GNU Linux-libre 5.10.215-gnu1
[releases.git] / fs / btrfs / backref.c
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * Copyright (C) 2011 STRATO.  All rights reserved.
4  */
5
6 #include <linux/mm.h>
7 #include <linux/rbtree.h>
8 #include <trace/events/btrfs.h>
9 #include "ctree.h"
10 #include "disk-io.h"
11 #include "backref.h"
12 #include "ulist.h"
13 #include "transaction.h"
14 #include "delayed-ref.h"
15 #include "locking.h"
16 #include "misc.h"
17
18 /* Just an arbitrary number so we can be sure this happened */
19 #define BACKREF_FOUND_SHARED 6
20
21 struct extent_inode_elem {
22         u64 inum;
23         u64 offset;
24         struct extent_inode_elem *next;
25 };
26
27 static int check_extent_in_eb(const struct btrfs_key *key,
28                               const struct extent_buffer *eb,
29                               const struct btrfs_file_extent_item *fi,
30                               u64 extent_item_pos,
31                               struct extent_inode_elem **eie,
32                               bool ignore_offset)
33 {
34         u64 offset = 0;
35         struct extent_inode_elem *e;
36
37         if (!ignore_offset &&
38             !btrfs_file_extent_compression(eb, fi) &&
39             !btrfs_file_extent_encryption(eb, fi) &&
40             !btrfs_file_extent_other_encoding(eb, fi)) {
41                 u64 data_offset;
42                 u64 data_len;
43
44                 data_offset = btrfs_file_extent_offset(eb, fi);
45                 data_len = btrfs_file_extent_num_bytes(eb, fi);
46
47                 if (extent_item_pos < data_offset ||
48                     extent_item_pos >= data_offset + data_len)
49                         return 1;
50                 offset = extent_item_pos - data_offset;
51         }
52
53         e = kmalloc(sizeof(*e), GFP_NOFS);
54         if (!e)
55                 return -ENOMEM;
56
57         e->next = *eie;
58         e->inum = key->objectid;
59         e->offset = key->offset + offset;
60         *eie = e;
61
62         return 0;
63 }
64
65 static void free_inode_elem_list(struct extent_inode_elem *eie)
66 {
67         struct extent_inode_elem *eie_next;
68
69         for (; eie; eie = eie_next) {
70                 eie_next = eie->next;
71                 kfree(eie);
72         }
73 }
74
75 static int find_extent_in_eb(const struct extent_buffer *eb,
76                              u64 wanted_disk_byte, u64 extent_item_pos,
77                              struct extent_inode_elem **eie,
78                              bool ignore_offset)
79 {
80         u64 disk_byte;
81         struct btrfs_key key;
82         struct btrfs_file_extent_item *fi;
83         int slot;
84         int nritems;
85         int extent_type;
86         int ret;
87
88         /*
89          * from the shared data ref, we only have the leaf but we need
90          * the key. thus, we must look into all items and see that we
91          * find one (some) with a reference to our extent item.
92          */
93         nritems = btrfs_header_nritems(eb);
94         for (slot = 0; slot < nritems; ++slot) {
95                 btrfs_item_key_to_cpu(eb, &key, slot);
96                 if (key.type != BTRFS_EXTENT_DATA_KEY)
97                         continue;
98                 fi = btrfs_item_ptr(eb, slot, struct btrfs_file_extent_item);
99                 extent_type = btrfs_file_extent_type(eb, fi);
100                 if (extent_type == BTRFS_FILE_EXTENT_INLINE)
101                         continue;
102                 /* don't skip BTRFS_FILE_EXTENT_PREALLOC, we can handle that */
103                 disk_byte = btrfs_file_extent_disk_bytenr(eb, fi);
104                 if (disk_byte != wanted_disk_byte)
105                         continue;
106
107                 ret = check_extent_in_eb(&key, eb, fi, extent_item_pos, eie, ignore_offset);
108                 if (ret < 0)
109                         return ret;
110         }
111
112         return 0;
113 }
114
115 struct preftree {
116         struct rb_root_cached root;
117         unsigned int count;
118 };
119
120 #define PREFTREE_INIT   { .root = RB_ROOT_CACHED, .count = 0 }
121
122 struct preftrees {
123         struct preftree direct;    /* BTRFS_SHARED_[DATA|BLOCK]_REF_KEY */
124         struct preftree indirect;  /* BTRFS_[TREE_BLOCK|EXTENT_DATA]_REF_KEY */
125         struct preftree indirect_missing_keys;
126 };
127
128 /*
129  * Checks for a shared extent during backref search.
130  *
131  * The share_count tracks prelim_refs (direct and indirect) having a
132  * ref->count >0:
133  *  - incremented when a ref->count transitions to >0
134  *  - decremented when a ref->count transitions to <1
135  */
136 struct share_check {
137         u64 root_objectid;
138         u64 inum;
139         int share_count;
140         bool have_delayed_delete_refs;
141 };
142
143 static inline int extent_is_shared(struct share_check *sc)
144 {
145         return (sc && sc->share_count > 1) ? BACKREF_FOUND_SHARED : 0;
146 }
147
148 static struct kmem_cache *btrfs_prelim_ref_cache;
149
150 int __init btrfs_prelim_ref_init(void)
151 {
152         btrfs_prelim_ref_cache = kmem_cache_create("btrfs_prelim_ref",
153                                         sizeof(struct prelim_ref),
154                                         0,
155                                         SLAB_MEM_SPREAD,
156                                         NULL);
157         if (!btrfs_prelim_ref_cache)
158                 return -ENOMEM;
159         return 0;
160 }
161
162 void __cold btrfs_prelim_ref_exit(void)
163 {
164         kmem_cache_destroy(btrfs_prelim_ref_cache);
165 }
166
167 static void free_pref(struct prelim_ref *ref)
168 {
169         kmem_cache_free(btrfs_prelim_ref_cache, ref);
170 }
171
172 /*
173  * Return 0 when both refs are for the same block (and can be merged).
174  * A -1 return indicates ref1 is a 'lower' block than ref2, while 1
175  * indicates a 'higher' block.
176  */
177 static int prelim_ref_compare(struct prelim_ref *ref1,
178                               struct prelim_ref *ref2)
179 {
180         if (ref1->level < ref2->level)
181                 return -1;
182         if (ref1->level > ref2->level)
183                 return 1;
184         if (ref1->root_id < ref2->root_id)
185                 return -1;
186         if (ref1->root_id > ref2->root_id)
187                 return 1;
188         if (ref1->key_for_search.type < ref2->key_for_search.type)
189                 return -1;
190         if (ref1->key_for_search.type > ref2->key_for_search.type)
191                 return 1;
192         if (ref1->key_for_search.objectid < ref2->key_for_search.objectid)
193                 return -1;
194         if (ref1->key_for_search.objectid > ref2->key_for_search.objectid)
195                 return 1;
196         if (ref1->key_for_search.offset < ref2->key_for_search.offset)
197                 return -1;
198         if (ref1->key_for_search.offset > ref2->key_for_search.offset)
199                 return 1;
200         if (ref1->parent < ref2->parent)
201                 return -1;
202         if (ref1->parent > ref2->parent)
203                 return 1;
204
205         return 0;
206 }
207
208 static void update_share_count(struct share_check *sc, int oldcount,
209                                int newcount)
210 {
211         if ((!sc) || (oldcount == 0 && newcount < 1))
212                 return;
213
214         if (oldcount > 0 && newcount < 1)
215                 sc->share_count--;
216         else if (oldcount < 1 && newcount > 0)
217                 sc->share_count++;
218 }
219
220 /*
221  * Add @newref to the @root rbtree, merging identical refs.
222  *
223  * Callers should assume that newref has been freed after calling.
224  */
225 static void prelim_ref_insert(const struct btrfs_fs_info *fs_info,
226                               struct preftree *preftree,
227                               struct prelim_ref *newref,
228                               struct share_check *sc)
229 {
230         struct rb_root_cached *root;
231         struct rb_node **p;
232         struct rb_node *parent = NULL;
233         struct prelim_ref *ref;
234         int result;
235         bool leftmost = true;
236
237         root = &preftree->root;
238         p = &root->rb_root.rb_node;
239
240         while (*p) {
241                 parent = *p;
242                 ref = rb_entry(parent, struct prelim_ref, rbnode);
243                 result = prelim_ref_compare(ref, newref);
244                 if (result < 0) {
245                         p = &(*p)->rb_left;
246                 } else if (result > 0) {
247                         p = &(*p)->rb_right;
248                         leftmost = false;
249                 } else {
250                         /* Identical refs, merge them and free @newref */
251                         struct extent_inode_elem *eie = ref->inode_list;
252
253                         while (eie && eie->next)
254                                 eie = eie->next;
255
256                         if (!eie)
257                                 ref->inode_list = newref->inode_list;
258                         else
259                                 eie->next = newref->inode_list;
260                         trace_btrfs_prelim_ref_merge(fs_info, ref, newref,
261                                                      preftree->count);
262                         /*
263                          * A delayed ref can have newref->count < 0.
264                          * The ref->count is updated to follow any
265                          * BTRFS_[ADD|DROP]_DELAYED_REF actions.
266                          */
267                         update_share_count(sc, ref->count,
268                                            ref->count + newref->count);
269                         ref->count += newref->count;
270                         free_pref(newref);
271                         return;
272                 }
273         }
274
275         update_share_count(sc, 0, newref->count);
276         preftree->count++;
277         trace_btrfs_prelim_ref_insert(fs_info, newref, NULL, preftree->count);
278         rb_link_node(&newref->rbnode, parent, p);
279         rb_insert_color_cached(&newref->rbnode, root, leftmost);
280 }
281
282 /*
283  * Release the entire tree.  We don't care about internal consistency so
284  * just free everything and then reset the tree root.
285  */
286 static void prelim_release(struct preftree *preftree)
287 {
288         struct prelim_ref *ref, *next_ref;
289
290         rbtree_postorder_for_each_entry_safe(ref, next_ref,
291                                              &preftree->root.rb_root, rbnode) {
292                 free_inode_elem_list(ref->inode_list);
293                 free_pref(ref);
294         }
295
296         preftree->root = RB_ROOT_CACHED;
297         preftree->count = 0;
298 }
299
300 /*
301  * the rules for all callers of this function are:
302  * - obtaining the parent is the goal
303  * - if you add a key, you must know that it is a correct key
304  * - if you cannot add the parent or a correct key, then we will look into the
305  *   block later to set a correct key
306  *
307  * delayed refs
308  * ============
309  *        backref type | shared | indirect | shared | indirect
310  * information         |   tree |     tree |   data |     data
311  * --------------------+--------+----------+--------+----------
312  *      parent logical |    y   |     -    |    -   |     -
313  *      key to resolve |    -   |     y    |    y   |     y
314  *  tree block logical |    -   |     -    |    -   |     -
315  *  root for resolving |    y   |     y    |    y   |     y
316  *
317  * - column 1:       we've the parent -> done
318  * - column 2, 3, 4: we use the key to find the parent
319  *
320  * on disk refs (inline or keyed)
321  * ==============================
322  *        backref type | shared | indirect | shared | indirect
323  * information         |   tree |     tree |   data |     data
324  * --------------------+--------+----------+--------+----------
325  *      parent logical |    y   |     -    |    y   |     -
326  *      key to resolve |    -   |     -    |    -   |     y
327  *  tree block logical |    y   |     y    |    y   |     y
328  *  root for resolving |    -   |     y    |    y   |     y
329  *
330  * - column 1, 3: we've the parent -> done
331  * - column 2:    we take the first key from the block to find the parent
332  *                (see add_missing_keys)
333  * - column 4:    we use the key to find the parent
334  *
335  * additional information that's available but not required to find the parent
336  * block might help in merging entries to gain some speed.
337  */
338 static int add_prelim_ref(const struct btrfs_fs_info *fs_info,
339                           struct preftree *preftree, u64 root_id,
340                           const struct btrfs_key *key, int level, u64 parent,
341                           u64 wanted_disk_byte, int count,
342                           struct share_check *sc, gfp_t gfp_mask)
343 {
344         struct prelim_ref *ref;
345
346         if (root_id == BTRFS_DATA_RELOC_TREE_OBJECTID)
347                 return 0;
348
349         ref = kmem_cache_alloc(btrfs_prelim_ref_cache, gfp_mask);
350         if (!ref)
351                 return -ENOMEM;
352
353         ref->root_id = root_id;
354         if (key)
355                 ref->key_for_search = *key;
356         else
357                 memset(&ref->key_for_search, 0, sizeof(ref->key_for_search));
358
359         ref->inode_list = NULL;
360         ref->level = level;
361         ref->count = count;
362         ref->parent = parent;
363         ref->wanted_disk_byte = wanted_disk_byte;
364         prelim_ref_insert(fs_info, preftree, ref, sc);
365         return extent_is_shared(sc);
366 }
367
368 /* direct refs use root == 0, key == NULL */
369 static int add_direct_ref(const struct btrfs_fs_info *fs_info,
370                           struct preftrees *preftrees, int level, u64 parent,
371                           u64 wanted_disk_byte, int count,
372                           struct share_check *sc, gfp_t gfp_mask)
373 {
374         return add_prelim_ref(fs_info, &preftrees->direct, 0, NULL, level,
375                               parent, wanted_disk_byte, count, sc, gfp_mask);
376 }
377
378 /* indirect refs use parent == 0 */
379 static int add_indirect_ref(const struct btrfs_fs_info *fs_info,
380                             struct preftrees *preftrees, u64 root_id,
381                             const struct btrfs_key *key, int level,
382                             u64 wanted_disk_byte, int count,
383                             struct share_check *sc, gfp_t gfp_mask)
384 {
385         struct preftree *tree = &preftrees->indirect;
386
387         if (!key)
388                 tree = &preftrees->indirect_missing_keys;
389         return add_prelim_ref(fs_info, tree, root_id, key, level, 0,
390                               wanted_disk_byte, count, sc, gfp_mask);
391 }
392
393 static int is_shared_data_backref(struct preftrees *preftrees, u64 bytenr)
394 {
395         struct rb_node **p = &preftrees->direct.root.rb_root.rb_node;
396         struct rb_node *parent = NULL;
397         struct prelim_ref *ref = NULL;
398         struct prelim_ref target = {};
399         int result;
400
401         target.parent = bytenr;
402
403         while (*p) {
404                 parent = *p;
405                 ref = rb_entry(parent, struct prelim_ref, rbnode);
406                 result = prelim_ref_compare(ref, &target);
407
408                 if (result < 0)
409                         p = &(*p)->rb_left;
410                 else if (result > 0)
411                         p = &(*p)->rb_right;
412                 else
413                         return 1;
414         }
415         return 0;
416 }
417
418 static int add_all_parents(struct btrfs_root *root, struct btrfs_path *path,
419                            struct ulist *parents,
420                            struct preftrees *preftrees, struct prelim_ref *ref,
421                            int level, u64 time_seq, const u64 *extent_item_pos,
422                            bool ignore_offset)
423 {
424         int ret = 0;
425         int slot;
426         struct extent_buffer *eb;
427         struct btrfs_key key;
428         struct btrfs_key *key_for_search = &ref->key_for_search;
429         struct btrfs_file_extent_item *fi;
430         struct extent_inode_elem *eie = NULL, *old = NULL;
431         u64 disk_byte;
432         u64 wanted_disk_byte = ref->wanted_disk_byte;
433         u64 count = 0;
434         u64 data_offset;
435         u8 type;
436
437         if (level != 0) {
438                 eb = path->nodes[level];
439                 ret = ulist_add(parents, eb->start, 0, GFP_NOFS);
440                 if (ret < 0)
441                         return ret;
442                 return 0;
443         }
444
445         /*
446          * 1. We normally enter this function with the path already pointing to
447          *    the first item to check. But sometimes, we may enter it with
448          *    slot == nritems.
449          * 2. We are searching for normal backref but bytenr of this leaf
450          *    matches shared data backref
451          * 3. The leaf owner is not equal to the root we are searching
452          *
453          * For these cases, go to the next leaf before we continue.
454          */
455         eb = path->nodes[0];
456         if (path->slots[0] >= btrfs_header_nritems(eb) ||
457             is_shared_data_backref(preftrees, eb->start) ||
458             ref->root_id != btrfs_header_owner(eb)) {
459                 if (time_seq == SEQ_LAST)
460                         ret = btrfs_next_leaf(root, path);
461                 else
462                         ret = btrfs_next_old_leaf(root, path, time_seq);
463         }
464
465         while (!ret && count < ref->count) {
466                 eb = path->nodes[0];
467                 slot = path->slots[0];
468
469                 btrfs_item_key_to_cpu(eb, &key, slot);
470
471                 if (key.objectid != key_for_search->objectid ||
472                     key.type != BTRFS_EXTENT_DATA_KEY)
473                         break;
474
475                 /*
476                  * We are searching for normal backref but bytenr of this leaf
477                  * matches shared data backref, OR
478                  * the leaf owner is not equal to the root we are searching for
479                  */
480                 if (slot == 0 &&
481                     (is_shared_data_backref(preftrees, eb->start) ||
482                      ref->root_id != btrfs_header_owner(eb))) {
483                         if (time_seq == SEQ_LAST)
484                                 ret = btrfs_next_leaf(root, path);
485                         else
486                                 ret = btrfs_next_old_leaf(root, path, time_seq);
487                         continue;
488                 }
489                 fi = btrfs_item_ptr(eb, slot, struct btrfs_file_extent_item);
490                 type = btrfs_file_extent_type(eb, fi);
491                 if (type == BTRFS_FILE_EXTENT_INLINE)
492                         goto next;
493                 disk_byte = btrfs_file_extent_disk_bytenr(eb, fi);
494                 data_offset = btrfs_file_extent_offset(eb, fi);
495
496                 if (disk_byte == wanted_disk_byte) {
497                         eie = NULL;
498                         old = NULL;
499                         if (ref->key_for_search.offset == key.offset - data_offset)
500                                 count++;
501                         else
502                                 goto next;
503                         if (extent_item_pos) {
504                                 ret = check_extent_in_eb(&key, eb, fi,
505                                                 *extent_item_pos,
506                                                 &eie, ignore_offset);
507                                 if (ret < 0)
508                                         break;
509                         }
510                         if (ret > 0)
511                                 goto next;
512                         ret = ulist_add_merge_ptr(parents, eb->start,
513                                                   eie, (void **)&old, GFP_NOFS);
514                         if (ret < 0)
515                                 break;
516                         if (!ret && extent_item_pos) {
517                                 while (old->next)
518                                         old = old->next;
519                                 old->next = eie;
520                         }
521                         eie = NULL;
522                 }
523 next:
524                 if (time_seq == SEQ_LAST)
525                         ret = btrfs_next_item(root, path);
526                 else
527                         ret = btrfs_next_old_item(root, path, time_seq);
528         }
529
530         if (ret > 0)
531                 ret = 0;
532         else if (ret < 0)
533                 free_inode_elem_list(eie);
534         return ret;
535 }
536
537 /*
538  * resolve an indirect backref in the form (root_id, key, level)
539  * to a logical address
540  */
541 static int resolve_indirect_ref(struct btrfs_fs_info *fs_info,
542                                 struct btrfs_path *path, u64 time_seq,
543                                 struct preftrees *preftrees,
544                                 struct prelim_ref *ref, struct ulist *parents,
545                                 const u64 *extent_item_pos, bool ignore_offset)
546 {
547         struct btrfs_root *root;
548         struct extent_buffer *eb;
549         int ret = 0;
550         int root_level;
551         int level = ref->level;
552         struct btrfs_key search_key = ref->key_for_search;
553
554         /*
555          * If we're search_commit_root we could possibly be holding locks on
556          * other tree nodes.  This happens when qgroups does backref walks when
557          * adding new delayed refs.  To deal with this we need to look in cache
558          * for the root, and if we don't find it then we need to search the
559          * tree_root's commit root, thus the btrfs_get_fs_root_commit_root usage
560          * here.
561          */
562         if (path->search_commit_root)
563                 root = btrfs_get_fs_root_commit_root(fs_info, path, ref->root_id);
564         else
565                 root = btrfs_get_fs_root(fs_info, ref->root_id, false);
566         if (IS_ERR(root)) {
567                 ret = PTR_ERR(root);
568                 goto out_free;
569         }
570
571         if (!path->search_commit_root &&
572             test_bit(BTRFS_ROOT_DELETING, &root->state)) {
573                 ret = -ENOENT;
574                 goto out;
575         }
576
577         if (btrfs_is_testing(fs_info)) {
578                 ret = -ENOENT;
579                 goto out;
580         }
581
582         if (path->search_commit_root)
583                 root_level = btrfs_header_level(root->commit_root);
584         else if (time_seq == SEQ_LAST)
585                 root_level = btrfs_header_level(root->node);
586         else
587                 root_level = btrfs_old_root_level(root, time_seq);
588
589         if (root_level + 1 == level)
590                 goto out;
591
592         /*
593          * We can often find data backrefs with an offset that is too large
594          * (>= LLONG_MAX, maximum allowed file offset) due to underflows when
595          * subtracting a file's offset with the data offset of its
596          * corresponding extent data item. This can happen for example in the
597          * clone ioctl.
598          *
599          * So if we detect such case we set the search key's offset to zero to
600          * make sure we will find the matching file extent item at
601          * add_all_parents(), otherwise we will miss it because the offset
602          * taken form the backref is much larger then the offset of the file
603          * extent item. This can make us scan a very large number of file
604          * extent items, but at least it will not make us miss any.
605          *
606          * This is an ugly workaround for a behaviour that should have never
607          * existed, but it does and a fix for the clone ioctl would touch a lot
608          * of places, cause backwards incompatibility and would not fix the
609          * problem for extents cloned with older kernels.
610          */
611         if (search_key.type == BTRFS_EXTENT_DATA_KEY &&
612             search_key.offset >= LLONG_MAX)
613                 search_key.offset = 0;
614         path->lowest_level = level;
615         if (time_seq == SEQ_LAST)
616                 ret = btrfs_search_slot(NULL, root, &search_key, path, 0, 0);
617         else
618                 ret = btrfs_search_old_slot(root, &search_key, path, time_seq);
619
620         btrfs_debug(fs_info,
621                 "search slot in root %llu (level %d, ref count %d) returned %d for key (%llu %u %llu)",
622                  ref->root_id, level, ref->count, ret,
623                  ref->key_for_search.objectid, ref->key_for_search.type,
624                  ref->key_for_search.offset);
625         if (ret < 0)
626                 goto out;
627
628         eb = path->nodes[level];
629         while (!eb) {
630                 if (WARN_ON(!level)) {
631                         ret = 1;
632                         goto out;
633                 }
634                 level--;
635                 eb = path->nodes[level];
636         }
637
638         ret = add_all_parents(root, path, parents, preftrees, ref, level,
639                               time_seq, extent_item_pos, ignore_offset);
640 out:
641         btrfs_put_root(root);
642 out_free:
643         path->lowest_level = 0;
644         btrfs_release_path(path);
645         return ret;
646 }
647
648 static struct extent_inode_elem *
649 unode_aux_to_inode_list(struct ulist_node *node)
650 {
651         if (!node)
652                 return NULL;
653         return (struct extent_inode_elem *)(uintptr_t)node->aux;
654 }
655
656 static void free_leaf_list(struct ulist *ulist)
657 {
658         struct ulist_node *node;
659         struct ulist_iterator uiter;
660
661         ULIST_ITER_INIT(&uiter);
662         while ((node = ulist_next(ulist, &uiter)))
663                 free_inode_elem_list(unode_aux_to_inode_list(node));
664
665         ulist_free(ulist);
666 }
667
668 /*
669  * We maintain three separate rbtrees: one for direct refs, one for
670  * indirect refs which have a key, and one for indirect refs which do not
671  * have a key. Each tree does merge on insertion.
672  *
673  * Once all of the references are located, we iterate over the tree of
674  * indirect refs with missing keys. An appropriate key is located and
675  * the ref is moved onto the tree for indirect refs. After all missing
676  * keys are thus located, we iterate over the indirect ref tree, resolve
677  * each reference, and then insert the resolved reference onto the
678  * direct tree (merging there too).
679  *
680  * New backrefs (i.e., for parent nodes) are added to the appropriate
681  * rbtree as they are encountered. The new backrefs are subsequently
682  * resolved as above.
683  */
684 static int resolve_indirect_refs(struct btrfs_fs_info *fs_info,
685                                  struct btrfs_path *path, u64 time_seq,
686                                  struct preftrees *preftrees,
687                                  const u64 *extent_item_pos,
688                                  struct share_check *sc, bool ignore_offset)
689 {
690         int err;
691         int ret = 0;
692         struct ulist *parents;
693         struct ulist_node *node;
694         struct ulist_iterator uiter;
695         struct rb_node *rnode;
696
697         parents = ulist_alloc(GFP_NOFS);
698         if (!parents)
699                 return -ENOMEM;
700
701         /*
702          * We could trade memory usage for performance here by iterating
703          * the tree, allocating new refs for each insertion, and then
704          * freeing the entire indirect tree when we're done.  In some test
705          * cases, the tree can grow quite large (~200k objects).
706          */
707         while ((rnode = rb_first_cached(&preftrees->indirect.root))) {
708                 struct prelim_ref *ref;
709
710                 ref = rb_entry(rnode, struct prelim_ref, rbnode);
711                 if (WARN(ref->parent,
712                          "BUG: direct ref found in indirect tree")) {
713                         ret = -EINVAL;
714                         goto out;
715                 }
716
717                 rb_erase_cached(&ref->rbnode, &preftrees->indirect.root);
718                 preftrees->indirect.count--;
719
720                 if (ref->count == 0) {
721                         free_pref(ref);
722                         continue;
723                 }
724
725                 if (sc && sc->root_objectid &&
726                     ref->root_id != sc->root_objectid) {
727                         free_pref(ref);
728                         ret = BACKREF_FOUND_SHARED;
729                         goto out;
730                 }
731                 err = resolve_indirect_ref(fs_info, path, time_seq, preftrees,
732                                            ref, parents, extent_item_pos,
733                                            ignore_offset);
734                 /*
735                  * we can only tolerate ENOENT,otherwise,we should catch error
736                  * and return directly.
737                  */
738                 if (err == -ENOENT) {
739                         prelim_ref_insert(fs_info, &preftrees->direct, ref,
740                                           NULL);
741                         continue;
742                 } else if (err) {
743                         free_pref(ref);
744                         ret = err;
745                         goto out;
746                 }
747
748                 /* we put the first parent into the ref at hand */
749                 ULIST_ITER_INIT(&uiter);
750                 node = ulist_next(parents, &uiter);
751                 ref->parent = node ? node->val : 0;
752                 ref->inode_list = unode_aux_to_inode_list(node);
753
754                 /* Add a prelim_ref(s) for any other parent(s). */
755                 while ((node = ulist_next(parents, &uiter))) {
756                         struct prelim_ref *new_ref;
757
758                         new_ref = kmem_cache_alloc(btrfs_prelim_ref_cache,
759                                                    GFP_NOFS);
760                         if (!new_ref) {
761                                 free_pref(ref);
762                                 ret = -ENOMEM;
763                                 goto out;
764                         }
765                         memcpy(new_ref, ref, sizeof(*ref));
766                         new_ref->parent = node->val;
767                         new_ref->inode_list = unode_aux_to_inode_list(node);
768                         prelim_ref_insert(fs_info, &preftrees->direct,
769                                           new_ref, NULL);
770                 }
771
772                 /*
773                  * Now it's a direct ref, put it in the direct tree. We must
774                  * do this last because the ref could be merged/freed here.
775                  */
776                 prelim_ref_insert(fs_info, &preftrees->direct, ref, NULL);
777
778                 ulist_reinit(parents);
779                 cond_resched();
780         }
781 out:
782         /*
783          * We may have inode lists attached to refs in the parents ulist, so we
784          * must free them before freeing the ulist and its refs.
785          */
786         free_leaf_list(parents);
787         return ret;
788 }
789
790 /*
791  * read tree blocks and add keys where required.
792  */
793 static int add_missing_keys(struct btrfs_fs_info *fs_info,
794                             struct preftrees *preftrees, bool lock)
795 {
796         struct prelim_ref *ref;
797         struct extent_buffer *eb;
798         struct preftree *tree = &preftrees->indirect_missing_keys;
799         struct rb_node *node;
800
801         while ((node = rb_first_cached(&tree->root))) {
802                 ref = rb_entry(node, struct prelim_ref, rbnode);
803                 rb_erase_cached(node, &tree->root);
804
805                 BUG_ON(ref->parent);    /* should not be a direct ref */
806                 BUG_ON(ref->key_for_search.type);
807                 BUG_ON(!ref->wanted_disk_byte);
808
809                 eb = read_tree_block(fs_info, ref->wanted_disk_byte, 0,
810                                      ref->level - 1, NULL);
811                 if (IS_ERR(eb)) {
812                         free_pref(ref);
813                         return PTR_ERR(eb);
814                 } else if (!extent_buffer_uptodate(eb)) {
815                         free_pref(ref);
816                         free_extent_buffer(eb);
817                         return -EIO;
818                 }
819                 if (lock)
820                         btrfs_tree_read_lock(eb);
821                 if (btrfs_header_level(eb) == 0)
822                         btrfs_item_key_to_cpu(eb, &ref->key_for_search, 0);
823                 else
824                         btrfs_node_key_to_cpu(eb, &ref->key_for_search, 0);
825                 if (lock)
826                         btrfs_tree_read_unlock(eb);
827                 free_extent_buffer(eb);
828                 prelim_ref_insert(fs_info, &preftrees->indirect, ref, NULL);
829                 cond_resched();
830         }
831         return 0;
832 }
833
834 /*
835  * add all currently queued delayed refs from this head whose seq nr is
836  * smaller or equal that seq to the list
837  */
838 static int add_delayed_refs(const struct btrfs_fs_info *fs_info,
839                             struct btrfs_delayed_ref_head *head, u64 seq,
840                             struct preftrees *preftrees, struct share_check *sc)
841 {
842         struct btrfs_delayed_ref_node *node;
843         struct btrfs_key key;
844         struct rb_node *n;
845         int count;
846         int ret = 0;
847
848         spin_lock(&head->lock);
849         for (n = rb_first_cached(&head->ref_tree); n; n = rb_next(n)) {
850                 node = rb_entry(n, struct btrfs_delayed_ref_node,
851                                 ref_node);
852                 if (node->seq > seq)
853                         continue;
854
855                 switch (node->action) {
856                 case BTRFS_ADD_DELAYED_EXTENT:
857                 case BTRFS_UPDATE_DELAYED_HEAD:
858                         WARN_ON(1);
859                         continue;
860                 case BTRFS_ADD_DELAYED_REF:
861                         count = node->ref_mod;
862                         break;
863                 case BTRFS_DROP_DELAYED_REF:
864                         count = node->ref_mod * -1;
865                         break;
866                 default:
867                         BUG();
868                 }
869                 switch (node->type) {
870                 case BTRFS_TREE_BLOCK_REF_KEY: {
871                         /* NORMAL INDIRECT METADATA backref */
872                         struct btrfs_delayed_tree_ref *ref;
873                         struct btrfs_key *key_ptr = NULL;
874
875                         if (head->extent_op && head->extent_op->update_key) {
876                                 btrfs_disk_key_to_cpu(&key, &head->extent_op->key);
877                                 key_ptr = &key;
878                         }
879
880                         ref = btrfs_delayed_node_to_tree_ref(node);
881                         ret = add_indirect_ref(fs_info, preftrees, ref->root,
882                                                key_ptr, ref->level + 1,
883                                                node->bytenr, count, sc,
884                                                GFP_ATOMIC);
885                         break;
886                 }
887                 case BTRFS_SHARED_BLOCK_REF_KEY: {
888                         /* SHARED DIRECT METADATA backref */
889                         struct btrfs_delayed_tree_ref *ref;
890
891                         ref = btrfs_delayed_node_to_tree_ref(node);
892
893                         ret = add_direct_ref(fs_info, preftrees, ref->level + 1,
894                                              ref->parent, node->bytenr, count,
895                                              sc, GFP_ATOMIC);
896                         break;
897                 }
898                 case BTRFS_EXTENT_DATA_REF_KEY: {
899                         /* NORMAL INDIRECT DATA backref */
900                         struct btrfs_delayed_data_ref *ref;
901                         ref = btrfs_delayed_node_to_data_ref(node);
902
903                         key.objectid = ref->objectid;
904                         key.type = BTRFS_EXTENT_DATA_KEY;
905                         key.offset = ref->offset;
906
907                         /*
908                          * If we have a share check context and a reference for
909                          * another inode, we can't exit immediately. This is
910                          * because even if this is a BTRFS_ADD_DELAYED_REF
911                          * reference we may find next a BTRFS_DROP_DELAYED_REF
912                          * which cancels out this ADD reference.
913                          *
914                          * If this is a DROP reference and there was no previous
915                          * ADD reference, then we need to signal that when we
916                          * process references from the extent tree (through
917                          * add_inline_refs() and add_keyed_refs()), we should
918                          * not exit early if we find a reference for another
919                          * inode, because one of the delayed DROP references
920                          * may cancel that reference in the extent tree.
921                          */
922                         if (sc && count < 0)
923                                 sc->have_delayed_delete_refs = true;
924
925                         ret = add_indirect_ref(fs_info, preftrees, ref->root,
926                                                &key, 0, node->bytenr, count, sc,
927                                                GFP_ATOMIC);
928                         break;
929                 }
930                 case BTRFS_SHARED_DATA_REF_KEY: {
931                         /* SHARED DIRECT FULL backref */
932                         struct btrfs_delayed_data_ref *ref;
933
934                         ref = btrfs_delayed_node_to_data_ref(node);
935
936                         ret = add_direct_ref(fs_info, preftrees, 0, ref->parent,
937                                              node->bytenr, count, sc,
938                                              GFP_ATOMIC);
939                         break;
940                 }
941                 default:
942                         WARN_ON(1);
943                 }
944                 /*
945                  * We must ignore BACKREF_FOUND_SHARED until all delayed
946                  * refs have been checked.
947                  */
948                 if (ret && (ret != BACKREF_FOUND_SHARED))
949                         break;
950         }
951         if (!ret)
952                 ret = extent_is_shared(sc);
953
954         spin_unlock(&head->lock);
955         return ret;
956 }
957
958 /*
959  * add all inline backrefs for bytenr to the list
960  *
961  * Returns 0 on success, <0 on error, or BACKREF_FOUND_SHARED.
962  */
963 static int add_inline_refs(const struct btrfs_fs_info *fs_info,
964                            struct btrfs_path *path, u64 bytenr,
965                            int *info_level, struct preftrees *preftrees,
966                            struct share_check *sc)
967 {
968         int ret = 0;
969         int slot;
970         struct extent_buffer *leaf;
971         struct btrfs_key key;
972         struct btrfs_key found_key;
973         unsigned long ptr;
974         unsigned long end;
975         struct btrfs_extent_item *ei;
976         u64 flags;
977         u64 item_size;
978
979         /*
980          * enumerate all inline refs
981          */
982         leaf = path->nodes[0];
983         slot = path->slots[0];
984
985         item_size = btrfs_item_size_nr(leaf, slot);
986         BUG_ON(item_size < sizeof(*ei));
987
988         ei = btrfs_item_ptr(leaf, slot, struct btrfs_extent_item);
989         flags = btrfs_extent_flags(leaf, ei);
990         btrfs_item_key_to_cpu(leaf, &found_key, slot);
991
992         ptr = (unsigned long)(ei + 1);
993         end = (unsigned long)ei + item_size;
994
995         if (found_key.type == BTRFS_EXTENT_ITEM_KEY &&
996             flags & BTRFS_EXTENT_FLAG_TREE_BLOCK) {
997                 struct btrfs_tree_block_info *info;
998
999                 info = (struct btrfs_tree_block_info *)ptr;
1000                 *info_level = btrfs_tree_block_level(leaf, info);
1001                 ptr += sizeof(struct btrfs_tree_block_info);
1002                 BUG_ON(ptr > end);
1003         } else if (found_key.type == BTRFS_METADATA_ITEM_KEY) {
1004                 *info_level = found_key.offset;
1005         } else {
1006                 BUG_ON(!(flags & BTRFS_EXTENT_FLAG_DATA));
1007         }
1008
1009         while (ptr < end) {
1010                 struct btrfs_extent_inline_ref *iref;
1011                 u64 offset;
1012                 int type;
1013
1014                 iref = (struct btrfs_extent_inline_ref *)ptr;
1015                 type = btrfs_get_extent_inline_ref_type(leaf, iref,
1016                                                         BTRFS_REF_TYPE_ANY);
1017                 if (type == BTRFS_REF_TYPE_INVALID)
1018                         return -EUCLEAN;
1019
1020                 offset = btrfs_extent_inline_ref_offset(leaf, iref);
1021
1022                 switch (type) {
1023                 case BTRFS_SHARED_BLOCK_REF_KEY:
1024                         ret = add_direct_ref(fs_info, preftrees,
1025                                              *info_level + 1, offset,
1026                                              bytenr, 1, NULL, GFP_NOFS);
1027                         break;
1028                 case BTRFS_SHARED_DATA_REF_KEY: {
1029                         struct btrfs_shared_data_ref *sdref;
1030                         int count;
1031
1032                         sdref = (struct btrfs_shared_data_ref *)(iref + 1);
1033                         count = btrfs_shared_data_ref_count(leaf, sdref);
1034
1035                         ret = add_direct_ref(fs_info, preftrees, 0, offset,
1036                                              bytenr, count, sc, GFP_NOFS);
1037                         break;
1038                 }
1039                 case BTRFS_TREE_BLOCK_REF_KEY:
1040                         ret = add_indirect_ref(fs_info, preftrees, offset,
1041                                                NULL, *info_level + 1,
1042                                                bytenr, 1, NULL, GFP_NOFS);
1043                         break;
1044                 case BTRFS_EXTENT_DATA_REF_KEY: {
1045                         struct btrfs_extent_data_ref *dref;
1046                         int count;
1047                         u64 root;
1048
1049                         dref = (struct btrfs_extent_data_ref *)(&iref->offset);
1050                         count = btrfs_extent_data_ref_count(leaf, dref);
1051                         key.objectid = btrfs_extent_data_ref_objectid(leaf,
1052                                                                       dref);
1053                         key.type = BTRFS_EXTENT_DATA_KEY;
1054                         key.offset = btrfs_extent_data_ref_offset(leaf, dref);
1055
1056                         if (sc && sc->inum && key.objectid != sc->inum &&
1057                             !sc->have_delayed_delete_refs) {
1058                                 ret = BACKREF_FOUND_SHARED;
1059                                 break;
1060                         }
1061
1062                         root = btrfs_extent_data_ref_root(leaf, dref);
1063
1064                         ret = add_indirect_ref(fs_info, preftrees, root,
1065                                                &key, 0, bytenr, count,
1066                                                sc, GFP_NOFS);
1067
1068                         break;
1069                 }
1070                 default:
1071                         WARN_ON(1);
1072                 }
1073                 if (ret)
1074                         return ret;
1075                 ptr += btrfs_extent_inline_ref_size(type);
1076         }
1077
1078         return 0;
1079 }
1080
1081 /*
1082  * add all non-inline backrefs for bytenr to the list
1083  *
1084  * Returns 0 on success, <0 on error, or BACKREF_FOUND_SHARED.
1085  */
1086 static int add_keyed_refs(struct btrfs_fs_info *fs_info,
1087                           struct btrfs_path *path, u64 bytenr,
1088                           int info_level, struct preftrees *preftrees,
1089                           struct share_check *sc)
1090 {
1091         struct btrfs_root *extent_root = fs_info->extent_root;
1092         int ret;
1093         int slot;
1094         struct extent_buffer *leaf;
1095         struct btrfs_key key;
1096
1097         while (1) {
1098                 ret = btrfs_next_item(extent_root, path);
1099                 if (ret < 0)
1100                         break;
1101                 if (ret) {
1102                         ret = 0;
1103                         break;
1104                 }
1105
1106                 slot = path->slots[0];
1107                 leaf = path->nodes[0];
1108                 btrfs_item_key_to_cpu(leaf, &key, slot);
1109
1110                 if (key.objectid != bytenr)
1111                         break;
1112                 if (key.type < BTRFS_TREE_BLOCK_REF_KEY)
1113                         continue;
1114                 if (key.type > BTRFS_SHARED_DATA_REF_KEY)
1115                         break;
1116
1117                 switch (key.type) {
1118                 case BTRFS_SHARED_BLOCK_REF_KEY:
1119                         /* SHARED DIRECT METADATA backref */
1120                         ret = add_direct_ref(fs_info, preftrees,
1121                                              info_level + 1, key.offset,
1122                                              bytenr, 1, NULL, GFP_NOFS);
1123                         break;
1124                 case BTRFS_SHARED_DATA_REF_KEY: {
1125                         /* SHARED DIRECT FULL backref */
1126                         struct btrfs_shared_data_ref *sdref;
1127                         int count;
1128
1129                         sdref = btrfs_item_ptr(leaf, slot,
1130                                               struct btrfs_shared_data_ref);
1131                         count = btrfs_shared_data_ref_count(leaf, sdref);
1132                         ret = add_direct_ref(fs_info, preftrees, 0,
1133                                              key.offset, bytenr, count,
1134                                              sc, GFP_NOFS);
1135                         break;
1136                 }
1137                 case BTRFS_TREE_BLOCK_REF_KEY:
1138                         /* NORMAL INDIRECT METADATA backref */
1139                         ret = add_indirect_ref(fs_info, preftrees, key.offset,
1140                                                NULL, info_level + 1, bytenr,
1141                                                1, NULL, GFP_NOFS);
1142                         break;
1143                 case BTRFS_EXTENT_DATA_REF_KEY: {
1144                         /* NORMAL INDIRECT DATA backref */
1145                         struct btrfs_extent_data_ref *dref;
1146                         int count;
1147                         u64 root;
1148
1149                         dref = btrfs_item_ptr(leaf, slot,
1150                                               struct btrfs_extent_data_ref);
1151                         count = btrfs_extent_data_ref_count(leaf, dref);
1152                         key.objectid = btrfs_extent_data_ref_objectid(leaf,
1153                                                                       dref);
1154                         key.type = BTRFS_EXTENT_DATA_KEY;
1155                         key.offset = btrfs_extent_data_ref_offset(leaf, dref);
1156
1157                         if (sc && sc->inum && key.objectid != sc->inum &&
1158                             !sc->have_delayed_delete_refs) {
1159                                 ret = BACKREF_FOUND_SHARED;
1160                                 break;
1161                         }
1162
1163                         root = btrfs_extent_data_ref_root(leaf, dref);
1164                         ret = add_indirect_ref(fs_info, preftrees, root,
1165                                                &key, 0, bytenr, count,
1166                                                sc, GFP_NOFS);
1167                         break;
1168                 }
1169                 default:
1170                         WARN_ON(1);
1171                 }
1172                 if (ret)
1173                         return ret;
1174
1175         }
1176
1177         return ret;
1178 }
1179
1180 /*
1181  * this adds all existing backrefs (inline backrefs, backrefs and delayed
1182  * refs) for the given bytenr to the refs list, merges duplicates and resolves
1183  * indirect refs to their parent bytenr.
1184  * When roots are found, they're added to the roots list
1185  *
1186  * If time_seq is set to SEQ_LAST, it will not search delayed_refs, and behave
1187  * much like trans == NULL case, the difference only lies in it will not
1188  * commit root.
1189  * The special case is for qgroup to search roots in commit_transaction().
1190  *
1191  * @sc - if !NULL, then immediately return BACKREF_FOUND_SHARED when a
1192  * shared extent is detected.
1193  *
1194  * Otherwise this returns 0 for success and <0 for an error.
1195  *
1196  * If ignore_offset is set to false, only extent refs whose offsets match
1197  * extent_item_pos are returned.  If true, every extent ref is returned
1198  * and extent_item_pos is ignored.
1199  *
1200  * FIXME some caching might speed things up
1201  */
1202 static int find_parent_nodes(struct btrfs_trans_handle *trans,
1203                              struct btrfs_fs_info *fs_info, u64 bytenr,
1204                              u64 time_seq, struct ulist *refs,
1205                              struct ulist *roots, const u64 *extent_item_pos,
1206                              struct share_check *sc, bool ignore_offset)
1207 {
1208         struct btrfs_key key;
1209         struct btrfs_path *path;
1210         struct btrfs_delayed_ref_root *delayed_refs = NULL;
1211         struct btrfs_delayed_ref_head *head;
1212         int info_level = 0;
1213         int ret;
1214         struct prelim_ref *ref;
1215         struct rb_node *node;
1216         struct extent_inode_elem *eie = NULL;
1217         struct preftrees preftrees = {
1218                 .direct = PREFTREE_INIT,
1219                 .indirect = PREFTREE_INIT,
1220                 .indirect_missing_keys = PREFTREE_INIT
1221         };
1222
1223         key.objectid = bytenr;
1224         key.offset = (u64)-1;
1225         if (btrfs_fs_incompat(fs_info, SKINNY_METADATA))
1226                 key.type = BTRFS_METADATA_ITEM_KEY;
1227         else
1228                 key.type = BTRFS_EXTENT_ITEM_KEY;
1229
1230         path = btrfs_alloc_path();
1231         if (!path)
1232                 return -ENOMEM;
1233         if (!trans) {
1234                 path->search_commit_root = 1;
1235                 path->skip_locking = 1;
1236         }
1237
1238         if (time_seq == SEQ_LAST)
1239                 path->skip_locking = 1;
1240
1241         /*
1242          * grab both a lock on the path and a lock on the delayed ref head.
1243          * We need both to get a consistent picture of how the refs look
1244          * at a specified point in time
1245          */
1246 again:
1247         head = NULL;
1248
1249         ret = btrfs_search_slot(trans, fs_info->extent_root, &key, path, 0, 0);
1250         if (ret < 0)
1251                 goto out;
1252         if (ret == 0) {
1253                 /* This shouldn't happen, indicates a bug or fs corruption. */
1254                 ASSERT(ret != 0);
1255                 ret = -EUCLEAN;
1256                 goto out;
1257         }
1258
1259 #ifdef CONFIG_BTRFS_FS_RUN_SANITY_TESTS
1260         if (trans && likely(trans->type != __TRANS_DUMMY) &&
1261             time_seq != SEQ_LAST) {
1262 #else
1263         if (trans && time_seq != SEQ_LAST) {
1264 #endif
1265                 /*
1266                  * look if there are updates for this ref queued and lock the
1267                  * head
1268                  */
1269                 delayed_refs = &trans->transaction->delayed_refs;
1270                 spin_lock(&delayed_refs->lock);
1271                 head = btrfs_find_delayed_ref_head(delayed_refs, bytenr);
1272                 if (head) {
1273                         if (!mutex_trylock(&head->mutex)) {
1274                                 refcount_inc(&head->refs);
1275                                 spin_unlock(&delayed_refs->lock);
1276
1277                                 btrfs_release_path(path);
1278
1279                                 /*
1280                                  * Mutex was contended, block until it's
1281                                  * released and try again
1282                                  */
1283                                 mutex_lock(&head->mutex);
1284                                 mutex_unlock(&head->mutex);
1285                                 btrfs_put_delayed_ref_head(head);
1286                                 goto again;
1287                         }
1288                         spin_unlock(&delayed_refs->lock);
1289                         ret = add_delayed_refs(fs_info, head, time_seq,
1290                                                &preftrees, sc);
1291                         mutex_unlock(&head->mutex);
1292                         if (ret)
1293                                 goto out;
1294                 } else {
1295                         spin_unlock(&delayed_refs->lock);
1296                 }
1297         }
1298
1299         if (path->slots[0]) {
1300                 struct extent_buffer *leaf;
1301                 int slot;
1302
1303                 path->slots[0]--;
1304                 leaf = path->nodes[0];
1305                 slot = path->slots[0];
1306                 btrfs_item_key_to_cpu(leaf, &key, slot);
1307                 if (key.objectid == bytenr &&
1308                     (key.type == BTRFS_EXTENT_ITEM_KEY ||
1309                      key.type == BTRFS_METADATA_ITEM_KEY)) {
1310                         ret = add_inline_refs(fs_info, path, bytenr,
1311                                               &info_level, &preftrees, sc);
1312                         if (ret)
1313                                 goto out;
1314                         ret = add_keyed_refs(fs_info, path, bytenr, info_level,
1315                                              &preftrees, sc);
1316                         if (ret)
1317                                 goto out;
1318                 }
1319         }
1320
1321         btrfs_release_path(path);
1322
1323         ret = add_missing_keys(fs_info, &preftrees, path->skip_locking == 0);
1324         if (ret)
1325                 goto out;
1326
1327         WARN_ON(!RB_EMPTY_ROOT(&preftrees.indirect_missing_keys.root.rb_root));
1328
1329         ret = resolve_indirect_refs(fs_info, path, time_seq, &preftrees,
1330                                     extent_item_pos, sc, ignore_offset);
1331         if (ret)
1332                 goto out;
1333
1334         WARN_ON(!RB_EMPTY_ROOT(&preftrees.indirect.root.rb_root));
1335
1336         /*
1337          * This walks the tree of merged and resolved refs. Tree blocks are
1338          * read in as needed. Unique entries are added to the ulist, and
1339          * the list of found roots is updated.
1340          *
1341          * We release the entire tree in one go before returning.
1342          */
1343         node = rb_first_cached(&preftrees.direct.root);
1344         while (node) {
1345                 ref = rb_entry(node, struct prelim_ref, rbnode);
1346                 node = rb_next(&ref->rbnode);
1347                 /*
1348                  * ref->count < 0 can happen here if there are delayed
1349                  * refs with a node->action of BTRFS_DROP_DELAYED_REF.
1350                  * prelim_ref_insert() relies on this when merging
1351                  * identical refs to keep the overall count correct.
1352                  * prelim_ref_insert() will merge only those refs
1353                  * which compare identically.  Any refs having
1354                  * e.g. different offsets would not be merged,
1355                  * and would retain their original ref->count < 0.
1356                  */
1357                 if (roots && ref->count && ref->root_id && ref->parent == 0) {
1358                         if (sc && sc->root_objectid &&
1359                             ref->root_id != sc->root_objectid) {
1360                                 ret = BACKREF_FOUND_SHARED;
1361                                 goto out;
1362                         }
1363
1364                         /* no parent == root of tree */
1365                         ret = ulist_add(roots, ref->root_id, 0, GFP_NOFS);
1366                         if (ret < 0)
1367                                 goto out;
1368                 }
1369                 if (ref->count && ref->parent) {
1370                         if (extent_item_pos && !ref->inode_list &&
1371                             ref->level == 0) {
1372                                 struct extent_buffer *eb;
1373
1374                                 eb = read_tree_block(fs_info, ref->parent, 0,
1375                                                      ref->level, NULL);
1376                                 if (IS_ERR(eb)) {
1377                                         ret = PTR_ERR(eb);
1378                                         goto out;
1379                                 } else if (!extent_buffer_uptodate(eb)) {
1380                                         free_extent_buffer(eb);
1381                                         ret = -EIO;
1382                                         goto out;
1383                                 }
1384
1385                                 if (!path->skip_locking) {
1386                                         btrfs_tree_read_lock(eb);
1387                                         btrfs_set_lock_blocking_read(eb);
1388                                 }
1389                                 ret = find_extent_in_eb(eb, bytenr,
1390                                                         *extent_item_pos, &eie, ignore_offset);
1391                                 if (!path->skip_locking)
1392                                         btrfs_tree_read_unlock_blocking(eb);
1393                                 free_extent_buffer(eb);
1394                                 if (ret < 0)
1395                                         goto out;
1396                                 ref->inode_list = eie;
1397                                 /*
1398                                  * We transferred the list ownership to the ref,
1399                                  * so set to NULL to avoid a double free in case
1400                                  * an error happens after this.
1401                                  */
1402                                 eie = NULL;
1403                         }
1404                         ret = ulist_add_merge_ptr(refs, ref->parent,
1405                                                   ref->inode_list,
1406                                                   (void **)&eie, GFP_NOFS);
1407                         if (ret < 0)
1408                                 goto out;
1409                         if (!ret && extent_item_pos) {
1410                                 /*
1411                                  * We've recorded that parent, so we must extend
1412                                  * its inode list here.
1413                                  *
1414                                  * However if there was corruption we may not
1415                                  * have found an eie, return an error in this
1416                                  * case.
1417                                  */
1418                                 ASSERT(eie);
1419                                 if (!eie) {
1420                                         ret = -EUCLEAN;
1421                                         goto out;
1422                                 }
1423                                 while (eie->next)
1424                                         eie = eie->next;
1425                                 eie->next = ref->inode_list;
1426                         }
1427                         eie = NULL;
1428                         /*
1429                          * We have transferred the inode list ownership from
1430                          * this ref to the ref we added to the 'refs' ulist.
1431                          * So set this ref's inode list to NULL to avoid
1432                          * use-after-free when our caller uses it or double
1433                          * frees in case an error happens before we return.
1434                          */
1435                         ref->inode_list = NULL;
1436                 }
1437                 cond_resched();
1438         }
1439
1440 out:
1441         btrfs_free_path(path);
1442
1443         prelim_release(&preftrees.direct);
1444         prelim_release(&preftrees.indirect);
1445         prelim_release(&preftrees.indirect_missing_keys);
1446
1447         if (ret < 0)
1448                 free_inode_elem_list(eie);
1449         return ret;
1450 }
1451
1452 /*
1453  * Finds all leafs with a reference to the specified combination of bytenr and
1454  * offset. key_list_head will point to a list of corresponding keys (caller must
1455  * free each list element). The leafs will be stored in the leafs ulist, which
1456  * must be freed with ulist_free.
1457  *
1458  * returns 0 on success, <0 on error
1459  */
1460 int btrfs_find_all_leafs(struct btrfs_trans_handle *trans,
1461                          struct btrfs_fs_info *fs_info, u64 bytenr,
1462                          u64 time_seq, struct ulist **leafs,
1463                          const u64 *extent_item_pos, bool ignore_offset)
1464 {
1465         int ret;
1466
1467         *leafs = ulist_alloc(GFP_NOFS);
1468         if (!*leafs)
1469                 return -ENOMEM;
1470
1471         ret = find_parent_nodes(trans, fs_info, bytenr, time_seq,
1472                                 *leafs, NULL, extent_item_pos, NULL, ignore_offset);
1473         if (ret < 0 && ret != -ENOENT) {
1474                 free_leaf_list(*leafs);
1475                 return ret;
1476         }
1477
1478         return 0;
1479 }
1480
1481 /*
1482  * walk all backrefs for a given extent to find all roots that reference this
1483  * extent. Walking a backref means finding all extents that reference this
1484  * extent and in turn walk the backrefs of those, too. Naturally this is a
1485  * recursive process, but here it is implemented in an iterative fashion: We
1486  * find all referencing extents for the extent in question and put them on a
1487  * list. In turn, we find all referencing extents for those, further appending
1488  * to the list. The way we iterate the list allows adding more elements after
1489  * the current while iterating. The process stops when we reach the end of the
1490  * list. Found roots are added to the roots list.
1491  *
1492  * returns 0 on success, < 0 on error.
1493  */
1494 static int btrfs_find_all_roots_safe(struct btrfs_trans_handle *trans,
1495                                      struct btrfs_fs_info *fs_info, u64 bytenr,
1496                                      u64 time_seq, struct ulist **roots,
1497                                      bool ignore_offset)
1498 {
1499         struct ulist *tmp;
1500         struct ulist_node *node = NULL;
1501         struct ulist_iterator uiter;
1502         int ret;
1503
1504         tmp = ulist_alloc(GFP_NOFS);
1505         if (!tmp)
1506                 return -ENOMEM;
1507         *roots = ulist_alloc(GFP_NOFS);
1508         if (!*roots) {
1509                 ulist_free(tmp);
1510                 return -ENOMEM;
1511         }
1512
1513         ULIST_ITER_INIT(&uiter);
1514         while (1) {
1515                 ret = find_parent_nodes(trans, fs_info, bytenr, time_seq,
1516                                         tmp, *roots, NULL, NULL, ignore_offset);
1517                 if (ret < 0 && ret != -ENOENT) {
1518                         ulist_free(tmp);
1519                         ulist_free(*roots);
1520                         *roots = NULL;
1521                         return ret;
1522                 }
1523                 node = ulist_next(tmp, &uiter);
1524                 if (!node)
1525                         break;
1526                 bytenr = node->val;
1527                 cond_resched();
1528         }
1529
1530         ulist_free(tmp);
1531         return 0;
1532 }
1533
1534 int btrfs_find_all_roots(struct btrfs_trans_handle *trans,
1535                          struct btrfs_fs_info *fs_info, u64 bytenr,
1536                          u64 time_seq, struct ulist **roots,
1537                          bool ignore_offset)
1538 {
1539         int ret;
1540
1541         if (!trans)
1542                 down_read(&fs_info->commit_root_sem);
1543         ret = btrfs_find_all_roots_safe(trans, fs_info, bytenr,
1544                                         time_seq, roots, ignore_offset);
1545         if (!trans)
1546                 up_read(&fs_info->commit_root_sem);
1547         return ret;
1548 }
1549
1550 /**
1551  * btrfs_check_shared - tell us whether an extent is shared
1552  *
1553  * btrfs_check_shared uses the backref walking code but will short
1554  * circuit as soon as it finds a root or inode that doesn't match the
1555  * one passed in. This provides a significant performance benefit for
1556  * callers (such as fiemap) which want to know whether the extent is
1557  * shared but do not need a ref count.
1558  *
1559  * This attempts to attach to the running transaction in order to account for
1560  * delayed refs, but continues on even when no running transaction exists.
1561  *
1562  * Return: 0 if extent is not shared, 1 if it is shared, < 0 on error.
1563  */
1564 int btrfs_check_shared(struct btrfs_root *root, u64 inum, u64 bytenr,
1565                 struct ulist *roots, struct ulist *tmp)
1566 {
1567         struct btrfs_fs_info *fs_info = root->fs_info;
1568         struct btrfs_trans_handle *trans;
1569         struct ulist_iterator uiter;
1570         struct ulist_node *node;
1571         struct seq_list elem = SEQ_LIST_INIT(elem);
1572         int ret = 0;
1573         struct share_check shared = {
1574                 .root_objectid = root->root_key.objectid,
1575                 .inum = inum,
1576                 .share_count = 0,
1577                 .have_delayed_delete_refs = false,
1578         };
1579
1580         ulist_init(roots);
1581         ulist_init(tmp);
1582
1583         trans = btrfs_join_transaction_nostart(root);
1584         if (IS_ERR(trans)) {
1585                 if (PTR_ERR(trans) != -ENOENT && PTR_ERR(trans) != -EROFS) {
1586                         ret = PTR_ERR(trans);
1587                         goto out;
1588                 }
1589                 trans = NULL;
1590                 down_read(&fs_info->commit_root_sem);
1591         } else {
1592                 btrfs_get_tree_mod_seq(fs_info, &elem);
1593         }
1594
1595         ULIST_ITER_INIT(&uiter);
1596         while (1) {
1597                 ret = find_parent_nodes(trans, fs_info, bytenr, elem.seq, tmp,
1598                                         roots, NULL, &shared, false);
1599                 if (ret == BACKREF_FOUND_SHARED) {
1600                         /* this is the only condition under which we return 1 */
1601                         ret = 1;
1602                         break;
1603                 }
1604                 if (ret < 0 && ret != -ENOENT)
1605                         break;
1606                 ret = 0;
1607                 node = ulist_next(tmp, &uiter);
1608                 if (!node)
1609                         break;
1610                 bytenr = node->val;
1611                 shared.share_count = 0;
1612                 shared.have_delayed_delete_refs = false;
1613                 cond_resched();
1614         }
1615
1616         if (trans) {
1617                 btrfs_put_tree_mod_seq(fs_info, &elem);
1618                 btrfs_end_transaction(trans);
1619         } else {
1620                 up_read(&fs_info->commit_root_sem);
1621         }
1622 out:
1623         ulist_release(roots);
1624         ulist_release(tmp);
1625         return ret;
1626 }
1627
1628 int btrfs_find_one_extref(struct btrfs_root *root, u64 inode_objectid,
1629                           u64 start_off, struct btrfs_path *path,
1630                           struct btrfs_inode_extref **ret_extref,
1631                           u64 *found_off)
1632 {
1633         int ret, slot;
1634         struct btrfs_key key;
1635         struct btrfs_key found_key;
1636         struct btrfs_inode_extref *extref;
1637         const struct extent_buffer *leaf;
1638         unsigned long ptr;
1639
1640         key.objectid = inode_objectid;
1641         key.type = BTRFS_INODE_EXTREF_KEY;
1642         key.offset = start_off;
1643
1644         ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
1645         if (ret < 0)
1646                 return ret;
1647
1648         while (1) {
1649                 leaf = path->nodes[0];
1650                 slot = path->slots[0];
1651                 if (slot >= btrfs_header_nritems(leaf)) {
1652                         /*
1653                          * If the item at offset is not found,
1654                          * btrfs_search_slot will point us to the slot
1655                          * where it should be inserted. In our case
1656                          * that will be the slot directly before the
1657                          * next INODE_REF_KEY_V2 item. In the case
1658                          * that we're pointing to the last slot in a
1659                          * leaf, we must move one leaf over.
1660                          */
1661                         ret = btrfs_next_leaf(root, path);
1662                         if (ret) {
1663                                 if (ret >= 1)
1664                                         ret = -ENOENT;
1665                                 break;
1666                         }
1667                         continue;
1668                 }
1669
1670                 btrfs_item_key_to_cpu(leaf, &found_key, slot);
1671
1672                 /*
1673                  * Check that we're still looking at an extended ref key for
1674                  * this particular objectid. If we have different
1675                  * objectid or type then there are no more to be found
1676                  * in the tree and we can exit.
1677                  */
1678                 ret = -ENOENT;
1679                 if (found_key.objectid != inode_objectid)
1680                         break;
1681                 if (found_key.type != BTRFS_INODE_EXTREF_KEY)
1682                         break;
1683
1684                 ret = 0;
1685                 ptr = btrfs_item_ptr_offset(leaf, path->slots[0]);
1686                 extref = (struct btrfs_inode_extref *)ptr;
1687                 *ret_extref = extref;
1688                 if (found_off)
1689                         *found_off = found_key.offset;
1690                 break;
1691         }
1692
1693         return ret;
1694 }
1695
1696 /*
1697  * this iterates to turn a name (from iref/extref) into a full filesystem path.
1698  * Elements of the path are separated by '/' and the path is guaranteed to be
1699  * 0-terminated. the path is only given within the current file system.
1700  * Therefore, it never starts with a '/'. the caller is responsible to provide
1701  * "size" bytes in "dest". the dest buffer will be filled backwards. finally,
1702  * the start point of the resulting string is returned. this pointer is within
1703  * dest, normally.
1704  * in case the path buffer would overflow, the pointer is decremented further
1705  * as if output was written to the buffer, though no more output is actually
1706  * generated. that way, the caller can determine how much space would be
1707  * required for the path to fit into the buffer. in that case, the returned
1708  * value will be smaller than dest. callers must check this!
1709  */
1710 char *btrfs_ref_to_path(struct btrfs_root *fs_root, struct btrfs_path *path,
1711                         u32 name_len, unsigned long name_off,
1712                         struct extent_buffer *eb_in, u64 parent,
1713                         char *dest, u32 size)
1714 {
1715         int slot;
1716         u64 next_inum;
1717         int ret;
1718         s64 bytes_left = ((s64)size) - 1;
1719         struct extent_buffer *eb = eb_in;
1720         struct btrfs_key found_key;
1721         int leave_spinning = path->leave_spinning;
1722         struct btrfs_inode_ref *iref;
1723
1724         if (bytes_left >= 0)
1725                 dest[bytes_left] = '\0';
1726
1727         path->leave_spinning = 1;
1728         while (1) {
1729                 bytes_left -= name_len;
1730                 if (bytes_left >= 0)
1731                         read_extent_buffer(eb, dest + bytes_left,
1732                                            name_off, name_len);
1733                 if (eb != eb_in) {
1734                         if (!path->skip_locking)
1735                                 btrfs_tree_read_unlock_blocking(eb);
1736                         free_extent_buffer(eb);
1737                 }
1738                 ret = btrfs_find_item(fs_root, path, parent, 0,
1739                                 BTRFS_INODE_REF_KEY, &found_key);
1740                 if (ret > 0)
1741                         ret = -ENOENT;
1742                 if (ret)
1743                         break;
1744
1745                 next_inum = found_key.offset;
1746
1747                 /* regular exit ahead */
1748                 if (parent == next_inum)
1749                         break;
1750
1751                 slot = path->slots[0];
1752                 eb = path->nodes[0];
1753                 /* make sure we can use eb after releasing the path */
1754                 if (eb != eb_in) {
1755                         if (!path->skip_locking)
1756                                 btrfs_set_lock_blocking_read(eb);
1757                         path->nodes[0] = NULL;
1758                         path->locks[0] = 0;
1759                 }
1760                 btrfs_release_path(path);
1761                 iref = btrfs_item_ptr(eb, slot, struct btrfs_inode_ref);
1762
1763                 name_len = btrfs_inode_ref_name_len(eb, iref);
1764                 name_off = (unsigned long)(iref + 1);
1765
1766                 parent = next_inum;
1767                 --bytes_left;
1768                 if (bytes_left >= 0)
1769                         dest[bytes_left] = '/';
1770         }
1771
1772         btrfs_release_path(path);
1773         path->leave_spinning = leave_spinning;
1774
1775         if (ret)
1776                 return ERR_PTR(ret);
1777
1778         return dest + bytes_left;
1779 }
1780
1781 /*
1782  * this makes the path point to (logical EXTENT_ITEM *)
1783  * returns BTRFS_EXTENT_FLAG_DATA for data, BTRFS_EXTENT_FLAG_TREE_BLOCK for
1784  * tree blocks and <0 on error.
1785  */
1786 int extent_from_logical(struct btrfs_fs_info *fs_info, u64 logical,
1787                         struct btrfs_path *path, struct btrfs_key *found_key,
1788                         u64 *flags_ret)
1789 {
1790         int ret;
1791         u64 flags;
1792         u64 size = 0;
1793         u32 item_size;
1794         const struct extent_buffer *eb;
1795         struct btrfs_extent_item *ei;
1796         struct btrfs_key key;
1797
1798         if (btrfs_fs_incompat(fs_info, SKINNY_METADATA))
1799                 key.type = BTRFS_METADATA_ITEM_KEY;
1800         else
1801                 key.type = BTRFS_EXTENT_ITEM_KEY;
1802         key.objectid = logical;
1803         key.offset = (u64)-1;
1804
1805         ret = btrfs_search_slot(NULL, fs_info->extent_root, &key, path, 0, 0);
1806         if (ret < 0)
1807                 return ret;
1808
1809         ret = btrfs_previous_extent_item(fs_info->extent_root, path, 0);
1810         if (ret) {
1811                 if (ret > 0)
1812                         ret = -ENOENT;
1813                 return ret;
1814         }
1815         btrfs_item_key_to_cpu(path->nodes[0], found_key, path->slots[0]);
1816         if (found_key->type == BTRFS_METADATA_ITEM_KEY)
1817                 size = fs_info->nodesize;
1818         else if (found_key->type == BTRFS_EXTENT_ITEM_KEY)
1819                 size = found_key->offset;
1820
1821         if (found_key->objectid > logical ||
1822             found_key->objectid + size <= logical) {
1823                 btrfs_debug(fs_info,
1824                         "logical %llu is not within any extent", logical);
1825                 return -ENOENT;
1826         }
1827
1828         eb = path->nodes[0];
1829         item_size = btrfs_item_size_nr(eb, path->slots[0]);
1830         BUG_ON(item_size < sizeof(*ei));
1831
1832         ei = btrfs_item_ptr(eb, path->slots[0], struct btrfs_extent_item);
1833         flags = btrfs_extent_flags(eb, ei);
1834
1835         btrfs_debug(fs_info,
1836                 "logical %llu is at position %llu within the extent (%llu EXTENT_ITEM %llu) flags %#llx size %u",
1837                  logical, logical - found_key->objectid, found_key->objectid,
1838                  found_key->offset, flags, item_size);
1839
1840         WARN_ON(!flags_ret);
1841         if (flags_ret) {
1842                 if (flags & BTRFS_EXTENT_FLAG_TREE_BLOCK)
1843                         *flags_ret = BTRFS_EXTENT_FLAG_TREE_BLOCK;
1844                 else if (flags & BTRFS_EXTENT_FLAG_DATA)
1845                         *flags_ret = BTRFS_EXTENT_FLAG_DATA;
1846                 else
1847                         BUG();
1848                 return 0;
1849         }
1850
1851         return -EIO;
1852 }
1853
1854 /*
1855  * helper function to iterate extent inline refs. ptr must point to a 0 value
1856  * for the first call and may be modified. it is used to track state.
1857  * if more refs exist, 0 is returned and the next call to
1858  * get_extent_inline_ref must pass the modified ptr parameter to get the
1859  * next ref. after the last ref was processed, 1 is returned.
1860  * returns <0 on error
1861  */
1862 static int get_extent_inline_ref(unsigned long *ptr,
1863                                  const struct extent_buffer *eb,
1864                                  const struct btrfs_key *key,
1865                                  const struct btrfs_extent_item *ei,
1866                                  u32 item_size,
1867                                  struct btrfs_extent_inline_ref **out_eiref,
1868                                  int *out_type)
1869 {
1870         unsigned long end;
1871         u64 flags;
1872         struct btrfs_tree_block_info *info;
1873
1874         if (!*ptr) {
1875                 /* first call */
1876                 flags = btrfs_extent_flags(eb, ei);
1877                 if (flags & BTRFS_EXTENT_FLAG_TREE_BLOCK) {
1878                         if (key->type == BTRFS_METADATA_ITEM_KEY) {
1879                                 /* a skinny metadata extent */
1880                                 *out_eiref =
1881                                      (struct btrfs_extent_inline_ref *)(ei + 1);
1882                         } else {
1883                                 WARN_ON(key->type != BTRFS_EXTENT_ITEM_KEY);
1884                                 info = (struct btrfs_tree_block_info *)(ei + 1);
1885                                 *out_eiref =
1886                                    (struct btrfs_extent_inline_ref *)(info + 1);
1887                         }
1888                 } else {
1889                         *out_eiref = (struct btrfs_extent_inline_ref *)(ei + 1);
1890                 }
1891                 *ptr = (unsigned long)*out_eiref;
1892                 if ((unsigned long)(*ptr) >= (unsigned long)ei + item_size)
1893                         return -ENOENT;
1894         }
1895
1896         end = (unsigned long)ei + item_size;
1897         *out_eiref = (struct btrfs_extent_inline_ref *)(*ptr);
1898         *out_type = btrfs_get_extent_inline_ref_type(eb, *out_eiref,
1899                                                      BTRFS_REF_TYPE_ANY);
1900         if (*out_type == BTRFS_REF_TYPE_INVALID)
1901                 return -EUCLEAN;
1902
1903         *ptr += btrfs_extent_inline_ref_size(*out_type);
1904         WARN_ON(*ptr > end);
1905         if (*ptr == end)
1906                 return 1; /* last */
1907
1908         return 0;
1909 }
1910
1911 /*
1912  * reads the tree block backref for an extent. tree level and root are returned
1913  * through out_level and out_root. ptr must point to a 0 value for the first
1914  * call and may be modified (see get_extent_inline_ref comment).
1915  * returns 0 if data was provided, 1 if there was no more data to provide or
1916  * <0 on error.
1917  */
1918 int tree_backref_for_extent(unsigned long *ptr, struct extent_buffer *eb,
1919                             struct btrfs_key *key, struct btrfs_extent_item *ei,
1920                             u32 item_size, u64 *out_root, u8 *out_level)
1921 {
1922         int ret;
1923         int type;
1924         struct btrfs_extent_inline_ref *eiref;
1925
1926         if (*ptr == (unsigned long)-1)
1927                 return 1;
1928
1929         while (1) {
1930                 ret = get_extent_inline_ref(ptr, eb, key, ei, item_size,
1931                                               &eiref, &type);
1932                 if (ret < 0)
1933                         return ret;
1934
1935                 if (type == BTRFS_TREE_BLOCK_REF_KEY ||
1936                     type == BTRFS_SHARED_BLOCK_REF_KEY)
1937                         break;
1938
1939                 if (ret == 1)
1940                         return 1;
1941         }
1942
1943         /* we can treat both ref types equally here */
1944         *out_root = btrfs_extent_inline_ref_offset(eb, eiref);
1945
1946         if (key->type == BTRFS_EXTENT_ITEM_KEY) {
1947                 struct btrfs_tree_block_info *info;
1948
1949                 info = (struct btrfs_tree_block_info *)(ei + 1);
1950                 *out_level = btrfs_tree_block_level(eb, info);
1951         } else {
1952                 ASSERT(key->type == BTRFS_METADATA_ITEM_KEY);
1953                 *out_level = (u8)key->offset;
1954         }
1955
1956         if (ret == 1)
1957                 *ptr = (unsigned long)-1;
1958
1959         return 0;
1960 }
1961
1962 static int iterate_leaf_refs(struct btrfs_fs_info *fs_info,
1963                              struct extent_inode_elem *inode_list,
1964                              u64 root, u64 extent_item_objectid,
1965                              iterate_extent_inodes_t *iterate, void *ctx)
1966 {
1967         struct extent_inode_elem *eie;
1968         int ret = 0;
1969
1970         for (eie = inode_list; eie; eie = eie->next) {
1971                 btrfs_debug(fs_info,
1972                             "ref for %llu resolved, key (%llu EXTEND_DATA %llu), root %llu",
1973                             extent_item_objectid, eie->inum,
1974                             eie->offset, root);
1975                 ret = iterate(eie->inum, eie->offset, root, ctx);
1976                 if (ret) {
1977                         btrfs_debug(fs_info,
1978                                     "stopping iteration for %llu due to ret=%d",
1979                                     extent_item_objectid, ret);
1980                         break;
1981                 }
1982         }
1983
1984         return ret;
1985 }
1986
1987 /*
1988  * calls iterate() for every inode that references the extent identified by
1989  * the given parameters.
1990  * when the iterator function returns a non-zero value, iteration stops.
1991  */
1992 int iterate_extent_inodes(struct btrfs_fs_info *fs_info,
1993                                 u64 extent_item_objectid, u64 extent_item_pos,
1994                                 int search_commit_root,
1995                                 iterate_extent_inodes_t *iterate, void *ctx,
1996                                 bool ignore_offset)
1997 {
1998         int ret;
1999         struct btrfs_trans_handle *trans = NULL;
2000         struct ulist *refs = NULL;
2001         struct ulist *roots = NULL;
2002         struct ulist_node *ref_node = NULL;
2003         struct ulist_node *root_node = NULL;
2004         struct seq_list tree_mod_seq_elem = SEQ_LIST_INIT(tree_mod_seq_elem);
2005         struct ulist_iterator ref_uiter;
2006         struct ulist_iterator root_uiter;
2007
2008         btrfs_debug(fs_info, "resolving all inodes for extent %llu",
2009                         extent_item_objectid);
2010
2011         if (!search_commit_root) {
2012                 trans = btrfs_attach_transaction(fs_info->extent_root);
2013                 if (IS_ERR(trans)) {
2014                         if (PTR_ERR(trans) != -ENOENT &&
2015                             PTR_ERR(trans) != -EROFS)
2016                                 return PTR_ERR(trans);
2017                         trans = NULL;
2018                 }
2019         }
2020
2021         if (trans)
2022                 btrfs_get_tree_mod_seq(fs_info, &tree_mod_seq_elem);
2023         else
2024                 down_read(&fs_info->commit_root_sem);
2025
2026         ret = btrfs_find_all_leafs(trans, fs_info, extent_item_objectid,
2027                                    tree_mod_seq_elem.seq, &refs,
2028                                    &extent_item_pos, ignore_offset);
2029         if (ret)
2030                 goto out;
2031
2032         ULIST_ITER_INIT(&ref_uiter);
2033         while (!ret && (ref_node = ulist_next(refs, &ref_uiter))) {
2034                 ret = btrfs_find_all_roots_safe(trans, fs_info, ref_node->val,
2035                                                 tree_mod_seq_elem.seq, &roots,
2036                                                 ignore_offset);
2037                 if (ret)
2038                         break;
2039                 ULIST_ITER_INIT(&root_uiter);
2040                 while (!ret && (root_node = ulist_next(roots, &root_uiter))) {
2041                         btrfs_debug(fs_info,
2042                                     "root %llu references leaf %llu, data list %#llx",
2043                                     root_node->val, ref_node->val,
2044                                     ref_node->aux);
2045                         ret = iterate_leaf_refs(fs_info,
2046                                                 (struct extent_inode_elem *)
2047                                                 (uintptr_t)ref_node->aux,
2048                                                 root_node->val,
2049                                                 extent_item_objectid,
2050                                                 iterate, ctx);
2051                 }
2052                 ulist_free(roots);
2053         }
2054
2055         free_leaf_list(refs);
2056 out:
2057         if (trans) {
2058                 btrfs_put_tree_mod_seq(fs_info, &tree_mod_seq_elem);
2059                 btrfs_end_transaction(trans);
2060         } else {
2061                 up_read(&fs_info->commit_root_sem);
2062         }
2063
2064         return ret;
2065 }
2066
2067 static int build_ino_list(u64 inum, u64 offset, u64 root, void *ctx)
2068 {
2069         struct btrfs_data_container *inodes = ctx;
2070         const size_t c = 3 * sizeof(u64);
2071
2072         if (inodes->bytes_left >= c) {
2073                 inodes->bytes_left -= c;
2074                 inodes->val[inodes->elem_cnt] = inum;
2075                 inodes->val[inodes->elem_cnt + 1] = offset;
2076                 inodes->val[inodes->elem_cnt + 2] = root;
2077                 inodes->elem_cnt += 3;
2078         } else {
2079                 inodes->bytes_missing += c - inodes->bytes_left;
2080                 inodes->bytes_left = 0;
2081                 inodes->elem_missed += 3;
2082         }
2083
2084         return 0;
2085 }
2086
2087 int iterate_inodes_from_logical(u64 logical, struct btrfs_fs_info *fs_info,
2088                                 struct btrfs_path *path,
2089                                 void *ctx, bool ignore_offset)
2090 {
2091         int ret;
2092         u64 extent_item_pos;
2093         u64 flags = 0;
2094         struct btrfs_key found_key;
2095         int search_commit_root = path->search_commit_root;
2096
2097         ret = extent_from_logical(fs_info, logical, path, &found_key, &flags);
2098         btrfs_release_path(path);
2099         if (ret < 0)
2100                 return ret;
2101         if (flags & BTRFS_EXTENT_FLAG_TREE_BLOCK)
2102                 return -EINVAL;
2103
2104         extent_item_pos = logical - found_key.objectid;
2105         ret = iterate_extent_inodes(fs_info, found_key.objectid,
2106                                         extent_item_pos, search_commit_root,
2107                                         build_ino_list, ctx, ignore_offset);
2108
2109         return ret;
2110 }
2111
2112 typedef int (iterate_irefs_t)(u64 parent, u32 name_len, unsigned long name_off,
2113                               struct extent_buffer *eb, void *ctx);
2114
2115 static int iterate_inode_refs(u64 inum, struct btrfs_root *fs_root,
2116                               struct btrfs_path *path,
2117                               iterate_irefs_t *iterate, void *ctx)
2118 {
2119         int ret = 0;
2120         int slot;
2121         u32 cur;
2122         u32 len;
2123         u32 name_len;
2124         u64 parent = 0;
2125         int found = 0;
2126         struct extent_buffer *eb;
2127         struct btrfs_item *item;
2128         struct btrfs_inode_ref *iref;
2129         struct btrfs_key found_key;
2130
2131         while (!ret) {
2132                 ret = btrfs_find_item(fs_root, path, inum,
2133                                 parent ? parent + 1 : 0, BTRFS_INODE_REF_KEY,
2134                                 &found_key);
2135
2136                 if (ret < 0)
2137                         break;
2138                 if (ret) {
2139                         ret = found ? 0 : -ENOENT;
2140                         break;
2141                 }
2142                 ++found;
2143
2144                 parent = found_key.offset;
2145                 slot = path->slots[0];
2146                 eb = btrfs_clone_extent_buffer(path->nodes[0]);
2147                 if (!eb) {
2148                         ret = -ENOMEM;
2149                         break;
2150                 }
2151                 btrfs_release_path(path);
2152
2153                 item = btrfs_item_nr(slot);
2154                 iref = btrfs_item_ptr(eb, slot, struct btrfs_inode_ref);
2155
2156                 for (cur = 0; cur < btrfs_item_size(eb, item); cur += len) {
2157                         name_len = btrfs_inode_ref_name_len(eb, iref);
2158                         /* path must be released before calling iterate()! */
2159                         btrfs_debug(fs_root->fs_info,
2160                                 "following ref at offset %u for inode %llu in tree %llu",
2161                                 cur, found_key.objectid,
2162                                 fs_root->root_key.objectid);
2163                         ret = iterate(parent, name_len,
2164                                       (unsigned long)(iref + 1), eb, ctx);
2165                         if (ret)
2166                                 break;
2167                         len = sizeof(*iref) + name_len;
2168                         iref = (struct btrfs_inode_ref *)((char *)iref + len);
2169                 }
2170                 free_extent_buffer(eb);
2171         }
2172
2173         btrfs_release_path(path);
2174
2175         return ret;
2176 }
2177
2178 static int iterate_inode_extrefs(u64 inum, struct btrfs_root *fs_root,
2179                                  struct btrfs_path *path,
2180                                  iterate_irefs_t *iterate, void *ctx)
2181 {
2182         int ret;
2183         int slot;
2184         u64 offset = 0;
2185         u64 parent;
2186         int found = 0;
2187         struct extent_buffer *eb;
2188         struct btrfs_inode_extref *extref;
2189         u32 item_size;
2190         u32 cur_offset;
2191         unsigned long ptr;
2192
2193         while (1) {
2194                 ret = btrfs_find_one_extref(fs_root, inum, offset, path, &extref,
2195                                             &offset);
2196                 if (ret < 0)
2197                         break;
2198                 if (ret) {
2199                         ret = found ? 0 : -ENOENT;
2200                         break;
2201                 }
2202                 ++found;
2203
2204                 slot = path->slots[0];
2205                 eb = btrfs_clone_extent_buffer(path->nodes[0]);
2206                 if (!eb) {
2207                         ret = -ENOMEM;
2208                         break;
2209                 }
2210                 btrfs_release_path(path);
2211
2212                 item_size = btrfs_item_size_nr(eb, slot);
2213                 ptr = btrfs_item_ptr_offset(eb, slot);
2214                 cur_offset = 0;
2215
2216                 while (cur_offset < item_size) {
2217                         u32 name_len;
2218
2219                         extref = (struct btrfs_inode_extref *)(ptr + cur_offset);
2220                         parent = btrfs_inode_extref_parent(eb, extref);
2221                         name_len = btrfs_inode_extref_name_len(eb, extref);
2222                         ret = iterate(parent, name_len,
2223                                       (unsigned long)&extref->name, eb, ctx);
2224                         if (ret)
2225                                 break;
2226
2227                         cur_offset += btrfs_inode_extref_name_len(eb, extref);
2228                         cur_offset += sizeof(*extref);
2229                 }
2230                 free_extent_buffer(eb);
2231
2232                 offset++;
2233         }
2234
2235         btrfs_release_path(path);
2236
2237         return ret;
2238 }
2239
2240 static int iterate_irefs(u64 inum, struct btrfs_root *fs_root,
2241                          struct btrfs_path *path, iterate_irefs_t *iterate,
2242                          void *ctx)
2243 {
2244         int ret;
2245         int found_refs = 0;
2246
2247         ret = iterate_inode_refs(inum, fs_root, path, iterate, ctx);
2248         if (!ret)
2249                 ++found_refs;
2250         else if (ret != -ENOENT)
2251                 return ret;
2252
2253         ret = iterate_inode_extrefs(inum, fs_root, path, iterate, ctx);
2254         if (ret == -ENOENT && found_refs)
2255                 return 0;
2256
2257         return ret;
2258 }
2259
2260 /*
2261  * returns 0 if the path could be dumped (probably truncated)
2262  * returns <0 in case of an error
2263  */
2264 static int inode_to_path(u64 inum, u32 name_len, unsigned long name_off,
2265                          struct extent_buffer *eb, void *ctx)
2266 {
2267         struct inode_fs_paths *ipath = ctx;
2268         char *fspath;
2269         char *fspath_min;
2270         int i = ipath->fspath->elem_cnt;
2271         const int s_ptr = sizeof(char *);
2272         u32 bytes_left;
2273
2274         bytes_left = ipath->fspath->bytes_left > s_ptr ?
2275                                         ipath->fspath->bytes_left - s_ptr : 0;
2276
2277         fspath_min = (char *)ipath->fspath->val + (i + 1) * s_ptr;
2278         fspath = btrfs_ref_to_path(ipath->fs_root, ipath->btrfs_path, name_len,
2279                                    name_off, eb, inum, fspath_min, bytes_left);
2280         if (IS_ERR(fspath))
2281                 return PTR_ERR(fspath);
2282
2283         if (fspath > fspath_min) {
2284                 ipath->fspath->val[i] = (u64)(unsigned long)fspath;
2285                 ++ipath->fspath->elem_cnt;
2286                 ipath->fspath->bytes_left = fspath - fspath_min;
2287         } else {
2288                 ++ipath->fspath->elem_missed;
2289                 ipath->fspath->bytes_missing += fspath_min - fspath;
2290                 ipath->fspath->bytes_left = 0;
2291         }
2292
2293         return 0;
2294 }
2295
2296 /*
2297  * this dumps all file system paths to the inode into the ipath struct, provided
2298  * is has been created large enough. each path is zero-terminated and accessed
2299  * from ipath->fspath->val[i].
2300  * when it returns, there are ipath->fspath->elem_cnt number of paths available
2301  * in ipath->fspath->val[]. when the allocated space wasn't sufficient, the
2302  * number of missed paths is recorded in ipath->fspath->elem_missed, otherwise,
2303  * it's zero. ipath->fspath->bytes_missing holds the number of bytes that would
2304  * have been needed to return all paths.
2305  */
2306 int paths_from_inode(u64 inum, struct inode_fs_paths *ipath)
2307 {
2308         return iterate_irefs(inum, ipath->fs_root, ipath->btrfs_path,
2309                              inode_to_path, ipath);
2310 }
2311
2312 struct btrfs_data_container *init_data_container(u32 total_bytes)
2313 {
2314         struct btrfs_data_container *data;
2315         size_t alloc_bytes;
2316
2317         alloc_bytes = max_t(size_t, total_bytes, sizeof(*data));
2318         data = kvmalloc(alloc_bytes, GFP_KERNEL);
2319         if (!data)
2320                 return ERR_PTR(-ENOMEM);
2321
2322         if (total_bytes >= sizeof(*data)) {
2323                 data->bytes_left = total_bytes - sizeof(*data);
2324                 data->bytes_missing = 0;
2325         } else {
2326                 data->bytes_missing = sizeof(*data) - total_bytes;
2327                 data->bytes_left = 0;
2328         }
2329
2330         data->elem_cnt = 0;
2331         data->elem_missed = 0;
2332
2333         return data;
2334 }
2335
2336 /*
2337  * allocates space to return multiple file system paths for an inode.
2338  * total_bytes to allocate are passed, note that space usable for actual path
2339  * information will be total_bytes - sizeof(struct inode_fs_paths).
2340  * the returned pointer must be freed with free_ipath() in the end.
2341  */
2342 struct inode_fs_paths *init_ipath(s32 total_bytes, struct btrfs_root *fs_root,
2343                                         struct btrfs_path *path)
2344 {
2345         struct inode_fs_paths *ifp;
2346         struct btrfs_data_container *fspath;
2347
2348         fspath = init_data_container(total_bytes);
2349         if (IS_ERR(fspath))
2350                 return ERR_CAST(fspath);
2351
2352         ifp = kmalloc(sizeof(*ifp), GFP_KERNEL);
2353         if (!ifp) {
2354                 kvfree(fspath);
2355                 return ERR_PTR(-ENOMEM);
2356         }
2357
2358         ifp->btrfs_path = path;
2359         ifp->fspath = fspath;
2360         ifp->fs_root = fs_root;
2361
2362         return ifp;
2363 }
2364
2365 void free_ipath(struct inode_fs_paths *ipath)
2366 {
2367         if (!ipath)
2368                 return;
2369         kvfree(ipath->fspath);
2370         kfree(ipath);
2371 }
2372
2373 struct btrfs_backref_iter *btrfs_backref_iter_alloc(
2374                 struct btrfs_fs_info *fs_info, gfp_t gfp_flag)
2375 {
2376         struct btrfs_backref_iter *ret;
2377
2378         ret = kzalloc(sizeof(*ret), gfp_flag);
2379         if (!ret)
2380                 return NULL;
2381
2382         ret->path = btrfs_alloc_path();
2383         if (!ret->path) {
2384                 kfree(ret);
2385                 return NULL;
2386         }
2387
2388         /* Current backref iterator only supports iteration in commit root */
2389         ret->path->search_commit_root = 1;
2390         ret->path->skip_locking = 1;
2391         ret->fs_info = fs_info;
2392
2393         return ret;
2394 }
2395
2396 int btrfs_backref_iter_start(struct btrfs_backref_iter *iter, u64 bytenr)
2397 {
2398         struct btrfs_fs_info *fs_info = iter->fs_info;
2399         struct btrfs_path *path = iter->path;
2400         struct btrfs_extent_item *ei;
2401         struct btrfs_key key;
2402         int ret;
2403
2404         key.objectid = bytenr;
2405         key.type = BTRFS_METADATA_ITEM_KEY;
2406         key.offset = (u64)-1;
2407         iter->bytenr = bytenr;
2408
2409         ret = btrfs_search_slot(NULL, fs_info->extent_root, &key, path, 0, 0);
2410         if (ret < 0)
2411                 return ret;
2412         if (ret == 0) {
2413                 ret = -EUCLEAN;
2414                 goto release;
2415         }
2416         if (path->slots[0] == 0) {
2417                 WARN_ON(IS_ENABLED(CONFIG_BTRFS_DEBUG));
2418                 ret = -EUCLEAN;
2419                 goto release;
2420         }
2421         path->slots[0]--;
2422
2423         btrfs_item_key_to_cpu(path->nodes[0], &key, path->slots[0]);
2424         if ((key.type != BTRFS_EXTENT_ITEM_KEY &&
2425              key.type != BTRFS_METADATA_ITEM_KEY) || key.objectid != bytenr) {
2426                 ret = -ENOENT;
2427                 goto release;
2428         }
2429         memcpy(&iter->cur_key, &key, sizeof(key));
2430         iter->item_ptr = (u32)btrfs_item_ptr_offset(path->nodes[0],
2431                                                     path->slots[0]);
2432         iter->end_ptr = (u32)(iter->item_ptr +
2433                         btrfs_item_size_nr(path->nodes[0], path->slots[0]));
2434         ei = btrfs_item_ptr(path->nodes[0], path->slots[0],
2435                             struct btrfs_extent_item);
2436
2437         /*
2438          * Only support iteration on tree backref yet.
2439          *
2440          * This is an extra precaution for non skinny-metadata, where
2441          * EXTENT_ITEM is also used for tree blocks, that we can only use
2442          * extent flags to determine if it's a tree block.
2443          */
2444         if (btrfs_extent_flags(path->nodes[0], ei) & BTRFS_EXTENT_FLAG_DATA) {
2445                 ret = -ENOTSUPP;
2446                 goto release;
2447         }
2448         iter->cur_ptr = (u32)(iter->item_ptr + sizeof(*ei));
2449
2450         /* If there is no inline backref, go search for keyed backref */
2451         if (iter->cur_ptr >= iter->end_ptr) {
2452                 ret = btrfs_next_item(fs_info->extent_root, path);
2453
2454                 /* No inline nor keyed ref */
2455                 if (ret > 0) {
2456                         ret = -ENOENT;
2457                         goto release;
2458                 }
2459                 if (ret < 0)
2460                         goto release;
2461
2462                 btrfs_item_key_to_cpu(path->nodes[0], &iter->cur_key,
2463                                 path->slots[0]);
2464                 if (iter->cur_key.objectid != bytenr ||
2465                     (iter->cur_key.type != BTRFS_SHARED_BLOCK_REF_KEY &&
2466                      iter->cur_key.type != BTRFS_TREE_BLOCK_REF_KEY)) {
2467                         ret = -ENOENT;
2468                         goto release;
2469                 }
2470                 iter->cur_ptr = (u32)btrfs_item_ptr_offset(path->nodes[0],
2471                                                            path->slots[0]);
2472                 iter->item_ptr = iter->cur_ptr;
2473                 iter->end_ptr = (u32)(iter->item_ptr + btrfs_item_size_nr(
2474                                       path->nodes[0], path->slots[0]));
2475         }
2476
2477         return 0;
2478 release:
2479         btrfs_backref_iter_release(iter);
2480         return ret;
2481 }
2482
2483 /*
2484  * Go to the next backref item of current bytenr, can be either inlined or
2485  * keyed.
2486  *
2487  * Caller needs to check whether it's inline ref or not by iter->cur_key.
2488  *
2489  * Return 0 if we get next backref without problem.
2490  * Return >0 if there is no extra backref for this bytenr.
2491  * Return <0 if there is something wrong happened.
2492  */
2493 int btrfs_backref_iter_next(struct btrfs_backref_iter *iter)
2494 {
2495         struct extent_buffer *eb = btrfs_backref_get_eb(iter);
2496         struct btrfs_path *path = iter->path;
2497         struct btrfs_extent_inline_ref *iref;
2498         int ret;
2499         u32 size;
2500
2501         if (btrfs_backref_iter_is_inline_ref(iter)) {
2502                 /* We're still inside the inline refs */
2503                 ASSERT(iter->cur_ptr < iter->end_ptr);
2504
2505                 if (btrfs_backref_has_tree_block_info(iter)) {
2506                         /* First tree block info */
2507                         size = sizeof(struct btrfs_tree_block_info);
2508                 } else {
2509                         /* Use inline ref type to determine the size */
2510                         int type;
2511
2512                         iref = (struct btrfs_extent_inline_ref *)
2513                                 ((unsigned long)iter->cur_ptr);
2514                         type = btrfs_extent_inline_ref_type(eb, iref);
2515
2516                         size = btrfs_extent_inline_ref_size(type);
2517                 }
2518                 iter->cur_ptr += size;
2519                 if (iter->cur_ptr < iter->end_ptr)
2520                         return 0;
2521
2522                 /* All inline items iterated, fall through */
2523         }
2524
2525         /* We're at keyed items, there is no inline item, go to the next one */
2526         ret = btrfs_next_item(iter->fs_info->extent_root, iter->path);
2527         if (ret)
2528                 return ret;
2529
2530         btrfs_item_key_to_cpu(path->nodes[0], &iter->cur_key, path->slots[0]);
2531         if (iter->cur_key.objectid != iter->bytenr ||
2532             (iter->cur_key.type != BTRFS_TREE_BLOCK_REF_KEY &&
2533              iter->cur_key.type != BTRFS_SHARED_BLOCK_REF_KEY))
2534                 return 1;
2535         iter->item_ptr = (u32)btrfs_item_ptr_offset(path->nodes[0],
2536                                         path->slots[0]);
2537         iter->cur_ptr = iter->item_ptr;
2538         iter->end_ptr = iter->item_ptr + (u32)btrfs_item_size_nr(path->nodes[0],
2539                                                 path->slots[0]);
2540         return 0;
2541 }
2542
2543 void btrfs_backref_init_cache(struct btrfs_fs_info *fs_info,
2544                               struct btrfs_backref_cache *cache, int is_reloc)
2545 {
2546         int i;
2547
2548         cache->rb_root = RB_ROOT;
2549         for (i = 0; i < BTRFS_MAX_LEVEL; i++)
2550                 INIT_LIST_HEAD(&cache->pending[i]);
2551         INIT_LIST_HEAD(&cache->changed);
2552         INIT_LIST_HEAD(&cache->detached);
2553         INIT_LIST_HEAD(&cache->leaves);
2554         INIT_LIST_HEAD(&cache->pending_edge);
2555         INIT_LIST_HEAD(&cache->useless_node);
2556         cache->fs_info = fs_info;
2557         cache->is_reloc = is_reloc;
2558 }
2559
2560 struct btrfs_backref_node *btrfs_backref_alloc_node(
2561                 struct btrfs_backref_cache *cache, u64 bytenr, int level)
2562 {
2563         struct btrfs_backref_node *node;
2564
2565         ASSERT(level >= 0 && level < BTRFS_MAX_LEVEL);
2566         node = kzalloc(sizeof(*node), GFP_NOFS);
2567         if (!node)
2568                 return node;
2569
2570         INIT_LIST_HEAD(&node->list);
2571         INIT_LIST_HEAD(&node->upper);
2572         INIT_LIST_HEAD(&node->lower);
2573         RB_CLEAR_NODE(&node->rb_node);
2574         cache->nr_nodes++;
2575         node->level = level;
2576         node->bytenr = bytenr;
2577
2578         return node;
2579 }
2580
2581 struct btrfs_backref_edge *btrfs_backref_alloc_edge(
2582                 struct btrfs_backref_cache *cache)
2583 {
2584         struct btrfs_backref_edge *edge;
2585
2586         edge = kzalloc(sizeof(*edge), GFP_NOFS);
2587         if (edge)
2588                 cache->nr_edges++;
2589         return edge;
2590 }
2591
2592 /*
2593  * Drop the backref node from cache, also cleaning up all its
2594  * upper edges and any uncached nodes in the path.
2595  *
2596  * This cleanup happens bottom up, thus the node should either
2597  * be the lowest node in the cache or a detached node.
2598  */
2599 void btrfs_backref_cleanup_node(struct btrfs_backref_cache *cache,
2600                                 struct btrfs_backref_node *node)
2601 {
2602         struct btrfs_backref_node *upper;
2603         struct btrfs_backref_edge *edge;
2604
2605         if (!node)
2606                 return;
2607
2608         BUG_ON(!node->lowest && !node->detached);
2609         while (!list_empty(&node->upper)) {
2610                 edge = list_entry(node->upper.next, struct btrfs_backref_edge,
2611                                   list[LOWER]);
2612                 upper = edge->node[UPPER];
2613                 list_del(&edge->list[LOWER]);
2614                 list_del(&edge->list[UPPER]);
2615                 btrfs_backref_free_edge(cache, edge);
2616
2617                 /*
2618                  * Add the node to leaf node list if no other child block
2619                  * cached.
2620                  */
2621                 if (list_empty(&upper->lower)) {
2622                         list_add_tail(&upper->lower, &cache->leaves);
2623                         upper->lowest = 1;
2624                 }
2625         }
2626
2627         btrfs_backref_drop_node(cache, node);
2628 }
2629
2630 /*
2631  * Release all nodes/edges from current cache
2632  */
2633 void btrfs_backref_release_cache(struct btrfs_backref_cache *cache)
2634 {
2635         struct btrfs_backref_node *node;
2636         int i;
2637
2638         while (!list_empty(&cache->detached)) {
2639                 node = list_entry(cache->detached.next,
2640                                   struct btrfs_backref_node, list);
2641                 btrfs_backref_cleanup_node(cache, node);
2642         }
2643
2644         while (!list_empty(&cache->leaves)) {
2645                 node = list_entry(cache->leaves.next,
2646                                   struct btrfs_backref_node, lower);
2647                 btrfs_backref_cleanup_node(cache, node);
2648         }
2649
2650         cache->last_trans = 0;
2651
2652         for (i = 0; i < BTRFS_MAX_LEVEL; i++)
2653                 ASSERT(list_empty(&cache->pending[i]));
2654         ASSERT(list_empty(&cache->pending_edge));
2655         ASSERT(list_empty(&cache->useless_node));
2656         ASSERT(list_empty(&cache->changed));
2657         ASSERT(list_empty(&cache->detached));
2658         ASSERT(RB_EMPTY_ROOT(&cache->rb_root));
2659         ASSERT(!cache->nr_nodes);
2660         ASSERT(!cache->nr_edges);
2661 }
2662
2663 /*
2664  * Handle direct tree backref
2665  *
2666  * Direct tree backref means, the backref item shows its parent bytenr
2667  * directly. This is for SHARED_BLOCK_REF backref (keyed or inlined).
2668  *
2669  * @ref_key:    The converted backref key.
2670  *              For keyed backref, it's the item key.
2671  *              For inlined backref, objectid is the bytenr,
2672  *              type is btrfs_inline_ref_type, offset is
2673  *              btrfs_inline_ref_offset.
2674  */
2675 static int handle_direct_tree_backref(struct btrfs_backref_cache *cache,
2676                                       struct btrfs_key *ref_key,
2677                                       struct btrfs_backref_node *cur)
2678 {
2679         struct btrfs_backref_edge *edge;
2680         struct btrfs_backref_node *upper;
2681         struct rb_node *rb_node;
2682
2683         ASSERT(ref_key->type == BTRFS_SHARED_BLOCK_REF_KEY);
2684
2685         /* Only reloc root uses backref pointing to itself */
2686         if (ref_key->objectid == ref_key->offset) {
2687                 struct btrfs_root *root;
2688
2689                 cur->is_reloc_root = 1;
2690                 /* Only reloc backref cache cares about a specific root */
2691                 if (cache->is_reloc) {
2692                         root = find_reloc_root(cache->fs_info, cur->bytenr);
2693                         if (!root)
2694                                 return -ENOENT;
2695                         cur->root = root;
2696                 } else {
2697                         /*
2698                          * For generic purpose backref cache, reloc root node
2699                          * is useless.
2700                          */
2701                         list_add(&cur->list, &cache->useless_node);
2702                 }
2703                 return 0;
2704         }
2705
2706         edge = btrfs_backref_alloc_edge(cache);
2707         if (!edge)
2708                 return -ENOMEM;
2709
2710         rb_node = rb_simple_search(&cache->rb_root, ref_key->offset);
2711         if (!rb_node) {
2712                 /* Parent node not yet cached */
2713                 upper = btrfs_backref_alloc_node(cache, ref_key->offset,
2714                                            cur->level + 1);
2715                 if (!upper) {
2716                         btrfs_backref_free_edge(cache, edge);
2717                         return -ENOMEM;
2718                 }
2719
2720                 /*
2721                  *  Backrefs for the upper level block isn't cached, add the
2722                  *  block to pending list
2723                  */
2724                 list_add_tail(&edge->list[UPPER], &cache->pending_edge);
2725         } else {
2726                 /* Parent node already cached */
2727                 upper = rb_entry(rb_node, struct btrfs_backref_node, rb_node);
2728                 ASSERT(upper->checked);
2729                 INIT_LIST_HEAD(&edge->list[UPPER]);
2730         }
2731         btrfs_backref_link_edge(edge, cur, upper, LINK_LOWER);
2732         return 0;
2733 }
2734
2735 /*
2736  * Handle indirect tree backref
2737  *
2738  * Indirect tree backref means, we only know which tree the node belongs to.
2739  * We still need to do a tree search to find out the parents. This is for
2740  * TREE_BLOCK_REF backref (keyed or inlined).
2741  *
2742  * @ref_key:    The same as @ref_key in  handle_direct_tree_backref()
2743  * @tree_key:   The first key of this tree block.
2744  * @path:       A clean (released) path, to avoid allocating path everytime
2745  *              the function get called.
2746  */
2747 static int handle_indirect_tree_backref(struct btrfs_backref_cache *cache,
2748                                         struct btrfs_path *path,
2749                                         struct btrfs_key *ref_key,
2750                                         struct btrfs_key *tree_key,
2751                                         struct btrfs_backref_node *cur)
2752 {
2753         struct btrfs_fs_info *fs_info = cache->fs_info;
2754         struct btrfs_backref_node *upper;
2755         struct btrfs_backref_node *lower;
2756         struct btrfs_backref_edge *edge;
2757         struct extent_buffer *eb;
2758         struct btrfs_root *root;
2759         struct rb_node *rb_node;
2760         int level;
2761         bool need_check = true;
2762         int ret;
2763
2764         root = btrfs_get_fs_root(fs_info, ref_key->offset, false);
2765         if (IS_ERR(root))
2766                 return PTR_ERR(root);
2767         if (!test_bit(BTRFS_ROOT_SHAREABLE, &root->state))
2768                 cur->cowonly = 1;
2769
2770         if (btrfs_root_level(&root->root_item) == cur->level) {
2771                 /* Tree root */
2772                 ASSERT(btrfs_root_bytenr(&root->root_item) == cur->bytenr);
2773                 /*
2774                  * For reloc backref cache, we may ignore reloc root.  But for
2775                  * general purpose backref cache, we can't rely on
2776                  * btrfs_should_ignore_reloc_root() as it may conflict with
2777                  * current running relocation and lead to missing root.
2778                  *
2779                  * For general purpose backref cache, reloc root detection is
2780                  * completely relying on direct backref (key->offset is parent
2781                  * bytenr), thus only do such check for reloc cache.
2782                  */
2783                 if (btrfs_should_ignore_reloc_root(root) && cache->is_reloc) {
2784                         btrfs_put_root(root);
2785                         list_add(&cur->list, &cache->useless_node);
2786                 } else {
2787                         cur->root = root;
2788                 }
2789                 return 0;
2790         }
2791
2792         level = cur->level + 1;
2793
2794         /* Search the tree to find parent blocks referring to the block */
2795         path->search_commit_root = 1;
2796         path->skip_locking = 1;
2797         path->lowest_level = level;
2798         ret = btrfs_search_slot(NULL, root, tree_key, path, 0, 0);
2799         path->lowest_level = 0;
2800         if (ret < 0) {
2801                 btrfs_put_root(root);
2802                 return ret;
2803         }
2804         if (ret > 0 && path->slots[level] > 0)
2805                 path->slots[level]--;
2806
2807         eb = path->nodes[level];
2808         if (btrfs_node_blockptr(eb, path->slots[level]) != cur->bytenr) {
2809                 btrfs_err(fs_info,
2810 "couldn't find block (%llu) (level %d) in tree (%llu) with key (%llu %u %llu)",
2811                           cur->bytenr, level - 1, root->root_key.objectid,
2812                           tree_key->objectid, tree_key->type, tree_key->offset);
2813                 btrfs_put_root(root);
2814                 ret = -ENOENT;
2815                 goto out;
2816         }
2817         lower = cur;
2818
2819         /* Add all nodes and edges in the path */
2820         for (; level < BTRFS_MAX_LEVEL; level++) {
2821                 if (!path->nodes[level]) {
2822                         ASSERT(btrfs_root_bytenr(&root->root_item) ==
2823                                lower->bytenr);
2824                         /* Same as previous should_ignore_reloc_root() call */
2825                         if (btrfs_should_ignore_reloc_root(root) &&
2826                             cache->is_reloc) {
2827                                 btrfs_put_root(root);
2828                                 list_add(&lower->list, &cache->useless_node);
2829                         } else {
2830                                 lower->root = root;
2831                         }
2832                         break;
2833                 }
2834
2835                 edge = btrfs_backref_alloc_edge(cache);
2836                 if (!edge) {
2837                         btrfs_put_root(root);
2838                         ret = -ENOMEM;
2839                         goto out;
2840                 }
2841
2842                 eb = path->nodes[level];
2843                 rb_node = rb_simple_search(&cache->rb_root, eb->start);
2844                 if (!rb_node) {
2845                         upper = btrfs_backref_alloc_node(cache, eb->start,
2846                                                          lower->level + 1);
2847                         if (!upper) {
2848                                 btrfs_put_root(root);
2849                                 btrfs_backref_free_edge(cache, edge);
2850                                 ret = -ENOMEM;
2851                                 goto out;
2852                         }
2853                         upper->owner = btrfs_header_owner(eb);
2854                         if (!test_bit(BTRFS_ROOT_SHAREABLE, &root->state))
2855                                 upper->cowonly = 1;
2856
2857                         /*
2858                          * If we know the block isn't shared we can avoid
2859                          * checking its backrefs.
2860                          */
2861                         if (btrfs_block_can_be_shared(root, eb))
2862                                 upper->checked = 0;
2863                         else
2864                                 upper->checked = 1;
2865
2866                         /*
2867                          * Add the block to pending list if we need to check its
2868                          * backrefs, we only do this once while walking up a
2869                          * tree as we will catch anything else later on.
2870                          */
2871                         if (!upper->checked && need_check) {
2872                                 need_check = false;
2873                                 list_add_tail(&edge->list[UPPER],
2874                                               &cache->pending_edge);
2875                         } else {
2876                                 if (upper->checked)
2877                                         need_check = true;
2878                                 INIT_LIST_HEAD(&edge->list[UPPER]);
2879                         }
2880                 } else {
2881                         upper = rb_entry(rb_node, struct btrfs_backref_node,
2882                                          rb_node);
2883                         ASSERT(upper->checked);
2884                         INIT_LIST_HEAD(&edge->list[UPPER]);
2885                         if (!upper->owner)
2886                                 upper->owner = btrfs_header_owner(eb);
2887                 }
2888                 btrfs_backref_link_edge(edge, lower, upper, LINK_LOWER);
2889
2890                 if (rb_node) {
2891                         btrfs_put_root(root);
2892                         break;
2893                 }
2894                 lower = upper;
2895                 upper = NULL;
2896         }
2897 out:
2898         btrfs_release_path(path);
2899         return ret;
2900 }
2901
2902 /*
2903  * Add backref node @cur into @cache.
2904  *
2905  * NOTE: Even if the function returned 0, @cur is not yet cached as its upper
2906  *       links aren't yet bi-directional. Needs to finish such links.
2907  *       Use btrfs_backref_finish_upper_links() to finish such linkage.
2908  *
2909  * @path:       Released path for indirect tree backref lookup
2910  * @iter:       Released backref iter for extent tree search
2911  * @node_key:   The first key of the tree block
2912  */
2913 int btrfs_backref_add_tree_node(struct btrfs_backref_cache *cache,
2914                                 struct btrfs_path *path,
2915                                 struct btrfs_backref_iter *iter,
2916                                 struct btrfs_key *node_key,
2917                                 struct btrfs_backref_node *cur)
2918 {
2919         struct btrfs_fs_info *fs_info = cache->fs_info;
2920         struct btrfs_backref_edge *edge;
2921         struct btrfs_backref_node *exist;
2922         int ret;
2923
2924         ret = btrfs_backref_iter_start(iter, cur->bytenr);
2925         if (ret < 0)
2926                 return ret;
2927         /*
2928          * We skip the first btrfs_tree_block_info, as we don't use the key
2929          * stored in it, but fetch it from the tree block
2930          */
2931         if (btrfs_backref_has_tree_block_info(iter)) {
2932                 ret = btrfs_backref_iter_next(iter);
2933                 if (ret < 0)
2934                         goto out;
2935                 /* No extra backref? This means the tree block is corrupted */
2936                 if (ret > 0) {
2937                         ret = -EUCLEAN;
2938                         goto out;
2939                 }
2940         }
2941         WARN_ON(cur->checked);
2942         if (!list_empty(&cur->upper)) {
2943                 /*
2944                  * The backref was added previously when processing backref of
2945                  * type BTRFS_TREE_BLOCK_REF_KEY
2946                  */
2947                 ASSERT(list_is_singular(&cur->upper));
2948                 edge = list_entry(cur->upper.next, struct btrfs_backref_edge,
2949                                   list[LOWER]);
2950                 ASSERT(list_empty(&edge->list[UPPER]));
2951                 exist = edge->node[UPPER];
2952                 /*
2953                  * Add the upper level block to pending list if we need check
2954                  * its backrefs
2955                  */
2956                 if (!exist->checked)
2957                         list_add_tail(&edge->list[UPPER], &cache->pending_edge);
2958         } else {
2959                 exist = NULL;
2960         }
2961
2962         for (; ret == 0; ret = btrfs_backref_iter_next(iter)) {
2963                 struct extent_buffer *eb;
2964                 struct btrfs_key key;
2965                 int type;
2966
2967                 cond_resched();
2968                 eb = btrfs_backref_get_eb(iter);
2969
2970                 key.objectid = iter->bytenr;
2971                 if (btrfs_backref_iter_is_inline_ref(iter)) {
2972                         struct btrfs_extent_inline_ref *iref;
2973
2974                         /* Update key for inline backref */
2975                         iref = (struct btrfs_extent_inline_ref *)
2976                                 ((unsigned long)iter->cur_ptr);
2977                         type = btrfs_get_extent_inline_ref_type(eb, iref,
2978                                                         BTRFS_REF_TYPE_BLOCK);
2979                         if (type == BTRFS_REF_TYPE_INVALID) {
2980                                 ret = -EUCLEAN;
2981                                 goto out;
2982                         }
2983                         key.type = type;
2984                         key.offset = btrfs_extent_inline_ref_offset(eb, iref);
2985                 } else {
2986                         key.type = iter->cur_key.type;
2987                         key.offset = iter->cur_key.offset;
2988                 }
2989
2990                 /*
2991                  * Parent node found and matches current inline ref, no need to
2992                  * rebuild this node for this inline ref
2993                  */
2994                 if (exist &&
2995                     ((key.type == BTRFS_TREE_BLOCK_REF_KEY &&
2996                       exist->owner == key.offset) ||
2997                      (key.type == BTRFS_SHARED_BLOCK_REF_KEY &&
2998                       exist->bytenr == key.offset))) {
2999                         exist = NULL;
3000                         continue;
3001                 }
3002
3003                 /* SHARED_BLOCK_REF means key.offset is the parent bytenr */
3004                 if (key.type == BTRFS_SHARED_BLOCK_REF_KEY) {
3005                         ret = handle_direct_tree_backref(cache, &key, cur);
3006                         if (ret < 0)
3007                                 goto out;
3008                         continue;
3009                 } else if (unlikely(key.type == BTRFS_EXTENT_REF_V0_KEY)) {
3010                         ret = -EINVAL;
3011                         btrfs_print_v0_err(fs_info);
3012                         btrfs_handle_fs_error(fs_info, ret, NULL);
3013                         goto out;
3014                 } else if (key.type != BTRFS_TREE_BLOCK_REF_KEY) {
3015                         continue;
3016                 }
3017
3018                 /*
3019                  * key.type == BTRFS_TREE_BLOCK_REF_KEY, inline ref offset
3020                  * means the root objectid. We need to search the tree to get
3021                  * its parent bytenr.
3022                  */
3023                 ret = handle_indirect_tree_backref(cache, path, &key, node_key,
3024                                                    cur);
3025                 if (ret < 0)
3026                         goto out;
3027         }
3028         ret = 0;
3029         cur->checked = 1;
3030         WARN_ON(exist);
3031 out:
3032         btrfs_backref_iter_release(iter);
3033         return ret;
3034 }
3035
3036 /*
3037  * Finish the upwards linkage created by btrfs_backref_add_tree_node()
3038  */
3039 int btrfs_backref_finish_upper_links(struct btrfs_backref_cache *cache,
3040                                      struct btrfs_backref_node *start)
3041 {
3042         struct list_head *useless_node = &cache->useless_node;
3043         struct btrfs_backref_edge *edge;
3044         struct rb_node *rb_node;
3045         LIST_HEAD(pending_edge);
3046
3047         ASSERT(start->checked);
3048
3049         /* Insert this node to cache if it's not COW-only */
3050         if (!start->cowonly) {
3051                 rb_node = rb_simple_insert(&cache->rb_root, start->bytenr,
3052                                            &start->rb_node);
3053                 if (rb_node)
3054                         btrfs_backref_panic(cache->fs_info, start->bytenr,
3055                                             -EEXIST);
3056                 list_add_tail(&start->lower, &cache->leaves);
3057         }
3058
3059         /*
3060          * Use breadth first search to iterate all related edges.
3061          *
3062          * The starting points are all the edges of this node
3063          */
3064         list_for_each_entry(edge, &start->upper, list[LOWER])
3065                 list_add_tail(&edge->list[UPPER], &pending_edge);
3066
3067         while (!list_empty(&pending_edge)) {
3068                 struct btrfs_backref_node *upper;
3069                 struct btrfs_backref_node *lower;
3070
3071                 edge = list_first_entry(&pending_edge,
3072                                 struct btrfs_backref_edge, list[UPPER]);
3073                 list_del_init(&edge->list[UPPER]);
3074                 upper = edge->node[UPPER];
3075                 lower = edge->node[LOWER];
3076
3077                 /* Parent is detached, no need to keep any edges */
3078                 if (upper->detached) {
3079                         list_del(&edge->list[LOWER]);
3080                         btrfs_backref_free_edge(cache, edge);
3081
3082                         /* Lower node is orphan, queue for cleanup */
3083                         if (list_empty(&lower->upper))
3084                                 list_add(&lower->list, useless_node);
3085                         continue;
3086                 }
3087
3088                 /*
3089                  * All new nodes added in current build_backref_tree() haven't
3090                  * been linked to the cache rb tree.
3091                  * So if we have upper->rb_node populated, this means a cache
3092                  * hit. We only need to link the edge, as @upper and all its
3093                  * parents have already been linked.
3094                  */
3095                 if (!RB_EMPTY_NODE(&upper->rb_node)) {
3096                         if (upper->lowest) {
3097                                 list_del_init(&upper->lower);
3098                                 upper->lowest = 0;
3099                         }
3100
3101                         list_add_tail(&edge->list[UPPER], &upper->lower);
3102                         continue;
3103                 }
3104
3105                 /* Sanity check, we shouldn't have any unchecked nodes */
3106                 if (!upper->checked) {
3107                         ASSERT(0);
3108                         return -EUCLEAN;
3109                 }
3110
3111                 /* Sanity check, COW-only node has non-COW-only parent */
3112                 if (start->cowonly != upper->cowonly) {
3113                         ASSERT(0);
3114                         return -EUCLEAN;
3115                 }
3116
3117                 /* Only cache non-COW-only (subvolume trees) tree blocks */
3118                 if (!upper->cowonly) {
3119                         rb_node = rb_simple_insert(&cache->rb_root, upper->bytenr,
3120                                                    &upper->rb_node);
3121                         if (rb_node) {
3122                                 btrfs_backref_panic(cache->fs_info,
3123                                                 upper->bytenr, -EEXIST);
3124                                 return -EUCLEAN;
3125                         }
3126                 }
3127
3128                 list_add_tail(&edge->list[UPPER], &upper->lower);
3129
3130                 /*
3131                  * Also queue all the parent edges of this uncached node
3132                  * to finish the upper linkage
3133                  */
3134                 list_for_each_entry(edge, &upper->upper, list[LOWER])
3135                         list_add_tail(&edge->list[UPPER], &pending_edge);
3136         }
3137         return 0;
3138 }
3139
3140 void btrfs_backref_error_cleanup(struct btrfs_backref_cache *cache,
3141                                  struct btrfs_backref_node *node)
3142 {
3143         struct btrfs_backref_node *lower;
3144         struct btrfs_backref_node *upper;
3145         struct btrfs_backref_edge *edge;
3146
3147         while (!list_empty(&cache->useless_node)) {
3148                 lower = list_first_entry(&cache->useless_node,
3149                                    struct btrfs_backref_node, list);
3150                 list_del_init(&lower->list);
3151         }
3152         while (!list_empty(&cache->pending_edge)) {
3153                 edge = list_first_entry(&cache->pending_edge,
3154                                 struct btrfs_backref_edge, list[UPPER]);
3155                 list_del(&edge->list[UPPER]);
3156                 list_del(&edge->list[LOWER]);
3157                 lower = edge->node[LOWER];
3158                 upper = edge->node[UPPER];
3159                 btrfs_backref_free_edge(cache, edge);
3160
3161                 /*
3162                  * Lower is no longer linked to any upper backref nodes and
3163                  * isn't in the cache, we can free it ourselves.
3164                  */
3165                 if (list_empty(&lower->upper) &&
3166                     RB_EMPTY_NODE(&lower->rb_node))
3167                         list_add(&lower->list, &cache->useless_node);
3168
3169                 if (!RB_EMPTY_NODE(&upper->rb_node))
3170                         continue;
3171
3172                 /* Add this guy's upper edges to the list to process */
3173                 list_for_each_entry(edge, &upper->upper, list[LOWER])
3174                         list_add_tail(&edge->list[UPPER],
3175                                       &cache->pending_edge);
3176                 if (list_empty(&upper->upper))
3177                         list_add(&upper->list, &cache->useless_node);
3178         }
3179
3180         while (!list_empty(&cache->useless_node)) {
3181                 lower = list_first_entry(&cache->useless_node,
3182                                    struct btrfs_backref_node, list);
3183                 list_del_init(&lower->list);
3184                 if (lower == node)
3185                         node = NULL;
3186                 btrfs_backref_drop_node(cache, lower);
3187         }
3188
3189         btrfs_backref_cleanup_node(cache, node);
3190         ASSERT(list_empty(&cache->useless_node) &&
3191                list_empty(&cache->pending_edge));
3192 }