GNU Linux-libre 6.9-gnu
[releases.git] / fs / btrfs / block-rsv.c
1 // SPDX-License-Identifier: GPL-2.0
2
3 #include "misc.h"
4 #include "ctree.h"
5 #include "block-rsv.h"
6 #include "space-info.h"
7 #include "transaction.h"
8 #include "block-group.h"
9 #include "fs.h"
10 #include "accessors.h"
11
12 /*
13  * HOW DO BLOCK RESERVES WORK
14  *
15  *   Think of block_rsv's as buckets for logically grouped metadata
16  *   reservations.  Each block_rsv has a ->size and a ->reserved.  ->size is
17  *   how large we want our block rsv to be, ->reserved is how much space is
18  *   currently reserved for this block reserve.
19  *
20  *   ->failfast exists for the truncate case, and is described below.
21  *
22  * NORMAL OPERATION
23  *
24  *   -> Reserve
25  *     Entrance: btrfs_block_rsv_add, btrfs_block_rsv_refill
26  *
27  *     We call into btrfs_reserve_metadata_bytes() with our bytes, which is
28  *     accounted for in space_info->bytes_may_use, and then add the bytes to
29  *     ->reserved, and ->size in the case of btrfs_block_rsv_add.
30  *
31  *     ->size is an over-estimation of how much we may use for a particular
32  *     operation.
33  *
34  *   -> Use
35  *     Entrance: btrfs_use_block_rsv
36  *
37  *     When we do a btrfs_alloc_tree_block() we call into btrfs_use_block_rsv()
38  *     to determine the appropriate block_rsv to use, and then verify that
39  *     ->reserved has enough space for our tree block allocation.  Once
40  *     successful we subtract fs_info->nodesize from ->reserved.
41  *
42  *   -> Finish
43  *     Entrance: btrfs_block_rsv_release
44  *
45  *     We are finished with our operation, subtract our individual reservation
46  *     from ->size, and then subtract ->size from ->reserved and free up the
47  *     excess if there is any.
48  *
49  *     There is some logic here to refill the delayed refs rsv or the global rsv
50  *     as needed, otherwise the excess is subtracted from
51  *     space_info->bytes_may_use.
52  *
53  * TYPES OF BLOCK RESERVES
54  *
55  * BLOCK_RSV_TRANS, BLOCK_RSV_DELOPS, BLOCK_RSV_CHUNK
56  *   These behave normally, as described above, just within the confines of the
57  *   lifetime of their particular operation (transaction for the whole trans
58  *   handle lifetime, for example).
59  *
60  * BLOCK_RSV_GLOBAL
61  *   It is impossible to properly account for all the space that may be required
62  *   to make our extent tree updates.  This block reserve acts as an overflow
63  *   buffer in case our delayed refs reserve does not reserve enough space to
64  *   update the extent tree.
65  *
66  *   We can steal from this in some cases as well, notably on evict() or
67  *   truncate() in order to help users recover from ENOSPC conditions.
68  *
69  * BLOCK_RSV_DELALLOC
70  *   The individual item sizes are determined by the per-inode size
71  *   calculations, which are described with the delalloc code.  This is pretty
72  *   straightforward, it's just the calculation of ->size encodes a lot of
73  *   different items, and thus it gets used when updating inodes, inserting file
74  *   extents, and inserting checksums.
75  *
76  * BLOCK_RSV_DELREFS
77  *   We keep a running tally of how many delayed refs we have on the system.
78  *   We assume each one of these delayed refs are going to use a full
79  *   reservation.  We use the transaction items and pre-reserve space for every
80  *   operation, and use this reservation to refill any gap between ->size and
81  *   ->reserved that may exist.
82  *
83  *   From there it's straightforward, removing a delayed ref means we remove its
84  *   count from ->size and free up reservations as necessary.  Since this is
85  *   the most dynamic block reserve in the system, we will try to refill this
86  *   block reserve first with any excess returned by any other block reserve.
87  *
88  * BLOCK_RSV_EMPTY
89  *   This is the fallback block reserve to make us try to reserve space if we
90  *   don't have a specific bucket for this allocation.  It is mostly used for
91  *   updating the device tree and such, since that is a separate pool we're
92  *   content to just reserve space from the space_info on demand.
93  *
94  * BLOCK_RSV_TEMP
95  *   This is used by things like truncate and iput.  We will temporarily
96  *   allocate a block reserve, set it to some size, and then truncate bytes
97  *   until we have no space left.  With ->failfast set we'll simply return
98  *   ENOSPC from btrfs_use_block_rsv() to signal that we need to unwind and try
99  *   to make a new reservation.  This is because these operations are
100  *   unbounded, so we want to do as much work as we can, and then back off and
101  *   re-reserve.
102  */
103
104 static u64 block_rsv_release_bytes(struct btrfs_fs_info *fs_info,
105                                     struct btrfs_block_rsv *block_rsv,
106                                     struct btrfs_block_rsv *dest, u64 num_bytes,
107                                     u64 *qgroup_to_release_ret)
108 {
109         struct btrfs_space_info *space_info = block_rsv->space_info;
110         u64 qgroup_to_release = 0;
111         u64 ret;
112
113         spin_lock(&block_rsv->lock);
114         if (num_bytes == (u64)-1) {
115                 num_bytes = block_rsv->size;
116                 qgroup_to_release = block_rsv->qgroup_rsv_size;
117         }
118         block_rsv->size -= num_bytes;
119         if (block_rsv->reserved >= block_rsv->size) {
120                 num_bytes = block_rsv->reserved - block_rsv->size;
121                 block_rsv->reserved = block_rsv->size;
122                 block_rsv->full = true;
123         } else {
124                 num_bytes = 0;
125         }
126         if (qgroup_to_release_ret &&
127             block_rsv->qgroup_rsv_reserved >= block_rsv->qgroup_rsv_size) {
128                 qgroup_to_release = block_rsv->qgroup_rsv_reserved -
129                                     block_rsv->qgroup_rsv_size;
130                 block_rsv->qgroup_rsv_reserved = block_rsv->qgroup_rsv_size;
131         } else {
132                 qgroup_to_release = 0;
133         }
134         spin_unlock(&block_rsv->lock);
135
136         ret = num_bytes;
137         if (num_bytes > 0) {
138                 if (dest) {
139                         spin_lock(&dest->lock);
140                         if (!dest->full) {
141                                 u64 bytes_to_add;
142
143                                 bytes_to_add = dest->size - dest->reserved;
144                                 bytes_to_add = min(num_bytes, bytes_to_add);
145                                 dest->reserved += bytes_to_add;
146                                 if (dest->reserved >= dest->size)
147                                         dest->full = true;
148                                 num_bytes -= bytes_to_add;
149                         }
150                         spin_unlock(&dest->lock);
151                 }
152                 if (num_bytes)
153                         btrfs_space_info_free_bytes_may_use(fs_info,
154                                                             space_info,
155                                                             num_bytes);
156         }
157         if (qgroup_to_release_ret)
158                 *qgroup_to_release_ret = qgroup_to_release;
159         return ret;
160 }
161
162 int btrfs_block_rsv_migrate(struct btrfs_block_rsv *src,
163                             struct btrfs_block_rsv *dst, u64 num_bytes,
164                             bool update_size)
165 {
166         int ret;
167
168         ret = btrfs_block_rsv_use_bytes(src, num_bytes);
169         if (ret)
170                 return ret;
171
172         btrfs_block_rsv_add_bytes(dst, num_bytes, update_size);
173         return 0;
174 }
175
176 void btrfs_init_block_rsv(struct btrfs_block_rsv *rsv, enum btrfs_rsv_type type)
177 {
178         memset(rsv, 0, sizeof(*rsv));
179         spin_lock_init(&rsv->lock);
180         rsv->type = type;
181 }
182
183 void btrfs_init_metadata_block_rsv(struct btrfs_fs_info *fs_info,
184                                    struct btrfs_block_rsv *rsv,
185                                    enum btrfs_rsv_type type)
186 {
187         btrfs_init_block_rsv(rsv, type);
188         rsv->space_info = btrfs_find_space_info(fs_info,
189                                             BTRFS_BLOCK_GROUP_METADATA);
190 }
191
192 struct btrfs_block_rsv *btrfs_alloc_block_rsv(struct btrfs_fs_info *fs_info,
193                                               enum btrfs_rsv_type type)
194 {
195         struct btrfs_block_rsv *block_rsv;
196
197         block_rsv = kmalloc(sizeof(*block_rsv), GFP_NOFS);
198         if (!block_rsv)
199                 return NULL;
200
201         btrfs_init_metadata_block_rsv(fs_info, block_rsv, type);
202         return block_rsv;
203 }
204
205 void btrfs_free_block_rsv(struct btrfs_fs_info *fs_info,
206                           struct btrfs_block_rsv *rsv)
207 {
208         if (!rsv)
209                 return;
210         btrfs_block_rsv_release(fs_info, rsv, (u64)-1, NULL);
211         kfree(rsv);
212 }
213
214 int btrfs_block_rsv_add(struct btrfs_fs_info *fs_info,
215                         struct btrfs_block_rsv *block_rsv, u64 num_bytes,
216                         enum btrfs_reserve_flush_enum flush)
217 {
218         int ret;
219
220         if (num_bytes == 0)
221                 return 0;
222
223         ret = btrfs_reserve_metadata_bytes(fs_info, block_rsv->space_info,
224                                            num_bytes, flush);
225         if (!ret)
226                 btrfs_block_rsv_add_bytes(block_rsv, num_bytes, true);
227
228         return ret;
229 }
230
231 int btrfs_block_rsv_check(struct btrfs_block_rsv *block_rsv, int min_percent)
232 {
233         u64 num_bytes = 0;
234         int ret = -ENOSPC;
235
236         spin_lock(&block_rsv->lock);
237         num_bytes = mult_perc(block_rsv->size, min_percent);
238         if (block_rsv->reserved >= num_bytes)
239                 ret = 0;
240         spin_unlock(&block_rsv->lock);
241
242         return ret;
243 }
244
245 int btrfs_block_rsv_refill(struct btrfs_fs_info *fs_info,
246                            struct btrfs_block_rsv *block_rsv, u64 num_bytes,
247                            enum btrfs_reserve_flush_enum flush)
248 {
249         int ret = -ENOSPC;
250
251         if (!block_rsv)
252                 return 0;
253
254         spin_lock(&block_rsv->lock);
255         if (block_rsv->reserved >= num_bytes)
256                 ret = 0;
257         else
258                 num_bytes -= block_rsv->reserved;
259         spin_unlock(&block_rsv->lock);
260
261         if (!ret)
262                 return 0;
263
264         ret = btrfs_reserve_metadata_bytes(fs_info, block_rsv->space_info,
265                                            num_bytes, flush);
266         if (!ret) {
267                 btrfs_block_rsv_add_bytes(block_rsv, num_bytes, false);
268                 return 0;
269         }
270
271         return ret;
272 }
273
274 u64 btrfs_block_rsv_release(struct btrfs_fs_info *fs_info,
275                             struct btrfs_block_rsv *block_rsv, u64 num_bytes,
276                             u64 *qgroup_to_release)
277 {
278         struct btrfs_block_rsv *global_rsv = &fs_info->global_block_rsv;
279         struct btrfs_block_rsv *delayed_rsv = &fs_info->delayed_refs_rsv;
280         struct btrfs_block_rsv *target = NULL;
281
282         /*
283          * If we are a delayed block reserve then push to the global rsv,
284          * otherwise dump into the global delayed reserve if it is not full.
285          */
286         if (block_rsv->type == BTRFS_BLOCK_RSV_DELOPS)
287                 target = global_rsv;
288         else if (block_rsv != global_rsv && !btrfs_block_rsv_full(delayed_rsv))
289                 target = delayed_rsv;
290
291         if (target && block_rsv->space_info != target->space_info)
292                 target = NULL;
293
294         return block_rsv_release_bytes(fs_info, block_rsv, target, num_bytes,
295                                        qgroup_to_release);
296 }
297
298 int btrfs_block_rsv_use_bytes(struct btrfs_block_rsv *block_rsv, u64 num_bytes)
299 {
300         int ret = -ENOSPC;
301
302         spin_lock(&block_rsv->lock);
303         if (block_rsv->reserved >= num_bytes) {
304                 block_rsv->reserved -= num_bytes;
305                 if (block_rsv->reserved < block_rsv->size)
306                         block_rsv->full = false;
307                 ret = 0;
308         }
309         spin_unlock(&block_rsv->lock);
310         return ret;
311 }
312
313 void btrfs_block_rsv_add_bytes(struct btrfs_block_rsv *block_rsv,
314                                u64 num_bytes, bool update_size)
315 {
316         spin_lock(&block_rsv->lock);
317         block_rsv->reserved += num_bytes;
318         if (update_size)
319                 block_rsv->size += num_bytes;
320         else if (block_rsv->reserved >= block_rsv->size)
321                 block_rsv->full = true;
322         spin_unlock(&block_rsv->lock);
323 }
324
325 void btrfs_update_global_block_rsv(struct btrfs_fs_info *fs_info)
326 {
327         struct btrfs_block_rsv *block_rsv = &fs_info->global_block_rsv;
328         struct btrfs_space_info *sinfo = block_rsv->space_info;
329         struct btrfs_root *root, *tmp;
330         u64 num_bytes = btrfs_root_used(&fs_info->tree_root->root_item);
331         unsigned int min_items = 1;
332
333         /*
334          * The global block rsv is based on the size of the extent tree, the
335          * checksum tree and the root tree.  If the fs is empty we want to set
336          * it to a minimal amount for safety.
337          *
338          * We also are going to need to modify the minimum of the tree root and
339          * any global roots we could touch.
340          */
341         read_lock(&fs_info->global_root_lock);
342         rbtree_postorder_for_each_entry_safe(root, tmp, &fs_info->global_root_tree,
343                                              rb_node) {
344                 if (root->root_key.objectid == BTRFS_EXTENT_TREE_OBJECTID ||
345                     root->root_key.objectid == BTRFS_CSUM_TREE_OBJECTID ||
346                     root->root_key.objectid == BTRFS_FREE_SPACE_TREE_OBJECTID) {
347                         num_bytes += btrfs_root_used(&root->root_item);
348                         min_items++;
349                 }
350         }
351         read_unlock(&fs_info->global_root_lock);
352
353         if (btrfs_fs_compat_ro(fs_info, BLOCK_GROUP_TREE)) {
354                 num_bytes += btrfs_root_used(&fs_info->block_group_root->root_item);
355                 min_items++;
356         }
357
358         if (btrfs_fs_incompat(fs_info, RAID_STRIPE_TREE)) {
359                 num_bytes += btrfs_root_used(&fs_info->stripe_root->root_item);
360                 min_items++;
361         }
362
363         /*
364          * But we also want to reserve enough space so we can do the fallback
365          * global reserve for an unlink, which is an additional
366          * BTRFS_UNLINK_METADATA_UNITS items.
367          *
368          * But we also need space for the delayed ref updates from the unlink,
369          * so add BTRFS_UNLINK_METADATA_UNITS units for delayed refs, one for
370          * each unlink metadata item.
371          */
372         min_items += BTRFS_UNLINK_METADATA_UNITS;
373
374         num_bytes = max_t(u64, num_bytes,
375                           btrfs_calc_insert_metadata_size(fs_info, min_items) +
376                           btrfs_calc_delayed_ref_bytes(fs_info,
377                                                BTRFS_UNLINK_METADATA_UNITS));
378
379         spin_lock(&sinfo->lock);
380         spin_lock(&block_rsv->lock);
381
382         block_rsv->size = min_t(u64, num_bytes, SZ_512M);
383
384         if (block_rsv->reserved < block_rsv->size) {
385                 num_bytes = block_rsv->size - block_rsv->reserved;
386                 btrfs_space_info_update_bytes_may_use(fs_info, sinfo,
387                                                       num_bytes);
388                 block_rsv->reserved = block_rsv->size;
389         } else if (block_rsv->reserved > block_rsv->size) {
390                 num_bytes = block_rsv->reserved - block_rsv->size;
391                 btrfs_space_info_update_bytes_may_use(fs_info, sinfo,
392                                                       -num_bytes);
393                 block_rsv->reserved = block_rsv->size;
394                 btrfs_try_granting_tickets(fs_info, sinfo);
395         }
396
397         block_rsv->full = (block_rsv->reserved == block_rsv->size);
398
399         if (block_rsv->size >= sinfo->total_bytes)
400                 sinfo->force_alloc = CHUNK_ALLOC_FORCE;
401         spin_unlock(&block_rsv->lock);
402         spin_unlock(&sinfo->lock);
403 }
404
405 void btrfs_init_root_block_rsv(struct btrfs_root *root)
406 {
407         struct btrfs_fs_info *fs_info = root->fs_info;
408
409         switch (root->root_key.objectid) {
410         case BTRFS_CSUM_TREE_OBJECTID:
411         case BTRFS_EXTENT_TREE_OBJECTID:
412         case BTRFS_FREE_SPACE_TREE_OBJECTID:
413         case BTRFS_BLOCK_GROUP_TREE_OBJECTID:
414         case BTRFS_RAID_STRIPE_TREE_OBJECTID:
415                 root->block_rsv = &fs_info->delayed_refs_rsv;
416                 break;
417         case BTRFS_ROOT_TREE_OBJECTID:
418         case BTRFS_DEV_TREE_OBJECTID:
419         case BTRFS_QUOTA_TREE_OBJECTID:
420                 root->block_rsv = &fs_info->global_block_rsv;
421                 break;
422         case BTRFS_CHUNK_TREE_OBJECTID:
423                 root->block_rsv = &fs_info->chunk_block_rsv;
424                 break;
425         default:
426                 root->block_rsv = NULL;
427                 break;
428         }
429 }
430
431 void btrfs_init_global_block_rsv(struct btrfs_fs_info *fs_info)
432 {
433         struct btrfs_space_info *space_info;
434
435         space_info = btrfs_find_space_info(fs_info, BTRFS_BLOCK_GROUP_SYSTEM);
436         fs_info->chunk_block_rsv.space_info = space_info;
437
438         space_info = btrfs_find_space_info(fs_info, BTRFS_BLOCK_GROUP_METADATA);
439         fs_info->global_block_rsv.space_info = space_info;
440         fs_info->trans_block_rsv.space_info = space_info;
441         fs_info->empty_block_rsv.space_info = space_info;
442         fs_info->delayed_block_rsv.space_info = space_info;
443         fs_info->delayed_refs_rsv.space_info = space_info;
444
445         btrfs_update_global_block_rsv(fs_info);
446 }
447
448 void btrfs_release_global_block_rsv(struct btrfs_fs_info *fs_info)
449 {
450         btrfs_block_rsv_release(fs_info, &fs_info->global_block_rsv, (u64)-1,
451                                 NULL);
452         WARN_ON(fs_info->trans_block_rsv.size > 0);
453         WARN_ON(fs_info->trans_block_rsv.reserved > 0);
454         WARN_ON(fs_info->chunk_block_rsv.size > 0);
455         WARN_ON(fs_info->chunk_block_rsv.reserved > 0);
456         WARN_ON(fs_info->delayed_block_rsv.size > 0);
457         WARN_ON(fs_info->delayed_block_rsv.reserved > 0);
458         WARN_ON(fs_info->delayed_refs_rsv.reserved > 0);
459         WARN_ON(fs_info->delayed_refs_rsv.size > 0);
460 }
461
462 static struct btrfs_block_rsv *get_block_rsv(
463                                         const struct btrfs_trans_handle *trans,
464                                         const struct btrfs_root *root)
465 {
466         struct btrfs_fs_info *fs_info = root->fs_info;
467         struct btrfs_block_rsv *block_rsv = NULL;
468
469         if (test_bit(BTRFS_ROOT_SHAREABLE, &root->state) ||
470             (root == fs_info->uuid_root) ||
471             (trans->adding_csums &&
472              root->root_key.objectid == BTRFS_CSUM_TREE_OBJECTID))
473                 block_rsv = trans->block_rsv;
474
475         if (!block_rsv)
476                 block_rsv = root->block_rsv;
477
478         if (!block_rsv)
479                 block_rsv = &fs_info->empty_block_rsv;
480
481         return block_rsv;
482 }
483
484 struct btrfs_block_rsv *btrfs_use_block_rsv(struct btrfs_trans_handle *trans,
485                                             struct btrfs_root *root,
486                                             u32 blocksize)
487 {
488         struct btrfs_fs_info *fs_info = root->fs_info;
489         struct btrfs_block_rsv *block_rsv;
490         struct btrfs_block_rsv *global_rsv = &fs_info->global_block_rsv;
491         int ret;
492         bool global_updated = false;
493
494         block_rsv = get_block_rsv(trans, root);
495
496         if (unlikely(btrfs_block_rsv_size(block_rsv) == 0))
497                 goto try_reserve;
498 again:
499         ret = btrfs_block_rsv_use_bytes(block_rsv, blocksize);
500         if (!ret)
501                 return block_rsv;
502
503         if (block_rsv->failfast)
504                 return ERR_PTR(ret);
505
506         if (block_rsv->type == BTRFS_BLOCK_RSV_GLOBAL && !global_updated) {
507                 global_updated = true;
508                 btrfs_update_global_block_rsv(fs_info);
509                 goto again;
510         }
511
512         /*
513          * The global reserve still exists to save us from ourselves, so don't
514          * warn_on if we are short on our delayed refs reserve.
515          */
516         if (block_rsv->type != BTRFS_BLOCK_RSV_DELREFS &&
517             btrfs_test_opt(fs_info, ENOSPC_DEBUG)) {
518                 static DEFINE_RATELIMIT_STATE(_rs,
519                                 DEFAULT_RATELIMIT_INTERVAL * 10,
520                                 /*DEFAULT_RATELIMIT_BURST*/ 1);
521                 if (__ratelimit(&_rs))
522                         WARN(1, KERN_DEBUG
523                                 "BTRFS: block rsv %d returned %d\n",
524                                 block_rsv->type, ret);
525         }
526 try_reserve:
527         ret = btrfs_reserve_metadata_bytes(fs_info, block_rsv->space_info,
528                                            blocksize, BTRFS_RESERVE_NO_FLUSH);
529         if (!ret)
530                 return block_rsv;
531         /*
532          * If we couldn't reserve metadata bytes try and use some from
533          * the global reserve if its space type is the same as the global
534          * reservation.
535          */
536         if (block_rsv->type != BTRFS_BLOCK_RSV_GLOBAL &&
537             block_rsv->space_info == global_rsv->space_info) {
538                 ret = btrfs_block_rsv_use_bytes(global_rsv, blocksize);
539                 if (!ret)
540                         return global_rsv;
541         }
542
543         /*
544          * All hope is lost, but of course our reservations are overly
545          * pessimistic, so instead of possibly having an ENOSPC abort here, try
546          * one last time to force a reservation if there's enough actual space
547          * on disk to make the reservation.
548          */
549         ret = btrfs_reserve_metadata_bytes(fs_info, block_rsv->space_info, blocksize,
550                                            BTRFS_RESERVE_FLUSH_EMERGENCY);
551         if (!ret)
552                 return block_rsv;
553
554         return ERR_PTR(ret);
555 }
556
557 int btrfs_check_trunc_cache_free_space(struct btrfs_fs_info *fs_info,
558                                        struct btrfs_block_rsv *rsv)
559 {
560         u64 needed_bytes;
561         int ret;
562
563         /* 1 for slack space, 1 for updating the inode */
564         needed_bytes = btrfs_calc_insert_metadata_size(fs_info, 1) +
565                 btrfs_calc_metadata_size(fs_info, 1);
566
567         spin_lock(&rsv->lock);
568         if (rsv->reserved < needed_bytes)
569                 ret = -ENOSPC;
570         else
571                 ret = 0;
572         spin_unlock(&rsv->lock);
573         return ret;
574 }