GNU Linux-libre 6.8.9-gnu
[releases.git] / fs / btrfs / async-thread.c
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * Copyright (C) 2007 Oracle.  All rights reserved.
4  * Copyright (C) 2014 Fujitsu.  All rights reserved.
5  */
6
7 #include <linux/kthread.h>
8 #include <linux/slab.h>
9 #include <linux/list.h>
10 #include <linux/spinlock.h>
11 #include <linux/freezer.h>
12 #include <trace/events/btrfs.h>
13 #include "async-thread.h"
14 #include "ctree.h"
15
16 enum {
17         WORK_DONE_BIT,
18         WORK_ORDER_DONE_BIT,
19 };
20
21 #define NO_THRESHOLD (-1)
22 #define DFT_THRESHOLD (32)
23
24 struct btrfs_workqueue {
25         struct workqueue_struct *normal_wq;
26
27         /* File system this workqueue services */
28         struct btrfs_fs_info *fs_info;
29
30         /* List head pointing to ordered work list */
31         struct list_head ordered_list;
32
33         /* Spinlock for ordered_list */
34         spinlock_t list_lock;
35
36         /* Thresholding related variants */
37         atomic_t pending;
38
39         /* Up limit of concurrency workers */
40         int limit_active;
41
42         /* Current number of concurrency workers */
43         int current_active;
44
45         /* Threshold to change current_active */
46         int thresh;
47         unsigned int count;
48         spinlock_t thres_lock;
49 };
50
51 struct btrfs_fs_info * __pure btrfs_workqueue_owner(const struct btrfs_workqueue *wq)
52 {
53         return wq->fs_info;
54 }
55
56 struct btrfs_fs_info * __pure btrfs_work_owner(const struct btrfs_work *work)
57 {
58         return work->wq->fs_info;
59 }
60
61 bool btrfs_workqueue_normal_congested(const struct btrfs_workqueue *wq)
62 {
63         /*
64          * We could compare wq->pending with num_online_cpus()
65          * to support "thresh == NO_THRESHOLD" case, but it requires
66          * moving up atomic_inc/dec in thresh_queue/exec_hook. Let's
67          * postpone it until someone needs the support of that case.
68          */
69         if (wq->thresh == NO_THRESHOLD)
70                 return false;
71
72         return atomic_read(&wq->pending) > wq->thresh * 2;
73 }
74
75 static void btrfs_init_workqueue(struct btrfs_workqueue *wq,
76                                  struct btrfs_fs_info *fs_info)
77 {
78         wq->fs_info = fs_info;
79         atomic_set(&wq->pending, 0);
80         INIT_LIST_HEAD(&wq->ordered_list);
81         spin_lock_init(&wq->list_lock);
82         spin_lock_init(&wq->thres_lock);
83 }
84
85 struct btrfs_workqueue *btrfs_alloc_workqueue(struct btrfs_fs_info *fs_info,
86                                               const char *name, unsigned int flags,
87                                               int limit_active, int thresh)
88 {
89         struct btrfs_workqueue *ret = kzalloc(sizeof(*ret), GFP_KERNEL);
90
91         if (!ret)
92                 return NULL;
93
94         btrfs_init_workqueue(ret, fs_info);
95
96         ret->limit_active = limit_active;
97         if (thresh == 0)
98                 thresh = DFT_THRESHOLD;
99         /* For low threshold, disabling threshold is a better choice */
100         if (thresh < DFT_THRESHOLD) {
101                 ret->current_active = limit_active;
102                 ret->thresh = NO_THRESHOLD;
103         } else {
104                 /*
105                  * For threshold-able wq, let its concurrency grow on demand.
106                  * Use minimal max_active at alloc time to reduce resource
107                  * usage.
108                  */
109                 ret->current_active = 1;
110                 ret->thresh = thresh;
111         }
112
113         ret->normal_wq = alloc_workqueue("btrfs-%s", flags, ret->current_active,
114                                          name);
115         if (!ret->normal_wq) {
116                 kfree(ret);
117                 return NULL;
118         }
119
120         trace_btrfs_workqueue_alloc(ret, name);
121         return ret;
122 }
123
124 struct btrfs_workqueue *btrfs_alloc_ordered_workqueue(
125                                 struct btrfs_fs_info *fs_info, const char *name,
126                                 unsigned int flags)
127 {
128         struct btrfs_workqueue *ret;
129
130         ret = kzalloc(sizeof(*ret), GFP_KERNEL);
131         if (!ret)
132                 return NULL;
133
134         btrfs_init_workqueue(ret, fs_info);
135
136         /* Ordered workqueues don't allow @max_active adjustments. */
137         ret->limit_active = 1;
138         ret->current_active = 1;
139         ret->thresh = NO_THRESHOLD;
140
141         ret->normal_wq = alloc_ordered_workqueue("btrfs-%s", flags, name);
142         if (!ret->normal_wq) {
143                 kfree(ret);
144                 return NULL;
145         }
146
147         trace_btrfs_workqueue_alloc(ret, name);
148         return ret;
149 }
150
151 /*
152  * Hook for threshold which will be called in btrfs_queue_work.
153  * This hook WILL be called in IRQ handler context,
154  * so workqueue_set_max_active MUST NOT be called in this hook
155  */
156 static inline void thresh_queue_hook(struct btrfs_workqueue *wq)
157 {
158         if (wq->thresh == NO_THRESHOLD)
159                 return;
160         atomic_inc(&wq->pending);
161 }
162
163 /*
164  * Hook for threshold which will be called before executing the work,
165  * This hook is called in kthread content.
166  * So workqueue_set_max_active is called here.
167  */
168 static inline void thresh_exec_hook(struct btrfs_workqueue *wq)
169 {
170         int new_current_active;
171         long pending;
172         int need_change = 0;
173
174         if (wq->thresh == NO_THRESHOLD)
175                 return;
176
177         atomic_dec(&wq->pending);
178         spin_lock(&wq->thres_lock);
179         /*
180          * Use wq->count to limit the calling frequency of
181          * workqueue_set_max_active.
182          */
183         wq->count++;
184         wq->count %= (wq->thresh / 4);
185         if (!wq->count)
186                 goto  out;
187         new_current_active = wq->current_active;
188
189         /*
190          * pending may be changed later, but it's OK since we really
191          * don't need it so accurate to calculate new_max_active.
192          */
193         pending = atomic_read(&wq->pending);
194         if (pending > wq->thresh)
195                 new_current_active++;
196         if (pending < wq->thresh / 2)
197                 new_current_active--;
198         new_current_active = clamp_val(new_current_active, 1, wq->limit_active);
199         if (new_current_active != wq->current_active)  {
200                 need_change = 1;
201                 wq->current_active = new_current_active;
202         }
203 out:
204         spin_unlock(&wq->thres_lock);
205
206         if (need_change) {
207                 workqueue_set_max_active(wq->normal_wq, wq->current_active);
208         }
209 }
210
211 static void run_ordered_work(struct btrfs_workqueue *wq,
212                              struct btrfs_work *self)
213 {
214         struct list_head *list = &wq->ordered_list;
215         struct btrfs_work *work;
216         spinlock_t *lock = &wq->list_lock;
217         unsigned long flags;
218         bool free_self = false;
219
220         while (1) {
221                 spin_lock_irqsave(lock, flags);
222                 if (list_empty(list))
223                         break;
224                 work = list_entry(list->next, struct btrfs_work,
225                                   ordered_list);
226                 if (!test_bit(WORK_DONE_BIT, &work->flags))
227                         break;
228                 /*
229                  * Orders all subsequent loads after reading WORK_DONE_BIT,
230                  * paired with the smp_mb__before_atomic in btrfs_work_helper
231                  * this guarantees that the ordered function will see all
232                  * updates from ordinary work function.
233                  */
234                 smp_rmb();
235
236                 /*
237                  * we are going to call the ordered done function, but
238                  * we leave the work item on the list as a barrier so
239                  * that later work items that are done don't have their
240                  * functions called before this one returns
241                  */
242                 if (test_and_set_bit(WORK_ORDER_DONE_BIT, &work->flags))
243                         break;
244                 trace_btrfs_ordered_sched(work);
245                 spin_unlock_irqrestore(lock, flags);
246                 work->ordered_func(work, false);
247
248                 /* now take the lock again and drop our item from the list */
249                 spin_lock_irqsave(lock, flags);
250                 list_del(&work->ordered_list);
251                 spin_unlock_irqrestore(lock, flags);
252
253                 if (work == self) {
254                         /*
255                          * This is the work item that the worker is currently
256                          * executing.
257                          *
258                          * The kernel workqueue code guarantees non-reentrancy
259                          * of work items. I.e., if a work item with the same
260                          * address and work function is queued twice, the second
261                          * execution is blocked until the first one finishes. A
262                          * work item may be freed and recycled with the same
263                          * work function; the workqueue code assumes that the
264                          * original work item cannot depend on the recycled work
265                          * item in that case (see find_worker_executing_work()).
266                          *
267                          * Note that different types of Btrfs work can depend on
268                          * each other, and one type of work on one Btrfs
269                          * filesystem may even depend on the same type of work
270                          * on another Btrfs filesystem via, e.g., a loop device.
271                          * Therefore, we must not allow the current work item to
272                          * be recycled until we are really done, otherwise we
273                          * break the above assumption and can deadlock.
274                          */
275                         free_self = true;
276                 } else {
277                         /*
278                          * We don't want to call the ordered free functions with
279                          * the lock held.
280                          */
281                         work->ordered_func(work, true);
282                         /* NB: work must not be dereferenced past this point. */
283                         trace_btrfs_all_work_done(wq->fs_info, work);
284                 }
285         }
286         spin_unlock_irqrestore(lock, flags);
287
288         if (free_self) {
289                 self->ordered_func(self, true);
290                 /* NB: self must not be dereferenced past this point. */
291                 trace_btrfs_all_work_done(wq->fs_info, self);
292         }
293 }
294
295 static void btrfs_work_helper(struct work_struct *normal_work)
296 {
297         struct btrfs_work *work = container_of(normal_work, struct btrfs_work,
298                                                normal_work);
299         struct btrfs_workqueue *wq = work->wq;
300         int need_order = 0;
301
302         /*
303          * We should not touch things inside work in the following cases:
304          * 1) after work->func() if it has no ordered_func(..., true) to free
305          *    Since the struct is freed in work->func().
306          * 2) after setting WORK_DONE_BIT
307          *    The work may be freed in other threads almost instantly.
308          * So we save the needed things here.
309          */
310         if (work->ordered_func)
311                 need_order = 1;
312
313         trace_btrfs_work_sched(work);
314         thresh_exec_hook(wq);
315         work->func(work);
316         if (need_order) {
317                 /*
318                  * Ensures all memory accesses done in the work function are
319                  * ordered before setting the WORK_DONE_BIT. Ensuring the thread
320                  * which is going to executed the ordered work sees them.
321                  * Pairs with the smp_rmb in run_ordered_work.
322                  */
323                 smp_mb__before_atomic();
324                 set_bit(WORK_DONE_BIT, &work->flags);
325                 run_ordered_work(wq, work);
326         } else {
327                 /* NB: work must not be dereferenced past this point. */
328                 trace_btrfs_all_work_done(wq->fs_info, work);
329         }
330 }
331
332 void btrfs_init_work(struct btrfs_work *work, btrfs_func_t func,
333                      btrfs_ordered_func_t ordered_func)
334 {
335         work->func = func;
336         work->ordered_func = ordered_func;
337         INIT_WORK(&work->normal_work, btrfs_work_helper);
338         INIT_LIST_HEAD(&work->ordered_list);
339         work->flags = 0;
340 }
341
342 void btrfs_queue_work(struct btrfs_workqueue *wq, struct btrfs_work *work)
343 {
344         unsigned long flags;
345
346         work->wq = wq;
347         thresh_queue_hook(wq);
348         if (work->ordered_func) {
349                 spin_lock_irqsave(&wq->list_lock, flags);
350                 list_add_tail(&work->ordered_list, &wq->ordered_list);
351                 spin_unlock_irqrestore(&wq->list_lock, flags);
352         }
353         trace_btrfs_work_queued(work);
354         queue_work(wq->normal_wq, &work->normal_work);
355 }
356
357 void btrfs_destroy_workqueue(struct btrfs_workqueue *wq)
358 {
359         if (!wq)
360                 return;
361         destroy_workqueue(wq->normal_wq);
362         trace_btrfs_workqueue_destroy(wq);
363         kfree(wq);
364 }
365
366 void btrfs_workqueue_set_max(struct btrfs_workqueue *wq, int limit_active)
367 {
368         if (wq)
369                 wq->limit_active = limit_active;
370 }
371
372 void btrfs_flush_workqueue(struct btrfs_workqueue *wq)
373 {
374         flush_workqueue(wq->normal_wq);
375 }