1 // SPDX-License-Identifier: GPL-2.0
3 * Copyright (C) 2011 STRATO. All rights reserved.
7 #include <linux/rbtree.h>
8 #include <trace/events/btrfs.h>
13 #include "transaction.h"
14 #include "delayed-ref.h"
17 /* Just an arbitrary number so we can be sure this happened */
18 #define BACKREF_FOUND_SHARED 6
20 struct extent_inode_elem {
23 struct extent_inode_elem *next;
26 static int check_extent_in_eb(const struct btrfs_key *key,
27 const struct extent_buffer *eb,
28 const struct btrfs_file_extent_item *fi,
30 struct extent_inode_elem **eie,
34 struct extent_inode_elem *e;
37 !btrfs_file_extent_compression(eb, fi) &&
38 !btrfs_file_extent_encryption(eb, fi) &&
39 !btrfs_file_extent_other_encoding(eb, fi)) {
43 data_offset = btrfs_file_extent_offset(eb, fi);
44 data_len = btrfs_file_extent_num_bytes(eb, fi);
46 if (extent_item_pos < data_offset ||
47 extent_item_pos >= data_offset + data_len)
49 offset = extent_item_pos - data_offset;
52 e = kmalloc(sizeof(*e), GFP_NOFS);
57 e->inum = key->objectid;
58 e->offset = key->offset + offset;
64 static void free_inode_elem_list(struct extent_inode_elem *eie)
66 struct extent_inode_elem *eie_next;
68 for (; eie; eie = eie_next) {
74 static int find_extent_in_eb(const struct extent_buffer *eb,
75 u64 wanted_disk_byte, u64 extent_item_pos,
76 struct extent_inode_elem **eie,
81 struct btrfs_file_extent_item *fi;
88 * from the shared data ref, we only have the leaf but we need
89 * the key. thus, we must look into all items and see that we
90 * find one (some) with a reference to our extent item.
92 nritems = btrfs_header_nritems(eb);
93 for (slot = 0; slot < nritems; ++slot) {
94 btrfs_item_key_to_cpu(eb, &key, slot);
95 if (key.type != BTRFS_EXTENT_DATA_KEY)
97 fi = btrfs_item_ptr(eb, slot, struct btrfs_file_extent_item);
98 extent_type = btrfs_file_extent_type(eb, fi);
99 if (extent_type == BTRFS_FILE_EXTENT_INLINE)
101 /* don't skip BTRFS_FILE_EXTENT_PREALLOC, we can handle that */
102 disk_byte = btrfs_file_extent_disk_bytenr(eb, fi);
103 if (disk_byte != wanted_disk_byte)
106 ret = check_extent_in_eb(&key, eb, fi, extent_item_pos, eie, ignore_offset);
119 #define PREFTREE_INIT { .root = RB_ROOT, .count = 0 }
122 struct preftree direct; /* BTRFS_SHARED_[DATA|BLOCK]_REF_KEY */
123 struct preftree indirect; /* BTRFS_[TREE_BLOCK|EXTENT_DATA]_REF_KEY */
124 struct preftree indirect_missing_keys;
128 * Checks for a shared extent during backref search.
130 * The share_count tracks prelim_refs (direct and indirect) having a
132 * - incremented when a ref->count transitions to >0
133 * - decremented when a ref->count transitions to <1
141 static inline int extent_is_shared(struct share_check *sc)
143 return (sc && sc->share_count > 1) ? BACKREF_FOUND_SHARED : 0;
146 static struct kmem_cache *btrfs_prelim_ref_cache;
148 int __init btrfs_prelim_ref_init(void)
150 btrfs_prelim_ref_cache = kmem_cache_create("btrfs_prelim_ref",
151 sizeof(struct prelim_ref),
155 if (!btrfs_prelim_ref_cache)
160 void __cold btrfs_prelim_ref_exit(void)
162 kmem_cache_destroy(btrfs_prelim_ref_cache);
165 static void free_pref(struct prelim_ref *ref)
167 kmem_cache_free(btrfs_prelim_ref_cache, ref);
171 * Return 0 when both refs are for the same block (and can be merged).
172 * A -1 return indicates ref1 is a 'lower' block than ref2, while 1
173 * indicates a 'higher' block.
175 static int prelim_ref_compare(struct prelim_ref *ref1,
176 struct prelim_ref *ref2)
178 if (ref1->level < ref2->level)
180 if (ref1->level > ref2->level)
182 if (ref1->root_id < ref2->root_id)
184 if (ref1->root_id > ref2->root_id)
186 if (ref1->key_for_search.type < ref2->key_for_search.type)
188 if (ref1->key_for_search.type > ref2->key_for_search.type)
190 if (ref1->key_for_search.objectid < ref2->key_for_search.objectid)
192 if (ref1->key_for_search.objectid > ref2->key_for_search.objectid)
194 if (ref1->key_for_search.offset < ref2->key_for_search.offset)
196 if (ref1->key_for_search.offset > ref2->key_for_search.offset)
198 if (ref1->parent < ref2->parent)
200 if (ref1->parent > ref2->parent)
206 static void update_share_count(struct share_check *sc, int oldcount,
209 if ((!sc) || (oldcount == 0 && newcount < 1))
212 if (oldcount > 0 && newcount < 1)
214 else if (oldcount < 1 && newcount > 0)
219 * Add @newref to the @root rbtree, merging identical refs.
221 * Callers should assume that newref has been freed after calling.
223 static void prelim_ref_insert(const struct btrfs_fs_info *fs_info,
224 struct preftree *preftree,
225 struct prelim_ref *newref,
226 struct share_check *sc)
228 struct rb_root *root;
230 struct rb_node *parent = NULL;
231 struct prelim_ref *ref;
234 root = &preftree->root;
239 ref = rb_entry(parent, struct prelim_ref, rbnode);
240 result = prelim_ref_compare(ref, newref);
243 } else if (result > 0) {
246 /* Identical refs, merge them and free @newref */
247 struct extent_inode_elem *eie = ref->inode_list;
249 while (eie && eie->next)
253 ref->inode_list = newref->inode_list;
255 eie->next = newref->inode_list;
256 trace_btrfs_prelim_ref_merge(fs_info, ref, newref,
259 * A delayed ref can have newref->count < 0.
260 * The ref->count is updated to follow any
261 * BTRFS_[ADD|DROP]_DELAYED_REF actions.
263 update_share_count(sc, ref->count,
264 ref->count + newref->count);
265 ref->count += newref->count;
271 update_share_count(sc, 0, newref->count);
273 trace_btrfs_prelim_ref_insert(fs_info, newref, NULL, preftree->count);
274 rb_link_node(&newref->rbnode, parent, p);
275 rb_insert_color(&newref->rbnode, root);
279 * Release the entire tree. We don't care about internal consistency so
280 * just free everything and then reset the tree root.
282 static void prelim_release(struct preftree *preftree)
284 struct prelim_ref *ref, *next_ref;
286 rbtree_postorder_for_each_entry_safe(ref, next_ref, &preftree->root,
290 preftree->root = RB_ROOT;
295 * the rules for all callers of this function are:
296 * - obtaining the parent is the goal
297 * - if you add a key, you must know that it is a correct key
298 * - if you cannot add the parent or a correct key, then we will look into the
299 * block later to set a correct key
303 * backref type | shared | indirect | shared | indirect
304 * information | tree | tree | data | data
305 * --------------------+--------+----------+--------+----------
306 * parent logical | y | - | - | -
307 * key to resolve | - | y | y | y
308 * tree block logical | - | - | - | -
309 * root for resolving | y | y | y | y
311 * - column 1: we've the parent -> done
312 * - column 2, 3, 4: we use the key to find the parent
314 * on disk refs (inline or keyed)
315 * ==============================
316 * backref type | shared | indirect | shared | indirect
317 * information | tree | tree | data | data
318 * --------------------+--------+----------+--------+----------
319 * parent logical | y | - | y | -
320 * key to resolve | - | - | - | y
321 * tree block logical | y | y | y | y
322 * root for resolving | - | y | y | y
324 * - column 1, 3: we've the parent -> done
325 * - column 2: we take the first key from the block to find the parent
326 * (see add_missing_keys)
327 * - column 4: we use the key to find the parent
329 * additional information that's available but not required to find the parent
330 * block might help in merging entries to gain some speed.
332 static int add_prelim_ref(const struct btrfs_fs_info *fs_info,
333 struct preftree *preftree, u64 root_id,
334 const struct btrfs_key *key, int level, u64 parent,
335 u64 wanted_disk_byte, int count,
336 struct share_check *sc, gfp_t gfp_mask)
338 struct prelim_ref *ref;
340 if (root_id == BTRFS_DATA_RELOC_TREE_OBJECTID)
343 ref = kmem_cache_alloc(btrfs_prelim_ref_cache, gfp_mask);
347 ref->root_id = root_id;
349 ref->key_for_search = *key;
351 * We can often find data backrefs with an offset that is too
352 * large (>= LLONG_MAX, maximum allowed file offset) due to
353 * underflows when subtracting a file's offset with the data
354 * offset of its corresponding extent data item. This can
355 * happen for example in the clone ioctl.
356 * So if we detect such case we set the search key's offset to
357 * zero to make sure we will find the matching file extent item
358 * at add_all_parents(), otherwise we will miss it because the
359 * offset taken form the backref is much larger then the offset
360 * of the file extent item. This can make us scan a very large
361 * number of file extent items, but at least it will not make
363 * This is an ugly workaround for a behaviour that should have
364 * never existed, but it does and a fix for the clone ioctl
365 * would touch a lot of places, cause backwards incompatibility
366 * and would not fix the problem for extents cloned with older
369 if (ref->key_for_search.type == BTRFS_EXTENT_DATA_KEY &&
370 ref->key_for_search.offset >= LLONG_MAX)
371 ref->key_for_search.offset = 0;
373 memset(&ref->key_for_search, 0, sizeof(ref->key_for_search));
376 ref->inode_list = NULL;
379 ref->parent = parent;
380 ref->wanted_disk_byte = wanted_disk_byte;
381 prelim_ref_insert(fs_info, preftree, ref, sc);
382 return extent_is_shared(sc);
385 /* direct refs use root == 0, key == NULL */
386 static int add_direct_ref(const struct btrfs_fs_info *fs_info,
387 struct preftrees *preftrees, int level, u64 parent,
388 u64 wanted_disk_byte, int count,
389 struct share_check *sc, gfp_t gfp_mask)
391 return add_prelim_ref(fs_info, &preftrees->direct, 0, NULL, level,
392 parent, wanted_disk_byte, count, sc, gfp_mask);
395 /* indirect refs use parent == 0 */
396 static int add_indirect_ref(const struct btrfs_fs_info *fs_info,
397 struct preftrees *preftrees, u64 root_id,
398 const struct btrfs_key *key, int level,
399 u64 wanted_disk_byte, int count,
400 struct share_check *sc, gfp_t gfp_mask)
402 struct preftree *tree = &preftrees->indirect;
405 tree = &preftrees->indirect_missing_keys;
406 return add_prelim_ref(fs_info, tree, root_id, key, level, 0,
407 wanted_disk_byte, count, sc, gfp_mask);
410 static int add_all_parents(struct btrfs_root *root, struct btrfs_path *path,
411 struct ulist *parents, struct prelim_ref *ref,
412 int level, u64 time_seq, const u64 *extent_item_pos,
413 u64 total_refs, bool ignore_offset)
417 struct extent_buffer *eb;
418 struct btrfs_key key;
419 struct btrfs_key *key_for_search = &ref->key_for_search;
420 struct btrfs_file_extent_item *fi;
421 struct extent_inode_elem *eie = NULL, *old = NULL;
423 u64 wanted_disk_byte = ref->wanted_disk_byte;
427 eb = path->nodes[level];
428 ret = ulist_add(parents, eb->start, 0, GFP_NOFS);
435 * We normally enter this function with the path already pointing to
436 * the first item to check. But sometimes, we may enter it with
437 * slot==nritems. In that case, go to the next leaf before we continue.
439 if (path->slots[0] >= btrfs_header_nritems(path->nodes[0])) {
440 if (time_seq == SEQ_LAST)
441 ret = btrfs_next_leaf(root, path);
443 ret = btrfs_next_old_leaf(root, path, time_seq);
446 while (!ret && count < total_refs) {
448 slot = path->slots[0];
450 btrfs_item_key_to_cpu(eb, &key, slot);
452 if (key.objectid != key_for_search->objectid ||
453 key.type != BTRFS_EXTENT_DATA_KEY)
456 fi = btrfs_item_ptr(eb, slot, struct btrfs_file_extent_item);
457 disk_byte = btrfs_file_extent_disk_bytenr(eb, fi);
459 if (disk_byte == wanted_disk_byte) {
463 if (extent_item_pos) {
464 ret = check_extent_in_eb(&key, eb, fi,
466 &eie, ignore_offset);
472 ret = ulist_add_merge_ptr(parents, eb->start,
473 eie, (void **)&old, GFP_NOFS);
476 if (!ret && extent_item_pos) {
484 if (time_seq == SEQ_LAST)
485 ret = btrfs_next_item(root, path);
487 ret = btrfs_next_old_item(root, path, time_seq);
493 free_inode_elem_list(eie);
498 * resolve an indirect backref in the form (root_id, key, level)
499 * to a logical address
501 static int resolve_indirect_ref(struct btrfs_fs_info *fs_info,
502 struct btrfs_path *path, u64 time_seq,
503 struct prelim_ref *ref, struct ulist *parents,
504 const u64 *extent_item_pos, u64 total_refs,
507 struct btrfs_root *root;
508 struct btrfs_key root_key;
509 struct extent_buffer *eb;
512 int level = ref->level;
515 root_key.objectid = ref->root_id;
516 root_key.type = BTRFS_ROOT_ITEM_KEY;
517 root_key.offset = (u64)-1;
519 index = srcu_read_lock(&fs_info->subvol_srcu);
521 root = btrfs_get_fs_root(fs_info, &root_key, false);
523 srcu_read_unlock(&fs_info->subvol_srcu, index);
528 if (btrfs_is_testing(fs_info)) {
529 srcu_read_unlock(&fs_info->subvol_srcu, index);
534 if (path->search_commit_root)
535 root_level = btrfs_header_level(root->commit_root);
536 else if (time_seq == SEQ_LAST)
537 root_level = btrfs_header_level(root->node);
539 root_level = btrfs_old_root_level(root, time_seq);
541 if (root_level + 1 == level) {
542 srcu_read_unlock(&fs_info->subvol_srcu, index);
546 path->lowest_level = level;
547 if (time_seq == SEQ_LAST)
548 ret = btrfs_search_slot(NULL, root, &ref->key_for_search, path,
551 ret = btrfs_search_old_slot(root, &ref->key_for_search, path,
554 /* root node has been locked, we can release @subvol_srcu safely here */
555 srcu_read_unlock(&fs_info->subvol_srcu, index);
558 "search slot in root %llu (level %d, ref count %d) returned %d for key (%llu %u %llu)",
559 ref->root_id, level, ref->count, ret,
560 ref->key_for_search.objectid, ref->key_for_search.type,
561 ref->key_for_search.offset);
565 eb = path->nodes[level];
567 if (WARN_ON(!level)) {
572 eb = path->nodes[level];
575 ret = add_all_parents(root, path, parents, ref, level, time_seq,
576 extent_item_pos, total_refs, ignore_offset);
578 path->lowest_level = 0;
579 btrfs_release_path(path);
583 static struct extent_inode_elem *
584 unode_aux_to_inode_list(struct ulist_node *node)
588 return (struct extent_inode_elem *)(uintptr_t)node->aux;
592 * We maintain three seperate rbtrees: one for direct refs, one for
593 * indirect refs which have a key, and one for indirect refs which do not
594 * have a key. Each tree does merge on insertion.
596 * Once all of the references are located, we iterate over the tree of
597 * indirect refs with missing keys. An appropriate key is located and
598 * the ref is moved onto the tree for indirect refs. After all missing
599 * keys are thus located, we iterate over the indirect ref tree, resolve
600 * each reference, and then insert the resolved reference onto the
601 * direct tree (merging there too).
603 * New backrefs (i.e., for parent nodes) are added to the appropriate
604 * rbtree as they are encountered. The new backrefs are subsequently
607 static int resolve_indirect_refs(struct btrfs_fs_info *fs_info,
608 struct btrfs_path *path, u64 time_seq,
609 struct preftrees *preftrees,
610 const u64 *extent_item_pos, u64 total_refs,
611 struct share_check *sc, bool ignore_offset)
615 struct ulist *parents;
616 struct ulist_node *node;
617 struct ulist_iterator uiter;
618 struct rb_node *rnode;
620 parents = ulist_alloc(GFP_NOFS);
625 * We could trade memory usage for performance here by iterating
626 * the tree, allocating new refs for each insertion, and then
627 * freeing the entire indirect tree when we're done. In some test
628 * cases, the tree can grow quite large (~200k objects).
630 while ((rnode = rb_first(&preftrees->indirect.root))) {
631 struct prelim_ref *ref;
633 ref = rb_entry(rnode, struct prelim_ref, rbnode);
634 if (WARN(ref->parent,
635 "BUG: direct ref found in indirect tree")) {
640 rb_erase(&ref->rbnode, &preftrees->indirect.root);
641 preftrees->indirect.count--;
643 if (ref->count == 0) {
648 if (sc && sc->root_objectid &&
649 ref->root_id != sc->root_objectid) {
651 ret = BACKREF_FOUND_SHARED;
654 err = resolve_indirect_ref(fs_info, path, time_seq, ref,
655 parents, extent_item_pos,
656 total_refs, ignore_offset);
658 * we can only tolerate ENOENT,otherwise,we should catch error
659 * and return directly.
661 if (err == -ENOENT) {
662 prelim_ref_insert(fs_info, &preftrees->direct, ref,
671 /* we put the first parent into the ref at hand */
672 ULIST_ITER_INIT(&uiter);
673 node = ulist_next(parents, &uiter);
674 ref->parent = node ? node->val : 0;
675 ref->inode_list = unode_aux_to_inode_list(node);
677 /* Add a prelim_ref(s) for any other parent(s). */
678 while ((node = ulist_next(parents, &uiter))) {
679 struct prelim_ref *new_ref;
681 new_ref = kmem_cache_alloc(btrfs_prelim_ref_cache,
688 memcpy(new_ref, ref, sizeof(*ref));
689 new_ref->parent = node->val;
690 new_ref->inode_list = unode_aux_to_inode_list(node);
691 prelim_ref_insert(fs_info, &preftrees->direct,
696 * Now it's a direct ref, put it in the the direct tree. We must
697 * do this last because the ref could be merged/freed here.
699 prelim_ref_insert(fs_info, &preftrees->direct, ref, NULL);
701 ulist_reinit(parents);
710 * read tree blocks and add keys where required.
712 static int add_missing_keys(struct btrfs_fs_info *fs_info,
713 struct preftrees *preftrees, bool lock)
715 struct prelim_ref *ref;
716 struct extent_buffer *eb;
717 struct preftree *tree = &preftrees->indirect_missing_keys;
718 struct rb_node *node;
720 while ((node = rb_first(&tree->root))) {
721 ref = rb_entry(node, struct prelim_ref, rbnode);
722 rb_erase(node, &tree->root);
724 BUG_ON(ref->parent); /* should not be a direct ref */
725 BUG_ON(ref->key_for_search.type);
726 BUG_ON(!ref->wanted_disk_byte);
728 eb = read_tree_block(fs_info, ref->wanted_disk_byte, 0,
729 ref->level - 1, NULL);
733 } else if (!extent_buffer_uptodate(eb)) {
735 free_extent_buffer(eb);
739 btrfs_tree_read_lock(eb);
740 if (btrfs_header_level(eb) == 0)
741 btrfs_item_key_to_cpu(eb, &ref->key_for_search, 0);
743 btrfs_node_key_to_cpu(eb, &ref->key_for_search, 0);
745 btrfs_tree_read_unlock(eb);
746 free_extent_buffer(eb);
747 prelim_ref_insert(fs_info, &preftrees->indirect, ref, NULL);
754 * add all currently queued delayed refs from this head whose seq nr is
755 * smaller or equal that seq to the list
757 static int add_delayed_refs(const struct btrfs_fs_info *fs_info,
758 struct btrfs_delayed_ref_head *head, u64 seq,
759 struct preftrees *preftrees, u64 *total_refs,
760 struct share_check *sc)
762 struct btrfs_delayed_ref_node *node;
763 struct btrfs_delayed_extent_op *extent_op = head->extent_op;
764 struct btrfs_key key;
765 struct btrfs_key tmp_op_key;
770 if (extent_op && extent_op->update_key)
771 btrfs_disk_key_to_cpu(&tmp_op_key, &extent_op->key);
773 spin_lock(&head->lock);
774 for (n = rb_first(&head->ref_tree); n; n = rb_next(n)) {
775 node = rb_entry(n, struct btrfs_delayed_ref_node,
780 switch (node->action) {
781 case BTRFS_ADD_DELAYED_EXTENT:
782 case BTRFS_UPDATE_DELAYED_HEAD:
785 case BTRFS_ADD_DELAYED_REF:
786 count = node->ref_mod;
788 case BTRFS_DROP_DELAYED_REF:
789 count = node->ref_mod * -1;
794 *total_refs += count;
795 switch (node->type) {
796 case BTRFS_TREE_BLOCK_REF_KEY: {
797 /* NORMAL INDIRECT METADATA backref */
798 struct btrfs_delayed_tree_ref *ref;
800 ref = btrfs_delayed_node_to_tree_ref(node);
801 ret = add_indirect_ref(fs_info, preftrees, ref->root,
802 &tmp_op_key, ref->level + 1,
803 node->bytenr, count, sc,
807 case BTRFS_SHARED_BLOCK_REF_KEY: {
808 /* SHARED DIRECT METADATA backref */
809 struct btrfs_delayed_tree_ref *ref;
811 ref = btrfs_delayed_node_to_tree_ref(node);
813 ret = add_direct_ref(fs_info, preftrees, ref->level + 1,
814 ref->parent, node->bytenr, count,
818 case BTRFS_EXTENT_DATA_REF_KEY: {
819 /* NORMAL INDIRECT DATA backref */
820 struct btrfs_delayed_data_ref *ref;
821 ref = btrfs_delayed_node_to_data_ref(node);
823 key.objectid = ref->objectid;
824 key.type = BTRFS_EXTENT_DATA_KEY;
825 key.offset = ref->offset;
828 * Found a inum that doesn't match our known inum, we
831 if (sc && sc->inum && ref->objectid != sc->inum) {
832 ret = BACKREF_FOUND_SHARED;
836 ret = add_indirect_ref(fs_info, preftrees, ref->root,
837 &key, 0, node->bytenr, count, sc,
841 case BTRFS_SHARED_DATA_REF_KEY: {
842 /* SHARED DIRECT FULL backref */
843 struct btrfs_delayed_data_ref *ref;
845 ref = btrfs_delayed_node_to_data_ref(node);
847 ret = add_direct_ref(fs_info, preftrees, 0, ref->parent,
848 node->bytenr, count, sc,
856 * We must ignore BACKREF_FOUND_SHARED until all delayed
857 * refs have been checked.
859 if (ret && (ret != BACKREF_FOUND_SHARED))
863 ret = extent_is_shared(sc);
865 spin_unlock(&head->lock);
870 * add all inline backrefs for bytenr to the list
872 * Returns 0 on success, <0 on error, or BACKREF_FOUND_SHARED.
874 static int add_inline_refs(const struct btrfs_fs_info *fs_info,
875 struct btrfs_path *path, u64 bytenr,
876 int *info_level, struct preftrees *preftrees,
877 u64 *total_refs, struct share_check *sc)
881 struct extent_buffer *leaf;
882 struct btrfs_key key;
883 struct btrfs_key found_key;
886 struct btrfs_extent_item *ei;
891 * enumerate all inline refs
893 leaf = path->nodes[0];
894 slot = path->slots[0];
896 item_size = btrfs_item_size_nr(leaf, slot);
897 BUG_ON(item_size < sizeof(*ei));
899 ei = btrfs_item_ptr(leaf, slot, struct btrfs_extent_item);
900 flags = btrfs_extent_flags(leaf, ei);
901 *total_refs += btrfs_extent_refs(leaf, ei);
902 btrfs_item_key_to_cpu(leaf, &found_key, slot);
904 ptr = (unsigned long)(ei + 1);
905 end = (unsigned long)ei + item_size;
907 if (found_key.type == BTRFS_EXTENT_ITEM_KEY &&
908 flags & BTRFS_EXTENT_FLAG_TREE_BLOCK) {
909 struct btrfs_tree_block_info *info;
911 info = (struct btrfs_tree_block_info *)ptr;
912 *info_level = btrfs_tree_block_level(leaf, info);
913 ptr += sizeof(struct btrfs_tree_block_info);
915 } else if (found_key.type == BTRFS_METADATA_ITEM_KEY) {
916 *info_level = found_key.offset;
918 BUG_ON(!(flags & BTRFS_EXTENT_FLAG_DATA));
922 struct btrfs_extent_inline_ref *iref;
926 iref = (struct btrfs_extent_inline_ref *)ptr;
927 type = btrfs_get_extent_inline_ref_type(leaf, iref,
929 if (type == BTRFS_REF_TYPE_INVALID)
932 offset = btrfs_extent_inline_ref_offset(leaf, iref);
935 case BTRFS_SHARED_BLOCK_REF_KEY:
936 ret = add_direct_ref(fs_info, preftrees,
937 *info_level + 1, offset,
938 bytenr, 1, NULL, GFP_NOFS);
940 case BTRFS_SHARED_DATA_REF_KEY: {
941 struct btrfs_shared_data_ref *sdref;
944 sdref = (struct btrfs_shared_data_ref *)(iref + 1);
945 count = btrfs_shared_data_ref_count(leaf, sdref);
947 ret = add_direct_ref(fs_info, preftrees, 0, offset,
948 bytenr, count, sc, GFP_NOFS);
951 case BTRFS_TREE_BLOCK_REF_KEY:
952 ret = add_indirect_ref(fs_info, preftrees, offset,
953 NULL, *info_level + 1,
954 bytenr, 1, NULL, GFP_NOFS);
956 case BTRFS_EXTENT_DATA_REF_KEY: {
957 struct btrfs_extent_data_ref *dref;
961 dref = (struct btrfs_extent_data_ref *)(&iref->offset);
962 count = btrfs_extent_data_ref_count(leaf, dref);
963 key.objectid = btrfs_extent_data_ref_objectid(leaf,
965 key.type = BTRFS_EXTENT_DATA_KEY;
966 key.offset = btrfs_extent_data_ref_offset(leaf, dref);
968 if (sc && sc->inum && key.objectid != sc->inum) {
969 ret = BACKREF_FOUND_SHARED;
973 root = btrfs_extent_data_ref_root(leaf, dref);
975 ret = add_indirect_ref(fs_info, preftrees, root,
976 &key, 0, bytenr, count,
985 ptr += btrfs_extent_inline_ref_size(type);
992 * add all non-inline backrefs for bytenr to the list
994 * Returns 0 on success, <0 on error, or BACKREF_FOUND_SHARED.
996 static int add_keyed_refs(struct btrfs_fs_info *fs_info,
997 struct btrfs_path *path, u64 bytenr,
998 int info_level, struct preftrees *preftrees,
999 struct share_check *sc)
1001 struct btrfs_root *extent_root = fs_info->extent_root;
1004 struct extent_buffer *leaf;
1005 struct btrfs_key key;
1008 ret = btrfs_next_item(extent_root, path);
1016 slot = path->slots[0];
1017 leaf = path->nodes[0];
1018 btrfs_item_key_to_cpu(leaf, &key, slot);
1020 if (key.objectid != bytenr)
1022 if (key.type < BTRFS_TREE_BLOCK_REF_KEY)
1024 if (key.type > BTRFS_SHARED_DATA_REF_KEY)
1028 case BTRFS_SHARED_BLOCK_REF_KEY:
1029 /* SHARED DIRECT METADATA backref */
1030 ret = add_direct_ref(fs_info, preftrees,
1031 info_level + 1, key.offset,
1032 bytenr, 1, NULL, GFP_NOFS);
1034 case BTRFS_SHARED_DATA_REF_KEY: {
1035 /* SHARED DIRECT FULL backref */
1036 struct btrfs_shared_data_ref *sdref;
1039 sdref = btrfs_item_ptr(leaf, slot,
1040 struct btrfs_shared_data_ref);
1041 count = btrfs_shared_data_ref_count(leaf, sdref);
1042 ret = add_direct_ref(fs_info, preftrees, 0,
1043 key.offset, bytenr, count,
1047 case BTRFS_TREE_BLOCK_REF_KEY:
1048 /* NORMAL INDIRECT METADATA backref */
1049 ret = add_indirect_ref(fs_info, preftrees, key.offset,
1050 NULL, info_level + 1, bytenr,
1053 case BTRFS_EXTENT_DATA_REF_KEY: {
1054 /* NORMAL INDIRECT DATA backref */
1055 struct btrfs_extent_data_ref *dref;
1059 dref = btrfs_item_ptr(leaf, slot,
1060 struct btrfs_extent_data_ref);
1061 count = btrfs_extent_data_ref_count(leaf, dref);
1062 key.objectid = btrfs_extent_data_ref_objectid(leaf,
1064 key.type = BTRFS_EXTENT_DATA_KEY;
1065 key.offset = btrfs_extent_data_ref_offset(leaf, dref);
1067 if (sc && sc->inum && key.objectid != sc->inum) {
1068 ret = BACKREF_FOUND_SHARED;
1072 root = btrfs_extent_data_ref_root(leaf, dref);
1073 ret = add_indirect_ref(fs_info, preftrees, root,
1074 &key, 0, bytenr, count,
1090 * this adds all existing backrefs (inline backrefs, backrefs and delayed
1091 * refs) for the given bytenr to the refs list, merges duplicates and resolves
1092 * indirect refs to their parent bytenr.
1093 * When roots are found, they're added to the roots list
1095 * If time_seq is set to SEQ_LAST, it will not search delayed_refs, and behave
1096 * much like trans == NULL case, the difference only lies in it will not
1098 * The special case is for qgroup to search roots in commit_transaction().
1100 * @sc - if !NULL, then immediately return BACKREF_FOUND_SHARED when a
1101 * shared extent is detected.
1103 * Otherwise this returns 0 for success and <0 for an error.
1105 * If ignore_offset is set to false, only extent refs whose offsets match
1106 * extent_item_pos are returned. If true, every extent ref is returned
1107 * and extent_item_pos is ignored.
1109 * FIXME some caching might speed things up
1111 static int find_parent_nodes(struct btrfs_trans_handle *trans,
1112 struct btrfs_fs_info *fs_info, u64 bytenr,
1113 u64 time_seq, struct ulist *refs,
1114 struct ulist *roots, const u64 *extent_item_pos,
1115 struct share_check *sc, bool ignore_offset)
1117 struct btrfs_key key;
1118 struct btrfs_path *path;
1119 struct btrfs_delayed_ref_root *delayed_refs = NULL;
1120 struct btrfs_delayed_ref_head *head;
1123 struct prelim_ref *ref;
1124 struct rb_node *node;
1125 struct extent_inode_elem *eie = NULL;
1126 /* total of both direct AND indirect refs! */
1128 struct preftrees preftrees = {
1129 .direct = PREFTREE_INIT,
1130 .indirect = PREFTREE_INIT,
1131 .indirect_missing_keys = PREFTREE_INIT
1134 key.objectid = bytenr;
1135 key.offset = (u64)-1;
1136 if (btrfs_fs_incompat(fs_info, SKINNY_METADATA))
1137 key.type = BTRFS_METADATA_ITEM_KEY;
1139 key.type = BTRFS_EXTENT_ITEM_KEY;
1141 path = btrfs_alloc_path();
1145 path->search_commit_root = 1;
1146 path->skip_locking = 1;
1149 if (time_seq == SEQ_LAST)
1150 path->skip_locking = 1;
1153 * grab both a lock on the path and a lock on the delayed ref head.
1154 * We need both to get a consistent picture of how the refs look
1155 * at a specified point in time
1160 ret = btrfs_search_slot(trans, fs_info->extent_root, &key, path, 0, 0);
1165 #ifdef CONFIG_BTRFS_FS_RUN_SANITY_TESTS
1166 if (trans && likely(trans->type != __TRANS_DUMMY) &&
1167 time_seq != SEQ_LAST) {
1169 if (trans && time_seq != SEQ_LAST) {
1172 * look if there are updates for this ref queued and lock the
1175 delayed_refs = &trans->transaction->delayed_refs;
1176 spin_lock(&delayed_refs->lock);
1177 head = btrfs_find_delayed_ref_head(delayed_refs, bytenr);
1179 if (!mutex_trylock(&head->mutex)) {
1180 refcount_inc(&head->refs);
1181 spin_unlock(&delayed_refs->lock);
1183 btrfs_release_path(path);
1186 * Mutex was contended, block until it's
1187 * released and try again
1189 mutex_lock(&head->mutex);
1190 mutex_unlock(&head->mutex);
1191 btrfs_put_delayed_ref_head(head);
1194 spin_unlock(&delayed_refs->lock);
1195 ret = add_delayed_refs(fs_info, head, time_seq,
1196 &preftrees, &total_refs, sc);
1197 mutex_unlock(&head->mutex);
1201 spin_unlock(&delayed_refs->lock);
1205 if (path->slots[0]) {
1206 struct extent_buffer *leaf;
1210 leaf = path->nodes[0];
1211 slot = path->slots[0];
1212 btrfs_item_key_to_cpu(leaf, &key, slot);
1213 if (key.objectid == bytenr &&
1214 (key.type == BTRFS_EXTENT_ITEM_KEY ||
1215 key.type == BTRFS_METADATA_ITEM_KEY)) {
1216 ret = add_inline_refs(fs_info, path, bytenr,
1217 &info_level, &preftrees,
1221 ret = add_keyed_refs(fs_info, path, bytenr, info_level,
1228 btrfs_release_path(path);
1230 ret = add_missing_keys(fs_info, &preftrees, path->skip_locking == 0);
1234 WARN_ON(!RB_EMPTY_ROOT(&preftrees.indirect_missing_keys.root));
1236 ret = resolve_indirect_refs(fs_info, path, time_seq, &preftrees,
1237 extent_item_pos, total_refs, sc, ignore_offset);
1241 WARN_ON(!RB_EMPTY_ROOT(&preftrees.indirect.root));
1244 * This walks the tree of merged and resolved refs. Tree blocks are
1245 * read in as needed. Unique entries are added to the ulist, and
1246 * the list of found roots is updated.
1248 * We release the entire tree in one go before returning.
1250 node = rb_first(&preftrees.direct.root);
1252 ref = rb_entry(node, struct prelim_ref, rbnode);
1253 node = rb_next(&ref->rbnode);
1255 * ref->count < 0 can happen here if there are delayed
1256 * refs with a node->action of BTRFS_DROP_DELAYED_REF.
1257 * prelim_ref_insert() relies on this when merging
1258 * identical refs to keep the overall count correct.
1259 * prelim_ref_insert() will merge only those refs
1260 * which compare identically. Any refs having
1261 * e.g. different offsets would not be merged,
1262 * and would retain their original ref->count < 0.
1264 if (roots && ref->count && ref->root_id && ref->parent == 0) {
1265 if (sc && sc->root_objectid &&
1266 ref->root_id != sc->root_objectid) {
1267 ret = BACKREF_FOUND_SHARED;
1271 /* no parent == root of tree */
1272 ret = ulist_add(roots, ref->root_id, 0, GFP_NOFS);
1276 if (ref->count && ref->parent) {
1277 if (extent_item_pos && !ref->inode_list &&
1279 struct extent_buffer *eb;
1281 eb = read_tree_block(fs_info, ref->parent, 0,
1286 } else if (!extent_buffer_uptodate(eb)) {
1287 free_extent_buffer(eb);
1291 if (!path->skip_locking) {
1292 btrfs_tree_read_lock(eb);
1293 btrfs_set_lock_blocking_rw(eb, BTRFS_READ_LOCK);
1295 ret = find_extent_in_eb(eb, bytenr,
1296 *extent_item_pos, &eie, ignore_offset);
1297 if (!path->skip_locking)
1298 btrfs_tree_read_unlock_blocking(eb);
1299 free_extent_buffer(eb);
1302 ref->inode_list = eie;
1304 ret = ulist_add_merge_ptr(refs, ref->parent,
1306 (void **)&eie, GFP_NOFS);
1309 if (!ret && extent_item_pos) {
1311 * we've recorded that parent, so we must extend
1312 * its inode list here
1317 eie->next = ref->inode_list;
1325 btrfs_free_path(path);
1327 prelim_release(&preftrees.direct);
1328 prelim_release(&preftrees.indirect);
1329 prelim_release(&preftrees.indirect_missing_keys);
1332 free_inode_elem_list(eie);
1336 static void free_leaf_list(struct ulist *blocks)
1338 struct ulist_node *node = NULL;
1339 struct extent_inode_elem *eie;
1340 struct ulist_iterator uiter;
1342 ULIST_ITER_INIT(&uiter);
1343 while ((node = ulist_next(blocks, &uiter))) {
1346 eie = unode_aux_to_inode_list(node);
1347 free_inode_elem_list(eie);
1355 * Finds all leafs with a reference to the specified combination of bytenr and
1356 * offset. key_list_head will point to a list of corresponding keys (caller must
1357 * free each list element). The leafs will be stored in the leafs ulist, which
1358 * must be freed with ulist_free.
1360 * returns 0 on success, <0 on error
1362 static int btrfs_find_all_leafs(struct btrfs_trans_handle *trans,
1363 struct btrfs_fs_info *fs_info, u64 bytenr,
1364 u64 time_seq, struct ulist **leafs,
1365 const u64 *extent_item_pos, bool ignore_offset)
1369 *leafs = ulist_alloc(GFP_NOFS);
1373 ret = find_parent_nodes(trans, fs_info, bytenr, time_seq,
1374 *leafs, NULL, extent_item_pos, NULL, ignore_offset);
1375 if (ret < 0 && ret != -ENOENT) {
1376 free_leaf_list(*leafs);
1384 * walk all backrefs for a given extent to find all roots that reference this
1385 * extent. Walking a backref means finding all extents that reference this
1386 * extent and in turn walk the backrefs of those, too. Naturally this is a
1387 * recursive process, but here it is implemented in an iterative fashion: We
1388 * find all referencing extents for the extent in question and put them on a
1389 * list. In turn, we find all referencing extents for those, further appending
1390 * to the list. The way we iterate the list allows adding more elements after
1391 * the current while iterating. The process stops when we reach the end of the
1392 * list. Found roots are added to the roots list.
1394 * returns 0 on success, < 0 on error.
1396 static int btrfs_find_all_roots_safe(struct btrfs_trans_handle *trans,
1397 struct btrfs_fs_info *fs_info, u64 bytenr,
1398 u64 time_seq, struct ulist **roots,
1402 struct ulist_node *node = NULL;
1403 struct ulist_iterator uiter;
1406 tmp = ulist_alloc(GFP_NOFS);
1409 *roots = ulist_alloc(GFP_NOFS);
1415 ULIST_ITER_INIT(&uiter);
1417 ret = find_parent_nodes(trans, fs_info, bytenr, time_seq,
1418 tmp, *roots, NULL, NULL, ignore_offset);
1419 if (ret < 0 && ret != -ENOENT) {
1425 node = ulist_next(tmp, &uiter);
1436 int btrfs_find_all_roots(struct btrfs_trans_handle *trans,
1437 struct btrfs_fs_info *fs_info, u64 bytenr,
1438 u64 time_seq, struct ulist **roots,
1444 down_read(&fs_info->commit_root_sem);
1445 ret = btrfs_find_all_roots_safe(trans, fs_info, bytenr,
1446 time_seq, roots, ignore_offset);
1448 up_read(&fs_info->commit_root_sem);
1453 * btrfs_check_shared - tell us whether an extent is shared
1455 * btrfs_check_shared uses the backref walking code but will short
1456 * circuit as soon as it finds a root or inode that doesn't match the
1457 * one passed in. This provides a significant performance benefit for
1458 * callers (such as fiemap) which want to know whether the extent is
1459 * shared but do not need a ref count.
1461 * This attempts to attach to the running transaction in order to account for
1462 * delayed refs, but continues on even when no running transaction exists.
1464 * Return: 0 if extent is not shared, 1 if it is shared, < 0 on error.
1466 int btrfs_check_shared(struct btrfs_root *root, u64 inum, u64 bytenr)
1468 struct btrfs_fs_info *fs_info = root->fs_info;
1469 struct btrfs_trans_handle *trans;
1470 struct ulist *tmp = NULL;
1471 struct ulist *roots = NULL;
1472 struct ulist_iterator uiter;
1473 struct ulist_node *node;
1474 struct seq_list elem = SEQ_LIST_INIT(elem);
1476 struct share_check shared = {
1477 .root_objectid = root->objectid,
1482 tmp = ulist_alloc(GFP_NOFS);
1483 roots = ulist_alloc(GFP_NOFS);
1484 if (!tmp || !roots) {
1489 trans = btrfs_join_transaction_nostart(root);
1490 if (IS_ERR(trans)) {
1491 if (PTR_ERR(trans) != -ENOENT && PTR_ERR(trans) != -EROFS) {
1492 ret = PTR_ERR(trans);
1496 down_read(&fs_info->commit_root_sem);
1498 btrfs_get_tree_mod_seq(fs_info, &elem);
1501 ULIST_ITER_INIT(&uiter);
1503 ret = find_parent_nodes(trans, fs_info, bytenr, elem.seq, tmp,
1504 roots, NULL, &shared, false);
1505 if (ret == BACKREF_FOUND_SHARED) {
1506 /* this is the only condition under which we return 1 */
1510 if (ret < 0 && ret != -ENOENT)
1513 node = ulist_next(tmp, &uiter);
1517 shared.share_count = 0;
1522 btrfs_put_tree_mod_seq(fs_info, &elem);
1523 btrfs_end_transaction(trans);
1525 up_read(&fs_info->commit_root_sem);
1533 int btrfs_find_one_extref(struct btrfs_root *root, u64 inode_objectid,
1534 u64 start_off, struct btrfs_path *path,
1535 struct btrfs_inode_extref **ret_extref,
1539 struct btrfs_key key;
1540 struct btrfs_key found_key;
1541 struct btrfs_inode_extref *extref;
1542 const struct extent_buffer *leaf;
1545 key.objectid = inode_objectid;
1546 key.type = BTRFS_INODE_EXTREF_KEY;
1547 key.offset = start_off;
1549 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
1554 leaf = path->nodes[0];
1555 slot = path->slots[0];
1556 if (slot >= btrfs_header_nritems(leaf)) {
1558 * If the item at offset is not found,
1559 * btrfs_search_slot will point us to the slot
1560 * where it should be inserted. In our case
1561 * that will be the slot directly before the
1562 * next INODE_REF_KEY_V2 item. In the case
1563 * that we're pointing to the last slot in a
1564 * leaf, we must move one leaf over.
1566 ret = btrfs_next_leaf(root, path);
1575 btrfs_item_key_to_cpu(leaf, &found_key, slot);
1578 * Check that we're still looking at an extended ref key for
1579 * this particular objectid. If we have different
1580 * objectid or type then there are no more to be found
1581 * in the tree and we can exit.
1584 if (found_key.objectid != inode_objectid)
1586 if (found_key.type != BTRFS_INODE_EXTREF_KEY)
1590 ptr = btrfs_item_ptr_offset(leaf, path->slots[0]);
1591 extref = (struct btrfs_inode_extref *)ptr;
1592 *ret_extref = extref;
1594 *found_off = found_key.offset;
1602 * this iterates to turn a name (from iref/extref) into a full filesystem path.
1603 * Elements of the path are separated by '/' and the path is guaranteed to be
1604 * 0-terminated. the path is only given within the current file system.
1605 * Therefore, it never starts with a '/'. the caller is responsible to provide
1606 * "size" bytes in "dest". the dest buffer will be filled backwards. finally,
1607 * the start point of the resulting string is returned. this pointer is within
1609 * in case the path buffer would overflow, the pointer is decremented further
1610 * as if output was written to the buffer, though no more output is actually
1611 * generated. that way, the caller can determine how much space would be
1612 * required for the path to fit into the buffer. in that case, the returned
1613 * value will be smaller than dest. callers must check this!
1615 char *btrfs_ref_to_path(struct btrfs_root *fs_root, struct btrfs_path *path,
1616 u32 name_len, unsigned long name_off,
1617 struct extent_buffer *eb_in, u64 parent,
1618 char *dest, u32 size)
1623 s64 bytes_left = ((s64)size) - 1;
1624 struct extent_buffer *eb = eb_in;
1625 struct btrfs_key found_key;
1626 int leave_spinning = path->leave_spinning;
1627 struct btrfs_inode_ref *iref;
1629 if (bytes_left >= 0)
1630 dest[bytes_left] = '\0';
1632 path->leave_spinning = 1;
1634 bytes_left -= name_len;
1635 if (bytes_left >= 0)
1636 read_extent_buffer(eb, dest + bytes_left,
1637 name_off, name_len);
1639 if (!path->skip_locking)
1640 btrfs_tree_read_unlock_blocking(eb);
1641 free_extent_buffer(eb);
1643 ret = btrfs_find_item(fs_root, path, parent, 0,
1644 BTRFS_INODE_REF_KEY, &found_key);
1650 next_inum = found_key.offset;
1652 /* regular exit ahead */
1653 if (parent == next_inum)
1656 slot = path->slots[0];
1657 eb = path->nodes[0];
1658 /* make sure we can use eb after releasing the path */
1660 if (!path->skip_locking)
1661 btrfs_set_lock_blocking_rw(eb, BTRFS_READ_LOCK);
1662 path->nodes[0] = NULL;
1665 btrfs_release_path(path);
1666 iref = btrfs_item_ptr(eb, slot, struct btrfs_inode_ref);
1668 name_len = btrfs_inode_ref_name_len(eb, iref);
1669 name_off = (unsigned long)(iref + 1);
1673 if (bytes_left >= 0)
1674 dest[bytes_left] = '/';
1677 btrfs_release_path(path);
1678 path->leave_spinning = leave_spinning;
1681 return ERR_PTR(ret);
1683 return dest + bytes_left;
1687 * this makes the path point to (logical EXTENT_ITEM *)
1688 * returns BTRFS_EXTENT_FLAG_DATA for data, BTRFS_EXTENT_FLAG_TREE_BLOCK for
1689 * tree blocks and <0 on error.
1691 int extent_from_logical(struct btrfs_fs_info *fs_info, u64 logical,
1692 struct btrfs_path *path, struct btrfs_key *found_key,
1699 const struct extent_buffer *eb;
1700 struct btrfs_extent_item *ei;
1701 struct btrfs_key key;
1703 if (btrfs_fs_incompat(fs_info, SKINNY_METADATA))
1704 key.type = BTRFS_METADATA_ITEM_KEY;
1706 key.type = BTRFS_EXTENT_ITEM_KEY;
1707 key.objectid = logical;
1708 key.offset = (u64)-1;
1710 ret = btrfs_search_slot(NULL, fs_info->extent_root, &key, path, 0, 0);
1714 ret = btrfs_previous_extent_item(fs_info->extent_root, path, 0);
1720 btrfs_item_key_to_cpu(path->nodes[0], found_key, path->slots[0]);
1721 if (found_key->type == BTRFS_METADATA_ITEM_KEY)
1722 size = fs_info->nodesize;
1723 else if (found_key->type == BTRFS_EXTENT_ITEM_KEY)
1724 size = found_key->offset;
1726 if (found_key->objectid > logical ||
1727 found_key->objectid + size <= logical) {
1728 btrfs_debug(fs_info,
1729 "logical %llu is not within any extent", logical);
1733 eb = path->nodes[0];
1734 item_size = btrfs_item_size_nr(eb, path->slots[0]);
1735 BUG_ON(item_size < sizeof(*ei));
1737 ei = btrfs_item_ptr(eb, path->slots[0], struct btrfs_extent_item);
1738 flags = btrfs_extent_flags(eb, ei);
1740 btrfs_debug(fs_info,
1741 "logical %llu is at position %llu within the extent (%llu EXTENT_ITEM %llu) flags %#llx size %u",
1742 logical, logical - found_key->objectid, found_key->objectid,
1743 found_key->offset, flags, item_size);
1745 WARN_ON(!flags_ret);
1747 if (flags & BTRFS_EXTENT_FLAG_TREE_BLOCK)
1748 *flags_ret = BTRFS_EXTENT_FLAG_TREE_BLOCK;
1749 else if (flags & BTRFS_EXTENT_FLAG_DATA)
1750 *flags_ret = BTRFS_EXTENT_FLAG_DATA;
1760 * helper function to iterate extent inline refs. ptr must point to a 0 value
1761 * for the first call and may be modified. it is used to track state.
1762 * if more refs exist, 0 is returned and the next call to
1763 * get_extent_inline_ref must pass the modified ptr parameter to get the
1764 * next ref. after the last ref was processed, 1 is returned.
1765 * returns <0 on error
1767 static int get_extent_inline_ref(unsigned long *ptr,
1768 const struct extent_buffer *eb,
1769 const struct btrfs_key *key,
1770 const struct btrfs_extent_item *ei,
1772 struct btrfs_extent_inline_ref **out_eiref,
1777 struct btrfs_tree_block_info *info;
1781 flags = btrfs_extent_flags(eb, ei);
1782 if (flags & BTRFS_EXTENT_FLAG_TREE_BLOCK) {
1783 if (key->type == BTRFS_METADATA_ITEM_KEY) {
1784 /* a skinny metadata extent */
1786 (struct btrfs_extent_inline_ref *)(ei + 1);
1788 WARN_ON(key->type != BTRFS_EXTENT_ITEM_KEY);
1789 info = (struct btrfs_tree_block_info *)(ei + 1);
1791 (struct btrfs_extent_inline_ref *)(info + 1);
1794 *out_eiref = (struct btrfs_extent_inline_ref *)(ei + 1);
1796 *ptr = (unsigned long)*out_eiref;
1797 if ((unsigned long)(*ptr) >= (unsigned long)ei + item_size)
1801 end = (unsigned long)ei + item_size;
1802 *out_eiref = (struct btrfs_extent_inline_ref *)(*ptr);
1803 *out_type = btrfs_get_extent_inline_ref_type(eb, *out_eiref,
1804 BTRFS_REF_TYPE_ANY);
1805 if (*out_type == BTRFS_REF_TYPE_INVALID)
1808 *ptr += btrfs_extent_inline_ref_size(*out_type);
1809 WARN_ON(*ptr > end);
1811 return 1; /* last */
1817 * reads the tree block backref for an extent. tree level and root are returned
1818 * through out_level and out_root. ptr must point to a 0 value for the first
1819 * call and may be modified (see get_extent_inline_ref comment).
1820 * returns 0 if data was provided, 1 if there was no more data to provide or
1823 int tree_backref_for_extent(unsigned long *ptr, struct extent_buffer *eb,
1824 struct btrfs_key *key, struct btrfs_extent_item *ei,
1825 u32 item_size, u64 *out_root, u8 *out_level)
1829 struct btrfs_extent_inline_ref *eiref;
1831 if (*ptr == (unsigned long)-1)
1835 ret = get_extent_inline_ref(ptr, eb, key, ei, item_size,
1840 if (type == BTRFS_TREE_BLOCK_REF_KEY ||
1841 type == BTRFS_SHARED_BLOCK_REF_KEY)
1848 /* we can treat both ref types equally here */
1849 *out_root = btrfs_extent_inline_ref_offset(eb, eiref);
1851 if (key->type == BTRFS_EXTENT_ITEM_KEY) {
1852 struct btrfs_tree_block_info *info;
1854 info = (struct btrfs_tree_block_info *)(ei + 1);
1855 *out_level = btrfs_tree_block_level(eb, info);
1857 ASSERT(key->type == BTRFS_METADATA_ITEM_KEY);
1858 *out_level = (u8)key->offset;
1862 *ptr = (unsigned long)-1;
1867 static int iterate_leaf_refs(struct btrfs_fs_info *fs_info,
1868 struct extent_inode_elem *inode_list,
1869 u64 root, u64 extent_item_objectid,
1870 iterate_extent_inodes_t *iterate, void *ctx)
1872 struct extent_inode_elem *eie;
1875 for (eie = inode_list; eie; eie = eie->next) {
1876 btrfs_debug(fs_info,
1877 "ref for %llu resolved, key (%llu EXTEND_DATA %llu), root %llu",
1878 extent_item_objectid, eie->inum,
1880 ret = iterate(eie->inum, eie->offset, root, ctx);
1882 btrfs_debug(fs_info,
1883 "stopping iteration for %llu due to ret=%d",
1884 extent_item_objectid, ret);
1893 * calls iterate() for every inode that references the extent identified by
1894 * the given parameters.
1895 * when the iterator function returns a non-zero value, iteration stops.
1897 int iterate_extent_inodes(struct btrfs_fs_info *fs_info,
1898 u64 extent_item_objectid, u64 extent_item_pos,
1899 int search_commit_root,
1900 iterate_extent_inodes_t *iterate, void *ctx,
1904 struct btrfs_trans_handle *trans = NULL;
1905 struct ulist *refs = NULL;
1906 struct ulist *roots = NULL;
1907 struct ulist_node *ref_node = NULL;
1908 struct ulist_node *root_node = NULL;
1909 struct seq_list tree_mod_seq_elem = SEQ_LIST_INIT(tree_mod_seq_elem);
1910 struct ulist_iterator ref_uiter;
1911 struct ulist_iterator root_uiter;
1913 btrfs_debug(fs_info, "resolving all inodes for extent %llu",
1914 extent_item_objectid);
1916 if (!search_commit_root) {
1917 trans = btrfs_attach_transaction(fs_info->extent_root);
1918 if (IS_ERR(trans)) {
1919 if (PTR_ERR(trans) != -ENOENT &&
1920 PTR_ERR(trans) != -EROFS)
1921 return PTR_ERR(trans);
1927 btrfs_get_tree_mod_seq(fs_info, &tree_mod_seq_elem);
1929 down_read(&fs_info->commit_root_sem);
1931 ret = btrfs_find_all_leafs(trans, fs_info, extent_item_objectid,
1932 tree_mod_seq_elem.seq, &refs,
1933 &extent_item_pos, ignore_offset);
1937 ULIST_ITER_INIT(&ref_uiter);
1938 while (!ret && (ref_node = ulist_next(refs, &ref_uiter))) {
1939 ret = btrfs_find_all_roots_safe(trans, fs_info, ref_node->val,
1940 tree_mod_seq_elem.seq, &roots,
1944 ULIST_ITER_INIT(&root_uiter);
1945 while (!ret && (root_node = ulist_next(roots, &root_uiter))) {
1946 btrfs_debug(fs_info,
1947 "root %llu references leaf %llu, data list %#llx",
1948 root_node->val, ref_node->val,
1950 ret = iterate_leaf_refs(fs_info,
1951 (struct extent_inode_elem *)
1952 (uintptr_t)ref_node->aux,
1954 extent_item_objectid,
1960 free_leaf_list(refs);
1963 btrfs_put_tree_mod_seq(fs_info, &tree_mod_seq_elem);
1964 btrfs_end_transaction(trans);
1966 up_read(&fs_info->commit_root_sem);
1972 int iterate_inodes_from_logical(u64 logical, struct btrfs_fs_info *fs_info,
1973 struct btrfs_path *path,
1974 iterate_extent_inodes_t *iterate, void *ctx,
1978 u64 extent_item_pos;
1980 struct btrfs_key found_key;
1981 int search_commit_root = path->search_commit_root;
1983 ret = extent_from_logical(fs_info, logical, path, &found_key, &flags);
1984 btrfs_release_path(path);
1987 if (flags & BTRFS_EXTENT_FLAG_TREE_BLOCK)
1990 extent_item_pos = logical - found_key.objectid;
1991 ret = iterate_extent_inodes(fs_info, found_key.objectid,
1992 extent_item_pos, search_commit_root,
1993 iterate, ctx, ignore_offset);
1998 typedef int (iterate_irefs_t)(u64 parent, u32 name_len, unsigned long name_off,
1999 struct extent_buffer *eb, void *ctx);
2001 static int iterate_inode_refs(u64 inum, struct btrfs_root *fs_root,
2002 struct btrfs_path *path,
2003 iterate_irefs_t *iterate, void *ctx)
2012 struct extent_buffer *eb;
2013 struct btrfs_item *item;
2014 struct btrfs_inode_ref *iref;
2015 struct btrfs_key found_key;
2018 ret = btrfs_find_item(fs_root, path, inum,
2019 parent ? parent + 1 : 0, BTRFS_INODE_REF_KEY,
2025 ret = found ? 0 : -ENOENT;
2030 parent = found_key.offset;
2031 slot = path->slots[0];
2032 eb = btrfs_clone_extent_buffer(path->nodes[0]);
2037 extent_buffer_get(eb);
2038 btrfs_tree_read_lock(eb);
2039 btrfs_set_lock_blocking_rw(eb, BTRFS_READ_LOCK);
2040 btrfs_release_path(path);
2042 item = btrfs_item_nr(slot);
2043 iref = btrfs_item_ptr(eb, slot, struct btrfs_inode_ref);
2045 for (cur = 0; cur < btrfs_item_size(eb, item); cur += len) {
2046 name_len = btrfs_inode_ref_name_len(eb, iref);
2047 /* path must be released before calling iterate()! */
2048 btrfs_debug(fs_root->fs_info,
2049 "following ref at offset %u for inode %llu in tree %llu",
2050 cur, found_key.objectid, fs_root->objectid);
2051 ret = iterate(parent, name_len,
2052 (unsigned long)(iref + 1), eb, ctx);
2055 len = sizeof(*iref) + name_len;
2056 iref = (struct btrfs_inode_ref *)((char *)iref + len);
2058 btrfs_tree_read_unlock_blocking(eb);
2059 free_extent_buffer(eb);
2062 btrfs_release_path(path);
2067 static int iterate_inode_extrefs(u64 inum, struct btrfs_root *fs_root,
2068 struct btrfs_path *path,
2069 iterate_irefs_t *iterate, void *ctx)
2076 struct extent_buffer *eb;
2077 struct btrfs_inode_extref *extref;
2083 ret = btrfs_find_one_extref(fs_root, inum, offset, path, &extref,
2088 ret = found ? 0 : -ENOENT;
2093 slot = path->slots[0];
2094 eb = btrfs_clone_extent_buffer(path->nodes[0]);
2099 extent_buffer_get(eb);
2101 btrfs_tree_read_lock(eb);
2102 btrfs_set_lock_blocking_rw(eb, BTRFS_READ_LOCK);
2103 btrfs_release_path(path);
2105 item_size = btrfs_item_size_nr(eb, slot);
2106 ptr = btrfs_item_ptr_offset(eb, slot);
2109 while (cur_offset < item_size) {
2112 extref = (struct btrfs_inode_extref *)(ptr + cur_offset);
2113 parent = btrfs_inode_extref_parent(eb, extref);
2114 name_len = btrfs_inode_extref_name_len(eb, extref);
2115 ret = iterate(parent, name_len,
2116 (unsigned long)&extref->name, eb, ctx);
2120 cur_offset += btrfs_inode_extref_name_len(eb, extref);
2121 cur_offset += sizeof(*extref);
2123 btrfs_tree_read_unlock_blocking(eb);
2124 free_extent_buffer(eb);
2129 btrfs_release_path(path);
2134 static int iterate_irefs(u64 inum, struct btrfs_root *fs_root,
2135 struct btrfs_path *path, iterate_irefs_t *iterate,
2141 ret = iterate_inode_refs(inum, fs_root, path, iterate, ctx);
2144 else if (ret != -ENOENT)
2147 ret = iterate_inode_extrefs(inum, fs_root, path, iterate, ctx);
2148 if (ret == -ENOENT && found_refs)
2155 * returns 0 if the path could be dumped (probably truncated)
2156 * returns <0 in case of an error
2158 static int inode_to_path(u64 inum, u32 name_len, unsigned long name_off,
2159 struct extent_buffer *eb, void *ctx)
2161 struct inode_fs_paths *ipath = ctx;
2164 int i = ipath->fspath->elem_cnt;
2165 const int s_ptr = sizeof(char *);
2168 bytes_left = ipath->fspath->bytes_left > s_ptr ?
2169 ipath->fspath->bytes_left - s_ptr : 0;
2171 fspath_min = (char *)ipath->fspath->val + (i + 1) * s_ptr;
2172 fspath = btrfs_ref_to_path(ipath->fs_root, ipath->btrfs_path, name_len,
2173 name_off, eb, inum, fspath_min, bytes_left);
2175 return PTR_ERR(fspath);
2177 if (fspath > fspath_min) {
2178 ipath->fspath->val[i] = (u64)(unsigned long)fspath;
2179 ++ipath->fspath->elem_cnt;
2180 ipath->fspath->bytes_left = fspath - fspath_min;
2182 ++ipath->fspath->elem_missed;
2183 ipath->fspath->bytes_missing += fspath_min - fspath;
2184 ipath->fspath->bytes_left = 0;
2191 * this dumps all file system paths to the inode into the ipath struct, provided
2192 * is has been created large enough. each path is zero-terminated and accessed
2193 * from ipath->fspath->val[i].
2194 * when it returns, there are ipath->fspath->elem_cnt number of paths available
2195 * in ipath->fspath->val[]. when the allocated space wasn't sufficient, the
2196 * number of missed paths is recorded in ipath->fspath->elem_missed, otherwise,
2197 * it's zero. ipath->fspath->bytes_missing holds the number of bytes that would
2198 * have been needed to return all paths.
2200 int paths_from_inode(u64 inum, struct inode_fs_paths *ipath)
2202 return iterate_irefs(inum, ipath->fs_root, ipath->btrfs_path,
2203 inode_to_path, ipath);
2206 struct btrfs_data_container *init_data_container(u32 total_bytes)
2208 struct btrfs_data_container *data;
2211 alloc_bytes = max_t(size_t, total_bytes, sizeof(*data));
2212 data = kvmalloc(alloc_bytes, GFP_KERNEL);
2214 return ERR_PTR(-ENOMEM);
2216 if (total_bytes >= sizeof(*data)) {
2217 data->bytes_left = total_bytes - sizeof(*data);
2218 data->bytes_missing = 0;
2220 data->bytes_missing = sizeof(*data) - total_bytes;
2221 data->bytes_left = 0;
2225 data->elem_missed = 0;
2231 * allocates space to return multiple file system paths for an inode.
2232 * total_bytes to allocate are passed, note that space usable for actual path
2233 * information will be total_bytes - sizeof(struct inode_fs_paths).
2234 * the returned pointer must be freed with free_ipath() in the end.
2236 struct inode_fs_paths *init_ipath(s32 total_bytes, struct btrfs_root *fs_root,
2237 struct btrfs_path *path)
2239 struct inode_fs_paths *ifp;
2240 struct btrfs_data_container *fspath;
2242 fspath = init_data_container(total_bytes);
2244 return ERR_CAST(fspath);
2246 ifp = kmalloc(sizeof(*ifp), GFP_KERNEL);
2249 return ERR_PTR(-ENOMEM);
2252 ifp->btrfs_path = path;
2253 ifp->fspath = fspath;
2254 ifp->fs_root = fs_root;
2259 void free_ipath(struct inode_fs_paths *ipath)
2263 kvfree(ipath->fspath);