GNU Linux-libre 4.9.318-gnu1
[releases.git] / fs / btrfs / async-thread.c
1 /*
2  * Copyright (C) 2007 Oracle.  All rights reserved.
3  * Copyright (C) 2014 Fujitsu.  All rights reserved.
4  *
5  * This program is free software; you can redistribute it and/or
6  * modify it under the terms of the GNU General Public
7  * License v2 as published by the Free Software Foundation.
8  *
9  * This program is distributed in the hope that it will be useful,
10  * but WITHOUT ANY WARRANTY; without even the implied warranty of
11  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
12  * General Public License for more details.
13  *
14  * You should have received a copy of the GNU General Public
15  * License along with this program; if not, write to the
16  * Free Software Foundation, Inc., 59 Temple Place - Suite 330,
17  * Boston, MA 021110-1307, USA.
18  */
19
20 #include <linux/kthread.h>
21 #include <linux/slab.h>
22 #include <linux/list.h>
23 #include <linux/spinlock.h>
24 #include <linux/freezer.h>
25 #include "async-thread.h"
26 #include "ctree.h"
27
28 #define WORK_DONE_BIT 0
29 #define WORK_ORDER_DONE_BIT 1
30 #define WORK_HIGH_PRIO_BIT 2
31
32 #define NO_THRESHOLD (-1)
33 #define DFT_THRESHOLD (32)
34
35 struct __btrfs_workqueue {
36         struct workqueue_struct *normal_wq;
37
38         /* File system this workqueue services */
39         struct btrfs_fs_info *fs_info;
40
41         /* List head pointing to ordered work list */
42         struct list_head ordered_list;
43
44         /* Spinlock for ordered_list */
45         spinlock_t list_lock;
46
47         /* Thresholding related variants */
48         atomic_t pending;
49
50         /* Up limit of concurrency workers */
51         int limit_active;
52
53         /* Current number of concurrency workers */
54         int current_active;
55
56         /* Threshold to change current_active */
57         int thresh;
58         unsigned int count;
59         spinlock_t thres_lock;
60 };
61
62 struct btrfs_workqueue {
63         struct __btrfs_workqueue *normal;
64         struct __btrfs_workqueue *high;
65 };
66
67 static void normal_work_helper(struct btrfs_work *work);
68
69 #define BTRFS_WORK_HELPER(name)                                 \
70 void btrfs_##name(struct work_struct *arg)                              \
71 {                                                                       \
72         struct btrfs_work *work = container_of(arg, struct btrfs_work,  \
73                                                normal_work);            \
74         normal_work_helper(work);                                       \
75 }
76
77 struct btrfs_fs_info *
78 btrfs_workqueue_owner(struct __btrfs_workqueue *wq)
79 {
80         return wq->fs_info;
81 }
82
83 struct btrfs_fs_info *
84 btrfs_work_owner(struct btrfs_work *work)
85 {
86         return work->wq->fs_info;
87 }
88
89 bool btrfs_workqueue_normal_congested(struct btrfs_workqueue *wq)
90 {
91         /*
92          * We could compare wq->normal->pending with num_online_cpus()
93          * to support "thresh == NO_THRESHOLD" case, but it requires
94          * moving up atomic_inc/dec in thresh_queue/exec_hook. Let's
95          * postpone it until someone needs the support of that case.
96          */
97         if (wq->normal->thresh == NO_THRESHOLD)
98                 return false;
99
100         return atomic_read(&wq->normal->pending) > wq->normal->thresh * 2;
101 }
102
103 BTRFS_WORK_HELPER(worker_helper);
104 BTRFS_WORK_HELPER(delalloc_helper);
105 BTRFS_WORK_HELPER(flush_delalloc_helper);
106 BTRFS_WORK_HELPER(cache_helper);
107 BTRFS_WORK_HELPER(submit_helper);
108 BTRFS_WORK_HELPER(fixup_helper);
109 BTRFS_WORK_HELPER(endio_helper);
110 BTRFS_WORK_HELPER(endio_meta_helper);
111 BTRFS_WORK_HELPER(endio_meta_write_helper);
112 BTRFS_WORK_HELPER(endio_raid56_helper);
113 BTRFS_WORK_HELPER(endio_repair_helper);
114 BTRFS_WORK_HELPER(rmw_helper);
115 BTRFS_WORK_HELPER(endio_write_helper);
116 BTRFS_WORK_HELPER(freespace_write_helper);
117 BTRFS_WORK_HELPER(delayed_meta_helper);
118 BTRFS_WORK_HELPER(readahead_helper);
119 BTRFS_WORK_HELPER(qgroup_rescan_helper);
120 BTRFS_WORK_HELPER(extent_refs_helper);
121 BTRFS_WORK_HELPER(scrub_helper);
122 BTRFS_WORK_HELPER(scrubwrc_helper);
123 BTRFS_WORK_HELPER(scrubnc_helper);
124 BTRFS_WORK_HELPER(scrubparity_helper);
125
126 static struct __btrfs_workqueue *
127 __btrfs_alloc_workqueue(struct btrfs_fs_info *fs_info, const char *name,
128                         unsigned int flags, int limit_active, int thresh)
129 {
130         struct __btrfs_workqueue *ret = kzalloc(sizeof(*ret), GFP_KERNEL);
131
132         if (!ret)
133                 return NULL;
134
135         ret->fs_info = fs_info;
136         ret->limit_active = limit_active;
137         atomic_set(&ret->pending, 0);
138         if (thresh == 0)
139                 thresh = DFT_THRESHOLD;
140         /* For low threshold, disabling threshold is a better choice */
141         if (thresh < DFT_THRESHOLD) {
142                 ret->current_active = limit_active;
143                 ret->thresh = NO_THRESHOLD;
144         } else {
145                 /*
146                  * For threshold-able wq, let its concurrency grow on demand.
147                  * Use minimal max_active at alloc time to reduce resource
148                  * usage.
149                  */
150                 ret->current_active = 1;
151                 ret->thresh = thresh;
152         }
153
154         if (flags & WQ_HIGHPRI)
155                 ret->normal_wq = alloc_workqueue("%s-%s-high", flags,
156                                                  ret->current_active, "btrfs",
157                                                  name);
158         else
159                 ret->normal_wq = alloc_workqueue("%s-%s", flags,
160                                                  ret->current_active, "btrfs",
161                                                  name);
162         if (!ret->normal_wq) {
163                 kfree(ret);
164                 return NULL;
165         }
166
167         INIT_LIST_HEAD(&ret->ordered_list);
168         spin_lock_init(&ret->list_lock);
169         spin_lock_init(&ret->thres_lock);
170         trace_btrfs_workqueue_alloc(ret, name, flags & WQ_HIGHPRI);
171         return ret;
172 }
173
174 static inline void
175 __btrfs_destroy_workqueue(struct __btrfs_workqueue *wq);
176
177 struct btrfs_workqueue *btrfs_alloc_workqueue(struct btrfs_fs_info *fs_info,
178                                               const char *name,
179                                               unsigned int flags,
180                                               int limit_active,
181                                               int thresh)
182 {
183         struct btrfs_workqueue *ret = kzalloc(sizeof(*ret), GFP_KERNEL);
184
185         if (!ret)
186                 return NULL;
187
188         ret->normal = __btrfs_alloc_workqueue(fs_info, name,
189                                               flags & ~WQ_HIGHPRI,
190                                               limit_active, thresh);
191         if (!ret->normal) {
192                 kfree(ret);
193                 return NULL;
194         }
195
196         if (flags & WQ_HIGHPRI) {
197                 ret->high = __btrfs_alloc_workqueue(fs_info, name, flags,
198                                                     limit_active, thresh);
199                 if (!ret->high) {
200                         __btrfs_destroy_workqueue(ret->normal);
201                         kfree(ret);
202                         return NULL;
203                 }
204         }
205         return ret;
206 }
207
208 /*
209  * Hook for threshold which will be called in btrfs_queue_work.
210  * This hook WILL be called in IRQ handler context,
211  * so workqueue_set_max_active MUST NOT be called in this hook
212  */
213 static inline void thresh_queue_hook(struct __btrfs_workqueue *wq)
214 {
215         if (wq->thresh == NO_THRESHOLD)
216                 return;
217         atomic_inc(&wq->pending);
218 }
219
220 /*
221  * Hook for threshold which will be called before executing the work,
222  * This hook is called in kthread content.
223  * So workqueue_set_max_active is called here.
224  */
225 static inline void thresh_exec_hook(struct __btrfs_workqueue *wq)
226 {
227         int new_current_active;
228         long pending;
229         int need_change = 0;
230
231         if (wq->thresh == NO_THRESHOLD)
232                 return;
233
234         atomic_dec(&wq->pending);
235         spin_lock(&wq->thres_lock);
236         /*
237          * Use wq->count to limit the calling frequency of
238          * workqueue_set_max_active.
239          */
240         wq->count++;
241         wq->count %= (wq->thresh / 4);
242         if (!wq->count)
243                 goto  out;
244         new_current_active = wq->current_active;
245
246         /*
247          * pending may be changed later, but it's OK since we really
248          * don't need it so accurate to calculate new_max_active.
249          */
250         pending = atomic_read(&wq->pending);
251         if (pending > wq->thresh)
252                 new_current_active++;
253         if (pending < wq->thresh / 2)
254                 new_current_active--;
255         new_current_active = clamp_val(new_current_active, 1, wq->limit_active);
256         if (new_current_active != wq->current_active)  {
257                 need_change = 1;
258                 wq->current_active = new_current_active;
259         }
260 out:
261         spin_unlock(&wq->thres_lock);
262
263         if (need_change) {
264                 workqueue_set_max_active(wq->normal_wq, wq->current_active);
265         }
266 }
267
268 static void run_ordered_work(struct __btrfs_workqueue *wq,
269                              struct btrfs_work *self)
270 {
271         struct list_head *list = &wq->ordered_list;
272         struct btrfs_work *work;
273         spinlock_t *lock = &wq->list_lock;
274         unsigned long flags;
275         void *wtag;
276         bool free_self = false;
277
278         while (1) {
279                 spin_lock_irqsave(lock, flags);
280                 if (list_empty(list))
281                         break;
282                 work = list_entry(list->next, struct btrfs_work,
283                                   ordered_list);
284                 if (!test_bit(WORK_DONE_BIT, &work->flags))
285                         break;
286                 /*
287                  * Orders all subsequent loads after reading WORK_DONE_BIT,
288                  * paired with the smp_mb__before_atomic in btrfs_work_helper
289                  * this guarantees that the ordered function will see all
290                  * updates from ordinary work function.
291                  */
292                 smp_rmb();
293
294                 /*
295                  * we are going to call the ordered done function, but
296                  * we leave the work item on the list as a barrier so
297                  * that later work items that are done don't have their
298                  * functions called before this one returns
299                  */
300                 if (test_and_set_bit(WORK_ORDER_DONE_BIT, &work->flags))
301                         break;
302                 trace_btrfs_ordered_sched(work);
303                 spin_unlock_irqrestore(lock, flags);
304                 work->ordered_func(work);
305
306                 /* now take the lock again and drop our item from the list */
307                 spin_lock_irqsave(lock, flags);
308                 list_del(&work->ordered_list);
309                 spin_unlock_irqrestore(lock, flags);
310
311                 if (work == self) {
312                         /*
313                          * This is the work item that the worker is currently
314                          * executing.
315                          *
316                          * The kernel workqueue code guarantees non-reentrancy
317                          * of work items. I.e., if a work item with the same
318                          * address and work function is queued twice, the second
319                          * execution is blocked until the first one finishes. A
320                          * work item may be freed and recycled with the same
321                          * work function; the workqueue code assumes that the
322                          * original work item cannot depend on the recycled work
323                          * item in that case (see find_worker_executing_work()).
324                          *
325                          * Note that the work of one Btrfs filesystem may depend
326                          * on the work of another Btrfs filesystem via, e.g., a
327                          * loop device. Therefore, we must not allow the current
328                          * work item to be recycled until we are really done,
329                          * otherwise we break the above assumption and can
330                          * deadlock.
331                          */
332                         free_self = true;
333                 } else {
334                         /*
335                          * We don't want to call the ordered free functions with
336                          * the lock held though. Save the work as tag for the
337                          * trace event, because the callback could free the
338                          * structure.
339                          */
340                         wtag = work;
341                         work->ordered_free(work);
342                         trace_btrfs_all_work_done(wq->fs_info, wtag);
343                 }
344         }
345         spin_unlock_irqrestore(lock, flags);
346
347         if (free_self) {
348                 wtag = self;
349                 self->ordered_free(self);
350                 trace_btrfs_all_work_done(wq->fs_info, wtag);
351         }
352 }
353
354 static void normal_work_helper(struct btrfs_work *work)
355 {
356         struct __btrfs_workqueue *wq;
357         void *wtag;
358         int need_order = 0;
359
360         /*
361          * We should not touch things inside work in the following cases:
362          * 1) after work->func() if it has no ordered_free
363          *    Since the struct is freed in work->func().
364          * 2) after setting WORK_DONE_BIT
365          *    The work may be freed in other threads almost instantly.
366          * So we save the needed things here.
367          */
368         if (work->ordered_func)
369                 need_order = 1;
370         wq = work->wq;
371         /* Safe for tracepoints in case work gets freed by the callback */
372         wtag = work;
373
374         trace_btrfs_work_sched(work);
375         thresh_exec_hook(wq);
376         work->func(work);
377         if (need_order) {
378                 /*
379                  * Ensures all memory accesses done in the work function are
380                  * ordered before setting the WORK_DONE_BIT. Ensuring the thread
381                  * which is going to executed the ordered work sees them.
382                  * Pairs with the smp_rmb in run_ordered_work.
383                  */
384                 smp_mb__before_atomic();
385                 set_bit(WORK_DONE_BIT, &work->flags);
386                 run_ordered_work(wq, work);
387         }
388         if (!need_order)
389                 trace_btrfs_all_work_done(wq->fs_info, wtag);
390 }
391
392 void btrfs_init_work(struct btrfs_work *work, btrfs_work_func_t uniq_func,
393                      btrfs_func_t func,
394                      btrfs_func_t ordered_func,
395                      btrfs_func_t ordered_free)
396 {
397         work->func = func;
398         work->ordered_func = ordered_func;
399         work->ordered_free = ordered_free;
400         INIT_WORK(&work->normal_work, uniq_func);
401         INIT_LIST_HEAD(&work->ordered_list);
402         work->flags = 0;
403 }
404
405 static inline void __btrfs_queue_work(struct __btrfs_workqueue *wq,
406                                       struct btrfs_work *work)
407 {
408         unsigned long flags;
409
410         work->wq = wq;
411         thresh_queue_hook(wq);
412         if (work->ordered_func) {
413                 spin_lock_irqsave(&wq->list_lock, flags);
414                 list_add_tail(&work->ordered_list, &wq->ordered_list);
415                 spin_unlock_irqrestore(&wq->list_lock, flags);
416         }
417         trace_btrfs_work_queued(work);
418         queue_work(wq->normal_wq, &work->normal_work);
419 }
420
421 void btrfs_queue_work(struct btrfs_workqueue *wq,
422                       struct btrfs_work *work)
423 {
424         struct __btrfs_workqueue *dest_wq;
425
426         if (test_bit(WORK_HIGH_PRIO_BIT, &work->flags) && wq->high)
427                 dest_wq = wq->high;
428         else
429                 dest_wq = wq->normal;
430         __btrfs_queue_work(dest_wq, work);
431 }
432
433 static inline void
434 __btrfs_destroy_workqueue(struct __btrfs_workqueue *wq)
435 {
436         destroy_workqueue(wq->normal_wq);
437         trace_btrfs_workqueue_destroy(wq);
438         kfree(wq);
439 }
440
441 void btrfs_destroy_workqueue(struct btrfs_workqueue *wq)
442 {
443         if (!wq)
444                 return;
445         if (wq->high)
446                 __btrfs_destroy_workqueue(wq->high);
447         __btrfs_destroy_workqueue(wq->normal);
448         kfree(wq);
449 }
450
451 void btrfs_workqueue_set_max(struct btrfs_workqueue *wq, int limit_active)
452 {
453         if (!wq)
454                 return;
455         wq->normal->limit_active = limit_active;
456         if (wq->high)
457                 wq->high->limit_active = limit_active;
458 }
459
460 void btrfs_set_work_high_priority(struct btrfs_work *work)
461 {
462         set_bit(WORK_HIGH_PRIO_BIT, &work->flags);
463 }
464
465 void btrfs_flush_workqueue(struct btrfs_workqueue *wq)
466 {
467         if (wq->high)
468                 flush_workqueue(wq->high->normal_wq);
469
470         flush_workqueue(wq->normal->normal_wq);
471 }