (i = 0; i < cb->nr_pages; i++) {
168 u32 bytes_left = PAGE_SIZE;
169 page = cb->compressed_pages[i];
171 /* Determine the remaining bytes inside the page first */
172 if (i == cb->nr_pages - 1)
173 bytes_left = cb->compressed_len - i * PAGE_SIZE;
175 /* Hash through the page sector by sector */
176 for (pg_offset = 0; pg_offset < bytes_left;
177 pg_offset += sectorsize) {
178 kaddr = kmap_atomic(page);
179 crypto_shash_digest(shash, kaddr + pg_offset,
181 kunmap_atomic(kaddr);
183 if (memcmp(&csum, cb_sum, csum_size) != 0) {
184 btrfs_print_data_csum_error(inode, disk_start,
185 csum, cb_sum, cb->mirror_num);
186 if (btrfs_bio(bio)->device)
187 btrfs_dev_stat_inc_and_print(
188 btrfs_bio(bio)->device,
189 BTRFS_DEV_STAT_CORRUPTION_ERRS);
193 disk_start += sectorsize;
200 * Reduce bio and io accounting for a compressed_bio with its corresponding bio.
202 * Return true if there is no pending bio nor io.
203 * Return false otherwise.
205 static bool dec_and_test_compressed_bio(struct compressed_bio *cb, struct bio *bio)
207 struct btrfs_fs_info *fs_info = btrfs_sb(cb->inode->i_sb);
208 unsigned int bi_size = 0;
209 bool last_io = false;
210 struct bio_vec *bvec;
211 struct bvec_iter_all iter_all;
214 * At endio time, bi_iter.bi_size doesn't represent the real bio size.
215 * Thus here we have to iterate through all segments to grab correct
218 bio_for_each_segment_all(bvec, bio, iter_all)
219 bi_size += bvec->bv_len;
222 cb->status = bio->bi_status;
224 ASSERT(bi_size && bi_size <= cb->compressed_len);
225 last_io = refcount_sub_and_test(bi_size >> fs_info->sectorsize_bits,
226 &cb->pending_sectors);
228 * Here we must wake up the possible error handler after all other
229 * operations on @cb finished, or we can race with
230 * finish_compressed_bio_*() which may free @cb.
237 static void finish_compressed_bio_read(struct compressed_bio *cb)
242 /* Release the compressed pages */
243 for (index = 0; index < cb->nr_pages; index++) {
244 page = cb->compressed_pages[index];
245 page->mapping = NULL;
249 /* Do io completion on the original bio */
250 if (cb->status != BLK_STS_OK) {
251 cb->orig_bio->bi_status = cb->status;
252 bio_endio(cb->orig_bio);
254 struct bio_vec *bvec;
255 struct bvec_iter_all iter_all;
258 * We have verified the checksum already, set page checked so
259 * the end_io handlers know about it
261 ASSERT(!bio_flagged(cb->orig_bio, BIO_CLONED));
262 bio_for_each_segment_all(bvec, cb->orig_bio, iter_all) {
263 u64 bvec_start = page_offset(bvec->bv_page) +
266 btrfs_page_set_checked(btrfs_sb(cb->inode->i_sb),
267 bvec->bv_page, bvec_start,
271 bio_endio(cb->orig_bio);
274 /* Finally free the cb struct */
275 kfree(cb->compressed_pages);
279 /* when we finish reading compressed pages from the disk, we
280 * decompress them and then run the bio end_io routines on the
281 * decompressed pages (in the inode address space).
283 * This allows the checksumming and other IO error handling routines
286 * The compressed pages are freed here, and it must be run
289 static void end_compressed_bio_read(struct bio *bio)
291 struct compressed_bio *cb = bio->bi_private;
293 unsigned int mirror = btrfs_bio(bio)->mirror_num;
296 if (!dec_and_test_compressed_bio(cb, bio))
300 * Record the correct mirror_num in cb->orig_bio so that
301 * read-repair can work properly.
303 btrfs_bio(cb->orig_bio)->mirror_num = mirror;
304 cb->mirror_num = mirror;
307 * Some IO in this cb have failed, just skip checksum as there
308 * is no way it could be correct.
310 if (cb->status != BLK_STS_OK)
314 ret = check_compressed_csum(BTRFS_I(inode), bio,
315 bio->bi_iter.bi_sector << 9);
319 /* ok, we're the last bio for this extent, lets start
322 ret = btrfs_decompress_bio(cb);
326 cb->status = errno_to_blk_status(ret);
327 finish_compressed_bio_read(cb);
333 * Clear the writeback bits on all of the file
334 * pages for a compressed write
336 static noinline void end_compressed_writeback(struct inode *inode,
337 const struct compressed_bio *cb)
339 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
340 unsigned long index = cb->start >> PAGE_SHIFT;
341 unsigned long end_index = (cb->start + cb->len - 1) >> PAGE_SHIFT;
342 struct page *pages[16];
343 unsigned long nr_pages = end_index - index + 1;
344 const int errno = blk_status_to_errno(cb->status);
349 mapping_set_error(inode->i_mapping, errno);
351 while (nr_pages > 0) {
352 ret = find_get_pages_contig(inode->i_mapping, index,
354 nr_pages, ARRAY_SIZE(pages)), pages);
360 for (i = 0; i < ret; i++) {
362 SetPageError(pages[i]);
363 btrfs_page_clamp_clear_writeback(fs_info, pages[i],
370 /* the inode may be gone now */
373 static void finish_compressed_bio_write(struct compressed_bio *cb)
375 struct inode *inode = cb->inode;
379 * Ok, we're the last bio for this extent, step one is to call back
380 * into the FS and do all the end_io operations.
382 btrfs_writepage_endio_finish_ordered(BTRFS_I(inode), NULL,
383 cb->start, cb->start + cb->len - 1,
384 cb->status == BLK_STS_OK);
387 end_compressed_writeback(inode, cb);
388 /* Note, our inode could be gone now */
391 * Release the compressed pages, these came from alloc_page and
392 * are not attached to the inode at all
394 for (index = 0; index < cb->nr_pages; index++) {
395 struct page *page = cb->compressed_pages[index];
397 page->mapping = NULL;
401 /* Finally free the cb struct */
402 kfree(cb->compressed_pages);
407 * Do the cleanup once all the compressed pages hit the disk. This will clear
408 * writeback on the file pages and free the compressed pages.
410 * This also calls the writeback end hooks for the file pages so that metadata
411 * and checksums can be updated in the file.
413 static void end_compressed_bio_write(struct bio *bio)
415 struct compressed_bio *cb = bio->bi_private;
417 if (!dec_and_test_compressed_bio(cb, bio))
420 btrfs_record_physical_zoned(cb->inode, cb->start, bio);
422 finish_compressed_bio_write(cb);
427 static blk_status_t submit_compressed_bio(struct btrfs_fs_info *fs_info,
428 struct bio *bio, int mirror_num)
432 ASSERT(bio->bi_iter.bi_size);
433 ret = btrfs_bio_wq_end_io(fs_info, bio, BTRFS_WQ_ENDIO_DATA);
436 ret = btrfs_map_bio(fs_info, bio, mirror_num);
441 * Allocate a compressed_bio, which will be used to read/write on-disk
442 * (aka, compressed) * data.
444 * @cb: The compressed_bio structure, which records all the needed
445 * information to bind the compressed data to the uncompressed
447 * @disk_byten: The logical bytenr where the compressed data will be read
448 * from or written to.
449 * @endio_func: The endio function to call after the IO for compressed data
451 * @next_stripe_start: Return value of logical bytenr of where next stripe starts.
452 * Let the caller know to only fill the bio up to the stripe
457 static struct bio *alloc_compressed_bio(struct compressed_bio *cb, u64 disk_bytenr,
458 unsigned int opf, bio_end_io_t endio_func,
459 u64 *next_stripe_start)
461 struct btrfs_fs_info *fs_info = btrfs_sb(cb->inode->i_sb);
462 struct btrfs_io_geometry geom;
463 struct extent_map *em;
467 bio = btrfs_bio_alloc(BIO_MAX_VECS);
469 bio->bi_iter.bi_sector = disk_bytenr >> SECTOR_SHIFT;
471 bio->bi_private = cb;
472 bio->bi_end_io = endio_func;
474 em = btrfs_get_chunk_map(fs_info, disk_bytenr, fs_info->sectorsize);
480 if (bio_op(bio) == REQ_OP_ZONE_APPEND)
481 bio_set_dev(bio, em->map_lookup->stripes[0].dev->bdev);
483 ret = btrfs_get_io_geometry(fs_info, em, btrfs_op(bio), disk_bytenr, &geom);
489 *next_stripe_start = disk_bytenr + geom.len;
495 * worker function to build and submit bios for previously compressed pages.
496 * The corresponding pages in the inode should be marked for writeback
497 * and the compressed pages should have a reference on them for dropping
498 * when the IO is complete.
500 * This also checksums the file bytes and gets things ready for
503 blk_status_t btrfs_submit_compressed_write(struct btrfs_inode *inode, u64 start,
504 unsigned int len, u64 disk_start,
505 unsigned int compressed_len,
506 struct page **compressed_pages,
507 unsigned int nr_pages,
508 unsigned int write_flags,
509 struct cgroup_subsys_state *blkcg_css,
512 struct btrfs_fs_info *fs_info = inode->root->fs_info;
513 struct bio *bio = NULL;
514 struct compressed_bio *cb;
515 u64 cur_disk_bytenr = disk_start;
516 u64 next_stripe_start;
518 int skip_sum = inode->flags & BTRFS_INODE_NODATASUM;
519 const bool use_append = btrfs_use_zone_append(inode, disk_start);
520 const unsigned int bio_op = use_append ? REQ_OP_ZONE_APPEND : REQ_OP_WRITE;
522 ASSERT(IS_ALIGNED(start, fs_info->sectorsize) &&
523 IS_ALIGNED(len, fs_info->sectorsize));
524 cb = kmalloc(compressed_bio_size(fs_info, compressed_len), GFP_NOFS);
526 return BLK_STS_RESOURCE;
527 refcount_set(&cb->pending_sectors, compressed_len >> fs_info->sectorsize_bits);
528 cb->status = BLK_STS_OK;
529 cb->inode = &inode->vfs_inode;
533 cb->compressed_pages = compressed_pages;
534 cb->compressed_len = compressed_len;
535 cb->writeback = writeback;
537 cb->nr_pages = nr_pages;
540 kthread_associate_blkcg(blkcg_css);
542 while (cur_disk_bytenr < disk_start + compressed_len) {
543 u64 offset = cur_disk_bytenr - disk_start;
544 unsigned int index = offset >> PAGE_SHIFT;
545 unsigned int real_size;
547 struct page *page = compressed_pages[index];
550 /* Allocate new bio if submitted or not yet allocated */
552 bio = alloc_compressed_bio(cb, cur_disk_bytenr,
553 bio_op | write_flags, end_compressed_bio_write,
556 ret = errno_to_blk_status(PTR_ERR(bio));
561 bio->bi_opf |= REQ_CGROUP_PUNT;
564 * We should never reach next_stripe_start start as we will
565 * submit comp_bio when reach the boundary immediately.
567 ASSERT(cur_disk_bytenr != next_stripe_start);
570 * We have various limits on the real read size:
573 * - compressed length boundary
575 real_size = min_t(u64, U32_MAX, next_stripe_start - cur_disk_bytenr);
576 real_size = min_t(u64, real_size, PAGE_SIZE - offset_in_page(offset));
577 real_size = min_t(u64, real_size, compressed_len - offset);
578 ASSERT(IS_ALIGNED(real_size, fs_info->sectorsize));
581 added = bio_add_zone_append_page(bio, page, real_size,
582 offset_in_page(offset));
584 added = bio_add_page(bio, page, real_size,
585 offset_in_page(offset));
586 /* Reached zoned boundary */
590 cur_disk_bytenr += added;
591 /* Reached stripe boundary */
592 if (cur_disk_bytenr == next_stripe_start)
595 /* Finished the range */
596 if (cur_disk_bytenr == disk_start + compressed_len)
601 ret = btrfs_csum_one_bio(inode, bio, start, true);
606 ret = submit_compressed_bio(fs_info, bio, 0);
614 kthread_associate_blkcg(NULL);
620 kthread_associate_blkcg(NULL);
623 bio->bi_status = ret;
626 /* Last byte of @cb is submitted, endio will free @cb */
627 if (cur_disk_bytenr == disk_start + compressed_len)
630 wait_var_event(cb, refcount_read(&cb->pending_sectors) ==
631 (disk_start + compressed_len - cur_disk_bytenr) >>
632 fs_info->sectorsize_bits);
634 * Even with previous bio ended, we should still have io not yet
635 * submitted, thus need to finish manually.
637 ASSERT(refcount_read(&cb->pending_sectors));
638 /* Now we are the only one referring @cb, can finish it safely. */
639 finish_compressed_bio_write(cb);
643 static u64 bio_end_offset(struct bio *bio)
645 struct bio_vec *last = bio_last_bvec_all(bio);
647 return page_offset(last->bv_page) + last->bv_len + last->bv_offset;
651 * Add extra pages in the same compressed file extent so that we don't need to
652 * re-read the same extent again and again.
654 * NOTE: this won't work well for subpage, as for subpage read, we lock the
655 * full page then submit bio for each compressed/regular extents.
657 * This means, if we have several sectors in the same page points to the same
658 * on-disk compressed data, we will re-read the same extent many times and
659 * this function can only help for the next page.
661 static noinline int add_ra_bio_pages(struct inode *inode,
663 struct compressed_bio *cb)
665 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
666 unsigned long end_index;
667 u64 cur = bio_end_offset(cb->orig_bio);
668 u64 isize = i_size_read(inode);
671 struct extent_map *em;
672 struct address_space *mapping = inode->i_mapping;
673 struct extent_map_tree *em_tree;
674 struct extent_io_tree *tree;
675 int sectors_missed = 0;
677 em_tree = &BTRFS_I(inode)->extent_tree;
678 tree = &BTRFS_I(inode)->io_tree;
684 * For current subpage support, we only support 64K page size,
685 * which means maximum compressed extent size (128K) is just 2x page
687 * This makes readahead less effective, so here disable readahead for
688 * subpage for now, until full compressed write is supported.
690 if (btrfs_sb(inode->i_sb)->sectorsize < PAGE_SIZE)
693 end_index = (i_size_read(inode) - 1) >> PAGE_SHIFT;
695 while (cur < compressed_end) {
697 u64 pg_index = cur >> PAGE_SHIFT;
700 if (pg_index > end_index)
703 page = xa_load(&mapping->i_pages, pg_index);
704 if (page && !xa_is_value(page)) {
705 sectors_missed += (PAGE_SIZE - offset_in_page(cur)) >>
706 fs_info->sectorsize_bits;
708 /* Beyond threshold, no need to continue */
709 if (sectors_missed > 4)
713 * Jump to next page start as we already have page for
716 cur = (pg_index << PAGE_SHIFT) + PAGE_SIZE;
720 page = __page_cache_alloc(mapping_gfp_constraint(mapping,
725 if (add_to_page_cache_lru(page, mapping, pg_index, GFP_NOFS)) {
727 /* There is already a page, skip to page end */
728 cur = (pg_index << PAGE_SHIFT) + PAGE_SIZE;
732 ret = set_page_extent_mapped(page);
739 page_end = (pg_index << PAGE_SHIFT) + PAGE_SIZE - 1;
740 lock_extent(tree, cur, page_end);
741 read_lock(&em_tree->lock);
742 em = lookup_extent_mapping(em_tree, cur, page_end + 1 - cur);
743 read_unlock(&em_tree->lock);
746 * At this point, we have a locked page in the page cache for
747 * these bytes in the file. But, we have to make sure they map
748 * to this compressed extent on disk.
750 if (!em || cur < em->start ||
751 (cur + fs_info->sectorsize > extent_map_end(em)) ||
752 (em->block_start >> 9) != cb->orig_bio->bi_iter.bi_sector) {
754 unlock_extent(tree, cur, page_end);
761 if (page->index == end_index) {
762 size_t zero_offset = offset_in_page(isize);
766 zeros = PAGE_SIZE - zero_offset;
767 memzero_page(page, zero_offset, zeros);
768 flush_dcache_page(page);
772 add_size = min(em->start + em->len, page_end + 1) - cur;
773 ret = bio_add_page(cb->orig_bio, page, add_size, offset_in_page(cur));
774 if (ret != add_size) {
775 unlock_extent(tree, cur, page_end);
781 * If it's subpage, we also need to increase its
782 * subpage::readers number, as at endio we will decrease
783 * subpage::readers and to unlock the page.
785 if (fs_info->sectorsize < PAGE_SIZE)
786 btrfs_subpage_start_reader(fs_info, page, cur, add_size);
794 * for a compressed read, the bio we get passed has all the inode pages
795 * in it. We don't actually do IO on those pages but allocate new ones
796 * to hold the compressed pages on disk.
798 * bio->bi_iter.bi_sector points to the compressed extent on disk
799 * bio->bi_io_vec points to all of the inode pages
801 * After the compressed pages are read, we copy the bytes into the
802 * bio we were passed and then call the bio end_io calls
804 void btrfs_submit_compressed_read(struct inode *inode, struct bio *bio,
807 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
808 struct extent_map_tree *em_tree;
809 struct compressed_bio *cb;
810 unsigned int compressed_len;
811 struct bio *comp_bio = NULL;
812 const u64 disk_bytenr = bio->bi_iter.bi_sector << SECTOR_SHIFT;
813 u64 cur_disk_byte = disk_bytenr;
814 u64 next_stripe_start;
818 struct extent_map *em;
824 em_tree = &BTRFS_I(inode)->extent_tree;
826 file_offset = bio_first_bvec_all(bio)->bv_offset +
827 page_offset(bio_first_page_all(bio));
829 /* we need the actual starting offset of this extent in the file */
830 read_lock(&em_tree->lock);
831 em = lookup_extent_mapping(em_tree, file_offset, fs_info->sectorsize);
832 read_unlock(&em_tree->lock);
838 ASSERT(em->compress_type != BTRFS_COMPRESS_NONE);
839 compressed_len = em->block_len;
840 cb = kmalloc(compressed_bio_size(fs_info, compressed_len), GFP_NOFS);
842 ret = BLK_STS_RESOURCE;
846 refcount_set(&cb->pending_sectors, compressed_len >> fs_info->sectorsize_bits);
847 cb->status = BLK_STS_OK;
849 cb->mirror_num = mirror_num;
852 cb->start = em->orig_start;
854 em_start = em->start;
856 cb->len = bio->bi_iter.bi_size;
857 cb->compressed_len = compressed_len;
858 cb->compress_type = em->compress_type;
864 cb->nr_pages = DIV_ROUND_UP(compressed_len, PAGE_SIZE);
865 cb->compressed_pages = kcalloc(cb->nr_pages, sizeof(struct page *), GFP_NOFS);
866 if (!cb->compressed_pages) {
867 ret = BLK_STS_RESOURCE;
871 ret2 = btrfs_alloc_page_array(cb->nr_pages, cb->compressed_pages);
873 ret = BLK_STS_RESOURCE;
877 add_ra_bio_pages(inode, em_start + em_len, cb);
879 /* include any pages we added in add_ra-bio_pages */
880 cb->len = bio->bi_iter.bi_size;
882 while (cur_disk_byte < disk_bytenr + compressed_len) {
883 u64 offset = cur_disk_byte - disk_bytenr;
884 unsigned int index = offset >> PAGE_SHIFT;
885 unsigned int real_size;
887 struct page *page = cb->compressed_pages[index];
890 /* Allocate new bio if submitted or not yet allocated */
892 comp_bio = alloc_compressed_bio(cb, cur_disk_byte,
893 REQ_OP_READ, end_compressed_bio_read,
895 if (IS_ERR(comp_bio)) {
896 ret = errno_to_blk_status(PTR_ERR(comp_bio));
902 * We should never reach next_stripe_start start as we will
903 * submit comp_bio when reach the boundary immediately.
905 ASSERT(cur_disk_byte != next_stripe_start);
907 * We have various limit on the real read size:
910 * - compressed length boundary
912 real_size = min_t(u64, U32_MAX, next_stripe_start - cur_disk_byte);
913 real_size = min_t(u64, real_size, PAGE_SIZE - offset_in_page(offset));
914 real_size = min_t(u64, real_size, compressed_len - offset);
915 ASSERT(IS_ALIGNED(real_size, fs_info->sectorsize));
917 added = bio_add_page(comp_bio, page, real_size, offset_in_page(offset));
919 * Maximum compressed extent is smaller than bio size limit,
920 * thus bio_add_page() should always success.
922 ASSERT(added == real_size);
923 cur_disk_byte += added;
925 /* Reached stripe boundary, need to submit */
926 if (cur_disk_byte == next_stripe_start)
929 /* Has finished the range, need to submit */
930 if (cur_disk_byte == disk_bytenr + compressed_len)
934 unsigned int nr_sectors;
936 ret = btrfs_lookup_bio_sums(inode, comp_bio, sums);
940 nr_sectors = DIV_ROUND_UP(comp_bio->bi_iter.bi_size,
941 fs_info->sectorsize);
942 sums += fs_info->csum_size * nr_sectors;
944 ret = submit_compressed_bio(fs_info, comp_bio, mirror_num);
953 if (cb->compressed_pages) {
954 for (i = 0; i < cb->nr_pages; i++) {
955 if (cb->compressed_pages[i])
956 __free_page(cb->compressed_pages[i]);
960 kfree(cb->compressed_pages);
964 bio->bi_status = ret;
969 comp_bio->bi_status = ret;
972 /* All bytes of @cb is submitted, endio will free @cb */
973 if (cur_disk_byte == disk_bytenr + compressed_len)
976 wait_var_event(cb, refcount_read(&cb->pending_sectors) ==
977 (disk_bytenr + compressed_len - cur_disk_byte) >>
978 fs_info->sectorsize_bits);
980 * Even with previous bio ended, we should still have io not yet
981 * submitted, thus need to finish @cb manually.
983 ASSERT(refcount_read(&cb->pending_sectors));
984 /* Now we are the only one referring @cb, can finish it safely. */
985 finish_compressed_bio_read(cb);
989 * Heuristic uses systematic sampling to collect data from the input data
990 * range, the logic can be tuned by the following constants:
992 * @SAMPLING_READ_SIZE - how many bytes will be copied from for each sample
993 * @SAMPLING_INTERVAL - range from which the sampled data can be collected
995 #define SAMPLING_READ_SIZE (16)
996 #define SAMPLING_INTERVAL (256)
999 * For statistical analysis of the input data we consider bytes that form a
1000 * Galois Field of 256 objects. Each object has an attribute count, ie. how
1001 * many times the object appeared in the sample.
1003 #define BUCKET_SIZE (256)
1006 * The size of the sample is based on a statistical sampling rule of thumb.
1007 * The common way is to perform sampling tests as long as the number of
1008 * elements in each cell is at least 5.
1010 * Instead of 5, we choose 32 to obtain more accurate results.
1011 * If the data contain the maximum number of symbols, which is 256, we obtain a
1012 * sample size bound by 8192.
1014 * For a sample of at most 8KB of data per data range: 16 consecutive bytes
1015 * from up to 512 locations.
1017 #define MAX_SAMPLE_SIZE (BTRFS_MAX_UNCOMPRESSED * \
1018 SAMPLING_READ_SIZE / SAMPLING_INTERVAL)
1020 struct bucket_item {
1024 struct heuristic_ws {
1025 /* Partial copy of input data */
1028 /* Buckets store counters for each byte value */
1029 struct bucket_item *bucket;
1030 /* Sorting buffer */
1031 struct bucket_item *bucket_b;
1032 struct list_head list;
1035 static struct workspace_manager heuristic_wsm;
1037 static void free_heuristic_ws(struct list_head *ws)
1039 struct heuristic_ws *workspace;
1041 workspace = list_entry(ws, struct heuristic_ws, list);
1043 kvfree(workspace->sample);
1044 kfree(workspace->bucket);
1045 kfree(workspace->bucket_b);
1049 static struct list_head *alloc_heuristic_ws(unsigned int level)
1051 struct heuristic_ws *ws;
1053 ws = kzalloc(sizeof(*ws), GFP_KERNEL);
1055 return ERR_PTR(-ENOMEM);
1057 ws->sample = kvmalloc(MAX_SAMPLE_SIZE, GFP_KERNEL);
1061 ws->bucket = kcalloc(BUCKET_SIZE, sizeof(*ws->bucket), GFP_KERNEL);
1065 ws->bucket_b = kcalloc(BUCKET_SIZE, sizeof(*ws->bucket_b), GFP_KERNEL);
1069 INIT_LIST_HEAD(&ws->list);
1072 free_heuristic_ws(&ws->list);
1073 return ERR_PTR(-ENOMEM);
1076 const struct btrfs_compress_op btrfs_heuristic_compress = {
1077 .workspace_manager = &heuristic_wsm,
1080 static const struct btrfs_compress_op * const btrfs_compress_op[] = {
1081 /* The heuristic is represented as compression type 0 */
1082 &btrfs_heuristic_compress,
1083 &btrfs_zlib_compress,
1084 &btrfs_lzo_compress,
1085 &btrfs_zstd_compress,
1088 static struct list_head *alloc_workspace(int type, unsigned int level)
1091 case BTRFS_COMPRESS_NONE: return alloc_heuristic_ws(level);
1092 case BTRFS_COMPRESS_ZLIB: return zlib_alloc_workspace(level);
1093 case BTRFS_COMPRESS_LZO: return lzo_alloc_workspace(level);
1094 case BTRFS_COMPRESS_ZSTD: return zstd_alloc_workspace(level);
1097 * This can't happen, the type is validated several times
1098 * before we get here.
1104 static void free_workspace(int type, struct list_head *ws)
1107 case BTRFS_COMPRESS_NONE: return free_heuristic_ws(ws);
1108 case BTRFS_COMPRESS_ZLIB: return zlib_free_workspace(ws);
1109 case BTRFS_COMPRESS_LZO: return lzo_free_workspace(ws);
1110 case BTRFS_COMPRESS_ZSTD: return zstd_free_workspace(ws);
1113 * This can't happen, the type is validated several times
1114 * before we get here.
1120 static void btrfs_init_workspace_manager(int type)
1122 struct workspace_manager *wsm;
1123 struct list_head *workspace;
1125 wsm = btrfs_compress_op[type]->workspace_manager;
1126 INIT_LIST_HEAD(&wsm->idle_ws);
1127 spin_lock_init(&wsm->ws_lock);
1128 atomic_set(&wsm->total_ws, 0);
1129 init_waitqueue_head(&wsm->ws_wait);
1132 * Preallocate one workspace for each compression type so we can
1133 * guarantee forward progress in the worst case
1135 workspace = alloc_workspace(type, 0);
1136 if (IS_ERR(workspace)) {
1138 "BTRFS: cannot preallocate compression workspace, will try later\n");
1140 atomic_set(&wsm->total_ws, 1);
1142 list_add(workspace, &wsm->idle_ws);
1146 static void btrfs_cleanup_workspace_manager(int type)
1148 struct workspace_manager *wsman;
1149 struct list_head *ws;
1151 wsman = btrfs_compress_op[type]->workspace_manager;
1152 while (!list_empty(&wsman->idle_ws)) {
1153 ws = wsman->idle_ws.next;
1155 free_workspace(type, ws);
1156 atomic_dec(&wsman->total_ws);
1161 * This finds an available workspace or allocates a new one.
1162 * If it's not possible to allocate a new one, waits until there's one.
1163 * Preallocation makes a forward progress guarantees and we do not return
1166 struct list_head *btrfs_get_workspace(int type, unsigned int level)
1168 struct workspace_manager *wsm;
1169 struct list_head *workspace;
1170 int cpus = num_online_cpus();
1172 struct list_head *idle_ws;
1173 spinlock_t *ws_lock;
1175 wait_queue_head_t *ws_wait;
1178 wsm = btrfs_compress_op[type]->workspace_manager;
1179 idle_ws = &wsm->idle_ws;
1180 ws_lock = &wsm->ws_lock;
1181 total_ws = &wsm->total_ws;
1182 ws_wait = &wsm->ws_wait;
1183 free_ws = &wsm->free_ws;
1187 if (!list_empty(idle_ws)) {
1188 workspace = idle_ws->next;
1189 list_del(workspace);
1191 spin_unlock(ws_lock);
1195 if (atomic_read(total_ws) > cpus) {
1198 spin_unlock(ws_lock);
1199 prepare_to_wait(ws_wait, &wait, TASK_UNINTERRUPTIBLE);
1200 if (atomic_read(total_ws) > cpus && !*free_ws)
1202 finish_wait(ws_wait, &wait);
1205 atomic_inc(total_ws);
1206 spin_unlock(ws_lock);
1209 * Allocation helpers call vmalloc that can't use GFP_NOFS, so we have
1210 * to turn it off here because we might get called from the restricted
1211 * context of btrfs_compress_bio/btrfs_compress_pages
1213 nofs_flag = memalloc_nofs_save();
1214 workspace = alloc_workspace(type, level);
1215 memalloc_nofs_restore(nofs_flag);
1217 if (IS_ERR(workspace)) {
1218 atomic_dec(total_ws);
1222 * Do not return the error but go back to waiting. There's a
1223 * workspace preallocated for each type and the compression
1224 * time is bounded so we get to a workspace eventually. This
1225 * makes our caller's life easier.
1227 * To prevent silent and low-probability deadlocks (when the
1228 * initial preallocation fails), check if there are any
1229 * workspaces at all.
1231 if (atomic_read(total_ws) == 0) {
1232 static DEFINE_RATELIMIT_STATE(_rs,
1233 /* once per minute */ 60 * HZ,
1236 if (__ratelimit(&_rs)) {
1237 pr_warn("BTRFS: no compression workspaces, low memory, retrying\n");
1245 static struct list_head *get_workspace(int type, int level)
1248 case BTRFS_COMPRESS_NONE: return btrfs_get_workspace(type, level);
1249 case BTRFS_COMPRESS_ZLIB: return zlib_get_workspace(level);
1250 case BTRFS_COMPRESS_LZO: return btrfs_get_workspace(type, level);
1251 case BTRFS_COMPRESS_ZSTD: return zstd_get_workspace(level);
1254 * This can't happen, the type is validated several times
1255 * before we get here.
1262 * put a workspace struct back on the list or free it if we have enough
1263 * idle ones sitting around
1265 void btrfs_put_workspace(int type, struct list_head *ws)
1267 struct workspace_manager *wsm;
1268 struct list_head *idle_ws;
1269 spinlock_t *ws_lock;
1271 wait_queue_head_t *ws_wait;
1274 wsm = btrfs_compress_op[type]->workspace_manager;
1275 idle_ws = &wsm->idle_ws;
1276 ws_lock = &wsm->ws_lock;
1277 total_ws = &wsm->total_ws;
1278 ws_wait = &wsm->ws_wait;
1279 free_ws = &wsm->free_ws;
1282 if (*free_ws <= num_online_cpus()) {
1283 list_add(ws, idle_ws);
1285 spin_unlock(ws_lock);
1288 spin_unlock(ws_lock);
1290 free_workspace(type, ws);
1291 atomic_dec(total_ws);
1293 cond_wake_up(ws_wait);
1296 static void put_workspace(int type, struct list_head *ws)
1299 case BTRFS_COMPRESS_NONE: return btrfs_put_workspace(type, ws);
1300 case BTRFS_COMPRESS_ZLIB: return btrfs_put_workspace(type, ws);
1301 case BTRFS_COMPRESS_LZO: return btrfs_put_workspace(type, ws);
1302 case BTRFS_COMPRESS_ZSTD: return zstd_put_workspace(ws);
1305 * This can't happen, the type is validated several times
1306 * before we get here.
1313 * Adjust @level according to the limits of the compression algorithm or
1314 * fallback to default
1316 static unsigned int btrfs_compress_set_level(int type, unsigned level)
1318 const struct btrfs_compress_op *ops = btrfs_compress_op[type];
1321 level = ops->default_level;
1323 level = min(level, ops->max_level);
1329 * Given an address space and start and length, compress the bytes into @pages
1330 * that are allocated on demand.
1332 * @type_level is encoded algorithm and level, where level 0 means whatever
1333 * default the algorithm chooses and is opaque here;
1334 * - compression algo are 0-3
1335 * - the level are bits 4-7
1337 * @out_pages is an in/out parameter, holds maximum number of pages to allocate
1338 * and returns number of actually allocated pages
1340 * @total_in is used to return the number of bytes actually read. It
1341 * may be smaller than the input length if we had to exit early because we
1342 * ran out of room in the pages array or because we cross the
1343 * max_out threshold.
1345 * @total_out is an in/out parameter, must be set to the input length and will
1346 * be also used to return the total number of compressed bytes
1348 int btrfs_compress_pages(unsigned int type_level, struct address_space *mapping,
1349 u64 start, struct page **pages,
1350 unsigned long *out_pages,
1351 unsigned long *total_in,
1352 unsigned long *total_out)
1354 int type = btrfs_compress_type(type_level);
1355 int level = btrfs_compress_level(type_level);
1356 struct list_head *workspace;
1359 level = btrfs_compress_set_level(type, level);
1360 workspace = get_workspace(type, level);
1361 ret = compression_compress_pages(type, workspace, mapping, start, pages,
1362 out_pages, total_in, total_out);
1363 put_workspace(type, workspace);
1367 static int btrfs_decompress_bio(struct compressed_bio *cb)
1369 struct list_head *workspace;
1371 int type = cb->compress_type;
1373 workspace = get_workspace(type, 0);
1374 ret = compression_decompress_bio(workspace, cb);
1375 put_workspace(type, workspace);
1381 * a less complex decompression routine. Our compressed data fits in a
1382 * single page, and we want to read a single page out of it.
1383 * start_byte tells us the offset into the compressed data we're interested in
1385 int btrfs_decompress(int type, unsigned char *data_in, struct page *dest_page,
1386 unsigned long start_byte, size_t srclen, size_t destlen)
1388 struct list_head *workspace;
1391 workspace = get_workspace(type, 0);
1392 ret = compression_decompress(type, workspace, data_in, dest_page,
1393 start_byte, srclen, destlen);
1394 put_workspace(type, workspace);
1399 void __init btrfs_init_compress(void)
1401 btrfs_init_workspace_manager(BTRFS_COMPRESS_NONE);
1402 btrfs_init_workspace_manager(BTRFS_COMPRESS_ZLIB);
1403 btrfs_init_workspace_manager(BTRFS_COMPRESS_LZO);
1404 zstd_init_workspace_manager();
1407 void __cold btrfs_exit_compress(void)
1409 btrfs_cleanup_workspace_manager(BTRFS_COMPRESS_NONE);
1410 btrfs_cleanup_workspace_manager(BTRFS_COMPRESS_ZLIB);
1411 btrfs_cleanup_workspace_manager(BTRFS_COMPRESS_LZO);
1412 zstd_cleanup_workspace_manager();
1416 * Copy decompressed data from working buffer to pages.
1418 * @buf: The decompressed data buffer
1419 * @buf_len: The decompressed data length
1420 * @decompressed: Number of bytes that are already decompressed inside the
1422 * @cb: The compressed extent descriptor
1423 * @orig_bio: The original bio that the caller wants to read for
1425 * An easier to understand graph is like below:
1427 * |<- orig_bio ->| |<- orig_bio->|
1428 * |<------- full decompressed extent ----->|
1429 * |<----------- @cb range ---->|
1430 * | |<-- @buf_len -->|
1431 * |<--- @decompressed --->|
1433 * Note that, @cb can be a subpage of the full decompressed extent, but
1434 * @cb->start always has the same as the orig_file_offset value of the full
1435 * decompressed extent.
1437 * When reading compressed extent, we have to read the full compressed extent,
1438 * while @orig_bio may only want part of the range.
1439 * Thus this function will ensure only data covered by @orig_bio will be copied
1442 * Return 0 if we have copied all needed contents for @orig_bio.
1443 * Return >0 if we need continue decompress.
1445 int btrfs_decompress_buf2page(const char *buf, u32 buf_len,
1446 struct compressed_bio *cb, u32 decompressed)
1448 struct bio *orig_bio = cb->orig_bio;
1449 /* Offset inside the full decompressed extent */
1452 cur_offset = decompressed;
1453 /* The main loop to do the copy */
1454 while (cur_offset < decompressed + buf_len) {
1455 struct bio_vec bvec;
1458 /* Offset inside the full decompressed extent */
1461 bvec = bio_iter_iovec(orig_bio, orig_bio->bi_iter);
1463 * cb->start may underflow, but subtracting that value can still
1464 * give us correct offset inside the full decompressed extent.
1466 bvec_offset = page_offset(bvec.bv_page) + bvec.bv_offset - cb->start;
1468 /* Haven't reached the bvec range, exit */
1469 if (decompressed + buf_len <= bvec_offset)
1472 copy_start = max(cur_offset, bvec_offset);
1473 copy_len = min(bvec_offset + bvec.bv_len,
1474 decompressed + buf_len) - copy_start;
1478 * Extra range check to ensure we didn't go beyond
1481 ASSERT(copy_start - decompressed < buf_len);
1482 memcpy_to_page(bvec.bv_page, bvec.bv_offset,
1483 buf + copy_start - decompressed, copy_len);
1484 flush_dcache_page(bvec.bv_page);
1485 cur_offset += copy_len;
1487 bio_advance(orig_bio, copy_len);
1488 /* Finished the bio */
1489 if (!orig_bio->bi_iter.bi_size)
1496 * Shannon Entropy calculation
1498 * Pure byte distribution analysis fails to determine compressibility of data.
1499 * Try calculating entropy to estimate the average minimum number of bits
1500 * needed to encode the sampled data.
1502 * For convenience, return the percentage of needed bits, instead of amount of
1505 * @ENTROPY_LVL_ACEPTABLE - below that threshold, sample has low byte entropy
1506 * and can be compressible with high probability
1508 * @ENTROPY_LVL_HIGH - data are not compressible with high probability
1510 * Use of ilog2() decreases precision, we lower the LVL to 5 to compensate.
1512 #define ENTROPY_LVL_ACEPTABLE (65)
1513 #define ENTROPY_LVL_HIGH (80)
1516 * For increasead precision in shannon_entropy calculation,
1517 * let's do pow(n, M) to save more digits after comma:
1519 * - maximum int bit length is 64
1520 * - ilog2(MAX_SAMPLE_SIZE) -> 13
1521 * - 13 * 4 = 52 < 64 -> M = 4
1525 static inline u32 ilog2_w(u64 n)
1527 return ilog2(n * n * n * n);
1530 static u32 shannon_entropy(struct heuristic_ws *ws)
1532 const u32 entropy_max = 8 * ilog2_w(2);
1533 u32 entropy_sum = 0;
1534 u32 p, p_base, sz_base;
1537 sz_base = ilog2_w(ws->sample_size);
1538 for (i = 0; i < BUCKET_SIZE && ws->bucket[i].count > 0; i++) {
1539 p = ws->bucket[i].count;
1540 p_base = ilog2_w(p);
1541 entropy_sum += p * (sz_base - p_base);
1544 entropy_sum /= ws->sample_size;
1545 return entropy_sum * 100 / entropy_max;
1548 #define RADIX_BASE 4U
1549 #define COUNTERS_SIZE (1U << RADIX_BASE)
1551 static u8 get4bits(u64 num, int shift) {
1556 low4bits = (COUNTERS_SIZE - 1) - (num % COUNTERS_SIZE);
1561 * Use 4 bits as radix base
1562 * Use 16 u32 counters for calculating new position in buf array
1564 * @array - array that will be sorted
1565 * @array_buf - buffer array to store sorting results
1566 * must be equal in size to @array
1569 static void radix_sort(struct bucket_item *array, struct bucket_item *array_buf,
1574 u32 counters[COUNTERS_SIZE];
1582 * Try avoid useless loop iterations for small numbers stored in big
1583 * counters. Example: 48 33 4 ... in 64bit array
1585 max_num = array[0].count;
1586 for (i = 1; i < num; i++) {
1587 buf_num = array[i].count;
1588 if (buf_num > max_num)
1592 buf_num = ilog2(max_num);
1593 bitlen = ALIGN(buf_num, RADIX_BASE * 2);
1596 while (shift < bitlen) {
1597 memset(counters, 0, sizeof(counters));
1599 for (i = 0; i < num; i++) {
1600 buf_num = array[i].count;
1601 addr = get4bits(buf_num, shift);
1605 for (i = 1; i < COUNTERS_SIZE; i++)
1606 counters[i] += counters[i - 1];
1608 for (i = num - 1; i >= 0; i--) {
1609 buf_num = array[i].count;
1610 addr = get4bits(buf_num, shift);
1612 new_addr = counters[addr];
1613 array_buf[new_addr] = array[i];
1616 shift += RADIX_BASE;
1619 * Normal radix expects to move data from a temporary array, to
1620 * the main one. But that requires some CPU time. Avoid that
1621 * by doing another sort iteration to original array instead of
1624 memset(counters, 0, sizeof(counters));
1626 for (i = 0; i < num; i ++) {
1627 buf_num = array_buf[i].count;
1628 addr = get4bits(buf_num, shift);
1632 for (i = 1; i < COUNTERS_SIZE; i++)
1633 counters[i] += counters[i - 1];
1635 for (i = num - 1; i >= 0; i--) {
1636 buf_num = array_buf[i].count;
1637 addr = get4bits(buf_num, shift);
1639 new_addr = counters[addr];
1640 array[new_addr] = array_buf[i];
1643 shift += RADIX_BASE;
1648 * Size of the core byte set - how many bytes cover 90% of the sample
1650 * There are several types of structured binary data that use nearly all byte
1651 * values. The distribution can be uniform and counts in all buckets will be
1652 * nearly the same (eg. encrypted data). Unlikely to be compressible.
1654 * Other possibility is normal (Gaussian) distribution, where the data could
1655 * be potentially compressible, but we have to take a few more steps to decide
1658 * @BYTE_CORE_SET_LOW - main part of byte values repeated frequently,
1659 * compression algo can easy fix that
1660 * @BYTE_CORE_SET_HIGH - data have uniform distribution and with high
1661 * probability is not compressible
1663 #define BYTE_CORE_SET_LOW (64)
1664 #define BYTE_CORE_SET_HIGH (200)
1666 static int byte_core_set_size(struct heuristic_ws *ws)
1669 u32 coreset_sum = 0;
1670 const u32 core_set_threshold = ws->sample_size * 90 / 100;
1671 struct bucket_item *bucket = ws->bucket;
1673 /* Sort in reverse order */
1674 radix_sort(ws->bucket, ws->bucket_b, BUCKET_SIZE);
1676 for (i = 0; i < BYTE_CORE_SET_LOW; i++)
1677 coreset_sum += bucket[i].count;
1679 if (coreset_sum > core_set_threshold)
1682 for (; i < BYTE_CORE_SET_HIGH && bucket[i].count > 0; i++) {
1683 coreset_sum += bucket[i].count;
1684 if (coreset_sum > core_set_threshold)
1692 * Count byte values in buckets.
1693 * This heuristic can detect textual data (configs, xml, json, html, etc).
1694 * Because in most text-like data byte set is restricted to limited number of
1695 * possible characters, and that restriction in most cases makes data easy to
1698 * @BYTE_SET_THRESHOLD - consider all data within this byte set size:
1699 * less - compressible
1700 * more - need additional analysis
1702 #define BYTE_SET_THRESHOLD (64)
1704 static u32 byte_set_size(const struct heuristic_ws *ws)
1707 u32 byte_set_size = 0;
1709 for (i = 0; i < BYTE_SET_THRESHOLD; i++) {
1710 if (ws->bucket[i].count > 0)
1715 * Continue collecting count of byte values in buckets. If the byte
1716 * set size is bigger then the threshold, it's pointless to continue,
1717 * the detection technique would fail for this type of data.
1719 for (; i < BUCKET_SIZE; i++) {
1720 if (ws->bucket[i].count > 0) {
1722 if (byte_set_size > BYTE_SET_THRESHOLD)
1723 return byte_set_size;
1727 return byte_set_size;
1730 static bool sample_repeated_patterns(struct heuristic_ws *ws)
1732 const u32 half_of_sample = ws->sample_size / 2;
1733 const u8 *data = ws->sample;
1735 return memcmp(&data[0], &data[half_of_sample], half_of_sample) == 0;
1738 static void heuristic_collect_sample(struct inode *inode, u64 start, u64 end,
1739 struct heuristic_ws *ws)
1742 u64 index, index_end;
1743 u32 i, curr_sample_pos;
1747 * Compression handles the input data by chunks of 128KiB
1748 * (defined by BTRFS_MAX_UNCOMPRESSED)
1750 * We do the same for the heuristic and loop over the whole range.
1752 * MAX_SAMPLE_SIZE - calculated under assumption that heuristic will
1753 * process no more than BTRFS_MAX_UNCOMPRESSED at a time.
1755 if (end - start > BTRFS_MAX_UNCOMPRESSED)
1756 end = start + BTRFS_MAX_UNCOMPRESSED;
1758 index = start >> PAGE_SHIFT;
1759 index_end = end >> PAGE_SHIFT;
1761 /* Don't miss unaligned end */
1762 if (!IS_ALIGNED(end, PAGE_SIZE))
1765 curr_sample_pos = 0;
1766 while (index < index_end) {
1767 page = find_get_page(inode->i_mapping, index);
1768 in_data = kmap_local_page(page);
1769 /* Handle case where the start is not aligned to PAGE_SIZE */
1770 i = start % PAGE_SIZE;
1771 while (i < PAGE_SIZE - SAMPLING_READ_SIZE) {
1772 /* Don't sample any garbage from the last page */
1773 if (start > end - SAMPLING_READ_SIZE)
1775 memcpy(&ws->sample[curr_sample_pos], &in_data[i],
1776 SAMPLING_READ_SIZE);
1777 i += SAMPLING_INTERVAL;
1778 start += SAMPLING_INTERVAL;
1779 curr_sample_pos += SAMPLING_READ_SIZE;
1781 kunmap_local(in_data);
1787 ws->sample_size = curr_sample_pos;
1791 * Compression heuristic.
1793 * For now is's a naive and optimistic 'return true', we'll extend the logic to
1794 * quickly (compared to direct compression) detect data characteristics
1795 * (compressible/uncompressible) to avoid wasting CPU time on uncompressible
1798 * The following types of analysis can be performed:
1799 * - detect mostly zero data
1800 * - detect data with low "byte set" size (text, etc)
1801 * - detect data with low/high "core byte" set
1803 * Return non-zero if the compression should be done, 0 otherwise.
1805 int btrfs_compress_heuristic(struct inode *inode, u64 start, u64 end)
1807 struct list_head *ws_list = get_workspace(0, 0);
1808 struct heuristic_ws *ws;
1813 ws = list_entry(ws_list, struct heuristic_ws, list);
1815 heuristic_collect_sample(inode, start, end, ws);
1817 if (sample_repeated_patterns(ws)) {
1822 memset(ws->bucket, 0, sizeof(*ws->bucket)*BUCKET_SIZE);
1824 for (i = 0; i < ws->sample_size; i++) {
1825 byte = ws->sample[i];
1826 ws->bucket[byte].count++;
1829 i = byte_set_size(ws);
1830 if (i < BYTE_SET_THRESHOLD) {
1835 i = byte_core_set_size(ws);
1836 if (i <= BYTE_CORE_SET_LOW) {
1841 if (i >= BYTE_CORE_SET_HIGH) {
1846 i = shannon_entropy(ws);
1847 if (i <= ENTROPY_LVL_ACEPTABLE) {
1853 * For the levels below ENTROPY_LVL_HIGH, additional analysis would be
1854 * needed to give green light to compression.
1856 * For now just assume that compression at that level is not worth the
1857 * resources because:
1859 * 1. it is possible to defrag the data later
1861 * 2. the data would turn out to be hardly compressible, eg. 150 byte
1862 * values, every bucket has counter at level ~54. The heuristic would
1863 * be confused. This can happen when data have some internal repeated
1864 * patterns like "abbacbbc...". This can be detected by analyzing
1865 * pairs of bytes, which is too costly.
1867 if (i < ENTROPY_LVL_HIGH) {
1876 put_workspace(0, ws_list);
1881 * Convert the compression suffix (eg. after "zlib" starting with ":") to
1882 * level, unrecognized string will set the default level
1884 unsigned int btrfs_compress_str2level(unsigned int type, const char *str)
1886 unsigned int level = 0;
1892 if (str[0] == ':') {
1893 ret = kstrtouint(str + 1, 10, &level);
1898 level = btrfs_compress_set_level(type, level);